Sample records for elevation model derived

  1. Watershed boundaries and digital elevation model of Oklahoma derived from 1:100,000-scale digital topographic maps

    USGS Publications Warehouse

    Cederstrand, J.R.; Rea, A.H.

    1995-01-01

    This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.

  2. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  3. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    EPA Science Inventory

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  4. Evaluation of vector coastline features extracted from 'structure from motion'-derived elevation data

    USGS Publications Warehouse

    Kinsman, Nicole; Gibbs, Ann E.; Nolan, Matt

    2015-01-01

    For extensive and remote coastlines, the absence of high-quality elevation models—for example, those produced with lidar—leaves some coastal populations lacking one of the essential elements for mapping shoreline positions or flood extents. Here, we compare seven different elevation products in a lowlying area in western Alaska to establish their appropriateness for coastal mapping applications that require the delineation of elevation-based vectors. We further investigate the effective use of a Structure from Motion (SfM)-derived surface model (vertical RMSE<20 cm) by generating a tidal datum-based shoreline and an inundation extent map for a 2011 flood event. Our results suggest that SfM-derived elevation products can yield elevation-based vector features that have horizontal positional uncertainties comparable to those derived from other techniques. We also provide a rule-of-thumb equation to aid in the selection of minimum elevation model specifications based on terrain slope, vertical uncertainties, and desired horizontal accuracy.

  5. Topogrid Derived 10 Meter Resolution Digital Elevation Model of Charleston, and Parts of Berkeley, Colleton, Dorchester and Georgetown Counties, South Carolina

    USGS Publications Warehouse

    Chirico, Peter G.

    2005-01-01

    EXPLANATION The purpose of developing a new 10m resolution digital elevation model (DEM) of the Charleston Region was to more accurately depict geologic structure, surfical geology, and landforms of the Charleston County Region. Previously, many areas northeast and southwest of Charleston were originally mapped with a 20 foot contour interval. As a result, large areas within the National Elevation Dataset (NED) depict flat terraced topography where there was a lack of higher resolution elevation data. To overcome these data voids, the new DEM is supplemented with additional elevation data and break-lines derived from aerial photography and topographic maps. The resultant DEM is stored as a raster grid at uniform 10m horizontal resolution. The elevation model contained in this publication was prodcued utilizing the ANUDEM algorthim. ANUDEM allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the development of the elevation model. A preliminary statistical analysis using over 788 vertical elevation check points, primarily located in the northeastern part of the study area, derived from USGS 7.5 Minute Topographic maps reveals that the final DEM, has a vertical accuracy of ?3.27 meters. A table listing the elevation comparison between the elevation check points and the final DEM is provided.

  6. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE PAGES

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; ...

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  7. Slant path rain attenuation and path diversity statistics obtained through radar modeling of rain structure

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1984-01-01

    Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.

  8. Development of a LiDAR derived digital elevation model (DEM) as Input to a METRANS geographic information system (GIS).

    DOT National Transportation Integrated Search

    2011-05-01

    This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...

  9. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  10. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    USGS Publications Warehouse

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  11. Calculation and Error Analysis of a Digital Elevation Model of Hofsjokull, Iceland from SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Barton, Jonathan S.; Hall, Dorothy K.; Sigurosson, Oddur; Williams, Richard S., Jr.; Smith, Laurence C.; Garvin, James B.

    1999-01-01

    Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.

  12. Calculation and error analysis of a digital elevation model of Hofsjokull, Iceland, from SAR interferometry

    USGS Publications Warehouse

    Barton, Jonathan S.; Hall, Dorothy K.; Sigurðsson, Oddur; Williams, Richard S.; Smith, Laurence C.; Garvin, James B.; Taylor, Susan; Hardy, Janet

    1999-01-01

    Two ascending European Space Agency (ESA) Earth Resources Satellites (ERS)-1/-2 tandem-mode, synthetic aperture radar (SAR) pairs are used to calculate the surface elevation of Hofsjokull, an ice cap in central Iceland. The motion component of the interferometric phase is calculated using the 30 arc-second resolution USGS GTOPO30 global digital elevation product and one of the ERS tandem pairs. The topography is then derived by subtracting the motion component from the other tandem pair. In order to assess the accuracy of the resultant digital elevation model (DEM), a geodetic airborne laser-altimetry swath is compared with the elevations derived from the interferometry. The DEM is also compared with elevations derived from a digitized topographic map of the ice cap from the University of Iceland Science Institute. Results show that low temporal correlation is a significant problem for the application of interferometry to small, low-elevation ice caps, even over a one-day repeat interval, and especially at the higher elevations. Results also show that an uncompensated error in the phase, ramping from northwest to southeast, present after tying the DEM to ground-control points, has resulted in a systematic error across the DEM.

  13. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  14. Ice elevations and surface change on the Malaspina Glacier, Alaska

    USGS Publications Warehouse

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference surface. Specifically, we report elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the Malaspina Glacier. Copyright 2005 by the American Geophysical Union.

  15. Predicting Individual Tree and Shrub Species Distributions with Empirically Derived Microclimate Surfaces in a Complex Mountain Ecosystem in Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.

    2009-12-01

    The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.

  16. Using Selective Drainage Methods to Extract Continuous Surface Flow from 1-Meter Lidar-Derived Digital Elevation Data

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2010-01-01

    Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.

  17. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns

    NASA Astrophysics Data System (ADS)

    Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska

    2017-04-01

    Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.

  18. The effects of wavelet compression on Digital Elevation Models (DEMs)

    USGS Publications Warehouse

    Oimoen, M.J.

    2004-01-01

    This paper investigates the effects of lossy compression on floating-point digital elevation models using the discrete wavelet transform. The compression of elevation data poses a different set of problems and concerns than does the compression of images. Most notably, the usefulness of DEMs depends largely in the quality of their derivatives, such as slope and aspect. Three areas extracted from the U.S. Geological Survey's National Elevation Dataset were transformed to the wavelet domain using the third order filters of the Daubechies family (DAUB6), and were made sparse by setting 95 percent of the smallest wavelet coefficients to zero. The resulting raster is compressible to a corresponding degree. The effects of the nulled coefficients on the reconstructed DEM are noted as residuals in elevation, derived slope and aspect, and delineation of drainage basins and streamlines. A simple masking technique also is presented, that maintains the integrity and flatness of water bodies in the reconstructed DEM.

  19. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  20. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  1. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  2. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  3. Validation of DEM Data Derived from World View 3 Stereo Imagery for Low Elevation Majuro Atoll, Marshall Islands

    EPA Science Inventory

    The availability of surface elevation data for the Marshall Islands has been identified as a “massive” data gap for conducting vulnerability assessments and the subsequent development of climate change adaption strategies. Specifically, digital elevation model (DEM) data are need...

  4. Gravity deformation measurements of 70m reflector surfaces

    NASA Technical Reports Server (NTRS)

    Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.

    2001-01-01

    Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.

  5. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected response ratio to elevated CO2 at the AmazonFACE site and identify priorities for experimental work and model development.

  6. Geospatial datasets for watershed delineation and characterization used in the Hawaii StreamStats web application

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2012-01-01

    The U.S. Geological Survey Hawaii StreamStats application uses an integrated suite of raster and vector geospatial datasets to delineate and characterize watersheds. The geospatial datasets used to delineate and characterize watersheds on the StreamStats website, and the methods used to develop the datasets are described in this report. The datasets for Hawaii were derived primarily from 10 meter resolution National Elevation Dataset (NED) elevation models, and the National Hydrography Dataset (NHD), using a set of procedures designed to enforce the drainage pattern from the NHD into the NED, resulting in an integrated suite of elevation-derived datasets. Additional sources of data used for computing basin characteristics include precipitation, land cover, soil permeability, and elevation-derivative datasets. The report also includes links for metadata and downloads of the geospatial datasets.

  7. Evaluation of the U.S. Geological Survey standard elevation products in a two-dimensional hydraulic modeling application for a low relief coastal floodplain

    USGS Publications Warehouse

    Witt, Emitt C.

    2015-01-01

    Growing use of two-dimensional (2-D) hydraulic models has created a need for high resolution data to support flood volume estimates, floodplain specific engineering data, and accurate flood inundation scenarios. Elevation data are a critical input to these models that guide the flood-wave across the landscape allowing the computation of valuable engineering specific data that provides a better understanding of flooding impacts on structures, debris movement, bed scour, and direction. High resolution elevation data are becoming publicly available that can benefit the 2-D flood modeling community. Comparison of these newly available data with legacy data suggests that better modeling outcomes are achieved by using 3D Elevation Program (3DEP) lidar point data and the derived 1 m Digital Elevation Model (DEM) product relative to the legacy 3 m, 10 m, or 30 m products currently available in the U.S. Geological Survey (USGS) National Elevation Dataset. Within the low topographic relief of a coastal floodplain, the newer 3DEP data better resolved elevations within the forested and swampy areas achieving simulations that compared well with a historic flooding event. Results show that the 1 m DEM derived from 3DEP lidar source provides a more conservative estimate of specific energy, static pressure, and impact pressure for grid elements at maximum flow relative to the legacy DEM data. Better flood simulations are critically important in coastal floodplains where climate change driven storm frequency and sea level rise will contribute to more frequent flooding events.

  8. Conceptual Model Development for Sea Turtle Nesting Habitat: Support for USACE Navigation Projects

    DTIC Science & Technology

    2015-08-01

    regional values. • Beach Width: The width of the beach (m) defines the region from the shoreline to the dune toe . Loggerhead turtles tend to prefer...primary drivers of the model parameters. • Beach Elevation: Beach elevation (m) is measured from the shoreline to the dune toe . Elevation influences...mapping, and morphological features in combination with imagery-derived environmental parameters (i.e., dune vegetation) have not been attempted

  9. CLICK: The new USGS center for LIDAR information coordination and knowledge

    USGS Publications Warehouse

    Stoker, Jason M.; Greenlee, Susan K.; Gesch, Dean B.; Menig, Jordan C.

    2006-01-01

    Elevation data is rapidly becoming an important tool for the visualization and analysis of geographic information. The creation and display of three-dimensional models representing bare earth, vegetation, and structures have become major requirements for geographic research in the past few years. Light Detection and Ranging (lidar) has been increasingly accepted as an effective and accurate technology for acquiring high-resolution elevation data for bare earth, vegetation, and structures. Lidar is an active remote sensing system that records the distance, or range, of a laser fi red from an airborne or space borne platform such as an airplane, helicopter or satellite to objects or features on the Earth’s surface. By converting lidar data into bare ground topography and vegetation or structural morphologic information, extremely accurate, high-resolution elevation models can be derived to visualize and quantitatively represent scenes in three dimensions. In addition to high-resolution digital elevation models (Evans et al., 2001), other lidar-derived products include quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass (Lefsky et al., 2002), and models of urban areas such as building footprints and three-dimensional city models (Maas, 2001).

  10. The 3D elevation program - Precision agriculture and other farm practices

    USGS Publications Warehouse

    Sugarbaker, Larry J.; Carswell, Jr., William J.

    2016-12-27

    A founding motto of the Natural Resources Conservation Service (NRCS), originally the Soil Conservation Service (SCS), explains that “If we take care of the land, it will take care of us.” Digital elevation models (DEMs; see fig. 1) are derived from light detection and ranging (lidar) data and can be processed to derive values such as slope angle, aspect, and topographic curvature. These three measurements are the principal parameters of the NRCS LidarEnhanced Soil Survey (LESS) model, which improves the precision of soil surveys, by more accurately displaying the slopes and soils patterns, while increasing the objectivity and science in line placement. As combined resources, DEMs, LESS model outputs, and similar derived datasets are essential for conserving soil, wetlands, and other natural resources managed and overseen by the NRCS and other Federal and State agencies.

  11. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    NASA Astrophysics Data System (ADS)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  12. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  13. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry

    NASA Astrophysics Data System (ADS)

    Slater, Thomas; Shepherd, Andrew; McMillan, Malcolm; Muir, Alan; Gilbert, Lin; Hogg, Anna E.; Konrad, Hannes; Parrinello, Tommaso

    2018-05-01

    We present a new digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m - a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry.

  14. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The importance of sea-level rise in shaping coastal landscapes is well recognized within the earth science community, but as with many natural hazards, communicating the risks associated with sea-level rise remains a challenge. Topography is a key parameter that influences many of the processes involved in coastal change, and thus, up-to-date, high-resolution, high-accuracy elevation data are required to model the coastal environment. Maps of areas subject to potential inundation have great utility to planners and managers concerned with the effects of sea-level rise. However, most of the maps produced to date are simplistic representations derived from older, coarse elevation data. In the last several years, vast amounts of high quality elevation data derived from lidar have become available. Because of their high vertical accuracy and spatial resolution, these lidar data are an excellent source of up-to-date information from which to improve identification and delineation of vulnerable lands. Four elevation datasets of varying resolution and accuracy were processed to demonstrate that the improved quality of lidar data leads to more precise delineation of coastal lands vulnerable to inundation. A key component of the comparison was to calculate and account for the vertical uncertainty of the elevation datasets. This comparison shows that lidar allows for a much more detailed delineation of the potential inundation zone when compared to other types of elevation models. It also shows how the certainty of the delineation of lands vulnerable to a given sea-level rise scenario is much improved when derived from higher resolution lidar data.

  15. The use of IFSAR data in GIS-based landslide susceptibility evaluation

    NASA Astrophysics Data System (ADS)

    Floris, M.; Squarzoni, C.; Hundseder, C.; Mason, M.; Genevois, R.

    2010-05-01

    GIS-based landslide susceptibility evaluation is based on the spatial relationships between landslides and their related factors. The analyses are highly conditioned by precision and accuracy of input factors, in particular landslides identification and characterization. Factors influencing landslide spatial hazard consist of geological, geomorphological, hydrogeological and tectonic features, geomechanical and geotechnical properties, land use and management, and DEM-derived factors (elevation, slope, aspect, curvature, superficial flow). The choice of influencing factors depends on: method of analysis, scale of inputs, aim of the outputs, availability and quality of the input data. Then, the choice can be made a priori, on the bases of an in-deep territorial knowledge and experts' judgements, or by performing statistical analyses, finalized to identify the significance of each of the influencing factor. Due to the large availability of terrain data, spatial models often include DEM-derived factors, but the resolution and accuracy of DEMs influence the final outputs. In this work the relationships between landslides occurred in the volcanic area of the Euganean Hills Regional Park (SE of Padua, Veneto region, Italy) and morphometric factors (slope, aspect and curvature) will be examined through a simple probability method. The use of complex and time consuming mathematical or statistical models is not always recommended, because often simple models can lead to more accurate results. Morphometric input factors are derived from DEMs created from vector elevation data of the regional cartography at 1:5.000 scale and with NEXTMap® data (http://www.intermap.com). NEXTMap® Digital Surface Model (DSM) and Digital Terrain Model (DTM) are generated using Intermap's IFSAR (Interferometric Synthetic Aperture Radar) technology mounted on an aircraft at a flight height of 8500 m above Mean Sea Level and under a side viewing angle of about 45°. The DSM represents the first reflective surface as illuminated by the radar. IFSAR sensors retrieve the mean height of the main scattering elements in a grid cell, known as the scattering phase centre height. The radar return from vegetation usually penetrates to some extend lower than the ‘first' tree canopy height. The DTM is derived from DSM applying a semi-automated process that classifies areas as obstructed (buildings and vegetation) and unobstructed , where the obstructed areas are processed to approximate bald earth. DSM and DTM data present a post spacing of 5 m and a vertical accuracy of 1 m (RMSE) or better in areas of unobstructed flat terrain. IFSAR elevation models are compared with photogrammetrically derived models (topographic map of Veneto Region) for the following aspects: Every elevation point of IFSAR models is derived through a direct measure of the terrain surface, while photogrammetric elevation models are usually compiled through digitalization and interpolation of contour lines. Frequent seam lines are evident in vector maps derived DEMs, compiled during many years, with different specifications and tools. IFSAR 5 m posted DEM's generate a much more detailed description of terrain features. Seamless and homogeneous IFSAR elevation models pave the way to accurate applications like landslides study and risk assessment. The results obtained using the two DEM sources will be compared. The contribution of IFSAR data to the GIS-based spatial analysis of the study area will be tested and discussed.

  16. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    USGS Publications Warehouse

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.

  17. Modeling of Firn Compaction for Estimating Ice-Sheet Mass Change from Observed Ice-Sheet Elevation Change

    NASA Technical Reports Server (NTRS)

    Li, Jun; Zwally, H. Jay

    2011-01-01

    Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.

  18. Recent Elevation Changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, Alaska, from ICESat Altimetry, Star-3i Airborne, and SRTM Spaceborne DEMs

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Sauber, J. M.; Lingle, C. S.; Rabus, B. T.; Tangborn, W. V.; Echelmeyer, K. A.

    2005-12-01

    Three- to 5-year surface elevation changes on Bagley Ice Valley, Guyot and Yahtse Glaciers, in the eastern Chugach and St. Elias Mtns of south-central Alaska, are estimated using ICESat-derived data and digital elevation models (DEMs) derived from interferometric synthetic aperture radar (InSAR) data. The surface elevations of these glaciers are influenced by climatic warming superimposed on surge dynamics (in the case of Bagley Ice Valley) and tidewater glacier dynamics (in the cases of Guyot and Yahtse Glaciers) in this coastal high-precipitation regime. Bagley Ice Valley / Bering Glacier last surged in 1993-95. Guyot and Yahtse Glaciers, as well as the nearby Tyndell Glacier, have experienced massive tidewater retreat during the past century, as well as during recent decades. The ICESat-derived elevation data we employ were acquired in early autumn in both 2003 and 2004. The NASA/NIMA Shuttle Radar Topography Mission (SRTM) DEM that we employ was derived from X-band InSAR data acquired during this 11-22 Feb. 2000 mission and processed by the German Aerospace Center. This DEM was corrected for estimated systematic error, and a mass balance model was employed to account for seasonal snow accumulation. The Star-3i airborne, X-band, InSAR-derived DEM that we employ was acquired 4-13 Sept. 2000 by Intermap Technologies, Inc., and was also processed by them. The ICESat-derived profiles crossing Bagley Ice Valley, differenced with Star-3i DEM elevations, indicate preliminary mean along-profile elevation increases of 5.6 ± 3.4 m at 1315 m altitude, 7.4 ± 2.7 m at 1448 m altitude, 4.7 ± 1.9 m at 1557 m altitude, 1.3 ± 1.4 m at 1774 m altitude, and 2.5 ± 1.5 m at 1781 m altitude. This is qualitatively consistent with the rising surface on Bagley Ice Valley observed by Muskett et al. [2003]. The ICESat-derived profiles crossing Yahtse Glacier, differenced with the SRTM DEM elevations, indicate preliminary mean elevation changes (negative implies decrease) of -0.9 ± 3.5 m at 1562 m altitude, -2.6 ± 2.8 m at 1378 m altitude, 6.1 ± 3.5 m at 1142 m altitude, 1.4 ± 12.1 m at 1232 m altitude, -4.0 ± 4.2 m at 250 m to 1217 m altitude, -1.8 ± 3.3 m at 1200 m altitude, and 8.0 ± 6.4 m at 940 m altitude. One ICESat-derived track-to-DEM comparison on Guyot Glacier indicates a preliminary mean elevation change in the 478 m to 1150 m altitude range of -2.8 ± 14.1 m. Results, including additional comparisons to small-aircraft laser altimeter data, with more fully-corrected for estimated snow and ice accumulation / ablation between acquisitions times, will be presented. [Muskett, R.R., C.S. Lingle, W.V. Tangborn, and B.T. Rabus, Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska, GRL, 30 (16), 1857, doi:10.1029/2003GL017707, 2003.

  19. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  20. Improving salt marsh digital elevation model accuracy with full-waveform lidar and nonparametric predictive modeling

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.

    2018-03-01

    Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.

  1. Surface mass balance model evaluation from satellite and airborne lidar mapping

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    We present estimates of Greenland Ice Sheet (GrIS) surface elevation change from a novel combination of satellite and airborne laser altimetry measurements. Our method combines measurements from the Airborne Topographic Mapper (ATM), the Land, Vegetation and Ice Sensor (LVIS) and ICESat-1 to generate elevation change rates at high spatial resolution. This method allows to extend the records of each instrument, increases the overall spatial coverage compared to a single instrument, and produces high-quality, coherent maps of surface elevation change. In addition by combining the lidar datasets, we are able to investigate seasonal and interannual surface elevation change for years where Spring and Fall Operation IceBridge campaigns are available. We validate our method by comparing with the standard NSIDC elevation change product calculated using overlapping Level-1B ATM data. We use the altimetry-derived mass changes to evaluate the uncertainty in surface mass balance, particularly in the runoff component, from two Regional Climate Models (RCM's), the Regional Atmospheric Climate Model (RACMO) and the Modéle Atmosphérique Régional (MAR), and one Global Climate Model (GCM), MERRA2/GEOS-5. We investigate locations with low ice sheet surface velocities that are within the estimated ablation zones of each regional climate model. We find that the surface mass balance outputs from RACMO and MAR show good correspondence with mass changes derived from surface elevation changes over long periods. At two sites in Northeast Greenland (NEGIS), the MAR model has better correspondence with the altimetry estimate. We find that the differences at these locations are primarily due to the characterization of meltwater refreeze within the ice sheet.

  2. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.

    PubMed

    Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T

    2017-01-01

    LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.

  3. Estimation of average annual streamflows and power potentials for Alaska and Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdin, Kristine L.

    2004-05-01

    This paper describes the work done to develop average annual streamflow estimates and power potential for the states of Alaska and Hawaii. The Elevation Derivatives for National Applications (EDNA) database was used, along with climatic datasets, to develop flow and power estimates for every stream reach in the EDNA database. Estimates of average annual streamflows were derived using state-specific regression equations, which were functions of average annual precipitation, precipitation intensity, drainage area, and other elevation-derived parameters. Power potential was calculated through the use of the average annual streamflow and the hydraulic head of each reach, which is calculated from themore » EDNA digital elevation model. In all, estimates of streamflow and power potential were calculated for over 170,000 stream segments in the Alaskan and Hawaiian datasets.« less

  4. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.

  5. Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Coggin, David; Hagen, Scott C.; Medeiros, Stephen C.

    2015-12-01

    A semi-automated vertical feature terrain extraction algorithm is described and applied to a two-dimensional, depth-integrated, shallow water equation inundation model. The extracted features describe what are commonly sub-mesh scale elevation details (ridge and valleys), which may be ignored in standard practice because adequate mesh resolution cannot be afforded. The extraction algorithm is semi-automated, requires minimal human intervention, and is reproducible. A lidar-derived digital elevation model (DEM) of coastal Mississippi and Alabama serves as the source data for the vertical feature extraction. Unstructured mesh nodes and element edges are aligned to the vertical features and an interpolation algorithm aimed at minimizing topographic elevation error assigns elevations to mesh nodes via the DEM. The end result is a mesh that accurately represents the bare earth surface as derived from lidar with element resolution in the floodplain ranging from 15 m to 200 m. To examine the influence of the inclusion of vertical features on overland flooding, two additional meshes were developed, one without crest elevations of the features and another with vertical features withheld. All three meshes were incorporated into a SWAN+ADCIRC model simulation of Hurricane Katrina. Each of the three models resulted in similar validation statistics when compared to observed time-series water levels at gages and post-storm collected high water marks. Simulated water level peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of ∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not clear which of the three model experiments performed best in terms of accuracy. Examination of inundation extent among the three model results were compared to debris lines derived from NOAA post-event aerial imagery, and the mesh including vertical features showed higher accuracy. The comparison of model results to debris lines demonstrates that additional validation techniques are necessary for state-of-the-art flood inundation models. In addition, the semi-automated, unstructured mesh generation process presented herein increases the overall accuracy of simulated storm surge across the floodplain without reliance on hand digitization or sacrificing computational cost.

  6. One-meter topobathymetric digital elevation model for Majuro Atoll, Republic of the Marshall Islands, 1944 to 2016

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Poppenga, Sandra K.; Danielson, Jeffrey J.; Tyler, Dean J.; Gesch, Dean B.; Kottermair, Maria; Jalandoni, Andrea; Carlson, Edward; Thatcher, Cindy A.; Barbee, Matthew M.

    2018-03-30

    Atoll and island coastal communities are highly exposed to sea-level rise, tsunamis, storm surges, rogue waves, king tides, and the occasional combination of multiple factors, such as high regional sea levels, extreme high local tides, and unusually strong wave set-up. The elevation of most of these atolls averages just under 3 meters (m), with many areas roughly at sea level. The lack of high-resolution topographic data has been identified as a critical data gap for hazard vulnerability and adaptation efforts and for high-resolution inundation modeling for atoll nations. Modern topographic survey equipment and airborne lidar surveys can be very difficult and costly to deploy. Therefore, unmanned aircraft systems (UAS) were investigated for collecting overlapping imagery to generate topographic digital elevation models (DEMs). Medium- and high-resolution satellite imagery (Landsat 8 and WorldView-3) was investigated to derive nearshore bathymetry.The Republic of the Marshall Islands is associated with the United States through a Compact of Free Association, and Majuro Atoll is home to the capital city of Majuro and the largest population of the Republic of the Marshall Islands. The only elevation datasets currently available for the entire Majuro Atoll are the Shuttle Radar Topography Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 elevation data, which have a 30-m grid-cell spacing and a 8-m vertical root mean square error (RMSE). Both these datasets have inadequate spatial resolution and vertical accuracy for inundation modeling.The final topobathymetric DEM (TBDEM) developed for Majuro Atoll is derived from various data sources including charts, soundings, acoustic sonar, and UAS and satellite imagery spanning over 70 years of data collection (1944 to 2016) on different sections of the atoll. The RMSE of the TBDEM over the land area is 0.197 m using over 70,000 Global Navigation Satellite System real-time kinematic survey points for validation, and 1.066 m for Landsat 8 and 1.112 m for WorldView-3 derived bathymetry using over 16,000 and 9,000 lidar bathymetry points, respectively.

  7. Volumetric visualization of multiple-return LIDAR data: Using voxels

    USGS Publications Warehouse

    Stoker, Jason M.

    2009-01-01

    Elevation data are an important component in the visualization and analysis of geographic information. The creation and display of 3D models representing bare earth, vegetation, and surface structures have become a major focus of light detection and ranging (lidar) remote sensing research in the past few years. Lidar is an active sensor that records the distance, or range, of a laser usually fi red from an airplane, helicopter, or satellite. By converting the millions of 3D lidar returns from a system into bare ground, vegetation, or structural elevation information, extremely accurate, high-resolution elevation models can be derived and produced to visualize and quantify scenes in three dimensions. These data can be used to produce high-resolution bare-earth digital elevation models; quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass; and models of urban areas such as building footprints and 3D city models.

  8. Two Preliminary SRTM DEMs Within the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Hess, L.; Melack, J.; Dunne, T.; Mertes, L.; Ballantine, A.; Biggs, T.; Holmes, K.; Sheng, Y.; Hendricks, G.

    2002-12-01

    Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from NASA JPL in August 2002. The "PI Processor" produced these initial DEM segments and we are using them to assess the initial accuracy of the interferometrically derived heights and for hydrologic research. The preliminary SRTM derived absolute elevations across the Amazon floodplain in the Cabaliana region generally range from 5 to 15 m with reported errors of 1 to 3 m. This region also includes some preliminary elevations that are erroneously negative. However, topographic contours on 1:100,000 scale quadrangles of 1978 to 1980 vintage indicate elevations of 20 to 30 m. Because double-bounce travel paths are possible over the sparsely vegetated and very-flat 2400 sq-km water surface of the Balbina reservoir near Manaus, it serves to identify the relative accuracy of the SRTM heights. Here, cell-to-cell height changes are generally 0 to 1 m and changes across a ~100 km transect rarely exceed 3 m. Reported errors throughout the transect range from 1 to 2 m with some errors up to 5 m. Deforestation in Rondonia is remarkably clear in the C-band DEM where elevations are recorded from the canopy rather than bare earth. Here, elevation changes are ~30 m (with reported 1 to 2 m errors) across clear-cut areas. Field derived canopy heights are in agreement with this change. Presently, we are deriving stream networks in the Amazon floodplain for comparison with our previous network extraction from JERS-1 SAR mosaics and for hydrologic modeling.

  9. Geologic map of Kundelan ore deposits and prospects, Zabul Province, Afghanistan; modified from the 1971 original map compilations of K.I. Litvinenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2015-10-26

    Elevations on the cross sections are derived from the original Soviet topography and may not match the Global Digital Elevation Model (GDEM) topography used on the redrafted map of this report. Most hydrography derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has not been included on our redrafted version of the map because of a poor fit with alluvial deposits from the unmodified original Soviet map (graphical supplement no. 18; Litvinenko and others, 1971).

  10. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture

    PubMed Central

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  11. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines.

    PubMed

    Case, Bradley S; Buckley, Hannah L

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach for ecological research in mountainous environments.

  12. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines

    PubMed Central

    Buckley, Hannah L.

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach for ecological research in mountainous environments. PMID:26528407

  13. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    NASA Astrophysics Data System (ADS)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7(4), 3507-3525, 10.3390/rs70403507.

  14. Landscape heterogeneity modulates forest sensitivity to climate

    NASA Astrophysics Data System (ADS)

    Jencso, Kelsey; Hu, Jia; Hoylman, Zachary

    2015-04-01

    Elevation dependent snowmelt magnitude and timing strongly influences net ecosystem productivity in forested mountain watersheds. However, previous work has provided little insight into how internal watershed topography and organization may modulate plant available water and forest growth across elevation gradients. We collected 800 tree cores from four coniferous tree species across a range of elevation, topographic positions and aspects in the Lubrecht Experimental Forest, Montana, USA. We compared the annual basal area increment growth rate to precipitation and temperature from a 60-year SNOTEL data record, groundwater and soil moisture data in sideslope and hollow positions, and topographic indices derived from a LiDAR digital elevation model. At the watershed scale, we evaluated the relationships between topographic indices, LiDAR derived estimates of basal area and seasonal patterns of the Landsat derived Enhanced Vegetation Index. Preliminary results indicate strong relationships between the rates of annual basal growth and the topographic wetness index (TWI), with differing slopes dependent on tree species (P. menziesii R2 = 0.66-0.71, P. ponderosa R2 = 0.87, L. occidentalis R2 = 0.71) and elevation. Generally, trees located in wetter landscape positions (higher TWI) exhibited greater annual growth per unit of precipitation relative to trees located in drier landscape positions (lower TWI). Similarly, watershed scale analysis of LiDAR derived biomass and seasonal greenness indicates differential growth response due to local convergence and divergence across elevation and insolation gradients. These observations suggest that topographically driven water redistribution patterns may modulate the effects of large scale gradients in precipitation and temperature, thereby creating hotspots for conifer productivity in semiarid watersheds.

  15. Landscape Heterogeneity Modulates Forest Sensitivity to Climate

    NASA Astrophysics Data System (ADS)

    Hoylman, Z. H.; Jencso, K. G.; Hu, J.; Running, S. W.

    2014-12-01

    Elevation dependent snowmelt magnitude and timing strongly influences net ecosystem productivity in forested mountain watersheds. However, previous work has provided little insight into how internal watershed topography and organization may modulate plant available water and forest growth across elevation gradients. We collected 800 tree cores from five coniferous tree species across a range of elevations, topographic positions and aspects in the Lubrecht Experimental Forest, Montana, USA. We compared the annual basal area increment growth rate to precipitation and temperature from a 60-year SNOTEL data record, groundwater and soil moisture data in sideslope and hollow positions, and topographic indices derived from a LiDAR digital elevation model. At the watershed scale, we evaluated the relationships between topographic indices, LiDAR derived estimates of basal area and seasonal patterns of the Landsat derived Enhanced Vegetation Index. Preliminary results indicate strong relationships between the rates of annual basal growth and the topographic wetness index (TWI) , with differing slopes dependent on tree species (P. menziesii R2 = 0.66-0.71, P. ponderosa R2 = 0.87, L. occidentalis R2 = 0.71) and elevation. Generally, trees located in wetter landscape positions (higher TWI) exhibited greater annual growth per unit of precipitation relative to trees located in drier landscape positions (lower TWI). Watershed scale analysis of LiDAR derived biomass and seasonal greenness indicates differential growth response due to elevation gradients, irradiance and local convergence and divergence. These preliminary observations suggest that topographically driven water redistribution patterns may modulate the effects of large scale gradients in precipitation and temperature, thereby creating hotspots for conifer productivity in semiarid watersheds.

  16. Re-examining data-intensive surface water models with high-resolution topography derived from unmanned aerial system photogrammetry

    NASA Astrophysics Data System (ADS)

    Pai, H.; Tyler, S.

    2017-12-01

    Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.

  17. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  18. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.

    2014-01-01

    This study explores the feasibility of using airborne lidar surveys to construct high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish, south Lousiana. This approach can successfully accommodate a high degree of levee sinuosity and abrupt changes in levee orientation (direction) in planar coordinates, variations in levee geometries, and differing DEM resolutions. The federal levees investigated in Atchafalaya Basin have crest elevations between 5.3 and 12 m while the local counterparts in Lafourche Parish are between 0.76 and 2.3 m. The vertical uncertainty in the elevation data is considered when assessing federal crest elevation against the U.S. Army Corps of Engineers minimum height requirements to withstand the 100-year flood. Only approximately 5% of the crest points of the two federal levees investigated in the Atchafalaya Basin region met this requirement.

  19. Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2016-01-01

    Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal regions.

  20. Use of slope, aspect, and elevation maps derived from digital elevation model data in making soil surveys

    USGS Publications Warehouse

    Klingebiel, A.A.; Horvath, E.H.; Moore, D.G.; Reybold, W.U.

    1987-01-01

    Maps showing different classes of slope, aspect, and elevation were developed from U.S. Geological Survey digital elevation model data. The classes were displayed on clear Mylar at 1:24 000-scale and registered with topographic maps and orthophotos. The maps were used with aerial photographs, topographic maps, and other resource data to determine their value in making order-three soil surveys. They were tested on over 600 000 ha in Wyoming, Idaho, and Nevada under various climatic and topographic conditions. Field evaluations showed that the maps developed from digital elevation model data were accurate, except for slope class maps where slopes were <4%. The maps were useful to soil scientists, especially where (i) class boundaries coincided with soil changes, landform delineations, land use and management separations, and vegetation changes, and (ii) rough terrain and dense vegetation made it difficult to traverse the area. In hot, arid areas of sparse vegetation, the relationship of slope classes to kinds of soil and vegetation was less significant.

  1. Global multi-resolution terrain elevation data 2010 (GMTED2010)

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Gesch, Dean B.

    2011-01-01

    In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc-second DTEDRegistered level 0, the USGS and the National Geospatial-Intelligence Agency (NGA) have collaborated to produce an enhanced replacement for GTOPO30, the Global Land One-km Base Elevation (GLOBE) model and other comparable 30-arc-second-resolution global models, using the best available data. The new model is called the Global Multi-resolution Terrain Elevation Data 2010, or GMTED2010 for short. This suite of products at three different resolutions (approximately 1,000, 500, and 250 meters) is designed to support many applications directly by providing users with generic products (for example, maximum, minimum, and median elevations) that have been derived directly from the raw input data that would not be available to the general user or would be very costly and time-consuming to produce for individual applications. The source of all the elevation data is captured in metadata for reference purposes. It is also hoped that as better data become available in the future, the GMTED2010 model will be updated.

  2. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas

    NASA Astrophysics Data System (ADS)

    Rüther, Heinz; Martine, Hagai M.; Mtalo, E. G.

    This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the "time-delayed" algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as "lumps" or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas.

  3. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    PubMed

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  4. Scoping of Flood Hazard Mapping Needs for Coos County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    Technical Partner DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle...color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data, E911 data, Digital Elevation...the feature types found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map

  5. Sumatra-Andaman Megathrust Earthquake Slip: Insights From Mechanical Modeling of ICESat Surface Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Harding, D. J.; Miuller, J. R.

    2005-12-01

    Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity boundary condition on the Sumatra-Andaman subduction interface fault. The direction of slip on the fault surface is derived from the slip directions computed by Tsai et al. (in review) for centroid moment tensor focal mechanisms spatially distributed along the rupture. The slip model will be refined to better correspond to the observed surface deformation as additional results from the ICESat profiles become available.

  6. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  7. Trait-based diversification shifts reflect differential extinction among fossil taxa.

    PubMed

    Wagner, Peter J; Estabrook, George F

    2014-11-18

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.

  8. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  9. Selected approaches for rational drug design and high throughput screening to identify anti-cancer molecules.

    PubMed

    Hedvat, Michael; Emdad, Luni; Das, Swadesh K; Kim, Keetae; Dasgupta, Santanu; Thomas, Shibu; Hu, Bin; Zhu, Shan; Dash, Rupesh; Quinn, Bridget A; Oyesanya, Regina A; Kegelman, Timothy P; Sokhi, Upneet K; Sarkar, Siddik; Erdogan, Eda; Menezes, Mitchell E; Bhoopathi, Praveen; Wang, Xiang-Yang; Pomper, Martin G; Wei, Jun; Wu, Bainan; Stebbins, John L; Diaz, Paul W; Reed, John C; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B

    2012-11-01

    Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.

  10. Statistical modeling of landslide hazard using GIS

    Treesearch

    Peter V. Gorsevski; Randy B. Foltz; Paul E. Gessler; Terrance W. Cundy

    2001-01-01

    A model for spatial prediction of landslide hazard was applied to a watershed affected by landslide events that occurred during the winter of 1995-96, following heavy rains, and snowmelt. Digital elevation data with 22.86 m x 22.86 m resolution was used for deriving topographic attributes used for modeling. The model is based on the combination of logistic regression...

  11. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yijing; Tang, Huijuan; Guo, Yan

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOCmore » cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.« less

  12. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  13. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    PubMed

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  14. Trait-based diversification shifts reflect differential extinction among fossil taxa

    PubMed Central

    Wagner, Peter J.; Estabrook, George F.

    2014-01-01

    Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models. PMID:25331898

  15. Airborne observations reveal elevational gradient in tropical forest isoprene emissions.

    PubMed

    Gu, Dasa; Guenther, Alex B; Shilling, John E; Yu, Haofei; Huang, Maoyi; Zhao, Chun; Yang, Qing; Martin, Scot T; Artaxo, Paulo; Kim, Saewung; Seco, Roger; Stavrakou, Trissevgeni; Longo, Karla M; Tóta, Julio; de Souza, Rodrigo Augusto Ferreira; Vega, Oscar; Liu, Ying; Shrivastava, Manish; Alves, Eliane G; Santos, Fernando C; Leng, Guoyong; Hu, Zhiyuan

    2017-05-23

    Isoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft eddy covariance measurements over the Amazonian forest. We report isoprene emission rates that are three times higher than satellite top-down estimates and 35% higher than model predictions. The results reveal strong correlations between observed isoprene emission rates and terrain elevations, which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can substantially explain isoprene emission variability in tropical forests, and use a model to demonstrate the resulting impacts on regional air quality.

  16. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Image and Video Library

    2001-07-05

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during NASA Shuttle Radar Topography Mission SRTM on February 12, 2000.

  17. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.

    2017-11-01

    In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.

  18. Gulf of Mexico region - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.

  19. On the dynamical stability of the space 'monorail'

    NASA Astrophysics Data System (ADS)

    Bergamaschi, S.; Manni, D.

    The dynamical stability of 'monorail' tethered-satellite/elevator configurations being studied for the Space Station is investigated analytically, treating the end platforms and elevator as point masses, neglecting tether elasticity, and taking the Coriolis force and the complex gravitational field into account in analyzing the orbital-plane motion of the system. A mathematical model is constructed; the equations of motion are derived; and results obtained by numerical integration for platform masses 100,000 and 10,000 kg, elevator mass 5000 kg, and a 10-km-long 6-mm-diameter 4070-kg-mass tether are presented in graphs and briefly characterized.

  20. Vertical normal modes of a mesoscale model using a scaled height coordinate

    NASA Technical Reports Server (NTRS)

    Lipton, A. E.; Pielke, R. A.

    1986-01-01

    Vertical modes were derived for a version of the Colorado State Regional Atmospheric Mesoscale Modeling System. The impacts of three options for dealing with the upper boundary of the model were studied. The standard model formulation holds pressure constant at a fixed altitude near the model top, and produces a fastest mode with a speed of about 90 m/sec. An alternative formulation, which allows for an external mode, could require recomputation of vertical modes for every surface elevation on the horizontal grid unless the modes are derived in a particular way. These results have bearing on the feasibility of applying vertical mode initialization to models with scaled height coordinates.

  1. Derivation of Sky-View Factors from LIDAR Data

    NASA Technical Reports Server (NTRS)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  2. Landslide-susceptibility analysis using light detection and ranging-derived digital elevation models and logistic regression models: a case study in Mizunami City, Japan

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Jie; Sawada, Kazuhide; Moriguchi, Shuji

    2013-01-01

    To mitigate the damage caused by landslide disasters, different mathematical models have been applied to predict landslide spatial distribution characteristics. Although some researchers have achieved excellent results around the world, few studies take the spatial resolution of the database into account. Four types of digital elevation model (DEM) ranging from 2 to 20 m derived from light detection and ranging technology to analyze landslide susceptibility in Mizunami City, Gifu Prefecture, Japan, are presented. Fifteen landslide-causative factors are considered using a logistic-regression approach to create models for landslide potential analysis. Pre-existing landslide bodies are used to evaluate the performance of the four models. The results revealed that the 20-m model had the highest classification accuracy (71.9%), whereas the 2-m model had the lowest value (68.7%). In the 2-m model, 89.4% of the landslide bodies fit in the medium to very high categories. For the 20-m model, only 83.3% of the landslide bodies were concentrated in the medium to very high classes. When the cell size decreases from 20 to 2 m, the area under the relative operative characteristic increases from 0.68 to 0.77. Therefore, higher-resolution DEMs would provide better results for landslide-susceptibility mapping.

  3. Retroviruses facilitate the rapid evolution of the mammalian placenta

    PubMed Central

    Chuong, Edward B.

    2015-01-01

    The mammalian placenta exhibits elevated expression of endogenous retroviruses (ERVs), but the evolutionary significance of this feature remains unclear. I propose that ERV-mediated regulatory evolution was, and continues to be, an important mechanism underlying the evolution of placenta development. Many recent studies have focused on the co-option of ERV-derived genes for specific functional adaptations in the placenta. However, the co-option of ERV-derived regulatory elements has the potential to co-opt entire gene regulatory networks, which, I argue, would facilitate relatively rapid developmental evolution of the placenta. I suggest a model in which an ancient retroviral infection led to the establishment of the ancestral placental developmental gene network through the co-option of ERV-derived regulatory elements. Consequently, placenta development would require elevated tolerance to ERV activity, which in turn would expose a continuous stream of novel ERV mutations that may have catalyzed the developmental diversification of the mammalian placenta. PMID:23873343

  4. MOLA-Based Landing Site Characterization

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Ivanov, A. B.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) data provide the basis for site characterization and selection never before possible. The basic MOLA information includes absolute radii, elevation and 1 micrometer albedo with derived datasets including digital image models (DIM's illuminated elevation data), slopes maps and slope statistics and small scale surface roughness maps and statistics. These quantities are useful in downsizing potential sites from descent engineering constraints and landing/roving hazard and mobility assessments. Slope baselines at the few hundred meter level and surface roughness at the 10 meter level are possible. Additionally, the MOLA-derived Mars surface offers the possibility to precisely register and map project other instrument datasets (images, ultraviolet, infrared, radar, etc.) taken at different resolution, viewing and lighting geometry, building multiple layers of an information cube for site characterization and selection. Examples of direct MOLA data, data derived from MOLA and other instruments data registered to MOLA arc given for the Hematite area.

  5. Full-waveform and discrete-return lidar in salt marsh environments: An assessment of biophysical parameters, vertical uncertatinty, and nonparametric dem correction

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.

    High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS -- Multivariate Adaptive Regression, CART -- Classification and Regression Trees, TreeNet, Random Forests, and GPSM -- Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives.

  6. Mapping SOC (Soil Organic Carbon) using LiDAR-derived vegetation indices in a random forest regression model

    NASA Astrophysics Data System (ADS)

    Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.

    2015-12-01

    Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.

  7. Google Earth Engine derived areal extents to infer elevation variation of lakes and reservoirs

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, Anthony; May, Jack; Dartevelle, Sebastien; Griffin, Sean; Miller, Justin; Tetrault, Robert; Birkett, Charon; Lucero, Eileen; Russo, Tess; Zentner, Matthew

    2017-04-01

    Monitoring water supplies is important for identifying potential national security issues before they begin. As a means to estimate lake and reservoir storage for sites without reliable water stage data, this study defines correlations between water body levels from hypsometry curves based on in situ gauge station and altimeter data (i.e. TOPEX/Poseidon, Jason series) and sensor areal extents observed in historic multispectral (i.e. MODIS and Landsat TM/ETM+/OLI) imagery. Water levels measured using in situ observations and altimeters, when in situ data were unavailable, were used to estimate the relationship between water elevation and surface area for 18 sites globally. Altimeters were generally more accurate (RMSE: 0.40 - 0.49 m) for estimating in situ lake elevations from Iraq and Afghanistan than the modeled elevation data using multispectral sensor areal extents: Landsat (RMSE: 0.25 - 1.5 m) and MODIS (RMSE 0.53 - 3.0 m). Correlations between altimeter data and Landsat imagery processed with Google Earth Engine confirmed similar relationships exists for a broader range of lakes without reported in situ data across the globe (RMSE: 0.24 - 1.6 m). Thus, while altimetry is still preferred to an areal extent model, lake surface area derived with Google Earth Engine can be used as a reasonable proxy for lake storage, expanding the number of observable lakes beyond the current constellation of altimeters and in situ gauges.

  8. Assessing land leveling needs and performance with unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel

    2018-01-01

    Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.

  9. State of Louisiana - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.

  10. Shuttle radar DEM hydrological correction for erosion modelling in small catchments

    NASA Astrophysics Data System (ADS)

    Jarihani, Ben; Sidle, Roy; Bartley, Rebecca

    2016-04-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  11. Generation of a precise DEM by interactive synthesis of multi-temporal elevation datasets: a case study of Schirmacher Oasis, East Antarctica

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-05-01

    Digital elevation model (DEM) is indispensable for analysis such as topographic feature extraction, ice sheet melting, slope stability analysis, landscape analysis and so on. Such analysis requires a highly accurate DEM. Available DEMs of Antarctic region compiled by using radar altimetry and the Antarctic digital database indicate elevation variations of up to hundreds of meters, which necessitates the generation of local improved DEM. An improved DEM of the Schirmacher Oasis, East Antarctica has been generated by synergistically fusing satellite-derived laser altimetry data from Geoscience Laser Altimetry System (GLAS), Radarsat Antarctic Mapping Project (RAMP) elevation data and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data (GDEM). This is a characteristic attempt to generate a DEM of any part of Antarctica by fusing multiple elevation datasets, which is essential to model the ice elevation change and address the ice mass balance. We analyzed a suite of interpolation techniques for constructing a DEM from GLAS, RAMP and ASTER DEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improve the elevation accuracy of DEM from synergistically fused RAMP, GLAS and ASTER point elevation datasets. The DEM presented in this work has a vertical accuracy (≈ 23 m) better than RAMP DEM (≈ 57 m) and ASTER DEM (≈ 64 m) individually. The RAMP DEM and ASTER DEM elevations were corrected using differential GPS elevations as ground reference data, and the accuracy obtained after fusing multitemporal datasets is found to be improved than that of existing DEMs constructed by using RAMP or ASTER alone. This is our second attempt of fusing multitemporal, multisensory and multisource elevation data to generate a DEM of Antarctica, in order to address the ice elevation change and address the ice mass balance. Our approach focuses on the strengths of each elevation data source to produce an accurate elevation model.

  12. A rapid approach for automated comparison of independently derived stream networks

    USGS Publications Warehouse

    Stanislawski, Larry V.; Buttenfield, Barbara P.; Doumbouya, Ariel T.

    2015-01-01

    This paper presents an improved coefficient of line correspondence (CLC) metric for automatically assessing the similarity of two different sets of linear features. Elevation-derived channels at 1:24,000 scale (24K) are generated from a weighted flow-accumulation model and compared to 24K National Hydrography Dataset (NHD) flowlines. The CLC process conflates two vector datasets through a raster line-density differencing approach that is faster and more reliable than earlier methods. Methods are tested on 30 subbasins distributed across different terrain and climate conditions of the conterminous United States. CLC values for the 30 subbasins indicate 44–83% of the features match between the two datasets, with the majority of the mismatching features comprised of first-order features. Relatively lower CLC values result from subbasins with less than about 1.5 degrees of slope. The primary difference between the two datasets may be explained by different data capture criteria. First-order, headwater tributaries derived from the flow-accumulation model are captured more comprehensively through drainage area and terrain conditions, whereas capture of headwater features in the NHD is cartographically constrained by tributary length. The addition of missing headwaters to the NHD, as guided by the elevation-derived channels, can substantially improve the scientific value of the NHD.

  13. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  14. Elevation-derived watershed basins and characteristics for major rivers of the conterminous United States

    USGS Publications Warehouse

    Poppenga, S.K.; Worstell, B.B.

    2008-01-01

    The U.S. Geological Survey Earth Resources Observation and Science Center Topographic Science Project has developed elevation-derived watershed basins and characteristics for major rivers of the conterminous United States. Watershed basins are delineated upstream from the mouth of major rivers by using the hydrologic connectivity of the Elevation Derivatives for National Applications (EDNA) seamless database. Watershed characteristics are quantified by integrating ancillary geospatial datasets, including land cover, population, slope, and topography, with elevation-derived watershed boundaries. The results are published in an online EDNA Watershed Atlas at http://edna.usgs.gov/watersheds. The atlas serves as a framework for evaluating and analyzing the physical, biological, and anthropogenic status of watersheds.

  15. Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks.

    PubMed

    Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R

    2014-10-21

    Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  17. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  18. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  19. A drifting GPS buoy for retrieving effective riverbed bathymetry

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.

    2015-01-01

    Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.

  20. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  1. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    NASA Astrophysics Data System (ADS)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of observations (i.e. remote areas or future periods).

  2. Variation in Phenometric Lapse Rates in Pasture Resources across Four Rayons in Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Tomaszewska, M. A.; Kelgenbaeva, K.

    2017-12-01

    High elevation pasture resources form the foundation of agro-pastoralist livelihoods in Kyrgyzstan and elsewhere in montane Central Asia. We explore the temporal and the topographical variation in phenometric lapse rates (PLRs: the change in a phenometric as a function of elevation) across four rayons in two oblasts of the Kyrgyz Republic—Alay, At-Bashy, Chong Alay, and Naryn—with the aim of identifying and quantifying robust generic patterns in the PLRs. We evaluate two fundamental phenometrics derived from the downward convex quadratic model of land surface phenology that links the NDVI to accumulated growing degree-day (AGDD). The peak height (PH) is the maximum NDVI value obtained from the fitted model. The thermal time to peak (TTP) is the amount of AGDD required to reach the PH. We fitted sixteen years of Landsat NDVI data at 30 m spatial resolution to annual AGDD progressions derived from MODIS land surface temperature time series at 1 km spatial resolution, yielding maps for each phenometric. If the coefficient of determination was less than 0.5, then the model fit was deemed a failure. We classified the reliability of pasture resources into five classes based on the number of years of successful model fit: very persistent (14-16 y); persistent (11-13 y); marginal (7-10 y); occasional (4-6); and rare (1-3). We explore the interactive roles of elevation, slope, aspect, latitude, and rayon on the PLRs and pasture resource persistence to identify critical areas for resource management.

  3. Livelihoods Poised Between Cold and Dry: Modeling Land Surface Phenologies and Phenometric Lapse Rates in Central Asian Highland Pastures

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Tomaszewska, M. A.; Krehbiel, C. P.; Kelgenbaeva, K.

    2016-12-01

    To explore the vulnerability of high-elevation communities in the Kyrgyz Republic and in Uzbekistan to changing climatic, sociodemographic, and socioeconomic conditions, we assembled image time series to characterize the condition of pastures near villages at high elevation (>2000 masl) and in remote pastures at higher elevations. Here we describe the application of the convex quadratic (CxQ) model of land surface phenology to highland pasturelands for selected oblasts in the Kyrgyz Republic and in eastern Uzbekistan. We used 16 years (2000-2015) of Landsat normalized difference vegetation index (NDVI) data with MODIS land surface temperature data processed into accumulated growing degree-days. The peak height of the NDVI and the thermal time to peak are two key phenological metrics derived analytically from the fitted parameter coefficients of the CxQ model for each pixel time series. Both exhibited sensitivity to elevation, which we describe in terms of phenometric lapse rates (PLRs). Interannual variation in PLRs was expressed differently for the peak NDVI and the thermal time to peak. Peak NDVI increased with elevation up to a point but also exhibited more spatial variation in dry years than in wetter years. Thermal time to peak exhibited strong, highly significant negative linear relationships to elevation with steeper slopes in drier years. Both types of PLRs were modulated by aspect. These relationships and the associated CxQ models by elevation and aspect can provide expectations against which to detect changes in pasture status as a result of management or weather.

  4. Generation of kth-order random toposequences

    NASA Astrophysics Data System (ADS)

    Odgers, Nathan P.; McBratney, Alex. B.; Minasny, Budiman

    2008-05-01

    The model presented in this paper derives toposequences from a digital elevation model (DEM). It is written in ArcInfo Macro Language (AML). The toposequences are called kth-order random toposequences, because they take a random path uphill to the top of a hill and downhill to a stream or valley bottom from a randomly selected seed point, and they are located in a streamshed of order k according to a particular stream-ordering system. We define a kth-order streamshed as the area of land that drains directly to a stream segment of stream order k. The model attempts to optimise the spatial configuration of a set of derived toposequences iteratively by using simulated annealing to maximise the total sum of distances between each toposequence hilltop in the set. The user is able to select the order, k, of the derived toposequences. Toposequences are useful for determining soil sampling locations for use in collecting soil data for digital soil mapping applications. Sampling locations can be allocated according to equal elevation or equal-distance intervals along the length of the toposequence, for example. We demonstrate the use of this model for a study area in the Hunter Valley of New South Wales, Australia. Of the 64 toposequences derived, 32 were first-order random toposequences according to Strahler's stream-ordering system, and 32 were second-order random toposequences. The model that we present in this paper is an efficient method for sampling soil along soil toposequences. The soils along a toposequence are related to each other by the topography they are found in, so soil data collected by this method is useful for establishing soil-landscape rules for the preparation of digital soil maps.

  5. Comparing elevation and freeboard from IceBridge and four different CryoSat-2 retrackers for coincident sea ice observations

    NASA Astrophysics Data System (ADS)

    Yi, D.; Kurtz, N. T.; Harbeck, J.

    2017-12-01

    The airborne IceBridge and spaceborne Cryosat-2 missions observe polar sea ice at different altitudes with different footprint sizes and often at different time and locations. Many studies use different retrackers to derive Cryosat-2 surface elevation, which we find causes large differences in the elevation and freeboard comparisons of IceBridge and Cryosat-2. In this study, we compare sea ice surface elevation and freeboard using 8 coincident CryoSat-2, ATM, and LVIS observations with IceBridge airplanes under flying the Cryosat-2 ground tracks. We apply identical ellipsoid, geoid model, tide model, and atmospheric correction to CryoSat-2 and IceBridge data to reduce elevation bias due to their differences. IceBridge's ATM and LVIS elevation and freeboard and Snow Radar snow depth are averaged at each CryoSat-2 footprint for comparison. The four different Cryosat-2 retrackers (ESA, GSFC, AWI, and JPL) show distinct differences in mean elevation up to 0.35 meters over leads and over floes, which suggests that systematic elevation bias exists between the retrackers. The mean IceBridge elevation over leads is within the mean elevation distribution of the four Cryosat-2 retrackers. The mean IceBridge elevation over floes is above the mean elevation distribution of the four Cryosat-2 retrackers. After removing the snow depth from IceBridge elevation, over floe, the mean elevation of IceBridge is within the mean elevation distribution of the four Cryosat-2 retrackers. By identifying the strengths and weaknesses of the retrackers, this study provides a mechanism to improve freeboard retrievals from existing methods.

  6. Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.

  7. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  8. Risk assessment for two bird species in northern Wisconsin

    Treesearch

    Megan M. Friggens; Stephen N. Matthews

    2012-01-01

    Species distribution models for 147 bird species have been derived using climate, elevation, and distribution of current tree species as potential predictors (Matthews et al. 2011). In this case study, a risk matrix was developed for two bird species (fig. A2-5), with projected change in bird habitat (the x axis) based on models of changing suitable habitat resulting...

  9. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  10. Landscape unit based digital elevation model development for the freshwater wetlands within the Arthur C. Marshall Loxahatchee National Wildlife Refuge, Southeastern Florida

    USGS Publications Warehouse

    Xie, Zhixiao; Liu, Zhongwei; Jones, John W.; Higer, Aaron L.; Telis, Pamela A.

    2011-01-01

    The hydrologic regime is a critical limiting factor in the delicate ecosystem of the greater Everglades freshwater wetlands in south Florida that has been severely altered by management activities in the past several decades. "Getting the water right" is regarded as the key to successful restoration of this unique wetland ecosystem. An essential component to represent and model its hydrologic regime, specifically water depth, is an accurate ground Digital Elevation Model (DEM). The Everglades Depth Estimation Network (EDEN) supplies important hydrologic data, and its products (including a ground DEM) have been well received by scientists and resource managers involved in Everglades restoration. This study improves the EDEN DEMs of the Loxahatchee National Wildlife Refuge, also known as Water Conservation Area 1 (WCA1), by adopting a landscape unit (LU) based interpolation approach. The study first filtered the input elevation data based on newly available vegetation data, and then created a separate geostatistical model (universal kriging) for each LU. The resultant DEMs have encouraging cross-validation and validation results, especially since the validation is based on an independent elevation dataset (derived by subtracting water depth measurements from EDEN water surface elevations). The DEM product of this study will directly benefit hydrologic and ecological studies as well as restoration efforts. The study will also be valuable for a broad range of wetland studies.

  11. Topographic soil wetness index derived from combined Alaska-British Columbia datasets for the Gulf of Alaska region

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Biles, F. E.

    2016-12-01

    The flow of water is often highlighted as a priority in land management planning and assessments related to climate change. Improved measurement and modeling of soil moisture is required to develop predictive estimates for plant distributions, soil moisture, and snowpack, which all play important roles in ecosystem planning in the face of climate change. Drainage indexes are commonly derived from GIS tools with digital elevation models. Soil moisture classes derived from these tools are useful digital proxies for ecosystem functions associated with the concentration of water on the landscape. We developed a spatially explicit topographically derived soil wetness index (TWI) across the perhumid coastal temperate rainforest (PCTR) of Alaska and British Columbia. Developing applicable drainage indexes in complex terrain and across broad areas required careful application of the appropriate DEM, caution with artifacts in GIS covers and mapping realistic zones of wetlands with the indicator. The large spatial extent of the model has facilitated the mapping of forest habitat and the development of water table depth mapping in the region. A key element of the TWI is the merging of elevation datasets across the US-Canada border where major rivers transect the international boundary. The unified TWI allows for seemless mapping across the international border and unified ecological applications. A python program combined with the unified DEM allows end users to quickly apply the TWI to all areas of the PCTR. This common platform can facilitate model comparison and improvements to local soil moisture conditions, generation of streamflow, and ecological site conditions. In this presentation we highlight the application of the TWI for mapping risk factors related to forest decline and the development of a regional water table depth map. Improved soil moisture maps are critical for deriving spatial models of changes in soil moisture for both plant growth and streamflow across future climate conditions.

  12. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles☆

    PubMed Central

    Tan, Junming; Shi, Jiangang; Shi, Guodong; Liu, Yanling; Liu, Xiaohong; Wang, Chaoyang; Chen, Dechun; Xing, Shunming; Shen, Lianbing; Jia, Lianshun; Ye, Xiaojian; He, Hailong; Li, Jiashun

    2013-01-01

    This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome. PMID:25206593

  13. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  14. Derivation of charts for determining the horizontal tail load variation with any elevator motion

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A

    1943-01-01

    The equations relating the wing and tail loads are derived for a unit elevator displacement. These equations are then converted into a nondimensional form and charts are given by which the wing- and tail-load-increment variation may be determined under dynamic conditions for any type of elevator motion and for various degrees of airplane stability. In order to illustrate the use of the charts, several examples are included in which the wing and tail loads are evaluated for a number of types of elevator motion. Methods are given for determining the necessary derivatives from results of wind-tunnel tests when such tests are available.

  15. National Hydrography Dataset Plus (NHDPlus)

    EPA Pesticide Factsheets

    The NHDPlus Version 1.0 is an integrated suite of application-ready geospatial data sets that incorporate many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,000-scale NHD), improved networking, naming, and value-added attributes (VAA's). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainageenforcement technique first broadly applied in New England, and thus dubbed The New-England Method. This technique involves burning-in the 1:100,000-scale NHD and when available building walls using the national WatershedBoundary Dataset (WBD). The resulting modified digital elevation model(HydroDEM) is used to produce hydrologic derivatives that agree with the NHDand WBD. An interdisciplinary team from the U. S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), and contractors, over the lasttwo years has found this method to produce the best quality NHD catchments using an automated process.The VAAs include greatly enhanced capabilities for upstream and downstream navigation, analysis and modeling. Examples include: retrieve all flowlines (predominantly confluence-to-confluence stream segments) and catchments upstream of a given flowline using queries rather than by slower flowline-by flowline navigation; retrieve flowlines by stream order; subset a stream level path sorted in hydrologic order for st

  16. Use of intraspecific variation in thermal responses for estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer.

    PubMed

    Ishizuka, W; Ono, K; Hara, T; Goto, S

    2015-01-01

    To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high-elevation populations developed cold hardiness earlier than low-elevation populations, representing significant genetic control. Because development occurred earlier at high-elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade-off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high-elevation population. These thermal responses may be one of the important factors driving the elevation-dependent adaptation of A. sachalinensis. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Crowdsourced Contributions to the Nation's Geodetic Elevation Infrastructure

    NASA Astrophysics Data System (ADS)

    Stone, W. A.

    2014-12-01

    NOAA's National Geodetic Survey (NGS), a United States Department of Commerce agency, is engaged in providing the nation's fundamental positioning infrastructure - the National Spatial Reference System (NSRS) - which includes the framework for latitude, longitude, and elevation determination as well as various geodetic models, tools, and data. Capitalizing on Global Navigation Satellite System (GNSS) technology for improved access to the nation's precise geodetic elevation infrastructure requires use of a geoid model, which relates GNSS-derived heights (ellipsoid heights) with traditional elevations (orthometric heights). NGS is facilitating the use of crowdsourced GNSS observations collected at published elevation control stations by the professional surveying, geospatial, and scientific communities to help improve NGS' geoid modeling capability. This collocation of published elevation data and newly collected GNSS data integrates together the two height systems. This effort in turn supports enhanced access to accurate elevation information across the nation, thereby benefiting all users of geospatial data. By partnering with the public in this collaborative effort, NGS is not only helping facilitate improvements to the elevation infrastructure for all users but also empowering users of NSRS with the capability to do their own high-accuracy positioning. The educational outreach facet of this effort helps inform the public, including the scientific community, about the utility of various NGS tools, including the widely used Online Positioning User Service (OPUS). OPUS plays a key role in providing user-friendly and high accuracy access to NSRS, with optional sharing of results with NGS and the public. All who are interested in helping evolve and improve the nationwide elevation determination capability are invited to participate in this nationwide partnership and to learn more about the geodetic infrastructure which is a vital component of viable spatial data for many disciplines, including the geosciences.

  18. The size of the supraspinatus outlet during elevation of the arm in the frontal and sagittal plane: a 3-D model study.

    PubMed

    Meskers, Carel G M; van der Helm, Frans C T; Rozing, Piet M

    2002-05-01

    To quantify the size of the supraspinatus outlet as it is dictated by both the three-dimensional geometry of the shoulder and the relative orientation of the humerus with respect to the scapula during motions of the arm. Previously obtained data of shoulder kinematics were brought into a geometrical model of the shoulder, derived from a cadaver study. Knowledge of the parameters dictating the size of the supraspinatus outlet is essential for a better understanding of the impingement syndrome of the shoulder. A geometrical model, based on fitting spheres to various anatomical items of the shoulder was derived from three-dimensional position data of the gleno-humeral joint and coraco-acromial arch of 32 cadaver shoulders. Kinematical data were collected from 10 healthy volunteers. The geometrical and kinematical data were combined to study the supraspinatus outlet during elevation of the humerus in the frontal and sagittal plane. No single geometry parameter correlated significantly with the initial size of the outlet. During arm elevation, the greater tuberosity was moved away from the coraco-acromial arch quite effectively resulting in narrowing of the outlet during elevation in the frontal plane from 60 degrees to 120 degrees only. Deviations from the average were quite substantial. This was caused by kinematical and especially geometrical variability. The size of the outlet is dictated by both the geometry and kinematics of the gleno-humeral joint. Assessment of the individual susceptibility to impingement requires three-dimensional viewing techniques including three-dimensional movements of both the scapula and humerus. Little is known about etiology and pathogenesis of various shoulder disorders such as the impingement syndrome. The supraspinatus outlet plays probably a key role. More knowledge on the architecture of the outlet is required for a better understanding.

  19. Elevation of liquidus temperature in a gel-derived Na2O-SiO2 glass

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.

    1983-01-01

    The liquidus temperatures of a 19 wt% soda-silica glass prepared by gel and conventional techniques were determined. X-ray diffraction measurements of the glasses which were heat-treated at several temperatures were used to experimentally determine the liquidus temperatures. It was found that the gel-derived glass has an elevated liquidus. This result is discussed in relation to the previous discovery that the immiscibility temperature of this gel-derived glass is elevated

  20. Assessing the long-term impact of subsidence and global climate change on emergency evacuation routes in coastal Louisiana.

    DOT National Transportation Integrated Search

    2012-12-01

    Subsidence forecast models for coastal Louisiana were developed to estimate the change in surface elevations of evacuation routes for the years 2015, 2025, 2050, and 2100. Geophysical and anthropogenic subsidence estimates were derived from on-going ...

  1. State of Florida 1:24,000- and 1:100,000-scale quadrangle index map - Highlighting low-lying areas derived from USGS Digital Elevation Models

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts 1:24,000- and 1:100,000-scale quadrangle footprints over a color shaded relief representation of the State of Florida. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Figure 1 shows a similar representation for the entire U.S. Gulf Coast, using coarsened 30-meter NED data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. Quadrangle names, dated April, 2006, were obtained from the Federal Geographic Names Information System. The NED data were downloaded in 2004.

  2. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    NASA Astrophysics Data System (ADS)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  3. The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.; hide

    2012-01-01

    The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.

  4. Urban Density Indices Using Mean Shift-Based Upsampled Elevetion Data

    NASA Astrophysics Data System (ADS)

    Charou, E.; Gyftakis, S.; Bratsolis, E.; Tsenoglou, T.; Papadopoulou, Th. D.; Vassilas, N.

    2015-04-01

    Urban density is an important factor for several fields, e.g. urban design, planning and land management. Modern remote sensors deliver ample information for the estimation of specific urban land classification classes (2D indicators), and the height of urban land classification objects (3D indicators) within an Area of Interest (AOI). In this research, two of these indicators, Building Coverage Ratio (BCR) and Floor Area Ratio (FAR) are numerically and automatically derived from high-resolution airborne RGB orthophotos and LiDAR data. In the pre-processing step the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an improved normalized digital surface model (nDSM) is an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. In a following step, a Multilayer Feedforward Neural Network (MFNN) is used to classify all pixels of the AOI to building or non-building categories. For the total surface of the block and the buildings we consider the number of their pixels and the surface of the unit pixel. Comparisons of the automatically derived BCR and FAR indicators with manually derived ones shows the applicability and effectiveness of the methodology proposed.

  5. Urban air quality estimation study, phase 1

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1976-01-01

    Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.

  6. State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.

  7. Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan

    NASA Astrophysics Data System (ADS)

    Yen-Ti, C.; Hwang, C.

    2017-12-01

    Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.

  8. Analysis and characterization of the vertical wind profile in UAE

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.

    2011-12-01

    In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have low values during summer and high values during winter. This variation is mainly explained by the direct effect of air temperature on atmospheric stability. When the surface temperature becomes high, air is mixed well in atmospheric boundary layer. This phenomenon leads to vertically low wind speed change indicating low wind profile parameter. On the contrary, cold surface temperature prevents air from being mixed well in the boundary layer. This analysis is applied to different regions to see the spatial characteristics of wind in UAE. As a next step, a mesoscale model coupled with UAE roughness maps will be used to predict elevated wind speed. A micro-scale modeling approach will be also used to capture small-scale wind speed variability. This data will be combined with the NCMS data and tailored to the UAE by modeling the effects due to local changes in terrain elevation and local surface roughness changes and obstacles.

  9. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Zak, Donald R

    2009-11-01

    We repeatedly sampled the surface mineral soil (0-20 cm depth) in three northern temperate forest communities over an 11-year experimental fumigation to understand the effects of elevated carbon dioxide (CO(2)) and/or elevated phyto-toxic ozone (O(3)) on soil carbon (C). After 11 years, there was no significant main effect of CO(2) or O(3) on soil C. However, within the community containing only aspen (Populus tremuloides Michx.), elevated CO(2) caused a significant decrease in soil C content. Together with the observations of increased litter inputs, this result strongly suggests accelerated decomposition under elevated CO(2.) In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O(3) under elevated CO(2) proved to be only a temporary effect, mirroring trends in fine root biomass. Our results contradict predictions of increased soil C under elevated CO(2) and decreased soil C under elevated O(3) and should be considered in models simulating the effects of Earth's altered atmosphere.

  10. Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data.

    PubMed

    Schulz, Hans Martin; Li, Ching-Feng; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg

    2017-01-01

    Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as "MCF" or "non-MCF". This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest's location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF.

  11. A Comparative Study of Radar Stereo and Interferometry for DEM Generation

    NASA Astrophysics Data System (ADS)

    Gelautz, M.; Paillou, P.; Chen, C. W.; Zebker, H. A.

    2004-06-01

    In this experiment, we derive and compare radar stereo and interferometric elevation models (DEMs) of a study site in Djibouti, East Africa. As test data, we use a Radarsat stereo pair and ERS-2 and Radarsat interferometric data. Comparison of the reconstructed DEMs with a SPOT reference DEM shows that in regions of high coherence the DEMs produced by interferometry are of much better quality than the stereo result. However, the interferometric error histograms also show some pronounced outliers due to decorrelation and phase unwrapping problems on forested mountain slopes. The more robust stereo result is able to capture the general terrain shape, but finer surface details are lost. A fusion experiment demonstrates that merging the stereoscopic and interferometric DEMs by utilizing coherence- derived weights can significantly improve the accuracy of the computed elevation maps.

  12. Automated estimation of river bathymetry using change detection based on Landsat imagery and river morphological models

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Jagers, B.; Van De Giesen, N.; Baart, F.; van Dam, A.

    2015-12-01

    Free global data sets on river bathymetry at global scale are not yet available. While one of the mostly used free elevation datasets, SRTM, provides data on location and elevation of rivers, its quality usually is very limited. This happens mainly because water mask was derived from older satellite imagery, such as Landsat 5, and also because the radar instruments perform bad near water, especially with the presence of vegetation in riparian zone. Additional corrections are required before it can be used for applications such as higher resolution surface water flow simulations. On the other hand, medium resolution satellite imagery from Landsat mission can be used to estimate water mask changes during the last 40 years. Water mask from Landsat imagery can be derived on per-image basis, in some cases, resulting in up to one thousand water masks. For rivers where significant water mask changes can be observed, this information can be used to improve quality of existing digital elevation models in the range between minimum and maximum observed water levels. Furthermore, we can use this information to further estimate river bathymetry using morphological models. We will evaluate how Landsat imagery can be used to estimate river bathymetry and will point to cases of significant inconsistencies between SRTM and Landsat-based water masks. We will also explore other challenges on a way to automated estimation of river bathymetry using fusion of numerical morphological models and remote sensing data. Some of them include automatic generation of model mesh, estimation of river morphodynamic properties and issues related to spectral method used to analyse optical satellite imagery.

  13. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.

  14. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen

    PubMed Central

    Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

    2017-01-01

    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya–Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle’s elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya–Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide. PMID:28339461

  15. A Newly Updated Database of Elevation-changes of the Greenand Ice Sheet to Study Surface Processes and Ice Dynamics

    NASA Astrophysics Data System (ADS)

    Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.

    2015-12-01

    This paper reports about important upgrades of the Greenland Ice Sheet (GrIS) surface elevation and elevation-change database obtained with our Surface Elevation And Change detection (SERAC) software suite. We have developed SERAC to derive information from laser altimetry data, particularly time series of elevation changes and their partitioning into changes caused by ice dynamics. This allows direct investigation of ice dynamic processes that is much needed for improving the predictive power of ice sheet models. SERAC is different from most other change detection methods. It is based on detecting changes of surface patches, about 1 km by 1 km in size, rather than deriving elevation changes from individual laser points. The current database consists of ~100,000 time series with satellite laser altimetry data from ICESat, airborne laser observations obtained by NASA's Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). The upgrade is significant, because not only new observations from 2013 and 2014 have been added but also a number of improvements lead to a more comprehensive and consistent record of elevation-changes. First, we used the model that gives in addition to ice sheet also information about ice caps and glaciers (Rastner et al., 2012) for deciding if a laser point is on the ice sheet or ice cap. Then we added small gaps that exist in the ICESat GLA12 data set because the ice sheet mask is not wide enough. The new database is now more complete and will facilitate more accurate comparisons of mass balance studies obtained from the Gravity Recovery and Climate Experiment system (GRACE). For determining the part of a time series caused by ice dynamics we used the new firn compaction model and Surface Mass Balance (SMB) estimates from RACMO2.3. The new database spans the time period from 1993 to 2014. Adding new observations amounts to a spatial densification of the old record and at the same time extends the time domain by two years. Our presentation will show the improvement of the reconstruction of the total changes, those caused by SMB and ice dynamic during the ICESat mission (2003-2009). Moreover we will review changes on scales from individual outlet glaciers to drainage basins and the entire ice sheet.

  16. GLOBATO: An enhanced global relief model at 30 arc-seconds resolution

    NASA Astrophysics Data System (ADS)

    O'Leary, V.; Amante, C.

    2017-12-01

    The National Centers for Environmental Information (NCEI), an office of the National Oceanic and Atmospheric Administration (NOAA), first developed a digital bathymetric and elevation model, ETOPO5, from publicly available data in 1993. For nearly 25 years, NCEI's ETOPO family of global relief models have supported research at a planetary scale, including tsunami forecasting, ocean circulation modeling, visualization of the seafloor, understanding geological phenomena, and aiding the development of other global and regional elevation models. GLOBATO (GLObal BAThymetry and TOpography) is now the most detailed version released by NCEI with a horizontal resolution of 30 arc-seconds and succeeds ETOPO1 with the inclusion of several new or updated data-sets for the seafloor as well as land areas. GLOBATO is a compilation of data derived from models of satellite measurements, ship depth soundings, and multibeam surveys, as well as regional models developed for Greenland and Antarctica. These data were converted from different formats, resolutions, spatial distributions, and projections into a single global model using GDAL v2.2 and MB-System v5.5. As with previous NCEI models, GLOBATO is available in two formats, "bedrock elevation" (measured as the base of major ice sheets) and "ice surface elevation" (measured as the surface of major ice sheets) which provides comprehensive topographic and bathymetric coverage between +- 90 degrees latitude and +- 180 degrees longitude. Adhering to best practices, GLOBATO, all related digital products, and any supporting documentation are available online through the NCEI data portal. These new, high resolution models will better support the variety of research ETOPO1 has made possible.

  17. Mars digital terrain model

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Howington, Annie-Elpis

    1987-01-01

    The Mars Digital Terrain Model (DTM) is the result of a new project to: (1) digitize the series of 1:2,000,000-scale topographic maps of Mars, which are being derived photogrammetically under a separate project, and (2) reformat the digital contour information into rasters of elevation that can be readily registered with the Digital Image Model (DIM) of Mars. Derivation of DTM's involves interpolation of elevation values into 1/64-degree resolution and transformation of them to a sinusoidal equal-area projection. Digital data are produced in blocks corresponding with the coordinates of the original 1:2,000,000-scale maps, i.e., the dimensions of each block in the equatorial belt are 22.5 deg of longitude and 15 deg of latitude. This DTM is not only compatible with the DIM, but it can also be registered with other data such as geologic units or gravity. It will be the most comprehensive record of topographic information yet compiled for the Martian surface. Once the DTM's are established, any enhancement of Mars topographic information made with updated data, such as data from the planned Mars Observer Mission, will be by mathematical transformation of the DTM's, eliminating the need for recompilation.

  18. An equivalent layer magnetization model for the United States derived from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Galliher, S. C. (Principal Investigator)

    1982-01-01

    Long wavelength anomalies in the total magnetic field measured field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large-scale tectonic provinces.

  19. Domain-averaged snow depth over complex terrain from flat field measurements

    NASA Astrophysics Data System (ADS)

    Helbig, Nora; van Herwijnen, Alec

    2017-04-01

    Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.

  20. Numerical experiments of dynamical processes during the 2011-2013 surge of the Bering-Bagley Glacier System, using a full-Stokes finite element model

    NASA Astrophysics Data System (ADS)

    Trantow, Thomas

    The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the current model. Documentation of the effects that altering glaciological parameters and boundary conditions have on ice rheology in a large complex glacial system comes as secondary result. Simulations have yet to reveal any quasi-cyclic behavior or natural surge initiation.

  1. Interpretation of ICESat-Derived Elevation Change on the Malaspina-Seward Glacier

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Ramage, J.; Kopczynski, S.; Muskett, R.

    2005-12-01

    In this study, we report and interpret ICESat-derived short-term variability in surface elevation in the snow accumulation region of the Seward-Malaspina Glacier, one of the largest glacier systems in southern Alaska. The Seward-Malaspina complex consists of an extensive icefield, the upper Seward Glacier, and a narrower lower outlet glacier (lower Seward) through which ice drains to the enormous piedmont of the Malaspina Glacier. Although the upper Seward is just 80 km north of the Gulf of Alaska it has an environment more continental than maritime because of shielding afforded by high mountains to the south [Sharp, 1951]. The Malaspina Glacier by contrast lies completely within the moist maritime environment of the southern Alaska coast. In an earlier study of the Malaspina Glacier, we reported elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000 [Sauber et al., 2005]. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the piedmont lobe of the Malaspina Glacier. For the western portion of the Upper Seward we will estimate elevation change over a comparable time period by using an X-band InSAR-derived DEM from Intermap Tech. (Sept. 2000) and ICESat-derived elevations. Early field measurements (1945-1949) from the Upper Seward Glacier indicated an average annual net surplus of 75 cm water equivalent in the Upper Seward basin [Sharp, 1951]. However, even over this short time period, Sharp [1951] found large interannual variability in net accumulation of 41-168 cm. To further constrain and understand surface changes, we examined ICESat-derived elevations from a variable set of repeated ICESat upper Seward profiles made between Feb. 2003 and May 2005. Additionally we compared the elevation change profiles to snowmelt timing and ablation season length derived from the Special Sensor Microwave Imager (SSM/I) 37 GHz brightness temperatures for 2000-2004 using the approach of Ramage and Isacks (2003). We found the largest elevation increase between Oct 2003 and late Feb./March 2004 (3-4 m over a flat region of the upper Seward at 1740 m), little discernible elevation change occurred between March and May 2004, and about 2 m of elevation decrease occurred at 1750 m between May and Oct. 2004. The elevation increase of 3-4 m at 1740 m in the upper Seward occurred after refreezing started in August 2003 and before the snowmelt onset in mid to late April 2004. Ramage and Isacks, J. Glaciol., 2003. Sauber et al., Geophys. Res. Lett., in press, 2005. Sharp, Geol. Soc. Am.,1951.

  2. Appendix 2: Risk-based framework and risk case studies. Risk Assessment for two bird species in northern Wisconsin.

    Treesearch

    Megan M. Friggens; Stephen N. Matthews

    2012-01-01

    Species distribution models for 147 bird species have been derived using climate, elevation, and distribution of current tree species as potential predictors (Matthews et al. 2011). In this case study, a risk matrix was developed for two bird species (fig. A2-5), with projected change in bird habitat (the x axis) based on models of changing suitable habitat resulting...

  3. Numerical analysis of tidal dynamics in the region around Gulf of Mannar and Palk Strait

    NASA Astrophysics Data System (ADS)

    Scaria, Sajumon; Murali, K.; Shanmugam, P.

    2015-04-01

    A 3D hydrodynamic model is presented to study tidal dynamics along the Indian coast and adjoining marginal seas as well as to investigate the volume transport of water across a tidal channel between the Gulf of Mannar and Palk Strait areas. The numerical model is validated in three stages, and its performance is further assessed by comparing the derived amplitudes of the semidiurnal and diurnal constituents with those of FES 2004 model. The accuracy of the model is ensured by comparing the tidal elevations at selected locations with the observed data. As a next level of validation, the elevations are subjected to the harmonic analysis in order to derive the harmonic constants. The numerical analysis of tidal energetics in the Palk Strait and Gulf of Mannar leads to conclude that M2 constituent undergoes more dissipation and the area-integrated mean dissipation rate of M2 and K1 is 3.22 and 0.25 GW. The temporal and spatial distributions of the sectional daily water volume transport are also analysed for the channel connecting the Palk Strait and the Gulf of Mannar. The localized geographical factors near the Adam's bridge area strongly influence the tidal flow, and the water volume transport shows seasonal variations.

  4. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control

    USGS Publications Warehouse

    Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control

    NASA Technical Reports Server (NTRS)

    Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.

    2011-01-01

    Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.

  6. Incremental terrain processing for large digital elevation models

    NASA Astrophysics Data System (ADS)

    Ye, Z.

    2012-12-01

    Incremental terrain processing for large digital elevation models Zichuan Ye, Dean Djokic, Lori Armstrong Esri, 380 New York Street, Redlands, CA 92373, USA (E-mail: zye@esri.com, ddjokic@esri.com , larmstrong@esri.com) Efficient analyses of large digital elevation models (DEM) require generation of additional DEM artifacts such as flow direction, flow accumulation and other DEM derivatives. When the DEMs to analyze have a large number of grid cells (usually > 1,000,000,000) the generation of these DEM derivatives is either impractical (it takes too long) or impossible (software is incapable of processing such a large number of cells). Different strategies and algorithms can be put in place to alleviate this situation. This paper describes an approach where the overall DEM is partitioned in smaller processing units that can be efficiently processed. The processed DEM derivatives for each partition can then be either mosaicked back into a single large entity or managed on partition level. For dendritic terrain morphologies, the way in which partitions are to be derived and the order in which they are to be processed depend on the river and catchment patterns. These patterns are not available until flow pattern of the whole region is created, which in turn cannot be established upfront due to the size issues. This paper describes a procedure that solves this problem: (1) Resample the original large DEM grid so that the total number of cells is reduced to a level for which the drainage pattern can be established. (2) Run standard terrain preprocessing operations on the resampled DEM to generate the river and catchment system. (3) Define the processing units and their processing order based on the river and catchment system created in step (2). (4) Based on the processing order, apply the analysis, i.e., flow accumulation operation to each of the processing units, at the full resolution DEM. (5) As each processing unit is processed based on the processing order defined in (3), compare the resulting drainage pattern with the drainage pattern established at the coarser scale and adjust the drainage boundaries and rivers if necessary.

  7. Ecological Model to Predict Potential Habitats of Oncomelania hupensis, the Intermediate Host of Schistosoma japonicum in the Mountainous Regions, China.

    PubMed

    Zhu, Hong-Ru; Liu, Lu; Zhou, Xiao-Nong; Yang, Guo-Jing

    2015-01-01

    Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People's Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner. Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated in Eryuan and Midu Counties, respectively. The final ecological niche model for potential O. hupensis habitats prediction comprised the following environmental factors, namely: NDVI (≥ 0.446), LST (≥ 22.70°C), elevation (≤ 2,300 m), slope (≤ 11°) and the distance to nearest stream (≤ 1,000 m). The potential O. hupensis habitats in Eryuan distributed in the Lancang River basin and O. hupensis in Midu shows a trend of clustering in the north and spotty distribution in the south. The consistency rates of the ecological niche model in Eryuan and Midu were 76.67% and 83.33%, respectively. The ecological niche model integrated with NDVI, LST, elevation, slope and distance from every village to its nearest stream adequately predicted the snail habitats in the mountainous regions.

  8. Modeling effects of traffic and landscape characteristics on ambient nitrogen dioxide levels in Connecticut

    NASA Astrophysics Data System (ADS)

    Skene, Katherine J.; Gent, Janneane F.; McKay, Lisa A.; Belanger, Kathleen; Leaderer, Brian P.; Holford, Theodore R.

    2010-12-01

    An integrated exposure model was developed that estimates nitrogen dioxide (NO 2) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO 2 taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO 2 measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO 2 levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.

  9. Flood-inundation maps and updated components for a flood-warning system or the City of Marietta, Ohio and selected communities along the Lower Muskingum River and Ohio River

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2014-01-01

    Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.

  10. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Treesearch

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  11. MAGSAT anomaly field data of the crustal properties of Australia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Progress is reported in producing maps of Australia showing; crustal magnetic anomalies at constant elevation; bulk surface magnetization; and the geomagnetic field intensity, inclination and declination for the Australian region from global models of the geomagnetic field derived from MAGSAT data. The development of a data base management system is also considered.

  12. Forest response to elevated CO2 is conserved across a broad range of productivity

    Treesearch

    R. Norby; E. DeLucia; B. Gielen; C. Calfapietra; C. Giardina; J. King; J. Ledford; H. McCarthy; D. Moore; R. Ceulemans; P. De Angelis; A. C. Finzi; D. F. Karnosky; M. E. Kubiske; M. Lukac; K. S. Pregitzer; G. E. Scarascia-Mugnozza; W. Schlesinger and R. Oren.

    2005-01-01

    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ("CO2 fertilization...

  13. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  14. Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-02-01

    Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.

  15. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a match with geologic data. Further data from low-latitude regions and better constraints on early Eocene CO2 are now required to discriminate between these model simulations given the large error bars on paleoprecipitation estimates. Given the clear differences between simulated precipitation distributions within the ensemble, our results suggest that paleohydrological data offer an independent means by which to evaluate model skill for warm climates.

  16. Integrating TITAN2D Geophysical Mass Flow Model with GIS

    NASA Astrophysics Data System (ADS)

    Namikawa, L. M.; Renschler, C.

    2005-12-01

    TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate slope and curvature from elevation, the selected one is based on estimation by a third-order finite difference method, which has shown to perform better or with minimal difference when compared to more computationally expensive methods. Derivatives are estimated using weighted sum of 8 grid neighbor values. The method was implemented and simulation results compared to derivatives estimated by a simplified version of the method (uses only 4 neighbor cells) and proven to perform better. TITAN2D uses an adaptative mesh grid, where resolution (grid cell size) is not constant, and visualization tools also uses texture with varying resolutions for efficient display. The API supports different resolutions applying bilinear interpolation when elevation, slope and curvature are required at a resolution higher (smaller cell size) than the original and using a nearest cell approach for elevations with lower resolution (larger) than the original. For material information nearest neighbor method is used since interpolation on categorical data has no meaning. Low fidelity characteristic of visualization allows use of nearest neighbor method for texture. Bilinear interpolation estimates the value at a point as the distance-weighted average of values at the closest four cell centers, and interpolation performance is just slightly inferior compared to more computationally expensive methods such as bicubic interpolation and kriging.

  17. Gridded rainfall estimation for distributed modeling in western mountainous areas

    NASA Astrophysics Data System (ADS)

    Moreda, F.; Cong, S.; Schaake, J.; Smith, M.

    2006-05-01

    Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall difference, b) annual difference, c) typical year monthly comparison, and d) regression fit of the MAPX and MAP data. In terms of mean areal precipitation, overall differences between the MAP and MAPX time series are very small for the North Fork American River elevation zones. For the East Fork Carson River zones, the over all difference is up to 10 percent. The difference tends to be high when the elevation zones are small in area. In our presentation, we will show the results of our analyses and discuss future evaluations of these precipitation estimates using distributed and lumped hydrologic models.

  18. Comparison of elevation derived from insar data with dem from topography map in Son Dong, Bac Giang, Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy

    2012-07-01

    Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.

  19. Predicting species distributions from checklist data using site-occupancy models

    USGS Publications Warehouse

    Kery, M.; Gardner, B.; Monnerat, C.

    2010-01-01

    Aim: (1) To increase awareness of the challenges induced by imperfect detection, which is a fundamental issue in species distribution modelling; (2) to emphasize the value of replicate observations for species distribution modelling; and (3) to show how 'cheap' checklist data in faunal/floral databases may be used for the rigorous modelling of distributions by site-occupancy models. Location: Switzerland. Methods: We used checklist data collected by volunteers during 1999 and 2000 to analyse the distribution of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzerland. We used data from repeated visits to 1-ha pixels to derive 'detection histories' and apply site-occupancy models to estimate the 'true' species distribution, i.e. corrected for imperfect detection. We modelled blue hawker distribution as a function of elevation and year and its detection probability of elevation, year and season. Results: The best model contained cubic polynomial elevation effects for distribution and quadratic effects of elevation and season for detectability. We compared the site-occupancy model with a conventional distribution model based on a generalized linear model, which assumes perfect detectability (p = 1). The conventional distribution map looked very different from the distribution map obtained using site-occupancy models that accounted for the imperfect detection. The conventional model underestimated the species distribution by 60%, and the slope parameters of the occurrence-elevation relationship were also underestimated when assuming p = 1. Elevation was not only an important predictor of blue hawker occurrence, but also of the detection probability, with a bell-shaped relationship. Furthermore, detectability increased over the season. The average detection probability was estimated at only 0.19 per survey. Main conclusions: Conventional species distribution models do not model species distributions per se but rather the apparent distribution, i.e. an unknown proportion of species distributions. That unknown proportion is equivalent to detectability. Imperfect detection in conventional species distribution models yields underestimates of the extent of distributions and covariate effects that are biased towards zero. In addition, patterns in detectability will erroneously be ascribed to species distributions. In contrast, site-occupancy models applied to replicated detection/non-detection data offer a powerful framework for making inferences about species distributions corrected for imperfect detection. The use of 'cheap' checklist data greatly enhances the scope of applications of this useful class of models. ?? 2010 Blackwell Publishing Ltd.

  20. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Zhou, Hang; Link, Timothy E

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  1. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE PAGES

    Wei, Liang; Zhou, Hang; Link, Timothy E; ...

    2018-05-16

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  2. 3D-information fusion from very high resolution satellite sensors

    NASA Astrophysics Data System (ADS)

    Krauss, T.; d'Angelo, P.; Kuschk, G.; Tian, J.; Partovi, T.

    2015-04-01

    In this paper we show the pre-processing and potential for environmental applications of very high resolution (VHR) satellite stereo imagery like these from WorldView-2 or Pl'eiades with ground sampling distances (GSD) of half a metre to a metre. To process such data first a dense digital surface model (DSM) has to be generated. Afterwards from this a digital terrain model (DTM) representing the ground and a so called normalized digital elevation model (nDEM) representing off-ground objects are derived. Combining these elevation based data with a spectral classification allows detection and extraction of objects from the satellite scenes. Beside the object extraction also the DSM and DTM can directly be used for simulation and monitoring of environmental issues. Examples are the simulation of floodings, building-volume and people estimation, simulation of noise from roads, wave-propagation for cellphones, wind and light for estimating renewable energy sources, 3D change detection, earthquake preparedness and crisis relief, urban development and sprawl of informal settlements and much more. Also outside of urban areas volume information brings literally a new dimension to earth oberservation tasks like the volume estimations of forests and illegal logging, volume of (illegal) open pit mining activities, estimation of flooding or tsunami risks, dike planning, etc. In this paper we present the preprocessing from the original level-1 satellite data to digital surface models (DSMs), corresponding VHR ortho images and derived digital terrain models (DTMs). From these components we present how a monitoring and decision fusion based 3D change detection can be realized by using different acquisitions. The results are analyzed and assessed to derive quality parameters for the presented method. Finally the usability of 3D information fusion from VHR satellite imagery is discussed and evaluated.

  3. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    NASA Astrophysics Data System (ADS)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  4. Alluvial Fan Delineation from SAR and LIDAR-Derived Digital Elevation Models in the Philippines

    NASA Astrophysics Data System (ADS)

    Aquino, D. T.; Ortiz, I.; Timbas, N.; Gacusan, R.; Montalbo, K.; Eco, R. C.; Lagmay, A.

    2013-12-01

    Occurrence of floods and debris flows leading to the formation of alluvial fans at the base of mountains naturally improve fertility of alluvial plains. However, these formations also have detrimental effects to communities within these zones like the case of Barangay (village) Andap, New Bataan, Compostela Valley where the whole village was wiped out by debris flow when it was hit by Supertyphoon Bopha in 2012. Hence, demarcating the boundaries of alluvial fans is crucial in disaster preparedness and mitigation. This study describes a method to delineate alluvial fans through contour maps from SAR and LiDAR-derived digital elevation models. Based on this data, we used hydrographic apex point polygons to plot the outflow points of upstream watersheds. The watershed and alluvial fan polygons were used to simulate debris flows in the study sites. The fans generated from the flood simulation were consistent with the polygons delineated from the digital elevation model. Satellite imagery and evidences of alluvial deposits found on site revealed 392 alluvial fans in the country. Widest among these is the sprawling 760 sq km fan identified in Cagayan Valley threatening about 434,329 persons at risk of debris flow. Other fans include those identified in Calapan, Mindoro (531 sq km), Kaliwanagan, Pangasinan (436 sq km), Pampanga Alluvial Fan (325 sq km), Mina, Iloilo (315 sq km), Lamsugod, S. Cotabato (286 sq km), in Tignaman, Oton and Alimodian in Iloilo (272 sq km), and the bajada, a series of alluvial fan coalescing to form a larger fan, identified in Ilocos Norte (218 sq km).

  5. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  6. Predictive habitat models derived from nest-box occupancy for the endangered Carolina northern flying squirrel in the southern Appalachians

    Treesearch

    W. Mark Ford; Andrew M. Evans; Richard H. Odom; Jane L. Rodrigue; Christine A. Kelly; Nicole Abaid; Corinne A. Diggins; Douglas Newcomb

    2015-01-01

    In the southern Appalachians, artificial nest-boxes are used to survey for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus), a disjunct subspecies associated with high elevation (>1385 m) forests. Using environmental parameters diagnostic of squirrel habitat, we created 35 a priori occupancy...

  7. Evaluation of lidar-derived DEMs through terrain analysis and field comparison

    Treesearch

    Cody P. Gillin; Scott W. Bailey; Kevin J. McGuire; Stephen P. Prisley

    2015-01-01

    Topographic analysis of watershed-scale soil and hydrological processes using digital elevation models (DEMs) is commonplace, but most studies have used DEMs of 10 m resolution or coarser. Availability of higher-resolution DEMs created from light detection and ranging (lidar) data is increasing but their suitability for such applications has received little critical...

  8. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    USDA-ARS?s Scientific Manuscript database

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  9. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types Along the Elevational Gradients of Gongga Mountain, China

    PubMed Central

    Li, Jiabao; Shen, Zehao; Li, Chaonan; Kou, Yongping; Wang, Yansu; Tu, Bo; Zhang, Shiheng; Li, Xiangzhen

    2018-01-01

    Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800–4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800–2600 m) or higher (2800–4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the β-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems. PMID:29636740

  10. Trajectories of depressive and anxiety symptoms in older adults: a 6-year prospective cohort study.

    PubMed

    Holmes, Sophie E; Esterlis, Irina; Mazure, Carolyn M; Lim, Yen Ying; Ames, David; Rainey-Smith, Stephanie; Fowler, Chris; Ellis, Kathryn; Martins, Ralph N; Salvado, Olivier; Doré, Vincent; Villemagne, Victor L; Rowe, Christopher C; Laws, Simon M; Masters, Colin L; Pietrzak, Robert H; Maruff, Paul

    2018-02-01

    Depressive and anxiety symptoms are common in older adults, significantly affect quality of life, and are risk factors for Alzheimer's disease. We sought to identify the determinants of predominant trajectories of depressive and anxiety symptoms in cognitively normal older adults. Four hundred twenty-three older adults recruited from the general community underwent Aβ positron emission tomography imaging, apolipoprotein and brain-derived neurotrophic factor genotyping, and cognitive testing at baseline and had follow-up assessments. All participants were cognitively normal and free of clinical depression at baseline. Latent growth mixture modeling was used to identify predominant trajectories of subthreshold depressive and anxiety symptoms over 6 years. Binary logistic regression analysis was used to identify baseline predictors of symptomatic depressive and anxiety trajectories. Latent growth mixture modeling revealed two predominant trajectories of depressive and anxiety symptoms: a chronically elevated trajectory and a low, stable symptom trajectory, with almost one in five participants falling into the elevated trajectory groups. Male sex (relative risk ratio (RRR) = 3.23), lower attentional function (RRR = 1.90), and carriage of the brain-derived neurotrophic factor Val66Met allele in women (RRR = 2.70) were associated with increased risk for chronically elevated depressive symptom trajectory. Carriage of the apolipoprotein epsilon 4 allele (RRR = 1.92) and lower executive function in women (RRR = 1.74) were associated with chronically elevated anxiety symptom trajectory. Our results indicate distinct and sex-specific risk factors linked to depressive and anxiety trajectories, which may help inform risk stratification and management of these symptoms in older adults at risk for Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data

    PubMed Central

    Li, Ching-Feng; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg

    2017-01-01

    Up until now montane cloud forest (MCF) in Taiwan has only been mapped for selected areas of vegetation plots. This paper presents the first comprehensive map of MCF distribution for the entire island. For its creation, a Random Forest model was trained with vegetation plots from the National Vegetation Database of Taiwan that were classified as “MCF” or “non-MCF”. This model predicted the distribution of MCF from a raster data set of parameters derived from a digital elevation model (DEM), Landsat channels and texture measures derived from them as well as ground fog frequency data derived from the Moderate Resolution Imaging Spectroradiometer. While the DEM parameters and Landsat data predicted much of the cloud forest’s location, local deviations in the altitudinal distribution of MCF linked to the monsoonal influence as well as the Massenerhebung effect (causing MCF in atypically low altitudes) were only captured once fog frequency data was included. Therefore, our study suggests that ground fog data are most useful for accurately mapping MCF. PMID:28245279

  12. Topogrid Derived 10 Meter Resolution Digital Elevation Model of the Shenandoah National Park and Surrounding Region, Virginia

    USGS Publications Warehouse

    Chirico, Peter G.; Tanner, Seth D.

    2004-01-01

    Explanation The purpose of developing a new 10m resolution DEM of the Shenandoah National Park Region was to more accurately depict geologic structure, surfical geology, and landforms of the Shenandoah National Park Region in preparation for automated landform classification. Previously, only a 30m resolution DEM was available through the National Elevation Dataset (NED). During production of the Shenandoah10m DEM of the Park the Geography Discipline of the USGS completed a revised 10m DEM to be included into the NED. However, different methodologies were used to produce the two similar DEMs. The ANUDEM algorithm was used to develop the Shenadoah DEM data. This algorithm allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the elevation model. A statistical analysis using over 800 National Geodetic Survey (NGS) first and second order vertical control points reveals that the Shenandoah10m DEM, produced as a part of the Appalachian Blue Ridge Landscape project, has a vertical accuracy of ?4.87 meters. The metadata for the 10m NED data reports a vertical accuracy of ?7m. A table listing the NGS control points, the elevation comparison, and the RMSE for the Shenandoah10m DEM is provided. The process of automated terrain classification involves developing statistical signatures from the DEM for each type of surficial deposit and landform type. The signature will be a measure of several characteristics derived from the elevation data including slope, aspect, planform curvature, and profile curvature. The quality of the DEM is of critical importance when extracting terrain signatures. The highest possible horizontal and vertical accuracy is required. The more accurate Shenandoah 10m DEM can now be analyzed and integrated with the geologic observations to yield statistical correlations between the two in the development of landform and surface geology mapping projects.

  13. Digital Elevation Models of Greenland based on combined radar and laser altimetry as well as high-resolution stereoscopic imagery

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Smith, B. E.; Sandberg Sorensen, L.; Khvorostovsky, K.; Simonsen, S. B.; Forsberg, R.

    2015-12-01

    A number of Digital Elevation Models (DEMs) of Greenland exist, each of which are applicable for different purposes. This study presents two such DEMs: One developed by merging contemporary radar and laser altimeter data, and one derived from high-resolution stereoscopic imagery. All products are made freely available. The former DEM covers the entire Greenland. It is specific to the year 2010, providing it with an advantage over previous models suffering from either a reduced spatial/ temporal data coverage or errors from surface elevation changes (SEC) occurring during data acquisition. Radar data are acquired with Envisat and CryoSat-2, and laser data with the Ice, Cloud, and land Elevation Satellite, the Land, Vegetation, and Ice Sensor, and the Airborne Topographic Mapper. Correcting radar data for errors from slope effects and surface penetration of the echoes, and merging these with laser data, yields a DEM capable of resolving both surface depressions as well as topographic features at higher altitudes. The spatial resolution is 2 x 2 km, making the DEM ideal for application in surface mass balance studies, SEC detection from radar altimetry, or for correcting such data for slope-induced errors. The other DEM is developed in a pilot study building the expertise to map all ice-free parts of Greenland. The work combines WorldView-2 and -3 as well as GeoEye1 imagery from 2014 and 2015 over the Disko, Narsaq, Tassilaq, and Zackenberg regions. The novelty of the work is the determination of the product specifications after elaborate discussions with interested parties from government institutions, the tourist industry, etc. Thus, a 10 m DEM, 1.5 m orthophotos, and vector maps are produced. This opens to the possibility of using orthophotos with up-to-date contour lines or for deriving updated coastlines to aid, e.g., emergency management. This allows for a product development directly in line with the needs of parties with specific interests in Greenland.

  14. Laurentide Ice-Sheet Meltwater Sources to the Gulf of Mexico During the Last Deglaciation: Assessing Data Reconstructions Using Water Isotope Enabled Simulations

    NASA Astrophysics Data System (ADS)

    Vetter, L.; LeGrande, A. N.; Ullman, D. J.; Carlson, A. E.

    2017-12-01

    Sediment cores from the Gulf of Mexico show evidence of meltwater derived from the Laurentide Ice Sheet during the last deglaciation. Recent studies using geochemical measurements of individual foraminifera suggest changes in the oxygen isotopic composition of the meltwater as deglaciation proceeded. Here we use the water isotope enabled climate model simulations (NASA GISS ModelE-R) to investigate potential sources of meltwater within the ice sheet. We find that initial melting of the ice sheet from the southern margin contributed an oxygen isotope value reflecting a low-elevation, local precipitation source. As deglacial melting proceeded, meltwater delivered to the Gulf of Mexico had a more negative oxygen isotopic value, which the climate model simulates as being sourced from the high-elevation, high-latitude interior of the ice sheet. This study demonstrates the utility of combining stable isotope analyses with climate model simulations to investigate past changes in the hydrologic cycle.

  15. Forest abovegroundbiomass mapping using spaceborne stereo imagery acquired by Chinese ZY-3

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ni, W.; Zhang, Z.; Xiong, C.

    2015-12-01

    Besides LiDAR data, another valuable type of data which is also directly sensitive to forest vertical structures and more suitable for regional mapping of forest biomass is the stereo imagery or photogrammetry. Photogrammetry is the traditional technique for deriving terrain elevation. The elevation of the top of a tree canopy can be directly measured from stereo imagery but winter images are required to get the elevation of ground surface because stereo images are acquired by optical sensors which cannot penetrate dense forest canopies with leaf-on condition. Several spaceborne stereoscopic systems with higher spatial resolutions have been launched in the past several years. For example the Chinese satellite Zi Yuan 3 (ZY-3) specifically designed for the collection of stereo imagery with a resolution of 3.6 m for forward and backward views and 2.1 m for the nadir view was launched on January 9, 2012. Our previous studies have demonstrated that the spaceborne stereo imagery acquired in summer has good performance on the description of forest structures. The ground surface elevation could be extracted from spaceborne stereo imagery acquired in winter. This study mainly focused on assessing the mapping of forest biomass through the combination of spaceborne stereo imagery acquired in summer and those in winter. The test sites of this study located at Daxing AnlingMountains areas as shown in Fig.1. The Daxing Anling site is on the south border of boreal forest belonging to frigid-temperate zone coniferous forest vegetation The dominant tree species is Dhurian larch (Larix gmelinii). 10 scenes of ZY-3 stereo images are used in this study. 5 scenes were acquired on March 14,2012 while the other 5 scenes were acquired on September 7, 2012. Their spatial coverage is shown in Fig.2-a. Fig.2-b is the mosaic of nadir images acquired on 09/07/2012 while Fig.2-c is thecorresponding digital surface model (DSM) derived from stereo images acquired on 09/07/2012. Fig.2-d is the difference between the DSM derived from stereo imagery acquired on 09/07/2012 and the digital elevation model (DEM) from stereo imagery acquired on 03/14/2012.The detailed analysis will be given in the final report.

  16. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile

    2010-05-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  17. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models

    NASA Astrophysics Data System (ADS)

    Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.

    2009-09-01

    The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.

  18. Estimating Tsunami Runup with Fault Plane Parameters

    NASA Astrophysics Data System (ADS)

    Sepulveda, I.; Liu, P. L. F.

    2016-12-01

    The forecasting of tsunami runup has often been done by solving numerical models. The execution times, however, make them unsuitable for the purpose of warning. We offer an alternative method that provides analytical relationship between the runup height, the fault plane parameters and the characteristic of coastal bathymetry. The method uses the model of Okada (1985) to estimate the coseismic deformation and the corresponding sea surface displacement (η(x,0)). Once the tsunami waves are generated, Carrier & Greenspan (1958) solution (C&G) is adopted to yield analytical expressions for the shoreline elevation and velocity. Two types of problems are investigated. In the first, the bathymetry is modeled as a constant slope that is connected to a constant depth region, where a seismic event occurs. This is a boundary value problem (BVP). In the second, the bathymetry is further simplified as a constant slope, on which a seismic event occurs. This is an initial value problem (IVP). Both problems are depicted in Figure 1. We derive runup solutions in terms of the fault parameters. The earthquake is associated with vertical coseismic seafloor displacements by using Okada's elastic model. In addition to the simplifications considered in Okada's model, we further assume (1) a strike parallel to the shoreline, (2) a very long rupture area and (3) a fast earthquake so surface elevation mimics the seafloor displacements. Then the tsunami origin is modeled in terms of the fault depth (d), fault width (W), fault slip (s) and dip angle (δ). We describe the solution for the BVP. Madsen & Schaeffer (2010) utilized C&G to derive solutions for the shoreline elevation of sinusoidal waves imposed in the offshore boundary. A linear superposition of this solution represents any arbitrary incident wave. Furthermore, we can prescribe the boundary condition at the toe of sloping beach by adopting the linear shallow wave equations in the constant depth area. By means of a dimensional analysis, the runup R is determined by Eq.1. Kanoglu (2004) derived a non-dimensional expression for long wave runup originated over a sloping beach. In our work we determine an analytical expression for a sinusoidal initial condition. Following the same procedure as the BVP, the expression for the runup R in the IVP is given by Eq.2. The curves F1 and F2 are plotted in Figure 2.

  19. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  20. Flood recovery maps for the White River in Bethel, Stockbridge, and Rochester, Vermont, and the Tweed River in Stockbridge and Pittsfield, Vermont, 2014

    USGS Publications Warehouse

    Olson, Scott A.

    2015-01-01

    Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.

  1. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    USGS Publications Warehouse

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation. Estimated groundwater recharge, computed as the residual of precipitation depleted by actual evapotranspiration, is within the range of previous estimates. A climatic water deficit dataset and aridity-index-based climate zones are derived from precipitation and evapotranspiration datasets. Climate zones range from arid in the lower elevations of the study area to humid in small pockets on north- to northeast-facing slopes in the high elevations of the Spring Mountains. Correlative analyses between hydroclimatic variables and mean ecosystem elevations indicate that the climatic water deficit is the best predictor of ecosystem distribution (R2 = 0.92). Computed water balances indicate that substantially more recharge is generated in the Spring Mountains than in the Sheep Range. A geospatial database containing compiled and developed hydroclimatic data and other pertinent information accompanies this report.

  2. A model of the Greenland ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Lecavalier, Benoit

    The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.

  3. Lithospheric buoyancy and continental intraplate stresses

    USGS Publications Warehouse

    Zoback, M.L.; Mooney, W.D.

    2003-01-01

    Lithospheric buoyancy, the product of lithospheric density and thickness, is an important physical property that influences both the long-term stability of continents and their state of stress. We have determined lithospheric buoyancy by applying the simple isostatic model of Lachenbruch and Morgan (1990). We determine the crustal portion of lithospheric buoyancy using the USGS global database of more than 1700 crustal structure determinations (Mooney et al., 2002), which demonstrates that a simple relationship between crustal thickness and surface elevation does not exist. In fact, major regions of the crust at or near sea level (0-200 m elevation) have crustal thicknesses that vary between 25 and 55 km. Predicted elevations due to the crustal component of buoyancy in the model exceed observed elevations in nearly all cases (97% of the data), consistent with the existence of a cool lithospheric mantle lid that is denser than the asthenosphere on which it floats. The difference between the observed and predicted crustal elevation is assumed to be equal to the decrease in elevation produced by the negative buoyancy of the mantle lid. Mantle lid thickness was first estimated from the mantle buoyancy and a mean lid density computed using a basal crust temperature determined from extrapolation of surface heat flow, assuming a linear thermal gradient in the mantle lid. The resulting values of total lithosphere thickness are in good agreement with thicknesses estimated from seismic data, except beneath cratonic regions where they are only 40-60% of the typical estimates (200-350 km) derived from seismic data. This inconsistency is compatible with petrologic data and tomography and geoid analyses that have suggested that cratonic mantle lids are ??? 1% less dense than mantle lids elsewhere. By lowering the thermally determined mean mantle lid density in cratons by 1%, our model reproduces the observed 200-350+ km cratonic lithospheric thickness. We then computed gravitational potential energy by taking a vertical integral over the computed lithosphere density. Our computed values suggest that the thick roots beneath cratons lead to strong negative potential energy differences relative to surrounding regions, and hence exert compressive stresses superimposed on the intraplate stresses derived from plate boundary forces. Forces related to this lithosphere structure thus may explain the dominance of reverse-faulting earthquakes in cratons. Areas of high elevation and a thin mantle lid (e.g., western U.S. Basin and Range, East African rift, and Baikal rift) are predicted to be in extension, consistent with the observed stress regime in these areas.

  4. Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations

    NASA Technical Reports Server (NTRS)

    Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.

    2013-01-01

    In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.

  5. Using satellite remote sensing to model and map the distribution of Bicknell's thrush (Catharus bicknelli) in the White Mountains of New Hampshire

    NASA Astrophysics Data System (ADS)

    Hale, Stephen Roy

    Landsat-7 Enhanced Thematic Mapper satellite imagery was used to model Bicknell's Thrush (Catharus bicknelli) distribution in the White Mountains of New Hampshire. The proof-of-concept was established for using satellite imagery in species-habitat modeling, where for the first time imagery spectral features were used to estimate a species-habitat model variable. The model predicted rising probabilities of thrush presence with decreasing dominant vegetation height, increasing elevation, and decreasing distance to nearest Fir Sapling cover type. To solve the model at all locations required regressor estimates at every pixel, which were not available for the dominant vegetation height and elevation variables. Topographically normalized imagery features Normalized Difference Vegetation Index and Band 1 (blue) were used to estimate dominant vegetation height using multiple linear regression; and a Digital Elevation Model was used to estimate elevation. Distance to nearest Fir Sapling cover type was obtained for each pixel from a land cover map specifically constructed for this project. The Bicknell's Thrush habitat model was derived using logistic regression, which produced the probability of detecting a singing male based on the pattern of model covariates. Model validation using Bicknell's Thrush data not used in model calibration, revealed that the model accurately estimated thrush presence at probabilities ranging from 0 to <0.40 and from 0.50 to <0.60. Probabilities from 0.40 to <0.50 and greater than 0.60 significantly underestimated and overestimated presence, respectively. Applying the model to the study area illuminated an important implication for Bicknell's Thrush conservation. The model predicted increasing numbers of presences and increasing relative density with rising elevation, with which exists a concomitant decrease in land area. Greater land area of lower density habitats may account for more total individuals and reproductive output than higher density less abundant land area. Efforts to conserve areas of highest individual density under the assumption that density reflects habitat quality could target the smallest fraction of the total population.

  6. Dense image matching of terrestrial imagery for deriving high-resolution topographic properties of vegetation locations in alpine terrain

    NASA Astrophysics Data System (ADS)

    Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V.

    2018-04-01

    The investigation of changes in spatial patterns of vegetation and identification of potential micro-refugia requires detailed topographic and terrain information. However, mapping alpine topography at very detailed scales is challenging due to limited accessibility of sites. Close-range sensing by photogrammetric dense matching approaches based on terrestrial images captured with hand-held cameras offers a light-weight and low-cost solution to retrieve high-resolution measurements even in steep terrain and at locations, which are difficult to access. We propose a novel approach for rapid capturing of terrestrial images and a highly automated processing chain for retrieving detailed dense point clouds for topographic modelling. For this study, we modelled 249 plot locations. For the analysis of vegetation distribution and location properties, topographic parameters, such as slope, aspect, and potential solar irradiation were derived by applying a multi-scale approach utilizing voxel grids and spherical neighbourhoods. The result is a micro-topography archive of 249 alpine locations that includes topographic parameters at multiple scales ready for biogeomorphological analysis. Compared with regional elevation models at larger scales and traditional 2D gridding approaches to create elevation models, we employ analyses in a fully 3D environment that yield much more detailed insights into interrelations between topographic parameters, such as potential solar irradiation, surface area, aspect and roughness.

  7. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  8. The application of geostationary propagation models to non-geostationary propagation measurements

    NASA Astrophysics Data System (ADS)

    Haddock, Paul Christopher

    Atmospheric attenuation becomes evident above 10 GHz due to the absorption of microwave energy from the molecular motion of the atmospheric constituents. Atmospheric effects on satellite communications systems operating at frequencies greater than 10 GHz become more pronounced. Most geostationary (GEO) climate models, which predict the fading statistics for earth-space telecommunications, have satellite elevation angle as one of the input parameters. There has been an interest in the industry to apply the propagation models developed for the GEO satellites to the non-geostationary (NGO) satellite case. With the NGO satellites, the elevation angle to the satellite is time-variable, and as a result the earth-space propagation medium is time varying. We can calculate the expected probability that a satellite, in a given orbit, will be found at a given elevation angle as a percentage of the year based on the satellite orbital elements, the minimum elevation angle allowed in the constellation operation plan, and the constellation configuration. From this calculation, we can develop an empirical fit to a given probability density function (PDF) to account for the distribution of elevation angles. This PDF serves as a weighting function for the elevation input into the GEO climate model to produce the overall fading statistics for the NGO case. In this research, a Ka-band total power radiometer was developed to measure the down-dwelling incoherent radiant electromagnetic energy from the atmosphere. This whole sky sampling radiometer collected 1 year of radiometric measurements. These observations occurred at varying elevation and azimuthal angles, in close proximity to a weak water vapor absorption line. By referencing the output power of the radiometer to known radiometric emissions and by performing frequent internal calibrations, the developed radiometer provided long term highly accurate and stable low-level derived attenuation measurements. By correlating the 1 year of atmospheric measurements to the modified GEO climate model, the hypothesis is tested. That by application of the proper elevation weighting factors, the GEO model is applicable to the NGO case, where the time-varying angle changes are occurring on a short-time period. Finally, we look at the joint statistics of multiple link failures. Using the 1 year of observed attenuations for multiple sky sections, we show that for a given sky section what the probability is that its attenuation level will be equaled or exceeded for each of the remaining sky sections.

  9. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.

  10. Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences.

  11. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciaticmore » nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.« less

  12. Altimeter detection of elevation changes over coastal plains of northern Alaska and Hudson Bay

    NASA Astrophysics Data System (ADS)

    Hwang, C.; Cheng, Y. S.; Han, J.; Chen, J. Y.

    2017-12-01

    This presentation shows how satellite radar altimeters are used to detect elevation changes over flat, coastal regions in northern Alaska and Hudson Bay, in connection with permafrost thawing and glacial isostatic adjustment (GIA). We use a data selection criterion to identity usable waveforms over lands, which are then retracked by the subwaveform retracker to improve the ranging accuracy. The altimeter datasets are from the Envisat (2003-2010), Cryosat-2 (2010-2016), TOPEX/Poseidon (T/P), Jason-1 (J1) and Jason-2 (J2, 1992-2016) missions. The result indicates a rapid decline of elevations over the sloping, thaw lake-covered area of northern Alaska, with rates up to -20 cm/year. The rapid decline is probably due to a favorite condition for fast draining of meltwater. The lake levels of Teshekpuk Lake underwent a decline at a mean rate of - 5 cm/year until 2010 (from Envisat), and then rose steadily at about the same rate (from Cryosat-2). Around the coastal plains of Hudson Bay, we constructed long-term elevation time series from T/P, J1 and J2, and short-term ones from Cryosat-2. In the flat region southwest of Hudson Bay, most altimeter-derived rates are close to those from the GIA model ICE-6G. Near two GPS stations west and east of Hudson Bay, the Jason-2-derived rates range from 1.0 to 1.5 cm/year, close to the rates from GPS. Other convincing results of elevation changes from altimetry will be presented.

  13. Back to the Future: Have Remotely Sensed Digital Elevation Models Improved Hydrological Parameter Extraction?

    NASA Astrophysics Data System (ADS)

    Jarihani, B.

    2015-12-01

    Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modeling of environmental processes. Pre-processing analysis of DEMs and extracting characteristics of the watershed (e.g., stream networks, catchment delineation, surface and subsurface flow paths) is essential for hydrological and geomorphic analysis and sediment transport. This study investigates the status of the current remotely-sensed DEMs in providing advanced morphometric information of drainage basins particularly in data sparse regions. Here we assess the accuracy of three available DEMs: (i) hydrologically corrected "H-DEM" of Geoscience Australia derived from the Shuttle Radar Topography Mission (SRTM) data; (ii) the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version2 1-arc-second (~30 m) data; and (iii) the 9-arc-second national GEODATA DEM-9S ver3 from Geoscience Australia and the Australian National University. We used ESRI's geospatial data model, Arc Hydro and HEC-GeoHMS, designed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. A coastal catchment in northeast Australia was selected as the study site where very high resolution LiDAR data are available for parts of the area as reference data to assess the accuracy of other lower resolution datasets. This study provides morphometric information for drainage basins as part of the broad research on sediment flux from coastal basins to Great Barrier Reef, Australia. After applying geo-referencing and elevation corrections, stream and sub basins were delineated for each DEM. Then physical characteristics for streams (i.e., length, upstream and downstream elevation, and slope) and sub-basins (i.e., longest flow lengths, area, relief and slopes) were extracted and compared with reference datasets from LiDAR. Results showed that, in the absence of high-precision and high resolution DEM data, ASTER GDEM or SRTM DEM can be used to extract common morphometric relationship which are widely used for hydrological and geomorphological modelling.

  14. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  15. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue Guiping; Du Lirui; Xia Tao

    2005-08-05

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in themore » serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation.« less

  16. The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone

    NASA Astrophysics Data System (ADS)

    Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.

    2017-12-01

    Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.

  17. Relationship between ketamine-induced developmental neurotoxicity and NMDA receptor-mediated calcium influx in neural stem cell-derived neurons.

    PubMed

    Wang, Cheng; Liu, Fang; Patterson, Tucker A; Paule, Merle G; Slikker, William

    2017-05-01

    Ketamine, a noncompetitive NMDA receptor antagonist, is used as a general anesthetic and recent data suggest that general anesthetics can cause neuronal damage when exposure occurs during early brain development. To elucidate the underlying mechanisms associated with ketamine-induced neurotoxicity, stem cell-derived models, such as rodent neural stem cells harvested from rat fetuses and/or neural stem cells derived from human induced pluripotent stem cells (iPSC) can be utilized. Prolonged exposure of rodent neural stem cells to clinically-relevant concentrations of ketamine resulted in elevated NMDA receptor levels as indicated by NR1subunit over-expression in neurons. This was associated with enhanced damage in neurons. In contrast, the viability and proliferation rate of undifferentiated neural stem cells were not significantly affected after ketamine exposure. Calcium imaging data indicated that 50μM NMDA did not cause a significant influx of calcium in typical undifferentiated neural stem cells; however, it did produce an immediate elevation of intracellular free Ca 2+ [Ca 2+ ] i in differentiated neurons derived from the same neural stem cells. This paper reviews the literature on this subject and previous findings suggest that prolonged exposure of developing neurons to ketamine produces an increase in NMDA receptor expression (compensatory up-regulation) which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to neuronal cell death likely due to elevated reactive oxygen species generation. The absence of functional NMDA receptors in cultured neural stem cells likely explains why clinically-relevant concentrations of ketamine did not affect undifferentiated neural stem cell viability. Published by Elsevier B.V.

  18. SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation

    USDA-ARS?s Scientific Manuscript database

    An unconventional interaction between SPCA2, an isoform of the Golgi secretory pathway Ca2+-ATPase, and the Ca2+ influx channel Orai1 has previously been shown to contribute to elevated Ca2+ influx in breast cancer derived cells. In order to investigate the physiological role of this interaction, we...

  19. Moving toward a Biomass Map of Boreal Eurasia based on ICESat GLAS, ASTER GDEM, and field measurements: Amount, Spatial distribution, and Statistical Uncertainties

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Nelson, R. F.; Sun, G.; Ranson, J.; Montesano, P. M.; Margolis, H. A.

    2011-12-01

    The Eurasian boreal forest is the largest continuous forest in the world and contains a vast quantity of carbon stock that is currently vulnerable to loss from climate change. We develop and present an approach to map the spatial distribution of above ground biomass throughout this region. Our method combines satellite measurements from the Geoscience Laser Altimeter System (GLAS) that is carried on the Ice, Cloud and land Elevation Satellite ( ICESat), with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and biomass field measurements collected from surveys from a number of different biomes throughout Boreal Eurasia. A slope model derived from the GDEM with quality control flags, and Moderate-resolution Imaging Spectroradiometer (MODIS) water mask was implemented to exclude poor quality GLAS shots and stratify measurements by MODIS International Geosphere Biosphere (IGBP) and World Wildlife Fund (WWF) ecozones. We derive equations from regional field measurements to estimate the spatial distribution of above ground biomass by land cover type within biome and present a map with uncertainties and limitations of this approach which can be used as a baseline for future studies.

  20. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling

    NASA Astrophysics Data System (ADS)

    Amatulli, Giuseppe; Domisch, Sami; Tuanmu, Mao-Ning; Parmentier, Benoit; Ranipeta, Ajay; Malczyk, Jeremy; Jetz, Walter

    2018-03-01

    Topographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology and is key to understanding the variation of life on the planet. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale research applications, however to date, such datasets are unavailable. Here we used the digital elevation model products of global 250 m GMTED2010 and near-global 90 m SRTM4.1dev to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile/tangential curvature, first/second order partial derivative, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches. While a cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at Data Citation 1 and for download and visualization at http://www.earthenv.org/topography.

  1. A Vs30-derived Near-surface Seismic Velocity Model

    NASA Astrophysics Data System (ADS)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model is preformed with ground motion simulations for a selection of likely M > 7 scenario events for Southern California (as define by the SCEC Big Ten project).

  2. Analyzing remote sensing geobotanical trends in Quetico Provincial Park, Ontario, Canada, using digital elevation data

    NASA Technical Reports Server (NTRS)

    Warner, Timothy A.; Campagna, David J.; Levandowski, Don W.; Cetin, Haluk; Evans, Carla S.

    1991-01-01

    A 10 x 13-km area in Quetico Provincial Park, Canada has been studied using a digital elevation model to separate different drainage classes and to examine the influence of site factors and lithology on vegetation. Landsat Thematic Mapper data have been classified into six forest classes of varying deciduous-coniferous cover through nPDF, a procedure based on probability density functions. It is shown that forests growing on mafic lithologies are enriched in deciduous species, compared to those growing on granites. Of the forest classes found on mafics, the highest coniferous component was on north facing slopes, and the highest deciduous component on south facing slopes. Granites showed no substantial variation between site classes. The digital elevation derived site data is considered to be an important tool in geobotanical investigations.

  3. An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses

    NASA Astrophysics Data System (ADS)

    Li, Mingchao; Han, Shuai; Zhou, Sibao; Zhang, Ye

    2018-06-01

    Based on a 3D model of a discrete fracture network (DFN) in a rock mass, an improved projective method for computing the 3D mechanical connectivity rate was proposed. The Monte Carlo simulation method, 2D Poisson process and 3D geological modeling technique were integrated into a polyhedral DFN modeling approach, and the simulation results were verified by numerical tests and graphical inspection. Next, the traditional projective approach for calculating the rock mass connectivity rate was improved using the 3D DFN models by (1) using the polyhedral model to replace the Baecher disk model; (2) taking the real cross section of the rock mass, rather than a part of the cross section, as the test plane; and (3) dynamically searching the joint connectivity rates using different dip directions and dip angles at different elevations to calculate the maximum, minimum and average values of the joint connectivity at each elevation. In a case study, the improved method and traditional method were used to compute the mechanical connectivity rate of the slope of a dam abutment. The results of the two methods were further used to compute the cohesive force of the rock masses. Finally, a comparison showed that the cohesive force derived from the traditional method had a higher error, whereas the cohesive force derived from the improved method was consistent with the suggested values. According to the comparison, the effectivity and validity of the improved method were verified indirectly.

  4. Reconstructing spectral cues for sound localization from responses to rippled noise stimuli.

    PubMed

    Van Opstal, A John; Vliegen, Joyce; Van Esch, Thamar

    2017-01-01

    Human sound localization in the mid-saggital plane (elevation) relies on an analysis of the idiosyncratic spectral shape cues provided by the head and pinnae. However, because the actual free-field stimulus spectrum is a-priori unknown to the auditory system, the problem of extracting the elevation angle from the sensory spectrum is ill-posed. Here we test different spectral localization models by eliciting head movements toward broad-band noise stimuli with randomly shaped, rippled amplitude spectra emanating from a speaker at a fixed location, while varying the ripple bandwidth between 1.5 and 5.0 cycles/octave. Six listeners participated in the experiments. From the distributions of localization responses toward the individual stimuli, we estimated the listeners' spectral-shape cues underlying their elevation percepts, by applying maximum-likelihood estimation. The reconstructed spectral cues resulted to be invariant to the considerable variation in ripple bandwidth, and for each listener they had a remarkable resemblance to the idiosyncratic head-related transfer functions (HRTFs). These results are not in line with models that rely on the detection of a single peak or notch in the amplitude spectrum, nor with a local analysis of first- and second-order spectral derivatives. Instead, our data support a model in which the auditory system performs a cross-correlation between the sensory input at the eardrum-auditory nerve, and stored representations of HRTF spectral shapes, to extract the perceived elevation angle.

  5. Direct numerical simulations of temporally developing hydrocarbon shear flames at elevated pressure: effects of the equation of state and the unity Lewis number assumption

    NASA Astrophysics Data System (ADS)

    Korucu, Ayse; Miller, Richard

    2016-11-01

    Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.

  6. Elevation Change of Drangajokull, Iceland, from Cloud-Cleared ICESat Repeat Profiles and GPS Ground-Survey Data

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Sigurdsson, Oddur; Williams, Richard, Jr.; Hall, Dorothy K.

    2009-01-01

    Located on the Vestfirdir Northwest Fjords), DrangaJokull is the northernmost ice map in Iceland. Currently, the ice cap exceeds 900 m in elevation and covered an area of approx.l46 sq km in August 2004. It was about 204 sq km in area during 1913-1914 and so has lost mass during the 20th century. Drangajokull's size and accessibility for GPS surveys as well as the availability of repeat satellite altimetry profiles since late 2003 make it a good subject for change-detection analysis. The ice cap was surveyed by four GPS-equipped snowmobiles on 19-20 April 2005 and has been profiled in two places by Ice, Cloud. and land Elevation Satellite (ICESat) 'repeat tracks,' fifteen times from late to early 2009. In addition, traditional mass-balance measurements have been taken seasonally at a number of locations across the ice cap and they show positive net mass balances in 2004/2005 through 2006/2007. Mean elevation differences between the temporally-closest ICESat profiles and the GPS-derived digital-elevation model (DEM)(ICESat - DEM) are about 1.1 m but have standard deviations of 3 to 4 m. Differencing all ICESat repeats from the DEM shows that the overall elevation difference trend since 2003 is negative with losses of as much as 1.5 m/a from same season to same season (and similar elevation) data subsets. However, the mass balance assessments by traditional stake re-measurement methods suggest that the elevation changes where ICESat tracks 0046 and 0307 cross Drangajokull are not representative of the whole ice cap. Specifically, the area has experienced positive mass balance years during the time frame when ICESat data indicates substantial losses. This analysis suggests that ICESat-derived elevations may be used for multi-year change detection relative to other data but suggests that large uncertainties remain. These uncertainties may be due to geolocation uncertainty on steep slopes and continuing cloud cover that limits temporal and spatial coverage across the area.

  7. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B. F.; Lutchke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spade, G.

    2004-01-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. Additional information is included in the original extended abstract.

  8. Recent thinning of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T.; Maruyama, M.

    2014-12-01

    Ice discharge from calving glaciers has increased in the Greenland ice sheet (GrIS), and this increase plays important roles in the volume change of GrIS and its contribution to sea level rise. Thinning of GrIS calving glaciers has been studied by the differentiation of digital elevation models (DEMs) derived by satellite remote-sensing (RS). Such studies rely on the accuracy of DEMs, but calibration of RS data with ground based data is difficult. This is because field data on GrIS calving glaciers are few. In this study, we combined field and RS data to measure surface elevation change of Bowdoin Glacier, a marine terminating outlet glacier in northwestern Greenland (77°41'18″N, 68°29'47″W). The fast flowing part of the glacier is approximately 3 km wide and 10 km long. Ice surface elevation within 6 km from the glacier terminus was surveyed in the field in July 2013 and 2014, by using the global positioning system. We also measured the surface elevation over the glacier on August 20, 2007 and September 4, 2010, by analyzing Advanced Land Observing Satellite (ALOS), Panchromatic remote-sensing Instrument for Stereo Mapping (PRISM) images. We calibrated the satellite derived elevation data with our field measurements, and generated DEM for each year with a 25 m grid mesh. The field data and DEMs were compared to calculate recent glacier elevation change. Mean surface elevation change along the field survey profiles were -16.3±0.2 m (-5.3±0.1 m yr-1) in 2007-2010 and -10.8±0.2 m (-3.8±0.1 m yr-1) in 2010-2013. These rates are much greater than those observed on non-calving ice caps in the region, and similar to those reported for other calving glaciers in northwestern Greenland. Loss of ice was greater near the glacier terminus, suggesting the importance of ice dynamics and/or interaction with the ocean.

  9. CryoSat-2 Processing and Model Interpretation of Greenland Ice Sheet Volume Changes

    NASA Astrophysics Data System (ADS)

    Nilsson, J.; Gardner, A. S.; Sandberg Sorensen, L.

    2015-12-01

    CryoSat-2 was launched in late 2010 tasked with monitoring the changes of the Earth's land and sea ice. It carries a novel radar altimeter allowing the satellite to monitor changes in highly complex terrain, such as smaller ice caps, glaciers and the marginal areas of the ice sheets. Here we present on the development and validation of an independent elevation retrieval processing chain and respective elevation changes based on ESA's L1B data. Overall we find large improvement in both accuracy and precision over Greenland relative to ESA's L2 product when comparing against both airborne data and crossover analysis. The seasonal component and spatial sampling of the surface elevation changes where also compared against ICESat derived changes from 2003-2009. The comparison showed good agreement between the to product on a local scale. However, a global sampling bias was detected in the seasonal signal due to the clustering of CryoSat-2 data in higher elevation areas. The retrieval processing chain presented here does not correct for changes in surface scattering conditions and appears to be insensitive to the 2012 melt event (Nilsson et al., 2015). This in contrast to the elevation changes derived from ESA's L2 elevation product, which where found to be sensitive to the effects of the melt event. The positive elevation bias created by the event introduced a discrepancy between the two products with a magnitude of roughly 90 km3/year. This difference can directly be attributed to the differences in retracking procedure pointing to the importance of the retracking of the radar waveforms for altimetric volume change studies. Greenland 2012 melt event effects on CryoSat-2 radar altimetry./ Nilsson, Johan; Vallelonga, Paul Travis; Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg; Forsberg, René; Dahl-Jensen, Dorthe; Hirabayashi, Motohiro; Goto-Azuma, Kumiko; Hvidberg, Christine S.; Kjær, Helle A.; Satow, Kazuhide.

  10. Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data

    NASA Technical Reports Server (NTRS)

    Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.

    2013-01-01

    Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.

  11. Topography and vegetation as predictors of snow water equivalent across the alpine treeline ecotone at Lee Ridge, Glacier National Park, Montana, U.S.A.

    USGS Publications Warehouse

    Geddes, C.A.; Brown, D.G.; Fagre, D.B.

    2005-01-01

    We derived and implemented two spatial models of May snow water equivalent (SWE) at Lee Ridge in Glacier National Park, Montana. We used the models to test the hypothesis that vegetation structure is a control on snow redistribution at the alpine treeline ecotone (ATE). The statistical models were derived using stepwise and "best" subsets regression techniques. The first model was derived from field measurements of SWE, topography, and vegetation taken at 27 sample points. The second model was derived using GIS-based measures of topography and vegetation. Both the field- (R² = 0.93) and GIS-based models (R² = 0.69) of May SWE included the following variables: site type (based on vegetation), elevation, maximum slope, and general slope aspect. Site type was identified as the most important predictor of SWE in both models, accounting for 74.0% and 29.5% of the variation, respectively. The GIS-based model was applied to create a predictive map of SWE across Lee Ridge, predicting little snow accumulation on the top of the ridge where vegetation is scarce. The GIS model failed in large depressions, including ephemeral stream channels. The models supported the hypothesis that upright vegetation has a positive effect on accumulation of SWE above and beyond the effects of topography. Vegetation, therefore, creates a positive feedback in which it modifies its, environment and could affect the ability of additional vegetation to become established.

  12. Identification and modeling of the electrohydraulic systems of the main gun of a main battle tank

    NASA Astrophysics Data System (ADS)

    Campos, Luiz C. A.; Menegaldo, Luciano L.

    2012-11-01

    The black-box mathematical models of the electrohydraulic systems responsible for driving the two degrees of freedom (elevation and azimuth) of the main gun of a main battle tank (MBT) were identified. Such systems respond to gunner's inputs while acquiring and tracking targets. Identification experiments were designed to collect simultaneous data from two inertial measurement units (IMU) installed at the gunner's handle (input) and at the center of rotation of the turret (output), for the identification of the azimuth system. For the elevation system, IMUs were installed at the gunner's handle (input) and at the breech of the gun (output). Linear accelerations and angular rates were collected for both input and output. Several black-box model architectures were investigated. As a result, nonlinear autoregressive with exogenous variables (NARX) second order model and nonlinear finite impulse response (NFIR) fourth order model, demonstrate to best fit the experimental data, with low computational costs. The derived models are being employed in a broader research, aiming to reproduce such systems in a laboratory virtual main gun simulator.

  13. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Burguet, Maria; Di Prima, Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerdà, Artemi; Tarolli, Paolo

    2017-01-01

    Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using SfM. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Planetary Sources for Reducing Sulfur Compounds for Cyanosulfidic Origins of Life Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, S.; Todd, Z. R.; Sutherland, J.; Sasselov, D. D.

    2017-12-01

    A key challenge in origin-of-life studies is understanding the chemistry that lead to the origin of the key biomolecules of life, such as the components of nucleic acids, sugars, lipids, and proteins. Prebiotic reaction networks based upon reductive homologation of nitriles (e.g., Patel et al. 2015), are building a tantalizing picture of sustained abiotic synthesis of activated ribonucleotides, amino acids and lipid precursors under environmental conditions thought to have been available on early Earth. Sulfidic anions in aqueous solution (e.g., HS-, HSO3-) under near-UV irradiation play important roles in these chemical pathways. However, the sources and availability of these anions on early Earth have not yet been quantitatively constrained. Here, we evaluate the potential for the atmosphere to serve as a source of sulfidic anions, via dissolution of volcanically-outgassed SO2 and H2S into water reservoirs. We combine photochemical modeling from the literature (Hu et al. 2013) with equilibrium chemistry calculations to place constraints on the partial pressures of SO2 and H2S required to reach the elevated concentrations of sulfidic anions (≥1 μM) thought to be necessary for prebiotic chemistry. We find that micromolar levels of SO2-derived anions (HSO3-, SO3(2-)) are possible through simple exposure of aqueous reservoirs like shallow lakes to the atmosphere, assuming total sulfur emission flux comparable to today. Millimolar levels of these compounds are available during the epochs of elevated volcanism, due to elevated sulfur emission flux. Radiative transfer modeling suggests the atmospheric sulfur will not block the near-UV radiation also required for the cyanosulfidic chemistry. However, H2S-derived anions (e.g., HS-) reach only sub-micromolar levels from atmospheric sources, meaning that prebiotic chemistry invoking such molecules must invoke specialized, local sources. Prebiotic chemistry invoking SO2-derived anions may be considered more robust than chemistry invoking H2S-derived anions. In general, epochs of moderately high volcanism may have been especially conducive to cyanosulfidic prebiotic chemistry.

  15. Digital Elevation Models of the Earth derived from space-based observations: Advances and potential for geomorphological studies

    NASA Astrophysics Data System (ADS)

    Mouratidis, Antonios

    2013-04-01

    Digital Elevation Models (DEMs) are an inherently interdisciplinary topic, both due to their production and validation methods, as well as their significance for numerous disciplines. The most utilized contemporary topographic datasets worldwide are those of global DEMs. Several space-based sources have been used for the production of (almost) global DEMs, namely satellite Synthetic Aperture Radar (SAR) Interferometry/InSAR, stereoscopy of multispectral satellite images and altimetry, producing several versions of autonomous or mixed products (i.e. SRTM, ACE, ASTER-GDEM). Complementary space-based observations, such as those of Global Navigation Satellite Systems (GNSS), are also used, mainly for validation purposes. The apparent positive impact of these elevation datasets so far has been consolidated by the plethora of related scientific, civil and military applications. Topography is a prominent element for almost all Earth sciences, but in Geomorphology it is even more fundamental. In geomorphological studies, elevation data and thus DEMs can be extensively used for the extraction of both qualitative and quantitative information, such as relief classification, determination of slope and slope orientation, delineation of drainage basins, extraction of drainage networks and much more. Global DEMs are constantly becoming finer, i.e. of higher spatial resolution and more "sensitive" to elevation changes, i.e. of higher vertical accuracy and these progresses are undoubtedly considered as a major breakthrough, each time a new improved global DEM is released. Nevertheless, for Geomorphology in particular, if not already there, we are close to the point in time, where the need for discrimination between DSM (Digital Surface Model) and DTM (Digital Terrain Model) is becoming critical; if the distinction between vegetation and man-made structures on one side (DSM), and actual terrain elevation on the other side (DTM) cannot be made, then, in many cases, any further increase of elevation accuracy in DEMs will have little impact on geomorphological studies. After shortly reviewing the evolution of satellite-based global DEMs, the purpose of this paper is to address their current limitations and challenges from the perspective of a geomorphologist. Subsequently, the implications for geomorphological studies are discussed, with respect to the expected near-future advances in the field, such as the TanDEM-X Global Digital Elevation Model ("WorldDEM", 2014), as well as spaceborne LIDAR (Light Detection and Ranging) approaches (e.g. Lidar Surface Topography/LIST mission, 2016-2020).

  16. A teleseismic study of the 2002 Denali fault, Alaska, earthquake and implications for rapid strong-motion estimation

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.

    2004-01-01

    Slip histories for the 2002 M7.9 Denali fault, Alaska, earthquake are derived rapidly from global teleseismic waveform data. In phases, three models improve matching waveform data and recovery of rupture details. In the first model (Phase I), analogous to an automated solution, a simple fault plane is fixed based on the preliminary Harvard Centroid Moment Tensor mechanism and the epicenter provided by the Preliminary Determination of Epicenters. This model is then updated (Phase II) by implementing a more realistic fault geometry inferred from Digital Elevation Model topography and further (Phase III) by using the calibrated P-wave and SH-wave arrival times derived from modeling of the nearby 2002 M6.7 Nenana Mountain earthquake. These models are used to predict the peak ground velocity and the shaking intensity field in the fault vicinity. The procedure to estimate local strong motion could be automated and used for global real-time earthquake shaking and damage assessment. ?? 2004, Earthquake Engineering Research Institute.

  17. A semi-automated tool for reducing the creation of false closed depressions from a filled LIDAR-derived digital elevation model

    USGS Publications Warehouse

    Waller, John S.; Doctor, Daniel H.; Terziotti, Silvia

    2015-01-01

    Closed depressions on the land surface can be identified by ‘filling’ a digital elevation model (DEM) and subtracting the filled model from the original DEM. However, automated methods suffer from artificial ‘dams’ where surface streams cross under bridges and through culverts. Removal of these false depressions from an elevation model is difficult due to the lack of bridge and culvert inventories; thus, another method is needed to breach these artificial dams. Here, we present a semi-automated workflow and toolbox to remove falsely detected closed depressions created by artificial dams in a DEM. The approach finds the intersections between transportation routes (e.g., roads) and streams, and then lowers the elevation surface across the roads to stream level allowing flow to be routed under the road. Once the surface is corrected to match the approximate location of the National Hydrologic Dataset stream lines, the procedure is repeated with sequentially smaller flow accumulation thresholds in order to generate stream lines with less contributing area within the watershed. Through multiple iterations, artificial depressions that may arise due to ephemeral flow paths can also be removed. Preliminary results reveal that this new technique provides significant improvements for flow routing across a DEM and minimizes artifacts within the elevation surface. Slight changes in the stream flow lines generally improve the quality of flow routes; however some artificial dams may persist. Problematic areas include extensive road ditches, particularly along divided highways, and where surface flow crosses beneath road intersections. Limitations do exist, and the results partially depend on the quality of data being input. Of 166 manually identified culverts from a previous study by Doctor and Young in 2013, 125 are within 25 m of culverts identified by this tool. After three iterations, 1,735 culverts were identified and cataloged. The result is a reconditioned elevation dataset, which retains the karst topography for further analysis, and a culvert catalog.

  18. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated peak SWE was 810 mm for WTH and 380 mm for WTH+SP, which led to underestimation of snow season length and melt rate by up to 30 days and 12 mm/day, respectively, in WTH scenario. These results indicate that point scale snow observations at higher elevation can be used to improve precipitation input to hydrologic modeling in mountainous basins.

  19. Calibration of Two-dimensional Floodplain Modeling in the Atchafalaya River Basin Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Lee, Hgongki; Neal, Jeffrey; Alsdorf, Doug

    2012-01-01

    Two-dimensional (2D) satellite imagery has been increasingly employed to improve prediction of floodplain inundation models. However, most focus has been on validation of inundation extent, with little attention on the 2D spatial variations of water elevation and slope. The availability of high resolution Interferometric Synthetic Aperture Radar (InSAR) imagery offers unprecedented opportunity for quantitative validation of surface water heights and slopes derived from 2D hydrodynamic models. In this study, the LISFLOOD-ACC hydrodynamic model is applied to the central Atchafalaya River Basin, Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for the purpose of demonstrating the utility of InSAR in coupled 1D/2D model calibration. Two calibration schemes focusing on Manning s roughness are compared. First, the model is calibrated in terms of water elevations at a single in situ gage during a 62 day simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. The best-fit models show that the mean absolute errors are 3.8 cm for a single in situ gage calibration and 5.7 cm/46 days for InSAR water level calibration. The optimum values of Manning's roughness coefficients are 0.024/0.10 for the channel/floodplain, respectively, using a single in situ gage, and 0.028/0.10 for channel/floodplain the using SAR. Based on the calibrated water elevation changes, daily storage changes within the size of approx 230 sq km of the model area are also calculated to be of the order of 107 cubic m/day during high water of the modeled period. This study demonstrates the feasibility of SAR interferometry to support 2D hydrodynamic model calibration and as a tool for improved understanding of complex floodplain hydrodynamics

  20. Proxies for soil organic carbon derived from remote sensing

    NASA Astrophysics Data System (ADS)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  1. An efficient mode-splitting method for a curvilinear nearshore circulation model

    USGS Publications Warehouse

    Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.

    2007-01-01

    A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.

  2. Scoping of Flood Hazard Mapping Needs for Belknap County, New Hampshire

    DTIC Science & Technology

    2006-01-01

    DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle DTM...Agriculture Imag- ery Program (NAIP) color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data...found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map accuracy. NH GRANIT is

  3. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  4. Airborne observations reveal elevational gradient in tropical forest isoprene emissions

    DOE PAGES

    Gu, Dasa; Guenther, Alex B.; Shilling, John E.; ...

    2017-05-23

    Terrestrial vegetation emits vast quantities of volatile organic compounds (VOCs) to he atmosphere1-3, which influence oxidants and aerosols leading to complex feedbacks on air quality and climate4-6. Isoprene dominates global non-methane VOC emissions with tropical regions contributing ~80% of global isoprene emissions2. Isoprene emission rates vary over several orders of magnitude for different plant species, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft direct eddy covariance measurements over the pristine Amazon forest. We report isoprene emission rates that are 3 times higher thanmore » satellite top-down estimates and 35% higher than model predictions based on satellite land cover and vegetation specific emission factors (EFs). The results reveal strong correlations between observed isoprene emission rates and terrain elevations which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can explain a substantial degree of isoprene emission variability in tropical forests. Finally, we apply this approach over the central Amazon and use a model to demonstrate the impacts on regional air quality.« less

  5. Towards modeling hydrology and erosion exclusively with remote sensing data in the central Pamirs, Tajikistan

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Gloaguen, R.; Andermann, C.

    2012-12-01

    Data scarcity, bad data quality, distribution and availability of measuring stations in remote mountain areas are a burden and hinder the application of models relying on meteorological input data. In this contribution, we present 1) a utilization of various remote sensing and modeled gridded data to run a distributed, conceptual hydrological model in the Tajik Pamirs, 2) derivation of qualitative and quantitative understanding of erosion in space and time, and 3) the linking of the hydrological discharge components to erosion dynamics and sediment transport. While some remote sensing products, such as digital elevation models, land cover classification, and increasingly precipitation products are widely used and accepted in hydrological modeling, holistic approaches are not the case yet. The key feature of the high elevation study area of the Gunt and Shakhdara catchments in the central Pamirs (average elevation of 4300 m a.s.l.) is the Westerlies-dominated precipitation input during winter and spring (two thirds of the annual precipitation of 320 mm/yr). During that time, temperatures are on average far below zero, and hence snowfall dominates the annual precipitation amount and temporarily offsets the river runoff generation. Thus, to model the snow accumulation and snowmelt, the amount of precipitation and its distribution pattern as well as the temperature, determining accumulation and snowmelt, are considered to be the most important parameters. For precipitation, we use two TRMM (Tropical Rainfall Measuring Mission) products and one APHRODITE (Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources) product. As proxy for near ground air temperature we use two MODIS (Moderate Resolution Imaging Spectroradiometer) LST (Land Surface Temperature) products that were calibrated with in-situ air temperature data. Mathematical optimization of the model delivers NSE (Nash-Sutcliffe Efficiencies) between 0.66 and 0.82 with respect to the measured river discharge, depending on the chosen meteorological product combination. We use historical archive data on suspended sediment load and river discharge data to derive hysteresis curves to reveal the temporal dependency of the suspended sediment concentration. A transition from transport-limited to supply-limited behavior can be observed from small, high, mountainous catchments towards bigger, low-altitude catchments. The intra-annual dependency is extracted and applied to the modeled data to derive erosion maps. Results show the applicability of the approach to be a valuable and cost efficient tool in poorly accessible areas. We suggest the snow cover and the subsequent snowmelt to control the intra-annual erosion dynamics in the study area. Furthermore, we are able to presents the first quantitative estimations from numerical modeling and empirical observations for this region.

  6. Validation of "AW3D" Global Dsm Generated from Alos Prism

    NASA Astrophysics Data System (ADS)

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi

    2016-06-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  7. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  8. Seasonal and inter-annual snowmelt patterns in the southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2012-12-01

    In the Sierra Nevada, seasonal snow represents a critical component of California's water resource infrastructure in that it affords reliable water during otherwise arid summers. Complex spatial, seasonal and inter-annual snowmelt patterns determine when and where that meltwater is available. Our knowledge of snowmelt dynamics is typically limited to what we can infer from sparse, point-scale snow measurement stations. Limitations such as these motivate the use of numerical snowmelt models. We evaluate the ability of the Alpine3D model system to represent three years of snow dynamics over an 1800 km2 area of Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to massive sequoia stands to alpine tundra. The model results were evaluated against data from a multi-scale measurement campaign that included airborne LiDAR, clusters of snow depth sensors, repeated manual snow surveys, and automated SWE stations. Compared to these measurements, Alpine3D consistently performed well in middle elevation conifer forests; compared to LiDAR data, the mean snow depth error in forested regions was < 2%. The model also simulated the snow disappearance date within two days of that measured by regional automated sensors. At upper elevations, however, the model tended to overestimate SWE by 50% to as much as 100% in some areas and the errors were linearly correlated (R2 > 0.80, p<0.01) with the distance of the SWE measurements from the nearest precipitation gauge used to derive the model forcing. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may be a critical limitation on snow model accuracy. Finally, an analysis of seasonal and inter-annual snowmelt patterns highlighted distinct melt differences between lower, middle, and upper elevations. Snowmelt was generally most frequent (70% - 95% of the snow-covered season) at the lower elevations where snow cover was episodic and seasonal mean melt rates computed on days when melt was simulated were generally low (< 3 mm day-1). At upper elevations, melt occurred during less than 65% of the snow-covered period, occurred later in the season and mean melt rates were the highest of the region (> 6 mm day-1). Middle elevations remained continuously snow covered throughout the winter and early spring, were prone to frequent but intermittent melt, and provided the most sustained period of seasonal mean snowmelt (~ 5 mm day-1). The melt dynamics (e.g. timing and melt rate) unique to these middle elevations may be critical to the local forest ecosystem. Furthermore, the three years evaluated in this study indicate a marked sensitivity of this elevation range to seasonal meteorology, suggesting that it could be highly sensitive to future changes in climate.

  9. Characterization of Microparticles after Hepatic Ischemia-Reperfusion Injury

    PubMed Central

    Freeman, Christopher M.; Quillin, Ralph C.; Wilson, Gregory C.; Nojima, Hiroyuki; Johnson, Bobby L.; Sutton, Jeffrey M.; Schuster, Rebecca M.; Blanchard, John; Edwards, Michael J.; Caldwell, Charles C.; Lentsch, Alex B.

    2014-01-01

    Background Hepatic ischemia-reperfusion (I/R) is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs) are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins–platelets, neutrophils, and endolethial cells–following hepatic ischemia-reperfusion injury. Methods A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. Results MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. Conclusion This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver. PMID:24879335

  10. Differential in surface elevation change across mangrove forests in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Fu, Haifeng; Wang, Wenqing; Ma, Wei; Wang, Mao

    2018-07-01

    A better understanding of surface elevation changes in different mangrove forests would improve our predictions of sea-level rise impacts, not only upon mangrove species distributions in the intertidal zone, but also on the functioning of these wetlands. Here, a two-year (2015-2017) dataset derived from 18 RSET-MH (rod surface elevation table-marker horizon) stations at Dongzhaigang Bay, Hainan, China, was analyzed to investigate how surface elevation changes differed across mangrove species zones. The current SET data indicated a rather high rate (9.6 mm y-1, on average) of surface elevation gain that was mostly consistent with that (8.1 mm y-1, on average) inferred from either the 137Cs or 210Pb dating of sediment cores. In addition, these surface elevation changes were sensitive to elevation in the intertidal zone and differed significantly between the two study sites (Sanjiang and Houpai). Mangrove species inhabiting the lower intertidal zone tended to experience greater surface elevation change at Sanjiang, which agrees with the general view that sedimentation and elevation gains are driven by elevation in the intertidal zone (i.e., greater when positioned lower in the intertidal profile). However, at Houpai, both surface elevation change and surface accretion showed the opposite trend (i.e., greater when positioned higher in the intertidal profile). This study's results indicate that the pattern of surface elevation changes across the intertidal profile maybe inconsistent due to intricate biophysical controls. Therefore, instead of using a constant rate, models should presume a topography that evolves at differing rates of surface elevation change in different species zones across the intertidal profile when predicting the impacts of sea-level rise on mangrove distributions.

  11. a New High-Resolution Elevation Model of Greenland Derived from Tandem-X

    NASA Astrophysics Data System (ADS)

    Wessel, B.; Bertram, A.; Gruber, A.; Bemm, S.; Dech, S.

    2016-06-01

    In this paper we present for the first time the new digital elevation model (DEM) for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement) mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR) DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite) elevations as ground control points (GCPs) are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  12. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities, we will present results from a thermophysical study of Gale Crater (Barratt and Putzig, 2013, EPSC abstract 613), for which TES and THEMIS mapping has been carried out during system development. Public access to the MARSTHERM system will be provided in conjunction with the 2013 AGU Fall Meeting and will feature the numerical thermal model and thermal-inertia derivation algorithm developed by Mellon et al. (2000, Icarus 148, 437-455) as modified by Putzig and Mellon (2007, Icarus 191, 68-94). Updates to the thermal model and derivation algorithm that include a more sophisticated representation of the atmosphere and a layered subsurface are presently in development, and these will be incorporated into the system when they are available. Other planned enhancements include tools for modeling temperatures from horizontal mixtures of materials and slope facets, for comparing heterogeneity modeling results to TES and THEMIS results, and for mosaicking THEMIS images.

  13. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and southeastern-facing slopes. In these areas, holes, large pits, and spikes were generated by the software during the correlation process and the automatic interpolation method. To eliminate these problems, overlapping DEMs were generated and filtered using a progressive morphologic filter. The quadrangles used to delineate the DEMs in the publication were derived from the Afghan Geodesy and Cartography Head Office's (AGCHO) 1:100,000-scale maps series quadrangles. Each DEM was clipped and assigned a name according to the associated AGCHO quadrangle name. The geospatial data included in this publication are intended to be used with any GIS software packages including, but not limited to, ESRI's ArcGIS and ERDAS IMAGINE.

  14. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  15. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in model derived estimates and GHCN-D observations were assessed using time-series graphs of 2016-2017 winter season SLR observations and climatological estimates, as well as calculating RMSE and variance between estimated and observed values.

  16. Topobathymetric model of Mobile Bay, Alabama

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Brock, John C.; Howard, Daniel M.; Gesch, Dean B.; Bonisteel-Cormier, Jamie M.; Travers, Laurinda J.

    2013-01-01

    Topobathymetric Digital Elevation Models (DEMs) are a merged rendering of both topography (land elevation) and bathymetry (water depth) that provides a seamless elevation product useful for inundation mapping, as well as for other earth science applications, such as the development of sediment-transport, sea-level rise, and storm-surge models. This 1/9-arc-second (approximately 3 meters) resolution model of Mobile Bay, Alabama was developed using multiple topographic and bathymetric datasets, collected on different dates. The topographic data were obtained primarily from the U.S. Geological Survey (USGS) National Elevation Dataset (NED) (http://ned.usgs.gov/) at 1/9-arc-second resolution; USGS Experimental Advanced Airborne Research Lidar (EAARL) data (2 meters) (http://pubs.usgs.gov/ds/400/); and topographic lidar data (2 meters) and Compact Hydrographic Airborne Rapid Total Survey (CHARTS) lidar data (2 meters) from the U.S. Army Corps of Engineers (USACE) (http://www.csc.noaa.gov/digitalcoast/data/coastallidar/). Bathymetry was derived from digital soundings obtained from the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/geodas/geodas.html) and from water-penetrating lidar sources, such as EAARL and CHARTS. Mobile Bay is ecologically important as it is the fourth largest estuary in the United States. The Mobile and Tensaw Rivers drain into the bay at the northern end with the bay emptying into the Gulf of Mexico at the southern end. Dauphin Island (a barrier island) and the Fort Morgan Peninsula form the mouth of Mobile Bay. Mobile Bay is 31 miles (50 kilometers) long by a maximum width of 24 miles (39 kilometers) with a total area of 413 square miles (1,070 square kilometers). The vertical datum of the Mobile Bay topobathymetric model is the North American Vertical Datum of 1988 (NAVD 88). All the topographic datasets were originally referenced to NAVD 88 and no transformations were made to these input data. The NGDC hydrographic, multibeam, and trackline surveys were transformed from mean low water (MLW) or mean lower low water (MLLW) to NAVD 88 using VDatum (http://vdatum.noaa.gov). VDatum is a tool developed by the National Geodetic Survey (NGS) that performs transformations among tidal, ellipsoid-based, geoid-based, and orthometric datums using calibrated hydrodynamic models. The vertical accuracy of the input topographic data varied depending on the input source. Because the input elevation data were derived primarily from lidar, the vertical accuracy ranges from 6 to 20 centimeters in root mean square error (RMSE). he horizontal datum of the Mobile Bay topobathymetric model is the North American Datum of 1983 (NAD 83), geographic coordinates. All the topographic and bathymetric datasets were originally referenced to NAD 83, and no transformations were made to the input data. The bathymetric surveys were downloaded referenced to NAD 83 geographic, and therefore no horizontal transformations were required. The topbathymetric model of Mobile Bay and detailed metadata can be obtained from the USGS Web sites: http://nationalmap.gov/.

  17. Investigation on Glacier Thinning in Baspa, Western Himalaya.

    NASA Astrophysics Data System (ADS)

    S, P.; Kulkarni, A. V.; Bhushan, S.

    2017-12-01

    Mass balance studies are important to assess the state of glaciers. Previously, numerous field investigations have been carried out in Baspa basin to measure mass balance. However, mass balance data from field are limited to a small number of glaciers and for short durations. Therefore, this study uses geodetic mass balance technique to evaluate the mass loss at decadal scale. Geodetic method involves differencing Digital Elevation Model (DEM) from different years to obtain change in glacier elevation, which will be subsequently used to evaluate mass balance. This study derives mass balance from 2000 to 2014 for 16 glaciers covering a total area of 70 Sq Km. The study uses Shuttle Radar Topography Mission (SRTM) DEM for year 2000 and DEM for year 2014 was derived from Cartosat-1 stereo pair using photogrammetric principles. A Differential Global Positioning System (DGPS) survey was conducted in Baspa basin at different elevation zones to collect Ground Control Points (GCP) with millimeters accuracy. These GCP were used to derive Cartosat DEM. Various corrections were applied before differencing the two DEMs. They were co-registered using an analytical approach to account for horizontal shift. Corrections were also applied to remove the bias due to satellite acquisition geometry. SRTM DEM was acquired in February when the study area was covered by seasonal snow, whereas, Cartosat data was acquired during the ablation season. As the season of data acquisition varies for the two DEM, we have corrected for the bias that could be caused due to seasonal snow. Snowfall data from a meteorological station in the Baspa valley and a local precipitation gradient were used to determine the seasonal snow depth. Further, corrections were applied to account for the bias due to radar penetration in SRTM DEM. Then, the elevation changes were determined by subtracting the two DEMs to estimate mass balance. The figure below shows the change in glacier elevation. These results will be validated with field estimates. This investigation, after validation, will be an important addition in understanding changes in Himalayan glaciers.

  18. Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador

    NASA Astrophysics Data System (ADS)

    Anderson, E. R.; Griffin, R.; Irwin, D.

    2013-12-01

    Heavy rains and steep, volcanic slopes in El Salvador cause numerous landslides every year, posing a persistent threat to the population, economy and environment. Although potential debris inundation hazard zones have been delineated using digital elevation models (DEMs), some disparities exist between the simulated zones and actual affected areas. Moreover, these hazard zones have only been identified for volcanic lahars and not the shallow landslides that occur nearly every year. This is despite the availability of tools to delineate a variety of landslide types (e.g., the USGS-developed LAHARZ software). Limitations in DEM spatial resolution, age of the data, and hydrological preprocessing techniques can contribute to inaccurate hazard zone definitions. This study investigates the impacts of using different elevation models and pit filling techniques in the final debris hazard zone delineations, in an effort to determine which combination of methods most closely agrees with observed landslide events. In particular, a national DEM digitized from topographic sheets from the 1970s and 1980s provide an elevation product at a 10 meter resolution. Both natural and anthropogenic modifications of the terrain limit the accuracy of current landslide hazard assessments derived from this source. Global products from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM) offer more recent data but at the cost of spatial resolution. New data derived from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) in 2013 provides the opportunity to update hazard zones at a higher spatial resolution (approximately 6 meters). Hydrological filling of sinks or pits for current hazard zone simulation has previously been achieved through ArcInfo spatial analyst. Such hydrological processing typically only fills pits and can lead to drastic modifications of original elevation values. Optimized pit filling techniques use both cut and fill operations to minimize modifications of the original DEM. Satellite image interpretation and field surveying provide the baseline upon which to test the accuracy of each model simulation. By outlining areas that could potentially be inundated by debris flows, these efforts can be used to more accurately identify the places and assets immediately exposed to landslide hazards. We contextualize the results of the previous and ongoing efforts into how they may be incorporated into decision support systems. We also discuss if and how these analyses would have provided additional knowledge in the past, and identify specific recommendations as to how they could contribute to a more robust decision support system in the future.

  19. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS/PALSAR (Mode: Fine beam, HH) we have been able to estimate ice velocities from offset-tracking in the Upper and Lower Seward Basin even though the acquisitions are 46 days apart. We anticipate with the shorter repeat time for DESDynI-SAR acquisitions that we will be able to estimate seasonal ice velocities over a larger range of regions within both the ablation and accumulation zones.

  20. Reconstructing spectral cues for sound localization from responses to rippled noise stimuli

    PubMed Central

    Vliegen, Joyce; Van Esch, Thamar

    2017-01-01

    Human sound localization in the mid-saggital plane (elevation) relies on an analysis of the idiosyncratic spectral shape cues provided by the head and pinnae. However, because the actual free-field stimulus spectrum is a-priori unknown to the auditory system, the problem of extracting the elevation angle from the sensory spectrum is ill-posed. Here we test different spectral localization models by eliciting head movements toward broad-band noise stimuli with randomly shaped, rippled amplitude spectra emanating from a speaker at a fixed location, while varying the ripple bandwidth between 1.5 and 5.0 cycles/octave. Six listeners participated in the experiments. From the distributions of localization responses toward the individual stimuli, we estimated the listeners’ spectral-shape cues underlying their elevation percepts, by applying maximum-likelihood estimation. The reconstructed spectral cues resulted to be invariant to the considerable variation in ripple bandwidth, and for each listener they had a remarkable resemblance to the idiosyncratic head-related transfer functions (HRTFs). These results are not in line with models that rely on the detection of a single peak or notch in the amplitude spectrum, nor with a local analysis of first- and second-order spectral derivatives. Instead, our data support a model in which the auditory system performs a cross-correlation between the sensory input at the eardrum-auditory nerve, and stored representations of HRTF spectral shapes, to extract the perceived elevation angle. PMID:28333967

  1. The National Map - Elevation

    USGS Publications Warehouse

    Gesch, Dean; Evans, Gayla; Mauck, James; Hutchinson, John; Carswell, William J.

    2009-01-01

    The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the USGS. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, and the island territories. The NED is derived from diverse source data sets that are processed to a specification with a consistent resolution, coordinate system, elevation units, and horizontal and vertical datums. The NED is the logical result of the maturation of the long-standing USGS elevation program, which for many years concentrated on production of topographic map quadrangle-based digital elevation models. The NED serves as the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. The NED is a multi-resolution dataset that is updated bimonthly to integrate newly available, improved elevation source data. NED data are available nationally at grid spacings of 1 arc-second (approximately 30 meters) for the conterminous United States, and at 1/3 and 1/9 arc-seconds (approximately 10 and 3 meters, respectively) for parts of the United States. Most of the NED for Alaska is available at 2-arc-second (about 60 meters) grid spacing, where only lower resolution source data exist. Part of Alaska is available at the 1/3-arc-second resolution, and plans are in development for a significant upgrade in elevation data coverage of the State over the next 5 years. Specifications for the NED include the following: *Coordinate system: Geographic (decimal degrees of latitude and longitude), *Horizontal datum: North American Datum of 1983 (NAD 83), *Vertical datum: North American Vertical Datum of 1988 (NAVD 88) over the conterminous United States and varies in other areas, and *Elevation units: Decimal meters.

  2. Critical experiments of the self-consistent model for polycrystalline Hastelloy-X

    NASA Technical Reports Server (NTRS)

    Shi, Shixiang; Walker, Kevin P.; Jordan, Eric H.

    1991-01-01

    A viscoplastic constitutive model is presented for the estimation of the overall mechanical response of Hastelloy-X polycrystalline metals from a knowledge of single crystal behavior. The behavior of polycrystal is derived from that of single crystals using a self-consistent formulation. The single crystal behavior which has been used was developed by summing postulated slip on crystallographic slip systems. The plasticity and creep are treated coupledly using unified viscoplastic model which includes the interaction effects between rapid and slow deformation at elevated temperature. The validity of the model is directly tested by experiments on Hastelloy-X in both single crystal and polycrystalline versions.

  3. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  4. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    NASA Astrophysics Data System (ADS)

    Beyerle, Georg; Zus, Florian

    2016-04-01

    For more than a decade space-based global navigation satellite system (GNSS) radio occultation (RO) observations are used by meteorological services world-wide for their numerical weather prediction models. In addition, climate studies increasingly rely on validated GNSS-RO data sets of atmospheric parameters. GNSS-RO profiles typically cover an altitude range from the boundary layer up to the upper stratosphere; their highest accuracy and precision, however, are attained at the tropopause level. In the lower troposphere, multipath ray propagation tend to induce signal amplitude and frequency fluctuations which lead to the development and implementation of open-loop signal tracking methods in GNSS-RO receiver firmwares. In open-loop mode the feed-back values for the carrier tracking loop are derived not from measured data, but from a Doppler frequency model which usually is extracted from an atmospheric climatology. In order to ensure that this receiver-internal parameter set, does not bias the carrier phase path observables, dual-channel open-loop GNSS-RO signal tracking was suggested. Following this proposal the ground-based "GLESER" (GPS low-elevation setting event recorder) campaign was established. Its objective was to disproof the existence of model-induced frequency biases using ground-based GPS observations at very low elevation angles. Between January and December 2014 about 2600 validated setting events, starting at geometric elevation angles of +2° and extending to -1°… - 1.5°, were recorded by the single frequency "OpenGPS" GPS receiver at a measurement site located close to Potsdam, Germany (52.3808°N, 13.0642°E). The study is based on the assumption that these ground-based observations may be used as proxies for space-based RO measurements, even if the latter occur on a one order of magnitude faster temporal scale. The "GLESER" data analysis shows that the open-loop Doppler model has negligible influence on the derived frequency profile provided signal-to-noise density ratios remain above about 30 dB Hz. At low signal levels, however, the dual-channel open-loop design, which tracks the same signal using two Doppler models separated by a 10 Hz offset, reveals a notable bias. A significant fraction of this bias is caused by frequency aliasing. The receiver's dual-channel setup, however, allows for unambiguous identification of the affected observation samples. Finally, the repeat patterns in terms of azimuth angle of the GPS orbit traces reveals characteristic signatures in both, signal amplitude and Doppler frequency with respect to the topography close to the observation site. On the other hand, mean vertical refractivity gradients extracted from ECMWF meteorological fields exhibit moderate correlations with observed signal amplitude fluctuations at negative elevation angles emphasizing the information content of low-elevation GPS signals with respect to the atmospheric state in the boundary layer.

  5. 47 CFR 1.959 - Computation of average terrain elevation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless..., average terrain elevation must be calculated by computer using elevations from a 30 second point or better..., if the results differ significantly from the computer derived averages. (a) Radial average terrain...

  6. 47 CFR 1.959 - Computation of average terrain elevation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by...) of this chapter, average terrain elevation must be calculated by computer using elevations from a 30... also be done manually, if the results differ significantly from the computer derived averages. (a...

  7. 47 CFR 1.959 - Computation of average terrain elevation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by...) of this chapter, average terrain elevation must be calculated by computer using elevations from a 30... also be done manually, if the results differ significantly from the computer derived averages. (a...

  8. 47 CFR 1.959 - Computation of average terrain elevation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless..., average terrain elevation must be calculated by computer using elevations from a 30 second point or better..., if the results differ significantly from the computer derived averages. (a) Radial average terrain...

  9. 47 CFR 1.959 - Computation of average terrain elevation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 1.959 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by...) of this chapter, average terrain elevation must be calculated by computer using elevations from a 30... also be done manually, if the results differ significantly from the computer derived averages. (a...

  10. Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Bevington, Azure E.; Twilley, Robert R.; Sasser, Charles E.; Holm, Guerry O.

    2017-05-01

    Deltas are globally important locations of diverse ecosystems, human settlement, and economic activity that are threatened by reductions in sediment delivery, accelerated sea level rise, and subsidence. Here we investigated the relative contribution of river flooding, hurricanes, and cold fronts on elevation change in the prograding Wax Lake Delta (WLD). Sediment surface elevation was measured across 87 plots, eight times from February 2008 to August 2011. The high peak discharge river floods in 2008 and 2011 resulted in the greatest mean net elevation gain of 5.4 to 4.9 cm over each flood season, respectively. The highest deltaic wetland sediment retention (13.5% of total sediment discharge) occurred during the 2008 river flood despite lower total and peak discharge compared to 2011. Hurricanes Gustav and Ike resulted in a total net elevation gain of 1.2 cm, but the long-term contribution of hurricane derived sediments to deltaic wetlands was estimated to be just 22% of the long-term contribution of large river floods. Winter cold front passage resulted in a net loss in elevation that is equal to the elevation gain from lower discharge river floods and was consistent across years. This amount of annual loss in elevation from cold fronts could effectively negate the long-term land building capacity within the delta without the added elevation gain from both high and low discharge river floods. The current lack of inclusion of cold front elevation loss in most predictive numerical models likely overestimates the land building capacity in areas that experience similar forcings to WLD.

  11. ISED: Constructing a high-resolution elevation road dataset from massive, low-quality in-situ observations derived from geosocial fitness tracking data.

    PubMed

    McKenzie, Grant; Janowicz, Krzysztof

    2017-01-01

    Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM) but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.

  12. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000

  13. Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet). Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000 Image courtesy NASA/JPL/NIMA

  14. Determining and Interpreting Detailed Ice Surface Elevation Changes of the Glaciers in Upernavik Isstrøm, Northwest Greenland, 1985-2016

    NASA Astrophysics Data System (ADS)

    Wendler, L.; Csatho, B. M.; Schenk, A. F.

    2017-12-01

    The several distinct glaciers of Upernavik Isstrøm in NW Greenland exhibit variable thinning, retreat, and velocity behaviors, despite being in close proximity, draining into the same fjord, and experiencing similar climatic conditions. This study reconstructed the 1985-2016 surface elevation change history for each Upernavik glacier. The data sets used included altimetry data collected by NASA's ATM, LVIS, and ICESat systems and digital elevation models (DEMs) derived from 1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery. The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for fusing with the altimetry data. The spatiotemporal pattern of ice surface change was partitioned into changes related to surface processes and ice dynamics. The resulting ice thickness change time series were compared to other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings causing the variable behavior of the glaciers. Major findings include detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continuing thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops suggesting that reduction of lateral drag might have contributed to the thinning. While the study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also highlights the importance of other factors, such as variations in calving rates and lateral drag. The study produced improved surface elevation change histories of the Upernavik glaciers that are the most detailed and accurate to date and will be important for future numerical modeling studies of outlet glacier dynamic processes.

  15. Restoration Of MEX SRC Images For Improved Topography: A New Image Product

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.

    2012-12-01

    Surface topography is an important constraint when investigating the evolution of solar system bodies. Topography is typically obtained from stereo photogrammetric or photometric (shape from shading) analyses of overlapping / stereo images and from laser / radar altimetry data. The ESA Mars Express Mission [1] carries a Super Resolution Channel (SRC) as part of the High Resolution Stereo Camera (HRSC) [2]. The SRC can build up overlapping / stereo coverage of Mars, Phobos and Deimos by viewing the surfaces from different orbits. The derivation of high precision topography data from the SRC raw images is degraded because the camera is out of focus. The point spread function (PSF) is multi-peaked, covering tens of pixels. After registering and co-adding hundreds of star images, an accurate SRC PSF was reconstructed and is being used to restore the SRC images to near blur free quality. The restored images offer a factor of about 3 in improved geometric accuracy as well as identifying the smallest of features to significantly improve the stereo photogrammetric accuracy in producing digital elevation models. The difference between blurred and restored images provides a new derived image product that can provide improved feature recognition to increase spatial resolution and topographic accuracy of derived elevation models. Acknowledgements: This research was funded by the NASA Mars Express Participating Scientist Program. [1] Chicarro, et al., ESA SP 1291(2009) [2] Neukum, et al., ESA SP 1291 (2009). A raw SRC image (h4235.003) of a Martian crater within Gale crater (the MSL landing site) is shown in the upper left and the restored image is shown in the lower left. A raw image (h0715.004) of Phobos is shown in the upper right and the difference between the raw and restored images, a new derived image data product, is shown in the lower right. The lower images, resulting from an image restoration process, significantly improve feature recognition for improved derived topographic accuracy.

  16. Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation

    USGS Publications Warehouse

    Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul

    2013-01-01

    Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.

  17. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey.

    PubMed

    Moss, William J; Hamapumbu, Harry; Kobayashi, Tamaki; Shields, Timothy; Kamanga, Aniset; Clennon, Julie; Mharakurwa, Sungano; Thuma, Philip E; Glass, Gregory

    2011-06-10

    The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria. Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks. A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80th percentile of malaria risk would require malaria control interventions directed to only 24% of the households. Remote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.

  18. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ

    NASA Astrophysics Data System (ADS)

    Qin, Momei; Hu, Yongtao; Wang, Xuesong; Vasilakos, Petros; Boyd, Christopher M.; Xu, Lu; Song, Yu; Ng, Nga Lee; Nenes, Athanasios; Russell, Armistead G.

    2018-07-01

    Monoterpenes react with nitrate radicals (NO3), contributing substantially to nighttime organic aerosol (OA) production. In this study, the role of reactions of monoterpenes + NO3 in forming biogenic secondary organic aerosol (BSOA) was examined using the Community Multiscale Air Quality (CMAQ) model, with extended emission profiles of biogenic volatile organic compounds (BVOCs), species-specific representations of BSOA production from individual monoterpenes and updated aerosol yields for monoterpene + NO3. The model results were compared to detailed measurements from the Southern Oxidants and Aerosol Study (SOAS) at Centreville, Alabama. With the more detailed model, monoterpene-derived BSOA increased by ∼1 μg m-3 at night, accounting for one-third of observed less-oxidized oxygenated OA (LO-OOA), more closely agreeing with observations (lower error, stronger correlation). Implementation of a multigenerational oxidation approach resulted in the model capturing elevated OA episodes. With the aging model, aged semi-volatile organic compounds (ASVOCs) contributed over 60% of the monoterpene-derived BSOA, followed by SOA formation via nitrate radical chemistry, making up to 34% of that formed at night. Among individual monoterpenes, β-pinene and limonene contributed most to the monoterpene-derived BSOA from nighttime reactions.

  19. Automatic Detection and Vulnerability Analysis of Areas Endangered by Heavy Rain

    NASA Astrophysics Data System (ADS)

    Krauß, Thomas; Fischer, Peter

    2016-08-01

    In this paper we present a new method for fully automatic detection and derivation of areas endangered by heavy rainfall based only on digital elevation models. Tracking news show that the majority of occuring natural hazards are flood events. So already many flood prediction systems were developed. But most of these existing systems for deriving areas endangered by flooding events are based only on horizontal and vertical distances to existing rivers and lakes. Typically such systems take not into account dangers arising directly from heavy rain events. In a study conducted by us together with a german insurance company a new approach for detection of areas endangered by heavy rain was proven to give a high correlation of the derived endangered areas and the losses claimed at the insurance company. Here we describe three methods for classification of digital terrain models and analyze their usability for automatic detection and vulnerability analysis for areas endangered by heavy rainfall and analyze the results using the available insurance data.

  20. Determining and Interpreting Detailed Ice Surface Elevation Changes of the Glaciers in Upernavik Isstrom, Northwest Greenland, 1985-2016

    NASA Astrophysics Data System (ADS)

    Wendler, Lindsay

    The several distinct glaciers of Upernavik Isstrom, which drain a portion of the northwest margin of the Greenland Ice Sheet (GrIS), exhibit variable thinning, retreat, and velocity behaviors, despite being in such close proximity, draining into the same fjord, and experiencing similar climatic conditions. The goal of this study was to reconstruct, in as much detail as possible, a 1985-2016 surface elevation change history for each Upernavik glacier. Surface elevation datasets used in these reconstructions included laser altimetry data collected by several NASA systems (ATM, LVIS, ICESat) and digital elevation models (DEMs) derived from various sources (1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery). The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for use in final reconstructions. The spatiotemporal pattern of ice surface change was analyzed and compared with other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings that may have influenced the variable behavior of the glaciers. We detected rapid thinning on glaciers 1, 2, and 5 and determined the timing of these thinning events. Major findings included detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continued thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops, suggesting that reduction of lateral drag might have contributed to the thinning. While this study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also highlights the importance of other factors, such as variations in calving rates and lateral drag. My study produced improved surface elevation change histories of the Upernavik glaciers that are the most detailed and accurate to date and will be important for future numerical modeling studies of outlet glacier dynamic processes.

  1. Flight Test Results of a Synthetic Vision Elevation Database Integrity Monitor

    NASA Technical Reports Server (NTRS)

    deHaag, Maarten Uijt; Sayre, Jonathon; Campbell, Jacob; Young, Steve; Gray, Robert

    2001-01-01

    This paper discusses the flight test results of a real-time Digital Elevation Model (DEM) integrity monitor for Civil Aviation applications. Providing pilots with Synthetic Vision (SV) displays containing terrain information has the potential to improve flight safety by improving situational awareness and thereby reducing the likelihood of Controlled Flight Into Terrain (CFIT). Utilization of DEMs, such as the digital terrain elevation data (DTED), requires a DEM integrity check and timely integrity alerts to the pilots when used for flight-critical terrain-displays, otherwise the DEM may provide hazardous misleading terrain information. The discussed integrity monitor checks the consistency between a terrain elevation profile synthesized from sensor information, and the profile given in the DEM. The synthesized profile is derived from DGPS and radar altimeter measurements. DEMs of various spatial resolutions are used to illustrate the dependency of the integrity monitor s performance on the DEMs spatial resolution. The paper will give a description of proposed integrity algorithms, the flight test setup, and the results of a flight test performed at the Ohio University airport and in the vicinity of Asheville, NC.

  2. Anomalous sea surface structures as an object of statistical topography

    NASA Astrophysics Data System (ADS)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  3. Derivation of formulas for root-mean-square errors in location, orientation, and shape in triangulation solution of an elongated object in space

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1974-01-01

    Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.

  4. space Radar Image of Long Valley, California

    NASA Image and Video Library

    1999-05-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. http://photojournal.jpl.nasa.gov/catalog/PIA01749

  5. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  6. Two risk score models for predicting incident Type 2 diabetes in Japan.

    PubMed

    Doi, Y; Ninomiya, T; Hata, J; Hirakawa, Y; Mukai, N; Iwase, M; Kiyohara, Y

    2012-01-01

    Risk scoring methods are effective for identifying persons at high risk of Type 2 diabetes mellitus, but such approaches have not yet been established in Japan. A total of 1935 subjects of a derivation cohort were followed up for 14 years from 1988 and 1147 subjects of a validation cohort independent of the derivation cohort were followed up for 5 years from 2002. Risk scores were estimated based on the coefficients (β) of Cox proportional hazards model in the derivation cohort and were verified in the validation cohort. In the derivation cohort, the non-invasive risk model was established using significant risk factors; namely, age, sex, family history of diabetes, abdominal circumference, body mass index, hypertension, regular exercise and current smoking. We also created another scoring risk model by adding fasting plasma glucose levels to the non-invasive model (plus-fasting plasma glucose model). The area under the curve of the non-invasive model was 0.700 and it increased significantly to 0.772 (P < 0.001) in the plus-fasting plasma glucose model. The ability of the non-invasive model to predict Type 2 diabetes was comparable with that of impaired glucose tolerance, and the plus-fasting plasma glucose model was superior to it. The cumulative incidence of Type 2 diabetes was significantly increased with elevating quintiles of the sum scores of both models in the validation cohort (P for trend < 0.001). We developed two practical risk score models for easily identifying individuals at high risk of incident Type 2 diabetes without an oral glucose tolerance test in the Japanese population. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  7. Relevance of detail in basal topography for basal slipperiness inversions: a case study on Pine Island Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2018-04-01

    Given high-resolution satellite-derived surface elevation and velocity data, ice-sheet models generally estimate mechanical basal boundary conditions using surface-to-bed inversion methods. In this work, we address the sensitivity of results from inversion methods to the accuracy of the bed elevation data on Pine Island Glacier. We show that misfit between observations and model output is reduced when high-resolution bed topography is used in the inverse model. By looking at results with a range of detail included in the bed elevation, we consider the separation of basal drag due to the bed topography (form drag) and that due to inherent bed properties (skin drag). The mean value of basal shear stress is reduced when more detailed topography is included in the model. This suggests that without a fully resolved bed a significant amount of the basal shear stress recovered from inversion methods may be due to the unresolved bed topography. However, the spatial structure of the retrieved fields is robust as the bed accuracy is varied; the fields are instead sensitive to the degree of regularisation applied to the inversion. While the implications for the future temporal evolution of PIG are not quantified here directly, our work raises the possibility that skin drag may be overestimated in the current generation of numerical ice-sheet models of this area. These shortcomings could be overcome by inverting simultaneously for both bed topography and basal slipperiness.

  8. Lessons from the fires of 2000: Post-fire heterogeneity in ponderosa pine forests

    USGS Publications Warehouse

    Kotliar, Natasha B.; Haire, Sandra L.; Key, Carl H.; Omni, Phillip N.; Joyce, Linda A.

    2003-01-01

    We evaluate burn-severity patterns for six burns that occurred in the southern Rocky Mountains and the Colorado Plateau in 2000. We compare the results of two data sources: Burned Area Rehabilitations Teams (BAER) and a spatial burnseverity model derived from satellite imagery (the Normalized Burn Ratio; NBR). BAER maps tended to overestimate area of severe burns and underestimate area of moderate-severity burns relative to NBR maps. Low elevation and more southern ponderosa pine burns were predominantly understory burns, whereas burns at higher elevations and farther north had a greater component of high-severity burns. Thus, much, if not most, of the area covered by these burns appears to be consistent with historic burns and contributes to healthy functioning ecosystems.

  9. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  10. Glacial isostatic crustal uplift in southern Victoria Land, Antarctica, from geologic and geodetic records

    NASA Astrophysics Data System (ADS)

    Konfal, S.; Wilson, T.; Bevis, M. G.; Kendrick, E. C.; Hall, B. L.

    2011-12-01

    Geologic records and geodetic measurements of glacial isostatic crustal motions are presented from the southern Victoria Land region of Antarctica. In much of the world, key records used for mapping and modeling glacial isostatic crustal motions come from raised paleoshorelines and beaches of ice-marginal lakes and seas. While such records are scarce in Antarctica, preserved paleoshorelines are present in the southern Victoria Land region of Antarctica. Light detection and ranging (LiDAR) data coverages of these features were acquired during the 2001-2002 austral summer field season by NASA's Airborne Topographic Mapper (ATM) system, resulting in 2 meter horizontal resolution digital elevation models (DEMs). This study utilizes these DEM data to derive crustal tilt values from observed changes in elevation along the length of the shorelines. Radiocarbon age data are correlated with the associated degree of shoreline tilt to derive a rate of crustal deformation since deglaciation. Modern rates of glacial isostatic crustal motion are derived from GPS stations in the same region. Campaign station occupation began in 1996-1997 under the TAMDEF (Transantarctic Mountain DEFormation Network) project, and continuous GPS data collected began in 1999 and continues under the ANET/POLENET (Antarctica Polar Earth Observing Network) project, enabling analysis of decadal scale time series. Integrated gradient curves from paleoshoreline records and GPS crustal velocities show exponential form and indicate tilting down to the east. Eastward tilt may be the result of substantial loss of East Antarctic ice, a collapsing forebulge linked to ice centers in the Ross Sea region or in interior West Antarctica, or differences in earth response due to laterally varying earth structure. Modeling of these new data, along with comparison of tilt directions to centers of ice mass loss, provide tests of these scenarios and yield new insights into earth models and ice history.

  11. Testing geographical and climatic controls on glacier retreat

    NASA Astrophysics Data System (ADS)

    Freudiger, Daphné; Stahl, Kerstin; Weiler, Markus

    2015-04-01

    Glacier melt provides an important part of the summer discharge in many mountainous basins. The understanding of the processes behind the glacier mass losses and glacier retreats observed during the last century is therefore relevant for a sustainable management of the water resources and reliable models for the prediction of future changes. The changes in glacier area of 49 sub-basins of the Rhine River in the Alps were analyzed for the time period 1900-2010 by comparing the glacier areas of Siegfried maps for the years 1900 and 1940 with satellite derived glacier areas for the years 1973, 2003 and 2010. The aim was to empirically investigate the controls of glacier retreat and its regional differences. All glaciers in the glacierized basins retreated over the last 110 years with some variations in the sub-periods. However, the relative changes in glacier area compared to 1900 differed for every sub-basin and some glaciers decreased much faster than others. These observed differences were related to a variety of different potential controls derived from different sources, including mean annual solar radiation on the glacier surface, average slope, mean glacier elevation, initial glacier area, average precipitation (summer and winter), and the precipitation catchment area of the glacier. We fitted a generalized linear model (GLM) and selected predictors that were significant to assess the individual effects of the potential controls. The fitted model explains more than 60% of the observed variance of the relative change in glacier area with the initial area alone only explaining a small proportion. Some interesting patterns emerge with higher average elevation resulting in higher area changes, but steeper slopes or solar radiation resulting in lower relative glacier area changes. Further controls that will be tested include snow transport by wind or avalanches as they play an important role for the glacier mass balance and potentially reduce the changes in glacier area. The derived predictors will be further analyzed and the observed general patterns will be compared to modeling studies of glacier changes.

  12. Application of Multi-Satellite Precipitation Analysis to Floods and Landslides

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Hong, Yang; Huffman, George

    2007-01-01

    Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers. In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences. However, difficulties in comparing landslide event information (mostly from news reports) with the satellite-based forecasts are analyzed.

  13. Applying modern measurements of Pleistocene loads to model lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Beard, E. P.; Hoggan, J. R.; Lowry, A. R.

    2011-12-01

    The remnant shorelines of Pleistocene Lake Bonneville provide a unique opportunity for building a dataset from which to infer rheological properties of the lower crust and upper mantle. Multiple lakeshores developed over a period of around 30 kyr which record the lithosphere's isostatic response to a well-constrained load history. Bills et al. (1994) utilized a shoreline elevation dataset compiled by Currey (1982) in an attempt to model linear (Maxwell) viscosity as a function of depth beneath the basin. They estimated an effective elastic thickness (Te) for the basin of 20-25 km which differs significantly from the 5-15 km estimates derived from models of loading on geologic timescales (e.g., Lowry and Pérez-Gussinyé, 2011). We propose that the discrepancy in Te modeled by these two approaches may be resolved with dynamical modeling of a common rheology, using a more complete shoreline elevation dataset applied to a spherical Earth model. Where Currey's (1982) dataset was compiled largely from observations of depositional shoreline features, we are developing an algorithm for estimating elevation variations in erosional shorelines based on cross-correlation and stacking techniques similar to those used to automate picking of seismic phase arrival times. Application of this method to digital elevation models (DEMs) will increase the size and accuracy of the shoreline elevation dataset, enabling more robust modeling of the rheological properties driving isostatic response to unloading of Lake Bonneville. Our plan is to model these data and invert for a relatively small number of parameters describing depth- and temperature-dependent power-law rheology of the lower crust and upper mantle. These same parameters also will be used to model topographic and Moho response to estimates of regional mass variation on the longer loading timescales to test for inconsistencies. Bills, B.G., D.R. Currey, and G.A. Marshall, 1994, Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin, Journal of Geophysical Research, 99, B11, 22,059-22,086. Currey, D.R., 1982, Lake Bonneville: Selected features of relevance to neotectonic analysis, U.S. Geological Survey Open File Report, 82-1070, 31pp. Lowry, A.R., and M. Pérez-Gussinyé, 2011, The role of crustal quartz in controlling Cordilleran deformation, Nature, 471, pp. 353-357.

  14. Characterizing CO and NOy Sources and Relative Ambient Ratios in the Baltimore Area Using Ambient Measurements and Source Attribution Modeling

    NASA Astrophysics Data System (ADS)

    Simon, Heather; Valin, Luke C.; Baker, Kirk R.; Henderson, Barron H.; Crawford, James H.; Pusede, Sally E.; Kelly, James T.; Foley, Kristen M.; Chris Owen, R.; Cohen, Ronald C.; Timin, Brian; Weinheimer, Andrew J.; Possiel, Norm; Misenis, Chris; Diskin, Glenn S.; Fried, Alan

    2018-03-01

    Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess source contributions and evaluate the utility of using aircraft measured CO and NOy relationships to constrain emission inventories. We derive ambient and modeled ΔCO:ΔNOy ratios that have previously been interpreted to represent CO:NOy ratios in emissions from local sources. Modeled and measured ΔCO:ΔNOy are similar; however, measured ΔCO:ΔNOy has much more daily variability than modeled values. Sector-based tagging shows that regional transport, on-road gasoline vehicles, and nonroad equipment are the major contributors to modeled CO mixing ratios in the Baltimore area. In addition to those sources, on-road diesel vehicles, soil emissions, and power plants also contribute substantially to modeled NOy in the area. The sector mix is important because emitted CO:NOx ratios vary by several orders of magnitude among the emission sources. The model-predicted gasoline/diesel split remains constant across all measurement locations in this study. Comparison of ΔCO:ΔNOy to emitted CO:NOy is challenged by ambient and modeled evidence that free tropospheric entrainment, and atmospheric processing elevates ambient ΔCO:ΔNOy above emitted ratios. Specifically, modeled ΔCO:ΔNOy from tagged mobile source emissions is enhanced 5-50% above the emitted ratios at times and locations of aircraft measurements. We also find a correlation between ambient formaldehyde concentrations and measured ΔCO:ΔNOy suggesting that secondary CO formation plays a role in these elevated ratios. This analysis suggests that ambient urban daytime ΔCO:ΔNOy values are not reflective of emitted ratios from individual sources.

  15. Development of ghrelin resistance in a cancer cachexia rat model using human gastric cancer-derived 85As2 cells and the palliative effects of the Kampo medicine rikkunshito on the model

    PubMed Central

    Sawada, Yumi; Hashimoto, Hirofumi; Yoshimura, Mitsuhiro; Ohbuchi, Katsuya; Sudo, Yuka; Suzuki, Masami; Miyano, Kanako; Shiraishi, Seiji; Higami, Yoshikazu; Yanagihara, Kazuyoshi; Hattori, Tomohisa; Kase, Yoshio; Ueta, Yoichi; Uezono, Yasuhito

    2017-01-01

    Cancer cachexia (CC) is a multifactorial disease characterized by decreased food intake and loss of body weight due to reduced musculature with or without loss of fat mass. Patients with gastric cancer have a high incidence of cachexia. We previously established a novel CC rat model induced by human gastric cancer-derived 85As2 cells in order to examine the pathophysiology of CC and identify potential therapeutics. In patients with CC, anorexia is often observed, despite elevation of ghrelin, suggesting that ghrelin resistance may develop in these patients. In this study, we aimed to clarify the occurrence of ghrelin resistance in CC rats accompanied by anorexia and we investigated whether rikkunshito (RKT), a traditional Japanese Kampo medicine that potentiates ghrelin signaling, ameliorated CC-related anorexia through alleviation of ghrelin resistance. 85As2-tumor-bearing rats developed severe CC symptoms, including anorexia and loss of body weight/musculature, with the latter symptoms being greater in cachectic rats than in non-tumor-bearing or pair-fed rats. CC rats showed poor responses to intraperitoneal injection of ghrelin. In CC rats, plasma ghrelin levels were elevated and hypothalamic anorexigenic peptide mRNA levels were decreased, whereas hypothalamic growth hormone secretagogue receptor (GHS-R) mRNA was not affected. In vitro, RKT directly enhanced ghrelin-induced GHS-R activation. RKT administrated orally for 7 days partly alleviated the poor response to ghrelin and ameliorated anorexia without affecting the elevation of plasma ghrelin levels in CC rats. The expression of hypothalamic orexigenic neuropeptide Y mRNA but not hypothalamic GHS-R mRNA was increased by RKT. Thus, the 85As2 cell-induced CC rat model developed ghrelin resistance, possibly contributing to anorexia and body weight loss. The mechanism through which RKT ameliorated anorexia in the CC rat model may involve alleviation of ghrelin resistance by enhancement of ghrelin signaling. These findings suggest that RKT may be a promising agent for the treatment of CC. PMID:28249026

  16. Geodetic Imaging and Tsunami Modeling of the 2017 Coupled Landslide-Tsunami Event in Karrat Fjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.

    2017-12-01

    We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Dasa; Guenther, Alex B.; Shilling, John E.

    Terrestrial vegetation emits vast quantities of volatile organic compounds (VOCs) to he atmosphere1-3, which influence oxidants and aerosols leading to complex feedbacks on air quality and climate4-6. Isoprene dominates global non-methane VOC emissions with tropical regions contributing ~80% of global isoprene emissions2. Isoprene emission rates vary over several orders of magnitude for different plant species, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft direct eddy covariance measurements over the pristine Amazon forest. We report isoprene emission rates that are 3 times higher thanmore » satellite top-down estimates and 35% higher than model predictions based on satellite land cover and vegetation specific emission factors (EFs). The results reveal strong correlations between observed isoprene emission rates and terrain elevations which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can explain a substantial degree of isoprene emission variability in tropical forests. Finally, we apply this approach over the central Amazon and use a model to demonstrate the impacts on regional air quality.« less

  18. Visualizing impact structures using high-resolution LiDAR-derived DEMs: A case study of two structures in Missouri

    USGS Publications Warehouse

    Finn, Michael P.; Krizanich, Gary W.; Evans, Kevin R.; Cox, Melissa R.; Yamamoto, Kristina H.

    2015-01-01

    Evidence suggests that a crypto-explosive hypothesis and a meteorite impact hypothesis may be partly correct in explaining several anomalous geological features in the middle of the United States. We used a primary geographic information science (GIScience) technique of creating a digital elevation model (DEM) of two of these features that occur in Missouri. The DEMs were derived from airborne light detection and ranging, or LiDAR. Using these DEMs, we characterized the Crooked Creek structure in southern Crawford County and the Weaubleau structure in southeastern St. Clair County, Missouri. The mensuration and study of exposed and buried impact craters implies that the craters may have intrinsic dimensions which could only be produced by collision. The results show elevations varying between 276 and 348 m for Crooked Creek and between 220 and 290 m for Weaubleau structure. These new high- resolution DEMs are accurate enough to allow for precise measurements and better interpretations of geological structures, particularly jointing in the carbonate rocks, and they show greater definition of the central uplift area in the Weaubleau structure than publicly available DEMs.

  19. Overland Flow Analysis Using Time Series of Suas-Derived Elevation Models

    NASA Astrophysics Data System (ADS)

    Jeziorska, J.; Mitasova, H.; Petrasova, A.; Petras, V.; Divakaran, D.; Zajkowski, T.

    2016-06-01

    With the advent of the innovative techniques for generating high temporal and spatial resolution terrain models from Unmanned Aerial Systems (UAS) imagery, it has become possible to precisely map overland flow patterns. Furthermore, the process has become more affordable and efficient through the coupling of small UAS (sUAS) that are easily deployed with Structure from Motion (SfM) algorithms that can efficiently derive 3D data from RGB imagery captured with consumer grade cameras. We propose applying the robust overland flow algorithm based on the path sampling technique for mapping flow paths in the arable land on a small test site in Raleigh, North Carolina. By comparing a time series of five flights in 2015 with the results of a simulation based on the most recent lidar derived DEM (2013), we show that the sUAS based data is suitable for overland flow predictions and has several advantages over the lidar data. The sUAS based data captures preferential flow along tillage and more accurately represents gullies. Furthermore the simulated water flow patterns over the sUAS based terrain models are consistent throughout the year. When terrain models are reconstructed only from sUAS captured RGB imagery, however, water flow modeling is only appropriate in areas with sparse or no vegetation cover.

  20. Uncertainty Assessment and Weight Map Generation for Efficient Fusion of Tandem-X and CARTOSAT-1 Dems

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Schmitt, M.; Zhu, X. X.

    2017-05-01

    Recently, with InSAR data provided by the German TanDEM-X mission, a new global, high-resolution Digital Elevation Model (DEM) has been produced by the German Aerospace Center (DLR) with unprecedented height accuracy. However, due to SAR-inherent sensor specifics, its quality decreases over urban areas, making additional improvement necessary. On the other hand, DEMs derived from optical remote sensing imagery, such as Cartosat-1 data, have an apparently greater resolution in urban areas, making their fusion with TanDEM-X elevation data a promising perspective. The objective of this paper is two-fold: First, the height accuracies of TanDEM-X and Cartosat-1 elevation data over different land types are empirically evaluated in order to analyze the potential of TanDEM-XCartosat- 1 DEM data fusion. After the quality assessment, urban DEM fusion using weighted averaging is investigated. In this experiment, both weight maps derived from the height error maps delivered with the DEM data, as well as more sophisticated weight maps predicted by a procedure based on artificial neural networks (ANNs) are compared. The ANN framework employs several features that can describe the height residual performance to predict the weights used in the subsequent fusion step. The results demonstrate that especially the ANN-based framework is able to improve the quality of the final DEM through data fusion.

  1. Terrain Dynamics Analysis Using Space-Time Domain Hypersurfaces and Gradient Trajectories Derived From Time Series of 3D Point Clouds

    DTIC Science & Technology

    2015-08-01

    optimized space-time interpolation method. Tangible geospatial modeling system was further developed to support the analysis of changing elevation surfaces...Evolution Mapped by Terrestrial Laser Scanning, talk, AGU Fall 2012 *Hardin E, Mitas L, Mitasova H., Simulation of Wind -Blown Sand for...Geomorphological Applications: A Smoothed Particle Hydrodynamics Approach, GSA 2012 *Russ, E. Mitasova, H., Time series and space-time cube analyses on

  2. Quantifying ice cliff contribution to debris-covered glacier mass balance from multiple sensors

    NASA Astrophysics Data System (ADS)

    Brun, Fanny; Wagnon, Patrick; Berthier, Etienne; Kraaijenbrink, Philip; Immerzeel, Walter; Shea, Joseph; Vincent, Christian

    2017-04-01

    Ice cliffs on debris-covered glaciers have been recognized as a hot spot for glacier melt. Ice cliffs are steep (even sometimes overhanging) and fast evolving surface features, which make them challenging to monitor. We surveyed the topography of Changri Nup Glacier (Nepalese Himalayas, Everest region) in November 2015 and 2016 using multiple sensors: terrestrial photogrammetry, Unmanned Aerial Vehicle (UAV) photogrammetry, Pléiades stereo images and ASTER stereo images. We derived 3D point clouds and digital elevation models (DEMs) following a Structure-from-Motion (SfM) workflow for the first two sets of data to monitor surface elevation changes and calculate the associated volume loss. We derived only DEMs for the two last data sets. The derived DEMs had resolutions ranging from < 5 cm to 30 m. The derived point clouds and DEMs are used to quantify the ice melt of the cliffs at different scales. The very high resolution SfM point clouds, together with the surface velocity field, will be used to calculate the volume losses of 14 individual cliffs, depending on their size, aspect or the presence of supra glacial lake. Then we will extend this analysis to the whole glacier to quantify the contribution of ice cliff melt to the overall glacier mass balance, calculated with the UAV and Pléiades DEMs. This research will provide important tools to evaluate the role of ice cliffs in regional mass loss.

  3. Elevated pulmonary artery systolic pressure predicts heart failure admissions in African Americans: Jackson Heart Study.

    PubMed

    Choudhary, Gaurav; Jankowich, Matthew; Wu, Wen-Chih

    2014-07-01

    Although elevated pulmonary artery systolic pressure (PASP) is associated with heart failure (HF), whether PASP measurement can help predict future HF admissions is not known, especially in African Americans who are at increased risk for HF. We hypothesized that elevated PASP is associated with increased risk of HF admission and improves HF prediction in African American population. We conducted a longitudinal analysis using the Jackson Heart Study cohort (n=3125; 32.2% men) with baseline echocardiography-derived PASP and follow-up for HF admissions. Hazard ratio for HF admission was estimated using Cox proportional hazard model adjusted for variables in the Atherosclerosis Risk in Community (ARIC) HF prediction model. During a median follow-up of 3.46 years, 3.42% of the cohort was admitted for HF. Subjects with HF had a higher PASP (35.6±11.4 versus 27.6±6.9 mm Hg; P<0.001). The hazard of HF admission increased with higher baseline PASP (adjusted hazard ratio per 10 mm Hg increase in PASP: 2.03; 95% confidence interval, 1.67-2.48; adjusted hazard ratio for highest [≥33 mm Hg] versus lowest quartile [<24 mm Hg] of PASP: 2.69; 95% confidence interval, 1.43-5.06) and remained significant irrespective of history of HF or preserved/reduced ejection fraction. Addition of PASP to the ARIC model resulted in a significant improvement in model discrimination (area under the curve=0.82 before versus 0.84 after; P=0.03) and improved net reclassification index (11-15%) using PASP as a continuous or dichotomous (cutoff=33 mm Hg) variable. Elevated PASP predicts HF admissions in African Americans and may aid in early identification of at-risk subjects for aggressive risk factor modification. © 2014 American Heart Association, Inc.

  4. Lidar-revised geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Haeussler, Peter J.; Clark, Kenneth P.

    2011-01-01

    This map is an interpretation of a 6-ft-resolution (2-m-resolution) lidar (light detection and ranging) digital elevation model combined with the geology depicted on the Geologic Map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Haeussler and Clark, 2000). Haeussler and Clark described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Wildcat Lake 7.5' quadrangle. This map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of approximately 40 ft (12 m), and nominal mean vertical accuracy of approximately 10 ft (3 m). Similar to many geologic maps, much of the geology in the Haeussler and Clark (2000) map-especially the distribution of surficial deposits-was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound lidar Consortium obtained a lidar-derived digital elevation model (DEM) for Kitsap Peninsula including all of the Wildcat Lake 7.5' quadrangle. This new DEM has a horizontal resolution of 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air photo stereo models have much improved the interpretation of geology in this heavily vegetated landscape, especially the distribution and relative age of some surficial deposits. Many contacts of surficial deposits are adapted unmodified or slightly modified from Haugerud (2009).

  5. Vertical and horizontal surface displacements near Jakobshavn Isbræ driven by melt-induced and dynamic ice loss

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Nielsen, K.; Wahr, J. M.; Bevis, M. G.; Liu, L.; Spada, G.; van Dam, T. M.

    2012-12-01

    We analyze Global Positioning System (GPS) time series of relative vertical and horizontal displacements from 2009-2011, at four GPS sites located between 5 and 150 km from the front of Jakobshavn Isbræ (JI). The horizontal displacements at KAGA, ILUL, and QEQE, relative to the site AASI, are directed towards east-north-east, suggesting that the main mass loss signal is south-east of these sites. The directions of the observed displacements are supported by modelled displacements, derived from NASA's Airborne Topographic Mapper (ATM) surveys of surface elevations from 2006 to 2011. The agreement between the observed and modelled relative displacements is 0.8 mm or better, which suggests that the mass loss estimate of JI is well captured. In 2010, we observe a rapid increase in the uplift at all four sites. This uplift anomaly, defined as the deviation at 2010.75 from the 2006-2009.75 trend is estimated to 8.8 +/- 2.4 mm (KAGA), 9.3 +/- 2.2 mm (ILUL), 5.1 +/- 2.0 mm (QEQE), and 6.1 +/- 2.3 mm (AASI). The relative large anomalies at the sites QEQE and AASI, located ~150 km from the front of JI, suggests that the uplift anomalies are caused by a large wide-spread melt-induced ice loss. The relatively low uplift anomaly at KAGA, located only 5 km from the front, indicates that there has been a dramatic decrease in dynamic-induced ice loss near the front of JI. This is supported by elevation changes derived from ATM measurements between 2010 and 2011, where we observe an elevation increase in the flow direction of up to 10 m at the frontal part of JI.

  6. A simple temperature-based method to estimate heterogeneous frozen ground within a distributed watershed model

    NASA Astrophysics Data System (ADS)

    Follum, Michael L.; Niemann, Jeffrey D.; Parno, Julie T.; Downer, Charles W.

    2018-05-01

    Frozen ground can be important to flood production and is often heterogeneous within a watershed due to spatial variations in the available energy, insulation by snowpack and ground cover, and the thermal and moisture properties of the soil. The widely used continuous frozen ground index (CFGI) model is a degree-day approach and identifies frozen ground using a simple frost index, which varies mainly with elevation through an elevation-temperature relationship. Similarly, snow depth and its insulating effect are also estimated based on elevation. The objective of this paper is to develop a model for frozen ground that (1) captures the spatial variations of frozen ground within a watershed, (2) allows the frozen ground model to be incorporated into a variety of watershed models, and (3) allows application in data sparse environments. To do this, we modify the existing CFGI method within the gridded surface subsurface hydrologic analysis watershed model. Among the modifications, the snowpack and frost indices are simulated by replacing air temperature (a surrogate for the available energy) with a radiation-derived temperature that aims to better represent spatial variations in available energy. Ground cover is also included as an additional insulator of the soil. Furthermore, the modified Berggren equation, which accounts for soil thermal conductivity and soil moisture, is used to convert the frost index into frost depth. The modified CFGI model is tested by application at six test sites within the Sleepers River experimental watershed in Vermont. Compared to the CFGI model, the modified CFGI model more accurately captures the variations in frozen ground between the sites, inter-annual variations in frozen ground depths at a given site, and the occurrence of frozen ground.

  7. Sex matters: females in proestrus show greater diazepam anxiolysis and brain-derived neurotrophin factor- and parvalbumin-positive neurons than males.

    PubMed

    Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany

    2018-04-01

    In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Fix success and accuracy of GPS radio collars in old-growth temperate coniferous forests

    USGS Publications Warehouse

    Sager-Fradkin, Kimberly A.; Jenkins, Kurt J.; Hoffman, Robert L.; Happe, P.; Beecham, J.; Wright, R.G.

    2007-01-01

    Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.

  9. Glacier stagnant in central Karakorum during 2003 to 2008 derived from DEOS Mass Transport Model GRACE data and one monthly degree-day model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Zhang, Shiqiang; Xu, Junli

    2016-10-01

    Glacier change in central Karakorum is known as `anomony' in the late 1990s, where many glaciers expanded and numbers of glacier surged while most of glaciers in the Greater Himalaya rapidly retreated. However, the understanding of glacier change in this region is still poor. Glacier changes for the Hunza river basin (HRB) in central Karakorum during 2003 to 2008 were investigated from different data sources. The mass variation in HRB were estimated from the DEOS Mass Transport Model (DMT-1) GRACE data and the Variable Infiltration Capacity (VIC) model, and compared with the simulated glacier mass balance by one monthly degree-day model. The surface elevation difference of glaciers between ASTER DEM and SRTM were calculated. The mass variations from GRACE data suggest that the glacier mass balance in HRB during 2003-2007 has no clear trend. The cumulative mass balance is positive during 2003-2008. The average glacier surface elevation difference between SRTM DEM and ASTER DEM is 11.8+/-3.2 m. The average differences of glacier surface elevation of Batura glaciers in accumulation zones is increased with 0.88m.a-1, These results indicate that there is no significant glacier retreat during 1999 to 2008. The seasonal amplitude of simulated mass variation of the monthly degree-day model agreed well with that estimated from DMT-1 GRACE data, but the simulated glacier accumulation is less than that calculated from GRACE data. The main reason probably lies in that the precipitation of glaciers and ungalciated areas were underestimated, especially in alpine areas.

  10. IFN-γ elevates airway hyper-responsiveness via up-regulation of neurokinin A/neurokinin-2 receptor signaling in a severe asthma model.

    PubMed

    Kobayashi, Minoru; Ashino, Shigeru; Shiohama, Yasuo; Wakita, Daiko; Kitamura, Hidemitsu; Nishimura, Takashi

    2012-02-01

    The adoptive transfer of OVA-specific Th1 cells into WT mice followed by OVA inhalation induces a significant elevation of airway hyper-responsiveness (AHR) with neutrophilia but not mucus hypersecretion. Here, we demonstrate that the airway inflammation model, pathogenically characterized as severe asthma, was partly mimicked by i.n. administration of IFN-γ. The administration of IFN-γ instead of Th1 cells caused AHR elevation but not neutrophilia, and remarkably induced neurokinin-2 receptor (NK2R) expression along with neurokinin A (NKA) production in the lung. To evaluate whether NKA/NK2R was involved in airway inflammation, we first investigated the role of NKA/NK2R-signaling in airway smooth muscle cells (ASMCs) in vitro. NK2R mRNA expression was significantly augmented in tracheal tube-derived ASMCs of WT mice but not STAT-1(-/-) mice after stimulation with IFN-γ. In addition, methacholine-mediated Ca(2+) influx into the ASMCs was significantly reduced in the presence of NK2R antagonist. Moreover, the NK2R antagonist strongly inhibited IFN-γ-dependent AHR elevation in vivo. Thus, these results demonstrated that IFN-γ directly acts on ASMCs to elevate AHR via the NKA/NK2R-signaling cascade. Our present findings suggested that NK2R-mediated neuro-immuno crosstalk would be a promising target for developing novel drugs in Th1-cell-mediated airway inflammation, including severe asthma. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  12. Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972-2006

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald R.; Lingle, Craig S.; Sauber, Jeanne M.; Post, Austin S.; Tangborn, Wendell V.; Rabus, Bernhard T.; Echelmeyer, Keith A.

    Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972-95 was 0.9±0.1 m a-1; (2) this rate accelerated to 3.0±0.7 m a-1 during 1995-2000; and (3) during 2000-03 the lowering rate was 1.5±0.4 m a-1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191±17 km3, which was an area-average surface elevation lowering of 1.7±0.2 m a-1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal-englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.

  13. California's Snow Gun and its implications for mass balance predictions under greenhouse warming

    NASA Astrophysics Data System (ADS)

    Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.

    2003-12-01

    Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass balance modeling. Firstly, the link between amplification of orographic precipitation and the temporal evolution of ocean-climate oscillations indicates that prediction of future mass balance trends requires consideration of the timing and amplitude of such oscillations. Only recently have ocean-atmosphere models begun to realistically produce such temporal variability. Secondly, the steepening snow mass-balance elevation-gradient associated with the "Snow Gun" implies greater spatial variability in balance with warming. In a warming climate, orographic processes at a scale finer that the highest resolution RCM (>20km grid) become increasingly important and predictions based on lower elevations become increasingly inaccurate for higher elevations. Therefore, thermodynamic interaction between atmospheric heat, moisture and topography must be included in downscaling techniques. In order to demonstrate the importance of the thermodynamic downscaling in mass balance predictions, we nest a high-resolution (100m grid), coupled Orographic Precipitation and Surface Energy balance Model (OPSEM) into the RegC2.5 RCM (40 km grid) and compare results. We apply this nesting technique to Mt. Shasta, California, an area of high topography (~4000m) relative to its RegCM2.5 grid elevation (1289m). These models compute average April snow volume under present and doubled-present Atmospheric CO2 concentrations. While the RegCM2.5 regional model predicts an 83% decrease in April SWE, OPSEM predicts a 16% increase. These results indicate that thermodynamic interactions between the atmosphere and topography at sub- RCM grid resolution must be considered in mass balance models.

  14. Sediment delivery estimates in water quality models altered by resolution and source of topographic data.

    PubMed

    Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T

    2014-01-01

    Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped areas). These results demonstrate that the decision to use one DEM conditioning technique over another, and the constraints of available DEM data resolution and source, can greatly impact the modeled surface drainage patterns at the scale of individual fields. This work has significance for applications that attempt to optimize best-management practices (BMPs) for reducing soil erosion and runoff contamination within agricultural watersheds.

  16. Integrating statistical and process-based models to produce probabilistic landslide hazard at regional scale

    NASA Astrophysics Data System (ADS)

    Strauch, R. L.; Istanbulluoglu, E.

    2017-12-01

    We develop a landslide hazard modeling approach that integrates a data-driven statistical model and a probabilistic process-based shallow landslide model for mapping probability of landslide initiation, transport, and deposition at regional scales. The empirical model integrates the influence of seven site attribute (SA) classes: elevation, slope, curvature, aspect, land use-land cover, lithology, and topographic wetness index, on over 1,600 observed landslides using a frequency ratio (FR) approach. A susceptibility index is calculated by adding FRs for each SA on a grid-cell basis. Using landslide observations we relate susceptibility index to an empirically-derived probability of landslide impact. This probability is combined with results from a physically-based model to produce an integrated probabilistic map. Slope was key in landslide initiation while deposition was linked to lithology and elevation. Vegetation transition from forest to alpine vegetation and barren land cover with lower root cohesion leads to higher frequency of initiation. Aspect effects are likely linked to differences in root cohesion and moisture controlled by solar insulation and snow. We demonstrate the model in the North Cascades of Washington, USA and identify locations of high and low probability of landslide impacts that can be used by land managers in their design, planning, and maintenance.

  17. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    PubMed Central

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  18. Use of a new ultra-long-range terrestrial LiDAR system to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Huss, M.; Hoelzle, M.

    2015-12-01

    Measuring glacier mass balance is important as it directly reflects the climatic forcing on the glacier surface. Today, repeated comparison of digital elevation models (DEMs) is a popular and widely used approach to derive surface elevation, volume and mass changes for a large number of glaciers. In high-mountain environments, airborne laser scanning (ALS) techniques currently provide the most accurate and highest resolution DEMs on the catchment scale, allowing the computation of glacier changes on an annual or even semi-annual basis. For monitoring individual glaciers though, terrestrial laser scanning (TLS) is easier and more cost-efficiently applied on the seasonal timescale compared to ALS. Since most recently, the application of the latest generation of ultra-long-range near infrared TLS systems allows the acquisition of surface elevation information over snow and ice of unprecedented quality and over larger zones than with previous near infrared TLS devices. Although very small glaciers represent the majority in number in most mountain ranges on Earth, their response to climatic changes is still not fully understood and field measurements are sparse. Therefore, a programme was set up in 2012 to monitor both the seasonal and annual surface mass balance of six very small glaciers across the Swiss Alps using the direct glaciological method. As often nearly the entire surface is visible from one single location, TLS is a highly promising technique to generate repeated high-resolution DEMs as well as to derive seasonal geodetic mass balances of very small ice masses. In this study, we present seasonal surface elevation, volume and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn and Pizolgletscher) derived from the comparison of seasonally repeated high-resolution DEMs acquired since autumn 2013 with the new ultra-long-range TLS device Riegl VZ-6000. We show the different processing steps necessary to derive geodetic glacier changes from the raw data (the TLS point clouds), comment on the accuracy of our results and compare them to very dense in-situ measurements, and thus investigate the potential of our approach to circumvent laborious and time consuming glaciological mass balance measurements of very small glaciers.

  19. Automatic identification of fault surfaces through Object Based Image Analysis of a Digital Elevation Model in the submarine area of the North Aegean Basin

    NASA Astrophysics Data System (ADS)

    Argyropoulou, Evangelia

    2015-04-01

    The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.

  20. Distribution quantification on dermoscopy images for computer-assisted diagnosis of cutaneous melanomas.

    PubMed

    Liu, Zhao; Sun, Jiuai; Smith, Lyndon; Smith, Melvyn; Warr, Robert

    2012-05-01

    Computerised analysis on skin lesion images has been reported to be helpful in achieving objective and reproducible diagnosis of melanoma. In particular, asymmetry in shape, colour and structure reflects the irregular growth of melanin under the skin and is of great importance for diagnosing the malignancy of skin lesions. This paper proposes a novel asymmetry analysis based on a newly developed pigmentation elevation model and the global point signatures (GPSs). Specifically, the pigmentation elevation model was first constructed by computer-based analysis of dermoscopy images, for the identification of melanin and haemoglobin. Asymmetry of skin lesions was then assessed through quantifying distributions of the pigmentation elevation model using the GPSs, derived from a Laplace-Beltrami operator. This new approach allows quantifying the shape and pigmentation distributions of cutaneous lesions simultaneously. Algorithm performance was tested on 351 dermoscopy images, including 88 malignant melanomas and 263 benign naevi, employing a support vector machine (SVM) with tenfold cross-validation strategy. Competitive diagnostic results were achieved using the proposed asymmetry descriptor only, presenting 86.36 % sensitivity, 82.13 % specificity and overall 83.43 % accuracy, respectively. In addition, the proposed GPS-based asymmetry analysis enables working on dermoscopy images from different databases and is approved to be inherently robust to the external imaging variations. These advantages suggested that the proposed method has good potential for follow-up treatment.

  1. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  2. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    PubMed

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  3. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    PubMed Central

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795

  4. Derivation of Lake Areas and Elevations for the Mackenzie Basin Using Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Birkett, Charon; Kite, Geoff

    1997-01-01

    Modelling hydrological processes in large watersheds flowing to the Arctic ocean is one step towards larger-scale modelling of the global water and energy cycles. Models of the Mackenzie River Basin (Northern Canada) are currently available but omit explicit routing of river flows through the three main lakes - Athabasca, Great Slave Lake and Great Bear Lake (Kite et al, 1994). These lakes occupy an area of 65,000 sq km but little gauge information is available. The levels of the lakes are only measured at a few points on the circumferences and river flows are only measured downstream. The hydraulic relationships between level/discharge and level/area/volume are uncertain. It has been previously shown that satellite remote sensing can be utilised in providing measurements of both lake surface area using imaging techniques and lake level using radar altimetry (Birkett, 1994). Here, we explore the application of these techniques to derive the lake levels and areas for the Mackenzie Basin lakes.

  5. Mass Balance of the Patagonian Icefields from Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Melkonian, A. K.; Willis, M. J.; Pritchard, M. E.; Ramage, J. M.; Bernstein, S.

    2010-12-01

    Few measurements have been made on the outlet glaciers of the Northern, Southern and Cordillera Darwin Icefields of Patagonia due to difficult access and pervasive bad weather. During the early 1990s' many glaciers around the periphery of the low-latitude temperate icefields thinned and retreated rapidly providing a disproportionately large contribution to sea level rise. A satellite-based survey of glacier speeds, elevation change and surface melt between 2000 and 2009 is used to provide new insight into the recent behavior of each the ice fields. Surface elevation changes are derived by differencing ASTER Digital Elevation Models (DEMs) with a void filled version of the DEM generated by the Shuttle Radar Topography mission. Observations show that thinning of the Northern Icefield has accelerated at lower elevations, but thinning in the accumulation area of the icefield has slowed compared to previous studies. A volumetric change of -2.92±0.27 km3/yr is found summing surface elevation changes over all glaciers in the Northern Icefield. This is converted to a mass loss of -2.75±0.065 Gt/yr, taking into account density differences above and below the equilibrium line. ASTER image pairs are used to provide sub-pixel offset tracking of glacier displacements over timescales ranging from 6 days to about 18 months. Longer time periods de-correlate and do not provide information useful for feature tracking. The terminus of the San Rafael Glacier, on the western side of the Northern Icefield sustained an average calving front speed of 21 m/day in the Austral Fall of 2007, a speed that is faster than that observed over the last two decades. Passive microwave observations indicate that the surface of the glacier was “wet” during the period when this rapid motion occurred, suggesting that the fast speed may be related to a rise in sub-glacial water pressure, sourced from the melt, or rainwater making its way to the glacier bed. Rough mass flux calculations are made for each icefield after deriving glacier thickness from surface slope, speeds and assumptions about bed conditions. Derived thicknesses are tested against the few sparse measurements that have been made and are in approximate agreement. The overall "health" of each of the icefields is found.

  6. NASADEM Overview and First Results: Shuttle Radar Topography Mission (SRTM) Reprocessing and Improvements

    NASA Astrophysics Data System (ADS)

    Buckley, S.; Agram, P. S.; Belz, J. E.; Crippen, R. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.

    2015-12-01

    NASADEM is a significant modernization of SRTM digital elevation model (DEM) data supported by the NASA MEaSUREs program. We are reprocessing the raw radar signal data using improved algorithms and incorporating ICESat and ASTER-derived DEM data unavailable during the original processing. The NASADEM products will be freely-available through the Land Processes Distributed Active Archive Center (LPDAAC) at 1-arcsecond spacing. The most significant processing improvements involve void reduction through improved phase unwrapping and using ICESat data for control. The updated unwrapping strategy now includes the use of SNAPHU for data processing patches where the unwrapped coverage from the original residue-based unwrapper falls below a coverage threshold. In North America continental processing, first experiments show the strip void area is reduced by more than 50% and the number of strip void patches is reduced by 40%. Patch boundary voids are mitigated by reprocessing with a different starting burst and merging the unwrapping results. We also updated a low-resolution elevation database to aid with unwrapping bootstrapping, retaining isolated component of unwrapped phase, and assessing the quality of the strip DEMs. We introduce a height ripple error correction to reduce artifacts in the strip elevation data. These ripples are a few meters in size with along-track spatial scales of tens of kilometers and are due to uncompensated mast motion most pronounced after Shuttle roll angle adjustment maneuvers. We developed an along-track filter utilizing differences between the SRTM heights and ICESat lidar elevation data. For a test using all data over North America, the algorithm reduced the ICESat-SRTM bias from 80 cm to 3 cm and the RMS from 5m to 4m. After merging and regridding the SRTM strip DEMs into 1x1-degree tiles, remaining voids are primarily filled with the ASTER-derived Global DEM. We use a Delta Surface Fill method to rubbersheet fill data across the void for a seamless merger. We find this to provide a more accurate fill than cut-and-paste patching. A new post-processing module creates DEM-derived layers from the void-free elevation data. The slope/aspect & plan/profile curvatures are found by fitting a local quadratic surface to each DEM post and computing metrics from the fit coefficients.

  7. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification

    NASA Astrophysics Data System (ADS)

    O'Neil, Gina L.; Goodall, Jonathan L.; Watson, Layne T.

    2018-04-01

    Wetlands are important ecosystems that provide many ecological benefits, and their quality and presence are protected by federal regulations. These regulations require wetland delineations, which can be costly and time-consuming to perform. Computer models can assist in this process, but lack the accuracy necessary for environmental planning-scale wetland identification. In this study, the potential for improvement of wetland identification models through modification of digital elevation model (DEM) derivatives, derived from high-resolution and increasingly available light detection and ranging (LiDAR) data, at a scale necessary for small-scale wetland delineations is evaluated. A novel approach of flow convergence modelling is presented where Topographic Wetness Index (TWI), curvature, and Cartographic Depth-to-Water index (DTW), are modified to better distinguish wetland from upland areas, combined with ancillary soil data, and used in a Random Forest classification. This approach is applied to four study sites in Virginia, implemented as an ArcGIS model. The model resulted in significant improvement in average wetland accuracy compared to the commonly used National Wetland Inventory (84.9% vs. 32.1%), at the expense of a moderately lower average non-wetland accuracy (85.6% vs. 98.0%) and average overall accuracy (85.6% vs. 92.0%). From this, we concluded that modifying TWI, curvature, and DTW provides more robust wetland and non-wetland signatures to the models by improving accuracy rates compared to classifications using the original indices. The resulting ArcGIS model is a general tool able to modify these local LiDAR DEM derivatives based on site characteristics to identify wetlands at a high resolution.

  8. Which plant trait explains the variations in relative growth rate and its response to elevated carbon dioxide concentration among Arabidopsis thaliana ecotypes derived from a variety of habitats?

    PubMed

    Oguchi, Riichi; Ozaki, Hiroshi; Hanada, Kousuke; Hikosaka, Kouki

    2016-03-01

    Elevated atmospheric carbon dioxide (CO2) concentration ([CO2]) enhances plant growth, but this enhancement varies considerably. It is still uncertain which plant traits are quantitatively related to the variation in plant growth. To identify the traits responsible, we developed a growth analysis model that included primary parameters associated with morphology, nitrogen (N) use, and leaf and root activities. We analysed the vegetative growth of 44 ecotypes of Arabidopsis thaliana L. grown at ambient and elevated [CO2] (800 μmol mol(-1)). The 44 ecotypes were selected such that they were derived from various altitudes and latitudes. Relative growth rate (RGR; growth rate per unit plant mass) and its response to [CO2] varied by 1.5- and 1.7-fold among ecotypes, respectively. The variation in RGR at both [CO2]s was mainly explained by the variation in leaf N productivity (LNP; growth rate per leaf N),which was strongly related to photosynthetic N use efficiency (PNUE). The variation in the response of RGR to [CO2] was also explained by the variation in the response of LNP to [CO2]. Genomic analyses indicated that there was no phylogenetic constraint on inter-ecotype variation in the CO2 response of RGR or LNP. We conclude that the significant variation in plant growth and its response to [CO2] among ecotypes reflects the variation in N use for photosynthesis among ecotypes, and that the response of PNUE to CO2 is an important target for predicting and/or breeding plants that have high growth rates at elevated [CO2].

  9. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    NASA Astrophysics Data System (ADS)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  10. Repeated measurement of nasal lavage fluid chemokines in school-age children with asthma.

    PubMed

    Noah, Terry L; Tudor, Gail E; Ivins, Sally S; Murphy, Paula C; Peden, David B; Henderson, Frederick W

    2006-02-01

    Inflammatory processes at the mucosal surface may play a role in maintenance of asthma pathophysiology. Cross-sectional studies in asthmatic patients suggest that chemokines such as interleukin 8 (IL-8) are overproduced by respiratory epithelium. To test the hypothesis that chemokine levels are persistently elevated in the respiratory secretions of asthmatic children at a stable baseline. We measured nasal lavage fluid (NLF) levels of chemokines and other mediators at 3- to 4-month intervals in a longitudinal study of asthmatic children, with nonasthmatic siblings as controls. In a linear mixed-model analysis, both family and day of visit had significant effects on nasal mediators. Thus, data for 12 asthmatic-nonasthmatic sibling pairs who had 3 or more same-day visits were analyzed separately. For sibling pairs, median eosinophil cationic protein levels derived from serial measurements in NLF were elevated in asthmatic patients compared with nonasthmatic patients, with a near-significant tendency for elevation of total protein and eotaxin levels as well. However, no significant differences were found for IL-8 or several other chemokines. Ratios of IL-13 or IL-5 to interferon-gamma released by house dust mite antigen-stimulated peripheral blood mononuclear cells, tested on a single occasion, were significantly increased for asthmatic patients. Substantial temporal and family-related variability exists in nasal inflammation in asthmatic children. Although higher levels of eosinophil cationic protein are usually present in NLF of patients with stable asthma compared with patients without asthma, chemokines other than eotaxin are not consistently increased. Eosinophil activation at the mucosal surface is a more consistent predictor of asthmatic symptoms than nonspecific elevation of epithelium-derived inflammatory chemokine levels.

  11. Statistical Development of Flood Frequency and Magnitude Equations for the Cosumnes and Mokelumne River Drainage Basins, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Burns, R. G.; Meyer, R. W.; Cornwell, K.

    2003-12-01

    In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.

  12. The effect of choosing three different C factor formulae derived from NDVI on a fully raster-based erosion modelling

    NASA Astrophysics Data System (ADS)

    Sulistyo, Bambang

    2016-11-01

    The research was aimed at studying the efect of choosing three different C factor formulae derived from NDVI on a fully raster-based erosion modelling of The USLE using remote sensing data and GIS technique. Methods applied was by analysing all factors affecting erosion such that all data were in the form of raster. Those data were R, K, LS, C and P factors. Monthly R factor was evaluated based on formula developed by Abdurachman. K factor was determined using modified formula used by Ministry of Forestry based on soil samples taken in the field. LS factor was derived from Digital Elevation Model. Three C factors used were all derived from NDVI and developed by Suriyaprasit (non-linear) and by Sulistyo (linear and non-linear). P factor was derived from the combination between slope data and landcover classification interpreted from Landsat 7 ETM+. Another analysis was the creation of map of Bulk Density used to convert erosion unit. To know the model accuracy, model validation was done by applying statistical analysis and by comparing Emodel with Eactual. A threshold value of ≥ 0.80 or ≥ 80% was chosen to justify. The research result showed that all Emodel using three formulae of C factors have coeeficient of correlation value of > 0.8. The results of analysis of variance showed that there was significantly difference between Emodel and Eactual when using C factor formula developed by Suriyaprasit and Sulistyo (non-linear). Among the three formulae, only Emodel using C factor formula developed by Sulistyo (linear) reached the accuracy of 81.13% while the other only 56.02% as developed by Sulistyo (nonlinear) and 4.70% as developed by Suriyaprasit, respectively.

  13. Comparison of transform coding methods with an optimal predictor for the data compression of digital elevation models

    NASA Technical Reports Server (NTRS)

    Lewis, Michael

    1994-01-01

    Statistical encoding techniques enable the reduction of the number of bits required to encode a set of symbols, and are derived from their probabilities. Huffman encoding is an example of statistical encoding that has been used for error-free data compression. The degree of compression given by Huffman encoding in this application can be improved by the use of prediction methods. These replace the set of elevations by a set of corrections that have a more advantageous probability distribution. In particular, the method of Lagrange Multipliers for minimization of the mean square error has been applied to local geometrical predictors. Using this technique, an 8-point predictor achieved about a 7 percent improvement over an existing simple triangular predictor.

  14. Predicting active-layer soil thickness using topographic variables at a small watershed scale

    PubMed Central

    Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie

    2017-01-01

    Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196

  15. Integration of SRTM and TRMM date into the GIS-based hydrological model for the purpose of flood modelling

    NASA Astrophysics Data System (ADS)

    Akbari, A.; Abu Samah, A.; Othman, F.

    2012-04-01

    Due to land use and climate changes, more severe and frequent floods occur worldwide. Flood simulation as the first step in flood risk management can be robustly conducted with integration of GIS, RS and flood modeling tools. The primary goal of this research is to examine the practical use of public domain satellite data and GIS-based hydrologic model. Firstly, database development process is described. GIS tools and techniques were used in the light of relevant literature to achieve the appropriate database. Watershed delineation and parameterizations were carried out using cartographic DEM derived from digital topography at a scale of 1:25 000 with 30 m cell size and SRTM elevation data at 30 m cell size. The SRTM elevation dataset is evaluated and compared with cartographic DEM. With the assistance of statistical measures such as Correlation coefficient (r), Nash-Sutcliffe efficiency (NSE), Percent Bias (PBias) or Percent of Error (PE). According to NSE index, SRTM-DEM can be used for watershed delineation and parameterization with 87% similarity with Topo-DEM in a complex and underdeveloped terrains. Primary TRMM (V6) data was used as satellite based hytograph for rainfall-runoff simulation. The SCS-CN approach was used for losses and kinematic routing method employed for hydrograph transformation through the reaches. It is concluded that TRMM estimates do not give adequate information about the storms as it can be drawn from the rain gauges. Event-based flood modeling using HEC-HMS proved that SRTM elevation dataset has the ability to obviate the lack of terrain data for hydrologic modeling where appropriate data for terrain modeling and simulation of hydrological processes is unavailable. However, TRMM precipitation estimates failed to explain the behavior of rainfall events and its resultant peak discharge and time of peak.

  16. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Mair, Alan; El-Kadi, Aly I.

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (> 1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach.

  17. Mean Dynamic Topography of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  18. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis.

    PubMed

    Annibali, Daniela; Whitfield, Jonathan R; Favuzzi, Emilia; Jauset, Toni; Serrano, Erika; Cuartas, Isabel; Redondo-Campos, Sara; Folch, Gerard; Gonzàlez-Juncà, Alba; Sodir, Nicole M; Massó-Vallés, Daniel; Beaulieu, Marie-Eve; Swigart, Lamorna B; Mc Gee, Margaret M; Somma, Maria Patrizia; Nasi, Sergio; Seoane, Joan; Evan, Gerard I; Soucek, Laura

    2014-08-18

    Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells.

  19. Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Scherler, Dirk

    2017-12-01

    The analysis of longitudinal river profiles is an important tool for studying landscape evolution. However, characterizing river profiles based on digital elevation models (DEMs) suffers from errors and artifacts that particularly prevail along valley bottoms. The aim of this study is to characterize uncertainties that arise from the analysis of river profiles derived from different, near-globally available DEMs. We devised new algorithms - quantile carving and the CRS algorithm - that rely on quantile regression to enable hydrological correction and the uncertainty quantification of river profiles. We find that globally available DEMs commonly overestimate river elevations in steep topography. The distributions of elevation errors become increasingly wider and right skewed if adjacent hillslope gradients are steep. Our analysis indicates that the AW3D DEM has the highest precision and lowest bias for the analysis of river profiles in mountainous topography. The new 12 m resolution TanDEM-X DEM has a very low precision, most likely due to the combined effect of steep valley walls and the presence of water surfaces in valley bottoms. Compared to the conventional approaches of carving and filling, we find that our new approach is able to reduce the elevation bias and errors in longitudinal river profiles.

  20. Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas.

    PubMed

    Schenk, P M; McKinnon, W B; Gwynn, D; Moore, J M

    2001-03-01

    Large regions of the jovian moon Ganymede have been resurfaced, but the means has been unclear. Suggestions have ranged from volcanic eruptions of liquid water or solid ice to tectonic deformation, but definitive high-resolution morphological evidence has been lacking. Here we report digital elevation models of parts of the surface of Ganymede, derived from stereo pairs combining data from the Voyager and Galileo spacecraft, which reveal bright, smooth terrains that lie at roughly constant elevations 100 to 1,000 metres below the surrounding rougher terrains. These topographic data, together with new images that show fine-scale embayment and burial of older features, indicate that the smooth terrains were formed by flooding of shallow structural troughs by low-viscosity water-ice lavas. The oldest and most deformed areas (the 'reticulate' terrains) in general have the highest relative elevations, whereas units of the most common resurfaced type--the grooved terrain--lie at elevations between those of the smooth and reticulate terrains. Bright terrain, which accounts for some two-thirds of the surface, probably results from a continuum of processes, including crustal rifting, shallow flooding and groove formation. Volcanism plays an integral role in these processes, and is consistent with partial melting of Ganymede's interior.

  1. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  2. Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: a case study of the Supin-Upper Tons Basin, Indian Himalayas.

    PubMed

    Das, Sayantan; Patel, Priyank Pravin; Sengupta, Somasis

    2016-01-01

    With myriad geospatial datasets now available for terrain information extraction and particularly streamline demarcation, there arises questions regarding the scale, accuracy and sensitivity of the initial dataset from which these aspects are derived, as they influence all other parameters computed subsequently. In this study, digital elevation models (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V2), Shuttle Radar Topography Mission (SRTM V4, C-Band, 3 arc-second), Cartosat -1 (CartoDEM 1.0) and topographical maps (R.F. 1:250,000 and 1:50,000), have been used to individually extract and analyze the relief, surface, size, shape and texture properties of a mountainous drainage basin. Nestled inside a mountainous setting, the basin is a semi-elongated one with high relief ratio (>90), steep slopes (25°-30°) and high drainage density (>3.5 km/sq km), as computed from the different DEMs. The basin terrain and stream network is extracted from each DEM, whose morphometric attributes are compared with the surveyed stream networks present in the topographical maps, with resampling of finer DEM datasets to coarser resolutions, to reduce scale-implications during the delineation process. Ground truth verifications for altitudinal accuracy have also been done by a GPS survey. DEMs derived from the 1:50,000 topographical map and ASTER GDEM V2 data are found to be more accurate and consistent in terms of absolute accuracy, than the other generated or available DEM data products, on basis of the morphometric parameters extracted from each. They also exhibit a certain degree of proximity to the surveyed topographical map.

  3. The effect of energy accumulation and boundary slip on laminar flow between rotating plates

    NASA Astrophysics Data System (ADS)

    Wu, Zhenpeng; Zeng, Liangcai; Chen, Keying; Jin, Xiaohong; Wu, Shiqian

    2018-02-01

    The poor operating conditions of fluid lubrication equipment during the start-up process are due to the resistance of the high-viscosity lubricating liquid. Moreover, the excessive reduction in fluid viscosity due to the elevated temperature resulting from power consumption during prolonged operation is not conducive to the generation of dynamic pressure. In this study, we examine the effect of energy accumulation and boundary slip on the laminar flow of a liquid between a pair of rotating plates. The experiments are conducted using a rotary rheometer, with polymethyl methacrylate (PMMA) as the thermal insulation material and polytetrafluoroethylene (PTFE) as the slip drag reduction material, and a three-dimensional simulation model is established. This model is derived by combining the energy equation including the slip length and the heat conduction equation. Thus, the temperature changes over time are predicted by this model, and the model accuracy is verified by experiments. The results reveal the following points: 1) boundary slips function as a drag reduction mechanism for short-time continuous operation; 2) under prolonged operation, the slip reduces the extent of the oil viscosity decrease and clear control of the elevated temperature by the boundary slip is observed.

  4. Using Passive Sampling to Asses Ozone Formation in Sparsely Monitored Areas

    NASA Astrophysics Data System (ADS)

    Crosby, C. M.; Mainord, J.; George, L. A.

    2016-12-01

    Tropospheric ozone (O3), a secondary pollutant, is detrimental to both human health and the environment. O3 is formed from nitrogen oxides (NOx) and volatile organic compounds, (VOC's) in the presence of sunlight. Hermiston is a low population rural city in Oregon (17,707), where O3 levels are expected to be minimal. However, Hermiston has recently experienced elevated O3 concentrations, approaching EPA levels of non-attainment. These levels were not predicted by airshed modeling of the region, suggesting that precursor emissions are not adequately represented in the model. Due to the limited monitoring in the area, there are no measurements of precursors in the region. In this study, passive Ogawa samplers were used to measure NOx and O3 levels at twenty sites in the area. The concentrations were then mapped in conjunction with wind trajectories derived from HYSPLIT and compared to NOx point sources attained from the National Emissions Inventory (NEI). The measurement campaign revealed areas of elevated NOx concentrations that were not accounted for in the airshed model. Further exploration is needed to identify these sources. This study lays groundwork for the use of passive sampling to ground-truth airshed models in the absence of monitoring networks.

  5. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    NASA Astrophysics Data System (ADS)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.

  6. Derivation of surface properties from Magellan altimetry data

    NASA Astrophysics Data System (ADS)

    Lovell, Amy J.; Schloerb, F. Peter; McGill, George E.

    1992-12-01

    The fit of the Hagfors model to the Magellan altimetry data provides a means to characterize the surface properties of Venus. However, the derived surface properties are only meaningful if the model provides a good representation of the data. The Hagfors model provides a good representation of the data. The Hagfors model is generally a realistic fit to surface scattering properties of a nadir-directed antenna such as the Magellan altimeter; however, some regions of the surface of Venus are poorly described by the existing model, according to the goodness of fit parameter provided on the ARCDR CD-ROMs. Poorly characterized regions need to be identified and fit to new models in order to derive more accurate surface properties for use in inferring the geological processes that affect the surface in those regions. We have compared the goodness of fit of the Hagfors model to the distribution of features across the planet, and preliminary results show a correlation between steep topographic slopes and poor fits to the standard model, as has been noticed by others. In this paper, we investigate possible relations between many classes of features and the ability of the Hagfors model to fit the observed echo profiles. In the regions that are not well characterized by existing models, we calculate new models that compensate for topographic relief in order to derive improved estimates of surface properties. Areas investigated to date span from longitude 315 through 45, at all latitudes covered by Magellan. A survey of those areas yields preliminary results that suggest that topographically high regions are well suited to the current implementation of the Hagfors model. Striking examples of such large-scale good fits are Alpha Regio, the northern edges of Lada Terra, and the southern edge of Ishtar Terra. Other features that are typically well fit are the rims of coronae such as Heng-O and the peaks of volcanos such as Gula Mons. Surprisingly, topographically low regions, such as the ubiquitous plains areas, are modeled poorly in comparison. However, this generalization has has exceptions: Lakshmi Planum is an elevated region that is not well fit compared to the rest of neighboring Ishtar, while the southern parts of topographically low Guinevere Planitia are characterized quite well by the Hagfors model. Features that are candidates for improved models are impact craters, coronae, ridges of significant scale, complex ridged terrains, moderate-sized mountains, and sharp terrain boundaries. These features are chosen because the goodness of fit is likely to be most affected either by departures from normal incidence angles or by sharp changes in terrain type within a single footprint. Most large features that are elevated with respect to their surroundings will suffer from steep slope effects, and smaller coronae and impact craters will probably suffer due to rapid changes in their appearance within a single footprint (10-20 km).

  7. Derivation of surface properties from Magellan altimetry data

    NASA Technical Reports Server (NTRS)

    Lovell, Amy J.; Schloerb, F. Peter; Mcgill, George E.

    1992-01-01

    The fit of the Hagfors model to the Magellan altimetry data provides a means to characterize the surface properties of Venus. However, the derived surface properties are only meaningful if the model provides a good representation of the data. The Hagfors model provides a good representation of the data. The Hagfors model is generally a realistic fit to surface scattering properties of a nadir-directed antenna such as the Magellan altimeter; however, some regions of the surface of Venus are poorly described by the existing model, according to the goodness of fit parameter provided on the ARCDR CD-ROMs. Poorly characterized regions need to be identified and fit to new models in order to derive more accurate surface properties for use in inferring the geological processes that affect the surface in those regions. We have compared the goodness of fit of the Hagfors model to the distribution of features across the planet, and preliminary results show a correlation between steep topographic slopes and poor fits to the standard model, as has been noticed by others. In this paper, we investigate possible relations between many classes of features and the ability of the Hagfors model to fit the observed echo profiles. In the regions that are not well characterized by existing models, we calculate new models that compensate for topographic relief in order to derive improved estimates of surface properties. Areas investigated to date span from longitude 315 through 45, at all latitudes covered by Magellan. A survey of those areas yields preliminary results that suggest that topographically high regions are well suited to the current implementation of the Hagfors model. Striking examples of such large-scale good fits are Alpha Regio, the northern edges of Lada Terra, and the southern edge of Ishtar Terra. Other features that are typically well fit are the rims of coronae such as Heng-O and the peaks of volcanos such as Gula Mons. Surprisingly, topographically low regions, such as the ubiquitous plains areas, are modeled poorly in comparison. However, this generalization has has exceptions: Lakshmi Planum is an elevated region that is not well fit compared to the rest of neighboring Ishtar, while the southern parts of topographically low Guinevere Planitia are characterized quite well by the Hagfors model. Features that are candidates for improved models are impact craters, coronae, ridges of significant scale, complex ridged terrains, moderate-sized mountains, and sharp terrain boundaries. These features are chosen because the goodness of fit is likely to be most affected either by departures from normal incidence angles or by sharp changes in terrain type within a single footprint. Most large features that are elevated with respect to their surroundings will suffer from steep slope effects, and smaller coronae and impact craters will probably suffer due to rapid changes in their appearance within a single footprint (10-20 km).

  8. Extended Empirical Roadside Shadowing model from ACTS mobile measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard

    1995-01-01

    Employing multiple data bases derived from land-mobile satellite measurements using the Advanced Communications Technology Satellite (ACTS) at 20 GHz, MARECS B-2 at 1.5 GHz, and helicopter measurements at 870 MHz and 1.5 GHz, the Empirical Road Side Shadowing Model (ERS) has been extended. The new model (Extended Empirical Roadside Shadowing Model, EERS) may now be employed at frequencies from UHF to 20 GHz, at elevation angles from 7 to 60 deg and at percentages from 1 to 80 percent (0 dB fade). The EERS distributions are validated against measured ones and fade deviations associated with the model are assessed. A model is also presented for estimating the effects of foliage (or non-foliage) on 20 GHz distributions, given distributions from deciduous trees devoid of leaves (or in full foliage).

  9. Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+data.

    Treesearch

    D.L. Verbyla; E.S. Kasischke; E.E. Hoy

    2008-01-01

    The maximum solar elevation is typically less than 50 degrees in the Alaskan boreal region and solar elevation varies substantially during the growing season. Because of the relatively low solar elevation at boreal latitudes, the effect of topography on spectral reflectance can influence fire severity indices derived from remotely sensed data. We used Landsat Thematic...

  10. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  11. Derivation of GPS TEC and receiver bias for Langkawi station in Malaysia

    NASA Astrophysics Data System (ADS)

    Teh, W. L.; Chen, W. S.; Abdullah, M.

    2017-05-01

    This paper presents the polynomial-type TEC model to derive total electron content (TEC) and receiver bias for Langkawi (LGKW) station in Malaysia at geographic latitude of 6.32° and longitude of 99.85°. The model uses a polynomial function of coordinates of the ionospheric piercing point to describe the TEC distribution in space. In the model, six polynomial coefficients and a receiver bias are unknown which can be solved by the least squares method. A reasonable agreement is achieved for the derivation of TEC and receiver bias for IENG station in Italy, as compared with that derived by the IGS analysis center, CODE. We process one year of LGKW data in 2010 and show the monthly receiver bias and the seasonal TEC variation. The monthly receiver bias varies between -48 and -24 TECu (1016 electrons/m2), with the mean value at -37 TECu. Large variations happen in the monthly receiver biases due to the low data coverage of high satellite elevation angle (60° < α ≤ 90°). Post-processing TEC approach is implemented which can resolve the wavy pattern of the monthly TEC baseline resulted from the large variation of the receiver bias. The seasonal TEC variation at LGKW exhibits a semi-annual variation, where the peak occurs during equinoctial months, and the trough during summer and winter months.

  12. Comparing different methods to model scenarios of future glacier change for the entire Swiss Alps

    NASA Astrophysics Data System (ADS)

    Linsbauer, A.; Paul, F.; Haeberli, W.

    2012-04-01

    There is general agreement that observed climate change already has strong impacts on the cryosphere. The rapid shrinkage of glaciers during the past two decades as observed in many mountain ranges globally and in particular in the Alps, are impressive confirmations of a changed climate. With the expected future temperature increase glacier shrinkage will likely further accelerate and their role as an important water resource more and more diminish. To determine the future contribution of glaciers to run-off with hydrological models, the change in glacier area and/or volume must be considered. As these models operate at regional scales, simplified approaches to model the future development of all glaciers in a mountain range need to be applied. In this study we have compared different simplified approaches to model the area and volume evolution of all glaciers in the Swiss Alps over the 21st century according to given climate change scenarios. One approach is based on an upward shift of the ELA (by 150 m per degree temperature increase) and the assumption that the glacier extent will shrink until the smaller accumulation area covers again 60% of the total glacier area. A second approach is based on observed elevation changes between 1985 and 2000 as derived from DEM differencing for all glaciers in Switzerland. With a related elevation-dependent parameterization of glacier thickness change and a modelled glacier thickness distribution, the 15-year trends in observed thickness loss are extrapolated into the future with glacier area loss taking place when thickness becomes zero. The models show an overall glacier area reduction between 60-80% until 2100 with some ice remaining at the highest elevations. However, compared to the ongoing temperature increase and considering that several reinforcement feedbacks (albedo lowering, lake formation) are not accounted for, the real area loss might even be stronger. Uncertainties in the modelled glacier thickness have only a small influence on the final area loss, but influence the temporal evolution of the loss. In particular the largest valley glaciers will suffer from a strong volume loss, as large parts of their beds have a small inclination and are thus located at low elevations.

  13. Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics.

    PubMed

    Konow, Nicolai; Sanford, Christopher P J

    2008-11-01

    A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.

  14. Greenland uplift and regional sea level changes from ICESat observations and GIA modelling

    NASA Astrophysics Data System (ADS)

    Spada, G.; Ruggieri, G.; Sørensen, L. S.; Nielsen, K.; Melini, D.; Colleoni, F.

    2012-06-01

    We study the implications of a recently published mass balance of the Greenland ice sheet (GrIS), derived from repeated surface elevation measurements from NASA's ice cloud and land elevation satellite (ICESat) for the time period between 2003 and 2008. To characterize the effects of this new, high-resolution GrIS mass balance, we study the time-variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts of Greenland. Long-wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short-wavelength components of vertical uplift in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high-resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated with the process of glacial-isostatic adjustment (GIA), according to a set of published ice chronologies and associated mantle rheological profiles. We compare the sensitivity of global positioning system (GPS) observations along the coasts of Greenland to the ongoing ER and GIA. In notable contrast with past reports, we show that vertical velocities obtained by GPS data from five stations with sufficiently long records and from one tide gauge at the GrIS margins can be reconciled with model predictions based on the ICE-5G deglaciation model and the ER associated with the new ICESat-derived mass balance.

  15. Metabolomic Profiling Reveals Mitochondrial-Derived Lipid Biomarkers That Drive Obesity-Associated Inflammation

    PubMed Central

    Sampey, Brante P.; Freemerman, Alex J.; Zhang, Jimmy; Kuan, Pei-Fen; Galanko, Joseph A.; O'Connell, Thomas M.; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Stevens, Robert D.; Newgard, Christopher B.; Brauer, Heather A.; Troester, Melissa A.; Makowski, Liza

    2012-01-01

    Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to “Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome. PMID:22701716

  16. A Bayesian kriging approach for blending satellite and ground precipitation observations

    USGS Publications Warehouse

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution of the “true” observed precipitation value at each grid cell.

  17. Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai‘i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011-2013

    USGS Publications Warehouse

    Poland, Michael P.

    2014-01-01

    Differencing digital elevation models (DEMs) derived from TerraSAR add-on for Digital Elevation Measurements (TanDEM-X) synthetic aperture radar imagery provides a measurement of elevation change over time. On the East Rift Zone (EZR) of Kīlauea Volcano, Hawai‘i, the effusion of lava causes changes in topography. When these elevation changes are summed over the area of an active lava flow, it is possible to quantify the volume of lava emplaced at the surface during the time spanned by the TanDEM-X data—a parameter that can be difficult to measure across the entirety of an ~100 km2 lava flow field using ground-based techniques or optical remote sensing data. Based on the differences between multiple TanDEM-X-derived DEMs collected days to weeks apart, the mean dense-rock equivalent time-averaged discharge rate of lava at Kīlauea between mid-2011 and mid-2013 was approximately 2 m3/s, which is about half the long-term average rate over the course of Kīlauea's 1983–present ERZ eruption. This result implies that there was an increase in the proportion of lava stored versus erupted, a decrease in the rate of magma supply to the volcano, or some combination of both during this time period. In addition to constraining the time-averaged discharge rate of lava and the rates of magma supply and storage, topographic change maps derived from space-based TanDEM-X data provide insights into the four-dimensional evolution of Kīlauea's ERZ lava flow field. TanDEM-X data are a valuable complement to other space-, air-, and ground-based observations of eruptive activity at Kīlauea and offer great promise at locations around the world for aiding with monitoring not just volcanic eruptions but any hazardous activity that results in surface change, including landslides, floods, earthquakes, and other natural and anthropogenic processes.

  18. Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Jakosky, B. M.

    1979-01-01

    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.

  19. Action levels for airborne uranium in the workplace: chemical and radiological assessments.

    PubMed

    Leggett, R W; Meck, R A

    2018-06-01

    A method is described for deriving two levels of action-an investigation level (IL) and an immediate action level (IAL)-for different forms and mixtures of the natural uranium (U) isotopes 234 U, 235 U, and 238 U in air in the workplace. An IL indicates the need to confirm the validity of moderately elevated measurements of airborne U and adequacy of confinement controls and determine whether work limitations are appropriate. An IAL indicates that safeguards should be put into place immediately, including removal of workers from further exposure until conditions are acceptable. Derivations of ILs and IALs are based on latest radiation protection guidance, information on chemical toxicity of U, and biokinetic models for U. An action level (IL or IAL) is the more restrictive of two derived values, the action level based on U as a chemical hazard and the action level based on U as a radiation hazard.

  20. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  1. Building a high resolution national elevation model from SRTM: The Australian experience

    NASA Astrophysics Data System (ADS)

    Gallant, J. C.; Read, A.; Dowling, T. I.

    2011-12-01

    The global SRTM DEM is a valuable global data set that, for many countries including Australia, provides the best basis for a fine resolution national DEM. But the SRTM data suffers from a variety of artefacts and errors that prevent its routine application with familiar terrain analysis tools. The most important of these are stripes, voids, random noise and offsets due to trees. The tree offsets are particularly disruptive in riparian areas where they make rivers appear as ridge lines. This paper describes how a suite of tools was applied to the 1 second SRTM data for Australia to treat each of these artefacts. An FFT-based tool was developed to detect and remove regular striping. Voids were filled using a modification of the delta surface fill method. Offsets due to trees were modelled and removed using a vegetation mask derived from remotely sensed imagery and a statistical estimate of the offset at vegetation patch boundaries. Random noise was removed using an adaptive smoothing method that responds to variations in both local relief and noise magnitude. Finally, mapped channel networks were imposed using a modified version of the ANUDEM software to enforce hydrological connectivity. The resulting products are being distributed by Geoscience Australia and the smoothed and drainage enforced products in particular are suitable for use in routine terrain analysis tasks. With some adaptation, the same processes could be applied to the global SRTM to derive a product that, in combination with an improved ASTER G-DEM, would provide a high quality comprehensive global elevation model suitable for most purposes.

  2. Online, On Demand Access to Coastal Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Long, J.; Bristol, S.; Long, D.; Thompson, S.

    2014-12-01

    Process-based numerical models for coastal waves, water levels, and sediment transport are initialized with digital elevation models (DEM) constructed by interpolating and merging bathymetric and topographic elevation data. These gridded surfaces must seamlessly span the land-water interface and may cover large regions where the individual raw data sources are collected at widely different spatial and temporal resolutions. In addition, the datasets are collected from different instrument platforms with varying accuracy and may or may not overlap in coverage. The lack of available tools and difficulties in constructing these DEMs lead scientists to 1) rely on previously merged, outdated, or over-smoothed DEMs; 2) discard more recent data that covers only a portion of the DEM domain; and 3) use inconsistent methodologies to generate DEMs. The objective of this work is to address the immediate need of integrating land and water-based elevation data sources and streamline the generation of a seamless data surface that spans the terrestrial-marine boundary. To achieve this, the U.S. Geological Survey (USGS) is developing a web processing service to format and initialize geoprocessing tasks designed to create coastal DEMs. The web processing service is maintained within the USGS ScienceBase data management system and has an associated user interface. Through the map-based interface, users define a geographic region that identifies the bounds of the desired DEM and a time period of interest. This initiates a query for elevation datasets within federal science agency data repositories. A geoprocessing service is then triggered to interpolate, merge, and smooth the data sources creating a DEM based on user-defined configuration parameters. Uncertainty and error estimates for the DEM are also returned by the geoprocessing service. Upon completion, the information management platform provides access to the final gridded data derivative and saves the configuration parameters for future reference. The resulting products and tools developed here could be adapted to future data sources and projects beyond the coastal environment.

  3. Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World

    PubMed Central

    Anderson, Alexander S.; Storlie, Collin J.; Shoo, Luke P.; Pearson, Richard G.; Williams, Stephen E.

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species’ environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species’ actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species’ responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity. PMID:23936005

  4. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world.

    PubMed

    Anderson, Alexander S; Storlie, Collin J; Shoo, Luke P; Pearson, Richard G; Williams, Stephen E

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.

  5. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data

    USGS Publications Warehouse

    Crowley, J.K.; Hubbard, B.E.; Mars, J.C.

    2003-01-01

    Remote sensing data from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the first spaceborne imaging spectrometer, Hyperion, show hydrothermally altered rocks mainly composed of natroalunite, kaolinite, cristobalite, and gypsum on both the Mount Shasta and Shastina cones. Field observations indicate that much of the visible altered rock consists of talus material derived from fractured rock zones within and adjacent to dacitic domes and nearby lava flows. Digital elevation data were utilized to distinguish steeply sloping altered bedrock from more gently sloping talus materials. Volume modeling based on the imagery and digital elevation data indicate that Mount Shasta drainage systems contain moderate volumes of altered rock, a result that is consistent with Mount Shasta's Holocene record of mostly small to moderate debris flows. Similar modeling for selected areas at Mount Rainier and Mount Adams, Washington, indicates larger altered rock volumes consistent with the occurrence of much larger Holocene debris flows at those volcanoes. The availability of digital elevation and spectral data from spaceborne sensors, such as Hyperion and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), greatly expands opportunities for studying potential debris flow source characteristics at stratovolcanoes around the world. ?? 2003 Elsevier Inc. All rights reserved.

  6. Structural analysis of muscles elevating the hyolaryngeal complex.

    PubMed

    Pearson, William G; Langmore, Susan E; Yu, Louis B; Zumwalt, Ann C

    2012-12-01

    A critical event of pharyngeal swallowing is the elevation of the hyolaryngeal complex to open the upper esophageal sphincter. Current swallowing theory assigns this function to the submental and thyrohyoid muscles. However, the attachments of the long pharyngeal muscles indicate that they could contribute to this function, yet their role is uninvestigated in humans. In addition, there is evidence the posterior digastric and stylohyoid contribute to hyoid elevation. A cadaver model was used to document the structural properties of muscles. These properties were used to model muscle groups as force vectors and analyze their potential for hyolaryngeal elevation. Vector magnitude was determined using physiological cross-sectional areas (PCSAs) of muscles calculated from structural properties of muscle taken from 12 hemisected cadaver specimens. Vector direction (lines of action) was calculated from the three-dimensional coordinates of muscle attachment sites. Unit force vectors in the superior direction of submental, suprahyoid (which includes the submental muscles), long pharyngeal, and thyrohyoid muscles were derived and compared by an analysis of variance (ANOVA) to document each muscle's potential contribution to hyolaryngeal elevation. An ANOVA with Tukey HSD post hoc analysis of unit force vectors showed no statistically significant difference between the submental (0.92 ± 0.24 cm(2)) and long pharyngeal (0.73 ± 0.20 cm(2)) muscles. Both demonstrated greater potential to elevate the hyolaryngeal complex than the thyrohyoid (0.49 ± 0.18 cm(2)), with P < 0.01 and P < 0.05, respectively. The suprahyoid muscles (1.52 ± 0.35 cm(2)) demonstrated the greatest potential to elevate the hyolaryngeal complex: greater than both the long pharyngeal muscles (P < 0.01) and the thyrohyoid (P < 0.01). The submental and thyrohyoid muscles by convention are thought to elevate the hyolaryngeal complex. This study demonstrates that structurally the long pharyngeal muscles have similar potential to contribute to this critical function, with the suprahyoid muscles having the greatest potential. If verified by functional data, these findings would amend current swallowing theory.

  7. The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion

    USGS Publications Warehouse

    Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.

    2005-01-01

    Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.

  8. Southern Alaska Glaciers: Spatial and Temporal Variations in Ice Volume

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Molnia, B. F.; Luthcke, S.; Rowlands, D.; Harding, D.; Carabajal, C.; Hurtado, J. M.; Spada, G.

    2004-12-01

    Although temperate mountain glaciers comprise less than 1% of the glacier-covered area on Earth, they are important because they appear to be melting rapidly under present climatic conditions and, therefore, make significant contributions to rising sea level. In this study, we use ICESat observations made in the last 1.5 years of southern Alaska glaciers to estimate ice elevation profiles, ice surface slopes and roughness, and bi-annual and/or annual ice elevation changes. We report initial results from the near coastal region between Yakutat Bay and Cape Suckling that includes the Malaspina and Bering Glaciers. We show and interpret ice elevations changes across the lower reaches of the Bagley Ice Valley for the period between October 2003 and May 2004. In addition, we use off-nadir pointing observations to reference tracks over the Bering and Malaspina Glaciers in order to estimate annual ice elevation change. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topography Mission (SRTM) derived DEMs are used to estimate across track regional slopes between ICESat data acquisitions. Although the distribution and quantity of ICESat elevation profiles with multiple, exact repeat data is currently limited in Alaska, individual ICESat data tracks, provide an accurate reference surface for comparison to other elevation data (e.g. ASTER and SRTM X- and C-band derived DEMs). Specifically we report the elevation change over the Malaspina Glacier's piedmont lobe between a DEM derived from SRTM C-band data acquired in Feb. 2000 and ICESat Laser #2b data from Feb.-March 2004. We also report use of ICESat elevation data to enhance ASTER derived absolute DEMs. Mountain glaciers generally have rougher surfaces and steeper regional slopes than the ice sheets for which the ICESat design was optimized. Therefore, rather than averaging ICESat observations over large regions or relying on crossovers, we are working with well-located ICESat footprint returns to estimate glacier ice elevations and surface characteristics. To obtain the optimal ICESat results, we are reprocessing the ICESat data from Alaska to provide a well-calibrated regional ICESat solution. We anticipate that our ICESat results combined with earlier data will provide new constraints on the temporal and spatial variations in ice volume of individual Alaskan mountain ranges. These results allow us to address how recent melting of the southern Alaska glaciers contribute to short-term sea-level rise. Our results will also enable us to quantify crustal stress changes due to ice mass fluctuations and to assess the influence of ice mass changes on the seismically active southern Alaskan plate boundary zone.

  9. Epicardial potentials computed from the body surface potential map using inverse electrocardiography and an individualised torso model improve sensitivity for acute myocardial infarction diagnosis.

    PubMed

    Daly, Michael J; Finlay, Dewar D; Guldenring, Daniel; Bond, Raymond R; McCann, Aaron J; Scott, Peter J; Adgey, Jennifer A; Harbinson, Mark T

    2017-12-01

    Epicardial potentials (EPs) derived from the body surface potential map (BSPM) improve acute myocardial infarction (AMI) diagnosis. In this study, we compared EPs derived from the 80-lead BSPM using a standard thoracic volume conductor model (TVCM) with those derived using a patient-specific torso model (PSTM) based on body mass index (BMI). Consecutive patients presenting to both the emergency department and pre-hospital coronary care unit between August 2009 and August 2011 with acute ischaemic-type chest pain at rest were enrolled. At first medical contact, 12-lead electrocardiograms and BSPMs were recorded. The BMI for each patient was calculated. Cardiac troponin T (cTnT) was sampled 12 hours after symptom onset. Patients were excluded from analysis if they had any ECG confounders to interpretation of the ST-segment. A cardiologist assessed the 12-lead ECG for ST-segment elevation myocardial infarction by Minnesota criteria and the BSPM. BSPM ST-elevation (STE) was ⩾0.2 mV in anterior, ⩾0.1 mV in lateral, inferior, right ventricular or high right anterior and ⩾0.05 mV in posterior territories. To derive EPs, the BSPM data were interpolated to yield values at 352 nodes of a Dalhousie torso. Using an inverse solution based on the boundary element method, EPs at 98 cardiac nodes positioned within a standard TVCM were derived. The TVCM was then scaled to produce a PSTM using a model developed from computed tomography in 48 patients of varying BMIs, and EPs were recalculated. EPs >0.3 mV defined STE. A cardiologist blinded to both the 12-lead ECG and BSPM interpreted the EP map. AMI was defined as cTnT ⩾0.1 µg/L. Enrolled were 400 patients (age 62 ± 13 years; 57% male); 80 patients had exclusion criteria. Of the remaining 320 patients, the BMI was an average of 27.8 ± 5.6 kg/m 2 . Of these, 180 (56%) had AMI. Overall, 132 had Minnesota STE on ECG (sensitivity 65%, specificity 89%) and 160 had BSPM STE (sensitivity 81%, specificity 90%). EP STE occurred in 165 patients using TVCM (sensitivity 88%, specificity 95%; p < 0.001) and in 206 patients using PSTM (sensitivity 98%, specificity 79%; p < 0.001). Of those with AMI by cTnT and EPs ⩽0.3 mV using TVCM ( n = 22), 18 (82%) patients had EPs >0.3 mV when an individualised PSTM was used. Among patients presenting with ischaemic-type chest pain at rest, EPs derived from BSPM using a novel PSTM significantly improve sensitivity for AMI diagnosis.

  10. Deriving Two-Dimensional Ocean Wave Spectra and Surface Height Maps from the Shuttle Imaging Radar (SIR-B)

    NASA Technical Reports Server (NTRS)

    Tilley, D. G.

    1986-01-01

    Directional ocean wave spectra were derived from Shuttle Imaging Radar (SIR-B) imagery in regions where nearly simultaneous aircraft-based measurements of the wave spectra were also available as part of the NASA Shuttle Mission 41G experiments. The SIR-B response to a coherently speckled scene is used to estimate the stationary system transfer function in the 15 even terms of an eighth-order two-dimensional polynomial. Surface elevation contours are assigned to SIR-B ocean scenes Fourier filtered using a empirical model of the modulation transfer function calibrated with independent measurements of wave height. The empirical measurements of the wave height distribution are illustrated for a variety of sea states.

  11. Consideration of vertical uncertainty in elevation-based sea-level rise assessments: Mobile Bay, Alabama case study

    USGS Publications Warehouse

    Gesch, Dean B.

    2013-01-01

    The accuracy with which coastal topography has been mapped directly affects the reliability and usefulness of elevationbased sea-level rise vulnerability assessments. Recent research has shown that the qualities of the elevation data must be well understood to properly model potential impacts. The cumulative vertical uncertainty has contributions from elevation data error, water level data uncertainties, and vertical datum and transformation uncertainties. The concepts of minimum sealevel rise increment and minimum planning timeline, important parameters for an elevation-based sea-level rise assessment, are used in recognition of the inherent vertical uncertainty of the underlying data. These concepts were applied to conduct a sea-level rise vulnerability assessment of the Mobile Bay, Alabama, region based on high-quality lidar-derived elevation data. The results that detail the area and associated resources (land cover, population, and infrastructure) vulnerable to a 1.18-m sea-level rise by the year 2100 are reported as a range of values (at the 95% confidence level) to account for the vertical uncertainty in the base data. Examination of the tabulated statistics about land cover, population, and infrastructure in the minimum and maximum vulnerable areas shows that these resources are not uniformly distributed throughout the overall vulnerable zone. The methods demonstrated in the Mobile Bay analysis provide an example of how to consider and properly account for vertical uncertainty in elevation-based sea-level rise vulnerability assessments, and the advantages of doing so.

  12. Constraining the Carbon Cycle through Tree Rings: A Case Study of the Valles Caldera, NM

    NASA Astrophysics Data System (ADS)

    Alexander, M. R.; Babst, F.; Moore, D. J.; Trouet, V.

    2013-12-01

    Terrestrial ecosystems take up approximately 120 Gt of carbon as Gross Primary Productivity (GPP) from the atmosphere annually, but it is challenging to track the allocation of that carbon throughout the biosphere. Here, we combine eddy covariance measurements of net carbon uptake with above ground biomass increments derived from tree-ring data to better understand the interannual variability associated with biomass accumulation. In the summer of 2012, we collected tree cores near two eddy covariance towers in the Jemez Mountains of northern New Mexico. One tower was located in an upper elevation mixed-conifer forest, and the other in a lower elevation Pinus ponderosa forest. Our analysis shows that the annual above ground biomass increment accounted for approximately 40% of the GPP at the lower elevation Pinus ponderosa site and approximately 70% of GPP at the upper elevation mixed-conifer site. We have also used the above ground biomass increment to constrain the Simple Photosynthesis EvapoTranspiration (SiPNET) model to gain a better understanding of allocation within the forest. Tree growth at both elevations was negatively influenced by spring (March-June) temperature and positively by cool season (October-April) precipitation and warm (May-September) and cool season PDSI. We also analyzed the six most extreme temperature and moisture (PDSI) years of the record to determine the response of productivity to climatic forcing. During the driest years, biomass production was reduced by 40% at the upper elevation site and 43% at the lower elevation site. During the hottest years of the record the biomass decreased 28% at the upper site and 45% at the lower site. Our results indicate that tree rings can be used to effectively constrain the above ground biomass component of a forest's carbon budget and to estimate allocation of carbon to woody biomass as a function of climate. However, many variables remain unknown. The combined results of the extreme year analyses and the derived biomass increments illustrate that the forests at the Valles Caldera are considerably less productive during years of extreme drought and warmer than average temperatures. With future projections calling for consecutive years of extreme conditions in the American Southwest, this could have a substantial effect on the overall productivity of these forests.

  13. The 3D Elevation Program: summary for Puerto Rico

    USGS Publications Warehouse

    Carswell, William J.

    2016-02-03

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, scientific research, national security, recreation, and many others. For the Commonwealth of Puerto Rico, elevation data are critical for flood risk management, landslide mitigation, natural resources conservation, sea level rise and subsidence, coastal zone management, infrastructure and construction management, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, U.S. territorial, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States, Hawaii, and selected U.S. territories, and quality level 5 interferometric synthetic aperture radar (IfSAR) data for Alaska, all with a 6- to 10-year acquisition cycle, provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A‒16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other three-dimensional (3D) representations of the Nation’s natural and constructed features.

  14. The 3D Elevation Program: summary for Hawaii

    USGS Publications Warehouse

    Carswell, William J.

    2016-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Hawaii, elevation data are critical for infrastructure and construction management, flood risk management, geologic resource assessment and hazard mitigation, natural resources conservation, coastal zone management, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, U.S. territorial, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States, Hawaii, and selected U.S. territories, and quality level 5 interferometric synthetic aperture radar (IfSAR) data for Alaska, all with a 6- to 10-year acquisition cycle, provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey, the Office of Management and Budget Circular A–16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other three-dimensional (3D) representations of the Nation’s natural and constructed features.

  15. Radar image and data fusion for natural hazards characterisation

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  16. Cartography of the Luna-21 landing site and Lunokhod-2 traverse area based on Lunar Reconnaissance Orbiter Camera images and surface archive TV-panoramas

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Kozlova, N. A.; Kokhanov, A. A.; Zubarev, A. E.; Nadezhdina, I. E.; Patratiy, V. D.; Konopikhin, A. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Oberst, J.; Haase, I.; Jolliff, B. L.; Plescia, J. B.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) system consists of a Wide Angle Camera (WAC) and Narrow Angle Camera (NAC). NAC images (∼0.5 to 1.7 m/pixel) reveal details of the Luna-21 landing site and Lunokhod-2 traverse area. We derived a Digital Elevation Model (DEM) and an orthomosaic for the study region using photogrammetric stereo processing techniques with NAC images. The DEM and mosaic allowed us to analyze the topography and morphology of the landing site area and to map the Lunokhod-2 rover route. The total range of topographic elevation along the traverse was found to be less than 144 m; and the rover encountered slopes of up to 20°. With the orthomosaic tied to the lunar reference frame, we derived coordinates of the Lunokhod-2 landing module and overnight stop points. We identified the exact rover route by following its tracks and determined its total length as 39.16 km, more than was estimated during the mission (37 km), which until recently was a distance record for planetary robotic rovers held for more than 40 years.

  17. Investigation of potential sea level rise impact on the Nile Delta, Egypt using digital elevation models.

    PubMed

    Hasan, Emad; Khan, Sadiq Ibrahim; Hong, Yang

    2015-10-01

    In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile Delta is projected to face SLR of 1 m by the end of the 21th century. In order to provide a more accurate assessment of the future SLR impact on Nile Delta's land and population, this study corrected the DEM's elevations by using linear regression model with ground elevations from GPS survey. The information for the land cover types and future population numbers were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds (GPWv3) datasets respectively. The DEM's vertical accuracies were assessed using GPS measurements and the uncertainty analysis revealed that the SRTM-DEM has positive bias of 2.5 m, while the ASTER-GDEM-V2 showed a positive bias of 0.8 m. The future inundated land cover areas and the affected population were illustrated based on two SLR scenarios of 0.5 m and 1 m. The SRTM DEM data indicated that 1 m SLR will affect about 3900 km(2) of cropland, 1280 km(2) of vegetation, 205 km(2) of wetland, 146 km(2) of urban areas and cause more than 6 million people to lose their houses. The overall vulnerability assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense and confined along the coastal areas. For instance, the data indicated that 1 m SLR will inundate about 580 Km(2) (6%) of the total land cover areas and approximately 887 thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM's elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best to determine the future impact of SLR on the Nile Delta region.

  18. Spatial models reveal the microclimatic buffering capacity of old-growth forests

    PubMed Central

    Frey, Sarah J. K.; Hadley, Adam S.; Johnson, Sherri L.; Schulze, Mark; Jones, Julia A.; Betts, Matthew G.

    2016-01-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming. PMID:27152339

  19. Spatial models reveal the microclimatic buffering capacity of old-growth forests.

    PubMed

    Frey, Sarah J K; Hadley, Adam S; Johnson, Sherri L; Schulze, Mark; Jones, Julia A; Betts, Matthew G

    2016-04-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming.

  20. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data.

    PubMed

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Motagh, Mahdi; Waske, Bjoern

    2016-11-15

    Water scarcity in the dry season is a vital problem in dryland regions such as northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of various sizes. However, inventory data for these reservoirs is often limited due to the expense and time required for their acquisition via field surveys, particularly in remote areas. Remote sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys for water resource management. In this study single pass TanDEM-X data acquired in bistatic mode were used to generate digital elevation models (DEMs) in the Madalena catchment, northeastern Brazil. Validation with differential global positioning system (DGPS) data from field measurements indicated an absolute elevation accuracy of approximately 1m for the TanDEM-X derived DEMs (TDX DEMs). The DEMs derived from TanDEM-X data acquired at low water levels show significant advantages over bathymetric maps derived from field survey, particularly with regard to coverage, evenly distributed measurements and replication of reservoir shape. Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free of emergent and submerged macrophytes, independent of water depth (e.g. >10m), water quality and even weather conditions. Thus, the method is superior to other existing bathymetric mapping approaches, particularly for inland water bodies. The proposed approach relies on (nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that show considerable water levels variations. However, comparisons between TDX DEM and the bathymetric map derived from field surveys show that the amount of water retained during the dry phase has only marginal impact on the total water volume derivation from TDX DEM. Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods constitute a useful and efficient data source for deriving reservoir bathymetry and show great potential in large scale application. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Development of a hydraulic model and flood-inundation maps for the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Boldt, Justin A.

    2018-01-16

    A two-dimensional hydraulic model and digital flood‑inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation.Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water‑surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water level.The availability of these maps, along with information on the internet regarding current stage from the USGS streamgage at Mount Carmel, Ill., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  2. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    USGS Publications Warehouse

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  3. PIM kinase inhibition presents a novel targeted therapy against triple-negative breast tumors with elevated MYC expression

    PubMed Central

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei

    2017-01-01

    Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705

  4. Large-scale modelling permafrost distribution in Ötztal, Pitztal and Kaunertal (Tyrol)

    NASA Astrophysics Data System (ADS)

    Hoinkes, S.; Sailer, R.; Lehning, M.; Steinkogler, W.

    2012-04-01

    Permafrost is an important element of the global cryosphere, which is seriously affected by climate change. Due to the fact that permafrost is a mostly invisible phenomenon, the area-wide distribution is not properly known. Point measurements are conducted to get information, whether permafrost is present at certain places or not. For an area wide distribution mapping, models have to be built and applied. Different kinds of permafrost distribution models already exist, which are based on different approaches and complexities. Differences in model approaches are mainly due to scaling issues, availability of input data and type of output parameters. In the presented work, we want to map and model the distribution of permafrost in the most elevated parts of the Ötztal, Pitztal and Kaunertal, which are situated in the Eastern European Alps and cover an area of approximately 750 km2. As air temperature is believed to be the best and simplest proxy for energy balance in mountainous regions, we took only the mean annual air temperature from the interpolated ÖKLIM dataset of the Central Institute of Meteorology and Geodynamics to calculate areas with possible presence of permafrost. In a second approach we took a high resolution digital elevation model (DEM) derived by air-borne laser scanning and calculated possible areas with permafrost based on elevation and aspect only which is an established approach among the permafrost community since years. These two simple approaches are compared with each other and in order to validate the model we will compare the outputs with point measurements such as temperature recorded at the snow-soil interface (BTS), continuous temperature data, rock glacier inventories, geophysical measurements. We show that the model based on the mean annual air temperature (≤ -2°C) only, would predict less permafrost in the northerly exposed slopes and in lower elevation than the model based on elevation and aspect. In the southern aspects, more permafrost areas are predicted, but the overall pattern of permafrost distribution is similar. Regarding the input parameters, their different spatial resolutions and the complex topography in high alpine terrain these differences in the results are evident. In a next step these two very simple approaches will be compared to a more complex hydro-meteorological three-dimensional simulation (ALPINE3D). First a one-dimensional model will be used to model permafrost presence at certain points and to calibrate the model parameters, further the model will be applied for the whole investigation area. The model output will be a map of probable permafrost distribution, where energy balance, topography, snow cover, (sub)surface material and land cover is playing a major role.

  5. Enhancing the Simplified Surface Energy Balance (SSEB) Approach for Estimating Landscape ET: Validation with the METRIC model

    USGS Publications Warehouse

    Senay, Gabriel B.; Budde, Michael E.; Verdin, James P.

    2011-01-01

    Evapotranspiration (ET) can be derived from satellite data using surface energy balance principles. METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration) is one of the most widely used models available in the literature to estimate ET from satellite imagery. The Simplified Surface Energy Balance (SSEB) model is much easier and less expensive to implement. The main purpose of this research was to present an enhanced version of the Simplified Surface Energy Balance (SSEB) model and to evaluate its performance using the established METRIC model. In this study, SSEB and METRIC ET fractions were compared using 7 Landsat images acquired for south central Idaho during the 2003 growing season. The enhanced SSEB model compared well with the METRIC model output exhibiting an r2 improvement from 0.83 to 0.90 in less complex topography (elevation less than 2000 m) and with an improvement of r2 from 0.27 to 0.38 in more complex (mountain) areas with elevation greater than 2000 m. Independent evaluation showed that both models exhibited higher variation in complex topographic regions, although more with SSEB than with METRIC. The higher ET fraction variation in the complex mountainous regions highlighted the difficulty of capturing the radiation and heat transfer physics on steep slopes having variable aspect with the simple index model, and the need to conduct more research. However, the temporal consistency of the results suggests that the SSEB model can be used on a wide range of elevation (more successfully up 2000 m) to detect anomalies in space and time for water resources management and monitoring such as for drought early warning systems in data scarce regions. SSEB has a potential for operational agro-hydrologic applications to estimate ET with inputs of surface temperature, NDVI, DEM and reference ET.

  6. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.E.; Verdin, J.P.

    2011-01-01

    Evapotranspiration (ET) can be derived from satellite data using surface energy balance principles. METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration) is one of the most widely used models available in the literature to estimate ET from satellite imagery. The Simplified Surface Energy Balance (SSEB) model is much easier and less expensive to implement. The main purpose of this research was to present an enhanced version of the Simplified Surface Energy Balance (SSEB) model and to evaluate its performance using the established METRIC model. In this study, SSEB and METRIC ET fractions were compared using 7 Landsat images acquired for south central Idaho during the 2003 growing season. The enhanced SSEB model compared well with the METRIC model output exhibiting an r2 improvement from 0.83 to 0.90 in less complex topography (elevation less than 2000m) and with an improvement of r2 from 0.27 to 0.38 in more complex (mountain) areas with elevation greater than 2000m. Independent evaluation showed that both models exhibited higher variation in complex topographic regions, although more with SSEB than with METRIC. The higher ET fraction variation in the complex mountainous regions highlighted the difficulty of capturing the radiation and heat transfer physics on steep slopes having variable aspect with the simple index model, and the need to conduct more research. However, the temporal consistency of the results suggests that the SSEB model can be used on a wide range of elevation (more successfully up 2000m) to detect anomalies in space and time for water resources management and monitoring such as for drought early warning systems in data scarce regions. SSEB has a potential for operational agro-hydrologic applications to estimate ET with inputs of surface temperature, NDVI, DEM and reference ET. ?? 2010.

  7. The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene

    PubMed Central

    2012-01-01

    Background Flax (Linum usitatissimum) is a potential source of many bioactive components that can be found in its oil and fibers, but also in the seedcake, which is rich in antioxidants. To increase the levels of medically beneficial compounds, a genetically modified flax type (named GT) with an elevated level of phenylopropanoids and their glycoside derivatives was generated. In this study, we investigated the influence of GT seedcake extract preparations on human fibroblast proliferation and migration, and looked at the effect on a human skin model. Moreover, we verified its activity against bacteria of clinical relevance. Methods The GT flax used in this study is characterized by overexpression of the glucosyltransferase gene derived from Solanum sogarandinum. Five GT seedcake preparations were generated. Their composition was assessed using ultra pressure liquid chromatography and confirmed using the UPLC-QTOF method. For the in vitro evaluation, the influence of the GT seedcake preparations on normal human dermal fibroblast proliferation was assessed using the MTT test and the wound scratch assay. A human skin model was used to evaluate the potential for skin irritation. To assess the antimicrobial properties of GT preparations, the percentage of inhibition of bacterial growth was calculated. Results The GT seedcake extract had elevated levels of phenylopropanoid compounds in comparison to the control, non-transformed plants. Significant increases in the content of ferulic acid, p-coumaric acid and caffeic acid, and their glucoside derivatives, kaempferol, quercitin and secoisolariciresinol diglucoside (SDG) were observed in the seeds of the modified plants. The GT seedcake preparations were shown to promote the proliferation of normal human dermal fibroblasts and the migration of fibroblasts in the wound scratch assay. The superior effect of GT seedcake extract on fibroblast migration was observed after a 24-hour treatment. The skin irritation test indicated that GT seedcake preparations have no harmful effect on human skin. Moreover, GT seedcake preparations exhibited inhibitory properties toward two bacterial strains: Staphylococcus aureus and Escherichia coli. Conclusions We suggest that preparations derived from the new GT flax are an effective source of phenylopropanoids and that their glycoside derivatives and might be promising natural products with both healing and bacteriostatic effects. This flax-derived product is a good candidate for application in the repair and regeneration of human skin and might also be an alternative to antibiotic therapy for infected wounds. PMID:23228136

  8. Characterization techniques for incorporating backgrounds into DIRSIG

    NASA Astrophysics Data System (ADS)

    Brown, Scott D.; Schott, John R.

    2000-07-01

    The appearance of operation hyperspectral imaging spectrometers in both solar and thermal regions has lead to the development of a variety of spectral detection algorithms. The development and testing of these algorithms requires well characterized field collection campaigns that can be time and cost prohibitive. Radiometrically robust synthetic image generation (SIG) environments that can generate appropriate images under a variety of atmospheric conditions and with a variety of sensors offers an excellent supplement to reduce the scope of the expensive field collections. In addition, SIG image products provide the algorithm developer with per-pixel truth, allowing for improved characterization of the algorithm performance. To meet the needs of the algorithm development community, the image modeling community needs to supply synthetic image products that contain all the spatial and spectral variability present in real world scenes, and that provide the large area coverage typically acquired with actual sensors. This places a heavy burden on synthetic scene builders to construct well characterized scenes that span large areas. Several SIG models have demonstrated the ability to accurately model targets (vehicles, buildings, etc.) Using well constructed target geometry (from CAD packages) and robust thermal and radiometry models. However, background objects (vegetation, infrastructure, etc.) dominate the percentage of real world scene pixels and utilizing target building techniques is time and resource prohibitive. This paper discusses new methods that have been integrated into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model to characterize backgrounds. The new suite of scene construct types allows the user to incorporate both terrain and surface properties to obtain wide area coverage. The terrain can be incorporated using a triangular irregular network (TIN) derived from elevation data or digital elevation model (DEM) data from actual sensors, temperature maps, spectral reflectance cubes (possible derived from actual sensors), and/or material and mixture maps. Descriptions and examples of each new technique are presented as well as hybrid methods to demonstrate target embedding in real world imagery.

  9. Application of nonlinear deterministic decomposition to the prediction and energy dissipation of long-crested irregular ocean surface waves

    NASA Astrophysics Data System (ADS)

    Meza Conde, Eustorgio

    The Hybrid Wave Model (HWM) is a deterministic nonlinear wave model developed for the computation of wave properties in the vicinity of ocean wave measurements. The HWM employs both Mode-Coupling and Phase Modulation Methods to model the wave-wave interactions in an ocean wave field. Different from other nonlinear wave models, the HWM decouples the nonlinear wave interactions from ocean wave field measurements and decomposes the wave field into a set of free-wave components. In this dissertation the HWM is applied to the prediction of wave elevation from pressure measurements and to the quantification of energy during breaking of long-crested irregular surface waves. 1.A transient wave train was formed in a two-dimensional wave flume by sequentially generating a series of waves from high to low frequencies that superposed at a downstream location. The predicted wave elevation using the HWM based on the pressure measurement of a very steep transient wave train is in excellent agreement with the corresponding elevation measurement, while that using Linear Wave Theory (LWT) has relatively large discrepancies. Furthermore, the predicted elevation using the HWM is not sensitive to the choice of the cutoff frequency, while that using LWT is very sensitive. 2.Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using the same superposition technique. Surface elevation measurements of each transient wave train were made at locations before and after breaking. Applying the HWM nonlinear deterministic decomposition to the measured elevation, the free-wave components comprising the transient wave train were derived. By comparing the free-wave spectra before and after breaking it is found that energy loss was almost exclusively from wave components at frequencies higher than the spectral peak frequency. Even though the wave components near the peak frequency are the largest, they do not significantly gain or lose energy after breaking. It was also observed that wave components of frequencies significantly below or near the peak frequency gain a small portion of energy lost by the high-frequency waves. These findings may have important implications to the ocean wave energy budget.

  10. Synthesis, anticonvulsant, sedative and anxiolytic activities of novel annulated pyrrolo[1,4]benzodiazepines.

    PubMed

    Sorra, Kumaraswamy; Chen, Chien-Shu; Chang, Chi-Fen; Pusuluri, Srinivas; Mukkanti, Khagga; Wu, Chi-Rei; Chuang, Ta-Hsien

    2014-09-18

    Four new pentacyclic benzodiazepine derivatives (PBDTs 13-16) were synthesized by conventional thermal heating and microwave-assisted intramolecular cyclocondensation. Their anticonvulsant, sedative and anxiolytic activities were evaluated by drug-induced convulsion models, a pentobarbital-induced hypnotic model and an elevated plus maze in mice. PBDT 13, a triazolopyrrolo[2,1-c][1,4]benzodiazepin-8-one fused with a thiadiazolone ring, exhibited the best anticonvulsant, sedative and anxiolytic effects in our tests. There was no significant difference in potency between PBDT 13 and diazepam, and we proposed that the action mechanism of PBDT 13 could be similar to that of diazepam via benzodiazepine receptors.

  11. Permanent uplift in magmatic systems with application to the Tharsis region of Mars

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Sleep, N. H.; Banerdt, W. B.

    1990-04-01

    A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.

  12. Permanent uplift in magmatic systems with application to the Tharsis region of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Sleep, Norman H.; Banerdt, W. Bruce

    1990-01-01

    A model is derived for predicting both crustal displacement (leading to permanent uplift) and topographic elevation in regional large-scale magmatic systems associated with partial melting of mantle rocks. The model is then applied to the Tharsis region of Mars to test the uplift versus construction. It was found that a lower bound estimate of the fraction of intrusives necessary for any uplift at all is about 85 percent of the total magmatic products at Tharsis. Thus, it is proposed that most of the magmas associated with Tharsis evolution ended up as intrusive bodies in the crust and upper mantle.

  13. Airborne laser swath mapping of the Denton Hills, Transantarctic Mountains, Antarctica: Applications for structural and glacial geomorphic mapping

    USGS Publications Warehouse

    Wilson, Terry; Csathó, Beata

    2007-01-01

    High-resolution digital elevation data acquired by airborne laser scanning (ALS) for the Denton Hills, along the coastal foothills of the Royal Society Range, Transantarctic Mountains, are examined for applications to bedrock and glacial geomorphic mapping. Digital elevation models (DEMs), displayed as shaded-relief images and slope maps, portray geomorphic landscape features in unprecedented detail across the region. Structures of both ductile and brittle origin, ranging in age from the Paleozoic to the Quaternary, can be mapped from the DEMs. Glacial features, providing a record of the limits of grounded ice, of lake paleoshorelines, and of proglacial lake-ice conveyor deposits, are also prominent on the DEMs. The ALS-derived topographic data have great potential for a range of mapping applications in regions of ice-free terrain in Antarctica

  14. Lysophosphatidic Acid and Apolipoprotein A1 Predict Increased Risk of Developing World Trade Center Lung Injury: A Nested Case-Control Study

    PubMed Central

    Tsukiji, Jun; Cho, Soo Jung; Echevarria, Ghislaine C.; Kwon, Sophia; Joseph, Phillip; Schenck, Edward J.; Naveed, Bushra; Prezant, David J.; Rom, William N.; Schmidt, Ann Marie; Weiden, Michael D.; Nolan, Anna

    2014-01-01

    Rationale Metabolic syndrome, inflammatory and vascular injury markers measured in serum after WTC exposures predict abnormal FEV1. We hypothesized that elevated LPA levels predict FEV1

  15. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  16. ICESat laser altimetry over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, Désirée; Kääb, Andreas

    2016-09-01

    Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional estimate agrees well with the heterogeneous but overall negative in situ glacier mass balance observed in the area.

  17. Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid

    USGS Publications Warehouse

    Jones, John W.; Price, Susan D.

    2007-01-01

    INTRODUCTION The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). Ground elevation data for the greater Everglades and the digital ground elevation models derived from them form the foundation for all EDEN water depth and associated ecologic/hydrologic modeling (Jones, 2004, Jones and Price, 2007). To use EDEN water depth and duration information most effectively, it is important to be able to view and manipulate information on elevation data quality and other land cover and habitat characteristics across the Everglades region. These requirements led to the development of the geographic data layer described in this techniques and methods report. Relying on extensive experience in GIS data development, distribution, and analysis, a great deal of forethought went into the design of the geographic data layer used to index elevation and other surface characteristics for the Greater Everglades region. To allow for simplicity of design and use, the EDEN area was broken into a large number of equal-sized rectangles ('Cells') that in total are referred to here as the 'grid'. Some characteristics of this grid, such as the size of its cells, its origin, the area of Florida it is designed to represent, and individual grid cell identifiers, could not be changed once the grid database was developed. Therefore, these characteristics were selected to design as robust a grid as possible and to ensure the grid's long-term utility. It is desirable to include all pertinent information known about elevation and elevation data collection as grid attributes. Also, it is very important to allow for efficient grid post-processing, sub-setting, analysis, and distribution. This document details the conceptual design of the EDEN grid spatial parameters and cell attribute-table content.

  18. Derivation of Functional Human Astrocytes from Cerebral Organoids

    PubMed Central

    Dezonne, Rômulo Sperduto; Sartore, Rafaela Costa; Nascimento, Juliana Minardi; Saia-Cereda, Verônica M.; Romão, Luciana Ferreira; Alves-Leon, Soniza Vieira; de Souza, Jorge Marcondes; Martins-de-Souza, Daniel; Rehen, Stevens Kastrup; Gomes, Flávia Carvalho Alcantara

    2017-01-01

    Astrocytes play a critical role in the development and homeostasis of the central nervous system (CNS). Astrocyte dysfunction results in several neurological and degenerative diseases. However, a major challenge to our understanding of astrocyte physiology and pathology is the restriction of studies to animal models, human post-mortem brain tissues, or samples obtained from invasive surgical procedures. Here, we report a protocol to generate human functional astrocytes from cerebral organoids derived from human pluripotent stem cells. The cellular isolation of cerebral organoids yielded cells that were morphologically and functionally like astrocytes. Immunolabelling and proteomic assays revealed that human organoid-derived astrocytes express the main astrocytic molecular markers, including glutamate transporters, specific enzymes and cytoskeletal proteins. We found that organoid-derived astrocytes strongly supported neuronal survival and neurite outgrowth and responded to ATP through transient calcium wave elevations, which are hallmarks of astrocyte physiology. Additionally, these astrocytes presented similar functional pathways to those isolated from adult human cortex by surgical procedures. This is the first study to provide proteomic and functional analyses of astrocytes isolated from human cerebral organoids. The isolation of these astrocytes holds great potential for the investigation of developmental and evolutionary features of the human brain and provides a useful approach to drug screening and neurodegenerative disease modelling. PMID:28345587

  19. New global hydrography derived from spaceborne elevation data

    USGS Publications Warehouse

    Lehner, B.; Verdin, K.; Jarvis, A.

    2008-01-01

    In response to these limitations, a team of scientists has developed data and created maps of the world's rivers that provide the research community with more reliable information about where streams and watersheds occur on the Earth's surface and how water drains the landscape. The new product, known as HydroSHEDS (Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales), provides this information at a resolution and quality unachieved by previous global data sets, such as HYDRO1k [U.S. Geological Survey (USGS), 2000].

  20. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress.

    PubMed

    Rodríguez-Hernández, María del Carmen; Moreno, Diego A; Carvajal, Micaela; Martínez-Ballesta, María del Carmen

    2014-12-01

    Climatic change predicts elevated salinity in soils as well as increased carbon dioxide dioxide [CO2] in the atmosphere. The present study aims to determine the effect of combined salinity and elevated [CO2] on sulfur (S) metabolism and S-derived phytochemicals in green and purple broccoli (cv. Naxos and cv. Viola, respectively). Elevated [CO2] involved the amelioration of salt stress, especially in cv. Viola, where a lower biomass reduction by salinity was accompanied by higher sodium (Na(+)) and chloride (Cl(-)) compartmentation in the vacuole. Moreover, salinity and elevated [CO2] affected the mineral and glucosinolate contents and the activity of biosynthetic enzymes of S-derived compounds and the degradative enzyme of glucosinolate metabolism, myrosinase, as well as the related amino acids and the antioxidant glutathione (GSH). In cv. Naxos, elevated [CO2] may trigger the antioxidant response to saline stress by means of increased GSH concentration. Also, in cv. Naxos, indolic glucosinolates were more influenced by the NaCl×CO2 interaction whereas in cv. Viola the aliphatic glucosinolates were significantly increased by these conditions. Salinity and elevated [CO2] enhanced the S cellular partitioning and metabolism affecting the myrosinase-glucosinolate system. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Remote sensing based detection of forested wetlands: An evaluation of LiDAR, aerial imagery, and their data fusion

    NASA Astrophysics Data System (ADS)

    Suiter, Ashley Elizabeth

    Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, indicating moderate to strong agreement. However, Classification C, performed with LiDAR derivative without intensity data had less agreement than would be expected by chance, indicating that LiDAR contributed significantly to the accuracy of Classification B.

  2. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  3. No Substitute for Going to the Field: Correcting Lidar DEMs in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Renken, K.; Morris, J. T.; Lynch, J.; Bayley, H.; Neil, A.; Rasmussen, S.; Tyrrell, M.; Tanis, M.

    2016-12-01

    Models that forecast the response of salt marshes to current and future trends in sea level rise increasingly are used to guide management of these vulnerable ecosystems. Lidar-derived DEMs serve as the foundation for modeling landform change. However, caution is advised when using these DEMs as the starting point for models of salt marsh evolution. While broad vegetation class (i.e., young forest, old forest, grasslands, desert, etc.) has proven to be a significant predictor of vertical displacement error in terrestrial environments, differentiating error among different species or community types within the same ecosystem has received less attention. Salt marshes are dominated by monocultures of grass species and thus are an ideal environment to examine the within-species effect on lidar DEM error. We analyzed error of lidar DEMs using elevations from real-time kinematic (RTK) surveys in saltmarshes in multiple national parks and wildlife refuge areas from the mouth of the Chesapeake Bay to Massachusetts. Error of the lidar DEMs was sometimes large, on the order of 0.25 m, and varied significantly between sites because vegetation cover varies seasonally and lidar data was not always collected in the same season for each park. Vegetation cover and composition were used to explain differences between RTK elevations and lidar DEMs. This research underscores the importance of collecting RTK elevation data and vegetation cover data coincident with lidar data to produce correction factors specific to individual salt marsh sites.

  4. Large-baseline InSAR for precise topographic mapping: a framework for TanDEM-X large-baseline data

    NASA Astrophysics Data System (ADS)

    Pinheiro, Muriel; Reigber, Andreas; Moreira, Alberto

    2017-09-01

    The global Digital Elevation Model (DEM) resulting from the TanDEM-X mission provides information about the world topography with outstanding precision. In fact, performance analysis carried out with the already available data have shown that the global product is well within the requirements of 10 m absolute vertical accuracy and 2 m relative vertical accuracy for flat to moderate terrain. The mission's science phase took place from October 2014 to December 2015. During this phase, bistatic acquisitions with across-track separation between the two satellites up to 3.6 km at the equator were commanded. Since the relative vertical accuracy of InSAR derived elevation models is, in principle, inversely proportional to the system baseline, the TanDEM-X science phase opened the doors for the generation of elevation models with improved quality with respect to the standard product. However, the interferometric processing of the large-baseline data is troublesome due to the increased volume decorrelation and very high frequency of the phase variations. Hence, in order to fully profit from the increased baseline, sophisticated algorithms for the interferometric processing, and, in particular, for the phase unwrapping have to be considered. This paper proposes a novel dual-baseline region-growing framework for the phase unwrapping of the large-baseline interferograms. Results from two experiments with data from the TanDEM-X science phase are discussed, corroborating the expected increased level of detail of the large-baseline DEMs.

  5. Assessing water resources in Azerbaijan using a local distributed model forced and constrained with global data

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Hegnauer, Mark; Schellekens, Jaap; Sperna Weiland, Frederiek; ten Velden, Corine

    2017-04-01

    In many countries, data is scarce, incomplete and often not easily shared. In these cases, global satellite and reanalysis data provide an alternative to assess water resources. To assess water resources in Azerbaijan, a completely distributed and physically based hydrological wflow-sbm model was set-up for the entire Kura basin. We used SRTM elevation data, a locally available river map and one from OpenStreetMap to derive the drainage direction network at the model resolution of approximately 1x1 km. OpenStreetMap data was also used to derive the fraction of paved area per cell to account for the reduced infiltration capacity (c.f. Schellekens et al. 2014). We used the results of a global study to derive root zone capacity based on climate data (Wang-Erlandsson et al., 2016). To account for the variation in vegetation cover over the year, monthly averages of Leaf Area Index, based on MODIS data, were used. For the soil-related parameters, we used global estimates as provided by Dai et al. (2013). This enabled the rapid derivation of a first estimate of parameter values for our hydrological model. Digitized local meteorological observations were scarce and available only for limited time period. Therefore several sources of global meteorological data were evaluated: (1) EU-WATCH global precipitation, temperature and derived potential evaporation for the period 1958-2001 (Harding et al., 2011), (2) WFDEI precipitation, temperature and derived potential evaporation for the period 1979-2014 (by Weedon et al., 2014), (3) MSWEP precipitation (Beck et al., 2016) and (4) local precipitation data from more than 200 stations in the Kura basin were available from the NOAA website for a period up to 1991. The latter, together with data archives from Azerbaijan, were used as a benchmark to evaluate the global precipitation datasets for the overlapping period 1958-1991. By comparing the datasets, we found that monthly mean precipitation of EU-WATCH and WFDEI coincided well with NOAA stations and that MSWEP slightly overestimated precipitation amounts. On a daily basis, there were discrepancies in the peak timing and magnitude between measured precipitation and the global products. A bias between EU-WATCH and WFDEI temperature and potential evaporation was observed and to model the water balance correctly, it was needed to correct EU-WATCH to WFDEI mean monthly values. Overall, the available sources enabled rapid set-up of a hydrological model including the forcing of the model with a relatively good performance to assess water resources in Azerbaijan with a limited calibration effort and allow for a similar set-up anywhere in the world. Timing and quantification of peak volume remains a weakness in global data, making it difficult to be used for some applications (flooding) and for detailed calibration. Selecting and comparing different sources of global meteorological data is important to have a reliable set which improves model performance. - Beck et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2014) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. Discuss. - Dai Y. et al. ,2013. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. Journal of Hydrometeorology - Harding, R. et al., 2011., WATCH: Current knowledge of the Terrestrial global water cycle, J. Hydrometeorol. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Wang-Erlandsson L. et al., 2016. Global Root Zone Storage Capacity from Satellite-Based Evaporation. Hydrology and Earth System Sciences - Weedon, G. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research.

  6. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.

    PubMed

    Canfield, Scott G; Stebbins, Matthew J; Morales, Bethsymarie Soto; Asai, Shusaku W; Vatine, Gad D; Svendsen, Clive N; Palecek, Sean P; Shusta, Eric V

    2017-03-01

    The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843. © 2016 International Society for Neurochemistry.

  7. Modeling Stochastic Boundary Conditions in a Coastal Catchment using a Bayesian Network: An Application to the Houston Ship Channel, Texas

    NASA Astrophysics Data System (ADS)

    Couasnon, Anaïs; Sebastian, Antonia; Morales-Nápoles, Oswaldo

    2017-04-01

    Recent research has highlighted the increased risk of compound flooding in the U.S. In coastal catchments, an elevated downstream water level, resulting from high tide and/or storm surge, impedes drainage creating a backwater effect that may exacerbate flooding in the riverine environment. Catchments exposed to tropical cyclone activity along the Gulf of Mexico and Atlantic coasts are particularly vulnerable. However, conventional flood hazard models focus mainly on precipitation-induced flooding and few studies accurately represent the hazard associated with the interaction between discharge and elevated downstream water levels. This study presents a method to derive stochastic boundary conditions for a coastal watershed. Mean daily discharge and maximum daily residual water levels are used to build a non-parametric Bayesian network (BN) based on copulas. Stochastic boundary conditions for the watershed are extracted from the BN and input into a 1-D process-based hydraulic model to obtain water surface elevations in the main channel of the catchment. The method is applied to a section of the Houston Ship Channel (Buffalo Bayou) in Southeast Texas. Data at six stream gages and two tidal stations are used to build the BN and 100-year joint return period events are modeled. We find that the dependence relationship between the daily residual water level and the mean daily discharge in the catchment can be represented by a Gumbel copula (Spearman's rank correlation coefficient of 0.31) and that they result in higher water levels in the mid- to upstream reaches of the watershed than when modeled independently. This indicates that conventional (deterministic) methods may underestimate the flood hazard associated with compound flooding in the riverine environment and that such interactions should not be neglected in future coastal flood hazard studies.

  8. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.

  9. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  10. 1-Meter Digital Elevation Model specification

    USGS Publications Warehouse

    Arundel, Samantha T.; Archuleta, Christy-Ann M.; Phillips, Lori A.; Roche, Brittany L.; Constance, Eric W.

    2015-10-21

    In January 2015, the U.S. Geological Survey National Geospatial Technical Operations Center began producing the 1-Meter Digital Elevation Model data product. This new product was developed to provide high resolution bare-earth digital elevation models from light detection and ranging (lidar) elevation data and other elevation data collected over the conterminous United States (lower 48 States), Hawaii, and potentially Alaska and the U.S. territories. The 1-Meter Digital Elevation Model consists of hydroflattened, topographic bare-earth raster digital elevation models, with a 1-meter x 1-meter cell size, and is available in 10,000-meter x 10,000-meter square blocks with a 6-meter overlap. This report details the specifications required for the production of the 1-Meter Digital Elevation Model.

  11. The possible contribution of a general glycosphingolipid transporter, GM2 activator protein, to atherosclerosis.

    PubMed

    Yanai, Hidekatsu; Yoshida, Hiroshi; Tomono, Yoshiharu; Tada, Norio; Chiba, Hitoshi

    2006-12-01

    We previously found that oxidized low-density lipoprotein (LDL) elevated the expression of mRNA of GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (GM2) ganglioside activator protein, in human monocyte-derived macrophages. Recently, GM2 activator protein has become known as a general glycosphingolipid transporter as well as a specific cofactor for the hydrolysis of GM2 ganglioside by lysosomal beta-hexosaminidase A. Accumulation of glycosphingolipids has been observed in the serum or aorta of atherosclerotic model animals and humans. The proliferation of aortic smooth muscle cells, elevation of LDL uptake by macrophages, interfering LDL clearance by the liver, and enhancement of platelet adhesion to collagen have been proposed as the underlying mechanisms of glycosphingolipid-mediated atherogenesis. The GM2 activator protein can bind, solubilize and transport a broad spectrum of lipid molecules, indicating that GM2 activator protein may function as a general intra- and inter-cellular lipid transport protein. Collectively, elevated levels of GM2 activator protein in the aorta may be another feature of human atherosclerosis.

  12. Mass Loss of Larsen B Tributary Glaciers (Antarctic Peninsula) Unabated Since 2002

    NASA Technical Reports Server (NTRS)

    Berthier, Etienne; Scambos, Ted; Shuman, Christopher A.

    2012-01-01

    Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 201011 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a null test, subtracting DEMs acquired within a few weeks. The overall 2006201011 mass loss rate (9.0 2.1 Gt a-1) is similar to the 2001022006 rate (8.8 1.6 Gt a-1), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the HektoriaGreen glacier basin, having increased by 33 since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.

  13. Interleukin 6 regulates psoriasiform inflammation–associated thrombosis

    PubMed Central

    Wang, Yunmei; Golden, Jackelyn B.; Fritz, Yi; Zhang, Xiufen; Diaconu, Doina; Camhi, Maya I.; Gao, Huiyun; Dawes, Sean M.; Xing, Xianying; Ganesh, Santhi K.; Gudjonsson, Johann E.; Simon, Daniel I.; McCormick, Thomas S.; Ward, Nicole L.

    2016-01-01

    Psoriasis patients are at increased risk of heart attack and stroke and have elevated MRP8/14 levels that predict heart attack. The KC-Tie2 psoriasiform mouse model exhibits elevated MRP8/14 and is prothrombotic. Mrp14–/– mice, in contrast, are protected from thrombosis, but, surprisingly, KC-Tie2xMrp14–/– mice remain prothrombotic. Treating KC-Tie2xMrp14–/– mice with anti–IL-23p19 antibodies reversed the skin inflammation, improved thrombosis, and decreased IL-6. In comparison, IL-6 deletion from KC-Tie2 animals improved thrombosis despite sustained skin inflammation, suggesting that thrombosis improvements following IL-23 inhibition occur secondary to IL-6 decreases. Psoriasis patient skin has elevated IL-6 and IL-6 receptor is present in human coronary atheroma, supporting a link between skin and distant vessel disease in patient tissue. Together, these results identify a critical role for skin-derived IL-6 linking skin inflammation with thrombosis, and shows that in the absence of IL-6 the connection between skin inflammation and thrombosis comorbidities is severed. PMID:27942589

  14. A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot

    PubMed Central

    Robinson, Todd P.; Wardell-Johnson, Grant W.; Yates, Colin J.; Van Niel, Kimberly P.; Byrne, Margaret; Schut, Antonius G. T.

    2017-01-01

    Background and Aims Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We investigate whether the Porongurups (altitude 655 m) in the SWAFR will provide a refugium for the endemic Ornduffia calthifolia and O. marchantii under forecast climate change. Methods We used species distribution modelling based on WorldClim climatic data, 30-m elevation data and a 2-m-resolution LiDAR-derived digital elevation model (DEM) to predict current and future distributions of the Ornduffia species at local and regional scales based on 605 field-based abundance estimates. Future distributions were forecast using RCP2.6 and RCP4.5 projections. To determine whether local edaphic and biotic factors impact these forecasts, we tested whether soil depth and vegetation height were significant predictors of abundance using generalized additive models (GAMs). Key Results Species distribution modelling revealed the importance of elevation and topographic variables at the local scale for determining distributions of both species, which also preferred shadier locations and higher slopes. However, O. calthifolia occurred at higher (cooler) elevations with rugged, concave topography, while O. marchantii occurred in disturbed sites at lower locations with less rugged, convex topography. Under future climates both species are likely to severely contract under the milder RCP2.6 projection (approx. 2 °C of global warming), but are unlikely to persist if warming is more severe (RCP4.5). GAMs showed that soil depth and vegetation height are important predictors of O. calthifolia and O. marchantii distributions, respectively. Conclusions The Porongurups constitute an important refugium for O. calthifolia and O. marchantii, but limits to this capacity may be reached if global warming exceeds 2 °C. This capacity is moderated at local scales by biotic and edaphic factors. PMID:27634576

  15. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE PAGES

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    2017-02-22

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  16. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  17. An assessment of two methods for identifying undocumented levees using remotely sensed data

    USGS Publications Warehouse

    Czuba, Christiana R.; Williams, Byron K.; Westman, Jack; LeClaire, Keith

    2015-01-01

    Many undocumented and commonly unmaintained levees exist in the landscape complicating flood forecasting, risk management, and emergency response. This report describes a pilot study completed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers to assess two methods to identify undocumented levees by using remotely sensed, high-resolution topographic data. For the first method, the U.S. Army Corps of Engineers examined hillshades computed from a digital elevation model that was derived from light detection and ranging (lidar) to visually identify potential levees and then used detailed site visits to assess the validity of the identifications. For the second method, the U.S. Geological Survey applied a wavelet transform to a lidar-derived digital elevation model to identify potential levees. The hillshade method was applied to Delano, Minnesota, and the wavelet-transform method was applied to Delano and Springfield, Minnesota. Both methods were successful in identifying levees but also identified other features that required interpretation to differentiate from levees such as constructed barriers, high banks, and bluffs. Both methods are complementary to each other, and a potential conjunctive method for testing in the future includes (1) use of the wavelet-transform method to rapidly identify slope-break features in high-resolution topographic data, (2) further examination of topographic data using hillshades and aerial photographs to classify features and map potential levees, and (3) a verification check of each identified potential levee with local officials and field visits.

  18. Modeling and analysis of the DSS-14 antenna control system

    NASA Technical Reports Server (NTRS)

    Gawronski, W.; Bartos, R.

    1996-01-01

    An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas.

  19. Prognostic value of heart rate turbulence for risk assessment in patients with unstable angina and non-ST elevation myocardial infarction

    PubMed Central

    Harris, Patricia RE; Stein, Phyllis K; Fung, Gordon L; Drew, Barbara J

    2013-01-01

    Background We sought to examine the prognostic value of heart rate turbulence derived from electrocardiographic recordings initiated in the emergency department for patients with non-ST elevation myocardial infarction (NSTEMI) or unstable angina. Methods Twenty-four-hour Holter recordings were started in patients with cardiac symptoms approximately 45 minutes after arrival in the emergency department. Patients subsequently diagnosed with NSTEMI or unstable angina who had recordings with ≥18 hours of sinus rhythm and sufficient data to compute Thrombolysis In Myocardial Infarction (TIMI) risk scores were chosen for analysis (n = 166). Endpoints were emergent re-entry to the cardiac emergency department and/or death at 30 days and one year. Results In Cox regression models, heart rate turbulence and TIMI risk scores together were significant predictors of 30-day (model chi square 13.200, P = 0.001, C-statistic 0.725) and one-year (model chi square 31.160, P < 0.001, C-statistic 0.695) endpoints, outperforming either measure alone. Conclusion Measurement of heart rate turbulence, initiated upon arrival at the emergency department, may provide additional incremental value in the risk assessment for patients with NSTEMI or unstable angina. PMID:23976860

  20. Modeling Ka-band low elevation angle propagation statistics

    NASA Technical Reports Server (NTRS)

    Russell, Thomas A.; Weinfield, John; Pearson, Chris; Ippolito, Louis J.

    1995-01-01

    The statistical variability of the secondary atmospheric propagation effects on satellite communications cannot be ignored at frequencies of 20 GHz or higher, particularly if the propagation margin allocation is such that link availability falls below 99 percent. The secondary effects considered in this paper are gaseous absorption, cloud absorption, and tropospheric scintillation; rain attenuation is the primary effect. Techniques and example results are presented for estimation of the overall combined impact of the atmosphere on satellite communications reliability. Statistical methods are employed throughout and the most widely accepted models for the individual effects are used wherever possible. The degree of correlation between the effects is addressed and some bounds on the expected variability in the combined effects statistics are derived from the expected variability in correlation. Example estimates are presented of combined effects statistics in the Washington D.C. area of 20 GHz and 5 deg elevation angle. The statistics of water vapor are shown to be sufficient for estimation of the statistics of gaseous absorption at 20 GHz. A computer model based on monthly surface weather is described and tested. Significant improvement in prediction of absorption extremes is demonstrated with the use of path weather data instead of surface data.

  1. Using LiDAR to Estimate Total Aboveground Biomass of Redwood Stands in the Jackson Demonstration State Forest, Mendocino, California

    NASA Astrophysics Data System (ADS)

    Rao, M.; Vuong, H.

    2013-12-01

    The overall objective of this study is to develop a method for estimating total aboveground biomass of redwood stands in Jackson Demonstration State Forest, Mendocino, California using airborne LiDAR data. LiDAR data owing to its vertical and horizontal accuracy are increasingly being used to characterize landscape features including ground surface elevation and canopy height. These LiDAR-derived metrics involving structural signatures at higher precision and accuracy can help better understand ecological processes at various spatial scales. Our study is focused on two major species of the forest: redwood (Sequoia semperirens [D.Don] Engl.) and Douglas-fir (Pseudotsuga mensiezii [Mirb.] Franco). Specifically, the objectives included linear regression models fitting tree diameter at breast height (dbh) to LiDAR derived height for each species. From 23 random points on the study area, field measurement (dbh and tree coordinate) were collected for more than 500 trees of Redwood and Douglas-fir over 0.2 ha- plots. The USFS-FUSION application software along with its LiDAR Data Viewer (LDV) were used to to extract Canopy Height Model (CHM) from which tree heights would be derived. Based on the LiDAR derived height and ground based dbh, a linear regression model was developed to predict dbh. The predicted dbh was used to estimate the biomass at the single tree level using Jenkin's formula (Jenkin et al 2003). The linear regression models were able to explain 65% of the variability associated with Redwood's dbh and 80% of that associated with Douglas-fir's dbh.

  2. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  3. A Proposed Change to ITU-R Recommendation 681

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1996-01-01

    Recommendation 681 of the International Telecommunications Union (ITU) provides five models for the prediction of propagation effects on land mobile satellite links: empirical roadside shadowing (ERS), attenuation frequency scaling, fade duration distribution, non-fade duration distribution, and fading due to multipath. Because the above prediction models have been empirically derived using a limited amount of data, these schemes work only for restricted ranges of link parameters. With the first two models, for example, the frequency and elevation angle parameters are restricted to 0.8 to 2.7 GHz and 20 to 60 degrees, respectively. Recently measured data have enabled us to enhance the range of the first two schemes. Moreover, for convenience, they have been combined into a single scheme named the extended empirical roadside shadowing (EERS) model.

  4. Quantifying monthly to decadal subsidence and assessing collapse potential near the Wink sinkholes, west Texas, using airborne lidar, radar interferometry, and microgravity

    NASA Astrophysics Data System (ADS)

    Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.

    2014-12-01

    We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.

  5. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites affected by this process yields an average net accretion rate of 3.5 mm/yr, similar to the long term rate of 3-5 mm/yr derived from dated organic material from the base of marsh cores and local sea level rise of 3.8 mm/yr since 1984 recorded at the Washington, DC tide gage. The Potomac River shore sites affected by berm sedimentation average 45 mm/yr of accretion, though the majority of this was deposited as a 20-cm-thick packet in the winter of 2009-2010. Some additional elevation control is provided by a land survey of the marsh performed in 1992 in conjunction with a hydraulic modeling study, which indicates an average of 11 mm/yr of accretion across the marsh. All available evidence suggests that marsh surfaces have the capacity to keep up with sea level rise; however, rapid bank erosion poses a severe threat to the sustainability of the marsh.

  6. Modeling of Future Changes in Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments

    NASA Astrophysics Data System (ADS)

    Jenicek, Michal; Seibert, Jan; Staudinger, Maria

    2018-01-01

    It is expected that an increasing proportion of the precipitation will fall as rain in alpine catchments in the future. Consequently, snow storage is expected to decrease, which, together with changes in snowmelt rates and timing, might cause reductions in spring and summer low flows. The objectives of this study were (1) to simulate the effect of changing snow storage on low flows during the warm seasons and (2) to relate drought sensitivity to the simulated snow storage changes at different elevations. The Swiss Climate Change Scenarios 2011 data set was used to derive future changes in air temperature and precipitation. A typical bucket-type catchment model, HBV-light, was applied to 14 mountain catchments in Switzerland to simulate streamflow and snow in the reference period and three future periods. The largest relative decrease in annual maximum SWE was simulated for elevations below 2,200 m a.s.l. (60-75% for the period 2070-2099) and the snowmelt season shifted by up to 4 weeks earlier. The relative decrease in spring and summer minimum runoff that was caused by the relative decrease in maximum SWE (i.e., elasticity), reached 40-90% in most of catchments for the reference period and decreased for the future periods. This decreasing elasticity indicated that the effect of snow on summer low flows is reduced in the future. The fraction of snowmelt runoff in summer decreased by more than 50% at the highest elevations and almost disappeared at the lowest elevations. This might have large implications on water availability during the summer.

  7. Land Capability Potential Index (LCPI) and geodatabase for the Lower Missouri River Valley

    USGS Publications Warehouse

    Chojnacki, Kimberly A.; Struckhoff, Matthew A.; Jacobson, Robert B.

    2012-01-01

    The Land Capacity Potential Index (LCPI) is a coarse-scale index intended to delineate broad land-capability classes in the Lower Missouri River valley bottom from the Gavins Point Dam near Yankton, South Dakota to the mouth of the Missouri River near St. Louis, Missouri (river miles 811–0). The LCPI provides a systematic index of wetness potential and soil moisture-retention potential of the valley-bottom lands by combining the interactions among water-surface elevations, land-surface elevations, and the inherent moisture-retention capability of soils. A nine-class wetness index was generated by intersecting a digital elevation model for the valley bottom with sloping water-surface elevation planes derived from eight modeled discharges. The flow-recurrence index was then intersected with eight soil-drainage classes assigned to soils units in the digital Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2010) to create a 72-class index of potential flow-recurrence and moisture-retention capability of Missouri River valley-bottom lands. The LCPI integrates the fundamental abiotic factors that determine long-term suitability of land for various uses, particularly those relating to vegetative communities and their associated values. Therefore, the LCPI provides a mechanism allowing planners, land managers, landowners, and other stakeholders to assess land-use capability based on the physical properties of the land, in order to guide future land-management decisions. This report documents data compilation for the LCPI in a revised and expanded, 72-class version for the Lower Missouri River valley bottom, and inclusion of additional soil attributes to allow users flexibility in exploring land capabilities.

  8. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    NASA Astrophysics Data System (ADS)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  9. How can we Optimize Global Satellite Observations of Glacier Velocity and Elevation Changes?

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Pritchard, M. E.; Zheng, W.

    2015-12-01

    We have started a global compilation of glacier surface elevation change rates measured by altimeters and differencing of Digital Elevation Models and glacier velocities measured by Synthetic Aperture Radar (SAR) and optical feature tracking as well as from Interferometric SAR (InSAR). Our goal is to compile statistics on recent ice flow velocities and surface elevation change rates near the fronts of all available glaciers using literature and our own data sets of the Russian Arctic, Patagonia, Alaska, Greenland and Antarctica, the Himalayas, and other locations. We quantify the percentage of the glaciers on the planet that can be regarded as fast flowing glaciers, with surface velocities of more than 50 meters per year, while also recording glaciers that have elevation change rates of more than 2 meters per year. We examine whether glaciers have significant interannual variations in velocities, or have accelerated or stagnated where time series of ice motions are available. We use glacier boundaries and identifiers from the Randolph Glacier Inventory. Our survey highlights glaciers that are likely to react quickly to changes in their mass accumulation rates. The study also identifies geographical areas where our knowledge of glacier dynamics remains poor. Our survey helps guide how frequently observations must be made in order to provide quality satellite-derived velocity and ice elevation observations at a variety of glacier thermal regimes, speeds and widths. Our objectives are to determine to what extent the joint NASA and Indian Space Research Organization Synthetic Aperture Radar mission (NISAR) will be able to provide global precision coverage of ice speed changes and to determine how to optimize observations from the global constellation of satellite missions to record important changes to glacier elevations and velocities worldwide.

  10. The 'overflow tap' theory: linking GPP to forest soil carbon dynamics and the mycorrhizal component

    NASA Astrophysics Data System (ADS)

    Heinemeyer, Andreas; Willkinson, Matthew; Subke, Jens-Arne; Casella, Eric; Vargas, Rodrigo; Morison, James; Ineson, Phil

    2010-05-01

    Quantifying soil organic carbon (SOC) dynamics accurately is crucial to underpin better predictions of future climate change feedbacks within the atmosphere-vegetation-soil system. Measuring the components of ecosystem carbon fluxes has become a central point of the research focus during the last decade, not least because of the large SOC stocks, potentially vulnerable to climate change. However, our basic understanding of the composition and environmental responses of the soil CO2 efflux is still under debate and limited by the available field methodologies. For example, only recently did we separate successfully root (R), mycorrhizal fungal (F) and soil animal/microbial (H) respiration based on a mesh-bag/collar methodology and described their unique environmental responses. Yet it might be these differences which are crucial for understanding C-cycle feedbacks and observed limitations in plant biomass increase under elevated carbon dioxide (e.g. FACE) studies. It is becoming clear that these flux components and their environmental responses must be incorporated in models that link but also treat the heterotrophic and autotrophic fluxes separately. However, owing to a scarcity of experimental data, separation of fluxes and environmental drivers has been ignored in current models. We are now in a position to parameterize realistic soil C turnover models that include both, decomposition and plant-derived fluxes. Such models will allow (1) a direct comparison of model output to field data for all flux components, (2) include the potential to link plant C allocation to the rhizosphere with increased decomposition activity through soil C priming, and (3) to explore the potential of plant biomass C sequestration limitations under increased C assimilation. These mechanisms are fundamental in describing the stability of future SOC stocks due to elevated temperatures and carbon dioxide, altering SOC decomposition directly and indirectly through changes in plant productivity. The work presented here focuses on three critical areas: (1) We present annual fluxes at hourly intervals for the three soil CO2 efflux components (R, F and H) from a 75 year-old deciduous oak forest in SE England. We investigate the individual environmental responses of the three flux components, and compare them to soil decomposition modelled by CENTURY and its latest version (i.e. DAYCENT), which separately models root-derived respiration in addition to the soil decomposition output. (2) Using estimates of gross primary productivity (GPP) based on eddy covariance measurements from the same site, we explore linkages between GPP and soil respiration component fluxes using basic regression and wavelet analyses. We show a distinctly different time lag signal between GPP and root vs. mycorrhizal fungal respiration. We then discuss how models might need to be improved to accurately predict total soil CO2 efflux, including root-derived respiration. (3) We finally discuss the ‘overflow tap' theory, that during periods of high assimilation (e.g. optimum environmental conditions or elevated CO2) surplus non-structural C is allocated belowground to the mycorrhizal network; this additional C could then be used and released by the associated fungal partners, causing soil priming through stimulating decomposition.

  11. Optimization of the resolution of remotely sensed digital elevation model to facilitate the simulation and spatial propagation of flood events in flat areas

    NASA Astrophysics Data System (ADS)

    Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas

    2013-04-01

    The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared by Bulgaria and Greece, was selected as the case study area, because of its importance to the regional and national economy of Greece and because of the numerous flood events recorded in the past. The results of the simulation processing demonstrated the importance of high resolution relief models for estimating the potential flood hazard zones in order to mitigate the catastrophe caused, both in economic and environmental terms, by this type of extreme event.

  12. Amplitude Scintillation due to Atmospheric Turbulence for the Deep Space Network Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Fast amplitude variations due to atmospheric scintillation are the main concerns for the Deep Space Network (DSN) Ka-band downlink under clear weather conditions. A theoretical study of the amplitude scintillation variances for a finite aperture antenna is presented. Amplitude variances for weak scattering scenarios are examined using turbulence theory to describe atmospheric irregularities. We first apply the Kolmogorov turbulent spectrum to a point receiver for three different turbulent profile models, especially for an exponential model varying with altitude. These analytic solutions then are extended to a receiver with a finite aperture antenna for the three profile models. Smoothing effects of antenna aperture are expressed by gain factors. A group of scaling factor relations is derived to show the dependences of amplitude variances on signal wavelength, antenna size, and elevation angle. Finally, we use these analytic solutions to estimate the scintillation intensity for a DSN Goldstone 34-m receiving station. We find that the (rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponential model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in telecommunication system design and signal-fading prediction. They also provide a theoretical basis for further comparison with other measurements at Ka-band.

  13. Atmospheric water mapping with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Mountain Pass, California

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg; Bruegge, Carol J.; Gary, Bruce L.

    1988-01-01

    Observations are given of the spatial variation of atmospheric precipitable water using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a desert area in eastern California, derived using a band ratio method and the 940 nm atmospheric water band and 870 nm continuum radiances. The ratios yield total path water from curves of growth supplied by the LOWTRAN 7 atmospheric model. An independent validation of the AVIRIS-derived column abundance at a point is supplied by a spectral hygrometer calibrated with respect to radiosonde observations. Water values conform to topography and fall off with surface elevation. The edge of the water vapor boundary layer defined by topography is thought to have been recovered. The ratio method yields column abundance estimates of good precision and high spatial resolution.

  14. Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance

    PubMed Central

    Holmstrand, Ericka C.; Lund, David; Cherian, Ajeesh Koshy; Wright, Jane; Martin, Rolicia F.; Ennis, Elizabeth A.; Stanwood, Gregg D.; Sarter, Martin; Blakely, Randy D.

    2014-01-01

    The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC–CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [3H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC–CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC–CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC–CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC–CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC–CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity. PMID:24274995

  15. A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas

    USGS Publications Warehouse

    White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.

    1992-01-01

    More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.

  16. Highly variable aerodynamic roughness length (z0) for a hummocky debris-covered glacier

    NASA Astrophysics Data System (ADS)

    Miles, Evan S.; Steiner, Jakob F.; Brun, Fanny

    2017-08-01

    The aerodynamic roughness length (z0) is an essential parameter in surface energy balance studies, but few literature values exist for debris-covered glaciers. We use microtopographic and aerodynamic methods to assess the spatial variability of z0 for Lirung Glacier, Nepal. We apply structure from motion to produce digital elevation models for three nested domains: five 1 m2 plots, a 21,300 m2 surface depression, and the lower 550,000 m2 of the debris-mantled tongue. Wind and temperature sensor towers were installed in the vicinity of the plots within the surface depression in October 2014. We calculate z0 according to a variety of transect-based microtopographic parameterizations for each plot, then develop a grid version of the algorithms by aggregating data from all transects. This grid approach is applied to the surface depression digital elevation model to characterize z0 spatial variability. The algorithms reproduce the same variability among transects and plots, but z0 estimates vary by an order of magnitude between algorithms. Across the study depression, results from different algorithms are strongly correlated. Using Monin-Obukov similarity theory, we derive z0 values from the meteorological data. Using different stability criteria, we derive median values of z0 between 0.03 m and 0.05 m, but with considerable uncertainty due to the glacier's complex topography. Considering estimates from these algorithms, results suggest that z0 varies across Lirung Glacier between ˜0.005 m (gravels) to ˜0.5 m (boulders). Future efforts should assess the importance of such variable z0 values in a distributed energy balance model.

  17. A user-friendly risk-score for predicting in-hospital cardiac arrest among patients admitted with suspected non ST-elevation acute coronary syndrome - The SAFER-score.

    PubMed

    Faxén, Jonas; Hall, Marlous; Gale, Chris P; Sundström, Johan; Lindahl, Bertil; Jernberg, Tomas; Szummer, Karolina

    2017-12-01

    To develop a simple risk-score model for predicting in-hospital cardiac arrest (CA) among patients hospitalized with suspected non-ST elevation acute coronary syndrome (NSTE-ACS). Using the Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies (SWEDEHEART), we identified patients (n=242 303) admitted with suspected NSTE-ACS between 2008 and 2014. Logistic regression was used to assess the association between 26 candidate variables and in-hospital CA. A risk-score model was developed and validated using a temporal cohort (n=126 073) comprising patients from SWEDEHEART between 2005 and 2007 and an external cohort (n=276 109) comprising patients from the Myocardial Ischaemia National Audit Project (MINAP) between 2008 and 2013. The incidence of in-hospital CA for NSTE-ACS and non-ACS was lower in the SWEDEHEART-derivation cohort than in MINAP (1.3% and 0.5% vs. 2.3% and 2.3%). A seven point, five variable risk score (age ≥60 years (1 point), ST-T abnormalities (2 points), Killip Class >1 (1 point), heart rate <50 or ≥100bpm (1 point), and systolic blood pressure <100mmHg (2 points) was developed. Model discrimination was good in the derivation cohort (c-statistic 0.72) and temporal validation cohort (c-statistic 0.74), and calibration was reasonable with a tendency towards overestimation of risk with a higher sum of score points. External validation showed moderate discrimination (c-statistic 0.65) and calibration showed a general underestimation of predicted risk. A simple points score containing five variables readily available on admission predicts in-hospital CA for patients with suspected NSTE-ACS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Automatic approach to deriving fuzzy slope positions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  19. Glacier-specific elevation changes in western Alaska

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Le Bris, Raymond

    2013-04-01

    Deriving glacier-specific elevation changes from DEM differencing and digital glacier outlines is rather straight-forward if the required datasets are available. Calculating such changes over large regions and including glaciers selected for mass balance measurements in the field, provides a possibility to determine the representativeness of the changes observed at these glaciers for the entire region. The related comparison of DEM-derived values for these glaciers with the overall mean avoids the rather error-prone conversion of volume to mass changes (e.g. due to unknown densities) and gives unit-less correction factors for upscaling the field measurements to a larger region. However, several issues have to be carefully considered, such as proper co-registration of the two DEMs, date and accuracy of the datasets compared, as well as source data used for DEM creation and potential artefacts (e.g. voids). In this contribution we present an assessment of the representativeness of the two mass balance glaciers Gulkana and Wolverine for the overall changes of nearly 3200 glaciers in western Alaska over a ca. 50-year time period. We use an elevation change dataset from a study by Berthier et al. (2010) that was derived from the USGS DEM of the 1960s (NED) and a more recent DEM derived from SPOT5 data for the SPIRIT project. Additionally, the ASTER GDEM was used as a more recent DEM. Historic glacier outlines were taken from the USGS digital line graph (DLG) dataset, corrected with the digital raster graph (DRG) maps from USGS. Mean glacier specific elevation changes were derived based on drainage divides from a recently created inventory. Land-terminating, lake-calving and tidewater glaciers were marked in the attribute table to determine their changes separately. We also investigated the impact of handling potential DEM artifacts in three different ways and compared elevation changes with altitude. The mean elevation changes of Gulkana and Wolverine glaciers (about -0.65 m / year) are very similar to the mean of the lake-calving and tidewater glaciers (about -0.6 m / year), but much more negative than for the land-terminating glaciers (about -0.24 m / year). The two mass balance glaciers are thus well representative for the entire region, but not for their own class. The different ways of considering positive elevation changes (e.g. setting them to zero or no data) influence the total values, but has otherwise little impact on the results (e.g. the correction factors are similar). The massive elevation loss of Columbia Glacier (-2.8 m / year) is exceptional and strongly influences the statistics when area-weighting is used to determine the regional mean. For the entire region this method yields more negative values for land-terminating and tidewater glaciers than the arithmetically averaged values, but for the lake-calving glaciers both are about the same.

  20. A classification of forest environments in the south Umpqua Basin.

    Treesearch

    Don Minore

    1972-01-01

    Forest environments are classified by elevation, temperature, moisture, potential solar radiation, and soil type. Broad elevation classes are derived from topographic maps or altimeter measurements, measured temperature and moisture conditions are related to vegetation by using plant indicator species (illustrated), and tabular values are employed in estimating...

  1. Integration of SAR and DEM data: Geometrical considerations

    NASA Technical Reports Server (NTRS)

    Kropatsch, Walter G.

    1991-01-01

    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.

  2. The Unified Lunar Control Network 2005

    USGS Publications Warehouse

    Archinal, Brent A.; Rosiek, Mark R.; Kirk, Randolph L.; Redding, Bonnie L.

    2006-01-01

    This report documents a new general unified lunar control network and lunar topographic model based on a combination of Clementine images and a previous network derived from Earth-based & Apollo photographs, and Mariner 10, & Galileo images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 ?m (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. The explanation given here, along with the accompanying files, comprises the release of the network information and of global lunar digital elevation models (DEMs) derived from the network. A paper that will describe the solution and network in further detail will be submitted to a refereed journal, and will include additional background information, solution details, discussion of accuracy and precision, and explanatory figures.

  3. Earth's Constant Mean Elevation: Implication for Long-Term Sea Level and Controlled by Ocean Lithosphere Dynamics in a Pitman World

    NASA Astrophysics Data System (ADS)

    Rowley, David

    2017-04-01

    On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.

  4. The First Prediction of a Rift Valley Fever Outbreak

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

  5. Prediction of a Rift Valley fever outbreak

    PubMed Central

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre B.; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Niño/Southern Oscillation related climate anomalies were analyzed by using a combination of satellite measurements of elevated sea-surface temperatures and subsequent elevated rainfall and satellite-derived normalized difference vegetation index data. A Rift Valley fever (RVF) risk mapping model using these climate data predicted areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. To our knowledge, this is the first prospective prediction of a RVF outbreak. PMID:19144928

  6. Hydrography change detection: the usefulness of surface channels derived From LiDAR DEMs for updating mapped hydrography

    USGS Publications Warehouse

    Poppenga, Sandra K.; Gesch, Dean B.; Worstell, Bruce B.

    2013-01-01

    The 1:24,000-scale high-resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time-relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR-derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.

  7. Geomorphic and climate influences on soil organic carbon concentration at large catchment scales

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Martinez, C.; Wells, T.; Dever, C.; Willgoose, G. R.; Bissett, A.

    2013-12-01

    Soils represent the largest terrestrial sink of carbon on Earth. Managing the soil organic carbon (SOC) pool is becoming increasingly important in light of growing concerns over global food security and the climatic effects of anthropogenic CO2 emissions. The development of accurate predictive SOC models are an important step for both land resource managers and policy makers alike. Presently, a number of SOC models are available which incorporate environmental data to produce SOC estimates. The accuracy of these models varies significantly over a range of landscapes due to the highly complex nature of SOC dynamics. Fundamental gaps exist in our understanding of SOC controls. To date, studies of SOC controls, and the subsequent models derived from their findings have focussed mainly on North American and European landscapes. Additionally, SOC studies often focus on the paddock to small catchment scale. Consequently, information about SOC in Australian landscapes and at the larger scale is limited. This study examines controls over SOC across a large catchment of approximately 600 km2 in the Upper Hunter Valley, New South Wales, Australia. The aim was to develop a predictive model for use across a range of catchment sizes and climate. Here it was found that elevation (derived from DEMs) and vegetation (above ground biomass quantified by remote sensing were the primary controls of SOC. SOC was seen to increase with elevation and NDVI. This relationship is believed to be a reflection of rainfall patterns across the study area and plant growth potential. Further, a relationship was observed between SOC and the environmental tracer 137Cs which suggests that SOC and 137Cs move through catchment via similar sediment transport mechanisms. Therefore loss of SOC by erosion and gain by deposition may be necessary to be accounted for in any SOC budget. Model validation indicated that the use of simple linear relationships could predict SOC based on rainfall and vegetation (above ground biomass as quantified by remote sensing). The results suggest that simple landscape and climate models have the potential to predict the spatial distribution of SOC. The findings of this study emphasise the importance of tailoring SOC models to the appropriate scale.

  8. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia

    2011-01-01

    The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.

  9. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  10. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  11. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M.A.; Turk, J.T.; Clow, D.W.; Campbell, D.H.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 ??eq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 ??eq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93??C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering. ?? 2010 US Government.

  12. Cost-effectiveness of clopidogrel in myocardial infarction with ST-segment elevation: a European model based on the CLARITY and COMMIT trials.

    PubMed

    Berg, Jenny; Lindgren, Peter; Spiesser, Julie; Parry, David; Jönsson, Bengt

    2007-06-01

    Several health economic studies have shown that the use of clopidogrel is cost-effective to prevent ischemic events in non-ST-segment elevation myocardial infarction (NSTEMI) and unstable angina. This study was designed to assess the cost-effectiveness of clopidogrel in short- and long-term treatment of ST-segment elevation myocardial infarction (STEMI) with the use of data from 2 trials in Sweden, Germany, and France: CLARITY (Clopidogrel as Adjunctive Reperfusion Therapy) and COMMIT (Clopidogrel and Metoprolol in Myocardial Infarction Trial). A combined decision tree and Markov model was constructed. Because existing evidence indicates similar long-term outcomes after STEMI and NSTEMI, data from the long-term NSTEMI CURE trial (Clopidogrel in Unstable Angina to Prevent Recurrent Events) were combined with 1-month data from CLARITY and COMMIT to model the effect of treatment up to 1 year. The risks of death, myocardial infarction, and stroke in an untreated population and long-term survival after all events were derived from the Swedish Hospital Discharge and Cause of Death register. The model was run separately for the 2 STEMI trials. A payer perspective was chosen for the comparative analysis, focusing on direct medical costs. Costs were derived from published sources and were converted to 2005 euros. Effectiveness was measured as the number of life-years gained (LYG) from clopidogrel treatment. In a patient cohort with the same characteristics and event rates as in the CLARITY population, treatment with clopidogrel for up to 1 year resulted in 0.144 LYG. In Sweden and France, this strategy was dominant with estimated cost savings of euro 111 and euro 367, respectively. In Germany, clopidogrel treatment had an incremental cost-effectiveness ratio (ICER) of euro 92/LYG. Data from the COMMIT study showed that clopidogrel treatment resulted in 0.194 LYG at an incremental cost of euro 538 in Sweden, euro 798 in Germany, and euro 545 in France. The corresponding ICERs were euro 2772/LYG, euro 4144/LYG, and euro 2786/LYG, respectively. Treatment of these STEMI patients with clopidogrel appeared to be cost-effective in all 3 European countries studied. Predicted ICERs were below generally accepted threshold values.

  13. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.

  14. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  15. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    PubMed

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach. © 2013 Elsevier B.V. All rights reserved.

  16. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  17. Glacier topography and elevation changes derived from Pléiades sub-meter stereo images

    NASA Astrophysics Data System (ADS)

    Berthier, E.; Vincent, C.; Magnússon, E.; Gunnlaugsson, Á. Þ.; Pitte, P.; Le Meur, E.; Masiokas, M.; Ruiz, L.; Pálsson, F.; Belart, J. M. C.; Wagnon, P.

    2014-12-01

    In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (-1.04 ± 0.23 m a-1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.

  18. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.

    PubMed

    Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A

    2014-08-20

    We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.

  19. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  20. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle Ann; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  1. I/O efficient algorithms and applications in geographic information systems

    NASA Astrophysics Data System (ADS)

    Danner, Andrew

    Modern remote sensing methods such a laser altimetry (lidar) and Interferometric Synthetic Aperture Radar (IfSAR) produce georeferenced elevation data at unprecedented rates. Many Geographic Information System (GIS) algorithms designed for terrain modelling applications cannot process these massive data sets. The primary problem is that these data sets are too large to fit in the main internal memory of modern computers and must therefore reside on larger, but considerably slower disks. In these applications, the transfer of data between disk and main memory, or I/O, becomes the primary bottleneck. Working in a theoretical model that more accurately represents this two level memory hierarchy, we can develop algorithms that are I/O-efficient and reduce the amount of disk I/O needed to solve a problem. In this thesis we aim to modernize GIS algorithms and develop a number of I/O-efficient algorithms for processing geographic data derived from massive elevation data sets. For each application, we convert a geographic question to an algorithmic question, develop an I/O-efficient algorithm that is theoretically efficient, implement our approach and verify its performance using real-world data. The applications we consider include constructing a gridded digital elevation model (DEM) from an irregularly spaced point cloud, removing topological noise from a DEM, modeling surface water flow over a terrain, extracting river networks and watershed hierarchies from the terrain, and locating polygons containing query points in a planar subdivision. We initially developed solutions to each of these applications individually. However, we also show how to combine individual solutions to form a scalable geo-processing pipeline that seamlessly solves a sequence of sub-problems with little or no manual intervention. We present experimental results that demonstrate orders of magnitude improvement over previously known algorithms.

  2. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  3. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study.

    PubMed

    Suhai, Bence; Horváth, Gábor

    2004-09-01

    We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.

  4. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  5. Understanding Coastal Wetland Vulnerability to Sea-Level Rise Enhanced Inundation Using Real-Time Stage Monitoring, LiDAR, and Monte Carlo Simulation in Everglades National Park

    NASA Astrophysics Data System (ADS)

    Cooper, H.; Zhang, C.

    2017-12-01

    Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps to increase the integrity of derived products used to support and guide coastal restoration managers and planners under the challenge of rising seas.

  6. Quantifying Glacier Volume Change Using UAV-Derived Imagery and Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Decker, C. R.; La Frenierre, J.

    2017-12-01

    Glaciers in the Tropical Andes, like those worldwide, are experiencing rapid ice volume loss due to climate change. Tropical areas are of significant interest in glacier studies because they are especially sensitive to climate change. Quantifying the rate of ice volume loss is important given their sensitivity to climate change and the importance of glacier meltwater for downstream human use. Past studies have found shrinking ice surfaces areas, but finding the actual rate of volume loss gives more information about how glaciers are reacting to climate change as well as the direct hydrological effects of ice volume loss. In this study we determined the rate of ice volume loss for a debris covered section of the Reschreiter Glacier and a portion of the clean ice tongue of the Hans Meyer Glacier on Volcán Chimborazo in Ecuador. Traditional geodetic approaches of measuring ice volume change, including the use of satellite-derived digital elevation models and airborne LIDAR, are difficult in this case due to the small size of Chimborazo's glaciers, frequently cloudy conditions, and limited local resources. Instead, we obtained imagery with an Unmanned Aerial Vehicle (UAV) and processed this imagery using Structure from Motion photogrammetry. Our results are used to evaluate the role of elevation and debris cover as Chimborazo's glaciers respond to climate change.

  7. Unrepaired DNA damage in macrophages causes elevation of particulate matter- induced airway inflammatory response.

    PubMed

    Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao

    2018-04-14

    The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.

  8. The Accuracy Analysis of Lidar-Derived Elevation Data for the Geometric Description of Cross-Sections of a Riverbed

    NASA Astrophysics Data System (ADS)

    Caroti, G.; Camiciottoli, F.; Piemonte, A.; Redini, M.

    2013-01-01

    The work stems from a joint study between the Laboratory ASTRO (Department of Civil and Industrial Engineering - University of Pisa), the municipality of Pisa and the province of Arezzo on the advanced analysis and use of digital elevation data. Besides, it is framed in the research carried on by ASTRO about the definition of the priority informative layers for emergency management in the territory, as of PRIN 2008. Specifically, this work is in continuity with other already published results concerning rigorous accuracy checks of LIDAR data and testing of the procedures to transform raw data in formats consistent with CTR and survey data. The analysis of sections of riverbed, derived from interpolation by DTMs featuring different grid density with those detected topographically, is presented. Validation by differential GNSS methodology of the DTMs used showed a good overall quality of the model for open, low-sloping areas. Analysis of the sections, however, has shown that the representation of small or high-sloping (ditches, embankments) morphological elements requires a high point density such as in laser scanner surveys, and a small mesh size of the grid. In addition, the correct representation of riverside structures is often hindered by the presence of thick vegetation and poor raw LIDAR data filtering.

  9. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    PubMed

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  10. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells

    PubMed Central

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097

  11. Hydrolysis of N3-methyl-2'-deoxycytidine: model compound for reactivity of protonated cytosine residues in DNA.

    PubMed

    Sowers, L C; Sedwick, W D; Shaw, B R

    1989-11-01

    Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions.

  12. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  13. Retrieving improved multi-temporal CryoSat elevations over ice caps and glaciers - a case study of Barnes ice cap

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan; Burgess, David

    2014-05-01

    The CryoSat mission was launched in 2010 to observe the Earth's cryosphere. In contrast to previous satellite radar altimeters, this mission is expected to monitor the elevation of small ice caps and glaciers, which according to the IPCC will be the largest contributor to 21st century sea level rise. To date the ESA CryoSat SARiN level-2 (L2) elevation product is not yet fully optimized for use over these types of glaciated regions, as its processed with a more universal algorithm. Thus the aim of this study is to demonstrate that with the use of improved processing CryoSat SARiN data can be used for more accurate topography mapping and elevation change detection for ice caps and glaciers. To demonstrate this, elevations and elevation changes over Barnes ice cap, located on Baffin Island in the Canadian Arctic, have been estimated from available data from the years 2010-2013. ESA's CryoSat level-1b (L1b) SARiN baseline "B" data product was used and processed in-house to estimate surface elevations. The resulting product is referred to as DTU-L2. The processing focused on improving the retracker, reducing phase noise and correcting phase ambiguities. The accuracy of the DTU-L2 and the ESA-L2 product was determined by comparing the measured elevations against NASA's IceBridge Airborne Topographic Mapper (ATM) elevations from May 2011. The resulting difference in accuracy was determined by comparing their associated errors. From the multi-temporal measurements spanning the period 2010-2013, elevation changes where estimated and compared to ICESat derived changes from 2003-2009. The result of the study shows good agreement between the NASA measured ATM elevations and the DTU-L2 data. It also shows that the pattern of elevation change is similar to that derived from ICESat data. The accuracy of the DTU-L2 estimated elevations is on average several factors higher compared to the ESA-L2 elevation product. These preliminary results demonstrates that CryoSat elevation data, using improved processing, can be used for accurate topographic mapping and elevation change detection on ice caps and glaciers. Future work would entail extending this processing to other regions of this type to support these results.

  14. Approximation method for determining the static stability of a monoplane glider

    NASA Technical Reports Server (NTRS)

    Lippisch, A

    1927-01-01

    The calculations in this paper afford an approximate solution of the static stability. A derivation of the formulas for moment coefficient of a wing, moment coefficient of elevator, and the total moment of the combined wing and elevator and the moment coefficient with reference to the center of gravity are provided.

  15. Serum osteoprotegerin is increased and predicts survival in idiopathic pulmonary arterial hypertension

    PubMed Central

    Condliffe, Robin; Pickworth, Josephine A.; Hopkinson, Kay; Walker, Sara J.; Hameed, Abdul G.; Suntharaligam, Jay; Soon, Elaine; Treacy, Carmen; Pepke-Zaba, Joanna; Francis, Sheila E.; Crossman, David C.; Newman, Christopher M. H.; Elliot, Charles A.; Morton, Allison C.; Morrell, Nicholas W.; Kiely, David G.; Lawrie, Allan

    2012-01-01

    We previously reported that osteoprotegerin (OPG) is regulated by pathways associated with pulmonary arterial hypertension (PAH), and is present at elevated levels within pulmonary vascular lesions and sera from patients with idiopathic PAH (IPAH). Since OPG is a naturally secreted protein, we investigated the relationship between serum OPG and disease severity and outcome in patients with IPAH and animal models. OPG mRNA expression was measured in pulmonary artery smooth muscle cells (PASMC) from pulmonary arteries of patients with and without IPAH. Serum concentrations of OPG were measured in a retrospective and prospective group of patients. OPG levels were compared with phenotypic data and other putative PAH biomarkers. Prognostic significance was assessed and levels compared with healthy controls. Correlation of OPG and pulmonary vascular remodeling was also performed in rodent models of PAH. OPG mRNA was significantly increased 2-fold in PASMC isolated from explanted PAH lungs compared with control. Serum OPG concentrations were markedly elevated in IPAH compared with controls. In Cohort 1 OPG levels significantly correlated with mean right atrial pressure and cardiac index, while in Cohort 2 significant correlations existed between age-adjusted OPG levels and gas transfer. In both cohorts an OPG concentration above a ROC-derived threshold of 4728 pg/ml predicted poorer survival. In two rodent models, OPG correlated with the degree of pulmonary vascular remodeling. OPG levels are significantly elevated in patients with idiopathic PAH and are of prognostic significance. The role of OPG as a potential biomarker and therapeutic target merits further investigation. PMID:22558516

  16. Hemopressins and other hemoglobin-derived peptides in mouse brain: Comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice

    PubMed Central

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2010-01-01

    Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081

  17. Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.

    1990-01-01

    A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.

  18. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    USGS Publications Warehouse

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana, vegetation cover in prior year was the best single predictor of subsequent loss in most sites followed by changes in percent land and tidal amplitude. The model’s predicted land loss rates correlated well with land loss rates derived from satellite data, although agreement was spatially variable. These results indicate 1) monitoring the loss of small scale vegetation plots can inform patterns of land loss at larger scales 2) the drivers of land loss vary spatially across coastal Louisiana, and 3) relatively simple models have potential as highly informative tools for bioassessment, directing future research, and management planning.

  19. Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river

    USGS Publications Warehouse

    Legleiter, C.J.; Kyriakidis, P.C.; McDonald, R.R.; Nelson, J.M.

    2011-01-01

    Many applications in river research and management rely upon two-dimensional (2D) numerical models to characterize flow fields, assess habitat conditions, and evaluate channel stability. Predictions from such models are potentially highly uncertain due to the uncertainty associated with the topographic data provided as input. This study used a spatial stochastic simulation strategy to examine the effects of topographic uncertainty on flow modeling. Many, equally likely bed elevation realizations for a simple meander bend were generated and propagated through a typical 2D model to produce distributions of water-surface elevation, depth, velocity, and boundary shear stress at each node of the model's computational grid. Ensemble summary statistics were used to characterize the uncertainty associated with these predictions and to examine the spatial structure of this uncertainty in relation to channel morphology. Simulations conditioned to different data configurations indicated that model predictions became increasingly uncertain as the spacing between surveyed cross sections increased. Model sensitivity to topographic uncertainty was greater for base flow conditions than for a higher, subbankfull flow (75% of bankfull discharge). The degree of sensitivity also varied spatially throughout the bend, with the greatest uncertainty occurring over the point bar where the flow field was influenced by topographic steering effects. Uncertain topography can therefore introduce significant uncertainty to analyses of habitat suitability and bed mobility based on flow model output. In the presence of such uncertainty, the results of these studies are most appropriately represented in probabilistic terms using distributions of model predictions derived from a series of topographic realizations. Copyright 2011 by the American Geophysical Union.

  20. Isaac Newton and the astronomical refraction.

    PubMed

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  1. Release of a 10-m-resolution DEM for the whole Italian territory: a new, freely available resource for research purposes

    NASA Astrophysics Data System (ADS)

    Tarquini, S.; Nannipieri, L.; Favalli, M.; Fornaciai, A.; Vinci, S.; Doumaz, F.

    2012-04-01

    Digital elevation models (DEMs) are fundamental in any kind of environmental or morphological study. DEMs are obtained from a variety of sources and generated in several ways. Nowadays, a few global-coverage elevation datasets are available for free (e.g., SRTM, http://www.jpl.nasa.gov/srtm; ASTER, http://asterweb.jpl.nasa.gov/). When the matrix of a DEM is used also for computational purposes, the choice of the elevation dataset which better suits the target of the study is crucial. Recently, the increasing use of DEM-based numerical simulation tools (e.g. for gravity driven mass flows), would largely benefit from the use of a higher resolution/higher accuracy topography than those available at planetary scale. Similar elevation datasets are neither easily nor freely available for all countries worldwide. Here we introduce a new web resource which made available for free (for research purposes only) a 10 m-resolution DEM for the whole Italian territory. The creation of this elevation dataset was presented by Tarquini et al. (2007). This DEM was obtained in triangular irregular network (TIN) format starting from heterogeneous vector datasets, mostly consisting in elevation contour lines and elevation points derived from several sources. The input vector database was carefully cleaned up to obtain an improved seamless TIN refined by using the DEST algorithm, thus improving the Delaunay tessellation. The whole TINITALY/01 DEM was converted in grid format (10-m cell size) according to a tiled structure composed of 193, 50-km side square elements. The grid database consists of more than 3 billions of cells and occupies almost 12 GB of disk memory. A web-GIS has been created (http://tinitaly.pi.ingv.it/ ) where a seamless layer of images in full resolution (10 m) obtained from the whole DEM (both in color-shaded and anaglyph mode) is open for browsing. Accredited navigators are allowed to download the elevation dataset.

  2. How well Can We Classify SWOT-derived Water Surface Profiles?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  3. Understanding in situ ozone production in the summertime through radical observations and modelling studies during the Clean air for London project (ClearfLo)

    NASA Astrophysics Data System (ADS)

    Whalley, Lisa K.; Stone, Daniel; Dunmore, Rachel; Hamilton, Jacqueline; Hopkins, James R.; Lee, James D.; Lewis, Alastair C.; Williams, Paul; Kleffmann, Jörg; Laufs, Sebastian; Woodward-Massey, Robert; Heard, Dwayne E.

    2018-02-01

    Measurements of OH, HO2, RO2i (alkene and aromatic-related RO2) and total RO2 radicals taken during the ClearfLo campaign in central London in the summer of 2012 are presented. A photostationary steady-state calculation of OH which considered measured OH reactivity as the OH sink term and the measured OH sources (of which HO2+ NO reaction and HONO photolysis dominated) compared well with the observed levels of OH. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2, however, highlighted a substantial discrepancy between radical observations under lower NOx conditions ([NO] < 1 ppbv), typically experienced during the afternoon hours, and indicated that the model was missing a significant peroxy radical sink; the model overpredicted HO2 by up to a factor of 10 at these times. Known radical termination steps, such as HO2 uptake on aerosols, were not sufficient to reconcile the model-measurement discrepancies alone, suggesting other missing termination processes. This missing sink was most evident when the air reaching the site had previously passed over central London to the east and when elevated temperatures were experienced and, hence, contained higher concentrations of VOCs. Uncertainties in the degradation mechanism at low NOx of complex biogenic and diesel related VOC species, which were particularly elevated and dominated OH reactivity under these easterly flows, may account for some of the model-measurement disagreement. Under higher [NO] (> 3 ppbv) the box model increasingly underpredicted total [RO2]. The modelled and observed HO2 were in agreement, however, under elevated NO concentrations ranging from 7 to 15 ppbv. The model uncertainty under low NO conditions leads to more ozone production predicted using modelled peroxy radical concentrations ( ˜ 3 ppbv h-1) versus ozone production from peroxy radicals measured ( ˜ 1 ppbv h-1). Conversely, ozone production derived from the predicted peroxy radicals is up to an order of magnitude lower than from the observed peroxy radicals as [NO] increases beyond 7 ppbv due to the model underprediction of RO2 under these conditions.

  4. Derive Arctic Sea-ice Freeboard and Thickness from NASA's LVIS Observations

    NASA Astrophysics Data System (ADS)

    Yi, D.; Hofton, M. A.; Harbeck, J.; Cornejo, H.; Kurtz, N. T.

    2015-12-01

    The sea-ice freeboard and thickness are derived from the six sea-ice flights of NASA's IceBridge Land, Vegetation, and Ice Sensor (LVIS) over the Arctic from 2009 to 2013. The LVIS is an airborne scanning laser altimeter. It can operate at an altitude up to 10 km above the ground and produce a data swath up to 2 km wide with 20-m wide footprints. The laser output wavelength is 1064 nm and pulse repetition rate is 1000 Hz. The LVIS L2 geolocated surface elevation product and Level-1b waveform product (http://nsidc.org/data/ilvis2.html and http://nsidc.org/data/ilvis1b.html) at National Snow and Ice Data Center, USA (NSIDC) are used in this study. The elevations are referenced to a geoid with tides and dynamic atmospheric corrections applied. The LVIS waveforms were fitted with Gaussian curves to calculate pulse width, peak location, pulse amplitude, and signal baseline. For each waveform, the centroid, skewness, kurtosis, and pulse area were also calculated. The waveform parameters were calibrated based on laser off pointing angle and laser channels. Calibrated LVIS waveform parameters show a coherent response to variations in surface features along their ground tracks. These parameters, combined with elevation, can be used to identify leads, enabling the derivation of sea-ice freeboard and thickness without relying upon visual images. Preliminary results show that the elevations in some of the LVIS campaigns may vary with laser incident angle; this can introduce an elevation bias if not corrected. Further analysis of the LVIS data shown that the laser incident angle related elevation bias can be removed empirically. The sea-ice freeboard and thickness results from LVIS are compared with NASA's Airborne Topographic Mapper (ATM) for an April 20, 2010 flight, when both LVIS and ATM sensors were on the same aircraft and made coincidental measurements along repeat ground tracks.

  5. Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data

    NASA Astrophysics Data System (ADS)

    Onojeghuo, Alex Okiemute; Onojeghuo, Ajoke Ruth

    2017-07-01

    This study investigated the combined use of multispectral/hyperspectral imagery and LiDAR data for habitat mapping across parts of south Cumbria, North West England. The methodology adopted in this study integrated spectral information contained in pansharp QuickBird multispectral/AISA Eagle hyperspectral imagery and LiDAR-derived measures with object-based machine learning classifiers and ensemble analysis techniques. Using the LiDAR point cloud data, elevation models (such as the Digital Surface Model and Digital Terrain Model raster) and intensity features were extracted directly. The LiDAR-derived measures exploited in this study included Canopy Height Model, intensity and topographic information (i.e. mean, maximum and standard deviation). These three LiDAR measures were combined with spectral information contained in the pansharp QuickBird and Eagle MNF transformed imagery for image classification experiments. A fusion of pansharp QuickBird multispectral and Eagle MNF hyperspectral imagery with all LiDAR-derived measures generated the best classification accuracies, 89.8 and 92.6% respectively. These results were generated with the Support Vector Machine and Random Forest machine learning algorithms respectively. The ensemble analysis of all three learning machine classifiers for the pansharp QuickBird and Eagle MNF fused data outputs did not significantly increase the overall classification accuracy. Results of the study demonstrate the potential of combining either very high spatial resolution multispectral or hyperspectral imagery with LiDAR data for habitat mapping.

  6. A multitemporal (1979-2009) land-use/land-cover dataset of the binational Santa Cruz Watershed

    USGS Publications Warehouse

    2011-01-01

    Trends derived from multitemporal land-cover data can be used to make informed land management decisions and to help managers model future change scenarios. We developed a multitemporal land-use/land-cover dataset for the binational Santa Cruz watershed of southern Arizona, United States, and northern Sonora, Mexico by creating a series of land-cover maps at decadal intervals (1979, 1989, 1999, and 2009) using Landsat Multispectral Scanner and Thematic Mapper data and a classification and regression tree classifier. The classification model exploited phenological changes of different land-cover spectral signatures through the use of biseasonal imagery collected during the (dry) early summer and (wet) late summer following rains from the North American monsoon. Landsat images were corrected to remove atmospheric influences, and the data were converted from raw digital numbers to surface reflectance values. The 14-class land-cover classification scheme is based on the 2001 National Land Cover Database with a focus on "Developed" land-use classes and riverine "Forest" and "Wetlands" cover classes required for specific watershed models. The classification procedure included the creation of several image-derived and topographic variables, including digital elevation model derivatives, image variance, and multitemporal Kauth-Thomas transformations. The accuracy of the land-cover maps was assessed using a random-stratified sampling design, reference aerial photography, and digital imagery. This showed high accuracy results, with kappa values (the statistical measure of agreement between map and reference data) ranging from 0.80 to 0.85.

  7. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  8. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy.

    PubMed

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D; Ao, Ying; Kalra, Spandan; Bett, Glenna C L; Rasmusson, Randall L; Denning, Chris; Yang, Lei

    2015-05-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca(2+), mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca(2+) level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. © 2015. Published by The Company of Biologists Ltd.

  9. Evaluating Exposure-Response Associations for Non-Hodgkin Lymphoma with Varying Methods of Assigning Cumulative Benzene Exposure in the Shanghai Women's Health Study.

    PubMed

    Friesen, Melissa C; Bassig, Bryan A; Vermeulen, Roel; Shu, Xiao-Ou; Purdue, Mark P; Stewart, Patricia A; Xiang, Yong-Bing; Chow, Wong-Ho; Ji, Bu-Tian; Yang, Gong; Linet, Martha S; Hu, Wei; Gao, Yu-Tang; Zheng, Wei; Rothman, Nathaniel; Lan, Qing

    2017-01-01

    To provide insight into the contributions of exposure measurements to job exposure matrices (JEMs), we examined the robustness of an association between occupational benzene exposure and non-Hodgkin lymphoma (NHL) to varying exposure assessment methods. NHL risk was examined in a prospective population-based cohort of 73087 women in Shanghai. A mixed-effects model that combined a benzene JEM with >60000 short-term, area benzene inspection measurements was used to derive two sets of measurement-based benzene estimates: 'job/industry-specific' estimates (our presumed best approach) were derived from the model's fixed effects (year, JEM intensity rating) and random effects (occupation, industry); 'calibrated JEM' estimates were derived using only the fixed effects. 'Uncalibrated JEM' (using the ordinal JEM ratings) and exposure duration estimates were also calculated. Cumulative exposure for each subject was calculated for each approach based on varying exposure definitions defined using the JEM's probability ratings. We examined the agreement between the cumulative metrics and evaluated changes in the benzene-NHL associations. For our primary exposure definition, the job/industry-specific estimates were moderately to highly correlated with all other approaches (Pearson correlation 0.61-0.89; Spearman correlation > 0.99). All these metrics resulted in statistically significant exposure-response associations for NHL, with negligible gain in model fit from using measurement-based estimates. Using more sensitive or specific exposure definitions resulted in elevated but non-significant associations. The robust associations observed here with varying benzene assessment methods provide support for a benzene-NHL association. While incorporating exposure measurements did not improve model fit, the measurements allowed us to derive quantitative exposure-response curves. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.

  10. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  11. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2017-04-01

    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  12. Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Li, Xiaowen; Wu, Di; van Lier-Walqui, Marcus; Ackerman, Andrew S.; Tao, Wei-Kuo; McFarquhar, Greg M.; Wu, Wei; Dong, Xiquan; Wang, Jingyu; hide

    2017-01-01

    Advancing understanding of deep convection microphysics via mesoscale modeling studies of well-observed case studies requires observation-based aerosol inputs. Here, we derive hygroscopic aerosol size distribution input profiles from ground-based and airborne measurements for six convection case studies observed during the Midlatitude Continental Convective Cloud Experiment (MC3E) over Oklahoma. We demonstrate use of an input profile in simulations of the only well-observed case study that produced extensive stratiform outflow on 20 May 2011. At well-sampled elevations between -11 and -23 C over widespread stratiform rain, ice crystal number concentrations are consistently dominated by a single mode near approx. 400 microm in randomly oriented maximum dimension (Dmax). The ice mass at -23 C is primarily in a closely collocated mode, whereas a mass mode near Dmax approx. 1000 microns becomes dominant with decreasing elevation to the -11 C level, consistent with possible aggregation during sedimentation. However, simulations with and without observation-based aerosol inputs systematically overpredict mass peak Dmax by a factor of 3-5 and underpredict ice number concentration by a factor of 4-10. Previously reported simulations with both two-moment and size-resolved microphysics have shown biases of a similar nature. The observed ice properties are notably similar to those reported from recent tropical measurements. Based on several lines of evidence, we speculate that updraft microphysical pathways determining outflow properties in the 20 May case are similar to a tropical regime, likely associated with warm-temperature ice multiplication that is not well understood or well represented in models.

  13. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions of elevated Eocene methane levels relative to the Holocene (x10), but suggest that even these could be underestimates as they do not take into account lacustrine production and are generally characterised by lower high latitude temperatures than proxies suggest.

  14. Ticks and tick-borne pathogens of dogs along an elevational and land-use gradient in Chiriquí province, Panamá.

    PubMed

    Ferrell, A Michelle; Brinkerhoff, R Jory; Bernal, Juan; Bermúdez, Sergio E

    2017-04-01

    Systematic acarological surveys are useful tools in assessing risk to tick-borne infections, especially in areas where consistent clinical surveillance for tick-borne disease is lacking. Our goal was to identify environmental predictors of tick burdens on dogs and tick-borne infectious agents in dog-derived ticks in the Chiriquí Province of western Panama to draw inferences about spatio-temporal variation in human risk to tick-borne diseases. We used a model-selection approach to test the relative importance of elevation, human population size, vegetative cover, and change in landuse on patterns of tick parasitism on dogs. We collected 2074 ticks, representing four species (Rhipicephalus sanguineus, R. microplus, Amblyomma ovale, and Ixodes boliviensis) from 355 dogs. Tick prevalence ranged from 0 to 74% among the sites we sampled, and abundance ranged from 0 to 20.4 ticks per dog with R. sanguineus s.l. being the most commonly detected tick species (97% of all ticks sampled). Whereas elevation was the best single determinant of tick prevalence and abundance on dogs, the top models also included predictor variables describing vegetation cover and landuse change. Specifically, low-elevation areas associated with decreasing vegetative cover were associated with highest tick occurrence on dogs, potentially because of the affinity of R. sanguineus for human dwellings. Although we found low prevalence of tick-borne pathogen genera (two Rickettsia-positive ticks, no R. rickettsia or Ehrlichia spp.) in our study, all of the tick species we collected from dogs are known vectors of zoonotic pathogens. In areas where epidemiological surveillance infrastructure is limited, field-based assessments of acarological risk can be useful and cost-effective tools in efforts to identify high-risk environments for tick-transmitted pathogens.

  15. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    PubMed

    Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore

    2013-01-01

    In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.

  16. Calibrating a hydraulic model using water levels derived from time series high-resolution Radarsat-2 synthetic aperture radar images and elevation data

    NASA Astrophysics Data System (ADS)

    Trudel, M.; Desrochers, N.; Leconte, R.

    2017-12-01

    Knowledge of water extent (WE) and level (WL) of rivers is necessary to calibrate and validate hydraulic models and thus to better simulate and forecast floods. Synthetic aperture radar (SAR) has demonstrated its potential for delineating water bodies, as backscattering of water is much lower than that of other natural surfaces. The ability of SAR to obtain information despite cloud cover makes it an interesting tool for temporal monitoring of water bodies. The delineation of WE combined with a high-resolution digital terrain model (DTM) allows extracting WL. However, most research using SAR data to calibrate hydraulic models has been carried out using one or two images. The objectives of this study is to use WL derived from time series high resolution Radarsat-2 SAR images for the calibration of a 1-D hydraulic model (HEC-RAS). Twenty high-resolution (5 m) Radarsat-2 images were acquired over a 40 km reach of the Athabasca River, in northern Alberta, Canada, between 2012 and 2016, covering both low and high flow regimes. A high-resolution (2m) DTM was generated combining information from LIDAR data and bathymetry acquired between 2008 and 2016 by boat surveying. The HEC-RAS model was implemented on the Athabasca River to simulate WL using cross-sections spaced by 100 m. An image histogram thresholding method was applied on each Radarsat-2 image to derive WE. WE were then compared against each cross-section to identify those were the slope of the banks is not too abrupt and therefore amenable to extract WL. 139 observations of WL at different locations along the river reach and with streamflow measurements were used to calibrate the HEC-RAS model. The RMSE between SAR-derived and simulated WL is under 0.35 m. Validation was performed using in situ observations of WL measured in 2008, 2012 and 2016. The RMSE between the simulated water levels calibrated with SAR images and in situ observations is less than 0.20 m. In addition, a critical success index (CSI) was performed to compare the WE simulated by HEC-RAS and that derived from SARs images. The CSI is higher than 0.85 for each date, which means that simulated WE is highly similar to the WE derived from SARs images. Thereby, the results of our analysis indicate that calibration of a hydraulic model can be performed from WL derived from time series of high-resolution SAR images.

  17. The terrain signatures of administrative units: a tool for environmental assessment.

    PubMed

    Miliaresis, George Ch

    2009-03-01

    The quantification of knowledge related to the terrain and the landuse/landcover of administrative units in Southern Greece (Peloponnesus) is performed from the CGIAR-CSI SRTM digital elevation model and the CORINE landuse/landcover database. Each administrative unit is parametrically represented by a set of attributes related to its relief. Administrative units are classified on the basis of K-means cluster analysis in an attempt to see how they are organized into groups and cluster derived geometric signatures are defined. Finally each cluster is parametrically represented on the basis of the occurrence of the Corine landuse/landcover classes included and thus, landcover signatures are derived. The geometric and the landuse/landcover signatures revealed a terrain dependent landuse/landcover organization that was used in the assessment of the forest fires impact at moderate resolution scale.

  18. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2018-02-01

    Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.

  19. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model.

    PubMed

    Piccolo, Brian D; Graham, James L; Stanhope, Kimber L; Fiehn, Oliver; Havel, Peter J; Adams, Sean H

    2016-06-01

    Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. Copyright © 2016 the American Physiological Society.

  20. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model

    PubMed Central

    Piccolo, Brian D.; Graham, James L.; Stanhope, Kimber L.; Fiehn, Oliver; Havel, Peter J.

    2016-01-01

    Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset. PMID:27094034

  1. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Jeofry, Hafeez; Ross, Neil; Corr, Hugh F. J.; Li, Jilu; Morlighem, Mathieu; Gogineni, Prasad; Siegert, Martin J.

    2018-04-01

    We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ˜ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) in 2010-2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (˜ 2 km below sea level) between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488.

  2. Atmospheric carbon dioxide changes photochemical activity, soluble sugars and volatile levels in broccoli (Brassica oleracea var. italica).

    PubMed

    Krumbein, Angelika; Kläring, Hans-Peter; Schonhof, Ilona; Schreiner, Monika

    2010-03-24

    Atmospheric carbon dioxide (CO(2)) concentration is an environmental factor currently undergoing dramatic changes. The objective of the present study was to determine the effect of doubling the ambient CO(2) concentration on plant photochemistry as measured by photochemical quenching coefficient (qP), soluble sugars and volatiles in broccoli. Elevated CO(2) concentration increased qP values in leaves by up to 100% and 89% in heads, while glucose and sucrose in leaves increased by about 60%. Furthermore, in broccoli heads elevated CO(2) concentration induced approximately a 2-fold increase in concentrations of three fatty acid-derived C(7) aldehydes ((E)-2-heptenal, (E,Z)-2,4-heptadienal, (E,E)-2,4-heptadienal), two fatty acid-derived C(5) alcohols (1-penten-3-ol, (Z)-2-pentenol), and two amino acid-derived nitriles (phenyl propanenitrile, 3-methyl butanenitrile). In contrast, concentrations of the sulfur-containing compound 2-ethylthiophene and C(6) alcohol (E)-2-hexenol decreased. Finally, elevated CO(2) concentration increased soluble sugar concentrations due to enhanced photochemical activity in leaves and heads, which may account for the increased synthesis of volatiles.

  3. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

    NASA Astrophysics Data System (ADS)

    Wu, Kunpeng; Liu, Shiyin; Jiang, Zongli; Xu, Junli; Wei, Junfeng; Guo, Wanqin

    2018-01-01

    Due to the influence of the Indian monsoon, the Kangri Karpo Mountains in the south-east of the Tibetan Plateau is in the most humid and one of the most important and concentrated regions containing maritime (temperate) glaciers. Glacier mass loss in the Kangri Karpo is an important contributor to global mean sea level rise, and changes run-off distribution, increasing the risk of glacial-lake outburst floods (GLOFs). Because of its inaccessibility and high labour costs, information about the Kangri Karpo glaciers is still limited. Using geodetic methods based on digital elevation models (DEMs) derived from 1980 topographic maps from the Shuttle Radar Topography Mission (SRTM) (2000) and from TerraSAR-X/TanDEM-X (2014), this study has determined glacier elevation changes. Glacier area and length changes between 1980 and 2015 were derived from topographical maps and Landsat TM/ETM+/OLI images. Results show that the Kangri Karpo contained 1166 glaciers with an area of 2048.50 ± 48.65 km2 in 2015. Ice cover diminished by 679.51 ± 59.49 km2 (24.9 ± 2.2 %) or 0.71 ± 0.06 % a-1 from 1980 to 2015, although nine glaciers advanced. A glacierized area of 788.28 km2, derived from DEM differencing, experienced a mean mass loss of 0.46 ± 0.08 m w.e. a-1 from 1980 to 2014. Shrinkage and mass loss accelerated significantly from 2000 to 2015 compared to 1980-2000, consistent with a warming climate.

  4. Global relationships in river hydromorphology

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.

    2017-12-01

    Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.

  5. Sustained apnea induces endothelial activation.

    PubMed

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  6. SCEC UCVM - Unified California Velocity Model

    NASA Astrophysics Data System (ADS)

    Small, P.; Maechling, P. J.; Jordan, T. H.; Ely, G. P.; Taborda, R.

    2011-12-01

    The SCEC Unified California Velocity Model (UCVM) is a software framework for a state-wide California velocity model. UCVM provides researchers with two new capabilities: (1) the ability to query Vp, Vs, and density from any standard regional California velocity model through a uniform interface, and (2) the ability to combine multiple velocity models into a single state-wide model. These features are crucial in order to support large-scale ground motion simulations and to facilitate improvements in the underlying velocity models. UCVM provides integrated support for the following standard velocity models: SCEC CVM-H, SCEC CVM-S and the CVM-SI variant, USGS Bay Area (cencalvm), Lin-Thurber Statewide, and other smaller regional models. New models may be easily incorporated as they become available. Two query interfaces are provided: a Linux command line program, and a C application programming interface (API). The C API query interface is simple, fully independent of any specific model, and MPI-friendly. Input coordinates are geographic longitude/latitude and the vertical coordinate may be either depth or elevation. Output parameters include Vp, Vs, and density along with the identity of the model from which these material properties were obtained. In addition to access to the standard models, UCVM also includes a high resolution statewide digital elevation model, Vs30 map, and an optional near-surface geo-technical layer (GTL) based on Ely's Vs30-derived GTL. The elevation and Vs30 information is bundled along with the returned Vp,Vs velocities and density, so that all relevant information is retrieved with a single query. When the GTL is enabled, it is blended with the underlying crustal velocity models along a configurable transition depth range with an interpolation function. Multiple, possibly overlapping, regional velocity models may be combined together into a single state-wide model. This is accomplished by tiling the regional models on top of one another in three dimensions in a researcher-specified order. No reconciliation is performed within overlapping model regions, although a post-processing tool is provided to perform a simple numerical smoothing. Lastly, a 3D region from a combined model may be extracted and exported into a CVM-Etree. This etree may then be queried by UCVM much like a standard velocity model but with less overhead and generally better performance due to the efficiency of the etree data structure.

  7. Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.

    2009-01-01

    The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.

  8. Spectral analysis of the gravity and topography of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  9. TopoLens: Building a cyberGIS community data service for enhancing the usability of high-resolution National Topographic datasets

    USGS Publications Warehouse

    Hu, Hao; Hong, Xingchen; Terstriep, Jeff; Liu, Yan; Finn, Michael P.; Rush, Johnathan; Wendel, Jeffrey; Wang, Shaowen

    2016-01-01

    Geospatial data, often embedded with geographic references, are important to many application and science domains, and represent a major type of big data. The increased volume and diversity of geospatial data have caused serious usability issues for researchers in various scientific domains, which call for innovative cyberGIS solutions. To address these issues, this paper describes a cyberGIS community data service framework to facilitate geospatial big data access, processing, and sharing based on a hybrid supercomputer architecture. Through the collaboration between the CyberGIS Center at the University of Illinois at Urbana-Champaign (UIUC) and the U.S. Geological Survey (USGS), a community data service for accessing, customizing, and sharing digital elevation model (DEM) and its derived datasets from the 10-meter national elevation dataset, namely TopoLens, is created to demonstrate the workflow integration of geospatial big data sources, computation, analysis needed for customizing the original dataset for end user needs, and a friendly online user environment. TopoLens provides online access to precomputed and on-demand computed high-resolution elevation data by exploiting the ROGER supercomputer. The usability of this prototype service has been acknowledged in community evaluation.

  10. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus

    PubMed Central

    Sharwood, Robert E.; Crous, Kristine Y.; Whitney, Spencer M.; Ellsworth, David S.

    2017-01-01

    Abstract Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT)+3 °C) on Rubisco content and activity together with the relationship between leaf N and Vcmax (maximal Rubisco carboxylation rate) of 7 m tall, soil-grown Eucalyptus globulus trees. The kinetics of E. globulus and tobacco Rubisco at 25 °C were similar. In vitro estimates of Vcmax derived from measures of E. globulus Rubisco content and kinetics were consistent, although slightly lower, than the in vivo rates extrapolated from gas exchange. In E. globulus, the fraction of N invested in Rubisco was substantially lower than for crop species and varied with treatments. Photosynthetic acclimation of E. globulus leaves to eC was underpinned by reduced leaf N and Rubisco contents; the opposite occurred in response to eT coinciding with growth resumption in spring. Our findings highlight the adaptive capacity of this key forest species to allocate leaf N flexibly to Rubisco and other photosynthetic proteins across differing canopy positions in response to future, warmer and elevated [CO2] climates. PMID:28064178

  11. Whole-edifice ice volume change A.D. 1970 to 2007/2008 at Mount Rainier, Washington, based on LiDAR surveying

    USGS Publications Warehouse

    Sisson, T.W.; Robinson, J.E.; Swinney, D.D.

    2011-01-01

    Net changes in thickness and volume of glacial ice and perennial snow at Mount Rainier, Washington State, have been mapped over the entire edifice by differencing between a highresolution LiDAR (light detection and ranging) topographic survey of September-October 2007/2008 and the 10 m lateral resolution U.S. Geological Survey digital elevation model derived from September 1970 aerial photography. Excepting the large Emmons and Winthrop Glaciers, all of Mount Rainier's glaciers thinned and retreated in their terminal regions, with substantial thinning mainly at elevations <2000 m and the greatest thinning on southfacing glaciers. Mount Rainier's glaciers and snowfields also lost volume over the interval, excepting the east-flank Fryingpan and Emmons Glaciers and minor near-summit snowfields; maximum volume losses were centered from ~1750 m (north flank) to ~2250 m (south fl ank) elevation. The greatest single volume loss was from the Carbon Glacier, despite its northward aspect, due to its sizeable area at <2000 m elevation. Overall, Mount Rainier lost ~14 vol% glacial ice and perennial snow over the 37 to 38 yr interval between surveys. Enhanced thinning of south-flank glaciers may be meltback from the high snowfall period of the mid-1940s to mid-1970s associated with the cool phase of the Pacific Decadal Oscillation.

  12. Evaluation of Aster Gdem v3 Using Icesat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J.-P.

    2016-06-01

    We have used a set of Ground Control Points (GCPs) derived from altimetry measurements from the Ice, Cloud and land Elevation Satellite (ICESat) to evaluate the quality of the 30 m posting ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global Digital Elevation Model (GDEM) V3 elevation products produced by NASA/METI for Greenland and Antarctica. These data represent the highest quality globally distributed altimetry measurements that can be used for geodetic ground control, selected by applying rigorous editing criteria, useful at high latitudes, where other topographic control is scarce. Even if large outliers still remain in all ASTER GDEM V3 data for both, Greenland and Antarctica, they are significantly reduced when editing ASTER by number of scenes (N≥5) included in the elevation processing. For 667,354 GCPs in Greenland, differences show a mean of 13.74 m, a median of -6.37 m, with an RMSE of 109.65 m. For Antarctica, 6,976,703 GCPs show a mean of 0.41 m, with a median of -4.66 m, and a 54.85 m RMSE, displaying smaller means, similar medians, and less scatter than GDEM V2. Mean and median differences between ASTER and ICESat are lower than 10 m, and RMSEs lower than 10 m for Greenland, and 20 m for Antarctica when only 9 to 31 scenes are included.

  13. Ground-Level Digital Terrain Model (DTM) Construction from Tandem-X InSAR Data and Worldview Stereo-Photogrammetric Images

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo, Temilola; Lagomasino, David; Osmanoglu, Batuhan; Feliciano, Emanuelle

    2016-01-01

    The ground-level digital elevation model (DEM) or digital terrain model (DTM) information are invaluable for environmental modeling, such as water dynamics in forests, canopy height, forest biomass, carbon estimation, etc. We propose to extract the DTM over forested areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) image pair by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) technique for vertical forest structure parameter retrieval [1][2][3][4]. The ground-level DEM have been obtained by complex volume decorrelation in the RVoG model with the DSM using stereo-photogrammetric technique. Finally, the airborne lidar data were used to validate the ground-level DEM and forest canopy height results.

  14. Plant-derived flavanol (−)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice

    PubMed Central

    Stringer, T P; Guerrieri, D; Vivar, C; van Praag, H

    2015-01-01

    Flavanols found in natural products such as cocoa and green tea elicit structural and biochemical changes in the hippocampus, a brain area important for mood and cognition. Here, we evaluated the outcome of daily consumption of the flavanol (−)epicatechin (4 mg per day in water) by adult male C57BL/6 mice on measures of anxiety in the elevated plus maze (EPM) and open field (OF). Furthermore, pattern separation, the ability to distinguish between closely spaced identical stimuli, considered to be mediated by the hippocampal dentate gyrus (DG), was tested using the touchscreen. To investigate mechanisms through which (−)epicatechin may exert its effects, mice were injected with bromodeoxyuridine (50 mg kg−1) to evaluate adult hippocampal neurogenesis. In addition, monoaminergic and neurotrophin signaling pathway proteins were measured in tissue derived from subject cortices and hippocampi. Flavanol consumption reduced anxiety in the OF and EPM. Elevated hippocampal and cortical tyrosine hydroxylase, downregulated cortical monoamine oxidase-A levels, as well as increased hippocampal brain-derived neurotrophic factor (BDNF) and pro-BDNF support the flavanol's anxiolytic effects. In addition, elevated pAkt in hippocampus and cortex was observed. (−)Epicatechin ingestion did not facilitate touchscreen performance or DG neurogenesis, suggesting a non-neurogenic mechanism. The concurrent modulation of complementary neurotrophic and monoaminergic signaling pathways may contribute to beneficial mood-modulating effects of this flavanol. PMID:25562843

  15. Mechanical discrete simulator of the electro-mechanical lift with n:1 roping

    NASA Astrophysics Data System (ADS)

    Alonso, F. J.; Herrera, I.

    2016-05-01

    The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.

  16. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques.

    PubMed Central

    Woods, Alan A; Linton, Stuart M; Davies, Michael J

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The detection of elevated levels of DOPA and o-Tyr, which have been previously attributed to the occurrence of oxygen-radical-mediated reactions, by HOCl treatment, suggests an alternative route to the formation of these materials in plaques. This is believed to involve the formation and subsequent decomposition of protein chloramines. PMID:12456264

  17. Characterizing near-surface firn from the scattered signal component of glacier surface reflections detected in airborne radio-echo sounding measurements

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.

    2016-12-01

    With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.

  18. Glacier elevation and mass change over the upper Maipo Basin, Central Andes, Chile.

    NASA Astrophysics Data System (ADS)

    Farías, David; Seehaus, Thorsten; Vivero, Sebastian; Braun, Matthias H.; Casassa, Gino

    2017-04-01

    The upper Maipo basin (33° S, 70° W, 5400 km2) is located 15 km from the eastern outskirts of the mega-city of Santiago. The basin is characterized by Mediterranean climate with marked winter and summer seasons and occasionally disturbed by large annual and multi-annual variations in temperature and precipitation (ENSO). The upper Maipo basin is the main glacierized region of Chile, where the last Chilean glacier inventory revealed a glacier extent of about 397.6 km2 distributed over 1009 glaciers larger than 0.01 km2. The glaciers located in this basin represent 2% of the total glacierized area in Chile. The 1009 glaciers in this area, compose of 708 rock glaciers (159.91 km2), 126 glaciarets (5.85 km2) and 175 valley and mountain glaciers (231.84 km2). Our focus in this study is to evaluate the suitability of TanDEM-X to derive geodetic glacier mass balance on small mountain glaciers. Our database comprises different digital elevation models (DEM) from historical cartography based on aerial photographs (1955), SRTM (2000), Lidar data and TanDEM-X (2015). The historical cartography was scanned and georeferenced with the aid of several GCPs derived from the Lidar dataset. The TanDEM-X data was processed using differential interferometry using SRTM C-band DEM as reference. Differences resulting from X- and C-band penetration are considered comparing X- and C-band SRTM data. All DEMs were horizontal and vertically co-registered to each other. Error assessment was done over stable ground (off-glacier). On our poster we present preliminary results about detailed quantification of glacier elevation and mass change in this area.

  19. The prognostic value of derived neutrophil to lymphocyte ratio in oesophageal cancer treated with definitive chemoradiotherapy.

    PubMed

    Cox, Samantha; Hurt, Christopher; Grenader, Tal; Mukherjee, Somnath; Bridgewater, John; Crosby, Thomas

    2017-10-01

    The derived neutrophil-lymphocyte ratio (dNLR) is a validated prognostic biomarker for cancer survival but has not been extensively studied in locally-advanced oesophageal cancer treated with definitive chemoradiotherapy (dCRT). We aimed to identify the prognostic value of dNLR in patients recruited to the SCOPE1 trial. 258 patients were randomised to receive dCRT±cetuximab. Kaplan-Meier's curves and both univariable and multivariable Cox regression models were calculated for overall survival (OS), progression free survival (PFS), local PFS inside the radiation volume (LPFSi), local PFS outside the radiation volume (LPFSo), and distant PFS (DPFS). An elevated pre-treatment dNLR≥2 was significantly associated with decreased OS in univariable (HR 1.74 [95% CI 1.29-2.35], p<0.001) and multivariable analyses (HR 1.64 [1.17-2.29], p=0.004). Median OS was 36months (95% CI 27.8-42.4) if dNLR<2 and 18.4months (95% CI 14.1-24.9) if dNLR≥2. All measures of PFS were also significantly reduced with an elevated dNLR. dNLR was prognostic for OS in cases of squamous cell carcinoma with a non-significant trend for adenocarcinoma/undifferentiated tumours. An elevated pre-treatment dNLR may be an independent prognostic biomarker for OS and PFS in oesophageal cancer patients treated with definitive CRT. dNLR is a simple, inexpensive and readily available tool for risk-stratification and should be considered for use in future oesophageal cancer clinical trials. The SCOPE1 trial was an International Standard Randomised Controlled Trial [number 47718479]. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    PubMed Central

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. Methods: In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. Results: Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. Conclusions: Taken together, these findings demonstrate that brain-derived neurotrophic factor normalizes the cocaine self-administration–induced elevation of p-synapsin in nucleus accumbens that may underlie a disturbance in the probability of neurotransmitter release or represent a compensatory neuroadaptation in response to the hypofunction within the prefrontal cortex-nucleus accumbens pathway during cocaine withdrawal. PMID:25522393

Top