CORE SHAPES AND ORIENTATIONS OF CORE-SÉRSIC GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au
2015-01-01
The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii R{sub b} —a measure of the size of their partially depleted core—that are ≳ 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position anglesmore » at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ε{sub med} = 0.13 ± 0.01, rounder than the median ellipticity of the ''outer'' regions ε{sub med} = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2σ significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.« less
NASA Astrophysics Data System (ADS)
Gomer, Matthew R.; Williams, Liliya L. R.
2018-04-01
The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.
Central Rotations of Milky Way Globular Clusters
NASA Astrophysics Data System (ADS)
Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.
2014-06-01
Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.
Reduction and relative equilibria for the two-body problem on spaces of constant curvature
NASA Astrophysics Data System (ADS)
Borisov, A. V.; García-Naranjo, L. C.; Mamaev, I. S.; Montaldi, J.
2018-06-01
We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each q>0 we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except π /2. When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (`isosceles RE') and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At π /2, the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.
Optical solitons in nematic liquid crystals: model with saturation effects
NASA Astrophysics Data System (ADS)
Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.
2018-04-01
We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.
Radiation in the earth's atmosphere: its radiance, polarization, and ellipticity.
Hitzfelder, S J; Plass, G N; Kattawar, G W
1976-10-01
The complete radiation field including polarization is calculated by the matrix operator method for a model of the real atmosphere. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0, 0.15, 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution that is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20 degrees and 160 degrees for transmitted and reflected photons, respectively. This, in turn, depends on the index of refraction and size distribution of the aerosols. The neutral point position does not depend appreciably on the surface albedo and, over a considerable range, depends little on the solar zenith angle. The value of the maximum polarization in the principal plane depends on the aerosol amount, surface albedo, and solar zenith angle. It could be used to measure the aerosol amount. The details of the ellipticity curves are similar to those for scattering from pure aerosol layers and, thus, are little modified by the Rayleigh scattering. Aerosols could be identified by their characteristic ellipticity curves.
Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies
NASA Astrophysics Data System (ADS)
Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.
Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave
NASA Astrophysics Data System (ADS)
Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan
2015-08-01
We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.
Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan; Rong, Yu; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.
2012-01-01
Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.
BVR photometric investigation of galaxy pair KPG 562
NASA Astrophysics Data System (ADS)
Hendy, Y. H. M.
2018-06-01
This work presents BVR photometric observations and analyses for galaxy pair KPG 562 selected from the Karachentsev Catalog of Isolated Pairs of Galaxies. The observations were obtained using the 1.88-m Telescope of the Kottamia Astronomical Observatory (KAO), Egypt. There is no interaction signs assigned for this pair as reported by Karachentsev Catalog. We used the surface photometry technique to obtain photometric parameters for each galaxy of the pair. The isophotal contours, the luminosity profiles, color profiles (B-V, V-R), ellipticity profiles, position angle (PA) profiles and isophotal center-shift (xc, yc) profiles have been presented. The total and absolute magnitude, ellipticity and position angle (PA) were also obtained from the studied galaxy pair. The studied galaxy pair is clearly showing signs of interaction opposed to that found by Karachentsev. We found that the galaxy KPG 562b contains one tidal tail. The length and thickness of tidal tail were obtained and presented in this study.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-04-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013M⊙. Our results indicate that the distributions of these components are well aligned with the major-axes of the central galaxies, with the root mean square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root mean square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analyzing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
NASA Astrophysics Data System (ADS)
Okabe, Taizo; Nishimichi, Takahiro; Oguri, Masamune; Peirani, Sébastien; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2018-07-01
While various observations measured ellipticities of galaxy clusters and alignments between orientations of the brightest cluster galaxies and their host clusters, there are only a handful of numerical simulations that implement realistic baryon physics to allow direct comparisons with those observations. Here, we investigate ellipticities of galaxy clusters and alignments between various components of them and the central galaxies in the state-of-the-art cosmological hydrodynamical simulation Horizon-AGN, which contains dark matter, stellar, and gas components in a large simulation box of (100h-1 Mpc)3 with high spatial resolution (˜1 kpc). We estimate ellipticities of total matter, dark matter, stellar, gas surface mass density distributions, X-ray surface brightness, and the Compton y-parameter of the Sunyaev-Zel'dovich effect, as well as alignments between these components and the central galaxies for 120 projected images of galaxy clusters with masses M200 > 5 × 1013 M⊙. Our results indicate that the distributions of these components are well aligned with the major axes of the central galaxies, with the root-mean-square value of differences of their position angles of ˜20°, which vary little from inner to the outer regions. We also estimate alignments of these various components with total matter distributions, and find tighter alignments than those for central galaxies with the root-mean-square value of ˜15°. We compare our results with previous observations of ellipticities and position angle alignments and find reasonable agreements. The comprehensive analysis presented in this paper provides useful prior information for analysing stacked lensing signals as well as designing future observations to study ellipticities and alignments of galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matysiak, W; Yeung, D; Hsi, W
2014-06-01
Purpose: We present a study of dosimetric consequences on doses in water in modeling in-air proton fluence independently along principle axes for rotated elliptical spots. Methods: Phase-space parameters for modeling in-air fluence are the position sigma for the spatial distribution, the angle sigma for the angular distribution, and the correlation between position and angle distributions. Proton spots of the McLaren proton therapy system were measured at five locations near the isocenter for the energies of 180 MeV and 250 MeV. An elongated elliptical spot rotated with respect to the principle axes was observed for the 180 MeV, while a circular-likemore » spot was observed for the 250 MeV. In the first approach, the phase-space parameters were derived in the principle axes without rotation. In the second approach, the phase space parameters were derived in the reference frame with axes rotated to coincide with the major axes of the elliptical spot. Monte-Carlo simulations with derived phase-space parameters using both approaches to tally doses in water were performed and analyzed. Results: For the rotated elliptical 180 MeV spots, the position sigmas were 3.6 mm and 3.2 mm in principle axes, but were 4.3 mm and 2.0 mm when the reference frame was rotated. Measured spots fitted poorly the uncorrelated 2D Gaussian, but the quality of fit was significantly improved after the reference frame was rotated. As a Result, phase space parameters in the rotated frame were more appropriate for modeling in-air proton fluence of 180 MeV protons. Considerable differences were observed in Monte Carlo simulated dose distributions in water with phase-space parameters obtained with the two approaches. Conclusion: For rotated elliptical proton spots, phase-space parameters obtained in the rotated reference frame are better for modeling in-air proton fluence, and can be introduced into treatment planning systems.« less
NASA Astrophysics Data System (ADS)
Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady
2017-03-01
Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.
Spectroscopic ellipsometer based on direct measurement of polarization ellipticity.
Watkins, Lionel R
2011-06-20
A polarizer-sample-Wollaston prism analyzer ellipsometer is described in which the ellipsometric angles ψ and Δ are determined by direct measurement of the elliptically polarized light reflected from the sample. With the Wollaston prism initially set to transmit p- and s-polarized light, the azimuthal angle P of the polarizer is adjusted until the two beams have equal intensity. This condition yields ψ=±P and ensures that the reflected elliptically polarized light has an azimuthal angle of ±45° and maximum ellipticity. Rotating the Wollaston prism through 45° and adjusting the analyzer azimuth until the two beams again have equal intensity yields the ellipticity that allows Δ to be determined via a simple linear relationship. The errors produced by nonideal components are analyzed. We show that the polarizer dominates these errors but that for most practical purposes, the error in ψ is negligible and the error in Δ may be corrected exactly. A native oxide layer on a silicon substrate was measured at a single wavelength and multiple angles of incidence and spectroscopically at a single angle of incidence. The best fit film thicknesses obtained were in excellent agreement with those determined using a traditional null ellipsometer.
Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan; Rong, Yu; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.
The Radial Flow Speed of the Neutral Hydrogen in the Oval Distortion of NGC 4736
NASA Astrophysics Data System (ADS)
Speights, Jason; Benton, Allen; Reimer, Rebecca; Lemaire, Robert; Godwin, Caleb
2017-01-01
Radial flows are difficult to measure in the presence of elliptical flows. This is because the model describing the observed velocity field when both kinds of flows are present is degenerate in the unknown parameters. In this poster we show that the degeneracy can be overcome if the pattern speed and position angle of the elliptical flows are known. The method is demonstrated for NGC 4736 using 3.6 micrometer and neutral hydrogen data. We find a mean inward radial flow speed of 5.6 +/- 1.7 km/s in the region of the oval distortion.
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
NASA Astrophysics Data System (ADS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
High angle-of-attack aerodynamic characteristics of crescent and elliptic wings
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1989-01-01
Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.
Buster, Thad; Burnfield, Judith; Taylor, Adam P; Stergiou, Nicholas
2013-12-01
Elliptical training may be an option for practicing walking-like activity for individuals with traumatic brain injuries (TBI). Understanding similarities and differences between participants with TBI and neurologically healthy individuals during elliptical trainer use and walking may help guide clinical applications incorporating elliptical trainers. Ten participants with TBI and a comparison group of 10 neurologically healthy participants underwent 2 familiarization sessions and 1 data collection session. Kinematic data were collected as participants walked on a treadmill or on an elliptical trainer. Gait-related measures, including coefficient of multiple correlations (a measure of similarity between ensemble joint movement profiles; coefficient of multiple correlations [CMCs]), critical event joint angles, variability of peak critical event joint angles (standard deviations [SDs]) of peak critical event joint angles, and maximum Lyapunov exponents (a measure of the organization of the variability [LyEs]) were compared between groups and conditions. Coefficient of multiple correlations values comparing the similarity in ensemble motion profiles between the TBI and comparison participants exceeded 0.85 for the hip, knee, and ankle joints. The only critical event joint angle that differed significantly between participants with TBI and comparison participants was the ankle during terminal stance. Variability was higher for the TBI group (6 of 11 comparisons significant) compared with comparison participants. Hip and knee joint movement patterns of both participants with TBI and comparison participants on the elliptical trainer were similar to walking (CMCs ≥ 0.87). Variability was higher during elliptical trainer usage compared with walking (5 of 11 comparisons significant). Hip LyEs were higher during treadmill walking. Ankle LyEs were greater during elliptical trainer usage. Movement patterns of participants with TBI were similar to, but more variable than, those of comparison participants while using both the treadmill and the elliptical trainer. If incorporation of complex movements similar to walking is a goal of rehabilitation, elliptical training is a reasonable alternative to treadmill-based training.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A65) for more insights from the authors.
A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations
NASA Astrophysics Data System (ADS)
Whittaker, Lee; Brown, Michael L.; Battye, Richard A.
2015-12-01
We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.
Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson
NASA Astrophysics Data System (ADS)
Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth
2012-04-01
One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.
NASA Astrophysics Data System (ADS)
Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang
2017-12-01
We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.
2004-06-01
equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital
A photometric determination of twists in early-type galaxies. II
NASA Technical Reports Server (NTRS)
Williams, T. B.; Schwarzschild, M.
1979-01-01
In continuation of previous work, detailed photometric data have been obtained for two elliptical galaxies by using the Mount Lemmon 1.5-m telescope and a large SEC television camera. As before, the aim of this photometry is to gain additional information on the occurrence of twists in such galaxies; i.e., on the change of the position angle of the major axes of the isophotes from the center outward. No significant twist was found in NGC 1052. However, NGC 584 was found to have a securely observed twist of about 10 deg within 10 kpc from its center. These data strengthen previous indications that many ellipticals contain twists in their inner, bright portions.
Georlette, O; Gordon, J M
1994-07-01
Generalized nonimaging compound elliptical luminaires (CEL's) and compound hyperbolic luminaires (CHL's) are developed for pair-overlap illumination applications. A comprehensive analysis of CEL's and CHL's is presented. This includes the possibility of reflector truncation, as well as the extreme direction that spans the full range from positive to negative. Negative extreme direction devices have been overlooked in earlier studies and are shown to be well suited to illumination problems for which large cutoff angles are required. Flux maps can be calculated analytically without the need for computer ray tracing. It is demonstrated that, for a broad range of cutoff angles, adjacent pairs of CEL's and CHL's can generate highly uniform far-field illuminance while maintaining maximal lighting efficiency and excellent glare control. The trade-off between luminaire compactness and flux homogeneity is also illustrated. For V troughs, being a special case of CHL's and being well suited to simple, inexpensive fabri ation, we identify geometries that closely approach the performance characteristics of the optimized CEL's and CHL's.
NASA Astrophysics Data System (ADS)
Gromov, V. A.; Sharygin, G. S.; Mironov, M. V.
2012-08-01
An interval method of radar signal detection and selection based on non-energetic polarization parameter - the ellipticity angle - is suggested. The examined method is optimal by the Neumann-Pearson criterion. The probability of correct detection for a preset probability of false alarm is calculated for different signal/noise ratios. Recommendations for optimization of the given method are provided.
Stress-intensity factor equations for cracks in three-dimensional finite bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Lyapunov Exponents of Minimizing Measures for Globally Positive Diffeomorphisms in All Dimensions
NASA Astrophysics Data System (ADS)
Arnaud, M.-C.
2016-05-01
The globally positive diffeomorphisms of the 2 n-dimensional annulus are important because they represent what happens close to a completely elliptic periodic point of a symplectic diffeomorphism where the torsion is positive definite. For these globally positive diffeomorphisms, an Aubry-Mather theory was developed by Garibaldi and Thieullen that provides the existence of some minimizing measures. Using the two Green bundles {G_-} and {G_+} that can be defined along the support of these minimizing measures, we will prove that there is a deep link between: the angle between {G_-} and {G_+} along the support of the considered measure {μ};
NASA Astrophysics Data System (ADS)
Al-Baidhany, Ismaeel; Rashid, Hayfa G.; Chiad, Sami S.; Habubi, Nadir F.; Jandow, Nidhal N.; Jabbar, Wasmaa A.; Abass, khalid H.
2018-05-01
In this study, we have found a novel relationship among spiral arm pitch angles (p) and momentum parameter of the host spiral galaxies. In this study, we measured the momentum parameter for specimen of Spitzer/IRAC 3.6 μm images of 41 spiral galaxies evaluated employing a relation(Mbulge σ*/c)where Mbulge is mass of the bulge and σ* is the stellar velocity dispersion. We have taken velocity dispersions (σ*) from the literature. In order to determine the spiral arm pitch angles. The selection of specimen of nearly face-on spiral galaxies and employ IRAF ellipse to indicate the ellipticity and major-axis position angle so as to deproject the images to face-on, employing 2D Fast Fourier Transform decomposition mehtod. The specified bulge mass (Mbulge) using the virial theorem was include.
Radiance, polarization, and ellipticity of the radiation in the earth's atmosphere
NASA Technical Reports Server (NTRS)
Hitzfelder, S. J.; Plass, G. N.; Kattawar, G. W.
1976-01-01
The complete radiation field including polarization is calculated for a model of the real atmosphere by the matrix operator method. The radiance, direction and amount of polarization, and ellipticity are obtained at the top and bottom of the atmosphere for three values of the surface albedo (0; 0.15 0.90) and five solar zenith angles. Scattering and absorption by molecules (including ozone) and by aerosols are taken into account together with the variation of the number density of these substances with height. All results are calculated for both a normal aerosol number and a distribution which is one-third of the normal amount at all heights. The calculated values show general qualitative agreement with the available experimental measurements. The position of the neutral points of the polarization in the principal plane is a sensitive indicator of the characteristics of the aerosol particles in the atmosphere, since it depends on the sign and value of the single scattered polarization for scattering angles around 20 deg and 160 deg for transmitted and reflected photons respectively.
Elliptic Capture Orbits for Missions to the Near Planets
NASA Technical Reports Server (NTRS)
Casal, Federico G.; Swenson, Byron L.; Mascy, Alfred C.
1968-01-01
Elliptic capture orbits around Mars and Venus have often been considered as means for reducing arrival and departure energy requirements for two-way missions. It had also generally been feared that the energy savings obtained by capturing a spacecraft into a highly elliptical orbit (rather than a near circular orbit of the same periapsis) would largely be offset by the penalties incurred in aligning the semi-major axis of the ellipse in such a way as to obtain the proper orientation of the departure hyperbola. This paper, presents the results of an analysis which takes into consideration the penalties arising from the requirement to match the orientation of the elliptical orbit with the asymptote of the departure hyperbola. The scientific aspects of elliptical orbits around the target planet are discussed, and it is shown that such orbits exhibit characteristics which may be considered advantageous or disadvantageous depending on the purpose of the mission. Alignment of ' the semi-major axis of the capture, ellipse relative to the, asymptote of the escape hyperbola was found not to be a critical requirement since the kinetic energy remains high over a substantial portion of the elliptical capture orbit. This 'means that the escape stage can operate efficiently even when ignited at some angle from the true periapsis point. Considerable freedom in choosing this angle is available at little propulsive cost. The resulting latitude in the choice of angles between arrival and escape asymptotes makes it possible to consider a wide variety of interplanetary transfers and planetary staytimes without the need for separate propulsive maneuvers to realign the capture ellipse before departure., Special consideration has also been g1ven to plane change maneuvers around the planet. These may be required for reasons of orbit dynamics or scientific experimentation and are not uniquely tied to elliptical captures. The sensitivity of the mass of the excursion module to the eccentricity of the capture orbit is discussed and mass-penalty diagrams are presented. It is shown that these penalties do not materially offset the large gains obtained through the use of the elliptical capture mode.
Tsai, Liang-Ching; Lee, Song Joo; Yang, Aaron J.; Ren, Yupeng; Press, Joel M.; Zhang, Li-Qun
2014-01-01
Objective To examine whether an off-axis elliptical training program reduces pain and improves knee function in individuals with patellofemoral pain (PFP). Design Controlled laboratory study, pre-test-post-test. Setting University rehabilitation center. Participants Twelve adult subjects with PFP. Interventions Subjects with PFP completed an exercise program consisting of 18 sessions of lower extremity off-axis training using a custom-made elliptical trainer that allows frontal-plane sliding and transverse-plane pivoting of the footplates. Main Outcome Measures Changes in knee pain and function post-training and 6 weeks following training were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) scores. Lower extremity off-axis control was assessed by pivoting and sliding instability, calculated as the root mean square (RMS) of the footplate pivoting angle and sliding distance during elliptical exercise. Subjects’ single-leg hop distance and proprioception in detecting lower extremity pivoting motion were also evaluated. Results Subjects reported significantly greater KOOS and IKDC scores (increased by 12–18 points) and hop distance (increased by 0.2 m) following training. A significant decrease in the pivoting and sliding RMS was also observed following training. Additionally, subjects with PFP demonstrated improved pivoting proprioception when tested under a minimum-weight-bearing position. Conclusions An off-axis elliptical training program was effective in enhancing lower extremity neuromuscular control on the frontal and transverse planes, reducing pain and improving knee function in persons with PFP. PMID:25591131
Numerical simulation of transverse fuel injection
NASA Technical Reports Server (NTRS)
Mao, Marlon; Riggins, David W.; Mcclinton, Charles R.
1991-01-01
A review of recent work at NASA Langley Research Center to compare the predictions of transverse fuel injector flow fields and mixing performance with experimental results is presented. Various cold (non-reactive) mixing studies were selected for code calibration which include the effects of boundary layer thickness and injection angle for sonic hydrogen injection into supersonic air. Angled injection of helium is also included. This study was performed using both the three-dimensional elliptic and the parabolized Navier-Stokes (PNS) versions of SPARK. Axial solution planes were passed from PNS to elliptic and elliptic to PNS in order to efficiently generate solutions. The PNS version is used both upstream and far downstream of the injector where the flow can be considered parabolic in nature. The comparisons are used to identify experimental deficiencies and computational procedures to improve agreement.
Estimation of kinematic parameters in CALIFA galaxies: no-assumption on internal dynamics
NASA Astrophysics Data System (ADS)
García-Lorenzo, B.; Barrera-Ballesteros, J.; CALIFA Team
2016-06-01
We propose a simple approach to homogeneously estimate kinematic parameters of a broad variety of galaxies (elliptical, spirals, irregulars or interacting systems). This methodology avoids the use of any kinematical model or any assumption on internal dynamics. This simple but novel approach allows us to determine: the frequency of kinematic distortions, systemic velocity, kinematic center, and kinematic position angles which are directly measured from the two dimensional-distributions of radial velocities. We test our analysis tools using the CALIFA Survey
Mean effects of turbulence on elliptic instability in fluids.
Fabijonas, Bruce R; Holm, Darryl D
2003-03-28
Elliptic instability in fluids is discussed in the context of the Lagrangian-averaged Navier-Stokes-alpha (LANS-alpha) turbulence model. This model preserves the Craik-Criminale (CC) family of solutions consisting of a columnar eddy and a Kelvin wave. The LANS-alpha model is shown to preserve elliptic instability. However, the model shifts the critical stability angle. This shift increases (decreases) the maximum growth rate for long (short) waves. It also introduces a band of stable CC solutions for short waves.
Angle-dependent rotation of calcite in elliptically polarized light
NASA Astrophysics Data System (ADS)
Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.
2017-08-01
Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.
Resonant absorption of electromagnetic waves in transition anisotropic media.
Kim, Kihong
2017-11-27
We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.
Inclined Bodies of Various Cross Sections at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Jorgensen, Leland H.
1958-01-01
To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.
VizieR Online Data Catalog: Catalogue of features in the S4G (Herrera-Endoqui+, 2015)
NASA Astrophysics Data System (ADS)
Herrera-Endoqui, M.; Diaz-Garcia, S.; Laurikainen, E.; Salo, H.
2015-08-01
Table 2 contains the properties of bars, ring- and lens-structures in the S4G. Data for bars contains the visual estimated barlength, the maximum ellipticity in the bar region, the visual estimated position angle, and the barlength obtained from the ellipticity maximum. They are given in both the sky plane and the disk plane, the conversion is made using P4 orientation parameters (Salo et al., 2015ApJS..219....4S; Table 1). For bars the disk plane values are given only when a reliable ellipticity maximum was found and the galaxy inclination i<65 deg. For other features the parameters are obtained from fitting ellipses to points tracing the structure. A quality flag for our measurement is also given: 1 indicates a good fit and unambiguously identified feature, 2 indicates a hard to trace feature, 3 indicates an uncertain feature identification (due to high inclination of host galaxy or incomplete feature). Table 3 contains the properties of spiral arms in the S4G. Type of spiral arms, the pitch angle, the inner and the outer radius are given for every spiral segment (see the catalogue web page). The type of spiral arms are taken from Buta et al. (2015ApJS..217...32B, Cat. J/ApJS/217/32): G for grand design, M for multiple, and F for flocculent spiral arms. Our estimation of the quality of the fit is also given (1.0 = good; 2.0 = acceptable). (2 data files).
Velocity field and physical conditions in the active lenticular galaxy NGC 3998
NASA Technical Reports Server (NTRS)
Blackman, C. P.; Wilson, A. S.; Ward, M. J.
1983-01-01
A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.
Ellipticity of near-threshold harmonics from stretched molecules.
Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun
2015-11-30
We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.
Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun
2017-07-01
This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1946-01-01
An extended form of the Ackeret iteration method, applicable to arbitrary profiles, is utilized to calculate the compressible flow at high subsonic velocities past an elliptic cylinder. The angle of attack to the direction of the undisturbed stream is small and the circulation is fixed by the Kutta condition at the trailing end of the major axis. The expression for the lifting force on the elliptic cylinder is derived and shows a first-step improvement of the Prandtl-Glauert rule. It is further shown that the expression for the lifting force, although derived specifically for an elliptic cylinder, may be extended to arbitrary symmetrical profiles.
Event-by-Event Hydrodynamics+Jet Energy Loss: A Solution to the R_{AA}⊗v_{2} Puzzle.
Noronha-Hostler, Jacquelyn; Betz, Barbara; Noronha, Jorge; Gyulassy, Miklos
2016-06-24
High p_{T}>10 GeV elliptic flow, which is experimentally measured via the correlation between soft and hard hadrons, receives competing contributions from event-by-event fluctuations of the low-p_{T} elliptic flow and event-plane angle fluctuations in the soft sector. In this Letter, a proper account of these event-by-event fluctuations in the soft sector, modeled via viscous hydrodynamics, is combined with a jet-energy-loss model to reveal that the positive contribution from low-p_{T} v_{2} fluctuations overwhelms the negative contributions from event-plane fluctuations. This leads to an enhancement of high-p_{T}>10 GeV elliptic flow in comparison to previous calculations and provides a natural solution to the decade-long high-p_{T} R_{AA}⊗v_{2} puzzle. We also present the first theoretical calculation of high-p_{T} v_{3}, which is shown to be compatible with current LHC data. Furthermore, we discuss how short-wavelength jet-medium physics can be deconvoluted from the physics of soft, bulk event-by-event flow observables using event-shape engineering techniques.
Asymmetric design for Compound Elliptical Concentrators (CEC) and its geometric flux implications
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2015-08-01
The asymmetric compound elliptical concentrator (CEC) has been a less discussed subject in the nonimaging optics society. The conventional way of understanding an ideal concentrator is based on maximizing the concentration ratio based on a uniformed acceptance angle. Although such an angle does not exist in the case of CEC, the thermodynamic laws still hold and we can produce concentrators with the maximum concentration ratio allowed by them. Here we restate the problem and use the string method to solve this general problem. Built on the solution, we can discover groups of such ideal concentrators using geometric flux field, or flowline method.
NASA Astrophysics Data System (ADS)
Jolitz, Benjamin
Ben Jolitz 2/6/10 Proposal for extension of ORSA to include phasing in to prove successive encounters of an asteroid between Earth and Mars Phasing is the act of changing the phase angle between two sinusoidal functions. In the case of orbits, which are ellipses drawn by sinusoidal functions, phasing is the act of matching one orbit to another. Finding the phasing parameters of a captured asteroid, a non-Keplarian object, in a resonant bi-elliptic orbit and simulation thereof is rather difficult without specialized and esoteric applications. However, open source in the last ten years has made incredible advance-ments, and some projects originally designed for orbital reconstruction have been released to the public on an AS IS basis; one such project is ORSA -Orbital Reconstruction, Simulation, Analysis. ORSA, however, does not have methods for evaluating the relative changes to a phase angle of a bi-elliptic orbit in a recursive manner for successive encounters. For years, space shuttles and other celestial transport vessels have been faced with the difficulty of docking with the International Space Station, a task which involves matching the craft to the unique elliptical orbit of the ISS such that the shuttle will meet the ISS with the appropriate orbital parameters. However, calculation of such requires consideration of only the Earth and it's effect on rather small, man-made objects. In electrical engineering, the concept of a phase lock loop is used to match the frequency and phase of a controlled oscillator with a given set of input signals. In our test case, we wish compute the successive bi-elliptic half orbits of a captured asteroid that traverses between Earth and Mars using gravitational interactions with the intent of computing the relative phase angle between the desired half orbit and current orbit such that a timed encounter with Earth or Mars is possible. The goal of this proposal is to extend ORSA to maintain relative phase angle between bi-elliptic orbits for successive encounters.
NASA Technical Reports Server (NTRS)
Micol, John R.
1992-01-01
Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
Leaf-shape effects in electromagnetic wave scattering from vegetation
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.
1989-01-01
A vegetation medium is modeled as a half-space of randomly distributed and oriented leaves of arbitrary shape. In accordance with the first-order radiative transfer theory, the backscattering coefficient for such a half-space is expressed in terms of the scattering amplitudes. For disc- or needle-shaped leaves, the generalized Rayleigh-Gans approximation is used to calculate the scattering amplitudes. This approach is valid for leaf dimensions up to the size of the incident wavelength. To examine the leaf-shape effect, elliptic discs are used to model deciduous leaves, and needles are used to model coniferous leaves. The differences between the scattering characteristics of leaves of different shapes are illustrated numerically for various orientations, frequencies, and incidence angles. It is found that the scattering characteristics of elliptic disc-shaped leaves are sensitive to the three angles of orientation and disc ellipticity. In general, both like and cross polarizations may be needed to differentiate the difference in scattering due to the shapes of the leaves.
Imaging of supersonic flow over a double elliptic surface
NASA Astrophysics Data System (ADS)
Zhang, Qing-Hu; Yi, Shi-He; He, Lin; Zhu, Yang-Zhu; Chen, Zhi
2013-11-01
The coherent structures of flow over a double elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of both laminar and turbulent inflows over the test model are captured. Based on the time-correlation images, the spatial and temporal evolutionary characteristics of the coherent structures are investigated. The flow structures in the NPLS images are in good agreement with the velocity fluctuation fields by PIV. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and the orientation of coherent structures. The results indicate that the mean structure is elliptical in shape and the structural angles in the separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structural angles of both cases increase with their distance away from the wall.
Consistency of flow quantifications in tridirectional phase-contrast MRI
NASA Astrophysics Data System (ADS)
Unterhinninghofen, R.; Ley, S.; Dillmann, R.
2009-02-01
Tridirectionally encoded phase-contrast MRI is a technique to non-invasively acquire time-resolved velocity vector fields of blood flow. These may not only be used to analyze pathological flow patterns, but also to quantify flow at arbitrary positions within the acquired volume. In this paper we examine the validity of this approach by analyzing the consistency of related quantifications instead of comparing it with an external reference measurement. Datasets of the thoracic aorta were acquired from 6 pigs, 1 healthy volunteer and 3 patients with artificial aortic valves. Using in-house software an elliptical flow quantification plane was placed manually at 6 positions along the descending aorta where it was rotated to 5 different angles. For each configuration flow was computed based on the original data and data that had been corrected for phase offsets. Results reveal that quantifications are more dependent on changes in position than on changes in angle. Phase offset correction considerably reduces this dependency. Overall consistency is good with a maximum variation coefficient of 9.9% and a mean variation coefficient of 7.2%.
Hypersonic aerodynamic characteristics of an all-body research aircraft configuration
NASA Technical Reports Server (NTRS)
Clark, L. E.
1973-01-01
An experimental investigation was conducted at Mach 6 to determine the hypersonic aerodynamic characteristics of an all-body, delta-planform, hypersonic research aircraft (HYFAC configuration). The aerodynamic characteristics were obtained at Reynolds numbers based on model length of 2.84 million and 10.5 million and over an angle-of-attack range from minus 4 deg to 20 deg. The experimental results show that the HYFAC configuration is longitudinally stable and can be trimmed over the range of test conditions. The configuration had a small degree of directional stability over the angle-of-attack range and positive effective dihedral at angles of attack greater than 2 deg. Addition of canards caused a decrease in longitudinal stability and an increase in directional stability. Oil-flow studies revealed extensive areas of separated and vortex flow on the fuselage lee surface. A limited comparison of wind-tunnel data with several hypersonic approximations indicated that, except for the directional stability, the tangent-cone method gave adequate agreement at control settings between 5 deg and minus 5 deg and positive lift coefficient. A limited comparison indicated that the HYFAC configuration had greater longitudinal stability than an elliptical-cross-section configuration, but a lower maximum lift-drag ratio.
Two-dimensional subsonic compressible flow past elliptic cylinders
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1938-01-01
The method of Poggi is used to calculate, for perfect fluids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned. Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleight and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is considerably reduced by the present solution.
Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
2001-01-01
A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
NASA Technical Reports Server (NTRS)
Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)
1995-01-01
A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
Formation Flying Control Implementation in Highly Elliptical Orbits
NASA Technical Reports Server (NTRS)
Capo-Lugo, Pedro A.; Bainum, Peter M.
2009-01-01
The Tschauner-Hempel equations are widely used to correct the separation distance drifts between a pair of satellites within a constellation in highly elliptical orbits [1]. This set of equations was discretized in the true anomaly angle [1] to be used in a digital steady-state hierarchical controller [2]. This controller [2] performed the drift correction between a pair of satellites within the constellation. The objective of a discretized system is to develop a simple algorithm to be implemented in the computer onboard the satellite. The main advantage of the discrete systems is that the computational time can be reduced by selecting a suitable sampling interval. For this digital system, the amount of data will depend on the sampling interval in the true anomaly angle [3]. The purpose of this paper is to implement the discrete Tschauner-Hempel equations and the steady-state hierarchical controller in the computer onboard the satellite. This set of equations is expressed in the true anomaly angle in which a relation will be formulated between the time and the true anomaly angle domains.
NASA Astrophysics Data System (ADS)
Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.
2013-12-01
The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ ≈ 41-46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Vijgen, Paul M. H. W.
1993-01-01
Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.
NASA Astrophysics Data System (ADS)
Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong
2018-01-01
To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes
NASA Astrophysics Data System (ADS)
Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin
2014-11-01
Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.
Elliptic net and its cryptographic application
NASA Astrophysics Data System (ADS)
Muslim, Norliana; Said, Mohamad Rushdan Md
2017-11-01
Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.
Performing in-feed type centerless grinding process on a surface grinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Wu, Y.; Sato, T.
2011-01-17
In our previous study, a new centerless grinding method using surface grinder was proposed. In this method, centerless grinding operations are performed by installing a compact centerless grinding unit, consisting mainly of an ultrasonic elliptic-vibration shoe, a blade and their respective holders, on the worktable of a surface grinder. During grinding, the cylindrical workpiece is held on the ultrasonic shoe and the blade, and its rotational motion is controlled by the elliptic motion of the shoe end-face. An actual unit had been produced and its performance in tangential-feed type centerless grinding using a surface grinder had been confirmed in themore » previous workd. In this paper, the performance of the grinding unit in in-feed centerless grinding operation was confirmed, and the effects of the main process parameter, i.e., eccentric angle, on the workpiece roundness was investigated experimentally. The obtained results showed that: (1) the centerless grinding unit performed well in in-feed type centerless grinding; (2) the eccentric angle affects roundness significantly, and its optimal angle is 6 deg.; (3) the workpiece roundness can be further improved by varying the eccentric angle during grinding, and the final roundness reached 0.65 {mu}m after grinding as the eccentric angle varied from 9 deg. to 6 deg. and to 3 deg.« less
Performing in-feed type centerless grinding process on a surface grinder
NASA Astrophysics Data System (ADS)
Xu, W.; Wu, Y.; Sato, T.; Lin, W.
2011-01-01
In our previous study, a new centerless grinding method using surface grinder was proposed. In this method, centerless grinding operations are performed by installing a compact centerless grinding unit, consisting mainly of an ultrasonic elliptic-vibration shoe, a blade and their respective holders, on the worktable of a surface grinder. During grinding, the cylindrical workpiece is held on the ultrasonic shoe and the blade, and its rotational motion is controlled by the elliptic motion of the shoe end-face. An actual unit had been produced and its performance in tangential-feed type centerless grinding using a surface grinder had been confirmed in the previous workd. In this paper, the performance of the grinding unit in in-feed centerless grinding operation was confirmed, and the effects of the main process parameter, i.e., eccentric angle, on the workpiece roundness was investigated experimentally. The obtained results showed that: (1) the centerless grinding unit performed well in in-feed type centerless grinding; (2) the eccentric angle affects roundness significantly, and its optimal angle is 6°; (3) the workpiece roundness can be further improved by varying the eccentric angle during grinding, and the final roundness reached 0.65 μm after grinding as the eccentric angle varied from 9° to 6° and to 3°.
A family of triaxial modified Hubble mass models: Effects of the additional radial functions
NASA Astrophysics Data System (ADS)
Das, Mousumi; Thakur, Parijat; Ann, H. B.
2005-03-01
The projected properties of triaxial generalization of the modified Hubble mass models are studied. These models are constructed by adding the additional radial functions, each multiplied by a low-order spherical harmonic, to the models of [Chakraborty, D.K., Thakur, P., 2000. MNRAS 318, 1273]. The projected surface density of mass models can be calculated analytically which allows us to derive the analytic expressions of axial ratio and position angle of major axis of constant density elliptical contours at asymptotic radii. The models are more general than those studied earlier in the sense that the inclusions of additional terms in density distribution, allow one to produce varieties of the radial profile of axial ratio and position angle, in particular, their small scale variations at inner radii. Strong correlations are found to exist between the observed axial ratio evaluated at 0.25Re and at 4Re which occupy well-separated regions in the parameter space for different choices of the intrinsic axial ratios. These correlations can be exploited to predict the intrinsic shape of the mass model, independent of the viewing angles. Using Bayesian statistics, the result of a test case launched for an estimation of the shape of a model galaxy is found to be satisfactory.
The influence of pore geometry and orientation on the strength and stiffness of porous rock
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick
2017-03-01
The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.
Nanovoid growth in BCC α-Fe: influences of initial void geometry
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Su, Yanqing
2016-12-01
The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.
Experimental investigation of supersonic flow over elliptic surface
NASA Astrophysics Data System (ADS)
Zhang, Qinghu; Yi, Shihe; He, Lin; Zhu, Yangzhu; Chen, Zhi
2013-11-01
The coherent structures of flow over a compression elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach Number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spacial resolution images and the average velocity profiles of both laminar inflow and turbulent inflow over the testing model were captured. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and orientation of large structures. The results indicate that the mean structure is elliptical in shape and structure angles in separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structure angle of both cases increases with its distance away from from the wall. POD analysis of velocity and vorticity fields is performed for both cases. The energy portion of the first mode for the velocity data is much larger than that for the vorticity field. For vorticity decompositions, the contribution from the first mode for the laminar inflow is slightly larger than that for the turbulent inflow and the cumulative contributions for laminar inflow converges slightly faster than that for turbulent inflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elementsmore » require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.« less
NASA Astrophysics Data System (ADS)
Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.
2014-08-01
The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.
NASA Astrophysics Data System (ADS)
Nahal, Arashmid; Kashani, Somayeh
2017-09-01
Irradiation of AgCl-Ag thin films by a linearly polarized He-Ne laser beam results in the formation of self-organized periodic nanostructures. As a result of secondary irradiation of the initially exposed sample by the same linearly polarized He-Ne laser beam, but with different orientations of polarization, a complex crossed-chain nanostructure forms. We found that such a complex nanostructure has noticeable chirality and increased optical anisotropy, resulting in optical activity of the sample. Double exposure produces two gratings, crossing each other with angle α, which leads to the formation of crossed building blocks with chiroptical effects. It is established that the amount and the sign of the angle between the two laser-induced gratings (±α) determine the amount and the direction of rotation of the linearly polarized probe beam, respectively. We have also observed an induced anisotropy-dependent ellipticity for the probe light, which is passed through the sample. It is shown that the amount of ellipticity depends on the angle α.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlenko, V N; Potapov, D K
2015-09-30
This paper is concerned with the existence of semiregular solutions to the Dirichlet problem for an equation of elliptic type with discontinuous nonlinearity and when the differential operator is not assumed to be formally self-adjoint. Theorems on the existence of semiregular (positive and negative) solutions for the problem under consideration are given, and a principle of upper and lower solutions giving the existence of semiregular solutions is established. For positive values of the spectral parameter, elliptic spectral problems with discontinuous nonlinearities are shown to have nontrivial semiregular (positive and negative) solutions. Bibliography: 32 titles.
Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun
2015-07-13
We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.
NASA Technical Reports Server (NTRS)
Dillenius, M. F. E.; Nielsen, J. N.
1979-01-01
Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.
Experimentally determining the locations of two astigmatic images for an underwater light source
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng; Liu, Jian-You; Ying, Shang-Ping
2015-05-01
Images formed by an underwater object from light rays refracted in the sagittal and tangential planes are located at different positions for an oblique viewing position. The overlapping of these two images from the observer's perspective will thus prevent the image-splitting astigmatism from being directly observable. In this work, we present a heuristic method to experimentally visualize the astigmatism. A point light source is used as an underwater object and the emerging wave front is recorded using a Shack-Hartmann wave-front sensor. The wave front is found to deform from a circular paraboloid to an elliptic paraboloid as the viewing position changes from normal to oblique. Using geometric optics, we derive an analytical expression for the image position as a function of the rotating angle of an arm used to carry the wave-front sensor in our experimental setup. The measured results are seen to be in good agreement with the theoretical predictions.
NASA Technical Reports Server (NTRS)
Micol, John R.; Wells, William L.
1993-01-01
Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.
Russell, K A; Waldman, S D; Lee, J M
2000-11-01
The purpose of this study was to develop a video-imaging mathematical method to assess nostril morphology. This retrospective study involved two age-matched groups: 28 subjects with complete unilateral cleft lip and palate (CUCLP) and 19 noncleft controls. Nose casts were reproducibly oriented in a jig such that the casts could be rotated about the coronal axis. Video images of the nostrils were captured and then analyzed for area, perimeter, centroid, principal axis, moments about the major and minor axes (I11, I22), anisometry, bulkiness, lateral offset, internostril angle, and rotational angle. All parameters identified nostril asymmetry in both groups. The results of the analyses using anisometry, I11, and I22 showed that, in both groups, one nostril was rounder and one was more elliptical. This asymmetry, however, differed between the two groups, and the difference was primarily based on the degree of ellipticity of the nostrils. Maximum dimension, perimeter, lateral offset, I11, and I22 were more asymmetric in the cleft group. In the control group, the right nostril was more elliptical and had a greater perimeter, and the left-side nostril had a greater bulkiness (enfolding). The method developed was validated for assessment of nasal morphology in cleft and noncleft samples. Nostril morphology was asymmetric in both groups but more asymmetric in the cleft group than the control group. The dominant influence of the cleft resulted in more elliptical noncleft nostrils and greater nostril shape asymmetry in the cleft group. The validated video-imaging method can now be used to assess the efficacy of treatment on nasal morphology.
Planar Poincare chart - A planar graphic representation of the state of light polarization
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken K.; Hunter, William W., Jr.; Ocheltree, Stewart L.
1989-01-01
The planar Poincare chart, which represents the complete planar equivalence of the Poincare sphere, is proposed. The four sets of basic lines are drawn on two separate charts for the generalization and convenience of reading the scale. The chart indicates the rotation of the principal axes of linear birefringent material. The relationships between parameters of the two charts are given as 2xi-2phi (orientation angle of the major axis-ellipticity angle) pair and 2alpha-delta (angle of amplitude ratio-phase difference angle) pair. The results are useful for designing and analyzing polarization properties of optical components with birefringent properties.
Alignment of galaxies relative to their local environment in SDSS-DR8
NASA Astrophysics Data System (ADS)
Hirv, A.; Pelt, J.; Saar, E.; Tago, E.; Tamm, A.; Tempel, E.; Einasto, M.
2017-03-01
Aims: We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. Methods: We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Results: Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of ≤10 member groups; the alignment increases with environmental density and luminosity. Conclusions: We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.
A 3-D shape model of Interamnia
NASA Astrophysics Data System (ADS)
Sato, Isao
2015-08-01
A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.
Design optimization of ultra-precise elliptical mirrors for hard x-ray nanofocusing at Nanoscopium
NASA Astrophysics Data System (ADS)
Kewish, Cameron M.; Polack, François; Signorato, Riccardo; Somogyi, Andrea
2013-09-01
The design and implementation of a pair of 100 mm-long grazing-incidence total-reflection mirrors for the hard X-ray beamline Nanoscopium at Synchrotron Soleil is presented. A vertically and horizontally nanofocusing mirror pair, oriented in Kirkpatrick-Baez geometry, has been designed and fabricated with the aim of creating a diffraction-limited high-intensity 5 - 20 keV beam with a focal spot size as small as 50 nm. We describe the design considerations, including wave-optical calculations of figures-of-merit that are relevant for spectromicroscopy, such as the focal spot size, depth of field and integrated intensity. The mechanical positioning tolerance in the pitch angle that is required to avoid introducing high-intensity features in the neighborhood of the focal spot is demonstrated with simulations to be of the order of microradians, becoming tighter for shorter focal lengths and therefore directly affecting all nanoprobe mirror systems. Metrology results for the completed mirrors are presented, showing that better than 1.5 °A-rms figure error has been achieved over the full mirror lengths with respect to the designed elliptical surfaces, with less than 60 nrad-rms slope errors.
Effect of reflection losses on stationary dielectric-filled nonimaging concentrators
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Boehm, Robert F.
2016-10-01
The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.
Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick
2017-04-01
The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
1990-01-01
The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.
NASA Astrophysics Data System (ADS)
Feng, Li-Qiang; Li, Wen-Liang; Liu, Hang
2017-01-01
Molecular harmonic spectra of {{{H}}}2+ driven by the linearly polarized laser pulses with different polarized angles have been theoretically investigated through solving the two-dimensional time-dependent Schrödinger equation. (i) Below-threshold harmonic spectra show a visible enhanced peak around the 7th harmonic (H7), which produces a red-shift phenomenon as the internuclear distance increased. Theoretical analyses show the red-shift enhanced peak is caused by the laser-induced electron transfer between the ground state and the 1st excited state of {{{H}}}2+. (ii) Due to the two-centre interference phenomenon, the above-threshold harmonic spectra exhibit many maxima and minima. (iii) With the introduction of the polarized angle, the anomalous elliptically polarized harmonics can be found. But, with the introduction of the spatial inhomogeneous effect, not only the ellipticities of the harmonics are equal to a stable value of \\varepsilon ˜ 0.1-0.3, but also the harmonic cutoffs are extended. As a result, four super-bandwidths of 407 eV, 310 eV, 389 eV, and 581 eV can be obtained. Time profiles of the harmonic generations have been shown to explain the harmonic characteristics. Finally, a series of elliptically polarized (\\varepsilon ˜ 0.1-0.3) attosecond X-ray pulses with durations from 18as to 25as can be directly produced through Fourier transformation of the spectral continuum. Supported by National Natural Science Foundation of China under Grant No. 11504151, Doctoral Scientific Research Foundation of Liaoning Province under Grant No. 201501123 and Scientific Research Fund of Liaoning Provincial Education Department under Grant No. L2014242
Shape and Size of Patroclus and Menoetius from a Stellar Occultation
NASA Astrophysics Data System (ADS)
Buie, Marc W.; Olkin, Catherine B.; Merline, William J.; Timerson, Brad; Herald, Dave; Owen, William M.; Abramson, Harry B.; Abramson, Katherine J.; Breit, Derek C.; Caton, D. B.; Conard, Steve J.; Croom, Mark A.; Dunford, R. W.; Dunford, J. A.; Dunham, David W.; Ellington, Chad K.; Liu, Yanzhe; Maley, Paul D.; Olsen, Aart M.; Royer, Ronald; Scheck, Andrew E.; Sherrod, Clay; Sherrod, Lowell; Swift, Theodore J.; Taylor, Lawrence W.; Venable, Roger
2014-11-01
We will present results of a stellar occultation by the Jupiter Trojan asteroid, Patroclus and its nearly equal size moon, Menoetius. The occultation was observed widely across the United States on 2013 Oct 21 UT. Eleven sites out of 36 successfully recorded an occultation. Seven chords across Patroclus yielded a elliptical limb fit of 124.6 km by 98.2 km. There were six chords across Menoetius that yielded an elliptical limb fit of 117.2 km by 93.0 km. There were three sites that got chords on both objects. At the time of the occultation we measured a separation of 0.247 arcsec and a position angle for Menoetius of 265.7 deg measured eastward from J2000 North. More surprisingly, there were two sites that should have seen an occultation by Menoetius but instead never saw the star disappear. These two non-detections indicate the presence of a large void on the southern limb of the satellite. The observations are consistent with a large impact basin centered on the rotation pole. The depth of the projected crater profile is roughly 15 km, measured from the elliptical limb profile. The inferred diameter of the crater would be about 85 km. Combining this occultation data with previous lightcurve data, the axial ratios (ignoring the mass void) of both objects is 1.26:1.19:1 indicative of a mostly oblate ellipsoid with a slight asymmetry in its equatorial projection. These results are consistent with a fully tidally evolved system with the mass void or putative crater in a position consistent with principal axis rotation that is itself consistent with the largely oblate shape. Note: the location for IOTA listed in the affiliations is not correct (but was required to be entered) as there is no location for this global virtual organization. This research is funded, in part, by NSF AST-1212159.
Speckle reduction using deformable mirrors with diffusers in a laser pico-projector.
Chen, Hsuan-An; Pan, Jui-Wen; Yang, Zu-Po
2017-07-24
We propose a design for speckle reduction in a laser pico-projector adopting diffusers and deformable mirrors. This research focuses on speckle noise suppression by changing the angle of divergence of the diffuser. Moreover, the speckle contrast value can be further reduced by the addition of a deformable mirror. The speckle reduction ability obtained using diffusers with different divergence angles is compared. Three types of diffuser designs are compared in the experiments. For Type 1 which uses a circular symmetric diffuser the speckle contrast value can be decreased to 0.0264. For Type 2, the speckle contrast value can be reduced to 0.0267 because of the inclusion of an elliptical distribution diffuser. With Type 3 which includes a combination of the circular distribution diffuser and elliptical distribution diffuser, the speckle contrast value can be reduced to 0.0236. For all three types, the speckle contrast value is lower than 0.05. Under this speckle value, the speckle phenomenon is invisible to the human eye.
A fully polarimetric scattering model for a coniferous forest
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.
1991-01-01
For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.
Morphology parameters for intracranial aneurysm rupture risk assessment.
Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H; Hopkins, L Nelson; Meng, Hui
2008-08-01
The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P < 0.05) were further examined by multivariate logistic regression analysis. Additionally, receiver operating characteristic analyses were performed on each parameter. Statistically significant differences were found between mean values in ruptured and unruptured groups for size ratio, undulation index, nonsphericity index, ellipticity index, aneurysm angle, and aspect ratio. Logistic regression analysis further revealed that size ratio (odds ratio, 1.41; 95% confidence interval, 1.03-1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08-2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies.
The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing
Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; ...
2018-01-04
Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less
The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh
Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less
The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing
NASA Astrophysics Data System (ADS)
Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli
2018-04-01
We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.
Structure and Formation of Elliptical and Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf
2009-05-01
New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong dichotomy between elliptical and spheroidal galaxies. Their properties are consistent with our understanding of their different formation processes: mergers for ellipticals and conversion of late-type galaxies into spheroidals by environmental effects and by energy feedback from supernovae. In an appendix, we develop machinery to get realistic error estimates for Sérsic parameters even when they are strongly coupled. And we discuss photometric dynamic ranges necessary to get robust results from Sérsic fits. Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
The Low-Power Nucleus of PKS 1246-410 in the Centaurus Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro /New Mexico U.; Sanders, J.S.
2005-10-21
We present Chandra, Very Large Array (VLA), and Very Long Baseline Array (VLBA) observations of the nucleus of NGC 4696, a giant elliptical in the Centaurus cluster of galaxies. Like M87 in the Virgo cluster, PKS 1246-410 in the Centaurus cluster is a nearby example of a radio galaxy in a dense cluster environment. In analyzing the new X-ray data we have found a compact X-ray feature coincident with the optical and radio core. While nuclear emission from the X-ray source is expected, its luminosity is low, < 10{sup 40} erg s{sup -1}. We estimate the Bondi accretion radius tomore » be 30 pc and the accretion rate to be 0.01 M{sub {circle_dot}} y{sup -1} which under the canonical radiative efficiency of 10% would overproduce by 3.5 orders of magnitude the radiative luminosity. Much of this energy can be directed into the kinetic energy of the jet, which over time inflates the observed cavities seen in the thermal gas. The VLBA observations reveal a weak nucleus and a broad, one-sided jet extending over 25 parsecs in position angle -150 degrees. This jet is deflected on the kpc-scale to a more east-west orientation (position angle of -80 degrees).« less
Four-mirror extreme ultraviolet (EUV) lithography projection system
Cohen, Simon J; Jeong, Hwan J; Shafer, David R
2000-01-01
The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.
NASA Technical Reports Server (NTRS)
Allton, Charles S. (Inventor); Okane, James H. (Inventor)
1989-01-01
This invention relates to a hatch and more particularly to a hatch for a space vehicle where the hatch has a low volume sweep and can be easily manipulated from either side of the hatch. The hatch system includes an elliptical opening in a bulkhead and an elliptical hatch member. The hatch cover system includes an elliptical port opening in a housing and an elliptical cover member supported centrally by a rotational bearing for rotation about a rotational axis normal to the cover member and by pivot pins in a gimbal member for pivotal movement about axes perpendicular to the rotational axis. Arm members support the gimbal member pivotally by pivot members so that upon rotation and manipulation the cover member can be articulatedly moved from a closed position to the port opening to an out of the way position with a minimum of volume sweep by the cover member.
Logarithmic spiral trajectories generated by Solar sails
NASA Astrophysics Data System (ADS)
Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni
2018-02-01
Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.
Design charts for predicting downwash angles and wake characteristics behind plain and flapped wings
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1939-01-01
Equations and design charts are given for predicting the downwash angles and the wake characteristics for power-off conditions behind plain and flapped wings of the types used in modern design practice. The downwash charts cover the cases of elliptical wings and wings of taper ratios 1, 2, 3, and 5, with aspect ratios of 6, 9, and 12, having flaps covering 0, 40, 70, and 100 percent of the span. Curves of the span load distributions for all these cases are included. Data on the lift and the drag of flapped airfoil sections and curves for finding the contribution of the flap to the total wing lift for different types of flap and for the entire range of flap spans are also included. The wake width and the distribution of dynamic pressure across the wake are given in terms of the profile-drag coefficient and the distance behind the wing. A method of estimating the wake position is also given. The equations and charts are based on theory that has been shown in a previous report to be in agreement with experiment.
Testing the uniqueness of mass models using gravitational lensing
NASA Astrophysics Data System (ADS)
Walls, Levi; Williams, Liliya L. R.
2018-06-01
The positions of images produced by the gravitational lensing of background-sources provide insight to lens-galaxy mass distributions. Simple elliptical mass density profiles do not agree well with observations of the population of known quads. It has been shown that the most promising way to reconcile this discrepancy is via perturbations away from purely elliptical mass profiles by assuming two super-imposed, somewhat misaligned mass distributions: one is dark matter (DM), the other is a stellar distribution. In this work, we investigate if mass modelling of individual lenses can reveal if the lenses have this type of complex structure, or simpler elliptical structure. In other words, we test mass model uniqueness, or how well an extended source lensed by a non-trivial mass distribution can be modeled by a simple elliptical mass profile. We used the publicly-available lensing software, Lensmodel, to generate and numerically model gravitational lenses and “observed” image positions. We then compared “observed” and modeled image positions via root mean square (RMS) of their difference. We report that, in most cases, the RMS is ≤0.05‧‧ when averaged over an extended source. Thus, we show it is possible to fit a smooth mass model to a system that contains a stellar-component with varying levels of misalignment with a DM-component, and hence mass modelling cannot differentiate between simple elliptical versus more complex lenses.
NASA Technical Reports Server (NTRS)
Hantzsche, W.; Wendt, H.
1942-01-01
For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
Rotatable Aperture Coronagraph for Exoplanetary Studies (RACES)
NASA Astrophysics Data System (ADS)
Chakrabarti, Supriya; Mendillo, Christopher; Mukherjee, Sunip; Martel, Jason; Cook, Timothy; Polidan, Ronald S.; Rafanelli, Gerard L.; Spencer, Susan B.; Wolfe, Douglas w.
2018-01-01
We present the design and expected performance of RACES, a suborbital mission concept to directly image exo-Jupiters with a rotatable non-circular aperture telescope. By using a high-aspect ratio elliptical or rectangular primary mirror (2.3m x 0.6m), this mission achieves the same angular resolution and inner working angle as a 2.3m dia telescope. Such an elliptical or rectangular system would fill the volume of a cylindrical launch vehicle more efficiently and by choosing the aspect ratio one can appropriately tailor its light gathering power. RACES can therefore serve as a pathfinder for future larger missions for exoplanetary explorations. For example, the system described here approaches the collecting area of the well studied EXO-C concept and exceeds its angular resolution. The mission concept, design studies, observation strategy and expected target yield for RACES will be presented, as well as simulations of the high contrast vector vortex coronagraph operating with an un-obscured elliptical aperture.
An invisible medium for circularly polarized electromagnetic waves.
Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M
2008-12-08
We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. (c) 2008 Optical Society of America
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Surface treatment with linearly polarized laser beam at oblique incidence
NASA Astrophysics Data System (ADS)
Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.
2002-07-01
An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.
Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster
NASA Astrophysics Data System (ADS)
Mowla, Lamiya; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Yagi, Masafumi; Koda, Jin
2017-12-01
We study the presence of tidal features associated with ultra diffuse galaxies (UDGs) in galaxy clusters. Specifically, we stack deep Subaru images of UDGs in the Coma cluster to determine whether they show position angle twists at large radii. Selecting galaxies with central surface brightness μ (g,0)> 24 magarcsec-2 and projected half-light radius {r}e> 1.5 {kpc}, we identify 287 UDGs in the Yagi et al. catalog of low surface brightness Coma objects. The UDGs have apparent spheroidal shapes with median Sérsic index < n> =0.8 and median axis ratio < b/a> =0.7. The images are processed by masking all background objects and rotating to align the major axis before stacking them in bins of properties such as axis ratio, angle of major axis with respect to the cluster center, and separation from cluster center. Our image stacks reach further than 7 kpc (≳4r e). Analysis of the isophotes of the stacks reveals that the ellipticity remains constant up to the last measured point, which means that the individual galaxies have a non-varying position angle and axis ratio and show no evidence for tidal disruption out to ˜ 4{r}e. We demonstrate this explicitly by comparing our stacks with stacks of model UDGs with and without tidal features in their outskirts. We infer that the average tidal radius of the Coma UDGs is >7 kpc and estimate that the average dark matter fraction within the tidal radius of the UDGs inhabiting the innermost 0.5 Mpc of Coma is >99%.
Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian
NASA Astrophysics Data System (ADS)
Huang, Guangyue; Li, Zhi
2018-03-01
In this paper, we consider Liouville type theorems for positive solutions to the following nonlinear elliptic equation: Δ _V u+aulog u=0, where a is a nonzero real constant. By using gradient estimates, we obtain upper bounds of |\
Positivity results for indefinite sublinear elliptic problems via a continuity argument
NASA Astrophysics Data System (ADS)
Kaufmann, U.; Ramos Quoirin, H.; Umezu, K.
2017-10-01
We establish a positivity property for a class of semilinear elliptic problems involving indefinite sublinear nonlinearities. Namely, we show that any nontrivial nonnegative solution is positive for a class of problems the strong maximum principle does not apply to. Our approach is based on a continuity argument combined with variational techniques, the sub and supersolutions method and some a priori bounds. Both Dirichlet and Neumann homogeneous boundary conditions are considered. As a byproduct, we deduce some existence and uniqueness results. Finally, as an application, we derive some positivity results for indefinite concave-convex type problems.
Analysis of error in TOMS total ozone as a function of orbit and attitude parameters
NASA Technical Reports Server (NTRS)
Gregg, W. W.; Ardanuy, P. E.; Braun, W. C.; Vallette, B. J.; Bhartia, P. K.; Ray, S. N.
1991-01-01
Computer simulations of orbital scenarios were performed to examine the effects of orbital altitude, equator crossing time, attitude uncertainty, and orbital eccentricity on ozone observations by future satellites. These effects were assessed by determining changes in solar and viewing geometry and earth daytime coverage loss. The importance of these changes on ozone retrieval was determined by simulating uncertainties in the TOMS ozone retrieval algorithm. The major findings are as follows: (1) Drift of equator crossing time from local noon would have the largest effect on the quality of ozone derived from TOMS. The most significant effect of this drift is the loss of earth daytime coverage in the winter hemisphere. The loss in coverage increases from 1 degree latitude for + or - 1 hour from noon, 6 degrees for + or - 3 hours from noon, to 53 degrees for + or - 6 hours from noon. An additional effect is the increase in ozone retrieval errors due to high solar zenith angles. (2) To maintain contiguous earth coverage, the maximum scan angle of the sensor must be increased with decreasing orbital altitude. The maximum scan angle required for full coverage at the equator varies from 60 degrees at 600 km altitude to 45 degrees at 1200 km. This produces an increase in spacecraft zenith angle, theta, which decreases the ozone retrieval accuracy. The range in theta was approximately 72 degrees for 600 km to approximately 57 degrees at 1200 km. (3) The effect of elliptical orbits is to create gaps in coverage along the subsatellite track. An elliptical orbit with a 200 km perigee and 1200 km apogee produced a maximum earth coverage gap of about 45 km at the perigee at nadir. (4) An attitude uncertainty of 0.1 degree in each axis (pitch, roll, yaw) produced a maximum scan angle to view the pole, and maximum solar zenith angle).
Analysis of stresses in finite anisotropic panels with centrally located cutouts
NASA Technical Reports Server (NTRS)
Britt, Vicki O.
1992-01-01
A method for analyzing biaxial- and shear-loaded anisotropic rectangular panels with centrally located circular and elliptical cutouts is presented in the present paper. The method is based on Lekhnitskii's complex variable equations of plane elastostatics combined with a boundary collocation method and a Laurent series approximation. Results are presented for anisotropic panels with elliptical cutouts and subjected to combined shear and compression loading. The effects on the stress field of panel aspect ratio, anisotropy, cutout size, and cutout orientation are addressed. Angle-ply laminates, unidirectional off-axis laminates, and ((+ or - 45/0/90)(sub 3))s, ((+ or - 45/0(sub 2))(sub 3))s, and ((+ or - 45/90(sub 2))(sub 3))s laminates are examined.
An Anharmonic Solution to the Equation of Motion for the Simple Pendulum
ERIC Educational Resources Information Center
Johannessen, Kim
2011-01-01
An anharmonic solution to the differential equation describing the oscillations of a simple pendulum at large angles is discussed. The solution is expressed in terms of functions not involving the Jacobi elliptic functions. In the derivation, a sinusoidal expression, including a linear and a Fourier sine series in the argument, has been applied.…
Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14
NASA Astrophysics Data System (ADS)
Zhao, Jianhong
2018-03-01
The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).
Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.
Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József
2016-09-21
To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.
Theory of an airfoil equipped with a jet flap under low-speed flight conditions
NASA Technical Reports Server (NTRS)
Addessio, F. L.; Skifstad, J. G.
1975-01-01
A theory is developed, for the inviscid, incompressible flow past a thin airfoil equipped with a thin, part-span jet flap, by treating the induced flowfields of the jet and the wing separately and by obtaining the fully coupled solution in an iterative manner. Spanwise variation of the jet vortex strength is assumed to be elliptical in the analysis. Since the method considers the vorticity associated with the jet to be positioned on the computed locus of the jet, the downwash aft of the wing is evaluated as well as forces and moments on the wing. A lifting-surface theory is incorporated for the aerodynamics of the wing. Computational results are presented for a rectangular wing at momentum coefficients above 2.0 and compared with existing linear theories and experimental data. Good agreement is found for small angles of attack, jet-deflection angles, and jet-momentum coefficients where the linear theories and experimental data are applicable. Downwash data at a point in the vicinity of a control surface, the load distribution on the airfoil, and the jet, and the jet location are also presented for representative flight conditons.
An electrostatic elliptical mirror for neutral polar molecules.
González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard
2011-11-14
Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.
Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou
2018-06-01
The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].
Electromagnetic fields and Green's functions in elliptical vacuum chambers
NASA Astrophysics Data System (ADS)
Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.
2017-10-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.
Electromagnetic fields and Green’s functions in elliptical vacuum chambers
Persichelli, S.; Biancacci, N.; Migliorati, M.; ...
2017-10-23
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less
Electromagnetic fields and Green’s functions in elliptical vacuum chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persichelli, S.; Biancacci, N.; Migliorati, M.
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less
HIFiRE 5b Heat Flux and Boundary Layer Transition
2017-11-14
contain a detailed description of the HIFiRE-5 configuration. The HIFiRE-5 vehicle is an elliptic cone with a 2:1 aspect ratio. It has a 7-degree half... description of the HIFiRE-5b vehicle and launch. Figure 1 presents a dimensioned drawing of the payload, including nosetip detail. The half-angle of the
On non-coplanar Hohmann transfer using angles as parameters
NASA Astrophysics Data System (ADS)
Rincón, Ángel; Rojo, Patricio; Lacruz, Elvis; Abellán, Gabriel; Díaz, Sttiwuer
2015-09-01
We study a more complex case of Hohmann orbital transfer of a satellite by considering non-coplanar and elliptical orbits, instead of planar and circular orbits. We use as parameter the angle between the initial and transference planes that minimizes the energy, and therefore the fuel of a satellite, through the application of two non-tangential impulses for all possible cases. We found an analytical expression that minimizes the energy for each configuration. Some reasonable physical constraints are used: we apply impulses at perigee or apogee of the orbit, we consider the duration of the impulse to be short compared to the duration of the trip, we take the nodal line of three orbits to be coincident and the three semimajor axes to lie in the same plane. We study the only four possible cases but assuming non-coplanar elliptic orbits. In addition, we validate our method through a numerical solution obtained by using some of the actual orbital elements of Sputnik I and Vanguard I satellites. For these orbits, we found that the most fuel-efficient transfer is obtained by applying the initial impulse at apocenter and keeping the transfer orbit aligned with the initial orbit.
Arrays of ferromagnetic nanorings with variable thickness fabricated by capillary force lithography.
Lee, Su Yeon; Jeong, Jong-Ryul; Kim, Shin-Hyun; Kim, Sarah; Yang, Seung-Man
2009-11-03
A new promising strategy is reported for the fabrication of ferromagnetic nanoring arrays with novel geometrical features through the use of capillary force lithography and subsequent reactive ion etching. In particular, we fabricated two different types of elliptic rings with variable width and height: one with pinching zones near the major axes and the other with pinching zones near the minor axes. We used PDMS stamps with either elliptic hole or antihole arrays for creating these elliptic rings with variable thickness by virtue of the uneven capillary rise, which was induced by the distributed Laplace pressure around the walls of elliptic holes or antiholes with nonuniform local curvatures. We transferred the polymer ring patterns to array of elliptical NiFe rings by Ar ion milling and characterized magnetic properties in terms of nonuniform ring width using magnetic force microscopy measurements. Our results demonstrated that the magnetic domain wall can be positioned in a controlled manner by using these novel elliptical ferromagnetic rings with local pinching zones and that the proposed CFL method can be utilized as a simple and effective fabrication tool.
Pressure Distribution Over a Thick, Tapered and Twisted Monoplane Wing Model-NACA 81-J
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J
1932-01-01
This reports presents the results of pressure distribution tests on a thick, tapered and twisted monoplane wing model. The investigation was conducted for the purpose of obtaining data on the aerodynamic characteristics of the new wing and to provide additional information suitable for use in the design of tapered cantilever wings. The tests included angles of attack up to 90 degrees. The span loading over the wing was approximately of elliptical shape, which gave rise to relatively small bending moments about the root. The angle of zero lift for all sections along the span varied only within plus or minus 0.4 degree of the angle of zero lift for the whole wing, resulting in small leading edge loads for the high-speed condition of flight. The results also add to the available information for the study of large angles of attack.
Forces on Elliptic Cylinders in Uniform Air Stream
NASA Technical Reports Server (NTRS)
Zahm, A F; Smith, R H; Louden, F A
1929-01-01
This report presents the results of wind tunnel tests on four elliptic cylinders with various fineness ratios, conducted in the Navy Aerodynamic Laboratory, Washington. The object of the tests was to investigate the characteristics of sections suitable for streamline wire which normally has an elliptic section with a fineness ratio of 4.0; also to learn whether a reduction in fineness ratio would result in improvement; also to determine the pressure distribution on the model of fineness ratio of 4. Four elliptic cylinders with fineness ratios of 2.5, 3.0, 3.5, and 4.0 were made and then tested in the 8 by 8 wind tunnel; first, for cross-wind force, drag, and yawing moment at 30 miles an hour and various angles of yaw; next for drag 0 degree pitch and 0 degree yaw and various wind speeds; then for end effect on the smallest and largest models; and lastly for pressure distribution over the surface of the largest model at 0 degree pitch and 0 degree yaw and various wind speeds. In all tests, the length of the model was transverse to the current. The results are given for standard air density, p = .002378 slug per cubic foot. This account is a slight revised form of report no. 315. A summary of conclusions is given at the end of the text. (author)
Results of two multichord stellar occultations by dwarf planet (1) Ceres
NASA Astrophysics Data System (ADS)
Gomes-Júnior, A. R.; Giacchini, B. L.; Braga-Ribas, F.; Assafin, M.; Vieira-Martins, R.; Camargo, J. I. B.; Sicardy, B.; Timerson, B.; George, T.; Broughton, J.; Blank, T.; Benedetti-Rossi, G.; Brooks, J.; Dantowitz, R. F.; Dunham, D. W.; Dunham, J. B.; Ellington, C. K.; Emilio, M.; Herpich, F. R.; Jacques, C.; Maley, P. D.; Mehret, L.; Mello, A. J. T.; Milone, A. C.; Pimentel, E.; Schoenell, W.; Weber, N. S.
2015-08-01
We report the results of two multichord stellar occultations by the dwarf planet (1) Ceres that were observed from Brazil on 2010 August 17, and from the USA on 2013 October 25. Four positive detections were obtained for the 2010 occultation, and nine for the 2013 occultation. Elliptical models were adjusted to the observed chords to obtain Ceres' size and shape. Two limb-fitting solutions were studied for each event. The first one is a nominal solution with an indeterminate polar aspect angle. The second one was constrained by the pole coordinates as given by Drummond et al. Assuming a Maclaurin spheroid, we determine an equatorial diameter of 972 ± 6 km and an apparent oblateness of 0.08 ± 0.03 as our best solution. These results are compared to all available size and shape determinations for Ceres made so far, and shall be confirmed by the NASA's Dawn space mission.
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
NASA Technical Reports Server (NTRS)
Allen, J. M.; Hernandez, G.; Lamb, M.
1983-01-01
Tabulated body surface pressure data for two monoplane-wing missile configurations are presented and analyzed. Body pressure data are presented for body-alone, body-tail, and body-wing-tail combinations. For the lost combination, data are presented for tail-fin deflection angles of 0 deg and 30 deg to simulate pitch, yaw, and roll control for both configurations. The data cover angles of attack from -5 deg to 25 deg and angles of roll from 0 deg to 90 deg at a Mach number of 2.50 and a Reynolds number of 6.56 x 1,000,000 per meter. Very consistent, systematic trends with angle of attack and angle of roll were observed in the data, and very good symmetry was found at a roll angle of 0 deg. Body pressures depended strongly on the local body cross-section shape, with very little dependence on the upstream shape. Undeflected fins had only a small influence on the pressures on the aft end of the body; however, tail-fin deflections caused large changes in the pressures.
Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies
NASA Astrophysics Data System (ADS)
Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.
1990-11-01
The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.
Navigating highly elliptical earth orbiters with simultaneous VLBI from orthogonal baseline pairs
NASA Technical Reports Server (NTRS)
Frauenholz, Raymond B.
1986-01-01
Navigation strategies for determining highly elliptical orbits with VLBI are described. The predicted performance of wideband VLBI and Delta VLBI measurements obtained by orthogonal baseline pairs are compared for a 16-hr equatorial orbit. It is observed that the one-sigma apogee position accuracy improves two orders of magnitude to the meter level when Delta VLBI measurements are added to coherent Doppler and range, and the simpler VLBI strategy provides nearly the same orbit accuracy. The effects of differential measurement noise and acquisition geometry on orbit accuracy are investigated. The data reveal that quasar position uncertainty limits the accuracy of wideband Delta VLBI measurements, and that polar motion and baseline uncertainties and offsets between station clocks affect the wideband VLBI data. It is noted that differential one-way range (DOR) has performance nearly equal to that of the more complex Delta DOR and is recommended for use on spacecraft in high elliptical orbits.
STELLAR ROTATION EFFECTS IN POLARIMETRIC MICROLENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadian, Sedighe, E-mail: sajadian@ipm.ir
2016-07-10
It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation throughmore » polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.« less
NASA Astrophysics Data System (ADS)
Matsui, Tatsunosuke; Okajima, Akiko
2014-01-01
The photonic nanojet (PNJ) from a microcylinder with liquid crystals (LCs) showing tangential molecular alignment inside the microcylinder has been numerically analyzed on the basis of the finite-difference time-domain method. By introducing a small degree of birefringence, the characteristics of the PNJ, such as propagation length and polarization state, can be drastically changed. The azimuth angle and the ellipticity of the elliptically polarized PNJ obtained from the LC microcylinder changes within the propagation lengths in the micrometer range even in the isotropic matrix, which might be attributed to the jet like spatial profile of the PNJ. By using LC microcylinders or microspheres, we may obtain a rich variety of PNJs with unique polarization characteristics, which might open a new avenue for the development of novel optical devices with electrical tunability.
Directed and Elliptic Flow of Charged Hadrons in 62.4 GeV Au+Au Collisions
NASA Astrophysics Data System (ADS)
Oldenburg, Markus
2004-10-01
The measurement of the azimuthal momentum distribution of particles produced in heavy-ion collisions reveals insight into the early stage of the system's evolution [1]. It is quantified by the Fourier coefficients vn of the distribution of particle momentum azimuth angle [2]. Theoretical models predict the first Fourier coefficient v1 ("directed flow") to be sensitive to a possible phase transition of normal nuclear matter to a quark-gluon plasma [3]. The second Fourier component v2 ("elliptic flow") is believed to be a signal of early thermalization of the created system of hot and dense nuclear matter [4]. We present results of directed and elliptic flow at √s_NN = 62.4 GeV, as measured by the STAR experiment at RHIC. Comparisons to model predictions and different analysis techniques will be made. [1] P.F. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C 62, 054909 (2000). [2] S.A. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996). [3] L.P. Csernai and D. Röhrich, Phys. Lett. B 458, 454 (1999). [4] D. Teaney, J. Lauret and E. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).
Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil
Schattner, U.; Lazar, M.; Souza, L. A. P.; ten Brink, Uri S.; Mahiques, M. M.
2016-01-01
Pockmarks form by gas/fluid expulsion into the ocean and are preserved under conditions of negligible sedimentation. Ideally, they are circular at the seafloor and symmetrical in profile. Elliptical pockmarks are more enigmatic. They are associated with seafloor currents while asymmetry is connected to sedimentation patterns. This study examines these associations through morphological analysis of new multibeam data collected across the Santos continental slope offshore Brazil in 2011 (353–865 mbsl). Of 984 pockmarks, 78% are both elliptical and asymmetric. Geometric criteria divide the pockmarks into three depth ranges that correlate with a transition between two currents: the Brazil Current transfers Tropical Water and South Atlantic Central Water southwestwards while the Intermediate Western Boundary Current transfers Antarctic Intermediate Water northeastwards. It is suggested that the velocity of seafloor currents and their persistence dictate pockmark ellipticity, orientation and profile asymmetry. Fast currents (>20 cm/s) are capable of maintaining pockmark flank steepness close to the angle of repose. These morphological expressions present direct evidence for an edge effect of the South Atlantic Subtropical Gyre and, in general, provide a correlation between pockmark geometry and seafloor currents that can be applied at other locations worldwide.
Refractive optics to compensate x-ray mirror shape-errors
NASA Astrophysics Data System (ADS)
Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian
2017-08-01
Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.
The revised solar array synthesis computer program
NASA Technical Reports Server (NTRS)
1970-01-01
The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinschberger, Y.; Lavoine, J. P.
2015-08-07
Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced bymore » an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system.« less
The distribution of tilt angles in newly born NSs: role of interior viscosity and magnetic field
NASA Astrophysics Data System (ADS)
Dall'Osso, Simone; Perna, Rosalba
2017-12-01
We study how the viscosity of neutron star (NS) matter affects the distribution of tilt angles (χ) between the spin and magnetic axes in young pulsars. Under the hypothesis that the NS shape is determined by the magnetically induced deformation, and that the toroidal component of the internal magnetic field exceeds the poloidal one, we show that the dissipation of precessional motions by bulk viscosity can naturally produce a bi-modal distribution of tilt angles, as observed in radio/γ-ray pulsars, with a low probability of achieving χ ˜ (20°-70°) if the interior B-field is ˜(1011-1015) G and the birth spin period is ˜10-300 ms. As a corollary of the model, the idea that the NS shape is solely determined by the poloidal magnetic field, or by the centrifugal deformation of the crust, is found to be inconsistent with the tilt angle distribution in young pulsars. When applied to the Crab pulsar, with χ ˜ 45°-70° and birth spin ≳20 ms, our model implies that: (I) the magnetically induced ellipticity is ɛB ≳ 3 × 10-6; and (II) the measured positive\\dot{χ } ˜ 3.6 × 10^{-12} rad s-1 requires an additional viscous process, acting on a time-scale ≲104 yr. We interpret the latter as crust-core coupling via mutual friction in the superfluid NS interior. One critical implication of our model is a gravitational wave signal at (twice) the spin frequency of the NS. For ɛB ˜ 10-6, this could be detectable by Advanced LIGO/Virgo operating at design sensitivity.
NASA Astrophysics Data System (ADS)
Prastyani, Erina; Niasari, Sintia Windhi
2017-07-01
The goal of all geophysical survey techniques is to image the properties of the Earth's subsurface. Very Low Frequency (VLF) is one of the geophysical survey technique that has been commonly used for ore exploration and mapping faults or fracture zones. Faults or fracture zones are necessary components in providing the fluid pathway in geothermal systems. The Candi Umbul-Telomoyo is one of the geothermal prospect sites in Indonesia, which is located in Magelang, Central Java. Recent studies hypothesized that this site was an outflow area of Telomoyo volcano geothermal complex. We used the VLF-EM and VLF-R techniques to infer faults or fracture zones that might be a path for geothermal fluids in the Candi Umbul-Telomoyo. From the measurements, we got tilt angle, ellipticity, primary and secondary magnetic fieldfor VLF-EM data; and apparent resistivity, phase angle, electric and magnetic field for VLF-R data. To interpret the data, we used tipper and impedance analyses. The result of both analyses show similarities in the directions and positions of anomalous current concentrations. We conclude these anomalous current concentrations as faults. Our interpretation is agreeing with the Geologic Map of the Semarang and Magelang Quadrangles that shows the expected fault beneath the Mt. Telomoyo.
Boundary control of elliptic solutions to enforce local constraints
NASA Astrophysics Data System (ADS)
Bal, G.; Courdurier, M.
We present a constructive method to devise boundary conditions for solutions of second-order elliptic equations so that these solutions satisfy specific qualitative properties such as: (i) the norm of the gradient of one solution is bounded from below by a positive constant in the vicinity of a finite number of prescribed points; (ii) the determinant of gradients of n solutions is bounded from below in the vicinity of a finite number of prescribed points. Such constructions find applications in recent hybrid medical imaging modalities. The methodology is based on starting from a controlled setting in which the constraints are satisfied and continuously modifying the coefficients in the second-order elliptic equation. The boundary condition is evolved by solving an ordinary differential equation (ODE) defined via appropriate optimality conditions. Unique continuations and standard regularity results for elliptic equations are used to show that the ODE admits a solution for sufficiently long times.
No elliptic islands for the universal area-preserving map
NASA Astrophysics Data System (ADS)
Johnson, Tomas
2011-07-01
A renormalization approach has been used in Eckmann et al (1982) and Eckmann et al (1984) to prove the existence of a universal area-preserving map, a map with hyperbolic orbits of all binary periods. The existence of a horseshoe, with positive Hausdorff dimension, in its domain was demonstrated in Gaidashev and Johnson (2009a). In this paper the coexistence problem is studied, and a computer-aided proof is given that no elliptic islands with period less than 18 exist in the domain. It is also shown that less than 1.5% of the measure of the domain consists of elliptic islands. This is proven by showing that the measure of initial conditions that escape to infinity is at least 98.5% of the measure of the domain, and we conjecture that the escaping set has full measure. This is highly unexpected, since generically it is believed that for conservative systems hyperbolicity and ellipticity coexist.
Cluster flight control for fractionated spacecraft on an elliptic orbit
NASA Astrophysics Data System (ADS)
Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin
2016-08-01
This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.
VALIDATION OF ADULT OMNI PERCEIVED EXERTION SCALES FOR ELLIPTICAL ERGOMETRY12
MAYS, RYAN J.; GOSS, FREDRIC L.; SCHAFER, MARK A.; KIM, KEVIN H.; NAGLE-STILLEY, ELIZABETH F.; ROBERTSON, ROBERT J.
2012-01-01
Summary This investigation examined the validity of newly developed Adult OMNI Elliptical Ergometer Ratings of Perceived Exertion Scales. Sixty men and women performed a graded exercise test on an elliptical ergometer. Oxygen consumption (VO2), heart rate (HR) and ratings of perceived exertion were recorded each stage from the Borg 15 Category Scale and two different OMNI scales. One scale employed an elliptical ergometer format of the OMNI Picture System of Perceived Exertion. The second scale modified verbal, numerical, and pictorial descriptors at the low end of the response range. Concurrent and construct validity were established by the positive relation between ratings of perceived exertion from each OMNI scale with VO2, HR and Borg Scale ratings of perceived exertion (men, r = .94–.97; women, r = .93–.98). Validity was established for both OMNI scales, indicating either metric can be used to estimate ratings of perceived exertion during partial weight bearing exercise. PMID:21319623
Qualitative analysis of the elliptical centric technique and the TRICKS technique
NASA Astrophysics Data System (ADS)
Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan
2013-02-01
This study evaluated the usefulness of time resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography (MRA) and elliptical centric MRA according to the type of cerebral disease. From February 2010 to January 2012, elliptical centric MRA and TRICKS MRA images were acquired from 50 normal individuals and 50 patients with cerebral diseases by using 3.0-Tesla magnetic resonance imaging (MRI) equipment. The images were analyzed qualitatively by examining areas such as the presence or absence of artifacts on the images, the distinctness of boundaries of blood vessels, accurate representation of the lesions, and the subtraction level. In addition, the sensitivity, specificity, positive prediction rate, negative prediction rate and accuracy were assessed by comparing the diagnostic efficacy of the two techniques. The results revealed TRICKS MRA to have superior image quality to elliptical centric MRA. Regarding each disease, TRICKS MRA showed higher diagnostic efficacy for artery venous malformation (AVM) and middle cerebral artery (MCA) bypass patients whereas elliptical centric MRA was more suitable for patients with brain tumors, cerebral infarction, cerebral stenosis or sinus mass.
NASA Technical Reports Server (NTRS)
Smith, R. C.; Jones, R. T.; Summers, J. L.
1975-01-01
An experimental investigation was conducted in the Ames 14-foot transonic wind tunnel to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. Two elliptical planform (axis ratio = 8:1) wings, each having a maximum thickness of 12 and 14 percent, were tested. Longitudinal stability data were obtained with no wing and with each of the two wings set at sweep angles of 0, 45, and 60 deg. Lateral directional stability data were obtained for the 12 percent wing only. Test Mach numbers ranged from 0.6 to 1.2 in the unit Reynolds number range from 11.2 to 13.1 million per meter. Angles of attack were between -6 and 22 deg at zero sideslip. Angles of sideslip were between -6 and +6 deg for two angles of attack, depending upon the wing configuration.
Sadjadi, Firooz A; Mahalanobis, Abhijit
2006-05-01
We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Howell, M. H.
1976-01-01
An experimental investigation was conducted in the Ames 6-by-6-Foot Wind Tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat-plate wings. Eighteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that taper ratio and aspect ratio had only small effect on the aerodynamic characteristics, especially at the higher angles of attack. Undesirable side forces and yawing moments, which developed at angles of attack greater than about 25 deg, were generally no greater than those for the bodies tested alone. As for the bodies alone, the side forces and yawing moments increased as the nose fineness ratio increased and/or as the subsonic Mach number decreased.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2003-09-16
A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.
NASA Technical Reports Server (NTRS)
House, Rufus O; Wallace, Arthur R
1941-01-01
Report presents the results of a wind-tunnel investigation of the effect of wing-fuselage interference on lateral-stability characteristics made in the NACA 7 by 10-foot wind tunnel on four fuselages and two fins, representing high-wing, low-wing, and midwing monoplanes. The fuselages are of circular and elliptical cross section. The wings have rounded tips and, in plan form, one is rectangular and the three are tapered 3:1 with various amounts of sweep. The rate of change in the coefficients of rolling moment, yawing moment, and lateral force with angle of yaw is given in a form to show the increment caused by wing-fuselage interference for the model with no fin and the effect of wing-fuselage interference on fin effectiveness. Results for the fuselage-fin combination and the wing tested alone are also given.
Sum-Frequency Generation from a Thin Cylindrical Layer
NASA Astrophysics Data System (ADS)
Shamyna, A. A.; Kapshai, V. N.
2018-01-01
In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.
Characteristics of Phase-Correcting Fresnel Zone Plates and Elliptical Waveguides
1994-02-01
elektronika, No. 9, pp. 1681-1688, 1985) B. K. Goto and H. Banjo, "Angle Eikonals of Plane and Spherical Zone Plates," Journal of the Optical Society o...CARLuncover, NTIS (technical reports), and MATHSCI on DIALOG information services. The INSPec and ENGIneering databases were readily available to the...authors via the Georgia Institute of3 Technology electronic library system, while the remaining databases were consulted by library personnel. Ultimately, a
A parametric generalization of the Hayne estimator for line transect sampling
Burnham, Kenneth P.
1979-01-01
The Hayne model for line transect sampling is generalized by using an elliptical (rather than circular) flushing model for animal detection. By assuming the ration of major and minor axes lengths is constant for all animals, a model results which allows estimation of population density based directly upon sighting distances and sighting angles. The derived estimator of animal density is a generalization of the Hayne estimator for line transect sampling.
NASA Astrophysics Data System (ADS)
Simon, Patrick; Schneider, Peter
2017-08-01
In weak gravitational lensing, weighted quadrupole moments of the brightness profile in galaxy images are a common way to estimate gravitational shear. We have employed general adaptive moments (GLAM ) to study causes of shear bias on a fundamental level and for a practical definition of an image ellipticity. The GLAM ellipticity has useful properties for any chosen weight profile: the weighted ellipticity is identical to that of isophotes of elliptical images, and in absence of noise and pixellation it is always an unbiased estimator of reduced shear. We show that moment-based techniques, adaptive or unweighted, are similar to a model-based approach in the sense that they can be seen as imperfect fit of an elliptical profile to the image. Due to residuals in the fit, moment-based estimates of ellipticities are prone to underfitting bias when inferred from observed images. The estimation is fundamentally limited mainly by pixellation which destroys information on the original, pre-seeing image. We give an optimised estimator for the pre-seeing GLAM ellipticity and quantify its bias for noise-free images. To deal with images where pixel noise is prominent, we consider a Bayesian approach to infer GLAM ellipticity where, similar to the noise-free case, the ellipticity posterior can be inconsistent with the true ellipticity if we do not properly account for our ignorance about fit residuals. This underfitting bias, quantified in the paper, does not vary with the overall noise level but changes with the pre-seeing brightness profile and the correlation or heterogeneity of pixel noise over the image. Furthermore, when inferring a constant ellipticity or, more relevantly, constant shear from a source sample with a distribution of intrinsic properties (sizes, centroid positions, intrinsic shapes), an additional, now noise-dependent bias arises towards low signal-to-noise if incorrect prior densities for the intrinsic properties are used. We discuss the origin of this prior bias. With regard to a fully-Bayesian lensing analysis, we point out that passing tests with source samples subject to constant shear may not be sufficient for an analysis of sources with varying shear.
Long, Fang; Tian, Huiping; Ji, Yuefeng
2010-09-01
A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps.
Fast vision-based catheter 3D reconstruction
NASA Astrophysics Data System (ADS)
Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.
2016-07-01
Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of ±0.6 mm and ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.
Development of new family of wide-angle anamorphic lens with controlled distortion profile
NASA Astrophysics Data System (ADS)
Gauvin, Jonny; Doucet, Michel; Wang, Min; Thibault, Simon; Blanc, Benjamin
2005-08-01
It is well known that a fish-eye lens produces a circular image of the scene with a particular distortion profile. When using a fish-eye lens with a standard sensor (e.g. 1/3", 1/4",.), only a part of the rectangular detector area is used, leaving many pixels unused. We proposed a new approach to get enhanced resolution for panoramic imaging. In this paper, various arrangements of innovative 180-degree anamorphic wide-angle lens design are considered. Their performances as well as lens manufacturability are also discussed. The concept of the design is to use anamorphic optics to produce elliptical image that maximize pixel resolution in both axis. Furthermore, a non-linear distortion profile is also introduced to enhance spatial resolution for specific field angle. Typical applications such as panoramic photography, video conferencing, and homeland/transportation security are also presented.
Nonplanar wing load-line and slender wing theory
NASA Technical Reports Server (NTRS)
Deyoung, J.
1977-01-01
Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.
Light scattering from normal and cervical cancer cells.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-04-20
The light scattering characteristic plays a very important role in optic imaging and diagnostic applications. For optical detection of the cell, cell scattering characteristics have an extremely vital role. In this paper, we use the finite-difference time-domain (FDTD) algorithm to simulate the propagation and scattering of light in biological cells. The two-dimensional scattering cell models were set up based on the FDTD algorithm. The cell models of normal cells and cancerous cells were established, and the shapes of organelles, such as mitochondria, were elliptical. Based on these models, three aspects of the scattering characteristics were studied. First, the radar cross section (RCS) distribution curves of the corresponding cell models were calculated, then corresponding relationships between the size and the refractive index of the nucleus and light scattering information were analyzed in the three periods of cell canceration. The values of RCS increase positively with the increase of the nucleo-cytoplasmic ratio in the cancerous process when the scattering angle ranges from 0° to 20°. Second, the effect of organelles in the scattering was analyzed. The peak value of the RCS of cells with mitochondria is higher than the cells without mitochondria when the scattering angle ranges from 20° to 180°. Third, we demonstrated that the influence of cell shape is important, and the impact was revealed by the two typical ideal cells: round cells and oval cells. When the scattering angle ranges from 0° to 80°, the peak values and the frequencies of the appearance of the peaks from the two models are roughly similar. It can be concluded that: (1) the size of the nuclei and the change of the refractive index of cells have a certain impact on light scattering information of the whole cell; (2) mitochondria and other small organelles contribute to the cell light scattering characteristics in the larger scattering angle area; and (3) the change of the cell shape significantly influences the value of scattering peak and the deviation of scattering peak position. The results of the numerical simulation will guide subsequent experiments and early diagnosis of cervical cancer.
Characteristics of a multilayer one-touch-point ultrasonic motor for high torque
NASA Astrophysics Data System (ADS)
Jeong, Seong-Su; Park, Tae-Gone; Park, Jong-Kyu
2013-04-01
In this paper, a one-touch-point ultrasonic motor is proposed. Fabricating the stator is easy because of its simple structure and the use of a punching technique. Also, a thin stator is advantageous to use in tight spaces. A thin metal plate was used as a V-shaped stator and two to the upper and two to the lower ceramic plates were attached to the upper and the lower surfaces respectively of the metal plate. When two sinusoidal sources with a phase difference of 90 degrees were applied to the stator, an elliptical displacement was generated at contact tip of the stator. Modeling of the ultrasonic motor was done and the displacement characteristics were defined by using a finite element analysis program (ATILA). To improve the speed and the torque of the ultrasonic motor, we analyzed the effects of the leg angle and the number of ceramic layers. In addition, a model with large x-axis and y-axis displacements was fabricated, and the speed and the torque were measured under various conditions. The elliptical motion of the contact tip of the stator was consistently obtained at the resonance frequency. The maximum speed and torque were obtained by using maximum elliptical displacement model. The speed and the torque increased linearly with increasing voltage.
Surface waves on a soft viscoelastic layer produced by an oscillating microbubble.
Tinguely, Marc; Hennessy, Matthew G; Pommella, Angelo; Matar, Omar K; Garbin, Valeria
2016-05-14
Ultrasound-driven bubbles can cause significant deformation of soft viscoelastic layers, for instance in surface cleaning and biomedical applications. The effect of the viscoelastic properties of a boundary on the bubble-boundary interaction has been explored only qualitatively, and remains poorly understood. We investigate the dynamic deformation of a viscoelastic layer induced by the volumetric oscillations of an ultrasound-driven microbubble. High-speed video microscopy is used to observe the deformation produced by a bubble oscillating at 17-20 kHz in contact with the surface of a hydrogel. The localised oscillating pressure applied by the bubble generates surface elastic (Rayleigh) waves on the gel, characterised by elliptical particle trajectories. The tilt angle of the elliptical trajectories varies with increasing distance from the bubble. Unexpectedly, the direction of rotation of the surface elements on the elliptical trajectories shifts from prograde to retrograde at a distance from the bubble that depends on the viscoelastic properties of the gel. To explain these behaviours, we develop a simple three-dimensional model for the deformation of a viscoelastic solid by a localised oscillating force. By using as input for the model the values of the shear modulus obtained from the propagation velocity of the Rayleigh waves, we find good qualitative agreement with the experimental observations.
The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Sereno, Mauro; Tam, Sut-Ieng; Chiu, I.-Non; Fan, Zuhui; Ettori, Stefano; Gruen, Daniel; Okumura, Teppei; Medezinski, Elinor; Donahue, Megan; Meneghetti, Massimo; Frye, Brenda; Koekemoer, Anton; Broadhurst, Tom; Zitrin, Adi; Balestra, Italo; Benítez, Narciso; Higuchi, Yuichi; Melchior, Peter; Mercurio, Amata; Merten, Julian; Molino, Alberto; Nonino, Mario; Postman, Marc; Rosati, Piero; Sayers, Jack; Seitz, Stella
2018-06-01
We reconstruct the two-dimensional (2D) matter distributions in 20 high-mass galaxy clusters selected from the CLASH survey by using the new approach of performing a joint weak gravitational lensing analysis of 2D shear and azimuthally averaged magnification measurements. This combination allows for a complete analysis of the field, effectively breaking the mass-sheet degeneracy. In a Bayesian framework, we simultaneously constrain the mass profile and morphology of each individual cluster, assuming an elliptical Navarro–Frenk–White halo characterized by the mass, concentration, projected axis ratio, and position angle (PA) of the projected major axis. We find that spherical mass estimates of the clusters from azimuthally averaged weak-lensing measurements in previous work are in excellent agreement with our results from a full 2D analysis. Combining all 20 clusters in our sample, we detect the elliptical shape of weak-lensing halos at the 5σ significance level within a scale of 2 {Mpc} {h}-1. The median projected axis ratio is 0.67 ± 0.07 at a virial mass of {M}vir}=(15.2+/- 2.8)× {10}14 {M}ȯ , which is in agreement with theoretical predictions from recent numerical simulations of the standard collisionless cold dark matter model. We also study misalignment statistics of the brightest cluster galaxy, X-ray, thermal Sunyaev–Zel’dovich effect, and strong-lensing morphologies with respect to the weak-lensing signal. Among the three baryonic tracers studied here, we find that the X-ray morphology is best aligned with the weak-lensing mass distribution, with a median misalignment angle of | {{Δ }}{PA}| =21^\\circ +/- 7^\\circ . We also conduct a stacked quadrupole shear analysis of the 20 clusters assuming that the X-ray major axis is aligned with that of the projected mass distribution. This yields a consistent axis ratio of 0.67 ± 0.10, suggesting again a tight alignment between the intracluster gas and dark matter. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.
Nuclear Rings in Galaxies - A Kinematic Perspective
NASA Technical Reports Server (NTRS)
Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain
2011-01-01
We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.
The role of service areas in the optimization of FSS orbital and frequency assignments
NASA Technical Reports Server (NTRS)
Levis, C. A.; Wang, C.-W.; Yamamura, Y.; Reilly, C. H.; Gonsalvez, D. J.
1986-01-01
An implicit relationship is derived which relates the topocentric separation of two satellites required for a given level of single-entry protection to the separation and orientation of their service areas. The results are presented explicitly for circular beams and topocentric angles. A computational approach is given for elliptical beams and for use with longitude and latitude variables. It is found that the geocentric separation depends primarily on the service area separation, secondarily on a parameter which characterizes the electrical design, and only slightly on the mean orbital position of the satellites. Both linear programming and mixed integer programming algorithms are implemented. Possible objective function choices are discussed, and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed 'ideal' location set. A test problem involving six service areas is examined with results that are encouraging with respect to applying the linear programming procedure to larger scenarios.
Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth
Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna
2013-01-01
The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298
Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.
Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna
2013-01-01
The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.
Ko, Wooseok; Kim, Soohyun
2009-11-01
This paper proposes a new measurement system for measuring the refractive power of spherical and sphero-cylindrical lenses with a six-point light source, which is composed of a light emitting diode and a six-hole pattern aperture, and magnification ellipse fitting method. The position of the six light sources is changed into a circular or elliptical form subjected to the lens refractive power and meridian rotation angle. The magnification ellipse fitting method calculates the lens refractive power based on the ellipse equation with magnifications that are the ratios between initial diagonal lengths and measured diagonal lengths of the conjugated light sources changed by the target lens. The refractive powers of the spherical and sphero-cylindrical lenses certified in the Korea Research Institute of Standard and Science were measured to verify the measurement performance. The proposed method is estimated to have a repeatability of +/-0.01 D and an error value below 1%.
The IRAF Fabry-Perot analysis package: Ring fitting
NASA Technical Reports Server (NTRS)
Shopbell, P. L.; Bland-Hawthorn, J.; Cecil, G.
1992-01-01
As introduced at ADASSI, a Fabry-Perot analysis package for IRAF is currently under development as a joint effort of ourselves and Frank Valdes of the IRAF group. Although additional portions of the package were also implemented, we report primarily on the development of a robust ring fitting task, useful for fitting the calibration rings obtained in Fabry-Perot observations. The general equation of an ellipse is fit to the shape of the rings, providing information on ring center, ellipticity, and position angle. Such parameters provide valuable information on the wavelength response of the etalon and the geometric stability of the system. Appropriate statistical weighting is applied to the pixels to account for increasing numbers with radius, the Lorentzian cross-section, and uneven illumination. The major problems of incomplete, non-uniform, and multiple rings are addressed with the final task capable of fitting rings regardless of center, cross-section, or completion. The task requires only minimal user intervention, allowing large numbers of rings to be fit in an extremely automated manner.
NASA Astrophysics Data System (ADS)
Barlow, Nathaniel S.; Weinstein, Steven J.; Faber, Joshua A.
2017-07-01
An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math. 70 21-48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations.
Optical activity in chiral stacks of 2D semiconductors
NASA Astrophysics Data System (ADS)
Poshakinskiy, Alexander V.; Kazanov, Dmitrii R.; Shubina, Tatiana V.; Tarasenko, Sergey A.
2018-03-01
We show that the stacks of two-dimensional semiconductor crystals with the chiral packing exhibit optical activity and circular dichroism. We develop a microscopic theory of these phenomena in the spectral range of exciton transitions that takes into account the spin-dependent hopping of excitons between the layers in the stack and the interlayer coupling of excitons via electromagnetic field. For the stacks of realistic two-dimensional semiconductors such as transition metal dichalcogenides, we calculate the rotation and ellipticity angles of radiation transmitted through such structures. The angles are resonantly enhanced at the frequencies of both bright and dark exciton modes in the stack. We also study the photoluminescence of chiral stacks and show that it is circularly polarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindricalmore » coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of arbitrary shape, such as Chebyshev cylindrical particles with a small deformation, stadiums (with oval shape), or other non-circular geometries.« less
Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations
NASA Astrophysics Data System (ADS)
Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran
2018-06-01
This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.
2010-05-01
at the Brewster angle . The area of the elliptical laser spot on the semiconductor is approximately 0.5 mm2, the average optical power is about 50 mW...approximately above 100 THz, with quantum transition as the dominating physics and lens and mirror as the guiding elements for optics. The science and...waveguides are tested with a gas laser and a pyroelectric detector. A CW THz beam at 1.62 THz is collimated from the gas laser and focused by a lens
Stellar populations in the bulges of isolated galaxies
NASA Astrophysics Data System (ADS)
Morelli, L.; Parmiggiani, M.; Corsini, E. M.; Costantin, L.; Dalla Bontà, E.; Méndez-Abreu, J.; Pizzella, A.
2016-12-01
We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey I-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a Sérsic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg2 and
STRUCTURAL PARAMETERS FOR 10 HALO GLOBULAR CLUSTERS IN M33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jun, E-mail: majun@nao.cas.cn
2015-05-15
In this paper, we present the properties of 10 halo globular clusters (GCs) with luminosities L ≃ 5–7 × 10{sup 5} L{sub ⊙} in the Local Group galaxy M33 using images from the Hubble Space Telescope WFPC2 in the F555W and F814W bands. We obtained the ellipticities, position angles, and surface brightness profiles for each GC. In general, the ellipticities of the M33 sample clusters are similar to those of the M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios (M/L values) from population-synthesis models. The structural parametersmore » include core radii, concentration, half-light radii, and central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density, and predicted line of sight velocity dispersion at the cluster center. The velocity dispersions of the four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo GCs are better fitted by both the King model and the Wilson model than the Sérsic model. In general, the properties of the clusters in M33, M31, and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a “fundamental plane” for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.« less
NASA Astrophysics Data System (ADS)
Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.
2018-04-01
Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.
Dynamic evolution of nearby galaxy clusters
NASA Astrophysics Data System (ADS)
Biernacka, M.; Flin, P.
2011-06-01
A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e(z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e(z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z>0.14.
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation.
Ritschl, Ludwig; Kuntz, Jan; Fleischmann, Christof; Kachelrieß, Marc
2016-05-01
In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan, E-mail: j.kuntz@dkfz.de
Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled datamore » set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.« less
Influence of incident angle on the decoding in laser polarization encoding guidance
NASA Astrophysics Data System (ADS)
Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan
2009-07-01
Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.
Gunshot residue patterns on skin in angled contact and near contact gunshot wounds.
Plattner, T; Kneubuehl, B; Thali, M; Zollinger, U
2003-12-17
The goal of this study was the reproduction of shape and pattern of gunshot residues in near contact and contact gunshot wounds by a series of experimental gunshots on a skin and soft tissue model. The aim was to investigate the shape and direction of soot deposits with regard to the muzzle according to different muzzle-target angles, firing distances, type of ammunition and weapon and barrel length. Based on a review of the literature and on the results of the experiments the authors could make the following statements of gunshot residues in angled contact and close contact gunshot: (1) gunshot residues on the target surface can be differentiated in a "inner" and "outer powder soot zone"; (2) the outer powder soot zone is much less visible than the inner powder soot zone and may lack on human skin; (3) with increasing muzzle target distance both inner and outer powder soot halo increase in size and decrease in density; (4) in angled shots the inner powder soot halo shows an eccentric, elliptic shape which points towards the muzzle, regardless of ammunition, calibre and barrel length; (5) the outer powder soot points away from the muzzle in angled contact and close contact shots.
Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry
NASA Astrophysics Data System (ADS)
Thureau, N. D.; Monnier, J. D.; Traub, W. A.; Millan-Gabet, R.; Pedretti, E.; Berger, J.-P.; Garcia, M. R.; Schloerb, F. P.; Tannirkulam, A.-K.
2009-09-01
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8yr period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data show that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24mas, an axis ratio r = 0.39 +/- 0.03 and a position angle θ = 35° +/- 2°.
Optical Gating with Asymmetric Field Ratios for Isolated Attosecond Pulse Generation
2015-09-01
field intensity at t = tc. 0 15 30 45 60 75 90 0.0 1:3 1:2 1:1 2:1 3:1 1 2 2 Field ratio Sc alin g f act or Polarization angle θ1 (deg) APG ADOG...of using field asymmetry is low compared to that of using field ellipticity. 0.0 0.2 0.4 0.6 0.8 1.0 5 10 15 20 25 Sc alin g f act or Field
Measurements of Crossflow Instability Modes for HIFiRE 5 at Angle of Attack
2017-11-15
temperature sensitive paint (TSP) did not show any vortices in noisy flow, and only revealed vortices in quiet flow for a subset of the Reynolds numbers for...evidence of traveling crossflow waves with a noisy freestream, even though the spectra of the surface pressure signals showed an expected progression...cone ray describing the minor axis, and retains a 2:1 elliptical cross-section to the tip. Figure 1: Photograph of model The model is made of solid 15
Local parametric instability near elliptic points in vortex flows under shear deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950
The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less
Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future. PMID:29410849
Li, Xu; Yang, Chuanlei; Wang, Yinyan; Wang, Hechun
2018-01-01
To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future.
The stability of perfect elliptic disks. 1: The maximum streaming case
NASA Technical Reports Server (NTRS)
Levine, Stephen E.; Sparke, Linda S.
1994-01-01
Self-consistent distribution functions are constructed for two-dimensional perfect elliptic disks (for which the potential is exactly integrable) in the limit of maximum streaming; these are tested for stability by N-body integration. To obtain a discrete representation for each model, simulated annealing is used to choose a set of orbits which sample the distribution function and reproduce the required density profile while carrying the greatest possible amount of angular momentum. A quiet start technique is developed to place particles on these orbits uniformly in action-angle space, making the initial conditions as smooth as possible. The roundest models exhibit spiral instabilities similar to those of cold axisymmetric disks; the most elongated models show bending instabilities like those seen in prolate systems. Between these extremes, there is a range of axial ratios 0.25 approximately less than b/a approximately less than 0.6 within which these models appear to be stable. All the methods developed in this investigation can easily be extended to integrable potentials in three dimensions.
NASA Technical Reports Server (NTRS)
Schnitzer, Emanuel; Hathaway, Melvin E
1953-01-01
An approximate method for computing water loads and pressure distributions on lightly loaded elliptical cylinders during oblique water impacts is presented. The method is of special interest for the case of emergency water landings of helicopters. This method makes use of theory developed and checked for landing impacts of seaplanes having bottom cross sections of V and scalloped contours. An illustrative example is given to show typical results obtained from the use of the proposed method of computation. The accuracy of the approximate method was evaluated through comparison with limited experimental data for two-dimensional drops of a rigid circular cylinder at a trim of 0 degrees and a flight -path angle of 90 degrees. The applicability of the proposed formulas to the design of rigid hulls is indicated by the rough agreement obtained between the computed and experimental results. A detailed computational procedure is included as an appendix.
Plasmon-shaped polarization gating for high-order-harmonic generation
NASA Astrophysics Data System (ADS)
Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2017-12-01
We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.
An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface.
Wang, Dacheng; Gu, Yinghong; Gong, Yandong; Qiu, Cheng-Wei; Hong, Minghui
2015-05-04
Metamaterials promise an exotic approach to artificially manipulate the polarization state of electromagnetic waves and boost the design of polarimetric devices for sensitive detection, imaging and wireless communication. Here, we present the design and experimental demonstration of an ultrathin (0.29λ) terahertz quarter-wave plate based on planar babinet-inverted metasurface. The quarter-wave plate consisting of arrays of asymmetric cross apertures reveals a high transmission of 0.545 with 90 degrees phase delay at 0.870 THz. The calculated ellipticity indicates a high degree of polarization conversion from linear to circular polarization. With respect to different incident polarization angles, left-handed circular polarized light, right-handed circular polarized light and elliptically polarized light can be created by this novel design. An analytical model is applied to describe transmitted amplitude, phase delay and ellipticitiy, which are in good agreement with the measured and simulated results. The planar babinet-inverted metasurface with the analytical model opens up avenues for new functional terahertz devices design.
Nuclear spin circular dichroism.
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-04-07
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.
Shearing-induced asymmetry in entorhinal grid cells.
Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I
2015-02-12
Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.
Kyhm, Kwangseuk; Je, Koo-Chul; Taylor, Robert A
2012-08-27
We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.
Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman
2017-09-01
In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.
Physical processes in the strong magnetic fields of accreting neutron stars
NASA Technical Reports Server (NTRS)
Meszaros, P.
1984-01-01
Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.
NASA Technical Reports Server (NTRS)
Love, Eugene S
1949-01-01
Data obtained from wind tunnel investigations of two series of 11 triangular wings conducted at Mach numbers of 1.62, 1.92, and 1.40 to determine the effect of leading-edge shape and to compare actual test values with the nonviscous linear theory are presented. The two series of wings had identical plan forms, a constant thickness ratio of 8 percent, a constant location of maximum-thickness point of 18 percent, and a range of apex half-angles from 10 degrees to forty-five degrees. The first series has an elliptical leading edge and the second series a wedge leading edge. Measurements were made of lift, drag, pitching moment, and pressure distribution, the latter being confined to three wings at one Mach number.
NASA Astrophysics Data System (ADS)
Mukhtubayev, Azamat B.; Aksarin, Stanislav M.; Strigalev, Vladimir E.
2017-11-01
A study of the orthogonal polarization modes crosstalk changes in the point of different mechanical actions (pressure force) in the polarization-maintaining fiber with straining elliptical cladding is presented. It was found that by increasing of the pressure force the polarization extinction ratio increases nonlinearly. Also revealed the dependence of the extinction coefficient and the angle between vector of the mechanical action and polarization axes of the test fiber, which leads to change the extinction coefficient variable from -57 dB to -25 dB under the pressure force of 0.7 N. Also it was found that the cross angle of the fiber axes doesn't influence on the extinction ratio value of the mechanical induced polarization crosstalk.
NASA Technical Reports Server (NTRS)
Re, R. J.
1974-01-01
An investigation was conducted in the Langley 16-foot transonic tunnel to determine the performance of seven inlets having NACA 1-series contours and one inlet having an elliptical contour over a range of mass-flow ratios and at angle of attack. The inlet diameter ratio varied from 0.81 to 0.89; inlet length ratio varied from 0.75 to 1.25; and internal contraction ratio varied from 1.009 to 1.093. Reynolds number based on inlet maximum diameter varied from 3.4 million at a Mach number of 0.4 to 5.6 million at a Mach number of 1.29.
Aliasing errors in measurements of beam position and ellipticity
NASA Astrophysics Data System (ADS)
Ekdahl, Carl
2005-09-01
Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.
Design and dynamic analysis of a piezoelectric linear stage for pipetting liquid samples
NASA Astrophysics Data System (ADS)
Yu-Jen, Wang; Chien, Lee; Yi-Bin, Jiang; Kuo-Chieh, Fu
2017-06-01
Piezoelectric actuators have been widely used in positioning stages because of their compact size, stepping controllability, and holding force. This study proposes a piezoelectric-driven stage composed of a bi-electrode piezoelectric slab, capacitive position sensor, and capillary filling detector for filling liquid samples into nanopipettes using capillary flow. This automatic sample-filling device is suitable for transmission electron microscopy image-based quantitative analysis of aqueous products with added nanoparticles. The step length of the actuator is adjusted by a pulse width modulation signal that depends on the stage position; the actuator stops moving once the capillary filling has been detected. A novel dynamic model of the piezoelectric-driven stage based on collision interactions between the piezoelectric actuator and the sliding clipper is presented. Unknown model parameters are derived from the steady state solution of the equivalent steady phase angle. The output force of the piezoelectric actuator is formulated using the impulse and momentum principle. Considering the applied forces and related velocity between the sliding clipper and the piezoelectric slab, the stage dynamic response is confirmed with the experimental results. Moreover, the model can be used to explain the in-phase slanted trajectories of piezoelectric slab to drive sliders, but not elliptical trajectories. The maximum velocity and minimum step length of the piezoelectric-driven stage are 130 mm s-1 and 1 μm respectively.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; White, James A
1937-01-01
The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.
Mixing Characteristics of Elliptical Jet Control with Crosswire
NASA Astrophysics Data System (ADS)
Manigandan, S.; Vijayaraja, K.
2018-02-01
The aerodynamic mixing efficiency of elliptical sonic jet flow with the effect of crosswire is studied computationally and experimentally at different range of nozzle pressure ratio with different orientation along the minor axis of the exit. The cross wire of different orientation is found to reduce the strength of the shock wave formation. Due to the presence of crosswire the pitot pressure oscillation is reduced fast, which weakens the shock cell structure. When the cross wire is placed at center position we see high mixing along the major axis. Similarly, when the cross wire is placed at ¼ and ¾ position we see high mixing promotion along minor axis. It also proves, as the position of the cross wire decreased along minor axis there will be increase in the mixing ratio. In addition to that we also found that, jet spread is high in major axis compared to minor axis due to bifurcation of jet along upstream
Polarization-dependent responses of fluorescent indicators partitioned into myelinated axons
NASA Astrophysics Data System (ADS)
Micu, Ileana; Brideau, Craig; Stys, Peter K.
2012-02-01
Myelination, i.e. the wrapping of axons in multiple layers of lipid-rich membrane, is a unique phenomenon in the nervous systems of both vertebrates and invertebrates, that greatly increases the speed and efficiency of signal transmission. In turn, disruption of axo-myelinic integrity underlies disability in numerous clinical disorders. The dependence of myelin physiology on nanometric organization of its lamellae makes it difficult to accurately study this structure in the living state. We expected that fluorescent probes might become highly oriented when partitioned into the myelin sheath, and in turn, this anisotropy could be interrogated by controlling the polarization state of the exciting laser field used for 2-photon excited fluorescence (TPEF). Live ex vivo myelinated rodent axons were labeled with a series of lipohilic and hydrophilic fluorescenct probes, and TPEF images acquired while laser polarization was varied at the sample over a broad range of ellipticities and orientations of the major angle [see Brideau, Micu & Stys, abstract this meeting]. We found that most probes exhibited strong dependence on both the major angle of polarization, and perhaps more surprisingly, on ellipticity as well. Lipophilic vs. hydrophilic probes exhibited distinctly different behavior. We propose that polarization-dependent TPEF microscopy represents a powerful tool for probing the nanostructural architecture of both myelin and axonal cytoskeleton in a domain far below the resolution limit of visible light microscopy. By selecting probes with different sizes and physicochemical properties, distinct aspects of cellular nanoarchitecture can be accurately interrogated in real-time in living tissue.
Venus and Mars Obstacles in the Solar Wind
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Mitchell, D. L.; Acuna, M. H.; Russell, C. T.; Brecht, S. H.; Lyon, J. G.
2000-10-01
Comparisons of the magnetosheaths of Venus and Mars contrast the relative simplicity of the Venus solar wind interaction and the ``Jekyll and Hyde" nature of the Mars interaction. Magnetometer observations from Mars Global Surveyor during the elliptical science phasing orbits and Pioneer Venus Orbiter in its normally elliptical orbit are compared, with various models used to compensate for the different near-polar periapsis of MGS and near-equator periapsis of PVO. Gasdynamic or MHD fluid models of flow around a conducting sphere provide a remarkably good desciption of the Venus case, and the Mars case when the strong Martian crustal magnetic anomalies are in the flow wake. In the case of Venus, large magnetosheath field fluctuations can be reliably tied to occurrence of a subsolar quasiparallel bow shock resulting from a small interplanetary field cone angle (angle between flow and field) upstream. At Mars one must also contend with such large fluctuations from the bow shock, but also from unstable solar wind proton distributions due to finite ion gyroradius effects, and from the complicated obstacle presented to the solar wind when the crustal magnetic anomalies are on the ram face or terminator. We attempt to distinguish between these factors at Mars, which are important for interpretation of the upcoming NOZOMI and Mars Express mission measurements. The results also provide more insights into a uniquely complex type of solar system solar wind interaction involving crustal fields akin to the Moon's, combined with a Venus-like ionospheric obstacle.
Is the Capsular Bag Perimeter Round or Elliptical?
Amigó, Alfredo; Bonaque-González, Sergio
2016-01-01
Purpose: To report findings that could suggest an elliptical shape of the capsular bag. Methods: Five eyes of three patients with axial length greater than 24 mm underwent phacoemulsification cataract surgery with plate-haptic multifocal toric intraocular lens (IOL) implantation oriented in the vertical meridian. Results: In all cases, correct orientation of the IOLs was verified 30 minutes after surgery. After 24 hours, all eyes demonstrated unwanted rotation of the IOLs ranging from 15 to 45 degrees. The IOLs remained stable in the new position in all cases until adhesion of the capsular bag took place. Conclusion: These observations could suggest that the perimeter of the capsular bag has an elliptical shape. Therefore, the IOL tends to become fixated in a meridian of the capsular bag that best fits the diagonal diameter of the IOL. PMID:27413495
Testing Precipitation-Driven Feedback Models in Nearby Ellipticals
NASA Astrophysics Data System (ADS)
Donahue, Megan
2016-09-01
We propose to analyze the inner cooling-time and entropy profiles of 12 elliptical galaxies with strong radio AGN. X-ray studies of galaxy-cluster cores and massive ellipticals indicate that feedback from an AGN replaces energy radiated by these objects. The AGN at 10 pc seems tuned to the thermodynamic state of gas on 10 kpc scales, but how that occurs is a resilient mystery. The precipitation model posits if the AGN does not provide enough heat, then thermal instabilities rain cold clouds on it, increasing accretion from Bondi to 100 times that rate when t_cool drops below 10 t_ff. We will test precipitation-driven feedback models by measuring t_cool and gravitational potential within the central kpc and to see how radio power is related to t_c/t_ff at small radii in these galaxies.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
NASA Technical Reports Server (NTRS)
Su, S.-Y.; Mcpherron, R. L.; Konradi, A.; Fritz, T. A.
1980-01-01
The ultra-low-frequency modulation of ion flux densities at small pitch angles observed by ATS 6 is examined, with particular attention given to a detailed analysis of a representative event. ULF modulation events with maximum modulation at small pitch angles were identified 14 times during the first eight months of operation of the NOAA low-energy particle detector on ATS 6. For the event of October 23, 1974, maximum flux modulation, with a maximum/minimum intensity ratio of 3.7, was observed in the 100 to 150 keV detector at an angle of 32 deg to the ambient field. Spectral analysis of magnetic field data reveals a right elliptically polarized magnetic perturbation with a 96-sec period and a 5-gamma rms amplitude, propagating in the dipole meridian at an angle of about 15 deg to the ambient field and the dipole axis. Proton flux modulation is found to lag the field by up to 180 deg for the lowest-energy channel. Observations are compared with the drift wave, MHD slow wave, and bounce resonant interaction associated with transverse wave models, and it is found that none of the wave models can adequately account for all of the correlated particle and field oscillations.
NASA Astrophysics Data System (ADS)
Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Krobath, G.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.; Ceres Collaboration
Differential elliptic flow spectra v2(pT) of π-, KS0, p, Λ have been measured at √{sNN}=17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb + Au collisions (10% of σgeo). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for Λ) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow is derived as a constituent, besides π+ and K+, of the elliptic flow of positive pion candidates. This retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 are adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming π+ and π- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series π--KS0-p-Λ, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf=160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous hydrodynamics studies which focus on late hadronic stages.
Linear and nonlinear stability of periodic orbits in annular billiards.
Dettmann, Carl P; Fain, Vitaly
2017-04-01
An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.
Linear and nonlinear stability of periodic orbits in annular billiards
NASA Astrophysics Data System (ADS)
Dettmann, Carl P.; Fain, Vitaly
2017-04-01
An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.
Phase composition and magnetism of sol-gel synthesized Ga-Fe-O nanograins
NASA Astrophysics Data System (ADS)
Rećko, K.; Waliszewski, J.; Klekotka, U.; Soloviov, D.; Ostapczuk, G.; Satuła, D.; Biernacka, M.; Balasoiu, M.; Basa, A.; Kalska-Szostko, B.; Szymański, K.
2018-02-01
We have succeeded in synthesizing orthorhombic Ga(1-x)Fe(1+x)O3 (-0.05? x?0.5), hexagonal GayFe(2-y)O3 (0?y?1.8) and cubic Ga(1+z)Fe(2-z)O4 (-0.1?z?0.8) nanograins of gallium ferrites using conventional precursors and an organic environment of Pechini scenario under atmospheric-pressure conditions (SG method). Phase composition and homogeneity were analyzed using X-ray diffraction. Small angle neutron scattering disclosed ellipsoidal particle shapes of gallium iron oxides (GFO) crystallizing in orthorhombic (o-GFO) and hexagonal (h-GFO) symmetry and parallelepiped shapes of Ga(1+y)Fe(2-y)O4 (c-GFO) grains. Despite local agglomeration among the magnetic grains, the scanning electron microscopy and transmission electron microscopy images point to faced-elliptical shapes. The Mössbauer spectroscopy with magnetization measurements was carried out in the temperature range of 5-295 K. The analysis of gallium ferrites magnetism demonstrates that iron atoms locate with various probabilities in crystallographic positions and the spontaneous magnetization preserves up to room temperature (RT).
Self-gravity at the scale of the polar cell
NASA Astrophysics Data System (ADS)
Huré, J.-M.; Pierens, A.; Hersant, F.
2009-06-01
We present the exact calculus of the gravitational potential and acceleration along the symmetry axis of a plane, homogeneous, polar cell as a function of mean radius bar{a}, radial extension Δ a, and opening angle Δ φ. Accurate approximations are derived in the limit of high numerical resolution at the geometrical mean < a > of the inner and outer radii (a key-position in current FFT-based Poisson solvers). Our results are the full extension of the approximate formula given in the textbook of Binney & Tremaine to all resolutions. We also clarify definitely the question about the existence (or not) of self-forces in polar cells. We find that there is always a self-force at radius < a > except if the shape factor ρ ≡ bar{a}Δ φ /Δ a → 3.531, asymptotically. Such cells are therefore well suited to build a polar mesh for high resolution simulations of self-gravitating media in two dimensions. A by-product of this study is a newly discovered indefinite integral involving complete elliptic integral of the first kind over modulus.
7 Millimeter VLBA Observations of Sagittarius A*
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Backer, Donald C.
1998-04-01
We present 7 mm Very Long Baseline Array observations of the compact nonthermal radio source in the Galactic center, Sagittarius A*. These observations confirm the hypothesis that the image of Sgr A* is a resolved elliptical Gaussian caused by the scattering of an intervening thermal plasma. The measured major axis of Sgr A* is 0.76+/-0.04 mas, consistent with the predicted scattering size of 0.67+/-0.03. We find an axial ratio of 0.73+/-0.10 and a position angle of 77.0d +/- 7.4d. These results are fully consistent with VLBI observations at longer wavelengths and at 3 mm. We find no evidence for any additional compact structure to a limit of 35 mJy. The underlying radio source must be smaller than 4.1 AU for a Galactocentric distance of 8.5 kpc. This result is consistent with the conclusion that the radio emission from Sgr A* results from synchrotron or cyclo-synchrotron radiation of gas in the vicinity of a black hole with a mass near 106 Msolar.
Kappa angles in different positions in patients with myopia during LASIK
Qi, Hui; Jiang, Jing-Jing; Jiang, Yan-Ming; Wang, Li-Qiang; Huang, Yi-Fei
2016-01-01
AIM To investigate the difference in kappa angle between sitting and supine positions during laser-assisted in situ keratomileusis (LASIK). METHODS A retrospective study was performed on 395 eyes from 215 patients with myopia that received LASIK. Low, moderate, and high myopia groups were assigned according to diopters. The horizontal and vertical components of kappa angle in sitting position were measured before the operation, and in supine position during the operation. The data from the two positions were compared and the relationship between kappa angle and diopters were analyzed. RESULTS Two hundred and twenty-three eyes (56.5%) in sitting position and 343 eyes (86.8%) in supine position had positive kappa angles. There were no significant differences in horizontal and vertical components of kappa angle in the sitting position or horizontal components of kappa angle in the supine position between the three groups (P>0.05). A significant difference in the vertical components of kappa angle in the supine position was seen in the three groups (P<0.01). Differences in both horizontal and vertical components of kappa angles were significant between the sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angles (P<0.05) were found and vertical components of kappa angle in sitting and supine positions were negatively correlated with the degree of myopia (sitting position: r=-0.109; supine position: r=-0.172; P<0.05). CONCLUSION There is a correlation in horizontal and vertical components of kappa angle in sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angle in sitting and supine positions till the end of the results. This result still needs further observation. Clinicians should take into account different postures when excimer laser surgery needs to be performed. PMID:27162734
Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-06-01
An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.
Chang, C H; Hwang, C S; Fan, T C; Chen, K H; Pan, K T; Lin, F Y; Wang, C; Chang, L H; Chen, H H; Lin, M C; Yeh, S
1998-05-01
In this work, a 1 m long Sasaki-type elliptically polarizing undulator (EPU) prototype with 5.6 cm period length is used to examine the mechanical design feasibility as well as magnetic field performance. The magnetic field characteristics of the EPU5.6 prototype at various phase shifts and gap motion are described. The field errors from mechanical tolerances, magnet block errors, end field effects and phase/gap motion effects are analysed. The procedures related to correcting the field with the block position tuning, iron shimming and the trim blocks at both ends are outlined.
Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2003-01-01
A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.
Propagation of rotating elliptical Gaussian beams from right-handed material to left-handed material
NASA Astrophysics Data System (ADS)
Peng, Xi; Chen, Chi-Dao; Chen, Bo; Deng, Dong-Mei
2015-12-01
By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams (REGBs) from the right-handed material (RHM) to the left-handed material (LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π/2 as the propagation distance is long enough. Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum (AM) of the REGBs which can rotate are also obtained. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province in China, and the Fund from the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.
NASA Astrophysics Data System (ADS)
Wang, Guochao; Xie, Xuedong; Yan, Shuhua
2010-10-01
Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .
3D refractive index measurements of special optical fibers
NASA Astrophysics Data System (ADS)
Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun
2016-09-01
A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.
Faraday rotation data analysis with least-squares elliptical fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Adam D.; McHale, G. Brent; Goerz, David A.
2010-10-15
A method of analyzing Faraday rotation data from pulsed magnetic field measurements is described. The method uses direct least-squares elliptical fitting to measured data. The least-squares fit conic parameters are used to rotate, translate, and rescale the measured data. Interpretation of the transformed data provides improved accuracy and time-resolution characteristics compared with many existing methods of analyzing Faraday rotation data. The method is especially useful when linear birefringence is present at the input or output of the sensing medium, or when the relative angle of the polarizers used in analysis is not aligned with precision; under these circumstances the methodmore » is shown to return the analytically correct input signal. The method may be pertinent to other applications where analysis of Lissajous figures is required, such as the velocity interferometer system for any reflector (VISAR) diagnostics. The entire algorithm is fully automated and requires no user interaction. An example of algorithm execution is shown, using data from a fiber-based Faraday rotation sensor on a capacitive discharge experiment.« less
Nickel, J; Schürmann, H W
2007-03-01
In a recent article Kengne and Liu [Phys. Rev. E 73, 026603 (2006)] have presented a number of exact elliptic solutions for a derivative nonlinear Schrödinger equation. It is the aim of this Comment to point out that all these solutions given in Secs. II and III of this article (referred to as KL in the following) are subcases of the general solution of Eq. (KL.9). Conditions for the parameters A-E of the solutions given by Kengne and Liu can be found from general conditions for solitary and periodic elliptic solutions as shown in the following. Positive and bounded solutions can be found by considering the phase diagram. Therefore, the comment of Kengne and Liu that "we find its particular positive bounded solutions" can be specified.
Electro-optic high voltage sensor
Davidson, James R.; Seifert, Gary D.
2002-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
NASA Astrophysics Data System (ADS)
Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.
2018-06-01
We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.
Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films
NASA Astrophysics Data System (ADS)
Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.
2013-06-01
A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.
NASA Astrophysics Data System (ADS)
Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.
2017-10-01
We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.
Satellite interference analysis and simulation using personal computers
NASA Astrophysics Data System (ADS)
Kantak, Anil
1988-03-01
This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.
NASA Astrophysics Data System (ADS)
Azzam, Rasheed M. A.; Angel, Wade W.
1992-12-01
A reflective division-of-wavefront polarizing beam splitter is described that uses a dual- thickness transparent thin-film coating on a metal substrate. A previous design that used a partially clad substrate at the principal angle of the metal [Azzam, JOSA A 5, 1576 (1988)] is replaced by a more general one in which the substrate is coated throughout and the film thickness alternates between two non-zero levels. The incident linear polarization azimuth is chosen near, but not restricted to, 45 degree(s) (measured from the plane of incidence), and the angle of incidence may be selected over a range of values. The design procedure, which uses the two-dimensional Newton-Raphson method, is applied to the SiO2-Au film- substrate system at 633 nm wavelength, as an example, and the characteristics of the various possible coatings are presented.
Azimuthal correlation and collective behavior in nucleus-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S.
2015-03-15
Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see amore » direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.« less
Satellite Interference Analysis and Simulation Using Personal Computers
NASA Technical Reports Server (NTRS)
Kantak, Anil
1988-01-01
This report presents the complete analysis and formulas necessary to quantify the interference experienced by a generic satellite communications receiving station due to an interfering satellite. Both satellites, the desired as well as the interfering satellite, are considered to be in elliptical orbits. Formulas are developed for the satellite look angles and the satellite transmit angles generally related to the land mask of the receiving station site for both satellites. Formulas for considering Doppler effect due to the satellite motion as well as the Earth's rotation are developed. The effect of the interfering-satellite signal modulation and the Doppler effect on the power received are considered. The statistical formulation of the interference effect is presented in the form of a histogram of the interference to the desired signal power ratio. Finally, a computer program suitable for microcomputers such as IBM AT is provided with the flowchart, a sample run, results of the run, and the program code.
Gaze Estimation for Off-Angle Iris Recognition Based on the Biometric Eye Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J
Iris recognition is among the highest accuracy biometrics. However, its accuracy relies on controlled high quality capture data and is negatively affected by several factors such as angle, occlusion, and dilation. Non-ideal iris recognition is a new research focus in biometrics. In this paper, we present a gaze estimation method designed for use in an off-angle iris recognition framework based on the ANONYMIZED biometric eye model. Gaze estimation is an important prerequisite step to correct an off-angle iris images. To achieve the accurate frontal reconstruction of an off-angle iris image, we first need to estimate the eye gaze direction frommore » elliptical features of an iris image. Typically additional information such as well-controlled light sources, head mounted equipment, and multiple cameras are not available. Our approach utilizes only the iris and pupil boundary segmentation allowing it to be applicable to all iris capture hardware. We compare the boundaries with a look-up-table generated by using our biologically inspired biometric eye model and find the closest feature point in the look-up-table to estimate the gaze. Based on the results from real images, the proposed method shows effectiveness in gaze estimation accuracy for our biometric eye model with an average error of approximately 3.5 degrees over a 50 degree range.« less
Analysis of high aspect ratio jet flap wings of arbitrary geometry.
NASA Technical Reports Server (NTRS)
Lissaman, P. B. S.
1973-01-01
Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.
Noniterative three-dimensional grid generation using parabolic partial differential equations
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1985-01-01
A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.
The receptivity of boundary layers on blunt bodies to oscillations in the free stream
NASA Technical Reports Server (NTRS)
Grosch, C. E.
1982-01-01
It is concluded that in the region of the nose of a symmetric, two dimensional blunt body at zero angle of attack, the steady plus oscillating flow is very similar for a wide class of body shapes. This conclusion was shown to be true for elliptic cylinders with a/b 25, and for the parabolic cylinder. In all cases, the flow field in the nose region of a two dimensional blunt body is generic to that of the flow in the neighborhood of the stagnation point on a plane wall.
Estimation of Untracked Geosynchronous Population from Short-Arc Angles-Only Observations
NASA Technical Reports Server (NTRS)
Healy, Liam; Matney, Mark
2017-01-01
Telescope observations of the geosynchronous regime will observe two basic types of objects --- objects related to geosynchronous earth orbit (GEO) satellites, and objects in highly elliptical geosynchronous transfer orbits (GTO). Because telescopes only measure angular rates, the GTO can occasionally mimic the motion of GEO objects over short arcs. A GEO census based solely on short arc telescope observations may be affected by these ``interlopers''. A census that includes multiple angular rates can get an accurate statistical estimate of the GTO population, and that then can be used to correct the estimate of the geosynchronous earth orbit population.
Yao, Zhongqi; Luo, Jie; Lai, Yun
2017-12-11
In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.
NASA Technical Reports Server (NTRS)
Naik, D. A.; Ostowari, C.
1987-01-01
A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.
NASA Technical Reports Server (NTRS)
Moskovitz, Cary A.; Hall, Robert M.; Dejarnette, F. R.
1990-01-01
An exploratory experimental investigation of a new device to control the asymmetric flowfield on forebodies at large angles of attack has been conducted. The device is a rotatable forebody tip, which varies in cross section from circular at its base to elliptic at its tip. The device itself extends over a small portion of the aircraft or missile forebody. The device provides two important improvements. First, it replaced the normally random behavior of the nose side force as a function of nose tip orientation with a predictable and generally sinusoidal distribution and, second, the device showed promise for use as part of a vehicle control system, to be deflected in a prescribed manner to provide additional directional control for the vehicle. The device was tested on a cone/cylinder model having a 10 deg semiapex angle and on a 3.0 caliber tangent ogive model, each with a base diameter of 3.5 in, for angles of attack from 30 to 60 deg. Data were taken from 3 circumferential rows of pressure taps on each model at a Reynolds number of 84,000 based on cylinder diameter and by a helium-bubble flow visualization technique at a Reynolds number of 24,000.
Characterization facility for magneto-optic media and systems
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Fu, H.; Gadetsky, S.; Sugaya, S.; Wu, T. H.; Zambuto, J.; Gerber, R.; Goodman, T.; Erwin, J. K.
1993-01-01
Objectives of this research are: (1) to measure the hysteresis loop, Kerr rotation angle, anisotropy energy profile, Hall voltage, and magnetoresistance of thin-film magneto-optic media using our loop-tracer; (2) measure the wavelength-dependence of the Kerr rotation angle, Theta(sub k), and ellipticity, epsilon(sub k), for thin-film media using our magneto-optic Kerr spectrometer (MOKS); (3) measure the dielectric tensor of thin-film and multilayer samples using our variable-angle magneto-optic ellipsometer (VAMOE); (4) measure the hysteresis loop, coercivity, remanent magnetization, saturation magnetization, and anisotropy energy constant for thin film magnetic media using vibrating sample magnetometry; (5) observe small magnetic domains and investigate their interaction with defects using magnetic force microscopy; (6) perform static read/write/erase experiments on thin-film magneto-optic media using our static test station; (7) integrate the existing models of magnetization, magneto-optic effects, coercivity, and anisotropy in an interactive and user-friendly environment, and analyze the characterization data obtained in the various experiments, using this modeling package; (8) measure focusing- and tracking-error signals on a static testbed, determine the 'feedthrough' for various focusing schemes, investigate the effects of polarization and birefringence, and compare the results with diffraction-based calculations; and (9) measure the birefringence of optical disk substrates using two variable angle ellipsometers.
J /ψ Elliptic Flow in Pb-Pb Collisions at √{sN N}=5.02 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Reygers, K.; Riabov, V.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shirinkin, S.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Toppi, M.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yun, E.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2017-12-01
We report a precise measurement of the J /ψ elliptic flow in Pb-Pb collisions at √{sN N}=5.02 TeV with the ALICE detector at the LHC. The J /ψ mesons are reconstructed at midrapidity (|y |<0.9 ) in the dielectron decay channel and at forward rapidity (2.5
J / ψ Elliptic Flow in Pb-Pb Collisions at s N N = 5.02 TeV
Acharya, S.; Adamová, D.; Adolfsson, J.; ...
2017-12-15
Here, we report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v 2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v 2 is observed in the transverse momentum range 2 < p T < 8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v 2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p T the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.« less
J / ψ Elliptic Flow in Pb-Pb Collisions at s N N = 5.02 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adamová, D.; Adolfsson, J.
Here, we report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v 2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v 2 is observed in the transverse momentum range 2 < p T < 8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v 2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p T the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.« less
Numerical methods for systems of conservation laws of mixed type using flux splitting
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1990-01-01
The essentially non-oscillatory (ENO) finite difference scheme is applied to systems of conservation laws of mixed hyperbolic-elliptic type. A flux splitting, with the corresponding Jacobi matrices having real and positive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately. The scheme is numerically tested on the van der Waals equation in fluid dynamics. Convergence was observed with good resolution to weak solutions for various Riemann problems, which are then numerically checked to be admissible as the viscosity-capillarity limits. The interesting phenomena of the shrinking of elliptic regions if they are present in the initial conditions were also observed.
NASA Astrophysics Data System (ADS)
Umezu, Kenichiro
In this paper, we consider a semilinear elliptic boundary value problem in a smooth bounded domain, having the so-called logistic nonlinearity that originates from population dynamics, with a nonlinear boundary condition. Although the logistic nonlinearity has an absorption effect in the problem, the nonlinear boundary condition is induced by the homogeneous incoming flux on the boundary. The objective of our study is to analyze the existence of a bifurcation component of positive solutions from trivial solutions and its asymptotic behavior and stability. We perform this analysis using the method developed by Lyapunov and Schmidt, based on a scaling argument.
Two-dimensional turbulence cross-correlation functions in the edge of NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweben, S. J.; Stotler, D. P.; Scotti, F.
The 2D radial vs. poloidal cross-correlation functions of edge plasma turbulence were measured near the outer midplane using a gas puff imaging (GPI) diagnostic on NSTX. These correlation functions were evaluated at radii r = 0 cm, ±3 cm, and ±6 cm from the separatrix and poloidal locations p = 0 cm and ±7.5 cm from the GPI poloidal center line for 20 different shots. The ellipticity ε and tilt angle φ of the positive cross-correlation regions and the minimum negative cross-correlation “cmin” and total negative over positive values “neg/pos” were evaluated for each of these cases. The average resultsmore » over this dataset were ε = 2.2 ± 0.9, φ = 87° ± 34° (i.e., poloidally oriented), cmin =-0.30 ± 0.15, and neg/pos = 0.25 ± 0.24. Thus, there was a significant variation in these correlation results within this database, with dependences on the location within the image, the magnetic geometry, and the plasma parameters. In conclusion, possible causes for this variation are discussed, including the misalignment of the GPI view with the local B field line, the magnetic shear of field lines at the edge, the poloidal flow shear of the turbulence, blob-hole correlations, and the neutral density 'shadowing' effect in GPI.« less
Two-dimensional turbulence cross-correlation functions in the edge of NSTX
Zweben, S. J.; Stotler, D. P.; Scotti, F.; ...
2017-09-26
The 2D radial vs. poloidal cross-correlation functions of edge plasma turbulence were measured near the outer midplane using a gas puff imaging (GPI) diagnostic on NSTX. These correlation functions were evaluated at radii r = 0 cm, ±3 cm, and ±6 cm from the separatrix and poloidal locations p = 0 cm and ±7.5 cm from the GPI poloidal center line for 20 different shots. The ellipticity ε and tilt angle φ of the positive cross-correlation regions and the minimum negative cross-correlation “cmin” and total negative over positive values “neg/pos” were evaluated for each of these cases. The average resultsmore » over this dataset were ε = 2.2 ± 0.9, φ = 87° ± 34° (i.e., poloidally oriented), cmin =-0.30 ± 0.15, and neg/pos = 0.25 ± 0.24. Thus, there was a significant variation in these correlation results within this database, with dependences on the location within the image, the magnetic geometry, and the plasma parameters. In conclusion, possible causes for this variation are discussed, including the misalignment of the GPI view with the local B field line, the magnetic shear of field lines at the edge, the poloidal flow shear of the turbulence, blob-hole correlations, and the neutral density 'shadowing' effect in GPI.« less
The radius and ellipticity of Uranus from its occultation of SAO 158687
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E.; Mink, D. J.; Churms, J.
1980-01-01
From occultation timings obtained from the Kuiper Airborne Observatory and from Cape Town for Mar. 10, 1977 occultation of SAO 158687 by Uranus, the equatorial radius, Re, of the planet has been determined to be 26,228 + or - 30 km and its ellipticity epsilon = 1 - Rp/Re = 0.033 + or - 0.007. These values refer to the 1.0 x 10 to the 14th/cu cm number-density level, under the assumption that the upper atmosphere is composed of H2 and He with a mean molecular weight mu = 2.20. The dominant source of uncertainty is the position of the center of the ring system, which was used to define the center of Uranus in our analysis. A rotation rate of 12.8 + or - 1.7 hours for the planet is implied by our value for the ellipticity, under the assumption that Uranus is in hydrostatic equilibrium below the 1.0 x 10 to the 14th/cu cm number density level.
Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Lakshtanov, E.; Vainberg, B.
2013-10-01
The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).
Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea
2017-01-12
This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078
On the Contribution of Large-Scale Structure to Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.
2009-04-01
We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.
Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser
NASA Astrophysics Data System (ADS)
Gao, Lili; Wang, Feng; Jiang, Lan; Qu, Liangti; Lu, Yongfeng
2015-11-01
This paper is focused on the excitation rates of free electrons of an aluminum (Al) bulk irradiated by an elliptically polarized laser in simulation, using time-dependent density functional theory (TDDFT). The polarized 400 nm, 10 fs laser pulse consisted of two elementary sinusoidal beams, and is adjusted by changing the phase difference φ and the intersection angle θ of the polarization directions between the two beams. The simulation includes cases of φ = π/2 with θ = 30°, θ = 45°, θ = 60°, θ = 90°, θ = 120°, θ = 135°, θ = 150°, and cases of θ = 90° with φ = π/4, φ = π/3, φ = π/2, φ = 2π/3, φ = 3π/4. The absorbed energy, the excitation rates and the density distributions of free electrons after laser termination are investigated. At the given power intensity (1×1014Wcm-2), pulse width (10 fs) and wavelength (400 nm) of each elementary laser beam, computational results indicate that the excitation rate of free electrons is impacted by three major factors: the long axis direction of the laser projected profile, the amplitude difference of the first main oscillation (1st AD), and the total amplitude difference of main oscillations (TAD) of the external electric field. Among the aforementioned three factors for the excitation rate of free electrons, the direction of long axis plays the most significant role. The screen effect is crucial to compare the importance of the remaining two factors. The analysis approach to investigate the electron dynamics under an elliptically polarized laser is both pioneering and effective.
Contribution of the maculo-ocular reflex to gaze stability in the rabbit.
Pettorossi, V E; Errico, P; Santarelli, R M
1991-01-01
The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)
Davidson, James R.; Lassahn, Gordon D.
2001-01-01
A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.
Volcanic unrest in Kenya: geological history from a satellite perspective
NASA Astrophysics Data System (ADS)
Robertson, E.; Biggs, J.; Edmonds, M.; Vye-Brown, C.
2013-12-01
The East African Rift (EAR) system is a 5,000 km long series of fault bounded depressions that run from Djibouti to Mozambique. In the Kenyan Rift, fourteen Quaternary volcanoes lie along the central rift axis. These volcanoes are principally composed of trachyte pyroclastics and trachyte and basaltic lavas forming low-angle multi-vent edifices. Between 1997 and 2008, geodetic activity has been observed at five Kenyan volcanoes, all of which have undergone periods of caldera collapse and explosive activity. We present a remote-sensing study to investigate the temporal and spatial development of volcanic activity at Longonot volcano. High-resolution mapping using ArcGIS and an immersive 3D visualisation suite (GeovisionaryTM) has been used with imagery derived from ASTER, SPOT5 and GDEM data to identify boundaries of eruptive units and establish relative age in order to add further detail to Longonot's recent eruptive history. Mapping of the deposits at Longonot is key to understand the recent geological history and forms the basis for future volcanic hazard research to inform risk assessments and mitigation programs in Kenya. Calderas at Kenyan volcanoes are elliptical in plan view and we use high-resolution imagery to investigate the regional stresses and structural control leading to the formation of these elliptical calderas. We find that volcanoes in the central and northern segments of the Kenyan rift are elongated nearly parallel to the direction of least horizontal compressive stress, likely as a reflection of the direction of the plate motion vector at the time of caldera collapse. The southern volcanoes however are elongated at an acute angle to the plate motion vector, most likely as a result of oblique opening of the Kenyan rift in this region.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1976-01-01
An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.
Uncertainties in the deprojection of the observed bar properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yanfei; Shen, Juntai; Li, Zhao-Yu, E-mail: jshen@shao.ac.cn
2014-08-10
In observations, it is important to deproject the two fundamental quantities characterizing a bar, i.e., its length (a) and ellipticity (e), to face-on values before any careful analyses. However, systematic estimation on the uncertainties of the commonly used deprojection methods is still lacking. Simulated galaxies are well suited in this study. We project two simulated barred galaxies onto a two-dimensional (2D) plane with different bar orientations and disk inclination angles (i). Bar properties are measured and deprojected with the popular deprojection methods in the literature. Generally speaking, deprojection uncertainties increase with increasing i. All of the deprojection methods behave badlymore » when i is larger than 60°, due to the vertical thickness of the bar. Thus, future statistical studies of barred galaxies should exclude galaxies more inclined than 60°. At moderate inclination angles (i ≤ 60°), 2D deprojection methods (analytical and image stretching), and Fourier-based methods (Fourier decomposition and bar-interbar contrast) perform reasonably well with uncertainties ∼10% in both the bar length and ellipticity, whereas the uncertainties of the one-dimensional (1D) analytical deprojection can be as high as 100% in certain extreme cases. We find that different bar measurement methods show systematic differences in the deprojection uncertainties. We further discuss the deprojection uncertainty factors with the emphasis on the most important one, i.e., the three-dimensional structure of the bar itself. We construct two triaxial toy bar models that can qualitatively reproduce the results of the 1D and 2D analytical deprojections; they confirm that the vertical thickness of the bar is the main source of uncertainties.« less
Elliptic-type soliton combs in optical ring microresonators
NASA Astrophysics Data System (ADS)
Dikandé Bitha, Rodrigues D.; Dikandé, Alain M.
2018-03-01
Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a 2 ×2 -matrix Lamé-type eigenvalue problem, the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical simulations of the Lugiato-Lefever equation are also carried out seeking for stationary-wave solutions, and the numerical results are in very good agreement with the collective-coordinate approach.
NASA Astrophysics Data System (ADS)
Özen, Kahraman Esen; Tosun, Murat
2018-01-01
In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.
Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum
Hinova-Palova, Dimka V.; Edelstein, Lawrence; Landzhov, Boycho; Minkov, Minko; Malinova, Lina; Hristov, Stanislav; Denaro, Frank J.; Alexandrov, Alexandar; Kiriakova, Teodora; Brainova, Ilina; Paloff, Adrian; Ovtscharoff, Wladimir
2014-01-01
We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum—one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies. PMID:24904317
Designing Delta-DOR acquisition strategies to determine highly elliptical earth orbits
NASA Technical Reports Server (NTRS)
Frauenholz, R. B.
1986-01-01
Delta-DOR acquisition strategies are designed for use in determining highly elliptical earth orbits. The requirements for a possible flight demonstration are evaluated for the Charged Composition Explorer spacecraft of the Active Magnetospheric Particle Tracer Explorers. The best-performing strategy uses data spanning the view periods of two orthogonal baselines near the same orbit periapse. The rapidly changing viewing geometry yields both angular position and velocity information, but each observation may require a different reference quasar. The Delta-DOR data noise is highly dependent on acquisition geometry, varying several orders of magnitude across the baseline view periods. Strategies are selected to minimize the measurement noise predicted by a theoretical model. Although the CCE transponder is limited by S-band and a small bandwidth, the addition of Delta-DOR to coherent Doppler and range improves the one-sigma apogee position accuracy by more than an order of magnitude. Additional Delta-DOR accuracy improvements possible using dual-frequency (S/X) calibration, increased spanned bandwidth, and water-vapor radiometry are presented for comparison. With these benefits, the residual Delta-DOR data noise is primarily due to quasar position uncertainties.
Riga, Celia V; Bicknell, Colin D; Basra, Melvinder; Hamady, Mohamad; Cheshire, Nicholas J W
2013-08-01
To investigate the quality of stent-graft fenestrations created in vitro using different needle puncture and balloon dilation angles in different commercial endografts. Fenestrations were made in a standardized fashion in 3 different endograft types: Talent monofilament twill woven polyester, Zenith multifilament tubular woven polyester, and Endofit thin-walled expanded polytetrafluoroethylene (PTFE). Punctures were made at 30°, 60°, and 90° angles using a 20-G needle and dilated using 6-mm standard and 7-mm cutting balloons; at least 6 fenestrations were made at each angle with standard balloons and at least 6 with cutting balloons. The 137 fenestrations were examined under light microscopy; quantitative and qualitative digital image analysis was performed to determine size, shape, and fenestration quality. PTFE grafts were easier to puncture/dilate, resulting in larger, elliptical fenestrations with overall better quality than the Dacron grafts; however, the puncture/dilation angle made an impact on the shape and quality of fenestrations. A significant number of fabric tears were observed in PTFE fabric at <90° puncture/dilation angles compared to Dacron grafts. In Dacron grafts, fenestration quality was significantly higher with 90° puncture/dilation angles (higher in Talent grafts). Cutting balloon use resulted in significantly more fabric tears and poor quality fenestrations in all graft types. Different endografts behave significantly differently when fenestrations are fashioned. Optimum puncture/dilation is important when considering in vivo fenestration techniques. Improvements in instrumentation, materials, and techniques are required to make this a reliable and reproducible endovascular option.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Hong Soo; Lee, Myung Gyoon, E-mail: hspark@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr
We present a determination of the two-dimensional shape parameters of the blue and red globular cluster systems (GCSs) in a large number of elliptical galaxies and lenticular galaxies (early-type galaxies, called ETGs). We use a homogeneous data set of the globular clusters in 23 ETGs obtained from the HST/ACS Virgo Cluster Survey. The position angles of both blue and red GCSs show a correlation with those of the stellar light distribution, showing that the major axes of the GCSs are well aligned with those of their host galaxies. However, the shapes of the red GCSs show a tight correlation withmore » the stellar light distribution as well as with the rotation property of their host galaxies, while the shapes of the blue GCSs do much less. These provide clear geometric evidence that the origins of the blue and red globular clusters are distinct and that ETGs may have dual halos: a blue (metal-poor) halo and a red (metal-rich) halo. These two halos show significant differences in metallicity, structure, and kinematics, indicating that they are formed in two distinguishable ways. The red halos might have formed via dissipational processes with rotation, while the blue halos are through accretion.« less
Circumstellar Disks Around Rapidly Rotating Be-type Stars
NASA Astrophysics Data System (ADS)
Touhami, Yamina
2012-01-01
Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.
The formation and evolution of M33 as revealed by its star clusters
NASA Astrophysics Data System (ADS)
San Roman, Izaskun
2012-03-01
Numerical simulations based on the Lambda-Cold Dark Matter (Λ-CDM) model predict a scenario consistent with observational evidence in terms of the build-up of Milky Way-like halos. Under this scenario, large disk galaxies derive from the merger and accretion of many smaller subsystems. However, it is less clear how low-mass spiral galaxies fit into this picture. The best way to answer this question is to study the nearest example of a dwarf spiral galaxy, M33. We will use star clusters to understand the structure, kinematics and stellar populations of this galaxy. Star clusters provide a unique and powerful tool for studying the star formation histories of galaxies. In particular, the ages and metallicities of star clusters bear the imprint of the galaxy formation process. We have made use of the star clusters to uncover the formation and evolution of M33. In this dissertation, we have carried out a comprehensive study of the M33 star cluster system, including deep photometry as well as high signal-to-noise spectroscopy. In order to mitigate the significant incompleteness presents in previous catalogs, we have conducted ground-based and space-based photometric surveys of M33 star clusters. Using archival images, we have analyzed 12 fields using the Advanced Camera for Surveys Wide Field Channel onboard the Hubble Space Telescope (ACS/HST) along the major axis of the galaxy. We present integrated photometry and color-magnitude diagrams for 161 star clusters in M33, of which 115 were previously uncataloged. This survey extends the depth of the existing M33 cluster catalogs by ˜ 1 mag. We have expanded our search through a photometric survey in a 1° x 1° area centered on M33 using the MegaCam camera on the 3.6m Canada-France-Hawaii Telescope (CFHT). In this work we discuss the photometric properties of the sample, including color-color diagrams of 599 new candidate stellar clusters, and 204 confirmed clusters. Comparisons with models of simple stellar populations suggest a large range of ages some as old as ˜ 10 Gyr. In addition, we find in the color-color diagrams a significant population of very young clusters (< 10 Myr) possessing nebular emission. Analysis of the radial density distribution suggests that the cluster system of M33 has suffered from significant depletion, possibly due to interactions with M31. To further understand the properties of M33 star clusters, we have carried out a morphological study 161 star clusters in M33 using ACS/HST images. We have obtained, for the first time, ellipticities, position angles, and surface brightness profiles of a statistically significant number of clusters. Ellipticities show that, on average, M33 clusters are more flattened than those of the Milky Way and M31, and more similar to clusters in the Small Magellanic Cloud. The ellipticities do not show any correlation with age or mass, suggesting that rotation is not the main cause of elongation in the M33 clusters. The position angles of the clusters show a bimodality with a strong peak perpendicular to the position angle of the galaxy. These results support the notion that tidal forces are the reason for the cluster flattening. We have fit analytical models to the surface brightness profiles, and derived structural parameters. The overall analysis shows several differences between the structural properties of the M33 cluster system and cluster systems in nearby galaxies. Finally, we have performed a spectroscopic study of star clusters in the above mentioned catalog. We present high-precision velocity measures of 45 star clusters, based on observations from the 10.4m Gran Telescopio Canarias (GTC) using OSIRIS and 4.2m William Herschel Telescope (WHT) using WYFFOS. All the clusters have been previously confirmed using HST imaging, and ages and integrated photometry are known. The velocity of the clusters with respect to local disk motion increases with age for young and intermediate clusters. The mean dispersion velocity for the intermediate age clusters in our sample is significantly larger than in previous studies. Analysis of these velocities along the major axis of the galaxy show no net rotation of the intermediate age subsample. The small number of old clusters in our sample does not allow for any conclusive evidence in that age division.
NASA Astrophysics Data System (ADS)
Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2013-09-01
The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.
Relative attitude dynamics and control for a satellite inspection mission
NASA Astrophysics Data System (ADS)
Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark
2012-02-01
The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.
NASA Astrophysics Data System (ADS)
Zeylikovich, Iosif; Nikitin, Aleksandr
2018-04-01
The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.
Sitnikov problem in the square configuration: elliptic case
NASA Astrophysics Data System (ADS)
Shahbaz Ullah, M.
2016-05-01
This paper is extension to the classical Sitnikov problem, when the four primaries of equal masses lie at the vertices of a square for all time and moving in elliptic orbits around their center of mass of the system, the distances between the primaries vary with time but always in such a way that their mutual distances remain in the same ratio. First we have established averaged equation of motion of the Sitnikov five-body problem in the light of Jalali and Pourtakdoust (Celest. Mech. Dyn. Astron. 68:151-162, 1997), by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields, Springer, Berlin, 1983). Next the Hamiltonian equation of motion has been solved with the help of action angle variables I and φ. Finally the periodicity and stability of the Sitnikov five-body problem have been examined with the help of Poincare surfaces of section (PSS). It is shown that chaotic region emerging from the destroyed islands, can easily be seen by increasing the eccentricity of the primaries to e = 0.21. It is valid for bounded small amplitude solutions z_{max} ( z_{max} = 0.65 ) and 0 ≤ e < 0.3.
Computational analysis of hypersonic flows past elliptic-cone waveriders
NASA Technical Reports Server (NTRS)
Yoon, Bok-Hyun; Rasmussen, Maurice L.
1991-01-01
A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders.
Normal Q-angle in an adult Nigerian population.
Omololu, Bade B; Ogunlade, Olusegun S; Gopaldasani, Vinod K
2009-08-01
The Q-angle has been studied among the adult Caucasian population with the establishment of reference values. Scientists are beginning to accept the concept of different human races. Physical variability exists between various African ethnic groups and Caucasians as exemplified by differences in anatomic features such as a flat nose compared with a pointed nose, wide rather than narrow faces, and straight rather than curly hair. Therefore, we cannot assume the same Q-angle values will be applicable to Africans and Caucasians. We established a baseline reference value for normal Q-angles among asymptomatic Nigerian adults. The Q-angles of the left and right knees were measured using a goniometer in 477 Nigerian adults (354 males; 123 females) in the supine and standing positions. The mean Q-angles for men were 10.7 degrees +/- 2.2 degrees in the supine position and 12.3 degrees +/- 2.2 degrees in the standing position in the right knee. The left knee Q-angles in men were 10.5 degrees +/- 2.6 degrees in the supine position and 11.7 degrees +/- 2.8 degrees in the standing position. In women, the mean Q-angles for the right knee were 21 degrees +/- 4.8 degrees in the supine position and 22.8 degrees +/- 4.7 degrees in the standing position. The mean Q-angles for the left knee in women were 20.9 degrees +/- 4.6 degrees in the supine position and 22.7 degrees +/- 4.6 degrees in the standing position. We observed a difference in Q-angles in the supine and standing positions for all participants. The Q-angle in adult Nigerian men is comparable to that of adult Caucasian men, but the Q-angle of Nigerian women is greater than that of their Caucasian counterparts.
Lift hysteresis at stall as an unsteady boundary-layer phenomenon
NASA Technical Reports Server (NTRS)
Moore, Franklin K
1956-01-01
Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Richwine, David M.; Banks, Daniel W.
1988-01-01
A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.
Riding position and lumbar spine angle in recreational cyclists: A pilot study
SCHULZ, SAMANTHA J.; GORDON, SUSAN J.
2010-01-01
This pilot study investigated the reliability of an inclinometer to assess lumbar spine angle in three different cycling positions, and explored the relationship between lumbar spine angle and riding position, anthropometry, bike measures and low back pain (LBP). Cyclists were recruited from two cycle clubs. Anthropometric variables and bike setup were measured before participants’ bikes were secured in a wind trainer. Cyclists then adopted three positions for riding, upright on the handlebars, on the brake levers and on the drops, according to a random allocation. The angle of the lumbar spine was measured; using an inclinometer, at zero minutes and after cyclists had completed 10 minutes of cycling. Intra-measurer reliability for inclinometer use to measure lumbar spine angle in each position was excellent (ICC=0.97). The angle of the lumbar spine changed significantly over 10 minutes in the brake position (p=0.004). Lumbar spine angle at 10 minutes was significantly different between the brake and drop positions (p=0.018, p<0.05), and between upright and drop positions (p=0.012, p<0.05). Lumbar spine angle was not related to anthropometric measures. The change in lumbar spine angle varied from one degree of extension to 12 degrees of flexion, with increased flexion occurring in 95% of trials. An inclinometer has excellent intra-measurer reliability to measure lumbar spine angle in cycling positions. Future research with a sample of 72 or more participants is required to determine if there is a significant relationship between LBP and lumbar spine angle in different cycling positions. PMID:27182345
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.
1996-01-01
With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.
The MASSIVE Survey. IX. Photometric Analysis of 35 High-mass Early-type Galaxies with HST WFC3/IR
NASA Astrophysics Data System (ADS)
Goullaud, Charles F.; Jensen, Joseph B.; Blakeslee, John P.; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens
2018-03-01
We present near-infrared observations of 35 of the most massive early-type galaxies in the local universe. The observations were made using the infrared channel of the Hubble Space Telescope Wide Field Camera 3 (WFC3) in the F110W (1.1 μm) filter. We measured surface brightness profiles and elliptical isophotal fit parameters from the nuclear regions out to a radius of ∼10 kpc in most cases. We find that 37% (13) of the galaxies in our sample have isophotal position-angle rotations greater than 20° over the radial range imaged by WFC3/IR, which is often due to the presence of neighbors or multiple nuclei. Most galaxies in our sample are significantly rounder near the center than in the outer regions. This sample contains 6 fast rotators and 28 slow rotators. We find that all fast rotators are either disky or show no measurable deviation from purely elliptical isophotes. Among slow rotators, significantly disky and boxy galaxies occur with nearly equal frequency. The galaxies in our sample often exhibit changing isophotal shapes, sometimes showing both significantly disky and boxy isophotes at different radii. The fact that parameters vary widely between galaxies and within individual galaxies is evidence that these massive galaxies have complicated formation histories, and some of them have experienced recent mergers and have not fully relaxed. These data demonstrate the value of IR imaging of galaxies at high spatial resolution and provide measurements necessary for determining stellar masses, dynamics, and black hole masses in high-mass galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program GO-14219.
Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185
NASA Technical Reports Server (NTRS)
Wiklind, Tommy; Rydbeck, Gustaf
1987-01-01
The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.
NASA Astrophysics Data System (ADS)
Zotov, Andrei V.
2011-07-01
We study 1+1 field-generalizations of the rational and elliptic Gaudin models. For sl(N) case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In sl(2) case we study the equations in detail and find the corresponding Hamiltonian densities. The n-site model describes n interacting Landau-Lifshitz models of magnets. The interaction depends on position of the sites (marked points on the curve). We also analyze the 2-site case in its own right and describe its relation to the principal chiral model. We emphasize that 1+1 version impose a restriction on a choice of flows on the level of the corresponding 0+1 classical mechanics.
Off-lexicon online Arabic handwriting recognition using neural network
NASA Astrophysics Data System (ADS)
Yahia, Hamdi; Chaabouni, Aymen; Boubaker, Houcine; Alimi, Adel M.
2017-03-01
This paper highlights a new method for online Arabic handwriting recognition based on graphemes segmentation. The main contribution of our work is to explore the utility of Beta-elliptic model in segmentation and features extraction for online handwriting recognition. Indeed, our method consists in decomposing the input signal into continuous part called graphemes based on Beta-Elliptical model, and classify them according to their position in the pseudo-word. The segmented graphemes are then described by the combination of geometric features and trajectory shape modeling. The efficiency of the considered features has been evaluated using feed forward neural network classifier. Experimental results using the benchmarking ADAB Database show the performance of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regenstreif, E.
The potential produced by an isolated beam of elliptic cross-section seems to have been considered first by L.C. Teng. Image effects of line charges in elliptic vacuum chambers were introduced into accelerator theory by L. J. Laslett. Various approximate solutions for elliptic beams of finite cross-section coasting inside an elliptic vacuum chamber were subsequently proposed by P. Lapostolle and C. Bovet. A rigorous expression is derived for the potential produced by an elliptic beam inside an elliptic vacuum chamber, provided the beam envelope and the vacuum chamber can be assimilated to confocal ellipses.
J/ψ Elliptic Flow in Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV.
Acharya, S; Adamová, D; Adolfsson, J; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahn, S U; Aiola, S; Akindinov, A; Al-Turany, M; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Ali, Y; Alici, A; Alkin, A; Alme, J; Alt, T; Altenkamper, L; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andreou, D; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartsch, E; Bastid, N; Basu, S; Batigne, G; Batyunya, B; Batzing, P C; Bazo Alba, J L; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhattacharjee, B; Bhom, J; Bianchi, A; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Bratrud, L; Braun-Munzinger, P; Bregant, M; Broker, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Chandra, S; Chang, B; Chang, W; Chapeland, S; Chartier, M; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Chojnacki, M; Choudhury, S; Chowdhury, T; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Conesa Balbastre, G; Conesa Del Valle, Z; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Ding, Y; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Doremalen, L V R; Dubey, A K; Dubla, A; Ducroux, L; Dudi, S; Duggal, A K; Dukhishyam, M; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garg, K; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, J; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Haque, M R; Harris, J W; Harton, A; Hassan, H; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Hernandez, E G; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hills, C; Hippolyte, B; Hohlweger, B; Horak, D; Hornung, S; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Iga Buitron, S A; Ilkaev, R; Inaba, M; Ippolitov, M; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karczmarczyk, P; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Khabanova, Z; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, B; Kim, D; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Konyushikhin, M; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Kreis, L; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lai, Y S; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Leogrande, E; León Monzón, I; Lévai, P; Li, X; Lien, J; Lietava, R; Lim, B; Lindal, S; Lindenstruth, V; Lindsay, S W; Lippmann, C; Lisa, M A; Litichevskyi, V; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Luhder, J R; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Masciocchi, S; Masera, M; Masoni, A; Masson, E; Mastroserio, A; Mathis, A M; Matuoka, P F T; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D L; Mikhaylov, K; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, A P; Mohanty, B; Mohisin Khan, M; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Myrcha, J W; Nag, D; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Narayan, A; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pareek, P; Park, J; Parmar, S; Passfeld, A; Pathak, S P; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pliquett, F; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Punin, V; Putschke, J; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reshetin, A; Reygers, K; Riabov, V; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Rosas, E D; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rueda, O V; Rui, R; Rumyantsev, B; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Schaefer, B; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schmidt, N V; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shahoyan, R; Shaikh, W; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shirinkin, S; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silaeva, S; Silvermyr, D; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Sputowska, I; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stocco, D; Storetvedt, M M; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Thoresen, F; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Toppi, M; Torres, S R; Tripathy, S; Trogolo, S; Trombetta, G; Tropp, L; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wenzel, S C; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Willsher, E; Windelband, B; Witt, W E; Xu, R; Yalcin, S; Yamakawa, K; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yun, E; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, Y; Zichichi, A; Zimmermann, M B; Zinovjev, G; Zmeskal, J; Zou, S
2017-12-15
We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sqrt[s_{NN}]=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5
Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi
2004-04-01
Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.
NASA Technical Reports Server (NTRS)
Micol, John R.
1989-01-01
The Aeroassisted Flight Experiment vehicle for whose scale model pressure and heat-transfer rate distributions have been measured in air at Mach 10 is a 60-deg elliptic cone, raked off at a 73-percent angle, with an ellipsoid nose and a skirt added to the base of the rake plane to reduce heating. The predictions of both an inviscid flow-field code and a Navier-Stokes solver are compared with measured values. Good agreement is obtained in the case of pressure distributions; the effect of Reynolds number on heat-transfer distributions is noted to be small.
Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair
NASA Astrophysics Data System (ADS)
Décréau, P. M. E.; Kougblénou, S.; Lointier, G.; Rauch, J.-L.; Trotignon, J.-G.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F.
2013-11-01
The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a large L value (L ~ 10) and a medium geomagnetic latitude (35° S). We discuss these untypical results within the frame of the geophysical conditions prevailing that day, i.e. a particularly quiet long time interval, followed by a short increase of magnetic activity.
Transverse low frequency wave in a two fluid solar wind. M.S. Thesis
NASA Technical Reports Server (NTRS)
Solodyna, G. V.
1973-01-01
Investigation is made of the properties of low frequency transverse waves in a two-fluid solar wind having a radial magnetic field and radial streaming velocity. In order to examine what effects this streaming medium has on the waves, linearly polarized waves are decomposed into left and right circularly polarized waves. Computation is made of analytic expressions valid to first order for the radial amplitude and phase dependence of these constituent waves. It is shown that after travelling a given distance r, these waves have different amplitudes and phases. The former result causes their superposition to become elliptical rather than linear. The latter causes the axis of the ellipse of polarization to rotate through a well-defined angle. Analytic expressions are obtained for the eccentricity of the ellipse and for the angle of rotation. In analogy with regular Faraday rotation, in which the plane of polarization of a linear polarized wave rotates, the effect is denoted as generalized Faraday rotation.
An approximate method for calculating three-dimensional inviscid hypersonic flow fields
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Dejarnette, Fred R.
1990-01-01
An approximate solution technique was developed for 3-D inviscid, hypersonic flows. The method employs Maslen's explicit pressure equation in addition to the assumption of approximate stream surfaces in the shock layer. This approximation represents a simplification to Maslen's asymmetric method. The present method presents a tractable procedure for computing the inviscid flow over 3-D surfaces at angle of attack. The solution procedure involves iteratively changing the shock shape in the subsonic-transonic region until the correct body shape is obtained. Beyond this region, the shock surface is determined using a marching procedure. Results are presented for a spherically blunted cone, paraboloid, and elliptic cone at angle of attack. The calculated surface pressures are compared with experimental data and finite difference solutions of the Euler equations. Shock shapes and profiles of pressure are also examined. Comparisons indicate the method adequately predicts shock layer properties on blunt bodies in hypersonic flow. The speed of the calculations makes the procedure attractive for engineering design applications.
Global coverage Mobile Satellite Systems: System availability versus channel propagation impairments
NASA Technical Reports Server (NTRS)
Sforza, M.; Buonomo, S.; Poiaresbaptista, J. P. V.
1993-01-01
Mobile Satellite Systems (MSS) in Highly Elliptical (HEO) and circular Earth orbits at Medium (MEO) and Low (LEO) altitudes have been intensively studied in the last few years as an effective means of providing global communication services. Such global coverage MSS networks are also expected to mitigate typical channel impairments usually encountered in geostationary Land Mobile Satellite (LMS) systems. In the design stages of these satellite networks, information regarding the mobile propagation channel is needed to assess the overall link availability versus elevation angle and environmental scenarios. For multisatellite LMS configurations, the mobile user on the Earth surface sees, at any given time, more than one satellite of the constellation. In our paper, it is shown that, under certain working assumptions regarding the statistics of the propagation channel, an improvement of the link availability may be achieved through the use of a multisatellite constellation. The analyses have been carried out using the European Space Agency (ESA) LMS propagation data base which presently covers a wide range of elevation angles and environmental scenarios.
Conical pitch angle distributions of very low-energy ion fluxes observed by ISEE 1
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Baugher, C. R.; Chappell, C. R.; Shelley, E. G.; Young, D. T.
1982-01-01
Observations are presented of conical distributions of low-energy ion fluxes from throughout the magnetosphere. The data were provided by the plasma composition experiment (PCE) on ISEE 1. ISEE 1 was launched in October 1977 into a highly elliptical orbit with a 30 deg inclination to the equator and 22.5 earth radii apogee. Particular attention is given to data taken when the instrument was in its thermal plasma mode, sampling ions in the energy per charge range 0-100 eV/e. Attention is given to examples of conical distributions in 0- to 100-eV/e ions, the occurrence of conical distributions of 0- to 100-eV ions in local time-geocentric distance and latitude-geocentric distance coordinates, the cone angles in 0- to 100-eV ion conics, Kp distributions of 0- to 100-eV ion conics, and some compositional aspects of 0- to 100-eV ion conics.
Energy analysis in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Qi, Yi; de Ruiter, Anton
2018-07-01
The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
Energy Analysis in the Elliptic Restricted Three-body Problem
NASA Astrophysics Data System (ADS)
Qi, Yi; de Ruiter, Anton
2018-05-01
The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
Trajectories of ballistic impact ejecta on a rotating Earth
NASA Technical Reports Server (NTRS)
Alvarez, W.
1994-01-01
On an airless, slowly rotating planetary body like the Moon, ejecta particles from an impact follow simple ballistic trajectories. If gaseous interactions in the fireball are ignored, ejecta particles follow elliptical orbits with the center of the planetary body at one focus until they encounter the surface at the point of reimpact. The partial elliptical orbit of the ejecta particle lies in a plane in inertial (galactic) coordinates. Because of the slow rotation rate (for example, 360 degrees/28 days for the Moon), the intersection of the orbital plane and the surface remains nearly a great circle during the flight time of the ejecta. For this reason, lunar rays, representing concentrations of ejecta with the same azimuth but different velocities and/or ejecta angles, lie essentially along great circles. Ejecta from airless but more rapidly rotating bodies will follow more complicated, curving trajectories when plotted in the coordinate frame of the rotating planet or viewed as rays on the planetary surface. The curvature of trajectories of ejecta particles can be treated as a manifestation of the Coriolis effect, with the particles being accelerated by Coriolis pseudoforces. However, it is more straightforward to calculate the elliptical orbit in inertial space and then determine how far the planet rotates beneath the orbiting ejecta particle before reimpact. The Earth's eastward rotation affects ballistic ejecta in two ways: (1) the eastward velocity component increases the velocity of eastbound ejecta and reduces the velocity of westbound ejecta; and (2) the Earth turns underneath inflight ejecta, so that although the latitude of reimpact is not changed, the longitude is displaced westward, with the displacement increasing as a function of the time the ejecta remains aloft.
Elliptic supersymmetric integrable model and multivariable elliptic functions
NASA Astrophysics Data System (ADS)
Motegi, Kohei
2017-12-01
We investigate the elliptic integrable model introduced by Deguchi and Martin [Int. J. Mod. Phys. A 7, Suppl. 1A, 165 (1992)], which is an elliptic extension of the Perk-Schultz model. We introduce and study a class of partition functions of the elliptic model by using the Izergin-Korepin analysis. We show that the partition functions are expressed as a product of elliptic factors and elliptic Schur-type symmetric functions. This result resembles recent work by number theorists in which the correspondence between the partition functions of trigonometric models and the product of the deformed Vandermonde determinant and Schur functions were established.
Optics ellipticity performance of an unobscured off-axis space telescope.
Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo
2014-10-20
With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey.
Mining the Suzaku Archive for Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Loewenstein, Michael
Despite significant progress, our understanding of the formation and evolution of giant elliptical galaxies is incomplete. Many unresolved details about the star formation and assembly history, dissipation and feedback processes, and how these are connected in space and time relate to complex gasdynamical processes that are not directly observable, but that leave clues in the form of the level and pattern of heavy element enrichment in the hot ISM. The low background and relatively sharp spectral resolution of the Suzaku X-ray Observatory XIS CCD detectors enable one to derive a particularly extensive abundance pattern in the hot ISM out to large galactic radii for bright elliptical galaxies. These encode important clues to the chemical and dynamical history of elliptical galaxies. The Suzaku archive now includes data on many of the most suitable galaxies for these purposes. To date, these have been analyzed in a very heterogeneous manner -- some at an early stage in the mission using instrument calibration and analysis tools that have greatly evolved in the interim. Given the level of maturity of the data archive, analysis software, and calibration, the time is right to undertake a uniform analysis of this sample and interpret the results in the context of a coherent theoretical framework for the first time. We propose to (1) carefully and thoroughly analyze the available X-ray luminous elliptical galaxies in the Suzaku database, employing the techniques we have established in our previous work to measure hot ISM abundance patterns. Their interpretation requires careful deconstruction within the context of physical gasdynamical and chemical evolutionary models. Since we have developed models for elliptical galaxy chemical evolution specifically constructed to place constraints on the history and development of these systems based on hot ISM abundances, we are uniquely positioned to interpret -- as well as to analyze -- X-ray spectra of these objects. (2) We will apply these models, tailored to each system, to constrain their enrichment histories. In this way we exploit X- ray spectroscopy to help deconstruct how elliptical galaxies, and the stellar populations that compose them, form and evolve. The insights gained into galaxy formation and evolution, the nature of Type Ia supernova, and the origin of elements in the universe necessary for life to emerge will advance the NASA Strategic Goal to "discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets."
Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity
NASA Astrophysics Data System (ADS)
Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.
2018-04-01
Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.
Design study of beam position monitors for measuring second-order moments of charged particle beams
NASA Astrophysics Data System (ADS)
Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi
2012-01-01
This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).
Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Tetsufumi; Nara, Yasushi
2009-06-15
We study effects of eccentricity fluctuations on the elliptic flow coefficient v{sub 2} at midrapidity in both Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quark gluon plasma phase and a hadronic transport model for the hadronic matter. For initial conditions in hydrodynamic simulations, both the Glauber model and the color glass condensate model are employed to demonstrate the effect of initial eccentricity fluctuations originating from the nucleon position inside a colliding nucleus. The effect of eccentricity fluctuations is modest in semicentral Au+Au collisions, but significantlymore » enhances v{sub 2} in Cu+Cu collisions.« less
Ellipticities of Elliptical Galaxies in Different Environments
NASA Astrophysics Data System (ADS)
Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming
2016-10-01
We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.
Design of a solar collector system formed by a Fresnel lens and a CEC coupled to plastic fibers
NASA Astrophysics Data System (ADS)
Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo
2015-08-01
Among the main challenges for systems based in solar concentrators and plastic optical fibers (POF) the accuracy needed for the solar tracking is founded. One approach to overcome these requirements is increasing acceptance angle of the components, usually by secondary optical elements (SOE), however this technique is effective for photovoltaic applications but it has not been analyzed for systems coupled to POFs for indoor illumination. On this subject, it is presented a numerical analysis of a solar collector assembled by a Fresnel lens as primary optical element (POE) combined with a compound elliptical concentrator (CEC) coupled to POF in order to compare its performance under incidence angle direction and also to show a trade-off analysis for two different Fresnel lens shapes, imaging and nonimaging, used in the collector system. The description of the Fresnel lenses and its designs are included, in addition to the focal areas with space and angular distribution profiles considering the optimal alignment with the source and maximum permissible incident angle for each case. For both systems the coupling between the optical components is analyzed and the total performance is calculated, having as result its comparison for indoor illumination. In both cases, the systems have better performance increasing the final output power, but the angular tolerance only was improved for the system with nonimaging concentrator that had an efficiency over 80% with acceptance angles 𝜃𝑖 ≤ 2° and, the system integrated by the imaging lens, presented an efficiency ratio over 75% for acceptance angles 𝜃𝑖 ≤ 0.7°.
SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, S; Hong, C; Kim, M
Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed withoutmore » the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.« less
OPTOTRAK Measurement of the Quadriceps Angle Using Standardized Foot Positions
Livingston, Lori A.; Spaulding, Sandi J.
2002-01-01
Objective: While there is evidence to suggest that the magnitude of the quadriceps (Q) angle changes with alterations in foot position, a detailed quantitative description of this relationship has not been reported. Our purpose was to determine the effect of varying foot placement on the magnitude of the Q angle. Design and Setting: A mixed between-within, repeated-measures design was used to compare Q angles derived under static weight-bearing conditions with the feet positioned in self-selected versus standardized stance positions. Subjects: Twenty healthy young-adult men and women with no history of acute injury to or chronic dysfunction of the lower limbs. Measurements: We placed light-emitting diodes bilaterally on the left and right anterior superior iliac spines, the tibial tuberosities, and the midpoints of the patellae to bilaterally define the Q angles. An OPTOTRAK motion-measurement system was used to capture x,y coordinate data at a sampling rate of 60 Hz. These data were subsequently filtered and used to calculate the magnitude of the left and right Q angles. Results: A repeated-measures analysis of variance revealed that when measured statically, Q angles differed significantly between stance positions (P < .001) and limbs (P < .05). Depending on the stance adopted, mean Q angles varied from 7.2° to 12.7° and 11.0° to 16.1° in the left and right lower limbs, respectively. Q-angle measurements taken in conjunction with the Romberg foot position most closely resembled those gathered with the feet in a self-selected stance (Pearson r = 0.86 to 0.92). Conclusions: Q-angle magnitude varies with changes in foot position, increasing or decreasing as the foot rotates internally or externally, respectively. These data demonstrate the need for a standardized foot position for Q-angle measurements. PMID:12937581
OPTOTRAK Measurement of the Quadriceps Angle Using Standardized Foot Positions.
Livingston, Lori A; Spaulding, Sandi J
2002-09-01
OBJECTIVE: While there is evidence to suggest that the magnitude of the quadriceps (Q) angle changes with alterations in foot position, a detailed quantitative description of this relationship has not been reported. Our purpose was to determine the effect of varying foot placement on the magnitude of the Q angle. DESIGN AND SETTING: A mixed between-within, repeated-measures design was used to compare Q angles derived under static weight-bearing conditions with the feet positioned in self-selected versus standardized stance positions. SUBJECTS: Twenty healthy young-adult men and women with no history of acute injury to or chronic dysfunction of the lower limbs. MEASUREMENTS: We placed light-emitting diodes bilaterally on the left and right anterior superior iliac spines, the tibial tuberosities, and the midpoints of the patellae to bilaterally define the Q angles. An OPTOTRAK motion-measurement system was used to capture x,y coordinate data at a sampling rate of 60 Hz. These data were subsequently filtered and used to calculate the magnitude of the left and right Q angles. RESULTS: A repeated-measures analysis of variance revealed that when measured statically, Q angles differed significantly between stance positions (P <.001) and limbs (P <.05). Depending on the stance adopted, mean Q angles varied from 7.2 degrees to 12.7 degrees and 11.0 degrees to 16.1 degrees in the left and right lower limbs, respectively. Q-angle measurements taken in conjunction with the Romberg foot position most closely resembled those gathered with the feet in a self-selected stance (Pearson r = 0.86 to 0.92). CONCLUSIONS: Q-angle magnitude varies with changes in foot position, increasing or decreasing as the foot rotates internally or externally, respectively. These data demonstrate the need for a standardized foot position for Q-angle measurements.
2014-01-01
Background Various head and neck positions in sport horses are significant as they can interfere with upper airway flow mechanics during exercise. Until now, research has focused on subjectively described head and neck positions. The objective of this study was to develop an objective, reproducible method for quantifying head and neck positions accurately. Results Determining the angle between the ridge of the nose and the horizontal plane (ground angle) together with the angle between the ridge of nose and the line connecting the neck and the withers (withers angle) has provided values that allow precise identification of three preselected head and neck positions for performing sport horses. The pharyngeal diameter, determined on lateral radiographs of 35 horses, differed significantly between the established flexed position and the remaining two head and neck positions (extended and neutral). There was a significant correlation between the pharyngeal diameter and the ground angle (Spearman’s rank correlation coefficient −0.769, p < 0.01) as well as between the pharyngeal diameter and the withers angle (Spearman’s rank correlation coefficient 0.774, p < 0.01). Conclusion The combination of the ground angle and the withers angle is a suitable tool for evaluating and distinguishing frequently used head and neck positions in sport horses. The ground angle and the withers angle show significant correlation with the measured pharyngeal diameter in resting horses. Hence, these angles provide an appropriate method for assessing the degree of head and neck flexion. Further research is required to examine the influence of increasing head and neck flexion and the related pharyngeal diameter on upper airway function in exercising horses. PMID:24886564
Elliptic genus of singular algebraic varieties and quotients
NASA Astrophysics Data System (ADS)
Libgober, Anatoly
2018-02-01
This paper discusses the basic properties of various versions of the two-variable elliptic genus with special attention to the equivariant elliptic genus. The main applications are to the elliptic genera attached to non-compact GITs, including the theories regarding the elliptic genera of phases on N = 2 introduced in Witten (1993 Nucl. Phys. B 403 159-222).
Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.
Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-11-18
We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.
Mechanism For Adjustment Of Commutation Of Brushless Motor
NASA Technical Reports Server (NTRS)
Schaefer, Richard E.
1995-01-01
Mechanism enables adjustment of angular position of set of Hall-effect devices that sense instantaneous shaft angle of brushless dc motor. Outputs of sensors fed to commutation circuitry. Measurement of shaft angle essential for commutation; that is, application of voltage to stator windings must be synchronized with shaft angle. To obtain correct angle measurement for commutation, Hall-effect angle sensors positioned at proper reference angle. The present mechanism accelerates adjustment procedure and makes it possible to obtain more accurate indication of minimum-current position because it provides for adjustment while motor running.
Listening to galaxies tuning at z ~ 2.5-3.0: The first strikes of the Hubble fork
NASA Astrophysics Data System (ADS)
Talia, M.; Cimatti, A.; Mignoli, M.; Pozzetti, L.; Renzini, A.; Kurk, J.; Halliday, C.
2014-02-01
Aims: We investigate the morphological properties of 494 galaxies selected from the Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) at z > 1, primarily in their optical rest frame, using Hubble Space Telescope (HST) infrared images, from the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). Methods: The morphological analysis of Wield Field Camera (WFC3) H160 band images was performed using two different methods: a visual classification identifying traditional Hubble types, and a quantitative analysis using parameters that describe structural properties, such as the concentration of light and the rotational asymmetry. The two classifications are compared. We then analysed how apparent morphologies correlate with the physical properties of galaxies. Results: The fractions of both elliptical and disk galaxies decrease between redshifts z ~ 1 to z ~ 3, while at z > 3 the galaxy population is dominated by irregular galaxies. The quantitative morphological analysis shows that, at 1 < z < 3, morphological parameters are not as effective in distinguishing the different morphological Hubble types as they are at low redshift. No significant morphological k-correction was found to be required for the Hubble type classification, with some exceptions. In general, different morphological types occupy the two peaks of the (U - B)rest colour bimodality of galaxies: most irregulars occupy the blue peak, while ellipticals are mainly found in the red peak, though with some level of contamination. Disks are more evenly distributed than either irregulars and ellipticals. We find that the position of a galaxy in a UVJ diagram is related to its morphological type: the "quiescent" region of the plot is mainly occupied by ellipticals and, to a lesser extent, by disks. We find that only ~33% of all morphological ellipticals in our sample are red and passively evolving galaxies, a percentage that is consistent with previous results obtained at z < 1. Blue galaxies morphologically classified as ellipticals show a remarkable structural similarity to red ones. We search for correlations between our morphological and spectroscopic galaxy classifications. Almost all irregulars have a star-forming galaxy spectrum. In addition, the majority of disks show some sign of star-formation activity in their spectra, though in some cases their red continuum is indicative of old stellar populations. Finally, an elliptical morphology may be associated with either passively evolving or strongly star-forming galaxies. Conclusions: We propose that the Hubble sequence of galaxy morphologies takes shape at redshift 2.5 < z < 3. The fractions of both ellipticals and disks decrease with increasing lookback time at z > 1, such that at redshifts z = 2.5-2.7 and above, the Hubble types cannot be identified, and most galaxies are classified as irregular. Appendix A is available in electronic form at http://www.aanda.org
Azimuthal angle dependence of the charge imbalance from charge conservation effects
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.
Jun, Kyungtaek; Kim, Dongwook
2018-01-01
X-ray computed tomography has been studied in various fields. Considerable effort has been focused on reconstructing the projection image set from a rigid-type specimen. However, reconstruction of images projected from an object showing elastic motion has received minimal attention. In this paper, a mathematical solution to reconstructing the projection image set obtained from an object with specific elastic motions-periodically, regularly, and elliptically expanded or contracted specimens-is proposed. To reconstruct the projection image set from expanded or contracted specimens, methods are presented for detection of the sample's motion modes, mathematical rescaling of pixel values, and conversion of the projection angle for a common layer.
The leaf-shape effect on electromagnetic scattering from vegetated media
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Blanchard, A. J.; Shen, G. X.
1988-01-01
Using the generalized Rayleigh Gans approximation along with the radiative transfer method, a bistatic backscattering model for a layer of randomly oriented, elliptic-shaped leaves is formulated. Following a similar procedure the bistatic scattering model for a layer of needle-shaped leaves is also developed to simulate coniferous vegetation. The differences between the scattering characteristics of the deciduous and coniferous leaves are illustrated numerically for different orientation and incidence angles. It is found that both like and cross polarizations are needed to differentiate the difference in scattering due to the shapes of the scatterers. The calculated backscattering coefficients are compared with measured values from artificial canopies with circular-shaped leaves.
NASA Astrophysics Data System (ADS)
Kimura, Yusuke
2018-05-01
We constructed several families of elliptic K3 surfaces with Mordell-Weil groups of ranks from 1 to 4. We studied F-theory compactifications on these elliptic K3 surfaces times a K3 surface. Gluing pairs of identical rational elliptic surfaces with nonzero Mordell-Weil ranks yields elliptic K3 surfaces, the Mordell-Weil groups of which have nonzero ranks. The sum of the ranks of the singularity type and the Mordell-Weil group of any rational elliptic surface with a global section is 8. By utilizing this property, families of rational elliptic surfaces with various nonzero Mordell-Weil ranks can be obtained by choosing appropriate singularity types. Gluing pairs of these rational elliptic surfaces yields families of elliptic K3 surfaces with various nonzero Mordell-Weil ranks. We also determined the global structures of the gauge groups that arise in F-theory compactifications on the resulting K3 surfaces times a K3 surface. U(1) gauge fields arise in these compactifications.
Position Estimation for Switched Reluctance Motor Based on the Single Threshold Angle
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Pang; Yu, Yue
2017-05-01
This paper presents a position estimate model of switched reluctance motor based on the single threshold angle. In view of the relationship of between the inductance and rotor position, the position is estimated by comparing the real-time dynamic flux linkage with the threshold angle position flux linkage (7.5° threshold angle, 12/8SRM). The sensorless model is built by Maltab/Simulink, the simulation are implemented under the steady state and transient state different condition, and verified its validity and feasibility of the method..
Evidence for intermuscle difference in slack angle in human triceps surae.
Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu
2015-04-13
This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.
The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.
Effects of ultrashort laser pulses on angular distributions of photoionization spectra.
Ooi, C H Raymond; Ho, W L; Bandrauk, A D
2017-07-27
We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.
Influence of sample pool on interference pattern in defocused interferometric particle imaging.
Zhang, Hongxia; Zhou, Ye; Liu, Jing; Jia, Dagong; Liu, Tiegen
2017-04-01
Particles widely exist in various fields. In practical experiments, sometimes it is necessary to dissolve particles in water in a sample pool. This article proposes two typical layouts of the sample pool in defocused interferometric particle imaging (IPI). Layout I is the sample pool surface perpendicular to the incident light and layout II is the sample pool surface perpendicular to the scattered light. For layout I, the scattered light of the particles does not keep symmetric at the meridional and sagittal planes after being refracted by the sample pool surface, and elliptical interference patterns are formed at the defocused IPI image plane. But for layout II, the scattered light keeps symmetric after being refracted, and circular interference patterns are formed. Aimed at the two sample pool layouts, the ray-tracing software ZEMAX was used to simulate the spot shape of particles at different defocus distances. Furthermore, its effect on the ellipticity of the interference pattern with the tilt angle of the sample pool is analyzed. The relative error of the axis ratio for layout I does not exceed 9.2% at different defocus distances. The experimental results have good agreement with the theoretical analyses, and it indicates that layout II is more reasonable for the IPI system.
Influence of sample pool on interference pattern in defocused interferometric particle imaging
NASA Astrophysics Data System (ADS)
Zhang, Hongxia; Zhou, Ye; Liu, Jing; Jia, Dagong; Liu, Tiegen
2017-04-01
Particles widely exist in various fields. In practical experiments, sometimes it is necessary to dissolve particles in water in a sample pool. This article proposes two typical layouts of the sample pool in defocused interferometric particle imaging (IPI). Layout I is the sample pool surface perpendicular to the incident light and layout II is the sample pool surface perpendicular to the scattered light. For layout I, the scattered light of the particles does not keep symmetric at the meridional and sagittal planes after being refracted by the sample pool surface, and elliptical interference patterns are formed at the defocused IPI image plane. But for layout II, the scattered light keeps symmetric after being refracted, and circular interference patterns are formed. Aimed at the two sample pool layouts, the ray-tracing software ZEMAX was used to simulate the spot shape of particles at different defocus distances. Furthermore, its effect on the ellipticity of the interference pattern with the tilt angle of the sample pool is analyzed. The relative error of the axis ratio for layout I does not exceed 9.2% at different defocus distances. The experimental results have good agreement with the theoretical analyses, and it indicates that layout II is more reasonable for the IPI system.
Design and fabrication of an elliptical micro-lens array with grating for laser safety
NASA Astrophysics Data System (ADS)
Li, L. H.; Wu, B. Q.; Chan, C. Y.; Lee, W. B.; Dong, L. H.
2015-10-01
With the enormous expansion of laser usage in medicine, industry and research, all facilities must formulate and adhere to specific safety methods that appropriately address user protection. The protective ellipticalal microstructure with grating is a novel technology which can provide the principal means of ensuring against ocular injury, and must be worn at all times during laser operation. On the basis of Fresnel's law and the diffractive law, Solidworks and Lighttools software are applied to design the elliptical micro-lens array and correspondent grating. The height of the microstructure is 100um and its period is 3mm. The period of grating is 5um. It is shown that the amount of emergent light of a specific wavelength (1064nm) can reflect more than 40° from the incident light through simulation, while the incident light is perpendicular to the microstructure. The fabrication adopts the ultra-precision single point diamond method and injection molding method. However, it is found in the test that the surface roughness has a serious effect on the angle between the emergent and incident light. As a result, the element can reflect the vertical incidence beam into a tilted emergent beam with a certain angular degree , as well as protecting users from laser damage injures.
NASA Technical Reports Server (NTRS)
Greene, Francis A.; Buck, Gregory M.; Wood, William A.
2001-01-01
Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.
How do seal whiskers suppress vortex shedding
NASA Astrophysics Data System (ADS)
Rinehart, Aidan; Flaherty, Justin; Bunjavick, Joseph; Shyam, Vikram; Zhang, Wei
2016-11-01
Certain seal whiskers possess a unique geometry that significantly reduces the vortex-induced vibration; which has attracted great attention to understand how the unique shape re-organizes the wake structure and its potential for passive flow control. The shape of the whiskers can be described as an elliptical cross-section that is lofted along the length of the whisker. Along the entire length of the whisker the ellipse varies in major and minor axis as well as angle of incidence with respect to the axis of the whisker. Of particular interest in this study is to identify what effect the angle of incidence has on the flow structure around the whisker, which has been overlooked in the past. The study will analyze the wake structure behind various scaled-up whisker models using particle image velocimitry (PIV). These whisker models share common geometry dimensions except for the angle of incidence. Flow conditions are created in a water channel and a wind tunnel, covering a wide range of Reynolds number (a few hundreds to thousands), similar to the ambient flow environment of seals and to the targeted aero-propulsion applications. This study will help address knowledge gaps in understanding of how certain geometry features of seal whiskers influence the wake and establish best practices for its application as effective passive flow control strategy.
Induced polarization: Simulation and inversion of nonlinear mineral electrodics
NASA Astrophysics Data System (ADS)
Agunloye, Olu
1983-02-01
Graph-theoretic representations are used to model nonlinear electrodics, while forward and inverse simulations are based on reaction rate theory. The electrodic responses are presented as distorted elliptical Lissajous shapes obtained from dynamic impedance over a full cycle. Simulations show that asymmetry in reaction energy barrier causes slight asymmetry in the shape of the response ellipse and hardly affects the phase angle of the complex electrode impedance. The charge transfer resistance and the diffusion constraints tend to have opposite effects. The former causes reduction in the phase angle, tending to make the impedance purely resistive. Both of these mechanisms show saturation effects. Charge transfer resistance at its limit forces a thin S-type symmetry on the Lissajous patterns, while with diffusion control the size of the Lissajous patterns begins to reduce after saturation. The fixed layer causes substantial increase in the phase angle and tends to “enlarge” the Lissajous patterns. It is responsible for the hysteresis-like shapes of the Lissajous patterns when superimposed on strong charge transfer resistance. This study shows that it is quite possible to deduce the mechanisms that control the electrodic processes by inverting electrodic parameters from “observed” distorted, nonelliptical Lissajous patterns characteristic of nonlinear electrodics. The results and qualities of the inversion technique are discussed.
DeVoria, Adam C.
2017-01-01
This paper studies low-aspect-ratio () rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole ( ≫ 1) to a streamwise vorticity dipole ( ∼ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°. PMID:28293139
Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Deng, Dongmei; Guo, Qi
2011-10-01
The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.
Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique
NASA Astrophysics Data System (ADS)
Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan
2018-06-01
Circularly polarized light can be divided into two vertically linearly polarized light beams with ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T ‑ θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.
An origin for short gamma-ray bursts unassociated with current star formation.
Barthelmy, S D; Chincarini, G; Burrows, D N; Gehrels, N; Covino, S; Moretti, A; Romano, P; O'Brien, P T; Sarazin, C L; Kouveliotou, C; Goad, M; Vaughan, S; Tagliaferri, G; Zhang, B; Antonelli, L A; Campana, S; Cummings, J R; D'Avanzo, P; Davies, M B; Giommi, P; Grupe, D; Kaneko, Y; Kennea, J A; King, A; Kobayashi, S; Melandri, A; Meszaros, P; Nousek, J A; Patel, S; Sakamoto, T; Wijers, R A M J
2005-12-15
Two short (< 2 s) gamma-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an elliptical galaxy. Here we report the X-ray localization of a short burst (GRB 050724) with unusual gamma-ray and X-ray properties. The X-ray afterglow lies off the centre of an elliptical galaxy at a redshift of z = 0.258 (ref. 5), coincident with the position determined by ground-based optical and radio observations. The low level of star formation typical for elliptical galaxies makes it unlikely that the burst originated in a supernova explosion. A supernova origin was also ruled out for GRB 050709 (refs 3, 31), even though that burst took place in a galaxy with current star formation. The isotropic energy for the short bursts is 2-3 orders of magnitude lower than that for the long bursts. Our results therefore suggest that an alternative source of bursts--the coalescence of binary systems of neutron stars or a neutron star-black hole pair--are the progenitors of short bursts.
NASA Astrophysics Data System (ADS)
Sharaf, M. A.; Saad, A. S.
2017-10-01
In this paper, a novel analysis was established to prove how Hansen's inferior and superior partial anomalies k and k_1 can divide the elliptic orbit into two segments. The analysis depends on the departures of r (for k) and 1/r (for k1) from their minima. By these departures, we can find: (i) Transformations relating the eccentric anomaly to k and the true anomaly to k1. (ii) Expressions for k and k_1 in terms of the orbital elements. (iii) The interpretation and the intervals of definition of two moduli (X, S) related to k and k_1. (iv) The extreme values of r and the elliptic equations in terms of k and k1. (v) For r' and r'', the modulus X as a measure of the asymmetry of r' (or r'') from r'' (or r'), and the modulus S12 as a measure of the asymmetry of r' and r'' from the minimum value of r. (vi) A description of the segments represented by k and k1. (vii) The relative position of the radius vector at k0° and k1=180°.
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Goodwin, F. K.; Spangler, S. B.
1976-01-01
A vortex lattice lifting-surface method is used to model the wing and multiple flaps. Each lifting surface may be of arbitrary planform having camber and twist, and the multiple-slotted trailing-edge flap system may consist of up to ten flaps with different spans and deflection angles. The engine wakes model consists of a series of closely spaced vortex rings with circular or elliptic cross sections. The rings are normal to a wake centerline which is free to move vertically and laterally to accommodate the local flow field beneath the wing and flaps. The two potential flow models are used in an iterative fashion to calculate the wing-flap loading distribution including the influence of the waves from up to two turbofan engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The calculation procedure starts with arbitrarily positioned wake centerlines and the iterative calculation continues until the total configuration loading converges within a prescribed tolerance. Program results include total configuration forces and moments, individual lifting-surface load distributions, including pressure distributions, individual flap hinge moments, and flow field calculation at arbitrary field points.
NASA Astrophysics Data System (ADS)
Charalambakis, E.; Hauber, E.; Knapmeyer, M.; Grott, M.; Gwinner, K.
2007-08-01
For Earth, data sets and models have shown that for a fault loaded by a constant remote stress, the maximum displacement on the fault is linearly related to its length by d = gamma · l [1]. The scaling and structure is self-similar through time [1]. The displacement-length relationship can provide useful information about the tectonic regime.We intend to use it to estimate the seismic moment released during the formation of Martian fault systems and to improve the seismicity model [2]. Only few data sets have been measured for extraterrestrial faults. One reason is the limited number of reliable topographic data sets. We used high-resolution Digital Elevation Models (DEM) [3] derived from HRSC image data taken from Mars Express orbit 1437. This orbit covers an area in the Acheron Fossae region, a rift-like graben system north of Olympus Mons with a "banana"-shaped topography [4]. It has a fault trend which runs approximately WNW-ESE. With an interactive IDL-based software tool [5] we measured the fault length and the vertical offset for 34 faults. We evaluated the height profile by plotting the fault lengths l vs. their observed maximum displacement (dmax-model). Additionally, we computed the maximum displacement of an elliptical fault scarp where the plane has the same area as in the observed case (elliptical model). The integration over the entire fault length necessary for the computation of the area supresses the "noise" introduced by local topographic effects like erosion or cratering. We should also mention that fault planes dipping 60 degree are usually assumed for Mars [e.g., 6] and even shallower dips have been found for normal fault planes [7]. This dip angle is used to compute displacement from vertical offset via d = h/(h*sinα), where h is the observed topographic step height, and ? is the fault dip angle. If fault dip angles of 30 degree are considered, the displacement differs by 40% from the one of dip angles of 60 degree. Depending on the data quality, especially the lighting conditions in the region, different errors can be made by determining the various values. Based on our experiences, we estimate that the error measuring the length of the fault is smaller than 10% and that the measurement error of the offset is smaller than 5%. Furthermore the horizontal resolution of the HRSC images is 12.5 m/pixel or 25 m/pixel and of the DEM derived from HRSC images 50 m/pixel because of re-sampling. That means that image resolution does not introduce a significant error at fault lengths in kilometer range. For the case of Mars it is known that in the growth of fault populations linkage is an essential process [8]. We obtained the d/l-values from selected examples of faults that were connected via a relay ramp. The error of ignoring an existing fault linkage is 20% to 50% if the elliptical fault model is used and 30% to 50% if only the dmax value is used to determine d l . This shows an advantage of the elliptic model. The error increases if more faults are linked, because the underestimation of the relevant length gets worse the longer the linked system is. We obtained a value of gamma=d/l of about 2 · 10-2 for the elliptic model and a value of approximately 2.7 · 10-2 for the dmax-model. The data show a relatively large scatter, but they can be compared to data from terrestrial faults ( d/l= ~1 · 10-2...5 · 10-2; [9] and references therein). In a first inspection of the Acheron Fossae 2 region in the orbit 1437 we could confirm our first observations [10]. If we consider fault linkage the d/l values shift towards lower d/l-ratios, since linkage means that d remains essentially constant, but l increases significantly. We will continue to measure other faults and obtain values for linked faults and relay ramps. References: [1] Cowie, P. A. and Scholz, C. H. (1992) JSG, 14, 1133-1148. [2] Knapmeyer, M. et al. (2006) JGR, 111, E11006. [3] Neukum, G. et al. (2004) ESA SP-1240, 17-35. [4] Kronberg, P. et al. (2007) J. Geophys. Res., 112, E04005, doi:10.1029/2006JE002780. [5] Hauber, E. et al. (2007) LPSC, XXXVIII, abstract 1338. [6] Wilkins, S. J. et al. (2002) GRL, 29, 1884, doi: 10.1029/2002GL015391. [7] Fueten, F. et al. (2007) LPSC, XXXVIII, abstract 1388. [8] Schultz, R. A. (2000) Tectonophysics, 316, 169-193. [9] Schultz, R. A. et al. (2006) JSG, 28, 2182-2193. [10] Hauber, E. et al. (2007) 7th Mars Conference, submitted.
NASA Astrophysics Data System (ADS)
Gitin, Andrey V.
2009-10-01
An optical system for laser radiation focusing, which consists of parabolic and elliptic mirrors, is considered. It is shown by the method of elementary reflections that the maximum concentration of laser radiation on the target can be achieved at a certain position of these mirrors.
Investigating the Density of Isolated Field Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Ulgen, E. Kaan
2016-02-01
In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
Ultra-small-angle neutron scattering with azimuthal asymmetry
Gu, X.; Mildner, D. F. R.
2016-05-16
Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less
Ultra-small-angle neutron scattering with azimuthal asymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X.; Mildner, D. F. R.
Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less
Navigation Challenges of the Mars Phoenix Lander Mission
NASA Technical Reports Server (NTRS)
Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark
2008-01-01
The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.
NASA Astrophysics Data System (ADS)
Mingari Scarpello, Giovanni; Ritelli, Daniele
2018-06-01
The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second (precession, ψ ) and third (spin, φ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle ψ completing the treatment of the Euler-Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order - 1/2.
Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameswaran, A.; Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Hotan, A.; Palfreyman, J.
2011-08-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.
Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boboc, A.; Zabeo, L.; Murari, A.
The change in the ellipticity of a laser beam that passes through plasma due to the Cotton-Mouton effect can provide additional information on the plasma density. This approach, complementary to the more traditional interferometric methods, has been implemented recently using the JET interferometer-polarimeter with a new setup. Routine Cotton-Mouton phase shift measurements are made on the vertical central chords simultaneously with the Faraday rotation angle data. These new data are used to provide robust line-integrated density measurements in difficult plasma scenarios, with strong Edge Localized Modes (ELMs) or pellets. These always affect interferometry, causing fringe jumps and preventing good controlmore » of the plasma density. A comparison of line-integrated density from polarimetry and interferometry measurements shows an agreement within 10%. Moreover, in JET the measurements can be performed close to a reactor relevant range of parameters, in particular, at high densities and temperatures. This provides a unique opportunity to assess the quality of the Faraday rotation and Cotton-Mouton phase shift measurements where both effects are strong and mutual nonlinear interaction between the two effects takes place.« less
Design of collimating and rearrangement systems of laser diode array beam
NASA Astrophysics Data System (ADS)
Gao, Runmei; Fang, Tao; Fu, Rulian; Yao, Jianquan
2015-10-01
To improve the laser diode output beam quality, micro-cylindrical lens and the step-type lens combination are designed. The former is used to collimate beam in fast-axis direction, while the latter plays a role in the slow-axis of splitting and the rearrangement. The micro-column semi-elliptical lens is made with the drops of spherical zoom lensin electric field and with the help of the material properties of light-cured production, which can reduce the reflection of the front surface and total reflection loss of the after. The divergence angle in the fast axis is compressed to roughly the same as that in the slow-axis direction; Stepped lens splits compressed long strip beam in the slow axis, with parallelogram style of level equidistant and rearrange in the fast axis direction. The spot in the slow axis gets smaller and the spot becomes larger in the fast axis. At last divergence angle and the beam spot achieve balanced in the fast axis and slow axis, optical parameters BPP integrates approximate the same, and beam quality can be improved.
Three-dimensional analysis of implanted magnetic-resonance-visible meshes.
Sindhwani, Nikhil; Feola, Andrew; De Keyzer, Frederik; Claus, Filip; Callewaert, Geertje; Urbankova, Iva; Ourselin, Sebastien; D'hooge, Jan; Deprest, Jan
2015-10-01
Our primary objective was to develop relevant algorithms for quantification of mesh position and 3D shape in magnetic resonance (MR) images. In this proof-of-principle study, one patient with severe anterior vaginal wall prolapse was implanted with an MR-visible mesh. High-resolution MR images of the pelvis were acquired 6 weeks and 8 months postsurgery. 3D models were created using semiautomatic segmentation techniques. Conformational changes were recorded quantitatively using part-comparison analysis. An ellipticity measure is proposed to record longitudinal conformational changes in the mesh arms. The surface that is the effective reinforcement provided by the mesh is calculated using a novel methodology. The area of this surface is the effective support area (ESA). MR-visible mesh was clearly outlined in the images, which allowed us to longitudinally quantify mesh configuration between 6 weeks and 8 months after implantation. No significant changes were found in mesh position, effective support area, conformation of the mesh's main body, and arm length during the period of observation. Ellipticity profiles show longitudinal conformational changes in posterior arms. This paper proposes novel methodologies for a systematic 3D assessment of the position and morphology of MR-visible meshes. A novel semiautomatic tool was developed to calculate the effective area of support provided by the mesh, a potentially clinically important parameter.
Student Observation of HR 2282 (Furud)
NASA Astrophysics Data System (ADS)
Estrada, Reed; Estrada, Chris; Anker, Payton; Barrientos, Destiny; Colbert, Charlie; Dondelinger, Edward; Gillette, Lindsey; Goodrow, Jeremy; Izadi, Tara; Mayo, Colin; Milton, Jordan; Stuart, Sarah; Varela, Nick
2017-04-01
A selected team of 8th graders measured the separation and the position angle of double star HR 2282 also known as Furud. They used a 22- inch Newtonian Alt/Az telescope to determine the scale constant, separation, and the position angle. The separation angle was 169.6 arc seconds and the position angle was 339.7 degrees. The results were compared to the 1999 Washington Double Star Catalog and were found to be extremely close.
The Mysterious Southern Torque
NASA Astrophysics Data System (ADS)
McDowell, M. S.
2004-05-01
Something weird happened to twist the southern hemisphere out of alignment with the northern, as evidenced by the positions of the mountain ranges of North and South America, the Atlantic MAR, and the closure of West Africa to North America - all smooth were the torque reversed. What happened, and when, and why? We identify a number of global "cracks" of almost exactly the same length and direction, with some, even more peculiarly, turning the same angle, and proceeding an equal distance in the new direction. The Emperor-Hawaiian chain, the Louisville chain and the west coast of North America, as examples, are essentially parallel. Their northerly legs follow the angle of the axis of orbital ellipse. But then they all make equal 45 degree easterly bends, to 17.5 NW, and continue on, still parallel, for very similar distances. It is the same at the north coast of South America, and the mid-section of the MAR from 46W to 12W. It is the distance from the Cameroons to Kenya, from the south end of the Red Sea to the SE Indian Ridge at the Nema Fracture zone, from west to east of the Nazca plate.What is all this? Coincidence? Seeing things? Researchers have attributed plate motion or hot spot motion or both or absolutely none, to all of the above. Geophysicists have dated the surfaces from Archean to Pleistocene by all possible scientific means, certainly no possible correlation can be made. Yet we postulate the physical reality can be demonstrated. It is so global a phenomenon that it is well beyond what a hot spot or a plate could do. Even a really tremendous impact would have trouble making such precise geometric arrangements. So what is it - perhaps the angle of rotation, or the inertia of northern hemisphere mass above the geoid? And if so, then, what changed it? It would seem that some huge imbalance occurred. Suppose the whole bottom blew out of the southern hemisphere, and the center of mass drastically altered. Suppose some unknown universal force changed our composition - magnetic or other. Were the magnetic poles ever the elliptic axis? What this world needs is a few more outrageous ideas.
Blue ellipticals in compact groups
NASA Technical Reports Server (NTRS)
Zepf, Stephen E.; Whitmore, Bradley C.
1990-01-01
By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.
Formation and evolution of dwarf elliptical galaxies. I. Structural and kinematical properties
NASA Astrophysics Data System (ADS)
de Rijcke, S.; Michielsen, D.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.
2005-08-01
This paper is the first in a series in which we present the results of an ESO Large Program on the kinematics and internal dynamics of dwarf elliptical galaxies (dEs). We obtained deep major and minor axis spectra of 15 dEs and broad-band imaging of 22 dEs. Here, we investigate the relations between the parameters that quantify the structure (B-band luminosity L_B, half-light radius R_e, and mean surface brightness within the half-light radius Ie = LB / 2 π R_e^2) and internal dynamics (velocity dispersion σ) of dEs. We confront predictions of the currently popular theories for dE formation and evolution with the observed position of dEs in log LB vs. log σ, log LB vs. log R_e, log LB vs. log I_e, and log Re vs. log Ie diagrams and in the (log σ,log R_e,log I_e) parameter space in which bright and intermediate-luminosity elliptical galaxies and bulges of spirals define a Fundamental Plane (FP). In order to achieve statistical significance and to cover a parameter interval that is large enough for reliable inferences to be made, we merge the data set presented in this paper with two other recently published, equally large data sets. We show that the dE sequences in the various univariate diagrams are disjunct from those traced by bright and intermediate-luminosity elliptical galaxies and bulges of spirals. It appears that semi-analytical models (SAMs) that incorporate quiescent star formation with an essentially z-independent star-formation efficiency, combined with post-merger starbursts and the dynamical response after supernova-driven gas-loss, are able to reproduce the position of the dEs in the various univariate diagrams. SAMs with star-formation efficiencies that rise as a function of redshift are excluded since they leave the observed sequences traced by dEs virtually unpopulated. dEs tend to lie above the FP and the FP residual declines as a function of luminosity. Again, models that take into account the response after supernova-driven mass-loss correctly predict the position of dEs in the (log σ,log R_e,log I_e) parameter space as well as the trend of the FP residual as a function of luminosity. While these findings are clearly a success for the hierarchical-merging picture of galaxy formation, they do not necessarily invalidate the alternative “harassment” scenario, which posits that dEs stem from perturbed and stripped late-type disk galaxies that entered clusters and groups of galaxies about 5 Gyr ago.
Leng, Yu-xin; Song, Ya-han; Yao, Zhi-yuan; Zhu, Xi
2012-10-01
To systemically analyze the effect of 45 degree angle semirecumbent position on the incidence of ventilator-associated pneumonia (VAP) and other outcomes in mechanical ventilated patients, and to evaluate whether 45 degree angle semirecumbent position is superior to 25 degree angle-30 degree angle head of bed (HOB). The randomized controlled trials (RCTs) comparing the effect of different HOB on the outcomes of mechanical ventilated patients were searched (from 1st January 1990 to 20th July 2012) from five databases including the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, China Knowledge Resource Integrated Database (CNKI), and Wanfang Database. Meta analysis was conducted using RevMan 5.0 software. Data extracted from five RCTs with a total of 427 patients were analyzed. The risks of developing clinically diagnosed VAP were significantly lower among the patients in semirecumbent 45 degree angle position compared to the patients in lower position [15.96% (34/213) vs. 26.64% (57/214), relative risk (RR)=0.57, 95% confidence interval (95%CI) 0.39 to 0.83, P=0.003], while no significant differences were detected between the two groups regarding the mortality rate [27.04% (53/196) vs. 28.22% (57/202), RR=0.93, 95%CI 0.68 to 1.27, P=0.66], the length of intensive care unit (ICU) stay [weighted mean difference (WMD)=-0.45, 95%CI -1.08 to 0.18, P=0.16] and the percentage of antibiotics treatment [71.11% (32/45) vs. 60.87% (28/46), RR=1.14, 95%CI 0.85 to 1.53, P=0.37]. Two of the five trials (91 patients) were included in the sub-analysis between 45 degree angle group (45 patients) and 25 degree angle-30 degree angle group (46 patients). The results showed that comparing with 25 degree angle-30 degree angle, 45 degree angle semirecumbent position had no significance in improving patients' clinical outcomes. This study proved that the clinically preferred semirecumbent 45 degree angle position did have effect in reducing the incidence of VAP, nevertheless, whether it's superior to 25 degree angle-30 degree angle needs to be confirmed by larger-scale, higher-quality RCTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Sen; Li, Guangjun; Wang, Maojie
The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less
Elliptic flow in small systems due to elliptic gluon distributions?
Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; ...
2017-05-31
We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the ‘elliptic flow’ parameter v 2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.
Elliptic flow in small systems due to elliptic gluon distributions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen
We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the ‘elliptic flow’ parameter v 2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.
On the Behavior of Eisenstein Series Through Elliptic Degeneration
NASA Astrophysics Data System (ADS)
Garbin, D.; Pippich, A.-M. V.
2009-12-01
Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.
Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC
NASA Astrophysics Data System (ADS)
Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2008-12-01
We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.
NASA Astrophysics Data System (ADS)
Choi, Nari; Han, Jongmin
2018-04-01
In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.
An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.
Oettinger, David; Haller, George
2016-10-01
Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.
D meson elliptic flow in noncentral Pb-Pb collisions at sqrt[sNN]=2.76 Tev.
Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, S; Das, K; Das, I; Das, D; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Elwood, B G; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; Ferreiro, E G; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, S; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, K H; Khan, P; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, J H; Kim, D W; Kim, T; Kim, S; Kim, B; Kim, M; Kim, M; Kim, J S; Kim, D J; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mizuno, S; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S K; Oh, S; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, Y; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wang, Y; Wang, M; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yamaguchi, Y; Yang, S; Yang, H; Yang, P; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, H; Zhu, J; Zhu, X; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M
2013-09-06
Azimuthally anisotropic distributions of D0, D+, and D*+ mesons were studied in the central rapidity region (|y|<0.8) in Pb-Pb collisions at a center-of-mass energy sqrt[sNN]=2.76 TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient v2 (commonly denoted elliptic flow) was measured in the centrality class 30%-50% as a function of the D meson transverse momentum pT, in the range 2-16 GeV/c. The measured v2 of D mesons is comparable in magnitude to that of light-flavor hadrons. It is positive in the range 2
Reflective Optics Design for an LED High Beam Headlamp of Motorbikes
Ge, Peng; Wang, Xiang; Li, Yang; Wang, Hong
2015-01-01
We propose a reflective optics design for an LED motorbike high beam lamp. We set the measuring screen as an elliptical zone and divide it into many small lattices and divide the spatial angle of the LED source into many parts and make relationships between them. According to the conservation law of energy and the Snell's law, the reflector is generated by freeform optics design method. Then the optical system is simulated by Monte Carlo method using ASAP software. Light pattern of simulation could meet the standard. The high beam headlamp is finally fabricated and assembled into a physical object. Experiment results can fully comply with United Nations Economic Commission for Europe (ECE) vehicle regulations R113 revision 2 (Class C). PMID:25961073
Remote sensing of the earth's surface with an airborne polarized laser
NASA Technical Reports Server (NTRS)
Kalshoven, James E.; Dabney, Philip W.
1993-01-01
Attention is given to the Airborne Laser Polarization Sensor (ALPS), which makes multispectral radiometric and polarization measurements of the earth's surface using a polarized laser light source. Results from data flights taken over boreal forests in Maine at two wavelengths (1060 and 532 nm) using an Nd:YAG laser source show distinct depolarization signatures for three broadleaf and five coniferous tree species. A statistically significant increase in depolarization is found to correlate with increasing leaf surface roughness for the broadleaf species in the near-IR. The ALPS system 3 employs 12 photomultiplier tube detectors configurable to measure desired parameters such as the total backscatter and the polarization state, including the azimuthal angle and ellipticity, at different UV to near-IR wavelengths simultaneously.
NASA Technical Reports Server (NTRS)
Warsi, Saif A.
1989-01-01
A detailed operating manual is presented for a grid generating program that produces 3-D meshes for advanced turboprops. The code uses both algebraic and elliptic partial differential equation methods to generate single rotation and counterrotation, H or C type meshes for the z - r planes and H type for the z - theta planes. The code allows easy specification of geometrical constraints (such as blade angle, location of bounding surfaces, etc.), mesh control parameters (point distribution near blades and nacelle, number of grid points desired, etc.), and it has good runtime diagnostics. An overview is provided of the mesh generation procedure, sample input dataset with detailed explanation of all input, and example meshes.
NASA Technical Reports Server (NTRS)
Tyson, R. W.; Muraca, R. J.
1975-01-01
The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.
Reflective optics design for an LED high beam headlamp of motorbikes.
Ge, Peng; Wang, Xiang; Li, Yang; Wang, Hong
2015-01-01
We propose a reflective optics design for an LED motorbike high beam lamp. We set the measuring screen as an elliptical zone and divide it into many small lattices and divide the spatial angle of the LED source into many parts and make relationships between them. According to the conservation law of energy and the Snell's law, the reflector is generated by freeform optics design method. Then the optical system is simulated by Monte Carlo method using ASAP software. Light pattern of simulation could meet the standard. The high beam headlamp is finally fabricated and assembled into a physical object. Experiment results can fully comply with United Nations Economic Commission for Europe (ECE) vehicle regulations R113 revision 2 (Class C).
On the null trajectories in conformal Weyl gravity
NASA Astrophysics Data System (ADS)
Villanueva, J. R.; Olivares, Marco
2013-06-01
In this work we find analytical solutions to the null geodesics around a black hole in the conformal Weyl gravity. Exact expressions for the horizons are found, and they depend on the cosmological constant and the coupling constants of the conformal Weyl gravity. Then, we study the radial motion from the point of view of the proper and coordinate frames, and compare it with that found in spacetimes of general relativity. The angular motion is also examined qualitatively by means of an effective potential; quantitatively, the equation of motion is solved in terms of wp-Weierstrass elliptic function. Thus, we find the deflection angle for photons without using any approximation, which is a novel result for this kind of gravity.
Excursion Processes Associated with Elliptic Combinatorics
NASA Astrophysics Data System (ADS)
Baba, Hiroya; Katori, Makoto
2018-06-01
Researching elliptic analogues for equalities and formulas is a new trend in enumerative combinatorics which has followed the previous trend of studying q-analogues. Recently Schlosser proposed a lattice path model in the square lattice with a family of totally elliptic weight-functions including several complex parameters and discussed an elliptic extension of the binomial theorem. In the present paper, we introduce a family of discrete-time excursion processes on Z starting from the origin and returning to the origin in a given time duration 2 T associated with Schlosser's elliptic combinatorics. The processes are inhomogeneous both in space and time and hence expected to provide new models in non-equilibrium statistical mechanics. By numerical calculation we show that the maximum likelihood trajectories on the spatio-temporal plane of the elliptic excursion processes and of their reduced trigonometric versions are not straight lines in general but are nontrivially curved depending on parameters. We analyze asymptotic probability laws in the long-term limit T → ∞ for a simplified trigonometric version of excursion process. Emergence of nontrivial curves of trajectories in a large scale of space and time from the elementary elliptic weight-functions exhibits a new aspect of elliptic combinatorics.
Excursion Processes Associated with Elliptic Combinatorics
NASA Astrophysics Data System (ADS)
Baba, Hiroya; Katori, Makoto
2018-04-01
Researching elliptic analogues for equalities and formulas is a new trend in enumerative combinatorics which has followed the previous trend of studying q-analogues. Recently Schlosser proposed a lattice path model in the square lattice with a family of totally elliptic weight-functions including several complex parameters and discussed an elliptic extension of the binomial theorem. In the present paper, we introduce a family of discrete-time excursion processes on Z starting from the origin and returning to the origin in a given time duration 2T associated with Schlosser's elliptic combinatorics. The processes are inhomogeneous both in space and time and hence expected to provide new models in non-equilibrium statistical mechanics. By numerical calculation we show that the maximum likelihood trajectories on the spatio-temporal plane of the elliptic excursion processes and of their reduced trigonometric versions are not straight lines in general but are nontrivially curved depending on parameters. We analyze asymptotic probability laws in the long-term limit T → ∞ for a simplified trigonometric version of excursion process. Emergence of nontrivial curves of trajectories in a large scale of space and time from the elementary elliptic weight-functions exhibits a new aspect of elliptic combinatorics.
Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance.
Lin, Jing; Wang, Yuli; Ochs, Todd; Tang, Chaoshu; Du, Junbao; Jin, Hongfang
2015-01-01
This study aimed at examining three tilt angle-based positive responses and the time to positive response in a head-up tilt test for children with orthostatic intolerance, and the psychological fear experienced at the three angles during head-up tilt test. A total of 174 children, including 76 boys and 98 girls, aged from 4 to 18 years old (mean 11.3±2.8 years old), with unexplained syncope, were randomly divided into three groups, to undergo head-up tilt test at the angles of 60°, 70° and 80°, respectively. The diagnostic rates and times were analysed, and Wong-Baker face pain rating scale was used to access the children's psychological fear. There were no significant differences in diagnostic rates of postural orthostatic tachycardia syndrome and vasovagal syncope at different tilt angles during the head-up tilt test (p>0.05). There was a significant difference, however, in the psychological fear at different tilt angles utilising the Kruskal-Wallis test (χ2=36.398, p<0.01). It was mildest at tilt angle 60° utilising the Kolmogorov-Smirnov test (p<0.01). A positive rank correlation was found between the psychological fear and the degree of tilt angle (r(s)=0.445, p<0.01). Positive response appearance time was 15.1±14.0 minutes at 60° for vasovagal syncope children. There was no significant difference in the time to positive response, at different tilt angles during the head-up tilt test for vasovagal syncope or for postural orthostatic tachycardia syndrome. Hence, it is suggested that a tilt angle of 60° and head-up tilt test time of 45 minutes should be suitable for children with vasovagal syncope.
Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen
2015-04-01
Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.
Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position.
Williams, Sophie; Leslie, Ian; Isaac, Graham; Jin, Zhongmin; Ingham, Eileen; Fisher, John
2008-08-01
Clinical studies have indicated that the angular position of the acetabular cup may influence wear in metal-on-metal total hip bearings. A high cup angle in comparison to the anatomical position may lead to the head being constrained by the superior lateral surface and rim of the cup, thus potentially changing the location of the contact zone between the head and the cup. The aim of this study was to test the hypothesis that both a steep cup angle and a lateralized position of the head can increase head contact on the superior rim of the cup, with the consequence of increased wear. Hip-joint simulator studies of metal-on-metal bearings were undertaken with cup angles of 45 degrees and 55 degrees . The femoral head was either aligned to the center of the cup or placed in a position of microlateralization. Wear was measured gravimetrically over 5 million cycles. A steep cup angle of 55 degrees showed significantly higher long-term steady-state wear than a standard cup angle of 45 degrees (p < 0.01). The difference was fivefold. Microlateralization of the head resulted in a fivefold increase in steady-state wear compared with a centralized head. The combination of a steep cup angle and a microlateralized head increased the steady-state wear rate by tenfold compared with a standard cup angle with a centralized head. These studies support the hypothesis that both an increased cup angle and a lateral head position increase wear in metal-on-metal hip prostheses.
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
Double ionization of neon in elliptically polarized femtosecond laser fields
NASA Astrophysics Data System (ADS)
Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard
2018-06-01
We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.
NASA Technical Reports Server (NTRS)
Peterson, John B., Jr.
1991-01-01
Two programs were developed to calculate the pitch and roll position of the conventional sting drive and the pitch of a high angle articulated sting to position a wind tunnel model at the desired angle of attack and sideslip and position the model as near as possible to the centerline of the tunnel. These programs account for the effects of sting offset angles, sting bending angles, and wind-tunnel stream flow angles. In addition, the second program incorporates inputs form on-board accelerometers that measure model pitch and roll with respect to gravity. The programs are presented and a description of the numerical operation of the programs with a definition of the variables used in the programs is given.
The Effect of Systematics on Polarized Spectral Indices
NASA Astrophysics Data System (ADS)
Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.
2013-02-01
We study four particularly bright polarized compact objects (Tau A, Vir A, 3C 273, and For A) in the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps, with the goal of understanding potential systematics involved in the estimation of foreground spectral indices. First, we estimate the spectral index, the polarization angle, the polarization fraction, and the apparent size and shape of these objects when smoothed to a nominal resolution of 1° FWHM. Second, we compute the spectral index as a function of polarization orientation, α. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, for the K and Ka band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index of β = -2.59 ± 0.03 for α = 30°, and β = -2.03 ± 0.01 for α = 50°. On the other hand, the spectral index between the Ka and Q bands is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is particularly sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K band polarization data at 1° scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.
Packing of muscles in the rabbit shank influences three-dimensional architecture of M. soleus.
Wick, Carolin; Böl, Markus; Müller, Florian; Blickhan, Reinhard; Siebert, Tobias
2018-07-01
Isolated and packed muscles (e.g. in the calf) exhibit different three-dimensional muscle shapes. In packed muscles, cross-sections are more angular compared to the more elliptical ones in isolated muscles. As far as we know, it has not been examined yet, whether the shape of the muscle in its packed condition influences its internal arrangement of muscle fascicles and accordingly the contraction behavior in comparison to the isolated condition. To evaluate the impact of muscle packing, we examined the three-dimensional muscle architecture of isolated and packed rabbit M. soleus for different ankle angles (65°, 75°, 85°, 90°, and 95°) using manual digitization (MicroScribe ® MLX). In general, significantly increased values of pennation angle and fascicle curvature were found in packed compared to isolated M. soleus (except for fascicle curvature at 90° ankle angle). On average, fascicle length of isolated muscles exceeded fascicle lengths of packed muscles by 2.6%. Reduction of pennation angle in the packed condition had only marginal influence on force generation (about 1% of maximum isometric force) in longitudinal direction (along the line of action) although an increase of transversal force component (perpendicular to the line of action) of about 26% is expected. Results of this study provide initial evidence that muscle packing limits maximum muscle performance observed in isolated M. soleus. Besides an enhanced understanding of the impact of muscle packing on architectural parameters, the outcomes of this study are essential for realistic three-dimensional muscle modeling and model validation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope
Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; ...
2016-07-12
The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less
Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun
The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less
Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Lowenstein, Michael
2013-01-01
The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.
The properties of radio ellipticals
NASA Astrophysics Data System (ADS)
Sparks, W. B.; Disney, M. J.; Wall, J. V.; Rodgers, A. W.
1984-03-01
The authors present optical and additional radio data for the bright galaxies of the Disney & Wall survey. These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas.
Focusing elliptical laser beams
NASA Astrophysics Data System (ADS)
Marchant, A. B.
1984-03-01
The spot formed by focusing an elliptical laser beam through an ordinary objective lens can be optimized by properly filling the objective lens. Criteria are given for maximizing the central irradiance and the line-spread function. An optimized spot is much less elliptical than the incident laser beam. For beam ellipticities as high as 2:1, this spatial filtering reduces the central irradiance by less than 14 percent.
Overdetermined elliptic problems in topological disks
NASA Astrophysics Data System (ADS)
Mira, Pablo
2018-06-01
We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½
Maryasov, Alexander G.
2012-01-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542
Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li
2018-03-01
The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
NASA Astrophysics Data System (ADS)
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
Full scattering profile of tissues with elliptical cross sections
NASA Astrophysics Data System (ADS)
Duadi, H.; Feder, I.; Fixler, D.
2018-02-01
Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. However, since PPG and pulse oximetry are usually measured on tissue such as earlobe, fingertip, lip and pinched tissue, we propose examining the full scattering profile (FSP), which is the angular distribution of exiting photons. The FSP provides more comprehensive information when measuring from a cylindrical tissue. In our work we discovered a unique point, that we named the iso-pathlength (IPL) point, which is not dependent on changes in the reduced scattering coefficient (µs'). This IPL point was observed both in Monte Carlo (MC) simulation and in experimental tissue mimicking phantoms. The angle corresponding to this IPL point depends only on the tissue geometry. In the case of cylindrical tissues this point linearly depends on the tissue diameter. Since the target tissues for clinically physiological measuring are not a perfect cylinder, in this work we will examine how the change in the tissue cross section geometry influences the FSP and the IPL point. We used a MC simulation to compare a circular to an elliptic tissue cross section. The IPL point can serve as a self-calibration point for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.
Galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation
NASA Astrophysics Data System (ADS)
Chisari, N. E.; Koukoufilippas, N.; Jindal, A.; Peirani, S.; Beckmann, R. S.; Codis, S.; Devriendt, J.; Miller, L.; Dubois, Y.; Laigle, C.; Slyz, A.; Pichon, C.
2017-11-01
Intrinsic alignments of galaxies are a significant astrophysical systematic affecting cosmological constraints from weak gravitational lensing. Obtaining numerical predictions from hydrodynamical simulations of expected survey volumes is expensive, and a cheaper alternative relies on populating large dark matter-only simulations with accurate models of alignments calibrated on smaller hydrodynamical runs. This requires connecting the shapes and orientations of galaxies to those of dark matter haloes and to the large-scale structure. In this paper, we characterize galaxy-halo alignments in the Horizon-AGN cosmological hydrodynamical simulation. We compare the shapes and orientations of galaxies in the redshift range of 0 < z < 3 to those of their embedding dark matter haloes, and to the matching haloes of a twin dark-matter only run with identical initial conditions. We find that galaxy ellipticities, in general, cannot be predicted directly from halo ellipticities. The mean misalignment angle between the minor axis of a galaxy and its embedding halo is a function of halo mass, with residuals arising from the dependence of alignment on galaxy type, but not on environment. Haloes are much more strongly aligned among themselves than galaxies, and they decrease their alignment towards low redshift. Galaxy alignments compete with this effect, as galaxies tend to increase their alignment with haloes towards low redshift. We discuss the implications of these results for current halo models of intrinsic alignments and suggest several avenues for improvement.
Damiano, Diane L; Stanley, Christopher J; Ohlrich, Laurie; Alter, Katharine E
2017-08-01
Locomotor training using treadmills or robotic devices is commonly utilized to improve gait in cerebral palsy (CP); however, effects are inconsistent and fail to exceed those of equally intense alternatives. Possible limitations of existing devices include fixed nonvariable rhythm and too much limb or body weight assistance. To quantify and compare effectiveness of a motor-assisted cycle and a novel alternative, an elliptical, in CP to improve interlimb reciprocal coordination through intensive speed-focused leg training. A total of 27 children with bilateral CP, 5 to 17 years old, were randomized to 12 weeks of 20 minutes, 5 days per week home-based training (elliptical = 14; cycle = 13) at a minimum of 40 revolutions per minute, with resistance added when speed target was achieved. Primary outcomes were self-selected and fastest voluntary cadence on the devices and gait speed. Secondary outcomes included knee muscle strength, and selective control and functional mobility measures. Cadence on trained but not nontrained devices increased, demonstrating task specificity of training and increased exercise capability. Mean gait speed did not increase in either group, nor did parent-reported functional mobility. Knee extensor strength increased in both. An interaction between group and time was seen in selective control with scores slightly increasing for the elliptical and decreasing for the cycle, possibly related to tighter limb coupling with cycling. Task-specific effects were similarly positive across groups, but no transfer was seen to gait or function. Training dose was low (≤20 hours) compared with intensive upper-limb training recommendations and may be insufficient to produce appreciable clinical change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravena, M.; Wagg, J.; Papadopoulos, P. P.
We report the detection of the {sup 12}CO J = 1-0 emission line in [H89]1821+643, one of the most optically luminous quasi-stellar objects (QSOs) in the local universe, and a template ULIRG-to-QSO transition object, located in a rich, cool-core cluster at z = 0.297. The CO emission is likely to be extended, highly asymmetric with respect to the center of the host elliptical where the QSO resides, and correspond with a molecular gas mass of {approx}8.0 x 10{sup 9} M{sub sun}. The dynamical mass enclosed by the CO emission-line region could amount to {approx}1.7 x 10{sup 12} M{sub sun} (80%more » of the total mass of the elliptical host). The bulk of the CO emission is located at {approx}9 kpc southeast from the nuclei position, close to a faint optical structure, suggesting that the CO emission could either represent a gas-rich companion galaxy merging with the elliptical host or a tail-like structure reminiscent of a previous interaction. We argue that the first scenario is more likely given the large masses implied by the CO source, which would imply a highly asymmetric elliptical host. The close alignment between the CO emission's major axis and the radio plume suggests a possible role in the excitation of the ambient gas reservoir by the latter. The stacking technique was used to search for CO emission and 3-mm continuum emission from galaxies in the surrounding cluster. However, no detection was found toward individual galaxies or the stacked ensemble of galaxies, with a 3{sigma} limit of <1.1 x 10{sup 9} M{sub sun} for the molecular gas.« less
Cotton-type and joint invariants for linear elliptic systems.
Aslam, A; Mahomed, F M
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.
Cotton-Type and Joint Invariants for Linear Elliptic Systems
Aslam, A.; Mahomed, F. M.
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871
Elliptical excisions: variations and the eccentric parallelogram.
Goldberg, Leonard H; Alam, Murad
2004-02-01
The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.
Elliptic Flow in Au+Au Collisions at √sNN = 130 GeV
NASA Astrophysics Data System (ADS)
Ackermann, K. H.; Adams, N.; Adler, C.; Ahammed, Z.; Ahmad, S.; Allgower, C.; Amsbaugh, J.; Anderson, M.; Anderssen, E.; Arnesen, H.; Arnold, L.; Averichev, G. S.; Baldwin, A.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Beddo, M.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Bennett, S.; Bercovitz, J.; Berger, J.; Betts, W.; Bichsel, H.; Bieser, F.; Bland, L. C.; Bloomer, M.; Blyth, C. O.; Boehm, J.; Bonner, B. E.; Bonnet, D.; Bossingham, R.; Botlo, M.; Boucham, A.; Bouillo, N.; Bouvier, S.; Bradley, K.; Brady, F. P.; Braithwaite, E. S.; Braithwaite, W.; Brandin, A.; Brown, R. L.; Brugalette, G.; Byrd, C.; Caines, H.; Calderón de La Barca Sánchez, M.; Cardenas, A.; Carr, L.; Carroll, J.; Castillo, J.; Caylor, B.; Cebra, D.; Chatopadhyay, S.; Chen, M. L.; Chen, W.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Chrin, J.; Christie, W.; Coffin, J. P.; Conin, L.; Consiglio, C.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Danilov, V. I.; Dayton, D.; Demello, M.; Deng, W. S.; Derevschikov, A. A.; Dialinas, M.; Diaz, H.; Deyoung, P. A.; Didenko, L.; Dimassimo, D.; Dioguardi, J.; Dominik, W.; Drancourt, C.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Eggert, T.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Etkin, A.; Fachini, P.; Feliciano, C.; Ferenc, D.; Ferguson, M. I.; Fessler, H.; Finch, E.; Fine, V.; Fisyak, Y.; Flierl, D.; Flores, I.; Foley, K. J.; Fritz, D.; Gagunashvili, N.; Gans, J.; Gazdzicki, M.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Gojak, C.; Grabski, J.; Grachov, O.; Grau, M.; Greiner, D.; Greiner, L.; Grigoriev, V.; Grosnick, D.; Gross, J.; Guilloux, G.; Gushin, E.; Hall, J.; Hallman, T. J.; Hardtke, D.; Harper, G.; Harris, J. W.; He, P.; Heffner, M.; Heppelmann, S.; Herston, T.; Hill, D.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Howe, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Hunt, W.; Hunter, J.; Igo, G. J.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Jacobson, S.; Jared, R.; Jensen, P.; Johnson, I.; Jones, P. G.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kenney, V. P.; Khodinov, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Koehler, G.; Konstantinov, A. S.; Kormilitsyne, V.; Kotchenda, L.; Kotov, I.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Krupien, T.; Kuczewski, P.; Kuhn, C.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lecompte, T.; Leonhardt, W. J.; Leontiev, V. M.; Leszczynski, P.; Levine, M. J.; Li, Q.; Li, Q.; Li, Z.; Liaw, C.-J.; Lin, J.; Lindenbaum, S. J.; Lindenstruth, V.; Lindstrom, P. J.; Lisa, M. A.; Liu, H.; Ljubicic, T.; Llope, W. J.; Locurto, G.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Lopiano, D.; Love, W. A.; Lutz, J. R.; Lynn, D.; Madansky, L.; Maier, R.; Majka, R.; Maliszewski, A.; Margetis, S.; Marks, K.; Marstaller, R.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; Matyushevski, E. A.; McParland, C.; McShane, T. S.; Meier, J.; Melnick, Yu.; Meschanin, A.; Middlekamp, P.; Mikhalin, N.; Miller, B.; Milosevich, Z.; Minaev, N. G.; Minor, B.; Mitchell, J.; Mogavero, E.; Moiseenko, V. A.; Moltz, D.; Moore, C. F.; Morozov, V.; Morse, R.; de Moura, M. M.; Munhoz, M. G.; Mutchler, G. S.; Nelson, J. M.; Nevski, P.; Ngo, T.; Nguyen, M.; Nguyen, T.; Nikitin, V. A.; Nogach, L. V.; Noggle, T.; Norman, B.; Nurushev, S. B.; Nussbaum, T.; Nystrand, J.; Odyniec, G.; Ogawa, A.; Ogilvie, C. A.; Olchanski, K.; Oldenburg, M.; Olson, D.; Ososkov, G. A.; Ott, G.; Padrazo, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Pentia, M.; Perevotchikov, V.; Peryt, W.; Petrov, V. A.; Pinganaud, W.; Pirogov, S.; Platner, E.; Pluta, J.; Polk, I.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Puskar-Pasewicz, J.; Rai, G.; Rasson, J.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J.; Renfordt, R. E.; Retiere, F.; Ridiger, A.; Riso, J.; Ritter, H. G.; Roberts, J. B.; Roehrich, D.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Russ, D.; Rykov, V.; Sakrejda, I.; Sanchez, R.; Sandler, Z.; Sandweiss, J.; Sappenfield, P.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Scheblien, J.; Scheetz, R.; Schlueter, R.; Schmitz, N.; Schroeder, L. S.; Schulz, M.; Schüttauf, A.; Sedlmeir, J.; Seger, J.; Seliverstov, D.; Seyboth, J.; Seyboth, P.; Seymour, R.; Shakaliev, E. I.; Shestermanov, K. E.; Shi, Y.; Shimanskii, S. S.; Shuman, D.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Smykov, L. P.; Snellings, R.; Solberg, K.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Stone, N.; Stone, R.; Strikhanov, M.; Stringfellow, B.; Stroebele, H.; Struck, C.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Symons, T. J.; Takahashi, J.; Tang, A. H.; Tarchini, A.; Tarzian, J.; Thomas, J. H.; Tikhomirov, V.; Szanto de Toledo, A.; Tonse, S.; Trainor, T.; Trentalange, S.; Tokarev, M.; Tonjes, M. B.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Vakula, I.; van Buren, G.; Vandermolen, A. M.; Vanyashin, A.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Visser, G.; Voloshin, S. A.; Vu, C.; Wang, F.; Ward, H.; Weerasundara, D.; Weidenbach, R.; Wells, R.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitfield, J. P.; Whitten, C.; Wieman, H.; Willson, R.; Wilson, K.; Wirth, J.; Wisdom, J.; Wissink, S. W.; Witt, R.; Wolf, J.; Wood, L.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yokosawa, A.; Yurevich, V. I.; Zanevski, Y. V.; Zhang, J.; Zhang, W. M.; Zhu, J.; Zimmerman, D.; Zoulkarneev, R.; Zubarev, A. N.
2001-01-01
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sNN = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
NASA Astrophysics Data System (ADS)
Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman, M.; van der Wel, A.; Kelson, D. D.; Blakeslee, J. P.; Ford, H.; Demarco, R.; Mei, S.
2009-03-01
We have compiled a sample of early-type cluster galaxies from 0 < z < 1.3 and measured the evolution of their ellipticity distributions. Our sample contains 487 galaxies in 17 z>0.3 clusters with high-quality space-based imaging and a comparable sample of 210 galaxies in 10 clusters at z < 0.05. We select early-type galaxies (elliptical and S0 galaxies) that fall within the cluster R 200, and which lie on the red-sequence in the magnitude range -19.3>MB > - 21, after correcting for luminosity evolution as measured by the fundamental plane. Our ellipticity measurements are made in a consistent manner over our whole sample. We perform extensive simulations to quantify the systematic and statistical errors, and find that it is crucial to use point-spread function (PSF)-corrected model fits; determinations of the ellipticity from Hubble Space Telescope image data that do not account for the PSF "blurring" are systematically and significantly biased to rounder ellipticities at redshifts z>0.3. We find that neither the median ellipticity, nor the shape of the ellipticity distribution of cluster early-type galaxies evolves with redshift from z ~ 0 to z>1 (i.e., over the last ~8 Gyr). The median ellipticity at z>0.3 is statistically identical with that at z < 0.05, being higher by only 0.01 ± 0.02 or 3 ± 6%, while the distribution of ellipticities at z>0.3 agrees with the shape of the z < 0.05 distribution at the 1-2% level (i.e., the probability that they are drawn from the same distribution is 98-99%). These results are strongly suggestive of an unchanging overall bulge-to-disk ratio distribution for cluster early-type galaxies over the last ~8 Gyr from z ~ 1 to z ~ 0. This result contrasts with that from visual classifications which show that the fraction of morphologically-selected disk-dominated early-type galaxies, or S0s, is significantly lower at z>0.4 than at z ~ 0. We find that the median disk-dominated early-type, or S0, galaxy has a somewhat higher ellipticity at z>0.3, suggesting that rounder S0s are being assigned as ellipticals. Taking the ellipticity measurements and assuming, as in all previous studies, that the intrinsic ellipticity distribution of both elliptical and S0 galaxies remains constant, then we conclude from the lack of evolution in the observed early-type ellipticity distribution that the relative fractions of ellipticals and S0s do not evolve from z ~ 1 to z = 0 for a red-sequence selected samples of galaxies in the cores of clusters of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Controlling orbital angular momentum of an optical vortex by varying its ellipticity
NASA Astrophysics Data System (ADS)
Kotlyar, Victor V.; Kovalev, Alexey A.
2018-03-01
An exact analytical expression is obtained for the orbital angular momentum (OAM) of a Gaussian optical vortex with a different degree of ellipticity. The OAM turned out to be proportional to the ratio of two Legendre polynomials of adjoining orders. It is shown that if an elliptical optical vortex is embedded into the center of the waist of a circularly symmetrical Gaussian beam, then the normalized OAM of such laser beam is fractional and it does not exceed the topological charge n. If, on the contrary, a circularly symmetrical optical vortex is embedded into the center of the waist of an elliptical Gaussian beam, then the OAM is equal to n. If the optical vortex and the Gaussian beam have the same (or matched) ellipticity degree, then the OAM of the laser beam is greater than n. Continuous varying of the OAM of a laser beam by varying its ellipticity degree can be used in optical trapping for accelerated motion of microscopic particles along an elliptical trajectory as well as in quantum informatics for detecting OAM-entangled photons.
Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion
NASA Astrophysics Data System (ADS)
Cercato, Michele
2018-04-01
The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.
Forward-backward elliptic anisotropy correlations in parton cascades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L. X.; Graduate School of the Chinese Academy of Sciences, Beijing 100080; Ma, G. L.
2011-04-15
A potential experimental probe, the forward-backward elliptic anisotropy correlation (C{sub FB}), has been proposed by Liao and Koch to distinguish the jet and true elliptic flow contribution to the measured elliptic flow (v{sub 2}) in relativistic heavy-ion collisions. The jet and flow fluctuation contribution to elliptic flow is investigated within the framework of a multiphase transport model using the C{sub FB} probe. We find that the C{sub FB} correlation is remarkably different from, and about two times that, proposed by Liao and Koch. It originates from the correlation between fluctuation of forward and that of backward elliptic flow at amore » low transverse momentum, which is mainly caused by the initial correlation between fluctuation of forward and that of backward eccentricity. This results in an amendment of the C{sub FB} by a term related to the correlation between fluctuation of forward and that of backward elliptic flow. Our results suggest that a suitable rapidity gap for C{sub FB} correlation studies is about {+-}3.5.« less
NASA Astrophysics Data System (ADS)
Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad
2017-12-01
For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
NASA Technical Reports Server (NTRS)
Predina, Joseph P. (Inventor)
1989-01-01
A digital-to-synchro converter is provided where a binary input code specifies a desired shaft angle and where an resolver type position transducer is employed with additional circuitry to generate a shaft position error signal indicative of the angular difference between the desired shaft angle and the actual shaft angle. The additional circuitry corrects for known and calculated errors in the shaft position detection process and equipment.
Symmetric digit sets for elliptic curve scalar multiplication without precomputation
Heuberger, Clemens; Mazzoli, Michela
2014-01-01
We describe a method to perform scalar multiplication on two classes of ordinary elliptic curves, namely E:y2=x3+Ax in prime characteristic p≡1mod4, and E:y2=x3+B in prime characteristic p≡1mod3. On these curves, the 4-th and 6-th roots of unity act as (computationally efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width-w-NAF (Non-Adjacent Form) digit expansion of positive integers to the complex base of τ, where τ is a zero of the characteristic polynomial x2−tx+p of the Frobenius endomorphism associated to the curve. We provide a precomputationless algorithm by means of a convenient factorisation of the unit group of residue classes modulo τ in the endomorphism ring, whereby we construct a digit set consisting of powers of subgroup generators, which are chosen as efficient endomorphisms of the curve. PMID:25190900
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
The elliptic azimuthal anisotropy coefficient (more » $$v_2$$) is measured for charm (D$^0$) and strange (K$$_\\mathrm{S}^0$$, $$\\Lambda$$, $$\\Xi^-$$, and $$\\Omega^-$$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 8.16 TeV. A significant positive $$v_2$$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $$v_2$$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 5.02 TeV, also presented.« less
Magnetic flux studies in horizontally cooled elliptical superconducting cavities
Martinello, M.; Checchin, M.; Grassellino, A.; ...
2015-07-29
Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. Wemore » show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.« less
Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A
2010-01-01
A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.
sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.
Castro, Maria Claudia F; Colombini, Esther L; Aquino, Plinio T; Arjunan, Sridhar P; Kumar, Dinesh K
2014-11-25
Automatic and accurate identification of elbow angle from surface electromyogram (sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This requires appropriate selection of sEMG features, and identifying the limitations of such a system.This study has demonstrated that it is possible to identify three discrete positions of the elbow; full extension, right angle, and mid-way point, with window size of only 200 milliseconds. It was seen that while most features were suitable for this purpose, Power Spectral Density Averages (PSD-Av) performed best. The system correctly classified the sEMG against the elbow angle for 100% cases when only two discrete positions (full extension and elbow at right angle) were considered, while correct classification was 89% when there were three discrete positions. However, sEMG was unable to accurately determine the elbow position when five discrete angles were considered. It was also observed that there was no difference for extension or flexion phases.
NASA Astrophysics Data System (ADS)
Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo
2018-06-01
We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.
Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Narita, Y.
2015-11-01
A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.
Supersonic Elliptical Ramp Inlet
NASA Technical Reports Server (NTRS)
Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)
2016-01-01
A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.
On the Existence of Positive Solutions of Semilinear Elliptic Equations.
1981-04-01
vt I (0 < p < q < r,0< c <’<) I / -30- OIL - 111.2. Bumps and the shape of the nonlinearity: We want, in this section, to show how bumps or some...8l P L LONS DAAG29-80-C-0041 UNCLASSI RC-TSR-2209wL Eh|IEIIEEEEEEE EElhlEEEEEEEEE I IEEEEIIEEEII ARC echncajSummary Repprt # 2209 QON THE EXISTENCE OF...35P30 Key Words: Semilinear equations, positive solutions, topological degree, bifurcation Work Unit Number I - Applied Analysis *Laboratoire
Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging
NASA Technical Reports Server (NTRS)
Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.
2000-01-01
We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.
Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius
NASA Technical Reports Server (NTRS)
Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.;
2012-01-01
We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165.2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semi-major axis, semi-minor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14deg, respectively. The disk is asymmetric, with one dip located at P.A.s of approx. 85deg. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.
NASA Technical Reports Server (NTRS)
Mayama, S.; Hashimoto, J.; Muto, T.; Tsukagoshi, T.; Kusakabe, N.; Kuzuhara, M.; Takahashi, Y.; Kudo, T.; Dong, R.; Fukagawa, M.;
2012-01-01
We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our H-band data, which clearly exhibit a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths.We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14?, respectively. The disk is asymmetric, with one dip located at P.A.s of 85?. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk
Alternative transfer to the Earth-Moon Lagrangian points L4 and L5 using lunar gravity assist
NASA Astrophysics Data System (ADS)
Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.
2014-02-01
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon's sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon's gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.
Investigation of Composite Structures
NASA Technical Reports Server (NTRS)
Hyer, Michael W.
2000-01-01
This final report consists of a compilation of four separate written documents, three dealing with the response and failure of elliptical composite cylinders to an internal pressure load, and the fourth dealing with the influence of manufacturing imperfections in curved composite panels. The three focused on elliptical cylinders consist of the following: 1 - A paper entitled "Progressive Failure Analysis of Internally Pressurized Elliptical Composite Cylinders," 2 - A paper entitled "Influence of Geometric Nonlinearities on the Response and Failure of Internally Pressurized Elliptical Composite Cylinders," and 3 - A report entitled "Response and Failure of Internally Pressurized Elliptical Composite Cyclinders." The document which deals with the influence of manufacturing imperfections is a paper entitled "Manufacturing Distortions of Curved Composite Panels."
Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B
2011-08-01
To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P < 0.05) than tunnels drilled with a three-dimensional guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P < 0.05) in the two-dimensional (41.6 ± 2.5%) guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.
Spinning angle optical calibration apparatus
Beer, Stephen K.; Pratt, II, Harold R.
1991-01-01
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.
On the Circulation Manifold for Two Adjacent Lifting Sections
NASA Technical Reports Server (NTRS)
Zannetti, Luca; Iollo, Angelo
1998-01-01
The circulation functional relative to two adjacent lifting sections is studied for two cases. In the first case we consider two adjacent circles. The circulation is computed as a function of the displacement of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary circle, The gradient of such functional is computed by deriving a set of elliptic functions with respect both to their argument and to their Period. In the second case studied, we considered a wing-flap configuration. The circulation is computed by some implicit mappings, whose differentials with respect to the variation of the geometrical configuration in the physical space are found by divided differences. Configurations giving rise to local maxima and minima in the circulation manifold are presented.
Vectorized schemes for conical potential flow using the artificial density method
NASA Technical Reports Server (NTRS)
Bradley, P. F.; Dwoyer, D. L.; South, J. C., Jr.; Keen, J. M.
1984-01-01
A method is developed to determine solutions to the full-potential equation for steady supersonic conical flow using the artificial density method. Various update schemes used generally for transonic potential solutions are investigated. The schemes are compared for speed and robustness. All versions of the computer code have been vectorized and are currently running on the CYBER-203 computer. The update schemes are vectorized, where possible, either fully (explicit schemes) or partially (implicit schemes). Since each version of the code differs only by the update scheme and elements other than the update scheme are completely vectorizable, comparisons of computational effort and convergence rate among schemes are a measure of the specific scheme's performance. Results are presented for circular and elliptical cones at angle of attack for subcritical and supercritical crossflows.
Some observations of tip-vortex cavitation
NASA Astrophysics Data System (ADS)
Arndt, R. E. A.; Arakeri, V. H.; Higuchi, H.
1991-08-01
Cavitation has been observed in the trailing vortex system of an elliptic platform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.
On the effect of tilted roof reflectors in Martin-Puplett spectrometers
NASA Astrophysics Data System (ADS)
Schillaci, Alessandro; de Bernardis, Paolo
2012-01-01
In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.
Analysis of Electric Field Propagation in Anisotropically Absorbing and Reflecting Waveplates
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Elezzabi, A. Y.
2018-04-01
Analytical expressions are derived for half-wave plates (HWPs) and quarter-wave plates (QWPs) based on uniaxial crystals. This general analysis describes the behavior of anisotropically absorbing and reflecting waveplates across the electromagnetic spectrum, which allows for correction to the commonly used equations determined assuming isotropic absorptions and reflections. This analysis is crucial to the design and implementation of HWPs and QWPs in the terahertz regime, where uniaxial crystals used for waveplates are highly birefringent and anisotropically absorbing. The derived HWP equations describe the rotation of linearly polarized light by an arbitrary angle, whereas the QWP analysis focuses on manipulating a linearly polarized electric field to obtain any ellipticity. The HWP and QWP losses are characterized by determining equations for the total electric field magnitude transmitted through these phase-retarding elements.
Elliptical metasurfaces for cloaking and antenna applications at microwave and terahertz frequencies
NASA Astrophysics Data System (ADS)
Mehrpourbernety, Hossein
One of the interesting applications of metamaterials is the phenomenon of electromagnetic invisibility and cloaking, which implies the suppression of bistatic scattering width of a given object, independent of incident and observation angles. In this regard, diverse techniques have been proposed to analyze and design electromagnetic cloak structures, including transformation optics, anomalous resonance methods, transmission-line networks, and plasmonic cloaking, among others. A common drawback of all these methods is that they rely on bulk materials, which are difficult to realize in practice. To overcome this issue, the mantle cloaking method has been proposed, which utilizes an ultrathin metasurface that provides anti-phase surface currents to reduce the scattering dominant mode of a given object. Recently, an analytical model has been proposed to cloak dielectric and conducting cylindrical objects realized with printed and slotted arrays at microwave frequencies. At low-terahertz (THz) frequencies, one of the promising materials to realize the required metasurface is graphene. In this regard, a graphene monolayer, characterized by inductive reactance, has been proposed to cloak dielectric planar and cylindrical objects. Then, it has been shown that a metasurface made of graphene nanopatches owns dual capacitive/inductive inductance and can be used to cloak both dielectric and conducting cylindrical objects at low-THz frequencies. So far, planar and cylindrical dielectric and conducting structures have been studied. In our study, we have extended the concept and presented an accurate analytical approach to investigate the cloaking of two-dimensional (2-D) elliptical objects including infinite dielectric elliptical cylinders using graphene monolayer; metallic elliptical cylinders, and also, as a special case, 2-D metallic strips using a nanostructured graphene patch array at low-THz frequencies. We have also obtained the results for cloaking of ellipses at microwave frequencies. In this work, we propose a novel approach to reduce the mutual coupling between two closely spaced strip dipole antennas with the elliptical metasurfaces formed by conformal printed arrays of sub-wavelength periodic elements. We show that by covering each strip with the metasurface cloak, the antennas become invisible to each other and their radiation patterns are restored as if they were isolated. The electromagnetic scattering analysis pertained to the case of antennas with the frequencies far from each other is shown to be as a good approximation of a 2-D metallic strip scattering cancellation problem solved by expressing the incident and scattered fields in terms of radial and angular Mathieu functions, with the use of sheet impedance boundary conditions at the metasurface. In addition, we extend the novel approach based on the concept of mantle cloaking in order to reduce the mutual near-field and far-field coupling between planar antennas in printed technology. To present the idea, we consider two microstrip-fed monopole antennas resonating at slightly different frequencies and show that by cloaking the radiating part of each antenna, the antennas become invisible to each other, and thus, the mutual coupling between the antennas is suppressed drastically. The cloak structure is realized by a conformal elliptical metasurface formed by confocal printed arrays of sub-wavelength periodic elements, partially embedded in the substrate. The presence of the metasurfaces leads to the restoration of the radiation patterns of the antennas as if they were isolated.
Assessment of forward head posture in females: observational and photogrammetry methods.
Salahzadeh, Zahra; Maroufi, Nader; Ahmadi, Amir; Behtash, Hamid; Razmjoo, Arash; Gohari, Mahmoud; Parnianpour, Mohamad
2014-01-01
There are different methods to assess forward head posture (FHP) but the accuracy and discrimination ability of these methods are not clear. Here, we want to compare three postural angles for FHP assessment and also study the discrimination accuracy of three photogrammetric methods to differentiate groups categorized based on observational method. All Seventy-eight healthy female participants (23 ± 2.63 years), were classified into three groups: moderate-severe FHP, slight FHP and non FHP based on observational postural assessment rules. Applying three photogrammetric methods - craniovertebral angle, head title angle and head position angle - to measure FHP objectively. One - way ANOVA test showed a significant difference in three categorized group's craniovertebral angle (P< 0.05, F=83.07). There was no dramatic difference in head tilt angle and head position angle methods in three groups. According to Linear Discriminate Analysis (LDA) results, the canonical discriminant function (Wilks'Lambda) was 0.311 for craniovertebral angle with 79.5% of cross-validated grouped cases correctly classified. Our results showed that, craniovertebral angle method may discriminate the females with moderate-severe and non FHP more accurate than head position angle and head tilt angle. The photogrammetric method had excellent inter and intra rater reliability to assess the head and cervical posture.
Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.
2015-01-01
This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357
NASA Astrophysics Data System (ADS)
Djidel, S.; Bouamar, M.; Khedrouche, D.
2016-04-01
This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
A statistical study of EMIC waves observed by Cluster: 1. Wave properties
NASA Astrophysics Data System (ADS)
Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.
2015-07-01
Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.
Estimating Aeroheating of a 3D Body Using a 2D Flow Solver
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Brykina, Irina G.
2005-01-01
A method for rapidly estimating the aeroheating, shear stress, and other properties of hypersonic flow about a three-dimensional (3D) blunt body has been devised. First, the geometry of the body is specified in Cartesian coordinates. The surface of the body is then described by its derivatives, coordinates, and principal curvatures. Next, previously relatively simple equations are used to find, for each desired combination of angle of attack and meridional angle, a scaling factor and the shape of an equivalent axisymmetric body. These factors and equivalent shapes are entered as inputs into a previously developed computer program that solves the two-dimensional (2D) equations of flow in a non-equilibrium viscous shock layer (VSL) about an axisymmetric body. The coordinates in the output of the VSL code are transformed back to the Cartesian coordinates of the 3D body, so that computed flow quantities can be registered with locations in the 3D flow field of interest. In tests in which the 3D bodies were elliptic paraboloids, the estimates obtained by use of this method were found to agree well with solutions of 3D, finite-rate-chemistry, thin-VSL equations for a catalytic body.
Veerasamy, Anitha; Madane, Srinivasa Rao; Sivakumar, K; Sivaraman, Audithan
2016-01-01
Growing attractiveness of Mobile Ad Hoc Networks (MANETs), its features, and usage has led to the launching of threats and attacks to bring negative consequences in the society. The typical features of MANETs, especially with dynamic topology and open wireless medium, may leave MANETs vulnerable. Trust management using uncertain reasoning scheme has previously attempted to solve this problem. However, it produces additional overhead while securing the network. Hence, a Location and Trust-based secure communication scheme (L&TS) is proposed to overcome this limitation. Since the design securing requires more than two data algorithms, the cost of the system goes up. Another mechanism proposed in this paper, Angle and Context Free Grammar (ACFG) based precarious node elimination and secure communication in MANETs, intends to secure data transmission and detect precarious nodes in a MANET at a comparatively lower cost. The Elliptic Curve function is used to isolate a malicious node, thereby incorporating secure data transfer. Simulation results show that the dynamic estimation of the metrics improves throughput by 26% in L&TS when compared to the TMUR. ACFG achieves 33% and 51% throughput increase when compared to L&TS and TMUR mechanisms, respectively.
Development of beamline U3A for AXAF synchrotron reflectivity calibrations
NASA Astrophysics Data System (ADS)
Burek, Anthony J.; Cobuzzi, J. C.; Fitch, Jonathan J.; Graessle, Dale E.; Ingram, R. H.; Sweeney, J. B.; Blake, Richard L.; Francoeur, R.; Sullivan, E. S.
1998-11-01
We discuss the development of beamline U3A at NSLS for AXAF telescope witness mirror reflectivity calibrations in the 1- 2 keV energy range. The beamline was originally constructed as a white light beamline and has been upgraded with the addition of a monochromator to meet the needs of the AXAF calibration program. The beamline consists of an upstream horizontally focussing gold coated elliptical mirror, a differential pumping section, a sample/filter chamber, a monochromator and a downstream filter set. The mirror is set at a 2 degree incident angle for a nominal high energy cutoff at 2 keV. The monochromator is a separated element, scanning, double crystal/multilayer design having low to moderate energy resolution. A fixed exit beam is maintained through the 7-70 degree Bragg angle range by longitudinal translation of the second scanning crystal. Tracking is achieved by computer control of the scan motors with lookup table positioning of the crystal rotary tables. All motors are in vacuum and there are no motional feedthroughs. Several different multilayer or crystal pairs are co-mounted on the monochromator crystal holders and can be exchanged in situ. Currently installed are a W/Si multilayer pair, beryl, and Na-(beta) alumina allowing energy coverage from 180 eV to 2000 eV. Measurements with Na-(beta) alumina and beryl show that beam impurity less than 0.1 percent can be achieved in the 1-2 keV energy range. Measured resolving powers are E/(Delta) E equals 60 for W/Si, 500-800 for (beta) alumina and 1500 to 3000 for beryl. Initial results suggest that signal to noise and beam purity are adequate in the 1-2 keV region to achieve the 1 percent calibration accuracy required by AXAF. This allows overlap of Ir MV edge data taken on x-ray beamline X8A and with low energy data taken on ALS beamline 6.3.2.
Gatt, Alfred; Chockalingam, Nachiappan
2012-06-01
Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.
Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor
NASA Technical Reports Server (NTRS)
Armistead, K. H.; Webb, L. D.
1973-01-01
Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Regularity estimates up to the boundary for elliptic systems of difference equations
NASA Technical Reports Server (NTRS)
Strikwerda, J. C.; Wade, B. A.; Bube, K. P.
1986-01-01
Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations.
Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldhauer, A. P.
1989-07-01
A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (/lambda/=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 /mu/m with a spherical mirror, and 25 /mu/m with an elliptical one. Elliptical mirrors have been acquiredmore » and are now being installed in the two grasshoppers at SSRL.« less
NASA Astrophysics Data System (ADS)
Jin, Wa; Liu, Xuejing; Jin, Wei
2017-10-01
We report the fabrication of in-line photonic microcells (PMCs) by encapsulating tapered elliptical microfibers (MFs) inside glass tubes. The encapsulation does not change the optical property of the MF but protects the elliptical MF from external disturbance and contamination and makes the micro-laboratory robust. Such micro-laboratory can be easily integrated into standard fiber-optic circuits with low loss, making the elliptical MF-based devices more practical for real-world applications. Evanescent field sensing is realized by fabricating micro-channel on the PMC for ingress/egress of sample liquids/gas. Based on the encapsulated elliptical MF PMCs, we demonstrated RI sensitivity of 2024 nm per refractive index unit (nm/RIU) in gaseous environment and 21231 nm/RIU in water.
Detection of the Tip of Red Giant Branc in NGC 5128
NASA Technical Reports Server (NTRS)
Soria, Roberto; Mould, Jeremy R.; Watson, Alan M.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.; Casertano, Stefano; Clarke, John T.; Crisp, David; Griffiths, Richard E.;
1996-01-01
We present a color-magnitude diagram of more than 10,000 stars in the halo of galaxy NGC 5128 (Centaurus A), based on WFPC2 images through the V and I filters. The position of the red-giant branch stars is compared with the loci of the RGB in six well-studied globular clusters and in the dwarf elliptical galaxy NGC 185;...
Spinning angle optical calibration apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, S.K.; Pratt, H.R. II.
1989-09-12
An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less
Application of conformal transformation to elliptic geometry for electric impedance tomography.
Yilmaz, Atila; Akdoğan, Kurtuluş E; Saka, Birsen
2008-03-01
Electrical impedance tomography (EIT) is a medical imaging modality that is used to compute the conductivity distribution through measurements on the cross-section of a body part. An elliptic geometry model, which defines a more general frame, ensures more accurate results in reconstruction and assessment of inhomogeneities inside. This study provides a link between the analytical solutions defined in circular and elliptical geometries on the basis of the computation of conformal mapping. The results defined as voltage distributions for the homogeneous case in elliptic and circular geometries have been compared with those obtained by the use of conformal transformation between elliptical and well-known circular geometry. The study also includes the results of the finite element method (FEM) as another approach for more complex geometries for the comparison of performance in other complex scenarios for eccentric inhomogeneities. The study emphasizes that for the elliptic case the analytical solution with conformal transformation is a reliable and useful tool for developing insight into more complex forms including eccentric inhomogeneities.
NASA Astrophysics Data System (ADS)
Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
2018-06-01
The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
NASA Astrophysics Data System (ADS)
Capman, E.; Engebretson, M. J.; Pilipenko, V.; Russell, C. T.; Peterson, W. K.
2012-12-01
Nearly all previous studies of storm-time compressional Pc 5 waves have used data from low-inclination satellites, so the field-aligned structure of these waves could be determined only statistically or by inference. However, the high inclination of the Polar satellite's orbit allowed it to approximately follow a flux tube across the equator. In this study we present examples of compressional Pc 5 events identified during Polar's 2001-02 and 2002-03 duskside passages. The focus of this presentation is on exploring the field-aligned structure of the observed waves near the geomagnetic equator. At least two frequencies were identified in each event. In many cases these are a 1st (fundamental) harmonic with a node in the field-aligned (Bz) component near the geomagnetic equator, and a 2nd harmonic with an anti-node near the equator. To verify this assumption we applied the analytical signal method, verified by manual hodogram analysis, to monitor the amplitude and phase variations of the radial (Bx) and compressional (Bz) components at certain frequencies. The following transitions occurred near the time when Polar crossed the geomagnetic equator: The phase difference was 0° in the southern hemisphere and then 180° out of phase in the northern hemisphere. The waves were often linearly polarized, and the inclination angle of the polarization ellipse in the Bx-Bz plane was negative in the southern hemisphere and positive in the northern hemisphere. The ellipticity still had a slight positive bias in the southern hemisphere and a slight negative bias in the northern hemisphere. These observational results are compared with the results of modeling of coupled MHD Alfven and slow magnetosonic modes.
Zhao, Bo; Wang, Lei; Tan, Jiu-Bin
2015-01-01
This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993
NASA Astrophysics Data System (ADS)
Grosa, Fabrizio
2018-02-01
Heavy-flavour hadrons are recognised as a powerful probe for the characterisation of the deconfined medium created in heavy-ion collisions, the Quark-Gluon Plasma (QGP). The ALICE Collaboration measured the production of D0, D+, D*+ and mesons in Pb-Pb collisions at = 5.02 TeV. The measurement of the nuclear modification factor (RAA) provides a strong evidence of the in-medium parton energy loss. The comparison between the and the non-strange D-meson RAA can help to study the hadronisation mechanism of the charm quark in the QGP. In mid-central collisions, the measurement of the D-meson elliptic flow v2 at low transverse momentum (pT) gives insight into the participation of the charm quark into the collective motion of the system, while at high pT it constrains the path-length dependence of the energy loss. The v2, measured for the first time at the LHC, is found to be compatible to that of non-strange D mesons and positive with a significance of about 2.6 σ. The coupling of the charm quark to the light quarks in the underlying medium is further investigated for the first time with the application of the Event-Shape Engineering (ESE) technique to D-meson elliptic flow.
NASA Astrophysics Data System (ADS)
Hou, Bo-Yu; Peng, Dan-Tao; Shi, Kang-Jie; Yue, Rui-Hong
For the noncommutative torus T, in the case of the noncommutative parameter θ = (Z)/(n), we construct the basis of Hilbert space Hn in terms of θ functions of the positions zi of n solitons. The wrapping around the torus generates the algebra An, which is the Zn × Zn Heisenberg group on θ functions. We find the generators g of a local elliptic su(n), which transform covariantly by the global gauge transformation of An. By acting on Hn we establish the isomorphism of An and g. We embed this g into the L-matrix of the elliptic Gaudin and Calogero-Moser models to give the dynamics. The moment map of this twisted cotangent sunT) bundle is matched to the D-equation with the Fayet-Illiopoulos source term, so the dynamics of the noncommutative solitons become that of the brane. The geometric configuration (k, u) of the spectral curve det|L(u) - k| = 0 describes the brane configuration, with the dynamical variables zi of the noncommutative solitons as the moduli T⊗ n/Sn. Furthermore, in the noncommutative Chern-Simons theory for the quantum Hall effect, the constrain equation with quasiparticle source is identified also with the moment map equation of the noncommutative sunT cotangent bundle with marked points. The eigenfunction of the Gaudin differential L-operators as the Laughlin wave function is solved by Bethe ansatz.
NASA Technical Reports Server (NTRS)
Castiel, David
1991-01-01
On 5 Nov. 1990, Ellipsat filed with the FCC the first application to provide voice communication services via low earth orbiting (LEO) satellites. The proposed system, ELLIPSO, aims at achieving end-user costs comparable to those in the cellular industry. On 3 Jun. 1991 Ellipsat filed for the second complement of its system. Ellipsat was also the first company to propose combined position determination and mobile voice services via low-earth orbiting satellites. Ellipsat is still the only proponent of elliptical orbits for any commercial system in the United States. ELLIPSO uses a spectrum efficient combination of FDMA and CDMA techniques. Ellipsat's strategy is to tailor required capacity to user demand, reduce initial system costs and investment risks, and allow the provision of services at affordable end-user prices. ELLIPSO offers optimum features in all the components of its system, elliptical orbits, small satellites, integrated protocol and signalling system, integrated end-user electronics, novel marketing approach based on the cooperation with the tenets of mobile communications, end-user costs that are affordable, and a low risk approach as deployment is tailored to the growth of its customer base. The efficient design of the ELLIPSO constellation and system allows estimated end-user costs in the $.50 per minute range, five to six times less than any other system of comparable capability.
Comparison of different passive knee extension torque-angle assessments.
Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro
2013-11-01
Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.
Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings
NASA Astrophysics Data System (ADS)
Baird, Benjamin
This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)
A new standing-wave-type linear ultrasonic motor based on in-plane modes.
Shi, Yunlai; Zhao, Chunsheng
2011-05-01
This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization. Copyright © 2010 Elsevier B.V. All rights reserved.
Discrete elliptic solitons in two-dimensional waveguide arrays
NASA Astrophysics Data System (ADS)
Ye, Fangwei; Dong, Liangwei; Wang, Jiandong; Cai, Tian; Li, Yong-Ping
2005-04-01
The fundamental properties of discrete elliptic solitons (DESs) in the two-dimensional waveguide arrays were studied. The DESs show nontrivial spatial structures in their parameters space due to the introduction of the new freedom of ellipticity, and their stability is closely linked to their propagation directions in the transverse plane.
Where is your arm? Variations in proprioception across space and tasks.
Fuentes, Christina T; Bastian, Amy J
2010-01-01
The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.
NASA Astrophysics Data System (ADS)
Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.
1998-01-01
Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.
Fractional Fourier transform of truncated elliptical Gaussian beams.
Du, Xinyue; Zhao, Daomu
2006-12-20
Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.
Study on the effect of ellipticity and misalignment on OAM modes in a ring fiber
NASA Astrophysics Data System (ADS)
Zhang, Li-li; Zhang, Xia; Bai, Cheng-lin
2018-05-01
Based on the optical fiber mode theory and employing the expertized software COMSOL, we study the effect of ellipticity and misalignment on the effective refractive indices, walk-off and intensity distribution of the even and odd eigenmodes that form the basis of the orbital angular momentum (OAM) modes in a ring fiber. Our results show that the effective refractive index difference and the walk-off increase with the ellipticity and misalignment, thus reducing the stability of the OAM modes. We find that the misalignment has a greater impact on the OAM modes than the ellipticity, and both the misalignment and ellipticity affect the lower-order OAM modes more significantly, suggesting that the higher-order OAM modes are more stable during propagation.
Film thickness for different regimes of fluid-film lubrication. [elliptical contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
Mathematical formulas are presented which express the dimensionless minimum film thickness for the four lubrication regimes found in elliptical contacts: isoviscous-rigid regime; piezoviscous-rigid regime; isoviscous-elastic regime; and piezoviscous-elastic regime. The relative importance of pressure on elastic distortion and lubricant viscosity is the factor that distinguishes these regimes for a given conjunction geometry. In addition, these equations were used to develop maps of the lubrication regimes by plotting film thickness contours on a log-log grid of the dimensionless viscosity and elasticity parameters for three values of the ellipticity parameter. These results present a complete theoretical film thickness parameter solution for elliptical constants in the four lubrication regimes. The results are particularly useful in initial investigations of many practical lubrication problems involving elliptical conjunctions.
An Active Black Hole in a Compact Dwarf
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto a supermassive black hole of ~2 million solar masses, according to the authors estimates. Paudel and collaboratorsshow that this mass is consistent with the low-mass extension of the known scaling relation between central black-hole mass and brightness of the host galaxy.Central black hole mass vs. bulge K-band magnitude. SDSS J085431.18+173730.5 (red dot) falls right on the low-mass extension of the observed scaling relation. It has similar properties to M32, another compact elliptical galaxy. [Adapted from Paudel et al. 2016]To add to the mystery, SDSS J085431.18+173730.5 has no nearby neighbors: like the few other isolated compact ellipticals recently discovered, there are no massive galaxies in the immediate vicinity that could have led to its tidal stripping. So how was this puzzling ancient galaxy formed?The authors of this study support a previously proposed flyby scenario: isolated compact ellipticals may simply be tidally stripped systems that ran away from their hosts. Paudel and collaborators suggest that SDSS J085431.18+173730.5 might have long ago interacted with NGC 2672 a galaxy group located a whopping 6.5 million light-years away before being flung out to its current location.Further studies of this unique galaxys emission profile, as well as efforts to learn about its underlying stellar population and central kinematics, will hopefully help us to better understand not only the origins of this galaxy, but how all compact ellipticals form and evolve.CitationSanjaya Paudel et al 2016 ApJ 820 L19. doi:10.3847/2041-8205/820/1/L19
Determination of Azimuth Angle at Burnout for Placing a Satellite Over a Selected Earth Position
NASA Technical Reports Server (NTRS)
Skopinski, T. H.; Johnson, Katherine G.
1960-01-01
Expressions are presented for relating the satellite position in the orbital plane with the projected latitude and longitude on a rotating earth surface. An expression is also presented for determining the azimuth angle at a given burnout position on the basis of a selected passage position on the earth's surface. Examples are presented of a satellite launched eastward and one launched westward, each passing over a selected position sometime after having completed three orbits. Incremental changes from the desired latitude and longitude due to the earth's oblateness are included in the iteration for obtaining the azimuth angles of the two examples. The results for both cases are then compared with those obtained from a computing program using an oblate rotating earth. Changes from the selected latitude and longitude resulting from incremental changes from the burn-out azimuth angle and latitude are also analyzed.
Comparison of Cone Model Parameters for Halo Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Y.-J.; Jang, Soojeong; Lee, Kyoung-Sun; Kim, Hae-Yeon
2013-11-01
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [ γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another ( R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from -0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km s-1, 169 km s-1, and 152 km s-1. We obtain the correlation coefficients between the location from the models and the flare location ( R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.
Liu, Ping; Yu, Yan-Hong; Chen, Chun-Lin; Tang, Yi-Xin; Wang, Li; Mao, Dong-Rui; Xu, Yi-Kai; Chen, Lan
2013-07-01
To analyze the normal pelvis morphometry of Chinese southern Han female and its correlation with age. From August 2009 to September 2011, 289 Han nationality females who received pelvis CT scan at Nanfang Hospital of Southern Medical University were eligible for the study. Their mean age was 43.5 years, with normal body development and no pelvic abnormality. The patients were divided into 3 age groups: 25 to 40 (n = 109), 41 to 50 (n = 115), and >50 years (n = 65). After constructing a three-dimensional digital model of the pelvis, the following parameters were measured, including transverse inlet diameter, posterior sagittal diameter of pelvic inlet, sagittal inlet, diagonal conjugate, biischial diameter, posterior sagittal diameter of midpelvis, sagittal midpelvic diameter, intertuberous distance, posterior sagittal diameter of outlet, angle of pubic arch, sagittal outlet, penal height, sacrum length and sacrum curvature. The relationship between all parameters and age was analyzed. (1) The posterior sagittal diameters of pelvic inlet of the 25 to 40 age group, 41 to 50 age group, >50 years age group were (53 ± 8), (51 ± 7), (48 ± 6) mm. The sagittal inlet of the three groups were (122 ± 8), (120 ± 9), (114 ± 8) mm. And the diagonal conjugate of the three groups were (135 ± 10), (132 ± 9), (127 ± 9) mm. All had significant differences among the three groups (P < 0.01) . (2) The posterior sagittal diameter of midpelvis of the three groups were (43 ± 6), (44 ± 6), (43 ± 7) mm, and the sagittal midpelvic diameter of the three groups were (119 ± 8), (120 ± 8), (119 ± 7) mm, with no significant difference among the three groups (P > 0.05). (3) The intertuberous distance of the three groups were (122 ± 11), (121 ± 10), (117 ± 11) mm, and the posterior sagittal diameter of outlet of the three groups were (56 ± 9), (58 ± 8), (57 ± 9) mm. There was no significant difference among the three groups (P > 0.05) .(4) Penal height of three groups were (31 ± 3), (33 ± 3), (34 ± 3) mm, there was with significant differences (P < 0.01) .(5) Pearson correlation analysis showed that penal height was positively correlated with age (r = 0.331, P < 0.05), while sagittal inlet, posterior sagittal diameter of inlet, diagonal conjugate, intertuberous distance, angle of pubic arch, sacrum length and sacrum curvature were negatively correlated with age (r = -0.120 to -0.343, P < 0.05). The shape of the pelvic inlet of Chinese southern Han female changed from sagittal elliptic into transverse elliptic form, and the posterior part of pelvic inlet became larger.Sacral concavity was increased and the pelvis became deeper. Mid pelvis and the pelvic outlet was almost unchanged, and showed no correlation with age.
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S
2015-01-27
A system and a method includes generating a first signal at a first frequency; and a second signal at a second frequency. Respective sources are positioned within the borehole and controllable such that the signals intersect in an intersection volume outside the borehole. A receiver detects a difference signal returning to the borehole generated by a non-linear mixing process within the intersection volume, and records the detected signal and stores the detected signal in a storage device and records measurement parameters including a position of the first acoustic source, a position of the second acoustic source, a position of the receiver, elevation angle and azimuth angle of the first acoustic signal and elevation angle and azimuth angle of the second acoustic signal.
Cho, Misuk
2015-06-01
[Purpose] This study aimed to identify correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students. [Subjects] Thirty female university students were enrolled and their pelvic positions and differences in lower extremity joint angles were measured. [Methods] Pelvic position, pelvic torsion, and pelvic rotation were assessed using the BackMapper. In addition, motion analysis was performed to derive differences between left and right flexion, abduction, and external rotation ranges of hip joints; flexion, abduction, and external rotation ranges of knee joints; and dorsiflexion, inversion, and abduction ranges of ankle joints, according to X, Y, and Z-axes. [Results] Pelvic position was found to be positively correlated with differences between left and right hip flexion (r=0.51), hip abduction (r=0.62), knee flexion (r=0.45), knee abduction (r=0.42), and ankle inversion (r=0.38). In addition, the difference between left and right hip abduction showed a positive correlation with difference between left and right ankle dorsiflexion (r=0.64). Moreover, differences between left and right knee flexion exhibited positive correlations with differences between left and right knee abduction (r=0.41) and ankle inversion (r=0.45). [Conclusion] Bilateral pelvic tilt angles are important as they lead to bilateral differences in lower extremity joint angles during walking.
Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P
2015-06-01
This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tugendhat, Tim M.; Schäfer, Björn Malte
2018-05-01
We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
NASA Technical Reports Server (NTRS)
Vo, San C.; Biegel, Bryan (Technical Monitor)
2001-01-01
Scalar multiplication is an essential operation in elliptic curve cryptosystems because its implementation determines the speed and the memory storage requirements. This paper discusses some improvements on two popular signed window algorithms for implementing scalar multiplications of an elliptic curve point - Morain-Olivos's algorithm and Koyarna-Tsuruoka's algorithm.
The Syntax of Elliptical Constructions in Jordanian Arabic
ERIC Educational Resources Information Center
Al Bukhari, Juman
2016-01-01
The syntax of Arabic elliptical constructions is unsettled, as there are few studies that have been done in the Arabic descriptive literature, as well as in Jordanian Arabic (henceforth, JA) specifically. Therefore, this paper will investigate some elliptical constructions in JA in particular to figure out the analysis of these constructions. In…
Elliptical Orbit [arrow right] 1/r[superscript 2] Force
ERIC Educational Resources Information Center
Prentis, Jeffrey; Fulton, Bryan; Hesse, Carol; Mazzino, Laura
2007-01-01
Newton's proof of the connection between elliptical orbits and inverse-square forces ranks among the "top ten" calculations in the history of science. This time-honored calculation is a highlight in an upper-level mechanics course. It would be worthwhile if students in introductory physics could prove the relation "elliptical orbit" [arrow right]…
Polarization singularity indices in Gaussian laser beams
NASA Astrophysics Data System (ADS)
Freund, Isaac
2002-01-01
Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.
New Boundary Constraints for Elliptic Systems used in Grid Generation Problems
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.
Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan
2013-01-01
Objective To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. Methods CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Results Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Conclusions Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients. PMID:23814708
Baysal, Asli; Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan
2013-06-01
To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients.
Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1978-01-01
The film-parameter equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic of low-elastic-modulus materials, or isoviscous-elastic; and elastohydrodynamic, or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The film-parameter equations for the respective regimes come from earlier theoretical studies by the authors on elastohydrodynamic and hydrodynamic lubrication of elliptical conjunctions. These equations are restated and the results are presented as a map of the lubrication regimes, with film-thickness contours on a log-log grid of the viscosity and elasticity parameters for five values of the ellipticity parameter. The results present a complete theoretical film-parameter solution for elliptical contacts in the four lubrication regimes.
Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun
2014-07-07
We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.
Khan, Moin; Ranawat, Anil; Williams, Dale; Gandhi, Rajiv; Choudur, Hema; Parasu, Naveen; Simunovic, Nicole; Ayeni, Olufemi R
2015-09-01
Alpha and beta angles are commonly used radiographic measures to assess the sphericity of the proximal femur and distance between the pathologic head-neck junction and the acetabular rim, respectively. The aim of this study was to explore the relationship between these two measurements on frog-leg lateral hip radiographs. Fifty frog-leg lateral hip radiographs were evaluated by two orthopaedic surgeons and two radiologists. Each reviewer measured the alpha and beta angles on two separate occasions to determine the relationship between positive alpha and beta angles and the inter- and intra-observer reliability of these measurements. There was no significant association between positive alpha and beta angles, [kappa range -0.043 (95 % CI -0.17 to 0.086) to 0.54 (95 % CI 0.33-0.75)]. Intra-observer reliability was high [alpha angle intra-class correlation coefficient (ICC) range 0.74 (95 % CI 0.58-0.84) to 0.99 (95 % CI 0.98-0.99) and beta angle ICC range 0.86 (95 % CI 0.76-0.92) to 0.97 (95 % CI 0.95-0.98)]. There is no statistical or functional relationship between readings of positive alpha and beta angles. The radiographic measurements resulted in high intra-observer and fair-to-moderate inter-observer reliability. Results of this study suggest that the presence of a CAM lesion on lateral radiographs as suggested by a positive alpha angle does not necessitate a decrease in clearance between the femoral head and acetabular rim as measured by the beta angle and thus may not be the best measure of functional impingement. Understanding the relationship between these two aspects of femoroacetabular impingement improves a surgeon's ability to anticipate potential operative management.
SU-F-T-177: Impacts of Gantry Angle Dependent Scanning Beam Properties for Proton Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Clasie, B; Lu, H
Purpose: In pencil beam scanning (PBS), the delivered spot MU, position and size are slightly different at different gantry angles. We investigated the level of delivery uncertainty at different gantry angles through a log file analysis. Methods: 34 PBS fields covering full 360 degrees gantry angle spread were collected retrospectively from 28 patients treated at our institution. All fields were delivered at zero gantry angle and the prescribed gantry angle, and measured at isocenter with the MatriXX 2D array detector at the prescribed gantry angle. The machine log files were analyzed to extract the delivered MU per spot and themore » beam position from the strip ionization chambers in the treatment nozzle. The beam size was separately measured as a function of gantry angle and beam energy. Using this information, the dose was calculated in a water phantom at both gantry angles and compared to the measurement using the 3D γ-index at 2mm/2%. Results: The spot-by-spot difference between the beam position in the log files from the delivery at the two gantry angles has a mean of 0.3 and 0.4 mm and a standard deviation of 0.6 and 0.7 mm for × and y directions, respectively. Similarly, the spot-by-spot difference between the MU in the log files from the delivery at the two gantry angles has a mean 0.01% and a standard deviation of 0.7%. These small deviations lead to an excellent agreement in dose calculations with an average γ pass rate for all fields being approximately 99.7%. When each calculation is compared to the measurement, a high correlation in γ was also found. Conclusion: Using machine logs files, we verified that PBS beam delivery at different gantry angles are sufficiently small and the planned spot position and MU. This study brings us one step closer to simplifying our patient-specific QA.« less
Elliptic Painlevé equations from next-nearest-neighbor translations on the E_8^{(1)} lattice
NASA Astrophysics Data System (ADS)
Joshi, Nalini; Nakazono, Nobutaka
2017-07-01
The well known elliptic discrete Painlevé equation of Sakai is constructed by a standard translation on the E_8(1) lattice, given by nearest neighbor vectors. In this paper, we give a new elliptic discrete Painlevé equation obtained by translations along next-nearest-neighbor vectors. This equation is a generic (8-parameter) version of a 2-parameter elliptic difference equation found by reduction from Adler’s partial difference equation, the so-called Q4 equation. We also provide a projective reduction of the well known equation of Sakai.
Photographic Volume Estimation of CPAS Main Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
Capsule Parachute Assembly System (CPAS) flight tests regularly stage a helicopter to observe inflation of 116 ft D o ringsail Main parachutes. These side views can be used to generate 3-D models of inflating canopies to estimate enclosed volume. Assuming a surface of revolution is inadequate because reefed canopies in a cluster are elongated due to mutual aerodynamic interference. A method was developed to combine the side views with upward looking HD video to account for non-circular cross sections. Approximating the cross sections as elliptical greatly improves accuracy. But since that correction requires manually tracing projected outlines, the actual irregular shapes can be used to generate high fidelity models. Compensation is also made for apparent tilt angle. Validation was accomplished by comparing perimeter and projected area with known line lengths and/or high quality photogrammetry.
A new device for high-temperature in situ GISAXS measurements
NASA Astrophysics Data System (ADS)
Fritz-Popovski, Gerhard; Bodner, Sabine C.; Sosada-Ludwikowska, Florentyna; Maier, Günther A.; Morak, Roland; Chitu, Livia; Bruegemann, Lutz; Lange, Joachim; Krane, Hans-Georg; Paris, Oskar
2018-03-01
A heating stage originally designed for diffraction experiments is implemented into a Bruker NANOSTAR instrument for in situ grazing incidence small-angle x-ray scattering experiments. A controlled atmosphere is provided by a dome separating the sample environment from the evacuated scattering instrument. This dome is double shelled in order to enable cooling water to flow through it. A mesoporous silica film templated by a self-assembled block copolymer system is investigated in situ during step-wise heating in air. The GISAXS pattern shows the structural development of the ordered lattice of parallel cylindrical pores. The deformation of the elliptical pore-cross section perpendicular to the film surface was studied with increasing temperature. Moreover, the performance of the setup was tested by controlled in situ heating of a copper surface under controlled oxygen containing atmosphere.
Wafer scale oblique angle plasma etching
Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean
2017-05-23
Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.
Determining the Separation and Position Angles of Orbiting Binary Stars: Comparison of Three Methods
NASA Astrophysics Data System (ADS)
Walsh, Ryan; Boule, Cory; Andrews, Katelyn; Penfield, Andrew; Ross, Ian; Lucas, Gaylon; Braught, Trisha; Harfenist, Steven; Goodale, Keith
2015-07-01
To initiate a long term binary star research program, undergraduate students compared the accuracy and ease of measuring the separations and position angles of three long period binary pairs using three different measurement techniques. It was found that digital image capture using BackyardEOS software and subsequent analysis in Adobe Photoshop was the most accurate and easiest to use of our three methods. The systems WDS J17419+7209 (STF 2241AB), WDS 19418+5032 (STFA 46AB), and WDS 16362+5255 (STF 2087AB) were found to have separations and position angles of: 30", 16°; 39.7", 133°; and 3.1", 104°, respectively. This method produced separation values within 1.3" and position angle values within 1.3° of the most recently observed values found in the Washington Double Star Catalog.
A transmission line model for propagation in elliptical core optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.
The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the casemore » of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.« less
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
Positron Emission Mammography with Multiple Angle Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark F. Smith; Stan Majewski; Raymond R. Raylman
2002-11-01
Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less
Kim, Su Jin; Ryu, In Yong; Kim, Sung Wan; Lee, Kun Hee
2017-10-16
Rhinoplasty surgeons are aware that the nasal profile differs according to body position, namely, the erect position in the consultation room vs the supine position on the operating table. It is not clear whether this difference is caused by an optical illusion or skin laxity due to positional change. To evaluate anthropometric measurements of the nose with different body positions and determine whether the supine position affects the nasal profile. In this retrospective study, 103 patients who underwent primary rhinoplasty were enrolled. Preoperatively, all patients underwent lateral cephalography in the erect position, and facial computed tomography (CT), in the supine position. We measured four nasal anthropometric parameters (the nasofrontal, nasolabial, and nasomental angles, and Simon's ratio) on lateral cephalograms and facial CT images, and compared these parameters between the two body positions. The nasofrontal angle was greater on facial CT than on cephalograms (P < 0.01). This difference was not related to age, sex, or body mass index (P > 0.05 each). We found no significant difference (P > 0.05) between the two positions in the nasolabial angle, nasomental angle, or Simon's ratio. The supine position does affect the nasal profile, especially in the radix area. Surgeons need to consider this difference in patients undergoing rhinoplasty. 2. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com
NASA Technical Reports Server (NTRS)
Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.; Florance, Jennifer P.; Keller, Donald F.
2005-01-01
A wind tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing capability. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at momentum coefficients (Cm) from 0.0 to 0.12. Test data were acquired at Mach numbers of 0.3, 0.5, 0.7, 0.8, and 0.84 at Reynolds numbers per foot of 2.43 x 105 to 1.05 x 106. For a transonic condition, (Mach = 0.8 at alpha = 3 degrees), it was generally found the smaller slot and larger Coanda surface combination was overall more effective than other slot/Coanda surface combinations. Lower surface blowing was not as effective as the upper surface blowing over the same range of momentum coefficients. No appreciable Coanda surface, slot height, or slot blowing position preference was indicated transonically with the dual slot blowing.
NASA Astrophysics Data System (ADS)
Kotlyarov, Vladimir; Minakov, Alexander
2015-07-01
We study the long-time asymptotic behavior of the Cauchy problem for the modified Korteweg—de Vries equation with an initial function of the step type. This function rapidly tends to zero as x\\to +∞ and to some positive constant c as x\\to -∞ . In 1989 Khruslov and Kotlyarov have found (Khruslov and Kotlyarov 1989 Inverse Problems 5 1075-88) that for a large time the solution breaks up into a train of asymptotic solitons located in the domain 4{c}2t-{C}N{ln}t\\lt x≤slant 4{c}2t ({C}N is a constant). The number N of these solitons grows unboundedly as t\\to ∞ . In 2010 Kotlyarov and Minakov have studied temporary asymptotics of the solution of the Cauchy problem on the whole line (Kotlyarov and Minakov 2010 J. Math. Phys. 51 093506) and have found that in the domain -6{c}2t\\lt x\\lt 4{c}2t this solution is described by a modulated elliptic wave. We consider here the modulated elliptic wave in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. Our main result shows that the modulated elliptic wave also breaks up into solitons, which are similar to the asymptotic solitons in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88), but differ from them in phase. It means that the modulated elliptic wave does not represent the asymptotics of the solution in the domain 4{c}2t-{C}N{ln}t\\lt x\\lt 4{c}2t. The correct asymptotic behavior of the solution is given by the train of asymptotic solitons given in Khruslov and Kotlyarov (1989 Inverse Problems 5 1075-88). However, in the asymptotic regime as t\\to ∞ in the region 4{c}2t-\\displaystyle \\frac{N+1/4}{c}{ln}t\\lt x\\lt 4{c}2t-\\displaystyle \\frac{N-3/4}{c}{ln}t we can watch precisely a pair of solitons with numbers N. One of them is the asymptotic soliton while the other soliton is generated from the elliptic wave. Their phases become closer to each other for a large N, i.e. these solitons are also close to each other. This result gives the answer on a very important question about matching of the asymptotic formulas in the mentioned region where the both formulas are well-defined. Thus we have here a new and previously unknown mechanism (5.35) of matching of the asymptotics of the solution in the adjacent regions.
The Stellar Population Histories of Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Trager, Scott Charles
1997-08-01
This dissertation sets out to probe the stellar population histories of local field and distant cluster elliptical galaxies. Absorption-line strengths of the centers of 381 early-type galaxies and 38 globular clusters measured from the Lick Image Dissector Scanner (Lick/IDS) are presented. Error estimation and corrections for velocity-dispersion broadening are described in detail. Monte Carlo simulations show that the Lick/IDS data are not accurate enough to infer ages and abundances of individual ellipticals with confidence. The excellent data of Gonzalez (1993) are therefore used to infer the stellar population ages and abundances of the centers of local field ellipticals. Elliptical galaxy nuclei follow three relations in this sample. (1) The t-Z relation. Elliptical nuclei have an age-abundance relation at fixed velocity dispersion σ that follows the Worthey (1994) '3/2 rule.' Ellipticals therefore have fixed color and metal-line strengths at fixed σ. (2) The σ-Z relation. The abundance zeropoint of the t-Z relation increases with increasing σ. Taken together, (1) and (2) predict scaling relations like the Mg2-σ and color-magnitude relations. (3) The σ- (Mg/Fe) relation. The abundance ratio (Mg/Fe) increases with increasing σ, as the σ-Z relation for Mg has twice the slope of the σ-Z relation for Fe. Relations (1)-(3) can be expressed as a pair of planes in t-Z-σ space, one for Fe and one for Mg, with similar age dependences but different σ-dependences. Scenarios for the possible origins of these relations are presented. Absorption-line strengths of eighteen early-type galaxies in two rich clusters at z = 0.41 (CL0939 + 4713) and z = 0.76 (CL1322 + 3027) have been measured from Keck LRIS spectra. The Balmer-line strengths of ellipticals at z = 0.41 are consistent with passive evolution of local field ellipticals but seem too metal-rich. Both Balmer- and metal-line strengths of ellipticals at z = 0.76 are consistent with passive evolution of local field ellipticals. Spectra of four z $>$ 3 objects discovered serendipitiously are presented. They are small (r1/2 ~ 10 kpc), bright (LB ~ 1-10 LB*), lumpy, and are most likely gravitationally lensed. They are metal-poor (Z/ ~ 0.1 Zsolar), mildly dusty, and have high star-formation rates (˙ M/ ~>/ 2 Msolar yr-1). A model for their evolution is presented. It is suggested that they are the progenitors of the Population II component of local spheroids.
NASA Astrophysics Data System (ADS)
Hoffert, Michael J.; Weise, Eric; Clow, Jenna; Hirzel, Jacquelyn; Leeder, Brett; Molyneux, Scott; Scutti, Nicholas; Spartalis, Sarah; Tokuhara, Corey
2014-05-01
Six beginning astronomy students, part of an undergraduate stellar astronomy course, one advanced undergraduate student assistant, and a professor measured the position angles and separations of Washington Double Stars (WDS) 05460 + 2119 (also known as ARY 6 AD and ARY 6 AE). The measurements were made at the Manzanita Observatory (116° 20'42" W, 32° 44' 5" N) of the Tierra Astronomical Institute on 10 Blackwood Rd. in Boulevard, California (www.youtube.com/watch?v=BHVdcMGBGDU), at an elevation of 4,500 ft. A Celestron 11" HD Edge telescope was used to measure the position angles and separations of ARY 6 AD and ARY 6 AE. The averages of our measurements are as follows: separation AD: trial 1 124.1 arcseconds and trial 2 124.5 arcseconds. The average of separation for AE: trial 1 73.3 arcseconds and trial 2 73.8 arcseconds. The averages of position angle for AD: trial 1 159.9 degrees and trial 2 161.3 degrees. The averages of position angle for AE: trial 1 232.6 degrees and trial 2 233.7 degrees.
Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals
NASA Astrophysics Data System (ADS)
Schwalm, William A.
2015-12-01
This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.
Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism
NASA Astrophysics Data System (ADS)
Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo
2018-05-01
We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalisation of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. We study the properties of our iterated integrals and their relationship to the multiple elliptic polylogarithms from the mathematics literature. On the one hand, we find that our iterated integrals span essentially the same space of functions as the multiple elliptic polylogarithms. On the other, our formulation allows for a more direct use to solve a large variety of problems in high-energy physics. We demonstrate the use of our functions in the evaluation of the Laurent expansion of some hypergeometric functions for values of the indices close to half integers.
C1,1 regularity for degenerate elliptic obstacle problems
NASA Astrophysics Data System (ADS)
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
Eta Carinae: Orientation of The Orbital Plane
NASA Technical Reports Server (NTRS)
Gull, T. R.; Nielsen, K. E.; Ivarsson, S.; Corcoran, M. F.; Verner, E.; Hillier, J. D.
2006-01-01
Evidence continues to build that Eta Carinae is a massive binary system with a hidden hot companion in a highly elliptical orbit. We present imaging and spectroscopic evidence that provide clues to the orientation of the orbital plane. The circumstellar ejecta, known as the Homunculus and Little Homunculus, are hourglass-shaped structures, one encapsulated within the other, tilted at about 45 degrees from the sky plane. A disk region lies between the bipolar lobes. Based upon their velocities and proper motions, Weigelt blobs B, C and D, very bright emission clumps 0.1 to 0.3" Northwest from Eta Carinae, lie in the disk. UV flux from the hot companion, Eta Car B, photoexcites the Weigelt blobs. Other clumps form a complete chain around the star, but are not significantly photoexcited. The strontium filament, a 'neutral' emission structure, lies in the same general direction as the Weigelt blobs and exhibits peculiar properties indicative that much mid-UV, but no hydrogen-ionizing radiation impinges on this structure. It is shielded by singly-ionized iron. P Cygni absorptions in Fe I I lines, seen directly in line of sight from Eta Carinae, are absent in the stellar light scattered by the Weigelt blobs. Rather than a strong absorption extending to -600 km/s, a low velocity absorption feature extends from -40 to -150 km/s. No absorbing Fe II exists between Eta Carinae and Weigelt D, but the outer reaches of the wind are intercepted in line of sight from Weigelt D to the observer. This indicates that the UV radiation is constrained by the dominating wind of Eta Car A to a small cavity carved out by the weaker wind of Eta Car B. Since the high excitation nebular lines are seen in the Weigelt blobs at most phases, the cavity, and hence the major axis of the highly elliptical orbit, must lie in the general direction of the Weigelt blobs. The evidence is compelling that the orbital major axis of Eta Carinae is projected at -45 degrees position angle on the sky. Moreover the milliarcsecond-scale extended structure of Eta Carinae, recently detected by VLTI, may be evidence of the binary companion in the disk plane, not necessarily of a single star as a prolate spheroid extending along the ejecta polar axis.
Wang, Xuyi; Peng, Jianping; Li, De; Zhang, Linlin; Wang, Hui; Jiang, Leisheng; Chen, Xiaodong
2016-10-04
The success of Bernese periacetabular osteotomy depends significantly on how extent the acetabular fragment can be corrected to its optimal position. This study was undertaken to investigate whether correcting the acetabular fragment into the so-called radiological "normal" range is the best choice for all developmental dysplasia of the hip with different severities of dysplasia from the biomechanical view? If not, is there any correlation between the biomechanically optimal position of the acetabular fragment and the severity of dysplasia? Four finite element models with different severities of dysplasia were developed. The virtual periacetabular osteotomy was performed with the acetabular fragment rotated anterolaterally to incremental center-edge angles; then, the contact area and pressure and von Mises stress in the cartilage were calculated at different correction angles. The optimal position of the acetabular fragment for patients 1, 2, and 3 was when the acetabular fragment rotated 17° laterally (with the lateral center-edge angle of 36° and anterior center-edge angle of 58°; both were slightly larger than the "normal" range), 25° laterally following further 5° anterior rotation (with the lateral center-edge angle of 31° and anterior center-edge angle of 51°; both were within the "normal" range), and 30° laterally following further 10° anterior rotation (with the lateral center-edge angle of 25° and anterior center-edge angle of 40°; both were less than the "normal" range), respectively. The optimal corrective position of the acetabular fragment is severity dependent rather than within the radiological "normal" range for developmental dysplasia of the hip. We prudently proposed that the optimal correction center-edge angle of mild, moderate, and severe developmental dysplasia of the hip is slightly larger than the "normal" range, within the "normal" range, and less than the lower limit of the "normal" range, respectively.
Does hemipelvis structure and position influence acetabulum orientation?
Musielak, Bartosz; Jóźwiak, Marek; Rychlik, Michał; Chen, Brian Po-Jung; Idzior, Maciej; Grzegorzewski, Andrzej
2016-03-16
Although acetabulum orientation is well established anatomically and radiographically, its relation to the innominate bone has rarely been addressed. If explored, it could open the discussion on patomechanisms of such complex disorders as femoroacetabular impingement (FAI). We therefore evaluated the influence of pelvic bone position and structure on acetabular spatial orientation. We describe this relation and its clinical implications. This retrospective study was based on computed tomography scanning of three-dimensional models of 31 consecutive male pelvises (62 acetabulums). All measurements were based on CT spatial reconstruction with the use of highly specialized software (Rhinoceros). Relations between acetabular orientation (inclination, tilt, anteversion angles) and pelvic structure were evaluated. The following parameters were evaluated to assess the pelvic structure: iliac opening angle, iliac tilt angle, interspinous distance (ISD), intertuberous distance (ITD), height of the pelvis (HP), and the ISD/ITD/HP ratio. The linear and nonlinear dependence of the acetabular angles and hemipelvic measurements were examined with Pearson's product - moment correlation and Spearman's rank correlation coefficient. Correlations different from 0 with p < 0.05 were considered statistically significant. Comparison of the axis position with pelvis structure with orientation in the horizontal plane revealed a significant positive correlation between the acetabular anteversion angle and the iliac opening angle (p = 0.041 and 0.008, respectively). In the frontal plane, there was a positive correlation between the acetabular inclination angle and the iliac tilt angle (p = 0.025 and 0.014, respectively) and the acetabular inclination angle and the ISD/ITD/HP ratio (both p = 0.048). There is a significant correlation of the hemipelvic structure and acetabular orientation under anatomic conditions, especially in the frontal and horizontal planes. In the anteroposterior view, the more tilted-down innominate bone causes a more caudally oriented acetabulum axis, whereas in the horizontal view this relation is reversed. This study may serve as a basis for the discussion on the role of the pelvis in common disorders of the hip.
Eliminating Deadbands In Resistive Angle Sensors
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Allen, Russell O.; Marchetto, Carl A.
1992-01-01
Proposed shaft-angle-measuring circuit provides continuous indication of angle of rotation from 0 degree to 360 degrees. Sensing elements are two continuous-rotation potentiometers, and associated circuitry eliminates deadband that occurs when wiper contact of potentiometer crosses end contacts near 0 degree position of circular resistive element. Used in valve-position indicator or similar device in which long operating life and high angular precision not required.
Magnetic Fields in Blazar Jets: Radio and Optical Polarization over 20-30 Years
NASA Astrophysics Data System (ADS)
Caldwell, Caroline; Wills, B.; Wills, D.; Aller, H.; Aller, M.
2011-01-01
Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: non-BL Lac blazars with strong broad emission lines (quasars), and BL Lac objects with only weak lines. We have compiled optical linear polarization measurements of 22 blazars, incorporating much archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks. These data enabled us to compare optical and radio polarization position angles. We constructed histograms of the separation of polarization position angles of the optical and radio. We found that in BL Lac objects, the histogram has a significant peak at zero separation. Since the polarization position angle indicates the direction perpendicular to the magnetic field vector, finding similar polarization position angles indicates a similar magnetic field at the origin of the optical and radio synchrotron radiation. Non-BL Lac blazars show peaks at zero and 90 degree separation of position angle. The 90 degree separation may be caused by optical depth effects within the jet. Although there are a few sources that do not strongly display the characteristics summarized by the histograms, most sources produce optical and radio polarization position angles that nearly coincide or are separated by 90 degrees. Using VLBA and VLA radio maps, we interpret the results in terms of the position angle of the jet in the sky plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Wenqiang, E-mail: wfeng1@vols.utk.edu; Salgado, Abner J., E-mail: asalgad1@utk.edu; Wang, Cheng, E-mail: cwang1@umassd.edu
We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a generalmore » framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection and the square phase field crystal model – are carried out to verify the efficiency of the scheme.« less
NASA Astrophysics Data System (ADS)
Feng, Wenqiang; Salgado, Abner J.; Wang, Cheng; Wise, Steven M.
2017-04-01
We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems - including thin film epitaxy with slope selection and the square phase field crystal model - are carried out to verify the efficiency of the scheme.
Impact of elliptical shaped red oak logs on lumber grade and volume recovery
Patrick M. Rappold; Brian H. Bond; Janice K. Wiedenbeck; Roncs Ese-Etame
2007-01-01
This research examined the grade and volume of lumber recovered from red oak logs with elliptical shaped cross sections. The volume and grade of lumber recovered from red oak logs with low (e ≤ 0.3) and high (e ≥ 0.4) degrees of ellipticity was measured at four hardwood sawmills. There was no significant difference (...
On the index of noncommutative elliptic operators over C*-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savin, Anton Yu; Sternin, Boris Yu
2010-05-11
We consider noncommutative elliptic operators over C*-algebras, associated with a discrete group of isometries of a manifold. The main result of the paper is a formula expressing the Chern characters of the index (Connes invariants) in topological terms. As a corollary to this formula a simple proof of higher index formulae for noncommutative elliptic operators is obtained. Bibliography: 36 titles.