Science.gov

Sample records for elongation factor nelf

  1. Cellular dynamics of the negative transcription elongation factor NELF

    SciTech Connect

    Yung, Tetsu M.C.; Narita, Takashi; Komori, Toshiharu; Yamaguchi, Yuki; Handa, Hiroshi

    2009-06-10

    Negative Elongation Factor (NELF) is a transcription factor discovered based on its biochemical activity to suppress transcription elongation, and has since been implicated in various diseases ranging from neurological disorders to cancer. Besides its role in promoter-proximal pausing of RNA polymerase II during early stages of transcription, recently we found that it also plays important roles in the 3'-end processing of histone mRNA. Furthermore, NELF has been found to form a distinct subnuclear structure, which we named NELF bodies. These recent developments point to a wide range of potential functions for NELF, and, as most studies on NELF thus far had been carried out in vitro, here, we prepared a complete set of fusion protein constructs of NELF subunits and carried out a general cell biological study of the intracellular dynamics of NELF. Our data show that NELF subunits exhibit highly specific subcellular localizations, such as in NELF bodies or in midbodies, and some shuttle actively between the nucleus and cytoplasm. We further show that loss of NELF from cells can lead to enlarged and/or multiple nuclei. This work serves as a foundation and starting point for further cell biological investigations of NELF in the future.

  2. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond.

    PubMed

    Yamaguchi, Yuki; Shibata, Hirotaka; Handa, Hiroshi

    2013-01-01

    DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.

  3. Architecture and RNA binding of the human negative elongation factor

    PubMed Central

    Vos, Seychelle M; Pöllmann, David; Caizzi, Livia; Hofmann, Katharina B; Rombaut, Pascaline; Zimniak, Tomasz; Herzog, Franz; Cramer, Patrick

    2016-01-01

    Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI: http://dx.doi.org/10.7554/eLife.14981.001 PMID:27282391

  4. NELF Potentiates Gene Transcription in the Drosophila Embryo

    PubMed Central

    Wang, Xiaoling; Hang, Saiyu; Prazak, Lisa; Gergen, J. Peter

    2010-01-01

    A hallmark of genes that are subject to developmental regulation of transcriptional elongation is association of the negative elongation factor NELF with the paused RNA polymerase complex. Here we use a combination of biochemical and genetic experiments to investigate the in vivo function of NELF in the Drosophila embryo. NELF associates with different gene promoter regions in correlation with the association of RNA polymerase II (Pol II) and the initial activation of gene expression during the early stages of embryogenesis. Genetic experiments reveal that maternally provided NELF is required for the activation, rather than the repression of reporter genes that emulate the expression of key developmental control genes. Furthermore, the relative requirement for NELF is dictated by attributes of the flanking cis-regulatory information. We propose that NELF-associated paused Pol II complexes provide a platform for high fidelity integration of the combinatorial spatial and temporal information that is central to the regulation of gene expression during animal development. PMID:20634899

  5. Negative elongation factor controls energy homeostasis in cardiomyocytes.

    PubMed

    Pan, Haihui; Qin, Kunhua; Guo, Zhanyong; Ma, Yonggang; April, Craig; Gao, Xiaoli; Andrews, Thomas G; Bokov, Alex; Zhang, Jianhua; Chen, Yidong; Weintraub, Susan T; Fan, Jian-Bing; Wang, Degeng; Hu, Yanfen; Aune, Gregory J; Lindsey, Merry L; Li, Rong

    2014-04-10

    Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes.

  6. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly

    PubMed Central

    Gilchrist, Daniel A.; Nechaev, Sergei; Lee, Chanhyo; Ghosh, Saikat Kumar B.; Collins, Jennifer B.; Li, Leping; Gilmour, David S.; Adelman, Karen

    2008-01-01

    The Negative Elongation Factor (NELF) is a transcription regulatory complex that induces stalling of RNA polymerase II (Pol II) during early transcription elongation and represses expression of several genes studied to date, including Drosophila Hsp70, mammalian proto-oncogene junB, and HIV RNA. To determine the full spectrum of NELF target genes in Drosophila, we performed a microarray analysis of S2 cells depleted of NELF and discovered that NELF RNAi affects many rapidly inducible genes involved in cellular responses to stimuli. Surprisingly, only one-third of NELF target genes were, like Hsp70, up-regulated by NELF-depletion, whereas the majority of target genes showed decreased expression levels upon NELF RNAi. Our data reveal that the presence of stalled Pol II at this latter group of genes enhances gene expression by maintaining a permissive chromatin architecture around the promoter-proximal region, and that loss of Pol II stalling at these promoters is accompanied by a significant increase in nucleosome occupancy and a decrease in histone H3 Lys 4 trimethylation. These findings identify a novel, positive role for stalled Pol II in regulating gene expression and suggest that there is a dynamic interplay between stalled Pol II and chromatin structure. PMID:18628398

  7. NF-κB-repressing factor phosphorylation regulates transcription elongation via its interactions with 5'→3' exoribonuclease 2 and negative elongation factor.

    PubMed

    Rother, Sascha; Bartels, Myriam; Schweda, Aike Torben; Resch, Klaus; Pallua, Norbert; Nourbakhsh, Mahtab

    2016-01-01

    NF-κB-repressing factor (NKRF) inhibits transcription elongation by binding to specific sequences in target promoters. Stimuli such as IL-1 have been shown to overcome this inhibitory action and enable the resumption of transcription elongation machinery by an unknown mechanism. Using mass spectrometry and in vitro phosphorylation analyses, we demonstrate that NKRF is phosphorylated within 3 different domains in unstimulated HeLa cells. Phosphoamino acid mapping and mutation analysis of NKRF further suggest that only Ser phosphorylation within aa 421-429 is regulated by IL-1 stimulation. In copurification studies, aa 421-429 is required for interactions between NKRF, 5'→3' exoribonuclease 2 (XRN2) and the negative elongation factor (NELF)-E in HeLa cells. Chromatin immunoprecipitation experiments further show that IL-1 stimulation leads to decrease in NKRF aa 421-429 phosphorylation and dissociation of NELF-E and XRN2 by concomitant resumption of transcription elongation of a synthetic reporter or the endogenous NKRF target gene, IL-8. Together, NKRF phosphorylation modulates promoter-proximal transcription elongation of NF-κB/NKRF-regulated genes via direct interactions with elongation complex in response to specific stimuli.

  8. Chromatin structure is implicated in "late" elongation checkpoints on the U2 snRNA and beta-actin genes.

    PubMed

    Egloff, Sylvain; Al-Rawaf, Hadeel; O'Reilly, Dawn; Murphy, Shona

    2009-07-01

    The negative elongation factor NELF is a key component of an early elongation checkpoint generally located within 100 bp of the transcription start site of protein-coding genes. Negotiation of this checkpoint and conversion to productive elongation require phosphorylation of the carboxy-terminal domain of RNA polymerase II (pol II), NELF, and DRB sensitivity-inducing factor (DSIF) by positive transcription elongation factor b (P-TEFb). P-TEFb is dispensable for transcription of the noncoding U2 snRNA genes, suggesting that a NELF-dependent checkpoint is absent. However, we find that NELF at the end of the 800-bp U2 gene transcription unit and RNA interference-mediated knockdown of NELF causes a termination defect. NELF is also associated 800 bp downstream of the transcription start site of the beta-actin gene, where a "late" P-TEFb-dependent checkpoint occurs. Interestingly, both genes have an extended nucleosome-depleted region up to the NELF-dependent control point. In both cases, transcription through this region is P-TEFb independent, implicating chromatin in the formation of the terminator/checkpoint. Furthermore, CTCF colocalizes with NELF on the U2 and beta-actin genes, raising the possibility that it helps the positioning and/or function of the NELF-dependent control point on these genes.

  9. CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription.

    PubMed

    Laitem, Clélia; Zaborowska, Justyna; Tellier, Michael; Yamaguchi, Yuki; Cao, Qingfu; Egloff, Sylvain; Handa, Hiroshi; Murphy, Shona

    2015-01-01

    CTCF is a versatile transcription factor with well-established roles in chromatin organization and insulator function. Recent findings also implicate CTCF in the control of elongation by RNA polymerase (RNAP) II. Here we show that CTCF knockdown abrogates RNAP II pausing at the early elongation checkpoint of c-myc by affecting recruitment of DRB-sensitivity-inducing factor (DSIF). CTCF knockdown also causes a termination defect on the U2 snRNA genes (U2), by affecting recruitment of negative elongation factor (NELF). In addition, CTCF is required for recruitment of positive elongation factor b (P-TEFb), which phosphorylates NELF, DSIF, and Ser2 of the RNAP II CTD to activate elongation of transcription of c-myc and recognition of the snRNA gene-specific 3' box RNA processing signal. These findings implicate CTCF in a complex network of protein:protein/protein:DNA interactions and assign a key role to CTCF in controlling RNAP II transcription through the elongation checkpoint of the protein-coding c-myc and the termination site of the non-coding U2, by regulating the recruitment and/or activity of key players in these processes.

  10. Elongation factors in protein synthesis.

    PubMed

    Kraal, B; Bosch, L; Mesters, J R; de Graaf, J M; Woudt, L P; Vijgenboom, E; Heinstra, P W; Zeef, L A; Boon, C

    1993-01-01

    Recent discoveries of elongation factor-related proteins have considerably complicated the simple textbook scheme of the peptide chain elongation cycle. During growth and differentiation the cycle may be regulated not only by factor modification but also factor replacement. In addition, rare tRNAs may have their own rare factor proteins. A special case is the acquisition of resistance by bacteria to elongation factor-directed antibiotics. Pertinent data from the literature and our own work with Escherichia coli and Streptomyces are discussed. The GTP-binding domain of EF-Tu has been studied extensively, but little molecular detail is available on the interactions with its other ligands or effectors, or on the way they are affected by the GTPase switch signal. A growing number of EF-Tu mutants obtained by ourselves and others are helping us in testing current ideas. We have found a synergistic effect between EF-Tu and EF-G in their uncoupled GTPase reactions on empty ribosomes. Only the EF-G reaction is perturbed by fluoroaluminates.

  11. Promoting elongation with transcript cleavage stimulatory factors.

    PubMed

    Fish, Rachel N; Kane, Caroline M

    2002-09-13

    Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.

  12. Scatter factor corrections for elongated fields.

    PubMed

    Higgins, P D; Sohn, W H; Sibata, C H; McCarthy, W A

    1989-01-01

    Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor.

  13. Scatter factor corrections for elongated fields

    SciTech Connect

    Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A. )

    1989-09-01

    Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor.

  14. Control of Transcriptional Elongation

    PubMed Central

    Kwak, Hojoong; Lis, John T.

    2014-01-01

    Elongation is becoming increasingly recognized as a critically controlled step in transcriptional regulation. While traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II pausing near promoters, and how the participating factors were identified. Among the factors we describe are NELF and DSIF, the pausing factors, and P-TEFb, the key player in pause release. We also describe non-exclusive models for how pausing is achieved by making use of high resolution genome-wide mapping of paused Pol II relative to promoter elements and the first nucleosome. We also discuss Pol II elongation through the bodies of genes and the roles of FACT and Spt6, the factors that allow Pol II to move through nucleosomes. PMID:24050178

  15. Functional specialization of transcription elongation factors

    PubMed Central

    Belogurov, Georgiy A; Mooney, Rachel A; Svetlov, Vladimir; Landick, Robert; Artsimovitch, Irina

    2009-01-01

    Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes. PMID:19096362

  16. (R)-β-lysine-modified elongation factor P functions in translation elongation.

    PubMed

    Bullwinkle, Tammy J; Zou, S Betty; Rajkovic, Andrei; Hersch, Steven J; Elgamal, Sara; Robinson, Nathaniel; Smil, David; Bolshan, Yuri; Navarre, William Wiley; Ibba, Michael

    2013-02-08

    Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational β-lysylation but not hydroxylation.

  17. Translation elongation-3-like factors: are they rational antifungal targets?

    PubMed

    Sturtevant, Joy

    2002-10-01

    The occurrence of fungal infection has escalated significantly in recent years and is expected to continue to increase for the foreseeable future. Unfortunately, only a limited number of antifungal drugs are currently available partially due to a lack of suitable targets. The most commonly used antifungals target the same molecule in the cell membrane and, while efficacious, are either extremely toxic or susceptible to resistance. This article examines elongation factor-3, which is unique to fungi and essential for fungal cell survival and, thus, an attractive antifungal target. A search for inhibitors of this 'perfect target' led to identification of compounds (sordarins) which inhibited elongation factor-2, a protein with a mammalian homologue. Molecular analysis demonstrated why sordarins can specifically act against fungal elongation factor-2. This data questions the validity of pursuing genes as targets only if they are unique to fungi. Proteins that are homologous to elongation factor-3 are also discussed. The advances in molecular techniques and bioinformatics will allow the re-evaluation of targets previously thought to be unattractive. In addition, molecular genetics provides new and novel information on cellular processes that can potentially introduce new targets.

  18. Maintenance of Transcription-Translation Coupling by Elongation Factor P

    PubMed Central

    Elgamal, Sara

    2016-01-01

    ABSTRACT Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. PMID:27624127

  19. Elongation factor-2: a useful gene for arthropod phylogenetics.

    PubMed

    Regier, J C; Shultz, J W

    2001-07-01

    Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid data sets consistently recovered Myriapoda and major chelicerate groups with high bootstrap support. Crustacea + Hexapoda (= Pancrustacea) was recovered with moderate support, whereas the conflicting group Myriapoda + Hexapoda (= Atelocerata) was never recovered and bootstrap values were always <5%. With additional nonarthropod sequences included, one indel supports monophyly of Tardigrada, Onychophora, and Arthropoda relative to molluscan, annelidan, and mammalian outgroups. New and previously published sequences from RNA polymerase II (1038 nucleotides) and elongation factor-1alpha (1092 nucleotides) were analyzed for the same taxa. A comparison of bootstrap values from the three genes analyzed separately revealed widely varying values for some clades, although there was never strong support for conflicting groups. In combined analyses, there was strong bootstrap support for the generally accepted clades Arachnida, Arthropoda, Euchelicerata, Hexapoda, and Pycnogonida, and for Chelicerata, Myriapoda, and Pancrustacea, whose monophyly is more controversial. Recovery of some additional groups was fairly robust to method of analysis but bootstrap values were not high; these included Pancrustacea + Chelicerata, Hexapoda + Cephalocarida + Remipedia, Cephalocarida + Remipedia, and Malaocostraca + Cirripedia. Atelocerata (= Myriapoda + Hexapoda) was never recovered. Elongation factor-2 is now the second protein-encoding, nuclear gene (in addition to RNA polymerase II) to support Pancrustacea over Atelocerata. Atelocerata is widely cited in morphology-based analyses, and the

  20. Doc Toxin Is a Kinase That Inactivates Elongation Factor Tu*

    PubMed Central

    Cruz, Jonathan W.; Rothenbacher, Francesca P.; Maehigashi, Tatsuya; Lane, William S.; Dunham, Christine M.; Woychik, Nancy A.

    2014-01-01

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site. PMID:24448800

  1. Engineering the elongation factor Tu for efficient selenoprotein synthesis.

    PubMed

    Haruna, Ken-ichi; Alkazemi, Muhammad H; Liu, Yuchen; Söll, Dieter; Englert, Markus

    2014-09-01

    Selenocysteine (Sec) is naturally co-translationally incorporated into proteins by recoding the UGA opal codon with a specialized elongation factor (SelB in bacteria) and an RNA structural signal (SECIS element). We have recently developed a SECIS-free selenoprotein synthesis system that site-specifically--using the UAG amber codon--inserts Sec depending on the elongation factor Tu (EF-Tu). Here, we describe the engineering of EF-Tu for improved selenoprotein synthesis. A Sec-specific selection system was established by expression of human protein O(6)-alkylguanine-DNA alkyltransferase (hAGT), in which the active site cysteine codon has been replaced by the UAG amber codon. The formed hAGT selenoprotein repairs the DNA damage caused by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine, and thereby enables Escherichia coli to grow in the presence of this mutagen. An EF-Tu library was created in which codons specifying the amino acid binding pocket were randomized. Selection was carried out for enhanced Sec incorporation into hAGT; the resulting EF-Tu variants contained highly conserved amino acid changes within members of the library. The improved UTu-system with EF-Sel1 raises the efficiency of UAG-specific Sec incorporation to >90%, and also doubles the yield of selenoprotein production. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase

    PubMed Central

    Pyr Dit Ruys, Sébastien; Wang, Xuemin; Smith, Ewan M.; Herinckx, Gaëtan; Hussain, Nusrat; Rider, Mark H.; Vertommen, Didier; Proud, Christopher G.

    2012-01-01

    eEF2K [eEF2 (eukaryotic elongation factor 2) kinase] phosphorylates and inactivates the translation elongation factor eEF2. eEF2K is not a member of the main eukaryotic protein kinase superfamily, but instead belongs to a small group of so-called α-kinases. The activity of eEF2K is normally dependent upon Ca2+ and calmodulin. eEF2K has previously been shown to undergo autophosphorylation, the stoichiometry of which suggested the existence of multiple sites. In the present study we have identified several autophosphorylation sites, including Thr348, Thr353, Ser366 and Ser445, all of which are highly conserved among vertebrate eEF2Ks. We also identified a number of other sites, including Ser78, a known site of phosphorylation, and others, some of which are less well conserved. None of the sites lies in the catalytic domain, but three affect eEF2K activity. Mutation of Ser78, Thr348 and Ser366 to a non-phosphorylatable alanine residue decreased eEF2K activity. Phosphorylation of Thr348 was detected by immunoblotting after transfecting wild-type eEF2K into HEK (human embryonic kidney)-293 cells, but not after transfection with a kinase-inactive construct, confirming that this is indeed a site of autophosphorylation. Thr348 appears to be constitutively autophosphorylated in vitro. Interestingly, other recent data suggest that the corresponding residue in other α-kinases is also autophosphorylated and contributes to the activation of these enzymes [Crawley, Gharaei, Ye, Yang, Raveh, London, Schueler-Furman, Jia and Cote (2011) J. Biol. Chem. 286, 2607–2616]. Ser366 phosphorylation was also detected in intact cells, but was still observed in the kinase-inactive construct, demonstrating that this site is phosphorylated not only autocatalytically but also in trans by other kinases. PMID:22216903

  3. Structure and expression of elongation factor 1 alpha in tomato.

    PubMed Central

    Pokalsky, A R; Hiatt, W R; Ridge, N; Rasmussen, R; Houck, C M; Shewmaker, C K

    1989-01-01

    A full-length cDNA clone, LeEF-1, has been isolated from tomato for the alpha subunit of elongation factor 1 (EF-1 alpha), a polypeptide which plays a central role in protein synthesis. The 448 amino acid protein encoded by this cDNA appears highly homologous to other EF-1 alpha s having a high degree of similarity (75-78%) to EF1 alpha previously described from both lower eukaryotes and animals. Southern analysis indicated that EF-1 alpha belongs to a small multigene family of 4-8 members in tomato. The pattern of expression of EF-1 alpha mRNA in various tomato tissues was analyzed by Northern analysis, in vitro translation and in situ hybridization. EF-1 alpha mRNA is an abundant species and higher levels of mRNA were found in developing tissues such as young leaves and green fruit compared to the mRNA levels observed in older tissues. The increased levels of EF-1 alpha mRNA therefore appear to correlate with higher levels of protein synthesis in developing tissues. Images PMID:2748335

  4. Elongation factor Tu is a multifunctional and processed moonlighting protein.

    PubMed

    Widjaja, Michael; Harvey, Kate Louise; Hagemann, Lisa; Berry, Iain James; Jarocki, Veronica Maria; Raymond, Benjamin Bernard Armando; Tacchi, Jessica Leigh; Gründel, Anne; Steele, Joel Ricky; Padula, Matthew Paul; Charles, Ian George; Dumke, Roger; Djordjevic, Steven Philip

    2017-09-11

    Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.

  5. Movement of elongation factor G between compact and extended conformations.

    PubMed

    Salsi, Enea; Farah, Elie; Netter, Zoe; Dann, Jillian; Ermolenko, Dmitri N

    2015-01-30

    Previous structural studies suggested that ribosomal translocation is accompanied by large interdomain rearrangements of elongation factor G (EF-G). Here, we follow the movement of domain IV of EF-G relative to domain II of EF-G using ensemble and single-molecule Förster resonance energy transfer. Our results indicate that ribosome-free EF-G predominantly adopts a compact conformation that can also, albeit infrequently, transition into a more extended conformation in which domain IV moves away from domain II. By contrast, ribosome-bound EF-G predominantly adopts an extended conformation regardless of whether it is interacting with pretranslocation ribosomes or with posttranslocation ribosomes. Our data suggest that ribosome-bound EF-G may also occasionally sample at least one more compact conformation. GTP hydrolysis catalyzed by EF-G does not affect the relative stability of the observed conformations in ribosome-free and ribosome-bound EF-G. Our data support a model suggesting that, upon binding to a pretranslocation ribosome, EF-G moves from a compact to a more extended conformation. This transition is not coupled to but likely precedes both GTP hydrolysis and mRNA/tRNA translocation.

  6. Movement of Elongation Factor G between Compact and Extended Conformations

    PubMed Central

    Salsi, Enea; Farah, Elie; Netter, Zoe; Dann, Jillian; Ermolenko, Dmitri N.

    2014-01-01

    Previous structural studies suggested that ribosomal translocation is accompanied by large interdomain rearrangements of elongation factor G (EF-G). Here, we follow the movement of domain IV of EF-G relative to domain II of EF-G using ensemble and single-molecule Förster resonance energy transfer (smFRET). Our results indicate that ribosome-free EF-G predominantly adopts a compact conformation that can also, albeit infrequently, transition into a more extended conformation in which domain IV moves away from domain II. By contrast, ribosome-bound EF-G predominantly adopts an extended conformation regardless of whether it is interacting with pre- or posttranslocation ribosomes. Our data suggest that ribosome-bound EF-G may also occasionally sample at least one more compact conformation. GTP hydrolysis catalyzed by EF-G does not affect the relative stability of the observed conformations in ribosome-free and ribosome-bound EF-G. Our data support a model suggesting that, upon binding to a pretranslocation ribosome, EF-G moves from a compact to a more extended conformation. This transition is not coupled to, but likely precedes both GTP hydrolysis and mRNA/tRNA translocation. PMID:25463439

  7. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu.

    PubMed

    Thirup, Søren S; Van, Lan Bich; Nielsen, Tine K; Knudsen, Charlotte R

    2015-07-01

    Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process. During translation, EF-Tu:GTP transports aminoacylated tRNA to the ribosome. GTP is hydrolyzed during this process, and subsequent reactivation of EF-Tu is catalyzed by EF-Ts. The reaction path of guanine-nucleotide exchange is structurally poorly defined for EF-Tu and EF-Ts. We have determined the crystal structures of the following reaction intermediates: two structures of EF-Tu:GDP:EF-Ts (2.2 and 1.8Å resolution), EF-Tu:PO4:EF-Ts (1.9Å resolution), EF-Tu:GDPNP:EF-Ts (2.2Å resolution) and EF-Tu:GDPNP:pulvomycin:Mg(2+):EF-Ts (3.5Å resolution). These structures provide snapshots throughout the entire exchange reaction and suggest a mechanism for the release of EF-Tu in its GTP conformation. An inferred sequence of events during the exchange reaction is presented.

  8. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.

    PubMed

    Yang, Xiao; Lewis, Peter J

    2010-01-01

    There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.

  9. Elongation factor G initiates translocation through a power stroke.

    PubMed

    Chen, Chunlai; Cui, Xiaonan; Beausang, John F; Zhang, Haibo; Farrell, Ian; Cooperman, Barry S; Goldman, Yale E

    2016-07-05

    During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and precise translocation. Whether this energy is used mainly to drive movements of the tRNAs and mRNA or to foster EF-G dissociation from the ribosome after translocation has been a long-lasting debate. Free EF-G, not bound to the ribosome, adopts quite different structures in its GTP and GDP forms. Structures of EF-G on the ribosome have been visualized at various intermediate steps along the translocation pathway, using antibiotics and nonhydolyzable GTP analogs to block translocation and to prolong the dwell time of EF-G on the ribosome. However, the structural dynamics of EF-G bound to the ribosome have not yet been described during normal, uninhibited translocation. Here, we report the rotational motions of EF-G domains during normal translocation detected by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy. Our study shows that EF-G has a small (∼10°) global rotational motion relative to the ribosome after GTP hydrolysis that exerts a force to unlock the ribosome. This is followed by a larger rotation within domain III of EF-G before its dissociation from the ribosome.

  10. Structure of the complete elongation complex of RNA polymerase II with basal factors.

    PubMed

    Ehara, Haruhiko; Yokoyama, Takeshi; Shigematsu, Hideki; Yokoyama, Shigeyuki; Shirouzu, Mikako; Sekine, Shun-Ichi

    2017-09-01

    In the early stage of transcription, eukaryotic RNA polymerase II (Pol II) exchanges initiation factors with elongation factors to form an elongation complex for processive transcription. Here we report the structure of the Pol II elongation complex bound with the basal elongation factors Spt4/5, Elf1, and TFIIS. Spt4/5 (the Spt4/Spt5 complex) and Elf1 modify a wide area of the Pol II surface. Elf1 bridges the Pol II central cleft, completing a "DNA entry tunnel" for downstream DNA. Spt4 and the Spt5 NGN and KOW1 domains encircle the upstream DNA, constituting a "DNA exit tunnel." The Spt5 KOW4 and KOW5 domains augment the "RNA exit tunnel," directing the exiting nascent RNA. Thus, the elongation complex establishes a completely different transcription and regulation platform from that of the initiation complexes. Copyright © 2017, American Association for the Advancement of Science.

  11. Identification and Characterization of Elf1, a Conserved Transcription Elongation Factor in Saccharomyces cerevisiae

    PubMed Central

    Prather, Donald; Krogan, Nevan J.; Emili, Andrew; Greenblatt, Jack F.; Winston, Fred

    2005-01-01

    In order to identify previously unknown transcription elongation factors, a genetic screen was carried out to identify mutations that cause lethality when combined with mutations in the genes encoding the elongation factors TFIIS and Spt6. This screen identified a mutation in YKL160W, hereafter named ELF1 (elongation factor 1). Further analysis identified synthetic lethality between an elf1Δ mutation and mutations in genes encoding several known elongation factors, including Spt4, Spt5, Spt6, and members of the Paf1 complex. Genome-wide synthetic lethality studies confirmed that elf1Δ specifically interacts with mutations in genes affecting transcription elongation. Chromatin immunoprecipitation experiments show that Elf1 is cotranscriptionally recruited over actively transcribed regions and that this association is partially dependent on Spt4 and Spt6. Analysis of elf1Δ mutants suggests a role for this factor in maintaining proper chromatin structure in regions of active transcription. Finally, purification of Elf1 suggests an association with casein kinase II, previously implicated in roles in transcription. Together, these results suggest an important role for Elf1 in the regulation of transcription elongation. PMID:16260625

  12. Fusidic acid targets elongation factor G in several stages of translocation on the bacterial ribosome.

    PubMed

    Borg, Anneli; Holm, Mikael; Shiroyama, Ikue; Hauryliuk, Vasili; Pavlov, Michael; Sanyal, Suparna; Ehrenberg, Måns

    2015-02-06

    The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 μm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.

  13. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus.

    PubMed Central

    AEvarsson, A; Brazhnikov, E; Garber, M; Zheltonosova, J; Chirgadze, Y; al-Karadaghi, S; Svensson, L A; Liljas, A

    1994-01-01

    The crystal structure of Thermus thermophilus elongation factor G without guanine nucleotide was determined to 2.85 A. This GTPase has five domains with overall dimensions of 50 x 60 x 118 A. The GTP binding domain has a core common to other GTPases with a unique subdomain which probably functions as an intrinsic nucleotide exchange factor. Domains I and II are homologous to elongation factor Tu and their arrangement, both with and without GDP, is more similar to elongation factor Tu in complex with a GTP analogue than with GDP. Domains III and V show structural similarities to ribosomal proteins. Domain IV protrudes from the main body of the protein and has an extraordinary topology with a left-handed cross-over connection between two parallel beta-strands. Images PMID:8070397

  14. A putative transcriptional elongation factor hIws1 is essential for mammalian cell proliferation

    SciTech Connect

    Liu Zhangguo; Zhou Zhongwei; Chen Guohong; Bao Shilai . E-mail: slbao@genetics.ac.cn

    2007-02-02

    Iws1 has been implicated in transcriptional elongation by interaction with RNA polymerase II (RNAP II) and elongation factor Spt6 in budding yeast Saccharomyces cerevisiae, and association with transcription factor TFIIS in mammalian cells, but its role in controlling cell growth and proliferation remains unknown. Here we report that the human homolog of Iws1, hIws1, physically interacts with protein arginine methyltransferases PRMT5 which methylates elongation factor Spt5 and regulates its interaction with RNA polymerase II. Gene-specific silencing of hIws1 by RNA interference reveals that hIws1 is essential for cell viability. GFP fusion protein expression approaches demonstrate that the hIws1 protein is located in the nucleus, subsequently, two regions harbored within the hIws1 protein are demonstrated to contain nuclear localization signals (NLSs). In addition, mouse homolog of hiws1 is found to express ubiquitously in various tissues.

  15. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome

    SciTech Connect

    Gagnon, M. G.; Lin, J.; Bulkley, D.; Steitz, T. A.

    2014-08-08

    Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4–guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.

  16. Inhibition by Elongation Factor EF G of Aminoacyl-tRNA Binding to Ribosomes

    PubMed Central

    Cabrer, Bartolomé; Vázquez, David; Modolell, Juan

    1972-01-01

    Elongation factor G (EF G), bound to ribosomes either with GMPPCP or with fusidic acid and GDP, inhibits elongation factor Tu (EF Tu)-dependent binding of Phe-tRNA on the ribosome-poly(U) complex and binding of Ala-tRNA on the initiation complex formed with RNA from bacteriophage R17; GTP hydrolysis associated with Phe-tRNA binding is also inhibited. Moreover, nonenzymic binding of Phe-tRNA at high Mg++ concentration is completely blocked by EF G. Thus, EF G appears to bind at a site that overlaps or interacts with the ribosomal A-site. PMID:4551985

  17. Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties.

    PubMed

    Krastel, Philipp; Roggo, Silvio; Schirle, Markus; Ross, Nathan T; Perruccio, Francesca; Aspesi, Peter; Aust, Thomas; Buntin, Kathrin; Estoppey, David; Liechty, Brigitta; Mapa, Felipa; Memmert, Klaus; Miller, Howard; Pan, Xuewen; Riedl, Ralph; Thibaut, Christian; Thomas, Jason; Wagner, Trixie; Weber, Eric; Xie, Xiaobing; Schmitt, Esther K; Hoepfner, Dominic

    2015-08-24

    Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation1[OPEN

    PubMed Central

    Bo, Kailiang; Behera, Tusar K.; Pandey, Sudhakar; Wen, Changlong; Wang, Yuhui; Simon, Philipp W.; Li, Yuhong

    2016-01-01

    In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1. Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation. PMID:27559036

  19. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation.

    PubMed

    Bo, Kailiang; Wang, Hui; Pan, Yupeng; Behera, Tusar K; Pandey, Sudhakar; Wen, Changlong; Wang, Yuhui; Simon, Philipp W; Li, Yuhong; Chen, Jinfeng; Weng, Yiqun

    2016-10-01

    In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1 Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation.

  20. Fruit flies with additional expression of the elongation factor EF-1 alpha live longer.

    PubMed Central

    Shepherd, J C; Walldorf, U; Hug, P; Gehring, W J

    1989-01-01

    In Drosophila melanogaster, the decrease in protein synthesis that accompanies aging is preceded by a decrease in elongation factor EF-1 alpha protein and mRNA. Here we show that Drosophila transformed with a P-element vector containing an EF-1 alpha gene under control of hsp70 regulatory sequences have a longer life-span than control flies. Images PMID:2508089

  1. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast

    PubMed Central

    Booth, Gregory T.; Wang, Isabel X.; Cheung, Vivian G.; Lis, John T.

    2016-01-01

    Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast. PMID:27197211

  2. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast.

    PubMed

    Booth, Gregory T; Wang, Isabel X; Cheung, Vivian G; Lis, John T

    2016-06-01

    Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast. © 2016 Booth et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  4. BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.

    PubMed

    Winter, Georg E; Mayer, Andreas; Buckley, Dennis L; Erb, Michael A; Roderick, Justine E; Vittori, Sarah; Reyes, Jaime M; di Iulio, Julia; Souza, Amanda; Ott, Christopher J; Roberts, Justin M; Zeid, Rhamy; Scott, Thomas G; Paulk, Joshiawa; Lachance, Kate; Olson, Calla M; Dastjerdi, Shiva; Bauer, Sophie; Lin, Charles Y; Gray, Nathanael S; Kelliher, Michelle A; Churchman, L Stirling; Bradner, James E

    2017-07-06

    Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4

    PubMed Central

    Walter, Justin D.; Hunter, Margaret; Cobb, Melanie; Traeger, Geoff; Spiegel, P. Clint

    2012-01-01

    Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented. PMID:21908407

  6. The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complex

    PubMed Central

    Sevostyanova, Anastasiya; Svetlov, Vladimir; Vassylyev, Dmitry G.; Artsimovitch, Irina

    2008-01-01

    RNA polymerase is a target for numerous regulatory events in all living cells. Recent studies identified a few “hot spots” on the surface of bacterial RNA polymerase that mediate its interactions with diverse accessory proteins. Prominent among these hot spots, the β′ subunit clamp helices serve as a major binding site for the initiation factor σ and for the elongation factor RfaH. Furthermore, the two proteins interact with the nontemplate DNA strand in transcription complexes and thus may interfere with each other's activity. We show that RfaH does not inhibit transcription initiation but, once recruited to RNA polymerase, abolishes σ-dependent pausing. We argue that this apparent competition is due to a steric exclusion of σ by RfaH that is stably bound to the nontemplate DNA and clamp helices, both of which are necessary for the σ recruitment to the transcription complex. Our findings highlight the key regulatory role played by the clamp helices during both initiation and elongation stages of transcription. PMID:18195372

  7. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu

    PubMed Central

    Agirrezabala, Xabier; Frank, Joachim

    2010-01-01

    The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 Å, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G – GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation. PMID:20025795

  8. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome*

    PubMed Central

    Kumar, Veerendra; Ero, Rya; Ahmed, Tofayel; Goh, Kwok Jian; Zhan, Yin; Bhushan, Shashi; Gao, Yong-Gui

    2016-01-01

    Elongation factor 4 (EF4) is a member of the family of ribosome-dependent translational GTPase factors, along with elongation factor G and BPI-inducible protein A. Although EF4 is highly conserved in bacterial, mitochondrial, and chloroplast genomes, its exact biological function remains controversial. Here we present the cryo-EM reconstitution of the GTP form of EF4 bound to the ribosome with P and E site tRNAs at 3.8-Å resolution. Interestingly, our structure reveals an unrotated ribosome rather than a clockwise-rotated ribosome, as observed in the presence of EF4-GDP and P site tRNA. In addition, we also observed a counterclockwise-rotated form of the above complex at 5.7-Å resolution. Taken together, our results shed light on the interactions formed between EF4, the ribosome, and the P site tRNA and illuminate the GTPase activation mechanism at previously unresolved detail. PMID:27137929

  9. Bacterial transcription elongation factors: new insights into molecular mechanism of action.

    PubMed

    Borukhov, Sergei; Lee, Jookyung; Laptenko, Oleg

    2005-03-01

    Like transcription initiation, the elongation and termination stages of transcription cycle serve as important targets for regulatory factors in prokaryotic cells. In this review, we discuss the recent progress in structural and biochemical studies of three evolutionarily conserved elongation factors, GreA, NusA and Mfd. These factors affect RNA polymerase (RNAP) processivity by modulating transcription pausing, arrest, termination or anti-termination. With structural information now available for RNAP and models of ternary elongation complexes, the interaction between these factors and RNAP can be modelled, and possible molecular mechanisms of their action can be inferred. The models suggest that these factors interact with RNAP at or near its three major, nucleic acid-binding channels: Mfd near the upstream opening of the primary (DNA-binding) channel, NusA in the vicinity of both the primary channel and the RNA exit channel, and GreA within the secondary (backtracked RNA-binding) channel, and support the view that these channels are involved in the maintenance of RNAP processivity.

  10. Ribavirin-induced intracellular GTP depletion activates transcription elongation in coagulation factor VII gene expression.

    PubMed

    Suzuki, Atsuo; Miyawaki, Yuhri; Okuyama, Eriko; Murata, Moe; Ando, Yumi; Kato, Io; Takagi, Yuki; Takagi, Akira; Murate, Takashi; Saito, Hidehiko; Kojima, Tetsuhito

    2013-01-01

    Coagulation FVII (Factor VII) is a vitamin K-dependent glycoprotein synthesized in hepatocytes. It was reported previously that FVII gene (F7) expression was up-regulated by ribavirin treatment in hepatitis C virus-infected haemophilia patients; however, its precise mechanism is still unknown. In the present study, we investigated the molecular mechanism of ribavirin-induced up-regulation of F7 expression in HepG2 (human hepatoma cell line). We found that intracellular GTP depletion by ribavirin as well as other IMPDH (inosine-5'-monophosphate dehydrogenase) inhibitors, such as mycophenolic acid and 6-mercaptopurine, up-regulated F7 expression. FVII mRNA transcription was mainly enhanced by accelerated transcription elongation, which was mediated by the P-TEFb (positive-transcription elongation factor b) complex, rather than by promoter activation. Ribavirin unregulated ELL (eleven-nineteen lysine-rich leukaemia) 3 mRNA expression before F7 up-regulation. We observed that ribavirin enhanced ELL3 recruitment to F7, whereas knockdown of ELL3 diminished ribavirin-induced FVII mRNA up-regulation. Ribavirin also enhanced recruitment of CDK9 (cyclin-dependent kinase 9) and AFF4 to F7. These data suggest that ribavirin-induced intracellular GTP depletion recruits a super elongation complex containing P-TEFb, AFF4 and ELL3, to F7, and modulates FVII mRNA transcription elongation. Collectively, we have elucidated a basal mechanism for ribavirin-induced FVII mRNA up-regulation by acceleration of transcription elongation, which may be crucial in understanding its pleiotropic functions in vivo.

  11. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II.

    PubMed Central

    Archambault, J; Lacroute, F; Ruet, A; Friesen, J D

    1992-01-01

    Little is known about the regions of RNA polymerase II (RNAPII) that are involved in the process of transcript elongation and interaction with elongation factors. One elongation factor, TFIIS, stimulates transcript elongation by binding to RNAPII and facilitating its passage through intrinsic pausing sites in vitro. In Saccharomyces cerevisiae, TFIIS is encoded by the PPR2 gene. Deletion of PPR2 from the yeast genome is not lethal but renders cells sensitive to the uracil analog 6-azauracil (6AU). Here, we show that mutations conferring 6AU sensitivity can also be isolated in the gene encoding the largest subunit of S. cerevisiae RNAPII (RPO21). A screen for mutations in RPO21 that confer 6AU sensitivity identified seven mutations that had been generated by either linker-insertion or random chemical mutagenesis. All seven mutational alterations are clustered within one region of the largest subunit that is conserved among eukaryotic RNAPII. The finding that six of the seven rpo21 mutants failed to grow at elevated temperature underscores the importance of this region for the functional and/or structural integrity of RNAPII. We found that the 6AU sensitivity of the rpo21 mutants can be suppressed by increasing the dosage of the wild-type PPR2 gene, presumably as a result of overexpression of TFIIS. These results are consistent with the proposal that in the rpo21 mutants, the formation of the RNAPII-TFIIS complex is rate limiting for the passage of the mutant enzyme through pausing sites. In addition to implicating a region of the largest subunit of RNAPII in the process of transcript elongation, our observations provide in vivo evidence that TFIIS is involved in transcription by RNAPII. Images PMID:1508210

  12. Fusidic Acid Targets Elongation Factor G in Several Stages of Translocation on the Bacterial Ribosome*

    PubMed Central

    Borg, Anneli; Holm, Mikael; Shiroyama, Ikue; Hauryliuk, Vasili; Pavlov, Michael; Sanyal, Suparna; Ehrenberg, Måns

    2015-01-01

    The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 μm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context. PMID:25451927

  13. The Super Elongation Complex Family of RNA Polymerase II Elongation Factors: Gene Target Specificity and Transcriptional Output

    PubMed Central

    Luo, Zhuojuan; Lin, Chengqi; Guest, Erin; Garrett, Alexander S.; Mohaghegh, Nima; Swanson, Selene; Marshall, Stacy; Florens, Laurence; Washburn, Michael P.

    2012-01-01

    The elongation stage of transcription is highly regulated in metazoans. We previously purified the AFF1- and AFF4-containing super elongation complex (SEC) as a major regulator of development and cancer pathogenesis. Here, we report the biochemical isolation of SEC-like 2 (SEC-L2) and SEC-like 3 (SEC-L3) containing AFF2 and AFF3 in association with P-TEFb, ENL/MLLT1, and AF9/MLLT3. The SEC family members demonstrate high levels of polymerase II (Pol II) C-terminal domain kinase activity; however, only SEC is required for the proper induction of the HSP70 gene upon stress. Genome-wide mRNA-Seq analyses demonstrated that SEC-L2 and SEC-L3 control the expression of different subsets of genes, while AFF4/SEC plays a more dominant role in rapid transcriptional induction in cells. MYC is one of the direct targets of AFF4/SEC, and SEC recruitment to the MYC gene regulates its expression in different cancer cells, including those in acute myeloid or lymphoid leukemia. These findings suggest that AFF4/SEC could be a potential therapeutic target for the treatment of leukemia or other cancers associated with MYC overexpression. PMID:22547686

  14. Functional covalent complex between elongation factor Tu and an analog of lysyl-tRNA.

    PubMed Central

    Johnson, A E; Miller, D L; Cantor, C R

    1978-01-01

    Complex formation between elongation factor Tu, GTP, and Nepsilon-bromoacetyl-Lys-tRNA results in the cross-linking of the protein and the modified Lys-tRNA. The efficiency of affinity labeling is greater than 50%. In the presence of unmodified Lys-tRNA, the amount of crosslinking is greatly decreased. There is no covalent reaction with elongation factor Tu in the absence of complex formation. Substantial purification of the crosslinked ternary complex can be achieved by gel filtration at low Mg2+ concentration and passage through nitrocellulose filters. The crosslinked complex exhibits message-dependent binding to ribosomes which is accompanied by the hydrolysis of the associated GTP, as shown by both filter assays and gel filtration profiles. The crosslinked complex therefore appears to function normally except for its inability to dissociate. These experiments demonstrate that the ternary complex is the true intermediate in the binding of aminoacyl-tRNA to the ribosomes. PMID:356044

  15. The Unexpected Roles of Eukaryotic Translation Elongation Factors in RNA Virus Replication and Pathogenesis

    PubMed Central

    Li, Dongsheng; Wei, Ting; Abbott, Catherine M.

    2013-01-01

    SUMMARY The prokaryotic translation elongation factors were identified as essential cofactors for RNA-dependent RNA polymerase activity of the bacteriophage Qβ more than 40 years ago. A growing body of evidence now shows that eukaryotic translation elongation factors (eEFs), predominantly eEF1A, acting in partially characterized complexes sometimes involving additional eEFs, facilitate virus replication. The functions of eEF1A as a protein chaperone and an RNA- and actin-binding protein enable its “moonlighting” roles as a virus replication cofactor. A diverse group of viruses, from human immunodeficiency type 1 and West Nile virus to tomato bushy stunt virus, have adapted to use eEFs as cofactors for viral transcription, translation, assembly, and pathogenesis. Here we review the mechanisms used by viral pathogens to usurp these abundant cellular proteins for their replication. PMID:23699257

  16. Kirromycin, an Inhibitor of Protein Biosynthesis that Acts on Elongation Factor Tu

    PubMed Central

    Wolf, Heinz; Chinali, Gianni; Parmeggiani, Andrea

    1974-01-01

    Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu·GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNAPhe is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNAPhe is not followed by release of EF-Tu·GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNAPhe to the poly(U)·ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same Km for GTP as the one dependent on Phe-tRNAPhe and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNAPhe, but not tRNAPhe or Ac-Phe-tRNAPhe, stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components. PMID:4373734

  17. Transcription initiation factor DksA has diverse effects on RNA chain elongation

    PubMed Central

    Furman, Ran; Sevostyanova, Anastasiya; Artsimovitch, Irina

    2012-01-01

    Bacterial transcription factors DksA and GreB belong to a family of coiled-coil proteins that bind within the secondarychannel of RNA polymerase (RNAP). These proteins display structural homology but play different regulatory roles. DksA disrupts RNAP interactions with promoter DNA and inhibits formation of initiation complexes, sensitizing rRNA synthesis to changes in concentrations of ppGpp and NTPs. Gre proteins remodel the RNAP active site and facilitate cleavage of the nascent RNA in elongation complexes. However, DksA and GreB were shown to have overlapping effects during initiation, and in vivo studies suggested that DksA may also function at post-initiation steps. Here we show that DksA has many features of an elongation factor: it inhibits both RNA chain extension and RNA shortening by exonucleolytic cleavage or pyrophosphorolysis and increases intrinsic termination in vitro and in vivo. However, DksA has no effect on Rho- or Mfd-mediated RNA release or nascent RNA cleavage in backtracked complexes, the regulatory target of Gre factors. Our results reveal that DksA effects on elongating RNAP are very different from those of GreB, suggesting that these regulators recognize distinct states of the transcription complex. PMID:22210857

  18. Tomato EF-Ts(mt), a functional mitochondrial translation elongation factor from higher plants.

    PubMed

    Benichou, Mohamed; Li, Zhengguo; Tournier, Barthélémy; Chaves, Ana; Zegzouti, Hicham; Jauneau, Alain; Delalande, Corinne; Latché, Alain; Bouzayen, Mondher; Spremulli, Linda L; Pech, Jean-Claude

    2003-10-01

    Ethylene-induced ripening in tomato (Lycopersicon esculentum) resulted in the accumulation of a transcript designated LeEF-Ts(mt) that encodes a protein with significant homology to bacterial Ts translational elongation factor (EF-Ts). Transient expression in tobacco and sunflower protoplasts of full-length and truncated LeEF-Ts(mt)-GFP fusion constructs and confocal microscopy observations clearly demonstrated the targeting of LeEF-Ts(mt) to mitochondria and not to chloroplasts and the requirement for a signal peptide for the proper sorting of the protein. Escherichia coli recombinant LeEF-Ts(mt) co-eluted from Ni-NTA resins with a protein corresponding to the molecular weight of the elongation factor EF-Tu of E. coli, indicating an interaction with bacterial EF-Tu. Increasing the GDP concentration in the extraction buffer reduced the amount of EF-Tu in the purified LeEF-Ts(mt) fraction. The purified LeEF-Ts(mt) stimulated the poly(U)-directed polymerization of phenylalanine 10-fold in the presence of EF-Tu. Furthermore, LeEF-Ts(mt) was capable of catalysing the nucleotide exchange reaction with E. coli EF-Tu. Altogether, these data demonstrate that LeEF-Ts(mt) encodes a functional mitochondrial EF-Ts. LeEF-Ts(mt) represents the first mitochondrial elongation factor to be isolated and functionally characterized in higher plants.

  19. Intrauterine growth restriction inhibits expression of eukaryotic elongation factor 2 kinase, a regulator of protein translation.

    PubMed

    McKnight, Robert A; Yost, Christian C; Zinkhan, Erin K; Fu, Qi; Callaway, Christopher W; Fung, Camille M

    2016-08-01

    Nutrient deprivation suppresses protein synthesis by blocking peptide elongation. Transcriptional upregulation and activation of eukaryotic elongation factor 2 kinase (eEF2K) blocks peptide elongation by phosphorylating eukaryotic elongation factor 2. Previous studies examining placentas from intrauterine growth restricted (IUGR) newborn infants show decreased eEF2K expression and activity despite chronic nutrient deprivation. However, the effect of IUGR on hepatic eEF2K expression in the fetus is unknown. We, therefore, examined the transcriptional regulation of hepatic eEF2K gene expression in a Sprague-Dawley rat model of IUGR. We found decreased hepatic eEF2K mRNA and protein levels in IUGR offspring at birth compared with control, consistent with previous placental observations. Furthermore, the CpG island within the eEF2K promoter demonstrated increased methylation at a critical USF 1/2 transcription factor binding site. In vitro methylation of this binding site caused near complete loss of eEF2K promoter activity, designating this promoter as methylation sensitive. The eEF2K promotor in IUGR offspring also lost the protective histone covalent modifications associated with unmethylated CGIs. In addition, the +1 nucleosome was displaced 3' and RNA polymerase loading was reduced at the IUGR eEF2K promoter. Our findings provide evidence to explain why IUGR-induced chronic nutrient deprivation does not result in the upregulation of eEF2K gene transcription. Copyright © 2016 the American Physiological Society.

  20. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome

    PubMed Central

    Crickard, John B.; Lee, Jaehyoun; Lee, Tae-Hee

    2017-01-01

    Abstract RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone–DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the ‘jaws’ of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA–histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone–DNA interactions. PMID:28379497

  1. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance.

    PubMed

    Koch, Johannes; Pranjic, Kornelija; Huber, Anja; Ellinger, Adolf; Hartig, Andreas; Kragler, Friedrich; Brocard, Cécile

    2010-10-01

    Dynamic changes of membrane structure are intrinsic to organelle morphogenesis and homeostasis. Ectopic expression of proteins of the PEX11 family from yeast, plant or human lead to the formation of juxtaposed elongated peroxisomes (JEPs),which is evocative of an evolutionary conserved function of these proteins in membrane tubulation. Microscopic examinations reveal that JEPs are composed of independent elongated peroxisomes with heterogeneous distribution of matrix proteins. We established the homo- and heterodimerization properties of the human PEX11 proteins and their interaction with the fission factor hFis1, which is known to recruit the GTPase DRP1 to the peroxisomal membrane. We show that excess of hFis1 but not of DRP1 is sufficient to fragment JEPs into normal round-shaped organelles, and illustrate the requirement of microtubules for JEP formation. Our results demonstrate that PEX11-induced JEPs represent intermediates in the process of peroxisome membrane proliferation and that hFis1 is the limiting factor for progression. Hence, we propose a model for a conserved role of PEX11 proteins in peroxisome maintenance through peroxisome polarization, membrane elongation and segregation.

  2. RNA polymerase and transcription elongation factor Spt4/5 complex structure

    PubMed Central

    Klein, Brianna J.; Bose, Daniel; Baker, Kevin J.; Yusoff, Zahirah M.; Zhang, Xiaodong; Murakami, Katsuhiko S.

    2011-01-01

    Spt4/5 in archaea and eukaryote and its bacterial homolog NusG is the only elongation factor conserved in all three domains of life and plays many key roles in cotranscriptional regulation and in recruiting other factors to the elongating RNA polymerase. Here, we present the crystal structure of Spt4/5 as well as the structure of RNA polymerase-Spt4/5 complex using cryoelectron microscopy reconstruction and single particle analysis. The Spt4/5 binds in the middle of RNA polymerase claw and encloses the DNA, reminiscent of the DNA polymerase clamp and ring helicases. The transcription elongation complex model reveals that the Spt4/5 is an upstream DNA holder and contacts the nontemplate DNA in the transcription bubble. These structures reveal that the cellular RNA polymerases also use a strategy of encircling DNA to enhance its processivity as commonly observed for many nucleic acid processing enzymes including DNA polymerases and helicases. PMID:21187417

  3. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome.

    PubMed

    Crickard, John B; Lee, Jaehyoun; Lee, Tae-Hee; Reese, Joseph C

    2017-04-03

    RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone-DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the 'jaws' of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA-histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone-DNA interactions.

  4. Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor.

    PubMed

    Pereira, Sandro F F; Gonzalez, Ruben L; Dworkin, Jonathan

    2015-06-23

    In nature, most organisms experience conditions that are suboptimal for growth. To survive, cells must fine-tune energy-demanding metabolic processes in response to nutrient availability. Here, we describe a novel mechanism by which protein synthesis in starved cells is down-regulated by phosphorylation of the universally conserved elongation factor Tu (EF-Tu). Phosphorylation impairs the essential GTPase activity of EF-Tu, thereby preventing its release from the ribosome. As a consequence, phosphorylated EF-Tu has a dominant-negative effect in elongation, resulting in the overall inhibition of protein synthesis. Importantly, this mechanism allows a quick and robust regulation of one of the most abundant cellular proteins. Given that the threonine that serves as the primary site of phosphorylation is conserved in all translational GTPases from bacteria to humans, this mechanism may have important implications for growth-rate control in phylogenetically diverse organisms.

  5. Study of phosphorylation of translation elongation factor 2 (EF-2) from wheat germ.

    PubMed

    Smailov, S K; Lee, A V; Iskakov, B K

    1993-04-26

    Phosphorylation of elongation factor 2 (EF-2) by specific Ca2+/calmodulin-dependent kinase is considered as a possible mechanism of regulation of protein biosynthesis in animal cells at the level of polypeptide chain elongation. In this report we show that wheat germ EF-2 can be intensively phosphorylated by the rabbit reticulocyte EF-2 kinase. Phosphorylation results in inhibition of the activity of plant EF-2 in poly(U)-dependent cell-free translation system. Thus, the activity of EF-2 in plant cells can be potentially regulated by phosphorylation. However, we could not detect endogenous EF-2 kinase activity in wheat germ either in vitro or in vivo. Furthermore, EF-2 kinase activity is not displayed in different organs of wheat and other higher plants.

  6. The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes

    PubMed Central

    Kim, Bong; Nesvizhskii, Alexey I.; Rani, P. Geetha; Hahn, Steven; Aebersold, Ruedi; Ranish, Jeffrey A.

    2007-01-01

    In this article, we provide direct evidence that the evolutionarily conserved transcription elongation factor TFIIS functions during preinitiation complex assembly. First, we identified TFIIS in a mass spectrometric screen of RNA polymerase II (Pol II) preinitiation complexes (PICs). Second, we show that the association of TFIIS with a promoter depends on functional PIC components including Mediator and the SAGA complex. Third, we demonstrate that TFIIS is required for efficient formation of active PICs. Using truncation mutants of TFIIS, we find that the Pol II-binding domain is the minimal domain necessary to stimulate PIC assembly. However, efficient formation of active PICs requires both the Pol II-binding domain and the poorly understood N-terminal domain. Importantly, Domain III, which is required for the elongation function of TFIIS, is dispensable during PIC assembly. The results demonstrate that TFIIS is a PIC component that is required for efficient formation and/or stability of the complex. PMID:17913884

  7. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN

    PubMed Central

    Zhou, Xin; Zhang, Zhong-Lin; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Sun, Tai-ping

    2016-01-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6. AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  8. Vps factors are required for efficient transcription elongation in budding yeast.

    PubMed

    Gaur, Naseem A; Hasek, Jiri; Brickner, Donna Garvey; Qiu, Hongfang; Zhang, Fan; Wong, Chi-Ming; Malcova, Ivana; Vasicova, Pavla; Brickner, Jason H; Hinnebusch, Alan G

    2013-03-01

    There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.

  9. Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells.

    PubMed

    Fujinaga, Koh; Luo, Zeping; Schaufele, Fred; Peterlin, B Matija

    2015-01-16

    Regulation of transcription elongation by positive transcription elongation factor b (P-TEFb) plays a central role in determining the state of cell activation, proliferation, and differentiation. In cells, P-TEFb exists in active and inactive forms. Its release from the inactive 7SK small nuclear ribonucleoprotein complex is a critical step for P-TEFb to activate transcription elongation. However, no good method exists to analyze this P-TEFb equilibrium in living cells. Only inaccurate and labor-intensive cell-free biochemical assays are currently available. In this study, we present the first experimental system to monitor P-TEFb activation in living cells. We created a bimolecular fluorescence complementation assay to detect interactions between P-TEFb and its substrate, the C-terminal domain of RNA polymerase II. When cells were treated with suberoylanilide hydroxamic acid, which releases P-TEFb from the 7SK small nuclear ribonucleoprotein, they turned green. Other known P-TEFb-releasing agents, including histone deacetylase inhibitors, bromodomain and extraterminal bromodomain inhibitors, and protein kinase C agonists, also scored positive in this assay. Finally, we identified 5'-azacytidine as a new P-TEFb-releasing agent. This release of P-TEFb correlated directly with activation of human HIV and HEXIM1 transcription. Thus, our visualization of P-TEFb activation by fluorescent complementation assay could be used to find new P-TEFb-releasing agents, compare different classes of agents, and assess their efficacy singly and/or in combination.

  10. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.

    PubMed

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira

    2015-05-07

    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    PubMed

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  12. Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia.

    PubMed

    Moore, Claire E J; Mikolajek, Halina; Regufe da Mota, Sergio; Wang, Xuemin; Kenney, Justin W; Werner, Jörn M; Proud, Christopher G

    2015-05-01

    Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors.

  13. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation.

    PubMed

    Wang, Miao-Ying; Zhao, Pi-Ming; Cheng, Huan-Qing; Han, Li-Bo; Wu, Xiao-Min; Gao, Peng; Wang, Hai-Yun; Yang, Chun-Lin; Zhong, Nai-Qin; Zuo, Jian-Ru; Xia, Gui-Xian

    2013-07-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.

  14. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene.

    PubMed

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-05-13

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1alpha and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1alpha gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor-recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1alpha.

  15. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene

    PubMed Central

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-01-01

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1α (EF-1α), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of “EFL-containing” lineages within “EF-1α-containing” lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1α and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1α gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor–recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1α. PMID:18458344

  16. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome.

    PubMed

    Kumar, Veerendra; Ero, Rya; Ahmed, Tofayel; Goh, Kwok Jian; Zhan, Yin; Bhushan, Shashi; Gao, Yong-Gui

    2016-06-17

    Elongation factor 4 (EF4) is a member of the family of ribosome-dependent translational GTPase factors, along with elongation factor G and BPI-inducible protein A. Although EF4 is highly conserved in bacterial, mitochondrial, and chloroplast genomes, its exact biological function remains controversial. Here we present the cryo-EM reconstitution of the GTP form of EF4 bound to the ribosome with P and E site tRNAs at 3.8-Å resolution. Interestingly, our structure reveals an unrotated ribosome rather than a clockwise-rotated ribosome, as observed in the presence of EF4-GDP and P site tRNA. In addition, we also observed a counterclockwise-rotated form of the above complex at 5.7-Å resolution. Taken together, our results shed light on the interactions formed between EF4, the ribosome, and the P site tRNA and illuminate the GTPase activation mechanism at previously unresolved detail. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Gdown1 Associates Efficiently with RNA Polymerase II after Promoter Clearance and Displaces TFIIF during Transcript Elongation

    PubMed Central

    DeLaney, Elizabeth

    2016-01-01

    Pausing during the earliest stage of transcript elongation by RNA polymerase II (Pol II) is a nearly universal control point in metazoan gene expression. The substoichiometric Pol II subunit Gdown1 facilitates promoter proximal pausing in vitro in extract-based transcription reactions, out-competes the initiation/elongation factor TFIIF for binding to free Pol II and co-localizes with paused Pol II in vivo. However, we have shown that Gdown1 cannot functionally associate with the Pol II preinitiation complex (PIC), which contains TFIIF. In the present study, we determined at what point after initiation Gdown1 can associate with Pol II and how rapidly this competition with TFIIF occurs. We show that, as with the PIC, Gdown1 cannot functionally load into open complexes or complexes engaged in abortive synthesis of very short RNAs. Gdown1 can load into early elongation complexes (EECs) with 5–9 nt RNAs, but efficient association with EECs does not take place until the point at which the upstream segment of the long initial transcription bubble reanneals. Tests of EECs assembled on a series of promoter variants confirm that this bubble collapse transition, and not transcript length, modulates Gdown1 functional affinity. Gdown1 displaces TFIIF effectively from all complexes downstream of the collapse transition, but this displacement is surprisingly slow: complete loss of TFIIF stimulation of elongation requires 5 min of incubation with Gdown1. The relatively slow functional loading of Gdown1 in the presence of TFIIF suggests that Gdown1 works in promoter-proximal pausing by locking in the paused state after elongation is already antagonized by other factors, including DSIF, NELF and possibly the first downstream nucleosome. PMID:27716820

  18. A new type of protein lysine methyltransferase trimethylates Lys-79 of elongation factor 1A.

    PubMed

    Dzialo, Maria C; Travaglini, Kyle J; Shen, Sean; Loo, Joseph A; Clarke, Steven G

    2014-12-12

    The elongation factors of Saccharomyces cerevisiae are extensively methylated, containing a total of ten methyllysine residues. Elongation factor methyltransferases (Efm1, Efm2, Efm3, and Efm4) catalyze at least four of these modifications. Here we report the identification of a new type of protein lysine methyltransferase, Efm5 (Ygr001c), which was initially classified as N6-adenine DNA methyltransferase-like. Efm5 is required for trimethylation of Lys-79 on EF1A. We directly show the loss of this modification in efm5Δ strains by both mass spectrometry and amino acid analysis. Close homologs of Efm5 are found in vertebrates, invertebrates, and plants, although some fungal species apparently lack this enzyme. This suggests possible unique functions of this modification in S. cerevisiae and higher eukaryotes. The misannotation of Efm5 was due to the presence of a DPPF sequence in post-Motif II, typically associated with DNA methylation. Further analysis of this motif and others like it demonstrates a potential consensus sequence for N-methyltransferases. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Arginine-rhamnosylation as new strategy to activate translation elongation factor P

    PubMed Central

    Lassak, Jürgen; Keilhauer, Eva C; Fürst, Maximilian; Wuichet, Kristin; Gödeke, Julia; Starosta, Agata L; Chen, Jhong-Min; Søgaard-Andersen, Lotte; Rohr, Jürgen; Wilson, Daniel N; Häussler, Susanne; Mann, Matthias; Jung, Kirsten

    2015-01-01

    Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-β-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-l-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-l-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development. PMID:25686373

  20. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G

    PubMed Central

    Li, Wen; Liu, Zheng; Koripella, Ravi Kiran; Langlois, Robert; Sanyal, Suparna; Frank, Joachim

    2015-01-01

    During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome. PMID:26229983

  1. Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors.

    PubMed

    Jones, Allison M; Garza-Sánchez, Fernando; So, Jaime; Hayes, Christopher S; Low, David A

    2017-03-07

    Contact-dependent growth inhibition (CDI) is a mechanism by which bacteria exchange toxins via direct cell-to-cell contact. CDI systems are distributed widely among Gram-negative pathogens and are thought to mediate interstrain competition. Here, we describe tsf mutations that alter the coiled-coil domain of elongation factor Ts (EF-Ts) and confer resistance to the CdiA-CT(EC869) tRNase toxin from enterohemorrhagic Escherichia coli EC869. Although EF-Ts is required for toxicity in vivo, our results indicate that it is dispensable for tRNase activity in vitro. We find that CdiA-CT(EC869) binds to elongation factor Tu (EF-Tu) with high affinity and this interaction is critical for nuclease activity. Moreover, in vitro tRNase activity is GTP-dependent, suggesting that CdiA-CT(EC869) only cleaves tRNA in the context of translationally active GTP·EF-Tu·tRNA ternary complexes. We propose that EF-Ts promotes the formation of GTP·EF-Tu·tRNA ternary complexes, thereby accelerating substrate turnover for rapid depletion of target-cell tRNA.

  2. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β.

    PubMed

    Resto, Melissa; Kim, Bong-Hyun; Fernandez, Alfonso G; Abraham, Brian J; Zhao, Keji; Lewis, Brian A

    2016-10-21

    We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, whereas in a purified system devoid of OGA the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA polymerase II (pol II) pausing/elongation factors SPT5 and TRIM28-KAP1-TIF1β, and a purified OGA-SPT5-TIF1β complex has elongation properties. Lastly, ChIP-seq experiments show that OGA maps to the transcriptional start site/5' ends of genes, showing considerable overlap with RNA pol II, SPT5, TRIM28-KAP1-TIF1β, and O-GlcNAc itself. These data all point to OGA as a component of the RNA pol II elongation machinery regulating elongation genome-wide. Our results add a novel and unexpected dimension to the regulation of elongation by the insertion of O-GlcNAc cycling into the pol II elongation regulatory dynamics.

  3. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice.

    PubMed

    Zhang, Chang-Quan; Xu, Yong; Lu, Yan; Yu, Heng-Xiu; Gu, Ming-Hong; Liu, Qiao-Quan

    2011-09-01

    WRKY proteins are a large super family of transcriptional regulators primarily involved in various plant physiological programs. In present study, the expression profile and putative function of the WRKY transcriptional factor, WRKY78, in rice were identified. Real-time RT-PCR analysis showed that OsWRKY78 transcript was most abundant in elongating stems though its expression was detected in all the tested organs. The expression profiles were further confirmed by using promoter-GUS analysis in transgenic rice. OsWRKY78::GFP fusion gene transient expression analysis demonstrated that OsWRKY78 targeted to the nuclei of onion epidermal cell. Furthermore, OsWRKY78 RNAi and overexpression transgenic rice lines were generated. Transgenic plants with OsWRKY78 overexpression exhibited a phenotype identical to the wild type, whereas inhibition of OsWRKY78 expression resulted in a semi-dwarf and small kernel phenotype due to reduced cell length in transgenic plants. In addition, a T-DNA insertion mutant line oswrky78 was identified and a phenotype similar to that of RNAi plants was also observed. Grain quality analysis data showed no significant differences, with the exception of minor changes in endosperm starch crystal structure in RNAi plants. Taken together, these results suggest that OsWRKY78 may acts as a stem elongation and seed development regulator in rice.

  4. Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo.

    PubMed

    Argüelles, Sandro; Machado, Alberto; Ayala, Antonio

    2009-08-01

    Protein synthesis is universally affected by aging in all organisms. There is no clear consensus about the mechanism underlying the decline of translation with aging. Previous reports from our laboratory have shown that the elongation step is especially affected with aging as a consequence of alterations in elongation factor-2 (eEF-2), the monomeric protein that catalyzes the movement of the ribosome along the mRNA during protein synthesis. eEF-2 seems to be specifically affected by lipid peroxidant compounds, which concomitantly produce several reactive, toxic aldehydes, such as MDA and HNE. These aldehydes are able to form adducts with proteins that lead to their inactivation. In this paper we studied the formation of adducts between MDA or HNE and eEF-2. The study was performed both in vitro, using liver homogenates treated with cumene hydroperoxide, and in vivo using young control rats, treated with the same oxidant, and 12-and 24-month-old rats. In all cases we found a decrease in the levels of eEF-2, an increase in the amount of lipid peroxidation, and a concomitant formation of adducts between eEF-2 and MDA or HNE. The results suggest that one possible mechanism responsible for the decline of protein synthesis during aging could be the alteration in eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes.

  5. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  6. Allosteric control of the RNA polymerase by the elongation factor RfaH

    PubMed Central

    Svetlov, Vladimir; Belogurov, Georgiy A.; Shabrova, Elena; Vassylyev, Dmitry G.; Artsimovitch, Irina

    2007-01-01

    Efficient transcription of long polycistronic operons in bacteria frequently relies on accessory proteins but their molecular mechanisms remain obscure. RfaH is a cellular elongation factor that acts as a polarity suppressor by increasing RNA polymerase (RNAP) processivity. In this work, we provide evidence that RfaH acts by reducing transcriptional pausing at certain positions rather than by accelerating RNAP at all sites. We show that ‘fast’ RNAP variants are characterized by pause-free RNA chain elongation and are resistant to RfaH action. Similarly, the wild-type RNAP is insensitive to RfaH in the absence of pauses. In contrast, those enzymes that may be prone to falling into a paused state are hypersensitive to RfaH. RfaH inhibits pyrophosphorolysis of the nascent RNA and reduces the apparent Michaelis–Menten constant for nucleotides, suggesting that it stabilizes the post-translocated, active RNAP state. Given that the RfaH-binding site is located 75 Å away from the RNAP catalytic center, these results strongly indicate that RfaH acts allosterically. We argue that despite the apparent differences in the nucleic acid targets, the time of recruitment and the binding sites on RNAP, unrelated antiterminators (such as RfaH and λQ) utilize common strategies during both recruitment and anti-pausing modification of the transcription complex. PMID:17711918

  7. Elongation Factor P Interactions with the Ribosome Are Independent of Pausing.

    PubMed

    Tollerson, Rodney; Witzky, Anne; Ibba, Michael

    2017-08-01

    Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more frequently than the estimated number of pausing events, indicating that E-site vacancies occur even when ribosomes are not paused. The study provides new insights into the mechanism of EF-P-dependent peptide bond formation and the intricacies of translation elongation. Copyright © 2017 Tollerson et al.

  8. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  9. Flow-induced elongation of von Willebrand factor precedes tension-dependent activation.

    PubMed

    Fu, Hongxia; Jiang, Yan; Yang, Darren; Scheiflinger, Friedrich; Wong, Wesley P; Springer, Timothy A

    2017-08-23

    Von Willebrand factor, an ultralarge concatemeric blood protein, must bind to platelet GPIbα during bleeding to mediate hemostasis, but not in the normal circulation to avoid thrombosis. Von Willebrand factor is proposed to be mechanically activated by flow, but the mechanism remains unclear. Using microfluidics with single-molecule imaging, we simultaneously monitored reversible Von Willebrand factor extension and binding to GPIbα under flow. We show that Von Willebrand factor is activated through a two-step conformational transition: first, elongation from compact to linear form, and subsequently, a tension-dependent local transition to a state with high affinity for GPIbα. High-affinity sites develop only in upstream regions of VWF where tension exceeds ~21 pN and depend upon electrostatic interactions. Re-compaction of Von Willebrand factor is accelerated by intramolecular interactions and increases GPIbα dissociation rate. This mechanism enables VWF to be locally activated by hydrodynamic force in hemorrhage and rapidly deactivated downstream, providing a paradigm for hierarchical mechano-regulation of receptor-ligand binding.Von Willebrand factor (VWF) is a blood protein involved in clotting and is proposed to be activated by flow, but the mechanism is unknown. Here the authors show that VWF is first converted from a compact to linear form by flow, and is subsequently activated to bind GPIbα in a tension-dependent manner.

  10. Elongation as a factor in artefacts of humans and other animals: an Acheulean example in comparative context

    PubMed Central

    Gowlett, J. A. J.

    2013-01-01

    Elongation is a commonly found feature in artefacts made and used by humans and other animals and can be analysed in comparative study. Whether made for use in hand or beak, the artefacts have some common properties of length, breadth, thickness and balance point, and elongation can be studied as a factor relating to construction or use of a long axis. In human artefacts, elongation can be traced through the archaeological record, for example in stone blades of the Upper Palaeolithic (traditionally regarded as more sophisticated than earlier artefacts), and in earlier blades of the Middle Palaeolithic. It is now recognized that elongation extends to earlier Palaeolithic artefacts, being found in the repertoire of both Neanderthals and more archaic humans. Artefacts used by non-human animals, including chimpanzees, capuchin monkeys and New Caledonian crows show selection for diameter and length, and consistent interventions of modification. Both chimpanzees and capuchins trim side branches from stems, and appropriate lengths of stave are selected or cut. In human artefacts, occasional organic finds show elongation back to about 0.5 million years. A record of elongation achieved in stone tools survives to at least 1.75 Ma (million years ago) in the Acheulean tradition. Throughout this tradition, some Acheulean handaxes are highly elongated, usually found with others that are less elongated. Finds from the million-year-old site of Kilombe and Kenya are given as an example. These findings argue that the elongation need not be integral to a design, but that artefacts may be the outcome of adjustments to individual variables. Such individual adjustments are seen in animal artefacts. In the case of a handaxe, the maker must balance the adjustments to achieve a satisfactory outcome in the artefact as a whole. It is argued that the need to make decisions about individual variables within multivariate objects provides an essential continuity across artefacts made by

  11. Elongation as a factor in artefacts of humans and other animals: an Acheulean example in comparative context.

    PubMed

    Gowlett, J A J

    2013-11-19

    Elongation is a commonly found feature in artefacts made and used by humans and other animals and can be analysed in comparative study. Whether made for use in hand or beak, the artefacts have some common properties of length, breadth, thickness and balance point, and elongation can be studied as a factor relating to construction or use of a long axis. In human artefacts, elongation can be traced through the archaeological record, for example in stone blades of the Upper Palaeolithic (traditionally regarded as more sophisticated than earlier artefacts), and in earlier blades of the Middle Palaeolithic. It is now recognized that elongation extends to earlier Palaeolithic artefacts, being found in the repertoire of both Neanderthals and more archaic humans. Artefacts used by non-human animals, including chimpanzees, capuchin monkeys and New Caledonian crows show selection for diameter and length, and consistent interventions of modification. Both chimpanzees and capuchins trim side branches from stems, and appropriate lengths of stave are selected or cut. In human artefacts, occasional organic finds show elongation back to about 0.5 million years. A record of elongation achieved in stone tools survives to at least 1.75 Ma (million years ago) in the Acheulean tradition. Throughout this tradition, some Acheulean handaxes are highly elongated, usually found with others that are less elongated. Finds from the million-year-old site of Kilombe and Kenya are given as an example. These findings argue that the elongation need not be integral to a design, but that artefacts may be the outcome of adjustments to individual variables. Such individual adjustments are seen in animal artefacts. In the case of a handaxe, the maker must balance the adjustments to achieve a satisfactory outcome in the artefact as a whole. It is argued that the need to make decisions about individual variables within multivariate objects provides an essential continuity across artefacts made by

  12. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization.

    PubMed

    Nieves, Wildaliz; Heang, Julie; Asakrah, Saja; Höner zu Bentrup, Kerstin; Roy, Chad J; Morici, Lisa A

    2010-12-17

    Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.

  13. "In vitro" effect of lipid peroxidation metabolites on elongation factor-2.

    PubMed

    Argüelles, Sandro; Machado, Alberto; Ayala, Antonio

    2006-03-01

    Elongation Factor-2 (eEF-2) is the protein that catalyzes the translocation of the ribosome through mRNA. Not all oxidants affect eEF-2, which is extremely sensitive to oxidative stress caused mainly by lipid peroxidant compounds such as cumene hydroperoxide and t-butyl hydroperoxide. Lipid peroxides constitute a potential hazard to living organisms because of their direct reactivity with a variety of biomolecules and the ability to decompose into free radicals and reactive aldehydes. In this "in vitro" study, we show the effect of three of these aldehydes on the levels of hepatic eEF-2. The results suggest that the toxicity associated with prooxidant-mediated hepatic lipid peroxidation on protein synthesis can originate from the interaction of the aldehydic end products of lipid peroxidation with eEF-2.

  14. Effect of aging and oxidative stress on elongation factor-2 in hypothalamus and hypophysis.

    PubMed

    Argüelles, Sandro; Cano, Mercedes; Machado, Alberto; Ayala, Antonio

    2011-01-01

    The hypothalamic-hypophysis system (HHS) secretes peptide hormones whose synthesis requires the integrity of the translation machinery. As the organisms age, a considerable diminution of the protein synthesis takes place in several tissues. Among the possible causes of the decline of translation in old animals are the modifications of elongation factor-2 (eEF-2). We studied whether the level of this protein was affected in the HHS in old animals. The effects of aging are compared to those of an oxidant compound (cumene hydroperoxide) administered to young rats. The results indicate that oxidative stress could be involved in the alterations of eEF-2, which forms adducts with malondialdehyde (MDA) and 4-hydroxynonenal (HNE). The alterations of eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes could contribute to the suboptimal hormone production from these tissues during aging. Besides eEF-2, proteomic analysis shows that several other proteins are affected.

  15. "In vitro" effect of cumene hydroperoxide on hepatic elongation factor-2 and its protection by melatonin.

    PubMed

    Parrado, J; Absi, E H; Machado, A; Ayala, A

    2003-12-05

    We have examined by immunoblotting the effect of three oxidant compounds on the level of hepatic elongation factor-2 (eEF-2). Rat liver homogenates were exposed to cumene hydroperoxide (CH), 2-2'-azobis (2-aminopropane) dihydrochloride (AAPH) and H(2)O(2). Only CH treatment produced the disappearance of eEF-2, probably due to a phenomena of peptide bond cleavage. The direct implication of free radical species in this process is evident because of the fact that the inclusion of a free radical scavenger such as melatonin prevented the eEF-2 depletion. The results also suggest that the disappearance of eEF-2 induced by CH can be linked to a lipid peroxidant process, which could account for the decline of protein synthesis in aging and other circumstances where lipid peroxidation is high.

  16. Elongation factor 1 alpha concentration is highly correlated with the lysine content of maize endosperm.

    PubMed Central

    Habben, J E; Moro, G L; Hunter, B G; Hamaker, B R; Larkins, B A

    1995-01-01

    Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals. Images Fig. 1 Fig. 2 PMID:7567989

  17. Characterisation of the rubber elongation factor from ammoniated latex by electrophoresis and mass spectrometry.

    PubMed

    Dürauer, A; Csaszar, E; Mechtler, K; Jungbauer, A; Schmid, E

    2000-08-18

    Rubber elongation factor (REF) is considered as one of the major allergens present in latex. An extraction and purification protocol for preparation of REF standards has been modified. A protein fraction was extracted from ammoniated latex sap and purified by gel filtration chromatography. The purified and concentrated proteins were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis into two major bands. These bands were further characterised by matrix-assisted laser desorption/ionisation time-of-flight and nano-electrospray ionization mass spectrometry. REF and a truncated form could be ascertained by the mass and fragmentation pattern of the tryptic peptides. In the faster migrating band an additional peptide could be identified. This peptide is also present in Hevb3 and a Mr 27000 latex allergen. Our findings indicate that conventional REF preparations as standards may contain additional allergenic proteins.

  18. Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system.

    PubMed

    Doi, Yoshio; Ohtsuki, Takashi; Shimizu, Yoshihiro; Ueda, Takuya; Sisido, Masahiko

    2007-11-21

    Nonnatural amino acids have been introduced into proteins using expanded protein biosynthesis systems. However, some nonnatural amino acids, especially those containing large aromatic groups, are not efficiently incorporated into proteins. Reduced binding efficiency of aminoacylated tRNAs to elongation factor Tu (EF-Tu) is likely to limit incorporation of large amino acids. Our previous studies suggested that tRNAs carrying large nonnatural amino acids are bound less tightly to EF-Tu than natural amino acids. To expand the availability of nonnatural mutagenesis, EF-Tu from the E. coli translation system was improved to accept such large amino acids. We synthesized EF-Tu mutants, in which the binding pocket of the aminoacyl moiety of aminoacyl-tRNA was enlarged. L-1-Pyrenylalanine, L-2-pyrenylalanine, and DL-2-anthraquinonylalanine, which are hardly or only slightly incorporated with the wild-type EF-Tu, were successfully incorporated into a protein using these EF-Tu mutants.

  19. The structure of the ribosome with elongation factor G trapped in the post-translocational state

    PubMed Central

    Gao, Yong-Gui; Selmer, Maria; Dunham, Christine M.; Weixlbaumer, Albert; Kelley, Ann C.; Ramakrishnan, V.

    2013-01-01

    Elongation factor G (EF-G) is a GTPase that plays a crucial role in the translocation of tRNAs and mRNA during translation by the ribosome. We report a crystal structure refined to 3.6 Å resolution of the ribosome trapped with EF-G in the post-translocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the GTP and GDP forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with P-site tRNA and mRNA shed light on various aspects of EF-G function in catalysis and translocation. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure. PMID:19833919

  20. Effect of oxidative stress, produced by cumene hydroperoxide, on the various steps of protein synthesis. Modifications of elongation factor-2.

    PubMed

    Ayala, A; Parrado, J; Bougria, M; Machado, A

    1996-09-20

    We have studied the effect of oxidative stress on protein synthesis in rat liver. Cumene hydroperoxide (CH) was used as an oxidant agent. The approach used was to determine the ribosomal state of aggregation and the time for assembly and release of polypeptide chains in the process of protein synthesis in rat liver in vivo. The results suggest that the elongation step is the most sensitive to CH treatment. The measurement of both carbonyl groups content and ADP-ribosylatable elongation factor 2 (EF-2), the main protein involved in the elongation step, indicates that under CH treatment EF-2 is oxidatively modified and a lower amount of active EF-2 is present. These results are corroborated by in vitro oxidation of EF-2 and could explain for the decline in the elongation step.

  1. Eukaryotic Elongation Factor 2 Kinase Activity Is Controlled by Multiple Inputs from Oncogenic Signaling

    PubMed Central

    Wang, Xuemin; Regufe da Mota, Sergio; Liu, Rui; Moore, Claire E.; Xie, Jianling; Lanucara, Francesco; Agarwala, Usha; Pyr dit Ruys, Sébastien; Vertommen, Didier; Rider, Mark H.; Eyers, Claire E.

    2014-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways. PMID:25182533

  2. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2

    PubMed Central

    Caster, Stephen Z.; Castillo, Kathrina; Sachs, Matthew S.; Bell-Pedersen, Deborah

    2016-01-01

    The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs. PMID:27506798

  3. Conserved discrimination against misacylated tRNAs by two mesophilic elongation factor Tu orthologs.

    PubMed

    Cathopoulis, Terry J T; Chuawong, Pitak; Hendrickson, Tamara L

    2008-07-22

    Elongation factor Tu (EF-Tu) binds and loads elongating aminoacyl-tRNAs (aa-tRNAs) onto the ribosome for protein biosynthesis. Many bacteria biosynthesize Gln-tRNA (Gln) and Asn-tRNA (Asn) by an indirect, two-step pathway that relies on the misacylated tRNAs Glu-tRNA (Gln) and Asp-tRNA (Asn) as intermediates. Previous thermodynamic and experimental analyses have demonstrated that Thermus thermophilus EF-Tu does not bind Asp-tRNA (Asn) and predicted a similar discriminatory response against Glu-tRNA (Gln) [Asahara, H., and Uhlenbeck, O. (2005) Biochemistry 46, 6194-6200; Roy, H., et al. (2007) Nucleic Acids Res. 35, 3420-3430]. By discriminating against these misacylated tRNAS, EF-Tu plays a direct role in preventing misincorporation of aspartate and glutamate into proteins at asparagine and glutamine codons. Here we report the characterization of two different mesophilic EF-Tu orthologs, one from Escherichia coli, a bacterium that does not utilize either Glu-tRNA (Gln) or Asp-tRNA (Asn), and the second from Helicobacter pylori, an organism in which both misacylated tRNAs are essential. Both EF-Tu orthologs discriminate against these misacylated tRNAs, confirming the prediction that Glu-tRNA (Gln), like Asp-tRNA (Asn), will not form a complex with EF-Tu. These results also demonstrate that the capacity of EF-Tu to discriminate against both of these aminoacyl-tRNAs is conserved even in bacteria like E. coli that do not generate either misacylated tRNA.

  4. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons.

  5. Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.

    PubMed

    Burnett, Benjamin J; Altman, Roger B; Ferguson, Angelica; Wasserman, Michael R; Zhou, Zhou; Blanchard, Scott C

    2014-08-22

    During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNA(Phe) ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917-13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNA(aa). Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions.

  6. SHORT HYPOCOTYL 1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation

    USDA-ARS?s Scientific Manuscript database

    Understanding the mechanisms and control of hypocotyl elongation is important for greenhouse vegetable crop production. In this study, we identified SHORT HYPOCOTYL1 (SH1) in cucumber which regulates low-dosage ultraviolet B (LDUVB)-dependent hypocotyl elongation by recruiting the cucumber UVR8 sign...

  7. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis.

    PubMed

    Luan, Hexiang; Shine, M B; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-09-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.

  8. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo

    PubMed Central

    Goldman, Seth R; Nair, Nikhil U; Wells, Christopher D; Nickels, Bryce E; Hochschild, Ann

    2015-01-01

    The σ subunit of bacterial RNA polymerase (RNAP) confers on the enzyme the ability to initiate promoter-specific transcription. Although σ factors are generally classified as initiation factors, σ can also remain associated with, and modulate the behavior of, RNAP during elongation. Here we establish that the primary σ factor in Escherichia coli, σ70, can function as an elongation factor in vivo by loading directly onto the transcription elongation complex (TEC) in trans. We demonstrate that σ70 can bind in trans to TECs that emanate from either a σ70-dependent promoter or a promoter that is controlled by an alternative σ factor. We further demonstrate that binding of σ70 to the TEC in trans can have a particularly large impact on the dynamics of transcription elongation during stationary phase. Our findings establish a mechanism whereby the primary σ factor can exert direct effects on the composition of the entire transcriptome, not just that portion that is produced under the control of σ70-dependent promoters. DOI: http://dx.doi.org/10.7554/eLife.10514.001 PMID:26371553

  9. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B.

    PubMed

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-04-03

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Evolutionarily Conserved Binding of Translationally Controlled Tumor Protein to Eukaryotic Elongation Factor 1B*

    PubMed Central

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-01-01

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. PMID:25635048

  11. Elongation factor-P at the crossroads of the host-endosymbiont interface

    PubMed Central

    Rajkovic, Andrei; Witzky, Anne; Navarre, William; Darwin, Andrew J.; Ibba, Michael

    2015-01-01

    Elongation factor P (EF-P) is an ancient bacterial translational factor that aids the ribosome in polymerizing oligo-prolines. EF-P structurally resembles tRNA and binds in-between the exit and peptidyl sites of the ribosome to accelerate the intrinsically slow reaction of peptidyl-prolyl bond formation. Recent studies have identified in separate organisms, two evolutionarily convergent EF-P post-translational modification systems (EPMS), split predominantly between gammaproteobacteria, and betaproteobacteria. In both cases EF-P receives a post-translational modification, critical for its function, on a highly conserved residue that protrudes into the peptidyl-transfer center of the ribosome. EPMSs are comprised of a gene(s) that synthesizes the precursor molecule used in modifying EF-P, and a gene(s) encoding an enzyme that reacts with the precursor molecule to catalyze covalent attachment to EF-P. However, not all organisms genetically encode a complete EPMS. For instance, some symbiotic bacteria harbor efp and the corresponding gene that enzymatically attaches the modification, but lack the ability to synthesize the substrate used in the modification reaction. Here we highlight the recent discoveries made regarding EPMSs, with a focus on how these incomplete modification pathways shape or have been shaped by the endosymbiont-host relationship. PMID:28357263

  12. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  13. Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A.

    PubMed

    Jank, Thomas; Belyi, Yury; Wirth, Christophe; Rospert, Sabine; Hu, Zehan; Dengjel, Jörn; Tzivelekidis, Tina; Andersen, Gregers Rom; Hunte, Carola; Schlosser, Andreas; Aktories, Klaus

    2017-08-11

    Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A), delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A is posttranslationally modified. Using MS analysis, site-directed mutagenesis, and X-ray structural data analysis of Saccharomyces cerevisiae eEF1A, we identified a posttranslational modification in which the alpha amino group of mono-L-glutamine is covalently linked to the side chain of glutamate 45 in eEF1A. The MS analysis suggested that all eEF1A molecules are modified by this glutaminylation and that this posttranslational modification occurs at all stages of yeast growth. The mutational studies revealed that this glutaminylation is not essential for the normal functions of eEF1A in S. cerevisiae However, eEF1A glutaminylation slightly reduced growth under antibiotic-induced translational stress conditions. Moreover, we identified the same posttranslational modification in eEF1A from Schizosaccharomyces pombe, but not in various other eukaryotic organisms tested despite strict conservation of the Glu-45 residue among these organisms. We therefore conclude that eEF1A glutaminylation is a yeast-specific posttranslational modification, which appears to influence protein translation. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  14. The Transcription Factor THO Promotes Transcription Initiation and Elongation by RNA Polymerase I.

    PubMed

    Zhang, Yinfeng; French, Sarah L; Beyer, Ann L; Schneider, David A

    2016-02-05

    Although ribosomal RNA represents the majority of cellular RNA, and ribosome synthesis is closely connected to cell growth and proliferation rates, a complete understanding of the factors that influence transcription of ribosomal DNA is lacking. Here, we show that the THO complex positively affects transcription by RNA polymerase I (Pol I). We found that THO physically associates with the rDNA repeat and interacts genetically with Pol I transcription initiation factors. Pol I transcription in hpr1 or tho2 null mutants is dramatically reduced to less than 20% of the WT level. Pol I occupancy of the coding region of the rDNA in THO mutants is decreased to ~50% of WT level. Furthermore, although the percentage of active rDNA repeats remains unaffected in the mutant cells, the overall rDNA copy number increases ~2-fold compared with WT. Together, these data show that perturbation of THO function impairs transcription initiation and elongation by Pol I, identifying a new cellular target for the conserved THO complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Cloning, overexpression and purification of Bacillus subtilis elongation factor Tu in Escherichia coli.

    PubMed

    Kim, S I; Kim, H Y; Kwak, J H; Kwon, S H; Lee, S Y

    2000-02-29

    To establish the overexpression and one-step purification system of Bacillus subtilis elongation factor-Tu (EF-Tu), the EF-Tu gene was amplified with or without own ribosome binding site (rbs) by PCR and the only PCR product without rbs was subcloned successfully. For the expression of the EF-Tu gene cloned after PCR amplification, a constitutive expression system and inducible expression system with His6 tag at N-terminus or C-terminus, or glutathione-S-transferase (GST) fusion system were examined in E. coli and B. subtilis. Except GST fusion system in E. coli, however, all other trials were unsuccessful at the step of plasmid construction for the EF-Tu expression. The GST/EF-Tu fusion proteins were highly expressed by IPTG induction and obtained as both soluble and insoluble form. From the soluble GST/EF-Tu fusion protein, EF-Tu was obtained to near homogeneity by one-step purification with glutathione-sepharose affinity column chromatography followed by factor Xa treatment. The purified EF-Tu showed high GDP binding activity. These results indicate that the GST/EF-Tu fusion system is favorable to overexpression and purification of B. subtilis EF-Tu.

  16. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    PubMed Central

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonardo G.; LeBarron, Jamie; Baxter, William T.; Shaikh, Tanvir R.; Grassucci, Robert A.; Nissen, Poul; Ehrenberg, Måns; Schulten, Klaus; Frank, Joachim

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-Å cryo-electron microscopy map of the aminoacyl-tRNA·EF-Tu·GDP·kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism. PMID:19122150

  17. The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo.

    PubMed

    Keegan, Brian R; Feldman, Jessica L; Lee, Diana H; Koos, David S; Ho, Robert K; Stainier, Didier Y R; Yelon, Deborah

    2002-04-01

    Precise temporal and spatial control of transcription is a fundamental component of embryonic development. Regulation of transcription elongation can act as a rate-limiting step during mRNA synthesis. The mechanisms of stimulation and repression of transcription elongation during development are not yet understood. We have identified a class of zebrafish mutations (pandora, sk8 and s30) that cause multiple developmental defects, including discrete problems with pigmentation, tail outgrowth, ear formation and cardiac differentiation. We demonstrate that the pandora gene encodes a protein similar to Spt6, a proposed transcription elongation factor. Additionally, the sk8 and s30 mutations are null alleles of the foggy/spt5 locus, which encodes another transcription elongation factor. Through real-time RT-PCR analysis, we demonstrate that Spt6 and Spt5 are both required for efficient kinetics of hsp70 transcription in vivo. Altogether, our results suggest that Spt6 and Spt5 play essential roles of comparable importance for promoting transcription during embryogenesis. This study provides the first genetic evidence for parallel functions of Spt6 and Spt5 in metazoans and establishes a system for the future analysis of transcription elongation during development.

  18. Evolution of elongation factor-like (EFL) protein in Rhizaria is revised by radiolarian EFL gene sequences.

    PubMed

    Ishitani, Yoshiyuki; Kamikawa, Ryoma; Yabuki, Akinori; Tsuchiya, Masashi; Inagaki, Yuji; Takishita, Kiyotaka

    2012-01-01

    Elongation factor 1α (EF-1α) and elongation factor-like (EFL) proteins are considered to carry out equivalent functions in translation in eukaryotic cells. Elongation factor 1α and EFL genes are patchily distributed in the global eukaryotic tree, suggesting that the evolution of these elongation factors cannot be reconciled without multiple lateral gene transfer and/or ancestral co-occurrence followed by differential loss of either of the two factors. Our current understanding of the EF-1α/EFL evolution in the eukaryotic group Rhizaria, composed of Foraminifera, Radiolaria, Filosa, and Endomyxa, remains insufficient, as no information on EF-1α/EFL gene is available for any members of Radiolaria. In this study, EFL genes were experimentally isolated from four polycystine radiolarians (i.e. Dictyocoryne, Eucyrtidium, Collozoum, and Sphaerozoum), as well as retrieved from publicly accessible expressed sequence tag data of two acantharean radiolarians (i.e. Astrolonche and Phyllostaurus) and the endomyxan Gromia. The EFL homologs from radiolarians, foraminiferans, and Gromia formed a robust clade in both maximum-likelihood and Bayesian phylogenetic analyses, suggesting that EFL genes were vertically inherited from their common ancestor. We propose an updated model for EF-1α/EFL evolution in Rhizaria by incorporating new EFL data obtained in this study.

  19. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation

    PubMed Central

    Scotti, John S.; Leung, Ivanhoe K. H.; Ge, Wei; Bentley, Michael A.; Paps, Jordi; Kramer, Holger B.; Lee, Joongoo; Aik, WeiShen; Choi, Hwanho; Paulsen, Steinar M.; Bowman, Lesley A. H.; Loik, Nikita D.; Horita, Shoichiro; Ho, Chia-hua; Kershaw, Nadia J.; Tang, Christoph M.; Claridge, Timothy D. W.; Preston, Gail M.; McDonough, Michael A.; Schofield, Christopher J.

    2014-01-01

    The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases in eukaryotes include collagen stabilization, hypoxia sensing, and translational regulation. The hypoxia-inducible factor (HIF) sensing system is conserved in animals, but not in other organisms. However, bioinformatics imply that 2OG-dependent prolyl-hydroxylases (PHDs) homologous to those acting as sensing components for the HIF system in animals occur in prokaryotes. We report cellular, biochemical, and crystallographic analyses revealing that Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) contain a 2OG oxygenase related in structure and function to the animal PHDs. A Pseudomonas aeruginosa PPHD knockout mutant displays impaired growth in the presence of iron chelators and increased production of the virulence factor pyocyanin. We identify elongation factor Tu (EF-Tu) as a PPHD substrate, which undergoes prolyl-4-hydroxylation on its switch I loop. A crystal structure of PPHD reveals striking similarity to human PHD2 and a Chlamydomonas reinhardtii prolyl-4-hydroxylase. A crystal structure of PPHD complexed with intact EF-Tu reveals that major conformational changes occur in both PPHD and EF-Tu, including a >20-Å movement of the EF-Tu switch I loop. Comparison of the PPHD structures with those of HIF and collagen PHDs reveals conservation in substrate recognition despite diverse biological roles and origins. The observed changes will be useful in designing new types of 2OG oxygenase inhibitors based on various conformational states, rather than active site iron chelators, which make up most reported 2OG oxygenase inhibitors. Structurally informed phylogenetic analyses suggest that the role of prolyl-hydroxylation in human hypoxia sensing has ancient origins. PMID:25197067

  20. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation.

    PubMed

    Scotti, John S; Leung, Ivanhoe K H; Ge, Wei; Bentley, Michael A; Paps, Jordi; Kramer, Holger B; Lee, Joongoo; Aik, WeiShen; Choi, Hwanho; Paulsen, Steinar M; Bowman, Lesley A H; Loik, Nikita D; Horita, Shoichiro; Ho, Chia-hua; Kershaw, Nadia J; Tang, Christoph M; Claridge, Timothy D W; Preston, Gail M; McDonough, Michael A; Schofield, Christopher J

    2014-09-16

    The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases in eukaryotes include collagen stabilization, hypoxia sensing, and translational regulation. The hypoxia-inducible factor (HIF) sensing system is conserved in animals, but not in other organisms. However, bioinformatics imply that 2OG-dependent prolyl-hydroxylases (PHDs) homologous to those acting as sensing components for the HIF system in animals occur in prokaryotes. We report cellular, biochemical, and crystallographic analyses revealing that Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) contain a 2OG oxygenase related in structure and function to the animal PHDs. A Pseudomonas aeruginosa PPHD knockout mutant displays impaired growth in the presence of iron chelators and increased production of the virulence factor pyocyanin. We identify elongation factor Tu (EF-Tu) as a PPHD substrate, which undergoes prolyl-4-hydroxylation on its switch I loop. A crystal structure of PPHD reveals striking similarity to human PHD2 and a Chlamydomonas reinhardtii prolyl-4-hydroxylase. A crystal structure of PPHD complexed with intact EF-Tu reveals that major conformational changes occur in both PPHD and EF-Tu, including a >20-Å movement of the EF-Tu switch I loop. Comparison of the PPHD structures with those of HIF and collagen PHDs reveals conservation in substrate recognition despite diverse biological roles and origins. The observed changes will be useful in designing new types of 2OG oxygenase inhibitors based on various conformational states, rather than active site iron chelators, which make up most reported 2OG oxygenase inhibitors. Structurally informed phylogenetic analyses suggest that the role of prolyl-hydroxylation in human hypoxia sensing has ancient origins.

  1. Translation Elongation Factor Tuf of Acinetobacter baumannii Is a Plasminogen-Binding Protein

    PubMed Central

    Koenigs, Arno; Zipfel, Peter F.; Kraiczy, Peter

    2015-01-01

    Acinetobacter baumannii is an important nosocomial pathogen, causing a variety of opportunistic infections of the skin, soft tissues and wounds, urinary tract infections, secondary meningitis, pneumonia and bacteremia. Over 63% of A. baumannii infections occurring in the United States are caused by multidrug resistant isolates, and pan-resistant isolates have begun to emerge that are resistant to all clinically relevant antibiotics. The complement system represents the first line of defense against invading pathogens. However, many A. baumannii isolates, especially those causing severe bacteremia are resistant to complement-mediated killing, though the underlying mechanisms remain poorly understood. Here we show for the first time that A. baumannii binds host-derived plasminogen and we identify the translation elongation factor Tuf as a moonlighting plasminogen-binding protein that is exposed on the outer surface of A. baumannii. Binding of plasminogen to Tuf is at least partly dependent on lysine residues and ionic interactions. Plasminogen, once bound to Tuf can be converted to active plasmin and proteolytically degrade fibrinogen as well as the key complement component C3b. Thus, Tuf acts as a multifunctional protein that may contribute to virulence of A. baumannii by aiding in dissemination and evasion of the complement system. PMID:26230848

  2. Divergence among genes encoding the elongation factor Tu of Yersinia Species.

    PubMed

    Isabel, Sandra; Leblanc, Eric; Boissinot, Maurice; Boudreau, Dominique K; Grondin, Myrian; Picard, François J; Martel, Eric A; Parham, Nicholas J; Chain, Patrick S G; Bader, Douglas E; Mulvey, Michael R; Bryden, Louis; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G

    2008-11-01

    Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.

  3. Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1.

    PubMed

    Wu, Huiling; Shi, Yan; Lin, Ying; Qian, Wei; Yu, Yao; Huo, Keke

    2011-11-01

    SIAH-1, an E3 ubiquitin ligase, plays an important role in regulating cell cycle, tumorigenesis and several neurodegenerative diseases. In this study, we found a novel SIAH-1-interacting protein, EEF1D (Eukaryotic translation elongation factor 1 delta). The interaction was confirmed in vitro and in vivo, and both proteins were co-localized in the cytoplasm. The Cys-rich domain of SIAH-1 was essential for its interaction with EEF1D. Overexpressing SIAH-1 had no effect on the protein level of EEF1D, implying that EFF1D is not the substrate of SIAH-1. In contrast, the protein level of SIAH-1 increased significantly in the cells overexpressing EEF1D. Increased amount of SIAH-1 was caused by the EEF1D-mediated inhibition of auto-ubiquitination and degradation of SIAH-1. Furthermore, EEF1D was able to inhibit the degradation of HPH2, a known substrate of SIAH-1. Taken together, our data suggest EFF1D functions as a novel negative regulator of SIAH-1.

  4. Mutational analysis of Glu272 in elongation factor 1A of E. coli.

    PubMed

    Mansilla, F; Knudsen, C R; Clark, B F

    1998-06-16

    In our previous work (Mansilla et al. (1997) Protein Eng. 10, 927-934) we showed that Arg7 of Escherichia coli elongation factor Tu (EF1A) plays an essential role in aminoacyl-tRNA (aa-tRNA) binding. Substitution of Arg7 by Ala or Glu lost this activity. We proposed that Arg7 forms a salt bridge with the charged conserved amino acid Glu272 (Asp284 in Thermus aquaticus) thereby binding the N-terminal region of the protein to domain 2 and thus completing the conformational rearrangement needed for binding aa-tRNA. In this work we have mutated Glu272 to arginine, either alone (Glu272Arg), or in combination with one of the above mentioned mutations (Arg7Glu/Glu272Arg) in order to test this hypothesis. Our results show that, in confirmation of our thesis based on structural knowledge, the substitution of Glu272 (Asp284) decreases the ability of EF1A:GTP to bind aa-tRNA.

  5. An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells

    DOE PAGES

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; ...

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). Thesemore » proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Lastly, visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.« less

  6. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA.

    PubMed

    Calado, Angelo; Treichel, Nathalie; Müller, Eva-Christina; Otto, Albrecht; Kutay, Ulrike

    2002-11-15

    Transport of proteins and RNA into and out of the cell nucleus is mediated largely by a family of RanGTP-binding transport receptors. Export receptors (exportins) need to bind RanGTP for efficient loading of their export cargo. We have identified eukaryotic elongation factor 1A (eEF1A) and tRNA as RanGTP-dependent binding partners of exportin-5 (Exp5). Exp5 stimulates nuclear export of eEF1A when microinjected into the nucleus of Xenopus laevis oocytes. Surprisingly, the interaction between eEF1A and Exp5 is dependent on tRNA that can interact directly with Exp5 and, if aminoacylated, recruits eEF1A into the export complex. These data suggested to us that Exp5 might support tRNA export. Indeed, not only the canonical tRNA export receptor, exportin-t, but also Exp5 can drive nuclear export of tRNA. Taken together, we show that there exists an alternative tRNA export pathway which can be exploited to keep eEF1A out of the cell nucleus.

  7. Tetracycline does not directly inhibit the function of bacterial elongation factor Tu.

    PubMed

    Gzyl, Katherine E; Wieden, Hans-Joachim

    2017-01-01

    Understanding the molecular mechanism of antibiotics that are currently in use is important for the development of new antimicrobials. The tetracyclines, discovered in the 1940s, are a well-established class of antibiotics that still have a role in treating microbial infections in humans. It is generally accepted that the main target of their action is the ribosome. The estimated affinity for tetracycline binding to the ribosome is relatively low compared to the actual potency of the drug in vivo. Therefore, additional inhibitory effects of tetracycline on the translation machinery have been discussed. Structural evidence suggests that tetracycline inhibits the function of the essential bacterial GTPase Elongation Factor (EF)-Tu through interaction with the bound nucleotide. Based on this, tetracycline has been predicted to impede the nucleotide-binding properties of EF-Tu. However, detailed kinetic studies addressing the effect of tetracycline on nucleotide binding have been prevented by the fluorescence properties of the antibiotic. Here, we report a fluorescence-based kinetic assay that minimizes the effect of tetracycline autofluorescence, enabling the detailed kinetic analysis of the nucleotide-binding properties of Escherichia coli EF-Tu. Furthermore, using physiologically relevant conditions, we demonstrate that tetracycline does not affect EF-Tu's intrinsic or ribosome-stimulated GTPase activity, nor the stability of the EF-Tu•GTP•Phe-tRNAPhe complex. We therefore provide clear evidence that tetracycline does not directly impede the function of EF-Tu.

  8. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs

    DOE PAGES

    Michalska, Karolina; Gucinski, Grant C.; Garza-Sanchez, Fernando; ...

    2017-08-11

    Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxinmore » specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Altogether, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.« less

  9. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  10. Expression and immunological evaluation of elongation factor Tu of Streptococcus suis serotype 2.

    PubMed

    Xia, X J; Wang, L; Cheng, L K; Shen, Z Q; Li, S G; Wang, J L

    2017-03-01

    Streptococcus suis serotype 2 (SS2) is considered as a major pathogen that causes sepsis and meningitis in piglets and humans, but knowledge of its antigenic proteins remains limited so far. The surface-related proteins of pathogens often play significant roles in bacterium-host interactions and infection. Here, we obtained the elongation factor Tu (EF-Tu) gene of Streptococcus suis and constructed the recombinant expression plasmid successfully. The target recombinant plasmid was then expressed in Escherichia coli and the immuno-protection of the recombinant protein was subsequently evaluated as well. The EF-Tu gene of Streptococcus suis is 1197 bp in length, encodes 398 amino acids. The target recombinant EF-Tu (rEF-Tu) protein can recognize the antiserum of Streptococcus suis and can provoke obvious humoral immune responses in rabbits and conferred protection to rabbits against Streptococcus suis ear-vein challenge, implying that the EF-Tu may be used as an attractive candidate antigen for a component of subunit vaccine.

  11. Elongation factor 1-alpha is released into the culture medium during growth of Giardia intestinalis trophozoites.

    PubMed

    Skarin, Hanna; Ringqvist, Emma; Hellman, Ulf; Svärd, Staffan G

    2011-04-01

    The molecular pathogenesis of the intestinal parasite Giardia intestinalis is still not fully understood but excretory-secretory products have been suggested to be important during host-parasite interactions. Here we used SDS-PAGE gels and MALDI-TOF analysis to identify proteins released by Giardia trophozoites during in vitro growth. Serum proteins (mainly bovine serum albumin) in the growth medium, bind to the parasite surface and they are continuously released, which interfere with parasite secretome characterization. However, we identified two released Giardia proteins: elongation factor-1 alpha (EF-1α) and a 58 kDa protein, identified as arginine deiminase (ADI). This is the first description of EF-1α as a released/secreted Giardia protein, whereas ADI has been identified in an earlier secretome study. Two genes encoding EF-1α were detected in the Giardia WB genome 35 kbp apart with almost identical coding sequences but with different promoter and 3' regions. Promoter luciferase-fusions showed that both genes are transcribed in trophozoites. The EF-1α protein localizes to the nuclear region in trophozoites but it relocalizes to the cytoplasm during host-cell interaction. Recombinant EF-1α is recognized by serum from giardiasis patients. Our results suggest that released EF-1α protein can be important during Giardia infections.

  12. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends

    PubMed Central

    1996-01-01

    Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo. PMID:8947553

  13. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae

    PubMed Central

    Wholey, Wei-Yun; Jakob, Ursula

    2012-01-01

    Summary The redox-regulated chaperone Hsp33 protects bacteria specifically against stress conditions that cause oxidative protein unfolding, such as treatment with bleach or exposure to peroxide at elevated temperatures. To gain insight into the mechanism by which expression of Hsp33 confers resistance to oxidative protein unfolding conditions, we made use of V. cholerae strain O395 lacking the Hsp33 gene hslO. We found that this strain, which is exquisitely bleach-sensitive, displays a temperature-sensitive (ts) phenotype during aerobic growth, implying that V. cholerae suffers from oxidative heat stress when cultivated at 43°C. We utilized this phenotype to select for E. coli genes that rescue the ts phenotype of V. cholerae ΔhslO when overexpressed. We discovered that expression of a single protein, the elongation factor EF-Tu, was sufficient to rescue both the ts and bleach-sensitive phenotypes of V. cholerae ΔhslO. In vivo studies revealed that V. cholerae EF-Tu is highly sensitive to oxidative protein degradation in the absence of Hsp33, indicating that EF-Tu is a vital chaperone substrate of Hsp33 in V. cholerae. These results suggest an “essential client protein” model for Hsp33’s chaperone action in Vibrio in which stabilization of a single oxidative stress-sensitive protein is sufficient to enhance the oxidative stress resistance of the whole organism. PMID:22296329

  14. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae.

    PubMed

    Wholey, Wei-Yun; Jakob, Ursula

    2012-03-01

    The redox-regulated chaperone Hsp33 protects bacteria specifically against stress conditions that cause oxidative protein unfolding, such as treatment with bleach or exposure to peroxide at elevated temperatures. To gain insight into the mechanism by which expression of Hsp33 confers resistance to oxidative protein unfolding conditions, we made use of Vibrio cholerae strain O395 lacking the Hsp33 gene hslO. We found that this strain, which is exquisitely bleach-sensitive, displays a temperature-sensitive (ts) phenotype during aerobic growth, implying that V. cholerae suffers from oxidative heat stress when cultivated at 43°C. We utilized this phenotype to select for Escherichia coli genes that rescue the ts phenotype of V. cholerae ΔhslO when overexpressed. We discovered that expression of a single protein, the elongation factor EF-Tu, was sufficient to rescue both the ts and bleach-sensitive phenotypes of V. cholerae ΔhslO. In vivo studies revealed that V. cholerae EF-Tu is highly sensitive to oxidative protein degradation in the absence of Hsp33, indicating that EF-Tu is a vital chaperone substrate of Hsp33 in V. cholerae. These results suggest an 'essential client protein' model for Hsp33's chaperone action in Vibrio in which stabilization of a single oxidative stress-sensitive protein is sufficient to enhance the oxidative stress resistance of the whole organism. © 2012 Blackwell Publishing Ltd.

  15. Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated Elongation Factor P.

    PubMed

    Rajkovic, Andrei; Hummels, Katherine R; Witzky, Anne; Erickson, Sarah; Gafken, Philip R; Whitelegge, Julian P; Faull, Kym F; Kearns, Daniel B; Ibba, Michael

    2016-05-20

    Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys(32) of B. subtilis EF-P that is required for swarming motility. A fluorescent in vivo B. subtilis reporter system identified peptide motifs whose efficient synthesis was most dependent on 5-aminopentanol EF-P. Examination of the B. subtilis genome sequence showed that these EF-P-dependent peptide motifs were represented in flagellar genes. Taken together, these data show that, in B. subtilis, a previously uncharacterized posttranslational modification of EF-P can modulate the synthesis of specific diprolyl motifs present in proteins required for swarming motility.

  16. Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism

    PubMed Central

    Tarrant, Daniel J.; Stirpe, Mariarita; Rowe, Michelle; Howard, Mark J.

    2016-01-01

    ABSTRACT The translation elongation factor eEF1A is one of the most abundant proteins found within cells, and its role within protein synthesis is well documented. Levels of eEF1A are tightly controlled, with inappropriate expression linked to oncogenesis. However, the mechanisms by which increased eEF1A expression alters cell behaviour are unknown. Our analyses in yeast suggest that elevation of eEF1A levels leads to stabilisation of the spindle pole body and changes in nuclear organisation. Elevation of the eEF1A2 isoform also leads to altered nuclear morphology in cultured human cells, suggesting a conserved role in maintaining genome stability. Gene expression and metabolomic analyses reveal that the level of eEF1A is crucial for the maintenance of metabolism and amino acid levels in yeast, most likely because of its role in the control of vacuole function. Increased eEF1A2 levels trigger lysosome biogenesis in cultured human cells, also suggesting a conserved role within metabolic control mechanisms. Taken together, our data suggest that the control of eEF1A levels is important for the maintenance of a number of cell functions beyond translation and that its de-regulation might contribute to its oncogenic properties. PMID:27807005

  17. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.

    PubMed

    Aleksandrov, Alexey; Field, Martin

    2013-09-01

    Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction's transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.

  18. Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis.

    PubMed

    Carrasco, Sebastian E; Yang, Youyun; Troxell, Bryan; Yang, Xiuli; Pal, Utpal; Yang, X Frank

    2015-09-02

    Borrelia burgdorferi, the etiological agent of Lyme disease, does not produce lipopolysaccharide but expresses a large number of lipoproteins on its cell surface. These outer membrane lipoproteins are highly immunogenic and have been used for serodiagnosis of Lyme disease. Recent studies have shown that highly conserved cytosolic proteins such as enolase and elongation factor Tu (EF-Tu) unexpectedly localized on the surface of bacteria including B. burgdorferi, and surface-localized enolase has shown to contribute to the enzootic cycle of B. burgdorferi. In this study, we studied the immunogenicity, surface localization, and function of B. burgdorferi EF-Tu. We found that EF-Tu is highly immunogenic in mice, and EF-Tu antibodies were readily detected in Lyme disease patients. On the other hand, active immunization studies showed that EF-Tu antibodies did not protect mice from infection when challenged with B. burgdorferi via either needle inoculation or tick bites. Borrelial mouse-tick cycle studies showed that EF-Tu antibodies also did not block B. burgdorferi migration and survival in ticks. Consistent with these findings, we found that EF-Tu primarily localizes in the protoplasmic cylinder of spirochetes and is not on the surface of B. burgdorferi. Taken together, our studies suggest that B. burgdorferi EF-Tu is not surfaced exposed, but it is highly immunogenic and is a potential serodiagnostic marker for Lyme borreliosis.

  19. Protein synthesis elongation factor EF-1 alpha expression and longevity in Drosophila melanogaster.

    PubMed Central

    Shikama, N; Ackermann, R; Brack, C

    1994-01-01

    It has been proposed that the decline in protein synthesis observed in aging organisms may result from a decrease in elongation factor EF-1 alpha. Transgenic Drosophila melanogaster flies carrying an additional copy of the EF-1 alpha gene under control of a heat-inducible promoter have an extended lifespan, further indicating that the EF-1 alpha gene may play an important role in determining longevity. To test this hypothesis, we have quantitated EF-1 alpha mRNA, EF-1 alpha protein, and the EF-1 alpha complex-formation activity in these transgenic flies. Furthermore, we have tested whether the transgene construct is functional--i.e., whether transgenic mRNA is induced when flies are grown at higher temperature. The results show that although there is a clear difference in mean lifespan between the EF-1 alpha transgenic (E) flies and the control transgenic (C) flies, E flies do not express more EF-1 alpha protein or mRNA than C flies kept at the same experimental conditions. Although the transgene can be induced when E flies are heat-shocked at 37 degrees C, transgenic mRNA is not detectable in E flies aged at 29 degrees C. In both lines, the loss in catalytic activity with age is the same. We conclude that the E flies examined here do not live longer because of overexpressing the EF-1 alpha gene. Images PMID:8183891

  20. Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion

    PubMed Central

    Inomata, Atsuko; Murakoshi, Fumi; Ishiwa, Akiko; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Cagayat Recuenco, Frances; Horimoto, Taisuke; Kato, Kentaro

    2015-01-01

    Cryptosporidium parvum is an apicomplexan parasite that can cause serious watery diarrhea, cryptosporidiosis, in human and other mammals. C. parvum invades gastrointestinal epithelial cells, which have abundant glycosaminoglycans on their cell surface. However, little is known about the interaction between C. parvum and glycosaminoglycans. In this study, we assessed the inhibitory effect of sulfated polysaccharides on C. parvum invasion of host cells and identified the parasite ligands that interact with sulfated polysaccharides. Among five sulfated polysaccharides tested, heparin had the highest, dose-dependent inhibitory effect on parasite invasion. Heparan sulfate-deficient cells were less susceptible to C. parvum infection. We further identified 31 parasite proteins that potentially interact with heparin. Of these, we confirmed that C. parvum elongation factor 1α (CpEF1α), which plays a role in C. parvum invasion, binds to heparin and to the surface of HCT-8 cells. Our results further our understanding of the molecular basis of C. parvum infection and will facilitate the development of anti-cryptosporidial agents. PMID:26129968

  1. Identification and subcellular localization analysis of two rubber elongation factor isoforms on Hevea brasiliensis rubber particles.

    PubMed

    Dai, Longjun; Nie, Zhiyi; Kang, Guijuan; Li, Yu; Zeng, Rizhong

    2017-02-01

    Rubber elongation factor (REF) is the most abundant protein found on the rubber particles or latex from Hevea brasiliensis (the Para rubber tree) and is considered to play important roles in natural rubber (cis-polyisoprene) biosynthesis. 16 BAC (benzyldimethyl-n-hexadecylammonium chloride)/SDS-PAGE separations and mass spectrometric identification had revealed that two REF isoforms shared similar amino acid sequences and common C-terminal sequences. In this study, the gene sequences encoding these two REF isoforms (one is 23.6 kDa in size with 222 amino acid residues and the other is 27.3 kDa in size with 258 amino acid residues) were obtained. Their proteins were relatively enriched by sequential extraction of the rubber particle proteins and separated by 16 BAC/SDS-PAGE. The localization of these isoforms on the surfaces of rubber particles was further verified by western blotting and immunogold electron microscopy, which demonstrated that these two REF isoforms are mainly located on the surfaces of larger rubber particles and that they bind more tightly to rubber particles than the most abundant REF and SRPP (small rubber particle protein).

  2. Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism.

    PubMed

    Tarrant, Daniel J; Stirpe, Mariarita; Rowe, Michelle; Howard, Mark J; von der Haar, Tobias; Gourlay, Campbell W

    2016-12-15

    The translation elongation factor eEF1A is one of the most abundant proteins found within cells, and its role within protein synthesis is well documented. Levels of eEF1A are tightly controlled, with inappropriate expression linked to oncogenesis. However, the mechanisms by which increased eEF1A expression alters cell behaviour are unknown. Our analyses in yeast suggest that elevation of eEF1A levels leads to stabilisation of the spindle pole body and changes in nuclear organisation. Elevation of the eEF1A2 isoform also leads to altered nuclear morphology in cultured human cells, suggesting a conserved role in maintaining genome stability. Gene expression and metabolomic analyses reveal that the level of eEF1A is crucial for the maintenance of metabolism and amino acid levels in yeast, most likely because of its role in the control of vacuole function. Increased eEF1A2 levels trigger lysosome biogenesis in cultured human cells, also suggesting a conserved role within metabolic control mechanisms. Taken together, our data suggest that the control of eEF1A levels is important for the maintenance of a number of cell functions beyond translation and that its de-regulation might contribute to its oncogenic properties. © 2016. Published by The Company of Biologists Ltd.

  3. Cloning, expression and functional study of translation elongation factor 2 (EF-2) in zebrafish.

    PubMed

    Zhang, Shu-Hong; Yao, Ji-Hua; Song, Huai-Dong; Wang, Lu; Xue, Jing-Lun

    2006-01-01

    We have identified translation elongation factor 2 (EF-2) in zebrafish (GenBank Accession No. AAQ91234). Analysis of the DNA sequence of zebrafish EF-2 shows that the 2826 bp cDNA spans an open reading frame between nucleotide 55 to 2631 and encodes a protein of 858 amino acids. Zebrafish EF-2 protein shares 92%, 93%, 93% and 92% identity with the corresponding amino acid sequence in human, mouse, Chinese hamster and Gallus EF-2, respectively. Whole-mount in situ hybridization showed that zebrafish EF-2 was a developmentally regulated gene and might play important roles during the early development of zebrafish embryos. Therefore, we further studied the function of EF-2 during early embryogenesis. Using morpholino antisense oligo knockdown assays, anti-MO injected embryos were found to display abnormal development. The yolk balls were larger than normal and the melanophores spreading on their bodies became fewer. Furthermore, their tails were incurvate and their lenses were much smaller than those of the normal embryos. However the EF-2 overexpression data showed that extra EF-2 protein had no obvious effect on zebrafish embryonic development.

  4. Cloning and expression of translation elongation factor 2 (EF-2) in zebrafish.

    PubMed

    Zhang, Shu-Hong; Yao, Ji-Hua; Song, Huai-Dong; Wang, Lu; Xue, Jing-Lun

    2008-02-01

    We have identified a developmentally regulated gene translation elongation factor 2 (EF-2) in zebrafish (GenBank Accession No. AAQ91234). Analysis of DNA sequence of zebrafish EF-2 shows that the 2826 bp cDNA spans an open reading frame from nucleotide 55 to 2631 and encodes a protein of 858 amino acids. It shares an identity of 92, 93, 93, 92, 79 and 80% in amino acid sequence to human, mouse, Chinese hamster, Gallus gullus, C. elegans and Drosophila EF-2, respectively. Zebrafish EF-2 protein has 16 conserved domains, GTP-binding domain is found in the NH2 terminus, and the ADP-ribosylation domain locates at the COOH terminus. Whole mount in situ hybridization on zebrafish embryos shows that the transcripts of EF-2 gene are detected during the early development of zebrafish embryo and constantly change from 5-somite stage to protruding-mouth stage. It expresses strongly throughout envelope at 5-somite stage. Then the stained cells concentrate strongly in the eyes, brain and muscle tissue. From prim-25 stage the stained cells only appear strongly in the lens and the anterior portion of the cerebellum.

  5. An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

    SciTech Connect

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N.; Ledvina, Hannah E.; Tran, Bao Q.; Robinson, Howard; Goo, Young Ah; Goodlett, David R.; Raunser, Stefan; Mougous, Joseph D.

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  6. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells.

    PubMed

    Whitney, John C; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N; Ledvina, Hannah E; Tran, Bao Q; Robinson, Howard; Goo, Young Ah; Goodlett, David R; Raunser, Stefan; Mougous, Joseph D

    2015-10-22

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Distribution of elongation factor-1α in larval tissues of the fall armyworm, Spodoptera frugiperda

    PubMed Central

    Habibi, Javad; Goodman, Cynthia L.; Stuart, Melissa K.

    2006-01-01

    Elongation factor-1α (EF-1α) promotes the delivery of aminoacyl-tRNA to the acceptor site of the ribosome during protein synthesis. The enzyme has a number of additional functions, including regulation of apoptosis and interaction with the cytoskeleton. We determined the distribution of EF-1α in larval tissues of the fall armyworm, Spodoptera frugiperda, with a monoclonal antibody generated to EF-1α from Sf21 cells, a cell line developed from ovarian tissue of S. frugiperda. Enzyme-linked immunosorbent assay showed that EF-1α comprised 1.9–9.9 % of the total protein within the tissues that were examined, which included fat body, Malpighian tubules, midgut, muscle, salivary glands, trachea, and ventral nerve cord. To a certain extent, EF-1α concentrations reflected the expected metabolic activity level of each of the represented tissues. Closer examination by immunofluorescence microscopy revealed that EF-1α concentrations varied among different cell types within a given tissue, i.e. midgut columnar epithelial cells yielded strong signals, while goblet cells failed to react with the EF-1α -specific antibody. PMID:19537984

  8. Distribution of elongation factor-1alpha in larval tissues of the fall armyworm, Spodoptera frugiperda.

    PubMed

    Habibi, Javad; Goodman, Cynthia L; Stuart, Melissa K

    2006-01-01

    Elongation factor-1alpha (EF-1alpha) promotes the delivery of aminoacyl-tRNA to the acceptor site of the ribosome during protein synthesis. The enzyme has a number of additional functions, including regulation of apoptosis and interaction with the cytoskeleton. We determined the distribution of EF-1alpha in larval tissues of the fall armyworm, Spodoptera frugiperda , with a monoclonal antibody generated to EF-1alpha from Sf21 cells, a cell line developed from ovarian tissue of S. frugiperda. Enzyme-linked immunosorbent assay showed that EF-1alpha comprised 1.9-9.9% of the total protein within the tissues that were examined, which included fat body, Malpighian tubules, midgut, muscle, salivary glands, trachea, and ventral nerve cord. To a certain extent, EF-1alpha concentrations reflected the expected metabolic activity level of each of the represented tissues. Closer examination by immunofluorescence microscopy revealed that EF-1alpha concentrations varied among different cell types within a given tissue, i.e. midgut columnar epithelial cells yielded strong signals, while goblet cells failed to react with the EF-1alpha-specific antibody.

  9. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu and pyruvate:ferredoxin oxidoreductase of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by react...

  10. Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1a, in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Protein elongation factors, EF-Tu and EF-1a, have been implicated in cell response to heat stress. In spring wheat, EF-Tu displays chaperone activity and reduces thermal aggregation of Rubisco activase. Similarly, in mammalian cells, EF-1a displays chaperone-like activity and regulates the expressio...

  11. Heat-induced accumulation of protein synthesis elongation factor 1A indicates an important role in heat tolerance in potato

    USDA-ARS?s Scientific Manuscript database

    Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protei...

  12. Advances toward DNA-based identification and phylogeny of North American Armillaria species using elongation factor-1 alpha gene

    Treesearch

    Amy L. Ross-Davis; John W. Hanna; Mee-Sook Kim; Ned B. Klopfenstein

    2012-01-01

    The translation elongation factor-1 alpha gene was used to examine the phylogenetic relationships among 30 previously characterized isolates representing ten North American Armillaria species: A. solidipes (=A. ostoyae), A. gemina, A. calvescens, A. sinapina, A. mellea, A. gallica, A. nabsnona, North American biological species X, A. cepistipes, and A. tabescens. The...

  13. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome.

    PubMed

    Cameron, Dale M; Thompson, Jill; March, Paul E; Dahlberg, Albert E

    2002-05-24

    The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.

  14. Interaction of Leptospira elongation factor Tu with plasminogen and complement factor H: a metabolic leptospiral protein with moonlighting activities.

    PubMed

    Wolff, Danielly G; Castiblanco-Valencia, Mónica M; Abe, Cecília M; Monaris, Denize; Morais, Zenaide M; Souza, Gisele O; Vasconcellos, Sílvio A; Isaac, Lourdes; Abreu, Patrícia A E; Barbosa, Angela S

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities.

  15. Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci

    PubMed Central

    Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2000-01-01

    The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus

  16. Treatment with didemnin B, an elongation factor 1A inhibitor, improves hepatic lipotoxicity in obese mice.

    PubMed

    Hetherington, Alexandra M; Sawyez, Cynthia G; Sutherland, Brian G; Robson, Debra L; Arya, Rigya; Kelly, Karen; Jacobs, René L; Borradaile, Nica M

    2016-09-01

    Eukaryotic elongation factor EEF1A1 is induced by oxidative and ER stress, and contributes to subsequent cell death in many cell types, including hepatocytes. We recently showed that blocking the protein synthesis activity of EEF1A1 with the peptide inhibitor, didemnin B, decreases saturated fatty acid overload-induced cell death in HepG2 cells. In light of this and other recent work suggesting that limiting protein synthesis may be beneficial in treating ER stress-related disease, we hypothesized that acute intervention with didemnin B would decrease hepatic ER stress and lipotoxicity in obese mice with nonalcoholic fatty liver disease (NAFLD). Hyperphagic male ob/ob mice were fed semipurified diet for 4 weeks, and during week 5 received i.p. injections of didemnin B or vehicle on days 1, 4, and 7. Interestingly, we observed that administration of this compound modestly decreased food intake without evidence of illness or distress, and thus included an additional control group matched for food consumption with didemnin B-treated animals. Treatment with didemnin B improved several characteristics of hepatic lipotoxicity to a greater extent than the effects of caloric restriction alone, including hepatic steatosis, and some hepatic markers of ER stress and inflammation (GRP78, Xbp1s, and Mcp1). Plasma lipid and lipoprotein profiles and histopathological measures of NAFLD, including lobular inflammation, and total NAFLD activity score were also improved by didemnin B. These data indicate that acute intervention with the EEF1A inhibitor, didemnin B, improves hepatic lipotoxicity in obese mice with NAFLD through mechanisms not entirely dependent on decreased food intake, suggesting a potential therapeutic strategy for this ER stress-related disease.

  17. A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death.

    PubMed

    Borradaile, Nica M; Buhman, Kimberly K; Listenberger, Laura L; Magee, Carolyn J; Morimoto, Emiko T A; Ory, Daniel S; Schaffer, Jean E

    2006-02-01

    The deleterious consequences of fatty acid (FA) and neutral lipid accumulation in nonadipose tissues, such as the heart, contribute to the pathogenesis of type 2 diabetes. To elucidate mechanisms of FA-induced cell death, or lipotoxicity, we generated Chinese hamster ovary (CHO) cell mutants resistant to palmitate-induced death and isolated a clone with disruption of eukaryotic elongation factor (eEF) 1A-1. eEF1A-1 involvement in lipotoxicity was confirmed in H9c2 cardiomyoblasts, in which small interfering RNA-mediated knockdown also conferred palmitate resistance. In wild-type CHO and H9c2 cells, palmitate increased reactive oxygen species and induced endoplasmic reticulum (ER) stress, changes accompanied by increased eEF1A-1 expression. Disruption of eEF1A-1 expression rendered these cells resistant to hydrogen peroxide- and ER stress-induced death, indicating that eEF1A-1 plays a critical role in the cell death response to these stressors downstream of lipid overload. Disruption of eEF1A-1 also resulted in actin cytoskeleton defects under basal conditions and in response to palmitate, suggesting that eEF1A-1 mediates lipotoxic cell death, secondary to oxidative and ER stress, by regulating cytoskeletal changes critical for this process. Furthermore, our observations of oxidative stress, ER stress, and induction of eEF1A-1 expression in a mouse model of lipotoxic cardiomyopathy implicate this cellular response in the pathophysiology of metabolic disease.

  18. A Critical Role for Eukaryotic Elongation Factor 1A-1 in Lipotoxic Cell DeathD⃞

    PubMed Central

    Borradaile, Nica M.; Buhman, Kimberly K.; Listenberger, Laura L.; Magee, Carolyn J.; Morimoto, Emiko T.A.; Ory, Daniel S.; Schaffer, Jean E.

    2006-01-01

    The deleterious consequences of fatty acid (FA) and neutral lipid accumulation in nonadipose tissues, such as the heart, contribute to the pathogenesis of type 2 diabetes. To elucidate mechanisms of FA-induced cell death, or lipotoxicity, we generated Chinese hamster ovary (CHO) cell mutants resistant to palmitate-induced death and isolated a clone with disruption of eukaryotic elongation factor (eEF) 1A-1. eEF1A-1 involvement in lipotoxicity was confirmed in H9c2 cardiomyoblasts, in which small interfering RNA-mediated knockdown also conferred palmitate resistance. In wild-type CHO and H9c2 cells, palmitate increased reactive oxygen species and induced endoplasmic reticulum (ER) stress, changes accompanied by increased eEF1A-1 expression. Disruption of eEF1A-1 expression rendered these cells resistant to hydrogen peroxide- and ER stress-induced death, indicating that eEF1A-1 plays a critical role in the cell death response to these stressors downstream of lipid overload. Disruption of eEF1A-1 also resulted in actin cytoskeleton defects under basal conditions and in response to palmitate, suggesting that eEF1A-1 mediates lipotoxic cell death, secondary to oxidative and ER stress, by regulating cytoskeletal changes critical for this process. Furthermore, our observations of oxidative stress, ER stress, and induction of eEF1A-1 expression in a mouse model of lipotoxic cardiomyopathy implicate this cellular response in the pathophysiology of metabolic disease. PMID:16319173

  19. Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa

    PubMed Central

    Rajkovic, Andrei; Erickson, Sarah; Witzky, Anne; Branson, Owen E.; Seo, Jin; Gafken, Philip R.; Frietas, Michael A.; Whitelegge, Julian P.; Faull, Kym F.; Navarre, William; Darwin, Andrew J.

    2015-01-01

    ABSTRACT Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. PMID:26060278

  20. In vitro and in vivo activities of novel, semisynthetic thiopeptide inhibitors of bacterial elongation factor Tu.

    PubMed

    Leeds, J A; LaMarche, M J; Brewer, J T; Bushell, S M; Deng, G; Dewhurst, J M; Dzink-Fox, J; Gangl, E; Jain, A; Lee, L; Lilly, M; Manni, K; Mullin, S; Neckermann, G; Osborne, C; Palestrant, D; Patane, M A; Raimondi, A; Ranjitkar, S; Rann, E M; Sachdeva, M; Shao, J; Tiamfook, S; Whitehead, L; Yu, D

    2011-11-01

    Recently, we identified aminothiazole derivatives of GE2270 A. These novel semisynthetic congeners, like GE2270 A, target the essential bacterial protein elongation factor Tu (EF-Tu). Medicinal chemistry optimization of lead molecules led to the identification of preclinical development candidates 1 and 2. These cycloalklycarboxylic acid derivatives show activity against difficult to treat Gram-positive pathogens and demonstrate increased aqueous solubility compared to GE2270 A. We describe here the in vitro and in vivo activities of compounds 1 and 2 compared to marketed antibiotics. Compounds 1 and 2 were potent against clinical isolates of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci (MIC(90) ≤ 0.25 μg/ml) but weaker against the streptococci (MIC(90) ≥ 4 μg/ml). Like GE2270 A, the derivatives inhibited bacterial protein synthesis and selected for spontaneous loss of susceptibility via mutations in the tuf gene, encoding EF-Tu. The mutants were not cross-resistant to other antibiotic classes. In a mouse systemic infection model, compounds 1 and 2 protected mice from lethal S. aureus infections with 50% effective doses (ED(50)) of 5.2 and 4.3 mg/kg, respectively. Similarly, compounds 1 and 2 protected mice from lethal systemic E. faecalis infections with ED(50) of 0.56 and 0.23 mg/kg, respectively. In summary, compounds 1 and 2 are active in vitro and in vivo activity against difficult-to-treat Gram-positive bacterial infections and represent a promising new class of antibacterials for use in human therapy.

  1. Regulation of elongation factor-1 expression by vitamin E in diabetic rat kidneys.

    PubMed

    Al-Maghrebi, May; Cojocel, Constantin; Thompson, Mary S

    2005-05-01

    Translation elongation factor-1 (EF-1) forms a primary site of regulation of protein synthesis and has been implicated amongst others in tumorigenesis, diabetes and cell death. To investigate whether diabetes-induced oxidative stress affects EF-1 gene expression, we used a free radical scavenger, vitamin E. The following groups of rats (5/group) were studied: control, vitamin E control, diabetic and diabetic treated with vitamin E. Markers of hyperglycemia, kidney function, oxidative stress, and kidney hypertrophy were elevated in diabetic rats. Increased urinary protein excretion indicated early signs of glomerular and tubular dysfunction. The mRNA and protein levels of the three EF-1 subunits (A, Balpha, and Bgamma) were determined in renal cortex extracts using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), northern blot analysis and western blotting. EF-1A mRNA expression in renal cortex extracts was significantly increased by at least 2-fold (p < 0.002) in diabetic rats; however, there was no change in the mRNA levels of EF-1Balpha and EF-1Bgamma subunits. Similar results were observed at the protein level. Treatment of diabetic rats with vitamin E for 10 days suppressed both glycemic and oxidative stresses in renal cortex and kidney hypertrophy. EF-1A mRNA and protein levels were also reduced to control levels. In conclusion, EF-1A but not EF-1Balpha and EF-1Bgamma gene expression is significantly enhanced in the renal cortex of diabetic rats. Normalization of enhanced EF-1A expression by vitamin E treatment suggests a role for EF-1A during diabetes-induced oxidative stress.

  2. Rooting for the root of elongation factor-like protein phylogeny.

    PubMed

    Kamikawa, Ryoma; Sakaguchi, Miako; Matsumoto, Takuya; Hashimoto, Tetsuo; Inagaki, Yuji

    2010-09-01

    Lateral gene transfer (LGT) may play a pivotal role in the evolution of elongation factor-like (EFL) genes in eukaryotes. To date, numbers of putative cases for lateral transfer of EFL genes have been postulated based on unrooted EFL phylogenies. Nevertheless, the root position in EFL phylogeny is important to validate lateral EFL gene transfer: for instance, a clade of two EFL homologs from distantly related organisms in an unrooted EFL tree does not necessarily confirm the LGT, since the possibility that the root may locate in this clade cannot be excluded. Cocquyt et al. (2009, p. 39) recently demonstrated that a putative case of lateral EFL gene transfer, which was originally proposed based on an unrooted phylogeny, could not be endorsed by the corresponding rooted analysis. Although rooting EFL phylogeny is indispensable to elucidate various aspects in EFL gene evolution, we suspected that the outgroup clade comprised of EF-1alpha and eukaryote-specific EF-1alpha paralogs erroneously attached to long EFL branches in Cocquyt et al. (2009) - a typical long branch attraction (LBA) artifact. Here, we systematically assessed the putative LBA artifact between the branch leading to the outgroup clade and long ingroup branches by analyzing the original dataset used in Cocquyt et al. (2009) with and without modifying ingroup-sequence sampling. A series of the rooted EFL analyses indicated that the root inference was highly susceptible to presence and absence of long-branched ingroup-sequences, suggesting that the rooted EFL phylogenies cannot be free from severe LBA artifact. We also discussed a new aspect in EFL gene evolution in stramenopiles identified in the course of the EFL analyses described above. Finally, the relative timing of the first emergence of EFL gene in eukaryotes was contemplated based on the current EF-1alpha/EFL distribution.

  3. Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome

    PubMed Central

    Spiegel, P. Clint; Ermolenko, Dmitri N.; Noller, Harry F.

    2007-01-01

    Following peptide bond formation, transfer RNAs (tRNAs) and messenger RNA (mRNA) are translocated through the ribosome, a process catalyzed by elongation factor EF-G. Here, we have used a combination of chemical footprinting, peptidyl transferase activity assays, and mRNA toeprinting to monitor the effects of EF-G on the positions of tRNA and mRNA relative to the A, P, and E sites of the ribosome in the presence of GTP, GDP, GDPNP, and fusidic acid. Chemical footprinting experiments show that binding of EF-G in the presence of the non-hydrolyzable GTP analog GDPNP or GDP·fusidic acid induces movement of a deacylated tRNA from the classical P/P state to the hybrid P/E state. Furthermore, stabilization of the hybrid P/E state by EF-G compromises P-site codon–anticodon interaction, causing frame-shifting. A deacylated tRNA bound to the P site and a peptidyl-tRNA in the A site are completely translocated to the E and P sites, respectively, in the presence of EF-G with GTP or GDPNP but not with EF-G·GDP. Unexpectedly, translocation with EF-G·GTP leads to dissociation of deacylated tRNA from the E site, while tRNA remains bound in the presence of EF-G·GDPNP, suggesting that dissociation of tRNA from the E site is promoted by GTP hydrolysis and/or EF-G release. Our results show that binding of EF-G in the presence of GDPNP or GDP·fusidic acid stabilizes the ribosomal intermediate hybrid state, but that complete translocation is supported only by EF-G·GTP or EF-G·GDPNP. PMID:17630323

  4. Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex*

    PubMed Central

    Sengupta, Shreya; Prajapati, Ranjit Kumar; Mukhopadhyay, Jayanta

    2015-01-01

    The transition from the formation of the RNA polymerase (RNAP)-promoter open complex step to the productive elongation complex step involves “promoter escape” of RNAP. From the structure of RNAP, a promoter escape model has been proposed that suggests that the interactions between σR4 and RNAP and σR4 and DNA are destabilized upon transition to elongation. This accounts for the reduced affinity of σ to RNAP and stochastic release of σ. However, as the loss of interaction of σR4 with RNAP results in the release of intact σ, assessing this interaction remains challenging to be experimentally verified. Here we study the promoter escape model using a two-component σ factor YvrI and YvrHa from Bacillus subtilis that independently contributes to the functions of σR4 and σR2 in a RNAP-promoter complex. Our results show that YvrI, which mimics σR4, is released gradually as transcription elongation proceeds, whereas YvrHa, which mimics σR2 is retained throughout the elongation complexes. Thus our result validates the proposed model for promoter escape and also suggests that promoter escape involves little or no change in the interaction of σR2 with RNAP. PMID:26400263

  5. Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex.

    PubMed

    Sengupta, Shreya; Prajapati, Ranjit Kumar; Mukhopadhyay, Jayanta

    2015-11-20

    The transition from the formation of the RNA polymerase (RNAP)-promoter open complex step to the productive elongation complex step involves "promoter escape" of RNAP. From the structure of RNAP, a promoter escape model has been proposed that suggests that the interactions between σR4 and RNAP and σR4 and DNA are destabilized upon transition to elongation. This accounts for the reduced affinity of σ to RNAP and stochastic release of σ. However, as the loss of interaction of σR4 with RNAP results in the release of intact σ, assessing this interaction remains challenging to be experimentally verified. Here we study the promoter escape model using a two-component σ factor YvrI and YvrHa from Bacillus subtilis that independently contributes to the functions of σR4 and σR2 in a RNAP-promoter complex. Our results show that YvrI, which mimics σR4, is released gradually as transcription elongation proceeds, whereas YvrHa, which mimics σR2 is retained throughout the elongation complexes. Thus our result validates the proposed model for promoter escape and also suggests that promoter escape involves little or no change in the interaction of σR2 with RNAP.

  6. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function.

    PubMed

    Cristodero, Marina; Mani, Jan; Oeljeklaus, Silke; Aeberhard, Lukas; Hashimi, Hassan; Ramrath, David J F; Lukeš, Julius; Warscheid, Bettina; Schneider, André

    2013-11-01

    Mitochondrial translation in the parasitic protozoan Trypanosoma brucei relies on imported eukaryotic-type tRNAs as well as on bacterial-type ribosomes that have the shortest known rRNAs. Here we have identified the mitochondrial translation elongation factors EF-Tu, EF-Ts, EF-G1 and release factor RF1 of trypanosomatids and show that their ablation impairs growth and oxidative phosphorylation. In vivo labelling experiments and a SILAC-based analysis of the global proteomic changes induced by EF-Tu RNAi directly link EF-Tu to mitochondrial translation. Moreover, EF-Tu RNAi reveals downregulation of many nuclear encoded subunits of cytochrome oxidase as well as of components of the bc1-complex, whereas most cytosolic ribosomal proteins were upregulated. Interestingly, T. brucei EF-Tu has a 30-amino-acid-long, highly charged subdomain, which is unique to trypanosomatids. A combination of RNAi and complementation experiments shows that this subdomain is essential for EF-Tu function, but that it can be replaced by a similar sequence found in eukaryotic EF-1a, the cytosolic counterpart of EF-Tu. A recent cryo-electron microscopy study revealed that trypanosomatid mitochondrial ribosomes have a unique intersubunit space that likely harbours the EF-Tu binding site. These findings suggest that the trypanosomatid-specific EF-Tu subdomain serves as an adaption for binding to these unusual mitochondrial ribosomes.

  7. Isolation and Characterization of Three Cassava Elongation Factor 1 Alpha (MeEF1A) Promoters

    PubMed Central

    Suhandono, Sony; Apriyanto, Ardha; Ihsani, Nisa

    2014-01-01

    In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the development of new genetically modified plant generations. This research was conducted in order to isolate and characterize several new promoters from cassava (Manihot esculenta Crantz) elongation factor 1 alpha (EF1A) gene family. Three promoters MeEF1A3, MeEF1A4 and MeEF1A5 were successfully isolated. Sequence analyses showed that all of the promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site. These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 5′UTR intron but with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion) in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC) technique. Transient expression assay that was done by using agroinfiltration method was used to show functionality of these promoters. Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific activity in tobacco seedlings (Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana fruits (Musa acuminata). We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering in cassava or other plants. PMID:24404183

  8. The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA.

    PubMed

    Yikilmaz, Emine; Chapman, Stephen J; Schrader, Jared M; Uhlenbeck, Olke C

    2014-09-09

    Nineteen of the highly conserved residues of Escherichia coli (E. coli) Elongation factor Tu (EF-Tu) that form the binding interface with aa-tRNA were mutated to alanine to better understand how modifying the thermodynamic properties of EF-Tu-tRNA interaction can affect the decoding properties of the ribosome. Comparison of ΔΔG(o) values for binding EF-Tu to aa-tRNA show that the majority of the interface residues stabilize the ternary complex and their thermodynamic contribution can depend on the tRNA species that is used. Experiments with a very tight binding mutation of tRNA(Tyr) indicate that interface amino acids distant from the tRNA mutation can contribute to the specificity. For nearly all of the mutations, the values of ΔΔG(o) were identical to those previously determined at the orthologous positions of Thermus thermophilus (T. thermophilus) EF-Tu indicating that the thermodynamic properties of the interface were conserved between distantly related bacteria. Measurement of the rate of GTP hydrolysis on programmed ribosomes revealed that nearly all of the interface mutations were able to function in ribosomal decoding. The only interface mutation with greatly impaired GTPase activity was R223A which is the only one that also forms a direct contact with the ribosome. Finally, the ability of the EF-Tu interface mutants to destabilize the EF-Tu-aa-tRNA interaction on the ribosome after GTP hydrolysis were evaluated by their ability to suppress the hyperstable T1 tRNA(Tyr) variant where EF-Tu release is sufficiently slow to limit the rate of peptide bond formation (kpep) . In general, interface mutations that destabilize EF-Tu binding are also able to stimulate kpep of T1 tRNA(Tyr), suggesting that the thermodynamic properties of the EF-Tu-aa-tRNA interaction on the ribosome are quite similar to those found in the free ternary complex.

  9. Signal Integration at Elongation Factor 2 Kinase: THE ROLES OF CALCIUM, CALMODULIN, AND SER-500 PHOSPHORYLATION.

    PubMed

    Tavares, Clint D J; Giles, David H; Stancu, Gabriel; Chitjian, Catrina A; Ferguson, Scarlett B; Wellmann, Rebecca M; Kaoud, Tamer S; Ghose, Ranajeet; Dalby, Kevin N

    2017-02-03

    Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca(2+) ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca(2+) and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca(2+) is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca(2+) and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca(2+)/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca(2+) and CaM to influence eEF-2K activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Positive transcription elongation factor b (P-TEFb) is a therapeutic target in human multiple myeloma.

    PubMed

    Zhang, Yu; Zhou, Liang; Leng, Yun; Dai, Yun; Orlowski, Robert Z; Grant, Steven

    2017-08-29

    The role of the positive RNA Pol II regulator, P-TEFb (positive transcription elongation factor b), in maintenance of the anti-apoptotic protein Mcl-1 and bortezomib (btz) resistance was investigated in human multiple myeloma (MM) cells. Mcl-1 was up-regulated in all MM lines tested, including bortezomib-resistant lines, human MM xenograft mouse models, and primary CD138(+) MM cells. Mcl-1 over-expression significantly reduced bortezomib lethality, indicating a functional role for Mcl-1 in bortezomib resistance. MM cell lines, primary MM specimens, and murine xenografts exhibited constitutive P-TEFb activation, manifested by high CTD (carboxy-terminal domain) S2 phosphorylation, associated with a) P-TEFb subunit up-regulation i.e., CDK9 (42 and 55 kDa isoforms) and cyclin T1; and b) marked CDK9 (42 kDa) T186 phosphorylation. In marked contrast, normal hematopoietic cells failed to exhibit up-regulation of p-CTD, CDK9, cyclin T1, or Mcl-1. CDK9 or cyclin T1 shRNA knock-down dramatically inhibited CTD S2 phosphorylation and down-regulated Mcl-1. Moreover, CRISPR-Cas CDK9 knock-out triggered apoptosis in MM cells and dramatically diminished cell growth. Pan-CDK e.g., dinaciclib or alvocidib and selective CDK9 inhibitors (CDK9i) recapitulated the effects of genetic P-TEFb disruption. CDK9 shRNA or CDK9 inhibitors significantly potentiated the susceptibility of MM cells, including bortezomib-resistant cells, to proteasome inhibitors. Analogously, CDK9 or cyclin T1 knock-down or CDK9 inhibitors markedly increased BH3-mimetic lethality in bortezomib-resistant cells. Finally, pan-CDK inhibition reduced human drug-naïve or bortezomib-resistant CD138(+) cells and restored bone marrow architecture in vivo. Collectively, these findings implicate constitutive P-TEFb activation in high Mcl-1 maintenance in MM, and validate targeting the P-TEFb complex to circumvent bortezomib-resistance.

  11. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    PubMed

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.

  12. Insulin-like growth factor binding protein-1 in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation.

    PubMed

    Simmons, Rebecca M; Erikson, David W; Kim, Jinyoung; Burghardt, Robert C; Bazer, Fuller W; Johnson, Greg A; Spencer, Thomas E

    2009-09-01

    Establishment of pregnancy in ruminants requires conceptus elongation and production of interferon-tau (IFNT), the pregnancy recognition signal that maintains ovarian progesterone (P4) production. These studies determined temporal and spatial alterations in IGF binding protein (IGFBP)-1 and IGFBP3 in the ovine and bovine uterus; effects of P4 and IFNT on their expression in the ovine uterus; and effects of IGFBP1 on ovine trophectoderm cell proliferation, migration, and attachment. IGFBP1 and IGFBP3 were studied because they are the only IGFBPs specifically expressed by the endometrial luminal epithelia in sheep. In sheep, IGFBP1 and IGFBP3 expression was coordinate with the period of conceptus elongation, whereas only IGFBP1 expression was coordinate with conceptus elongation in cattle. IGFBP1 mRNA in the ovine endometria was between 5- and 29-fold more abundant between d 12 and 16 of pregnancy compared with the estrous cycle and greater on d 16 of pregnancy than nonpregnancy in the bovine uterus. In sheep, P4 induced and IFNT stimulated expression of IGFBP1 but not IGFBP3; however, the effect of IFNT did not mimic the abundant increase observed in pregnant ewes. Therefore, IGFBP1 expression in the endometrium is regulated by another factor from the conceptus. IGFBP1 did not affect the proliferation of ovine trophectoderm cells in vitro but did stimulate their migration and mediate their attachment. These studies reveal that IGFBP1 is a common endometrial marker of conceptus elongation in sheep and cattle and most likely regulates conceptus elongation by stimulating migration and attachment of the trophectoderm.

  13. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity.

    PubMed

    Bours, Ralph; Kohlen, Wouter; Bouwmeester, Harro J; van der Krol, Alexander

    2015-02-01

    We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.

  14. Elongation Factor 1A Is the Target of Growth Inhibition in Yeast Caused by Legionella pneumophila Glucosyltransferase Lgt1*

    PubMed Central

    Belyi, Yury; Tartakovskaya, Dina; Tais, Arlette; Fitzke, Edith; Tzivelekidis, Tina; Jank, Thomas; Rospert, Sabine; Aktories, Klaus

    2012-01-01

    Legionella is a pathogenic Gram-negative bacterium that can multiply inside of eukaryotic cells. It translocates numerous bacterial effector proteins into target cells to transform host phagocytes into a niche for replication. One effector of Legionella pneumophila is the glucosyltransferase Lgt1, which modifies serine 53 in mammalian elongation factor 1A (eEF1A), resulting in inhibition of protein synthesis and cell death. Here, we demonstrate that similar to mammalian cells, Lgt1 was severely toxic when produced in yeast and effectively inhibited in vitro protein synthesis. Saccharomyces cerevisiae strains, which were deleted of endogenous eEF1A but harbored a mutant eEF1A not glucosylated by Lgt1, were resistant toward the bacterial effector. In contrast, deletion of Hbs1, which is also an in vitro substrate of the glucosyltransferase, did not influence the toxic effects of Lgt1. Serial mutagenesis in yeast showed that Phe54, Tyr56 and Trp58, located immediately downstream of serine 53 of eEF1A, are essential for the function of the elongation factor. Replacement of serine 53 by glutamic acid, mimicking phosphorylation, produced a non-functional eEF1A, which failed to support growth of S. cerevisiae. Our data indicate that Lgt1-induced lethal effect in yeast depends solely on eEF1A. The region of eEF1A encompassing serine 53 plays a critical role in functioning of the elongation factor. PMID:22685293

  15. Lignification in rapidly elongating internodes of deep water rice as a limiting factor in growth

    SciTech Connect

    Sauter, M.; Kende, H. )

    1990-05-01

    Internodes of deep water rice are induced to elongate rapidly by partial submergence, or by treatment with ethylene or gibberellin. This growth response is based, in part, on enhanced cell elongation and an increase in the size of the internodal growing zone. For this to occur, processes that limit growth, e.g. lignification, must be delayed. We examined the activity and distribution of two enzymes of the lignin biosynthetic pathway, phenylalanine ammonia-lyase (PAL) and coniferylalcohol dehydrogenase (CAD) in rapidly growing and control internodes. CAD activity decreased in the rapidly growing region of submerged or gibberellin-treated internodes to about 25% of the activity found in air-grown control internodes. No comparable change in CAD activity was observed in the older, non-growing portions of the internodes. PAL activity changed in similar fashion upon induction of rapid growth.

  16. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  17. Purification and characterization of a Chinese hamster ovary cell elongation factor of Vibrio hollisae.

    PubMed Central

    Kothary, M H; Claverie, E F; Miliotis, M D; Madden, J M; Richardson, S H

    1995-01-01

    The halophilic bacterium Vibrio hollisae, isolated from patients with diarrhea, produces an extracellular toxin which elongates Chinese hamster ovary (CHO) cells. We purified this toxin to homogeneity by sequential ammonium sulfate precipitation, gel filtration with Sephacryl S-200, hydrophobic interaction chromatography with phenyl-Sepharose CL-4B, ion-exchange chromatography with DEAE-Sephadex A-50, and affinity chromatography. The toxin is heat labile and sensitive to proteases, with an isoelectric point of about 6.5 and molecular weights of about 83,000 and 80,000, as estimated by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The toxin did not react with immunoaffinity-purified antibodies to cholera toxin in a plate enzyme-linked immunosorbent assay and in a Western blot, and its activity could not be neutralized by anti-cholrea toxin serum. Mixed gangliosides and gangliosides GM1, GD1a, GD1b, Gq1b, GT1b, GD2, GD3, GM2, and GM3 failed to block its activity. Elongation of CHO cells induced by the toxin was not accompanied by an increase in the levels of cyclic AMP. The toxin induced intestinal fluid accumulation in suckling mice. These results and the lack of homology between V. hollisae DNA and DNA coding for cholera toxin or the heat-labile toxin of Escherichia coli suggest that the V. hollisae toxin is structurally and functionally different from other CHO cell-elongating toxins. PMID:7790052

  18. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5

    PubMed Central

    Meyer, Peter A.; Li, Sheng; Zhang, Mincheng; Yamada, Kentaro; Takagi, Yuichiro; Hartzog, Grant A.

    2015-01-01

    The eukaryotic Spt4-Spt5 heterodimer forms a higher-order complex with RNA polymerase II (and I) to regulate transcription elongation. Extensive genetic and functional data have revealed diverse roles of Spt4-Spt5 in coupling elongation with chromatin modification and RNA-processing pathways. A mechanistic understanding of the diverse functions of Spt4-Spt5 is hampered by challenges in resolving the distribution of functions among its structural domains, including the five KOW domains in Spt5, and a lack of their high-resolution structures. We present high-resolution crystallographic results demonstrating that distinct structures are formed by the first through third KOW domains (KOW1-Linker1 [K1L1] and KOW2-KOW3) of Saccharomyces cerevisiae Spt5. The structure reveals that K1L1 displays a positively charged patch (PCP) on its surface, which binds nucleic acids in vitro, as shown in biochemical assays, and is important for in vivo function, as shown in growth assays. Furthermore, assays in yeast have shown that the PCP has a function that partially overlaps that of Spt4. Synthesis of our results with previous evidence suggests a model in which Spt4 and the K1L1 domain of Spt5 form functionally overlapping interactions with nucleic acids upstream of the transcription bubble, and this mechanism may confer robustness on processes associated with transcription elongation. PMID:26217010

  19. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8.

    PubMed

    Nock, S; Grillenbeck, N; Ahmadian, M R; Ribeiro, S; Kreutzer, R; Sprinzl, M

    1995-11-15

    The relative contributions of the three domains of elongation factor Tu (EF-Tu) to the factor's function and thermal stability were established by dissecting the domains apart with recombination techniques. Domain I (EF-TuI), domains I/II (EF-TuI/II) and domain III (EF-TuIII) of the EF-Tu from Thermus thermophilus HB8 comprising the amino acids 1-211, 1-312 and 317-405, respectively, were overproduced in Escherichia coli and purified. A polypeptide consisting of domain II and III (EF-TuII/III) was prepared by limited proteolysis of native EF-Tu with V8 protease from Staphylococcus aureus [Peter, M. E., Reiser, C. O. A., Schirmer, N. K., Kiefhaber, T., Ott, G., Grillenbeck, N. W. & Sprinzl, M. (1990) Nucleic Acids Res. 18, 6889-6893]. As determined by circular dichroism spectrometry, the isolated domains have the secondary structure elements found in the native EF-Tu. GTP and GDP binding as well as GTPase activity are maintained by the EF-TuI and EF-TuI/II; however, the rate of GDP dissociation from EF-TuI . GDP and EF-TuI/II . GDP complex is increased as compared to native EF-Tu . GDP, reflecting a constraint imposed by domain III on the ability to release the nucleotide from its binding pocket located in domain I. A weak interaction of Tyr-tRNATyr with the EF-TuI . GTP suggests that domain I provides a part of the structure interacting with aminoacyl-tRNA. The domain III is capable of regulating the rate of GTPase in EF-Tu, since the polypeptide consisting only of domains I/II has a 39-fold higher intrinsic GTPase compared to the native EF-Tu. No in vitro poly(U)-dependent poly(Phe) synthesis was detectable with a mixture of equimolar amounts of domains I/II and domain III, demonstrating the necessity of covalent linkage between the domains of EF-Tu for polypeptide synthesis. In contrast to native EF-Tu and EF-TuII/III, EF-TuI and, to a lesser extent the polypeptide consisting of domains I/II, are unstable at elevated temperatures. This indicates that domains II

  20. Comparative study of the in vitro protective effects of several antioxidants on elongation factor 2 under oxidative stress conditions.

    PubMed

    Arguelles, Sandro; Cano, Mercedes; Machado, Alberto; Ayala, Antonio

    2010-01-01

    One of the biochemical pathways affected by aging in all organisms is protein synthesis. Previous reports from our laboratory have indicated that the elongation step is specially affected by aging as a consequence of alterations in elongation factor-2 (eEF-2). In the present work, we studied in vitro the effectiveness of several individual nutritional antioxidants in protecting the levels of hepatic eEF-2 subjected to oxidative stress induced by cumene hydroperoxide. The in vitro system employed consisted of rat liver homogenates treated with cumene hydroperoxide. The antioxidants used in this study were lipoic acid, coenzyme Q10, tethrahydrofolic acid, and N-tert-butyl-alpha-phenylnitrone. The results indicate that the antioxidants have different capacities to prevent eEF-2 loss, folic acid being the most effective. A comparison between the antioxidants used and their potential pro-oxidant activity is also discussed, on the basis of the oxidative stress parameters measured.

  1. Relation between elongation factor and angle of friction from various outcrops

    NASA Astrophysics Data System (ADS)

    Martins-Campina, B.; Lebourg, T.; Riss, J.; Benabderrazik, A.; Fabre, R.

    2003-04-01

    The study of granular materials, and more particularly their mechanical behaviour, has made it possible to highlight, the influence of the grains shape on their mechanical behaviour. Recently when being concerned with till formations (glacial deposits) that cover mountain slopes and govern natural hazards, Lebourg (2000) has shown that there exists a simple linear regression of the internal angle of friction (phi) on a shape parameter (elongation factor IA ) based on the analysis of six tills formations coming from a paleoglacial valley (Vallée d Aspe, Pyrénées Occidentales : IGN map 1547 OT, 1/25 000 ; geological map URDOS 1/80 000). These results are in agreement with previous works where relation between shape and mechanical properties is assumed. Till-forming materials look like a heap of unsorted very heterogeneous material characterised by rock debris of all sizes from angular blocks of metric size to very fine rock. In addition to the block sizes, lithology, petrography and the spatial distribution of the blocks are also heterogeneous. Then it is hard, if not impossible, to collect a large sample of mechanical and physical data from the till in order to execute good simulations while running numerical programs. The validation of such a relation would be very interesting for other till formations and in any case of natural hazards such as landslides. So we propose new results based on the analysis of a set of samples collected on the site of La Clapière, a rocky landslide. The landslide at La Clapière, in south-eastern France, is located on the east side of the steep La Tinée river valley upstream of the village of Saint Etienne de Tinée. On the one hand, triaxial compression (test with simultaneous compression of a cylindrical sample and application of axisymetric confining pressure) has been performed on four sets of samples collected at La Clapière, then mechanical properties (E : Young modulus, phi: angle of internal friction, C : cohesion) were

  2. Interaction of Eukaryote Initiator Methionyl-tRNA with the Eukaryote Equivalent of Bacterial Elongation Factor T and Guanosine Triphosphate

    PubMed Central

    Richter, Dietmar; Lipmann, Fritz; Tarragó, Adela; Allende, Jorge E.

    1971-01-01

    The initiator tRNA, methionyl-tRNAiMet, of yeast and wheat germ forms relatively unstable ternary complexes with their corresponding elongation factors T and GTP. Such complexes can be demonstrated only with fast separation techniques such as Sephadex G-50 and Millipore filtration, but not with the slow Sephadex G-100 method, although both techniques yield stable ternary complexes with all other aminoacyl-tRNAs, including the internal Met-tRNAmMet. To bind yeast-initiating Met-tRNAiMet to ribosomes, initiation factors present in a ribosomal wash fraction from yeast are needed. PMID:5288767

  3. Transcription elongation

    PubMed Central

    Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail

    2014-01-01

    Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity. PMID:25764114

  4. Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin.

    PubMed

    He, Nanhai; Chan, Caleb K; Sobhian, Bijan; Chou, Seemay; Xue, Yuhua; Liu, Min; Alber, Tom; Benkirane, Monsef; Zhou, Qiang

    2011-09-06

    The Super Elongation Complex (SEC), containing transcription elongation activators/coactivators P-TEFb, ELL2, AFF4/1, ENL, and AF9, is recruited by HIV-1 Tat and mixed lineage leukemia (MLL) proteins to activate the expression of HIV-1 and MLL-target genes, respectively. In the absence of Tat and MLL, however, it is unclear how SEC is targeted to RNA polymerase (Pol) II to stimulate elongation in general. Furthermore, although ENL and AF9 can bind the H3K79 methyltransferase Dot1L, it is unclear whether these bindings are required for SEC-mediated transcription. Here, we show that the homologous ENL and AF9 exist in separate SECs with similar but nonidentical functions. ENL/AF9 contacts the scaffolding protein AFF4 that uses separate domains to recruit different subunits into SEC. ENL/AF9 also exists outside SEC when bound to Dot1L, which is found to inhibit SEC function. The YEATS domain of ENL/AF9 targets SEC to Pol II on chromatin through contacting the human Polymerase-Associated Factor complex (PAFc) complex. This finding explains the YEATS domain's dispensability for leukemogenesis when ENL/AF9 is translocated to MLL, whose interactions with PAFc and DNA likely substitute for the PAFc/chromatin-targeting function of the YEATS domain.

  5. ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation.

    PubMed

    Mateyak, Maria K; Kinzy, Terri Goss

    2013-08-23

    Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADP(R)) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADP(R)-eEF2 to examine the effects of DT in vivo. ADP(R) of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADP(R)-eEF2.

  6. The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification.

    PubMed

    Hatch, Victoria L; Marin-Barba, Marta; Moxon, Simon; Ford, Christopher T; Ward, Nicole J; Tomlinson, Matthew L; Desanlis, Ines; Hendry, Adam E; Hontelez, Saartje; van Kruijsbergen, Ila; Veenstra, Gert Jan C; Münsterberg, Andrea E; Wheeler, Grant N

    2016-08-15

    Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.

  7. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation

    PubMed Central

    Dubey, Aditi

    2016-01-01

    Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec’s nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function. PMID:27802322

  8. The Cotton Transcription Factor TCP14 Functions in Auxin-Mediated Epidermal Cell Differentiation and Elongation1[C][W

    PubMed Central

    Wang, Miao-Ying; Zhao, Pi-Ming; Cheng, Huan-Qing; Han, Li-Bo; Wu, Xiao-Min; Gao, Peng; Wang, Hai-Yun; Yang, Chun-Lin; Zhong, Nai-Qin; Zuo, Jian-Ru; Xia, Gui-Xian

    2013-01-01

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells. PMID:23715527

  9. The distribution of Elongation Factor-1 Alpha (EF-1alpha), Elongation Factor-Like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework.

    PubMed

    Gile, Gillian H; Novis, Philip M; Cragg, David S; Zuccarello, Giuseppe C; Keeling, Patrick J

    2009-01-01

    The systematics of the green algal class Ulvophyceae have been difficult to resolve with ultrastructural and molecular phylogenetic analyses. Therefore, we investigated relationships among ulvophycean orders by determining the distribution of two discrete genetic characters previously identified only in the order Dasycladales. First, Acetabularia acetabulum uses the core translation GTPase Elongation Factor 1alpha (EF-1alpha) while most Chlorophyta instead possess the related GTPase Elongation Factor-Like (EFL). Second, the nuclear genomes of dasycladaleans A. acetabulum and Batophora oerstedii use a rare non-canonical genetic code in which the canonical termination codons TAA and TAG instead encode glutamine. Representatives of Ulvales and Ulotrichales were found to encode EFL, while Caulerpales, Dasycladales, Siphonocladales, and Ignatius tetrasporus were found to encode EF-1alpha, in congruence with the two major lineages previously proposed for the Ulvophyceae. The EF-1alpha of I. tetrasporus supports its relationship with Caulerpales/Dasycladales/Siphonocladales, in agreement with ultrastructural evidence, but contrary to certain small subunit rRNA analyses that place it with Ulvales/Ulotrichales. The same non-canonical genetic code previously described in A. acetabulum was observed in EF-1alpha sequences from Parvocaulis pusillus (Dasycladales), Chaetomorpha coliformis, and Cladophora cf. crinalis (Siphonocladales), whereas Caulerpales use the universal code. This supports a sister relationship between Siphonocladales and Dasycladales and further refines our understanding of ulvophycean phylogeny.

  10. Yeast DEAD Box Protein Mss116p Is a Transcription Elongation Factor That Modulates the Activity of Mitochondrial RNA Polymerase

    PubMed Central

    Wojtas, Ireneusz D.; Tessitore, Kassandra; Henderson, Simmone; McAllister, William T.

    2014-01-01

    DEAD box proteins have been widely implicated in regulation of gene expression. Here, we show that the yeast Saccharomyces cerevisiae DEAD box protein Mss116p, previously known as a mitochondrial splicing factor, also acts as a transcription factor that modulates the activity of the single-subunit mitochondrial RNA polymerase encoded by RPO41. Binding of Mss116p stabilizes paused mitochondrial RNA polymerase elongation complexes in vitro and favors the posttranslocated state of the enzyme, resulting in a lower concentration of nucleotide substrate required to escape the pause; this mechanism of action is similar to that of elongation factors that enhance the processivity of multisubunit RNA polymerases. In a yeast strain in which the RNA splicing-related functions of Mss116p are dispensable, overexpression of RPO41 or MSS116 increases cell survival from colonies that were exposed to low temperature, suggesting a role for Mss116p in enhancing the efficiency of mitochondrial transcription under stress conditions. PMID:24732805

  11. [Regulation of bacterial transcription elongation].

    PubMed

    Proshkin, S A; Mironov, A S

    2011-01-01

    The elongation complex, which involves RNA polymerase, DNA template and nascent RNA, is a central intermediate in transcription cycle. It is elongation complex that represents the main target for the action of different regulatory factors. Over the past several years, many structural and biochemical data have been obtained that shed light upon the molecular details of RNA polymerase function. Cooperation between RNA polymerase elongation complex and translating ribosome was established recently. Here we discuss the mechanisms of the regulation of bacterial transcription elongation.

  12. Heat-induced accumulation of protein synthesis elongation factor 1A implies an important role in heat tolerance in potato.

    PubMed

    Momčilović, Ivana; Pantelić, Danijel; Zdravković-Korać, Snežana; Oljača, Jasmina; Rudić, Jelena; Fu, Jianming

    2016-09-01

    Potato eukaryotic elongation factor 1A comprises multiple isoforms, some of which are heat-inducible or heat-upregulated and might be important in alleviating adverse effects of heat stress on plant productivity. Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protein that plays a central role in the elongation phase of translation. Some of the non-canonical eEF1A activities might be important in developing plant heat-stress tolerance. In this study, we investigated effects of heat stress (HS) on eEF1A expression at the protein level in potato, a highly heat vulnerable crop. Our results from both the controlled environment and the field have shown that potato eEF1A is a heat-inducible protein of 49.2-kDa with multiple isoforms (5-8). Increase in eEF1A abundance under HS can be mainly attributed to 2-3 basic polypeptides/isoforms. A significant correlation between eEF1A abundance and the potato productivity in the field was observed in two extremely hot years 2011 and 2012. Genomic Southern blot analysis indicated the existence of multiple genes encoding eEF1A in potato. Identification, isolation and utilization of heat-inducible eEF1A genes might be helpful for the development of the heat-tolerant varieties.

  13. Arabidopsis Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback Regulation of Phytochrome A Signaling[C][W

    PubMed Central

    Li, Jigang; Li, Gang; Gao, Shumin; Martinez, Cristina; He, Guangming; Zhou, Zhenzhen; Huang, Xi; Lee, Jae-Hoon; Zhang, Huiyong; Shen, Yunping; Wang, Haiyang; Deng, Xing Wang

    2010-01-01

    Phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) are two small plant-specific proteins essential for light-regulated phyA nuclear accumulation and subsequent phyA signaling processes. FHY3 and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are two transposase-derived transcription factors that directly activate FHY1/FHL transcription and thus mediate subsequent phyA nuclear accumulation and responses. Here, we report that ELONGATED HYPOCOTYL5 (HY5), a well-characterized bZIP transcription factor involved in promoting photomorphogenesis, directly binds ACGT-containing elements a few base pairs away from the FHY3/FAR1 binding sites in the FHY1/FHL promoters. We demonstrate that HY5 physically interacts with FHY3/FAR1 through their respective DNA binding domains and negatively regulates FHY3/FAR1-activated FHY1/FHL expression under far-red light. Together, our data show that HY5 plays a role in negative feedback regulation of phyA signaling by attenuating FHY3/FAR1-activated FHY1/FHL expression, providing a mechanism for fine-tuning phyA signaling homeostasis. PMID:21097709

  14. Production of an antiserum specific to the ADP-ribosylated form of elongation factor 2 from archaebacteria and eukaryotes.

    PubMed

    Siegmund, K D; Klink, F

    1992-11-09

    An antiserum to ADP-ribosylated elongation factor 2 (ADPR-EF-2) from S. acidocaldarius was raised in rabbits using stained, homogenized, ADPR-EF-2-containing slices from SDS-gels as a source of antigen. Elongation factor 2 (EF-2) from S. acidocaldarius was cloned in E. coli and the expressed gene product was used in order to adsorb all anti-EF-2 antibodies which do not contain the ADP-ribosyl group within their epitopes, as E. coli is unable to synthesize the ADP-ribosyl acceptor diphthamide. The remaining antibodies were specific to ADP-ribosylated EF-2 from Thermoplasma acidophilum, S. acidocaldarius and Desulfurococcus mucosus. ADP-ribosylated EF-2 from eukaryotic sources also reacted with the adsorbed antiserum as shown for EF-2 isolated from the killi-fish Cynolebias whitei, the mouse species BALB/c and Han/Wistar rats. The adsorbed antiserum did not cross-react with ADP-ribosylated actin or rho protein or with FAD-containing D-amino acid oxidase.

  15. Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex

    PubMed Central

    Carelli, Jordan D; Sethofer, Steven G; Smith, Geoffrey A; Miller, Howard R; Simard, Jillian L; Merrick, William C; Jain, Rishi K; Ross, Nathan T; Taunton, Jack

    2015-01-01

    Cyclic peptide natural products have evolved to exploit diverse protein targets, many of which control essential cellular processes. Inspired by a series of cyclic peptides with partially elucidated structures, we designed synthetic variants of ternatin, a cytotoxic and anti-adipogenic natural product whose molecular mode of action was unknown. The new ternatin variants are cytotoxic toward cancer cells, with up to 500-fold greater potency than ternatin itself. Using a ternatin photo-affinity probe, we identify the translation elongation factor-1A ternary complex (eEF1A·GTP·aminoacyl-tRNA) as a specific target and demonstrate competitive binding by the unrelated natural products, didemnin and cytotrienin. Mutations in domain III of eEF1A prevent ternatin binding and confer resistance to its cytotoxic effects, implicating the adjacent hydrophobic surface as a functional hot spot for eEF1A modulation. We conclude that the eukaryotic elongation factor-1A and its ternary complex with GTP and aminoacyl-tRNA are common targets for the evolution of cytotoxic natural products. DOI: http://dx.doi.org/10.7554/eLife.10222.001 PMID:26651998

  16. Elongation Factor 1A-1 Is a Mediator of Hepatocyte Lipotoxicity Partly through Its Canonical Function in Protein Synthesis

    PubMed Central

    Stoianov, Alexandra M.; Robson, Debra L.; Hetherington, Alexandra M.; Sawyez, Cynthia G.; Borradaile, Nica M.

    2015-01-01

    Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity. PMID:26102086

  17. Elongation Factor 1A-1 Is a Mediator of Hepatocyte Lipotoxicity Partly through Its Canonical Function in Protein Synthesis.

    PubMed

    Stoianov, Alexandra M; Robson, Debra L; Hetherington, Alexandra M; Sawyez, Cynthia G; Borradaile, Nica M

    2015-01-01

    Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity.

  18. Biphasic Stimulation of Translational Activity Correlates with Induction of Translation Elongation Factor 1 Subunit [alpha] upon Wounding in Potato Tubers.

    PubMed Central

    Morelli, J. K.; Shewmaker, C. K.; Vayda, M. E.

    1994-01-01

    Potato (Solanum tuberosum) tubers exhibit an increase in translational activity in response to mechanical wounding. The response is biphasic, with an initial stimulation apparent within the first 2 h after wounding and a second increase occurring 12 to 24 h after wounding. Increased activity is apparent by measurement of protein synthesis both in vivo and in vitro using a cell-free extract. Accumulation of the translational elongation factor 1 subunit [alpha] (EF-1[alpha]) parallels translational activity. Changes in the steady-state level of EF-1[alpha] mRNA, and expression of a chimeric EF-1[alpha] promoter/[beta]-glucuronidase construct in transgenic potato tubers, indicate that the gene encoding EF-1[alpha] is transcribed during both periods of translational stimulation. These results indicate that stimulation of translational activity is coordinated with increased expression and accumulation of translation factors. PMID:12232374

  19. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response

    PubMed Central

    Vera, Maria; Pani, Bibhusita; Griffiths, Lowri A; Muchardt, Christian; Abbott, Catherine M; Singer, Robert H; Nudler, Evgeny

    2014-01-01

    Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3′UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer. DOI: http://dx.doi.org/10.7554/eLife.03164.001 PMID:25233275

  20. A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation

    PubMed Central

    Ruehle, Marisa D; Zhang, Haibo; Sheridan, Ryan M; Mitra, Somdeb; Chen, Yuanwei; Gonzalez, Ruben L; Cooperman, Barry S; Kieft, Jeffrey S

    2015-01-01

    Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elongation cycle. These IRESs require an RNA pseudoknot that mimics a codon-anticodon interaction and contains a conformationally dynamic loop. We explored the role of this loop and found that both the length and sequence are essential for translation in different types of IGR IRESs and from diverse viruses. We found that loop 3 affects two discrete elongation factor-dependent steps in the IRES initiation mechanism. Our results show how the IRES directs multiple steps after 80S ribosome placement and highlights the often underappreciated significance of discrete conformationally dynamic elements within the context of structured RNAs. DOI: http://dx.doi.org/10.7554/eLife.08146.001 PMID:26523395

  1. Elevated eukaryotic elongation factor 2 expression is involved in proliferation and invasion of lung squamous cell carcinoma

    PubMed Central

    Hao, LiHong; Hu, Jun; Du, Sha; Zhou, Xin; Zhang, LiYuan; Liu, Lu; Gong, LinLin; Chi, XinMing; Liu, Qiang; Shao, ShuJuan

    2016-01-01

    Eukaryotic elongation factor 2 (EF2), is a critical enzyme solely responsible for catalyzing the translocation of the elongated peptidyl-tRNA from the A to P sites of the ribosome during the process of protein synthesis. EF2 is found to be highly expressed in a variety of malignant tumors and is correlated with cancer cell progression and recurrence. The present study was designed to uncover the function of EF2 on lung squamous cell carcinoma (LSCC) cancer cell growth and progression. Our results from clinical tissue studies showed that EF2 protein was significantly overexpressed in LSCC tissues, compared with the adjacent normal lung tissues, which was confirmed by western blotting and tissue microarray. Forced expression of EF2 resulted in the enhancement of lung squamous carcinoma NCI-H520 cells growth through promotion of G2/M progression in cell cycle, activating Akt and Cdc2/Cyclin B1. In nude mice cancer xenograft model, overexpression of EF2 significantly facilitated cell proliferation in vivo. Furthermore, forced expression of EF2 in the cells increased the capabilities of migration and invasion by changing the expressions of EMT-related proteins and genes. These results provided novel insights into the role of EF2 in tumorigenesis and progression in LSCC. EF2-targeted therapy could become a good strategy for the clinical treatment of LSCC. PMID:27542262

  2. Lack of discrimination against non-proteinogenic amino acid norvaline by elongation factor Tu from Escherichia coli.

    PubMed

    Cvetesic, Nevena; Akmacic, Irena; Gruic-Sovulj, Ita

    2013-01-01

    The GTP-bound form of elongation factor Tu (EF-Tu) brings aminoacylated tRNAs (aa-tRNA) to the A-site of the ribosome. EF-Tu binds all cognate elongator aa-tRNAs with highly similar affinities, and its weaker or tighter binding of misacylated tRNAs may discourage their participation in translation. Norvaline (Nva) is a non-proteinogenic amino acid that is activated and transferred to tRNA(Leu) by leucyl-tRNA synthetase (LeuRS). No notable accumulation of Nva-tRNA(Leu) has been observed in vitro, because of the efficient post-transfer hydrolytic editing activity of LeuRS. However, incorporation of norvaline into proteins in place of leucine does occur under certain conditions in vivo. Here we show that EF-Tu binds Nva-tRNA(Leu) and Leu-tRNA(Leu) with similar affinities, and that Nva-tRNA(Leu) and Leu-tRNA(Leu) dissociate from EF-Tu at comparable rates. The inability of EF-Tu to discriminate against norvaline may have driven evolution of highly efficient LeuRS editing as the main quality control mechanism against misincorporation of norvaline into proteins.

  3. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response.

    PubMed

    Vera, Maria; Pani, Bibhusita; Griffiths, Lowri A; Muchardt, Christian; Abbott, Catherine M; Singer, Robert H; Nudler, Evgeny

    2014-09-16

    Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3'UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer.

  4. Human cytomegalovirus pUL79 is an elongation factor of RNA polymerase II for viral gene transcription.

    PubMed

    Perng, Yi-Chieh; Campbell, Jessica A; Lenschow, Deborah J; Yu, Dong

    2014-08-01

    In this study, we have identified a unique mechanism in which human cytomegalovirus (HCMV) protein pUL79 acts as an elongation factor to direct cellular RNA polymerase II for viral transcription during late times of infection. We and others previously reported that pUL79 and its homologues are required for viral transcript accumulation after viral DNA synthesis. We hypothesized that pUL79 represented a unique mechanism to regulate viral transcription at late times during HCMV infection. To test this hypothesis, we analyzed the proteome associated with pUL79 during virus infection by mass spectrometry. We identified both cellular transcriptional factors, including multiple RNA polymerase II (RNAP II) subunits, and novel viral transactivators, including pUL87 and pUL95, as protein binding partners of pUL79. Co-immunoprecipitation (co-IP) followed by immunoblot analysis confirmed the pUL79-RNAP II interaction, and this interaction was independent of any other viral proteins. Using a recombinant HCMV virus where pUL79 protein is conditionally regulated by a protein destabilization domain ddFKBP, we showed that this interaction did not alter the total levels of RNAP II or its recruitment to viral late promoters. Furthermore, pUL79 did not alter the phosphorylation profiles of the RNAP II C-terminal domain, which was critical for transcriptional regulation. Rather, a nuclear run-on assay indicated that, in the absence of pUL79, RNAP II failed to elongate and stalled on the viral DNA. pUL79-dependent RNAP II elongation was required for transcription from all three kinetic classes of viral genes (i.e. immediate-early, early, and late) at late times during virus infection. In contrast, host gene transcription during HCMV infection was independent of pUL79. In summary, we have identified a novel viral mechanism by which pUL79, and potentially other viral factors, regulates the rate of RNAP II transcription machinery on viral transcription during late stages of HCMV infection.

  5. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae

    PubMed Central

    Cui, Ping; Jin, Huiyan; Vutukuru, Manjula Ramya; Kaplan, Craig D.

    2016-01-01

    The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants. PMID:27261007

  6. Tau mRNA is present in axonal RNA granules and is associated with elongation factor 1A.

    PubMed

    Malmqvist, Tony; Anthony, Karen; Gallo, Jean-Marc

    2014-10-10

    The microtubule-associated protein tau is predominantly localized in the axonal compartment over the entire length of the axon in neurons. The mechanisms responsible for the localization of tau in axons at long distance from the cell body are not properly understood. Using fluorescence in situ hybridization, we show that tau mRNA is present in the central and distal parts of the axons of cultured rat cortical neurons. Axonal tau mRNA is associated with granules which are distributed throughout the entire length of the axon, including the growth cone. We also show that tau mRNA-containing axonal particles are associated with elongation factor 1A, a component of the protein translation machinery. The presence of tau mRNA in axons might be at least part of the process by which tau is localized to distal axons.

  7. Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation

    PubMed Central

    Dobosz-Bartoszek, Malgorzata; Pinkerton, Mark H.; Otwinowski, Zbyszek; Chakravarthy, Srinivas; Söll, Dieter; Copeland, Paul R.; Simonović, Miljan

    2016-01-01

    Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome. PMID:27708257

  8. Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency☆

    PubMed Central

    Simon, Mariella T.; Ng, Bobby G.; Friederich, Marisa W.; Wang, Raymond Y.; Boyer, Monica; Kircher, Martin; Collard, Renata; Buckingham, Kati J.; Chang, Richard; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Van Hove, Johan L.K.; Freeze, Hudson H.; Abdenur, Jose E.

    2017-01-01

    We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency. PMID:28216230

  9. Omnipotent role of archaeal elongation factor 1 alpha (EF1α in translational elongation and termination, and quality control of protein synthesis.

    PubMed

    Saito, Kazuki; Kobayashi, Kan; Wada, Miki; Kikuno, Izumi; Takusagawa, Akira; Mochizuki, Masahiro; Uchiumi, Toshio; Ishitani, Ryuichiro; Nureki, Osamu; Ito, Koichi

    2010-11-09

    The molecular mechanisms of translation termination and mRNA surveillance in archaea remain unclear. In eukaryotes, eRF3 and HBS1, which are homologous to the tRNA carrier GTPase EF1α, respectively bind eRF1 and Pelota to decipher stop codons or to facilitate mRNA surveillance. However, genome-wide searches of archaea have failed to detect any orthologs to both GTPases. Here, we report the crystal structure of aRF1 from an archaeon, Aeropyrum pernix, and present strong evidence that the authentic archaeal EF1α acts as a carrier GTPase for aRF1 and for aPelota. The binding interface residues between aRF1 and aEF1α predicted from aRF1·aEF1α·GTP ternary structure model were confirmed by in vivo functional assays. The aRF1/eRF1 structural domain with GGQ motif, which corresponds to the CCA arm of tRNA, contacts with all three structural domains of aEF1α showing striking tRNA mimicry of aRF1/eRF1 and its GTPase-mediated catalysis for stop codon decoding. The multiple binding capacity of archaeal EF1α explains the absence of GTPase orthologs for eRF3 and HBS1 in archaea species and suggests that universal molecular mechanisms underlie translational elongation and termination, and mRNA surveillance pathways.

  10. Thiopental Inhibits Global Protein Synthesis by Repression of Eukaryotic Elongation Factor 2 and Protects from Hypoxic Neuronal Cell Death

    PubMed Central

    Schwer, Christian I.; Lehane, Cornelius; Guelzow, Timo; Zenker, Simone; Strosing, Karl M.; Spassov, Sashko; Erxleben, Anika; Heimrich, Bernd; Buerkle, Hartmut; Humar, Matjaz

    2013-01-01

    Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited. PMID:24167567

  11. Transcription factors TFIIF, ELL, and Elongin negatively regulate SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates.

    PubMed

    Elmendorf, B J; Shilatifard, A; Yan, Q; Conaway, J W; Conaway, R C

    2001-06-22

    TFIIF, ELL, and Elongin belong to a class of RNA polymerase II transcription factors that function similarly to activate the rate of elongation by suppressing transient pausing by polymerase at many sites along DNA templates. SII is a functionally distinct RNA polymerase II elongation factor that promotes elongation by reactivating arrested polymerase. Studies of the mechanism of SII action have shown (i) that arrest of RNA polymerase II results from irreversible displacement of the 3'-end of the nascent transcript from the polymerase catalytic site and (ii) that SII reactivates arrested polymerase by inducing endonucleolytic cleavage of the nascent transcript by the polymerase catalytic site thereby creating a new transcript 3'-end that is properly aligned with the catalytic site and can be extended. SII also induces nascent transcript cleavage by paused but non-arrested RNA polymerase II elongation intermediates, leading to the proposal that pausing may result from reversible displacement of the 3'-end of nascent transcripts from the polymerase catalytic site. On the basis of evidence consistent with the model that TFIIF, ELL, and Elongin suppress pausing by preventing displacement of the 3'-end of the nascent transcript from the polymerase catalytic site, we investigated the possibility of cross-talk between SII and transcription factors TFIIF, ELL, and Elongin. These studies led to the discovery that TFIIF, ELL, and Elongin are all capable of inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. Here we present these findings, which bring to light a novel activity associated with TFIIF, ELL, and Elongin and suggest that these transcription factors may expedite elongation not only by increasing the forward rate of nucleotide addition by RNA polymerase II, but also by inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates.

  12. A primary role for release factor 3 in quality control during translation elongation in Escherichia coli.

    PubMed

    Zaher, Hani S; Green, Rachel

    2011-10-14

    Release factor 3 (RF3) is a GTPase found in a broad range of bacteria where it is thought to play a critical "recycling" role in translation by facilitating the removal of class 1 release factors (RF1 and RF2) from the ribosome following peptide release. More recently, RF3 was shown in vitro to stimulate a retrospective editing reaction on the bacterial ribosome wherein peptides carrying mistakes are prematurely terminated during protein synthesis. Here, we examine the role of RF3 in the bacterial cell and show that the deletion of this gene sensitizes cells to other perturbations that reduce the overall fidelity of protein synthesis. We further document substantial effects on mRNA stability and protein expression using reporter systems, native mRNAs and proteins. We conclude that RF3 plays a primary role in vivo in specifying the fidelity of protein synthesis thus impacting overall protein quantity and quality.

  13. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1.

    PubMed

    Goldstrohm, A C; Albrecht, T R; Suñé, C; Bedford, M T; Garcia-Blanco, M A

    2001-11-01

    CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript.

  14. Positive transcription elongation factor b activity in compensatory myocardial hypertrophy is regulated by cardiac lineage protein-1.

    PubMed

    Espinoza-Derout, Jorge; Wagner, Michael; Salciccioli, Louis; Lazar, Jason M; Bhaduri, Sikha; Mascareno, Eduardo; Chaqour, Brahim; Siddiqui, M A Q

    2009-06-19

    Emerging evidence illustrates the importance of the positive transcription elongation factor (P-TEF)b in control of global RNA synthesis, which constitutes a major feature of the compensatory response to diverse hypertrophic stimuli in cardiomyocytes. P-TEFb complex, composed of cyclin T and cdk9, is critical for elongation of nascent RNA chains via phosphorylation of the carboxyl-terminal domain of RNA polymerase (Pol) II. We and others have shown that the activity of P-TEFb is inhibited by its association with cardiac lineage protein (CLP)-1, the mouse homolog of human HEXIM1, in various physiological and pathological conditions. To investigate the mechanism of control of P-TEFb activity by CLP-1 in cardiac hypertrophy, we used a transgenic mouse model of hypertrophy caused by overexpression of calcineurin in the heart. We observed that the level of CLP-1 associated with P-TEFb was reduced markedly in hypertrophic hearts. We also generated bigenic mice (MHC-cyclin T1/CLP-1(+/-)) by crossing MHC-cyclin T1 transgenic mice with CLP-1 heterozygote. The bigenic mice exhibit enhanced susceptibility to hypertrophy that is accompanied with an increase in cdk9 activity via an increase in serine 2 phosphorylation of carboxyl-terminal domain and an increase in GLUT1/GLUT4 ratio. These mice have compensated systolic function without evidence of fibrosis and reduced lifespan. These data suggest that the reduced level of CLP-1 introduced in the background of elevated levels of cyclin T1 elevates derepression of P-TEFb activity and emphasizes the importance of the role of CLP-1 in the mechanism governing compensatory hypertrophy in cardiomyocytes.

  15. Positive Transcription Elongation Factor b (P-TEFb) Activity in Compensatory Myocardial Hypertrophy is Regulated by Cardiac Lineage Protein-1

    PubMed Central

    Espinoza-Derout, Jorge; Wagner, Michael; Salciccioli, Louis; Lazar, Jason M.; Bhaduri, Sikha; Mascareno, Eduardo; Chaqour, Brahim; Siddiqui, M.A.Q.

    2009-01-01

    Emerging evidence illustrates the importance of the Positive Transcription Elongation Factor b (P-TEFb) in control of global RNA synthesis which constitutes a major feature of the compensatory response to diverse hypertrophic stimuli in cardiomyocytes. P-TEFb complex, composed of cyclin T and cdk9, is critical for elongation of nascent RNA chains via phosphorylation of the carboxyl terminal domain of RNA polymerase II (CTD RNA Pol II). We and others have shown that the activity of P-TEFb is inhibited by its association with CLP-1, the mouse homolog of human HEXIM1, in various physiological and pathological conditions. To investigate the mechanism of CLP-1’s control of the P-TEFb activity in cardiac hypertrophy, we used a transgenic mouse model of hypertrophy caused by over-expression of calcineurin in the heart. We observed that the level of CLP-1 associated with P-TEFb was reduced markedly in hypertrophic hearts. We also generated bigenic mice (MHC-cyclin T1/CLP-1+/−) by crossing MHC-cyclin T1 transgenic mice with CLP-1 heterozygote. The bigenic mice exhibit enhanced susceptibility to hypertrophy which is accompanied with an increase in cdk9 activity via an increase in serine 2 phosphorylation of CTD and an increase in GLUT1/GLUT4 ratio. These mice have compensated systolic function without evidence of fibrosis and reduced life span. These data suggest that the reduced level of CLP-1 introduced in the background of elevated levels of cyclin T1 elevates de-repression of P-TEFb activity and emphasizes the importance of CLP-1’s role in the mechanism governing compensatory hypertrophy in cardiomyocytes. PMID:19443839

  16. The interaction surface of a bacterial transcription elongation factor required for complex formation with an antiterminator during transcription antitermination.

    PubMed

    Mishra, Saurabh; Mohan, Shalini; Godavarthi, Sapna; Sen, Ranjan

    2013-09-27

    The bacterial transcription elongation factor, NusA, functions as an antiterminator when it is bound to the lambdoid phage derived antiterminator protein, N. The mode of N-NusA interaction is unknown, knowledge of which is essential to understand the antitermination process. It was reported earlier that in the absence of the transcription elongation complex (EC), N interacts with the C-terminal AR1 domain of NusA. However, the functional significance of this interaction is obscure. Here we identified mutations in NusA N terminus (NTD) specifically defective for N-mediated antitermination. These are located at a convex surface of the NusA-NTD, situated opposite its concave RNA polymerase (RNAP) binding surface. These NusA mutants disrupt the N-nut site interactions on the nascent RNA emerging out of a stalled EC. In the N/NusA-modified EC, a Cys-53 (S53C) from the convex surface of the NusA-NTD forms a specific disulfide (S-S) bridge with a Cys-39 (S39C) of the NusA binding region of the N protein. We conclude that when bound to the EC, the N interaction surface of NusA shifts from the AR1 domain to its NTD domain. This occurred due to a massive away-movement of the adjacent AR2 domain of NusA upon binding to the EC. We propose that the close proximity of this altered N-interaction site of NusA to its RNAP binding surface, enables N to influence the NusA-RNAP interaction during transcription antitermination that in turn facilitates the conversion of NusA into an antiterminator.

  17. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    USDA-ARS?s Scientific Manuscript database

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  18. Two genes encode related cytoplasmic elongation factors 1 alpha (EF-1 alpha) in Drosophila melanogaster with continuous and stage specific expression.

    PubMed Central

    Hovemann, B; Richter, S; Walldorf, U; Cziepluch, C

    1988-01-01

    We have characterized two previously cloned genes, F1 and F2 (1) that code for elongation factor EF - 1 alpha of Drosophila melanogaster. Genomic Southern blot hybridization revealed that they are the only gene copies present. We isolated cDNA clones of both transcripts from embryonal and pupal stage of development that cover the entire transcription unit. The 5' ends of both genes have been determined by primer extension and for F1 also by RNA sequencing. These start sites have been shown to be used consistently during development. Comparison of cDNA and genomic sequences revealed that EF - 1 alpha,F1 consists of two and EF - 1 alpha,F2 of five exons. The two described elongation factor genes exhibit several regions of strong sequence conservation when compared to five recently cloned eucaryotic elongation factors. Images PMID:3131735

  19. Exploratory factor analysis for differentiating sensory and mechanical variables related to muscle-tendon unit elongation.

    PubMed

    Chagas, Mauro H; Magalhães, Fabrício A; Peixoto, Gustavo H C; Pereira, Beatriz M; Andrade, André G P; Menzel, Hans-Joachim K

    2016-03-22

    Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises.

  20. Exploratory factor analysis for differentiating sensory and mechanical variables related to muscle-tendon unit elongation

    PubMed Central

    Chagas, Mauro H.; Magalhães, Fabrício A.; Peixoto, Gustavo H. C.; Pereira, Beatriz M.; Andrade, André G. P.; Menzel, Hans-Joachim K.

    2016-01-01

    ABSTRACT Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises. PMID:27437715

  1. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans.

    PubMed

    Ghazi, Arjumand; Henis-Korenblit, Sivan; Kenyon, Cynthia

    2009-09-01

    In Caenorhabditis elegans and Drosophila melanogaster, the aging of the soma is influenced by the germline. When germline-stem cells are removed, aging slows and lifespan is increased. The mechanism by which somatic tissues respond to loss of the germline is not well-understood. Surprisingly, we have found that a predicted transcription elongation factor, TCER-1, plays a key role in this process. TCER-1 is required for loss of the germ cells to increase C. elegans' lifespan, and it acts as a regulatory switch in the pathway. When the germ cells are removed, the levels of TCER-1 rise in somatic tissues. This increase is sufficient to trigger key downstream events, as overexpression of tcer-1 extends the lifespan of normal animals that have an intact reproductive system. Our findings suggest that TCER-1 extends lifespan by promoting the expression of a set of genes regulated by the conserved, life-extending transcription factor DAF-16/FOXO. Interestingly, TCER-1 is not required for DAF-16/FOXO to extend lifespan in animals with reduced insulin/IGF-1 signaling. Thus, TCER-1 specifically links the activity of a broadly deployed transcription factor, DAF-16/FOXO, to longevity signals from reproductive tissues.

  2. Regulation of the utilization of mRNA for eucaryotic elongation factor Tu in Friend erythroleukemia cells.

    PubMed Central

    Rao, T R; Slobin, L I

    1987-01-01

    When Friend erythroleukemia cells were allowed to grow to stationary phase (2 X 10(6) to 3 X 10(6) cells per ml), approximately 60% of the mRNA for eucaryotic elongation factor Tu (eEF-Tu) sedimented at less than or equal to 80S, and most of the remaining factor mRNA was associated with small polysomes. Under the same growth conditions, greater than 90% of the mRNA for eucaryotic initiation factor 4A remained associated with polysomes. The association of eEF-Tu mRNA with polysomes changed dramatically when stationary-phase cells were treated with fresh medium. After 1 h in fresh medium, approximately 90% of eEF-Tu mRNA in Friend cells was found in heavy polysomes. Associated with the shift of eEF-Tu mRNA into heavy polysomes, we found at least a 2.6-fold increase in the synthesis of eEF-Tu in vivo as well as a remarkable 40% decrease in the total amount of eEF-Tu mRNA per cell. Our data raise the possibility that eEF-Tu mRNA that has accumulated in ribonucleoprotein particles in stationary-phase cells is degraded rather than reutilized for eEF-Tu synthesis. Images PMID:2434834

  3. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis1[OPEN

    PubMed Central

    Shine, M.B.; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-01-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other’s nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection. PMID:27356973

  4. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation.

    PubMed

    Ramrath, David J F; Lancaster, Laura; Sprink, Thiemo; Mielke, Thorsten; Loerke, Justus; Noller, Harry F; Spahn, Christian M T

    2013-12-24

    During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.

  5. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs

    PubMed Central

    Zavialov, Andrey V; Hauryliuk, Vasili V; Ehrenberg, Måns

    2005-01-01

    Background During the translation of mRNA into polypeptide, elongation factor G (EF-G) catalyzes the translocation of peptidyl-tRNA from the A site to the P site of the ribosome. According to the 'classical' model, EF-G in the GTP-bound form promotes translocation, while hydrolysis of the bound GTP promotes dissociation of the factor from the post-translocation ribosome. According to a more recent model, EF-G operates like a 'motor protein' and drives translocation of the peptidyl-tRNA after GTP hydrolysis. In both the classical and motor protein models, GDP-to-GTP exchange is assumed to occur spontaneously on 'free' EF-G even in the absence of a guanine-nucleotide exchange factor (GEF). Results We have made a number of findings that challenge both models. First, free EF-G in the cell is likely to be in the GDP-bound form. Second, the ribosome acts as the GEF for EF-G. Third, after guanine-nucleotide exchange, EF-G in the GTP-bound form moves the tRNA2-mRNA complex to an intermediate translocation state in which the mRNA is partially translocated. Fourth, subsequent accommodation of the tRNA2-mRNA complex in the post-translocation state requires GTP hydrolysis. Conclusion These results, in conjunction with previously published cryo-electron microscopy reconstructions of the ribosome in various functional states, suggest a novel mechanism for translocation of tRNAs on the ribosome by EF-G. Our observations suggest that the ribosome is a universal guanosine-nucleotide exchange factor for EF-G as previously shown for the class-II peptide-release factor 3. PMID:15985150

  6. Elongation factor P restricts Salmonella’s growth by controlling translation of a Mg2+ transporter gene during infection

    PubMed Central

    Choi, Eunna; Choi, Soomin; Nam, Daesil; Park, Shinae; Han, Yoontak; Lee, Jung-Shin; Lee, Eun-Jin

    2017-01-01

    When a ribosome translates mRNA sequences, the ribosome often stalls at certain codons because it is hard to translate. Consecutive proline codons are such examples that induce ribosome stalling and elongation factor P (EF-P) is required for the stalled ribosome to continue translation at those consecutive proline codons. We found that EF-P is required for translation of the mgtB gene encoding a Mg2+ transporter in the mgtCBR virulence operon from the intracellular pathogen Salmonella enterica serovar Typhimurium. Salmonella lacking EF-P decreases MgtB protein levels in a manner dependent on consecutive proline codons located in the mgtB coding region despite increasing transcription of the mgtCBR operon via the mgtP open reading frame in the leader RNA, resulting in an altered ratio between MgtC and MgtB proteins within the operon. Substitution of the consecutive proline codons to alanine codons eliminates EF-P-mediated control of the mgtB gene during infection and thus contributes to Salmonella’s survival inside macrophages where Salmonella experiences low levels of EF-P. This suggests that this pathogen utilizes a strategy to coordinate expression of virulence genes by an evolutionarily conserved translation factor. PMID:28181542

  7. Prolyl hydroxylase-dependent modulation of eukaryotic elongation factor 2 activity and protein translation under acute hypoxia.

    PubMed

    Romero-Ruiz, Antonio; Bautista, Lucía; Navarro, Virginia; Heras-Garvín, Antonio; March-Díaz, Rosana; Castellano, Antonio; Gómez-Díaz, Raquel; Castro, María J; Berra, Edurne; López-Barneo, José; Pascual, Alberto

    2012-03-16

    Early adaptive responses to hypoxia are essential for cell survival, but their nature and underlying mechanisms are poorly known. We have studied the post-transcriptional changes in the proteome of mammalian cells elicited by acute hypoxia and found that phosphorylation of eukaryotic elongation factor 2 (eEF2), a ribosomal translocase whose phosphorylation inhibits protein synthesis, is under the precise and reversible control of O(2) tension. Upon exposure to hypoxia, phosphorylation of eEF2 at Thr(56) occurred rapidly (<15 min) and resulted in modest translational arrest, a fundamental homeostatic response to hypoxia that spares ATP and thus facilitates cell survival. Acute inhibitory eEF2 phosphorylation occurred without ATP depletion or AMP kinase activation. Furthermore, eEF2 phosphorylation was mimicked by prolyl hydroxylase (PHD) inhibition with dimethyloxalylglycine or by selective PHD2 siRNA silencing but was independent of hypoxia-inducible factor α stabilization. Moreover, overexpression of PHD2 blocked hypoxic accumulation of phosphorylated eEF2. Therefore, our findings suggest that eEF2 phosphorylation status (and, as a consequence, translation rate) is controlled by PHD2 activity. They unravel a novel pathway for cell adaptation to hypoxia that could have pathophysiologic relevance in tissue ischemia and cancer.

  8. Synthesis of Elongated Microcapsules

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Calle, Luz M.

    2011-01-01

    One of the factors that influence the effectiveness of self-healing in functional materials is the amount of liquid healing agents that can be delivered to the damaged area. The use of hollow tubes or fibers and the more sophisticated micro-vascular networks has been proposed as a way to increase the amount of healing agents that can be released when damage is inflicted. Although these systems might be effective in some specific applications, they are not practical for coatings applications. One possible practical way to increase the healing efficiency is to use microcapsules with high-aspect-ratios, or elongated microcapsules. It is understood that elongated microcapsules will be more efficient because they can release more healing agent than a spherical microcapsule when a crack is initiated in the coating. Although the potential advantage of using elongated microcapsules for self healing applications is clear, it is very difficult to make elongated microcapsules from an emulsion system because spherical microcapsules are normally formed due to the interfacial tension between the dispersed phase and the continuous phase. This paper describes the two methods that have been developed by the authors to synthesize elongated microcapsules. The first method involves the use of an emulsion with intermediate stability and the second involves the application of mechanical shear conditions to the emulsion.

  9. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) Induces Phosphorylation of Eukaryotic Elongation Factor-2 (eEF2)

    PubMed Central

    Chen, Zehan; Gopalakrishnan, Sujatha M.; Bui, Mai-Ha; Soni, Niru B.; Warrior, Usha; Johnson, Eric F.; Donnelly, Jennifer B.; Glaser, Keith B.

    2011-01-01

    Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies. PMID:22020937

  10. Structural basis of transcription elongation.

    PubMed

    Martinez-Rucobo, Fuensanta W; Cramer, Patrick

    2013-01-01

    For transcription elongation, all cellular RNA polymerases form a stable elongation complex (EC) with the DNA template and the RNA transcript. Since the millennium, a wealth of structural information and complementary functional studies provided a detailed three-dimensional picture of the EC and many of its functional states. Here we summarize these studies that elucidated EC structure and maintenance, nucleotide selection and addition, translocation, elongation inhibition, pausing and proofreading, backtracking, arrest and reactivation, processivity, DNA lesion-induced stalling, lesion bypass, and transcriptional mutagenesis. In the future, additional structural and functional studies of elongation factors that control the EC and their possible allosteric modes of action should result in a more complete understanding of the dynamic molecular mechanisms underlying transcription elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Berberine regulates peroxisome proliferator-activated receptors and positive transcription elongation factor b expression in diabetic adipocytes.

    PubMed

    Zhou, Jiyin; Zhou, Shiwen

    2010-12-15

    Berberine has hypoglycemic and hypolipidemic effects on diabetic rats. This study investigated the relationship between hypoglycemic and hypolipidemic effects of berberine and peroxisome proliferator-activated receptors (PPARs) and positive transcription elongation factor b (P-TEFb) (including cyclin-dependent kinase 9 (CDK9) and cyclin T1) in white adipose tissue of diabetic rats and RNA interference-treated 3T3-L1 cells. Berberine promoted differentiation and inhibited lipid accumulation of 3T3-L1 cells, further decreased PPARα/δ/γ, CDK9 and cyclin T1 mRNA and protein expression and decreased tumor necrosis factor α content in supernatants of both control and RNA interference-treated 3T3-L1 cells. After a 16-week induction with 35 mg/kg streptozotocin (i.p.) and high-carbohydrate/high-fat diet, diabetic rats were treated with 75, 150 and 300 mg/kg berberine and 100 mg/kg fenofibrate or 4 mg/kg rosiglitazone for another 16 weeks. Berberine decreased white adipose tissue to body weight ratio and adipocyte size and increased adipocyte number. Berberine upregulated PPARα/δ/γ, CDK9 and cyclin T1 mRNA and protein expression in adipose tissue, decreased tumor necrosis factor α and free fatty acid content and increased lipoprotein lipase activity in serum and adipose tissue. Berberine modulated metabolic related PPARs expression and differentiation related P-TEFb expression in adipocytes, which are associated with its hypoglycemic and hypolipidemic effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms.

    PubMed

    López-Ochoa, Jaqueline; Montes-García, J Fernando; Vázquez, Candelario; Sánchez-Alonso, Patricia; Pérez-Márquez, Victor M; Blackall, Patrick J; Vaca, Sergio; Negrete-Abascal, Erasmo

    2017-09-01

    Gallibacterium, which is a bacterial pathogen in chickens, can form biofilms. Amyloid proteins present in biofilms bind Congo red dye. The aim of this study was to characterize the cell-surface amyloid-like protein expressed in biofilms formed by Gallibacterium strains and determine the relationship between this protein and curli, which is an amyloid protein that is commonly expressed by members of the Enterobacteriaceae family. The presence of amyloid-like proteins in outer membrane protein samples from three strains of G. anatis and one strain of Gallibacterium genomospecies 2 was evaluated. A protein identified as elongation factor-Tu (EF-Tu) by mass spectrometric analysis and in silico analysis was obtained from the G. anatis strain F149(T). This protein bound Congo red dye, cross-reacted with anti-curli polyclonal serum, exhibited polymerizing properties and was present in biofilms. This protein also reacted with pooled serum from chickens that were experimentally infected with G. anatis, indicating the in vivo immunogenicity of this protein. The recombinant EF-Tu purified protein, which was prepared from G. anatis 12656-12, polymerizes under in vitro conditions, forms filaments and interacts with fibronectin and fibrinogen, all of which suggest that this protein functions as an adhesin. In summary, EF-Tu from G. anatis presents amyloid characteristics, is present in biofilms and could be relevant for the pathogenesis of G. anatis.

  13. Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase beta-subunit.

    PubMed

    Paradis, Sonia; Boissinot, Maurice; Paquette, Nancy; Bélanger, Simon D; Martel, Eric A; Boudreau, Dominique K; Picard, François J; Ouellette, Marc; Roy, Paul H; Bergeron, Michel G

    2005-09-01

    The phylogeny of enterobacterial species commonly found in clinical samples was analysed by comparing partial sequences of their elongation factor Tu gene (tuf) and of their F-ATPase beta-subunit gene (atpD). An 884 bp fragment for tuf and an 884 or 871 bp fragment for atpD were sequenced for 96 strains representing 78 species from 31 enterobacterial genera. The atpD sequence analysis exhibited an indel specific to Pantoea and Tatumella species, showing, for the first time, a tight phylogenetic affiliation between these two genera. Comprehensive tuf and atpD phylogenetic trees were constructed and are in agreement with each other. Monophyletic genera are Cedecea, Edwardsiella, Proteus, Providencia, Salmonella, Serratia, Raoultella and Yersinia. Analogous trees based on 16S rRNA gene sequences available from databases were also reconstructed. The tuf and atpD phylogenies are in agreement with the 16S rRNA gene sequence analysis, and distance comparisons revealed that the tuf and atpD genes provide better discrimination for pairs of species belonging to the family Enterobacteriaceae. In conclusion, phylogeny based on tuf and atpD conserved genes allows discrimination between species of the Enterobacteriaceae.

  14. The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    PubMed Central

    Trivigno, Catherine; Haerry, Theodor E.

    2011-01-01

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917

  15. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    SciTech Connect

    Fendrick, J.L.; Iglewski, W.J. )

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of tryptic peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.

  16. An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells

    SciTech Connect

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N.; Ledvina, Hannah E.; Tran, Bao Q.; Robinson, Howard; Goo, Young Ah; Goodlett, David R.; Raunser, Stefan; Mougous, Joseph D.

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Lastly, visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  17. Cloning, expression and evolution of the gene encoding the elongation factor 1alpha from a low thermophilic Sulfolobus solfataricus strain.

    PubMed

    Masullo, Mariorosario; Cantiello, Piergiuseppe; Lamberti, Annalisa; Longo, Olimpia; Fiengo, Antonio; Arcari, Paolo

    2003-01-28

    The gene encoding the elongation factor 1alpha (EF-1alpha) from the archaeon Sulfolobus solfataricus strain MT3 (optimum growth temperature 75 degrees C) was cloned, sequenced and expressed in Escherichia coli. The structural and biochemical properties of the purified enzyme were compared to those of EF-1alpha isolated from S. solfataricus strain MT4 (optimum growth temperature 87 degrees C). Only one amino acid change (Val15-->Ile) was found. Interestingly, the difference was in the first guanine nucleotide binding consensus sequence G(13)HIDHGK and was responsible for a reduced efficiency in protein synthesis, which was accompanied by an increased affinity for both guanosine diphosphate (GDP) and guanosine triphosphate (GTP), and an increased efficiency in the intrinsic GTPase activity. Despite the different thermophilicities of the two microorganisms, only very marginal effects on the thermal properties of the enzyme were observed. Molecular evolution among EF-1alpha genes from Sulfolobus species showed that the average rate of nucleotide substitution per site per year (0.0312x10(-9)) is lower than that reported for other functional genes.

  18. Energetics of Glutathione Binding to Human Eukaryotic Elongation Factor 1 Gamma: Isothermal Titration Calorimetry and Molecular Dynamics Studies.

    PubMed

    Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu

    2016-12-01

    The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.

  19. Regulation of the AEFG1 gene, a mitochondrial elongation factor G from the dimorphic yeast Arxula adeninivorans LS3.

    PubMed

    Wartmann, T; Gellissen, G; Kunze, G

    2001-10-01

    Oxygen influences the synthesis of mitochondrial proteins by alteration of the expression of mitochondrial genes and several nuclear genes. One of the genes localised in the nucleus is the EFG1 gene that encodes the mitochondrial elongation factor G (MEF-G). This unique gene (AEFG1) has been isolated from the non-conventional dimorphic yeast, Arxula adeninivorans LS3. The AEFG1 gene comprises a ORF of 2,274 bp, which corresponds to 757 amino acids. In the present study, the regulation of AEFG1 has been analysed for different morphological stages of A. adeninivorans and various culture conditions. It was demonstrated that the transfer of aerobically growing cultures to anaerobic conditions resulted in an accumulation of AEFG1 transcript, correlating with an increase in AMEF-G protein concentration. Since this regulation occurred in budding-cell culture growing at 30 degrees C and in both of the mycelial cultures grown at 45 degrees C and 30 degrees C, respectively, it was the oxygen level (but not the cultivation temperature or the morphological stage) which influenced the AEFG1 regulation.

  20. Identification of a Taraxacum brevicorniculatum rubber elongation factor protein that is localized on rubber particles and promotes rubber biosynthesis.

    PubMed

    Laibach, Natalie; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2015-05-01

    Two protein families required for rubber biosynthesis in Taraxacum brevicorniculatum have recently been characterized, namely the cis-prenyltransferases (TbCPTs) and the small rubber particle proteins (TbSRPPs). The latter were shown to be the most abundant proteins on rubber particles, where rubber biosynthesis takes place. Here we identified a protein designated T. brevicorniculatum rubber elongation factor (TbREF) by using mass spectrometry to analyze rubber particle proteins. TbREF is homologous to the TbSRPPs but has a molecular mass that is atypical for the family. The promoter was shown to be active in laticifers, and the protein itself was localized on the rubber particle surface. In TbREF-silenced plants generated by RNA interference, the rubber content was significantly reduced, correlating with lower TbCPT protein levels and less TbCPT activity in the latex. However, the molecular mass of the rubber was not affected by TbREF silencing. The colloidal stability of rubber particles isolated from TbREF-silenced plants was also unchanged. This was not surprising because TbREF depletion did not affect the abundance of TbSRPPs, which are required for rubber particle stability. Our findings suggest that TbREF is an important component of the rubber biosynthesis machinery in T. brevicorniculatum, and may play a role in rubber particle biogenesis and influence rubber production.

  1. A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P

    PubMed Central

    Starosta, Agata L.; Lassak, Jürgen; Peil, Lauri; Atkinson, Gemma C.; Woolstenhulme, Christopher J.; Virumäe, Kai; Buskirk, Allen; Tenson, Tanel; Remme, Jaanus; Jung, Kirsten; Wilson, Daniel N.

    2016-01-01

    Bacterial ribosomes stall on polyproline stretches and require the elongation factor P (EF-P) to relieve the arrest. Yet it remains unclear why evolution has favored the development of EF-P, rather than selecting against the occurrence of polyproline stretches in proteins. We have discovered that only a single polyproline stretch is invariant across all domains of life, namely, a proline triplet in ValS, the tRNA synthetase that charges tRNAVal with valine. Here we show that expression of ValS in vivo and in vitro requires EF-P and demonstrate that the proline triplet located in the active site of ValS is important for efficient charging of tRNAVal with valine, preventing formation of mischarged Thr-tRNAVal, as well as for efficient growth of E. coli in vivo. We suggest that the critical role of the proline triplet for ValS activity may explain why bacterial cells co-evolved the EF-P rescue system. PMID:25310979

  2. Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication.

    PubMed

    Flores, O; Lee, G; Kessler, J; Miller, M; Schlief, W; Tomassini, J; Hazuda, D

    1999-06-22

    HIV-1 gene expression and viral replication require the viral transactivator protein Tat. The RNA polymerase II transcriptional elongation factor P-TEFb (cyclin-dependent kinase 9/cyclin T) is a cellular protein kinase that has recently been shown to be a key component of the Tat-transactivation process. For this report, we studied the requirement for P-TEFb in HIV-1 infection, and we now show that P-TEFb is both essential and limiting for HIV-1 replication. Attenuation of P-TEFb kinase activity either by expression of a dominant-negative cyclin-dependent kinase 9 transgene or through the use of small-molecule inhibitors suppresses HIV-1 gene expression and HIV-1 replication. Inhibition of HIV-1 replication is affected in a manner consistent with a direct and specific effect on P-TEFb and the known functional role of P-TEFb in Tat-activated transcription. Tat-activated expression of HIV-1 genes seems uniquely dependent on P-TEFb, as inhibition of P-TEFb activity and HIV-1 replication can be achieved without compromising cell viability or RNA polymerase II-dependent cellular gene transcription. Selective inhibition of the P-TEFb kinase may therefore provide a novel approach for developing chemotherapeutic agents against HIV-1.

  3. A non-canonical function of eukaryotic elongation factor 1A1: regulation of interleukin-6 expression.

    PubMed

    Schulz, Ingo; Engel, Claudia; Niestroj, André J; Kehlen, Astrid; Rahfeld, Jens-Ulrich; Kleinschmidt, Martin; Lehmann, Karola; Roßner, Steffen; Demuth, Hans-Ulrich

    2014-05-01

    Interleukin-6 is one of the most prominent triggers of inflammatory processes. We have shown recently that heteroarylketones (HAKs) interfere with stimulated interleukin-6 expression in astrocytes by suppression of STAT3 phosphorylation at serine 727. Surprisingly, this effect is not based on the inhibition of STAT3-relevant kinases. Therefore, we here used the structurally modified HAK compound biotin-HAK-3 in a reverse chemical approach to identify the relevant molecular target in UV-mediated cross-linking experiments. Employing streptavidin-specific 2D-immunoblotting followed by mass spectrometry we identified nine proteins putatively interacting with biotin-HAK-3. After co-immunoprecipitation, co-immunofluorescence, surface plasmon resonance analyses and RNAi-mediated knock-down, the eukaryotic elongation factor 1A1 (eEF1A1) was verified as the relevant target of HAK bioactivity. eEF1A1 forms complexes with STAT3 and PKCδ, which are crucial for STAT3(S727) phosphorylation and for NF-κB/STAT3-enhanced interleukin-6 expression. Furthermore, the intracellular HAK accumulation is strongly dependent on eEF1A1 expression. Taken together, the results reveal a novel molecular mechanism for a non-canonical role of eEF1A1 in signal transduction via direct modulation of kinase-dependent phosphorylation events.

  4. Microphthalmia-associated transcription factor ensures the elongation of axons and dendrites in the mouse frontal cortex.

    PubMed

    Ohba, Koji; Takeda, Kazuhisa; Furuse, Tamio; Suzuki, Tomohiro; Wakana, Shigeharu; Suzuki, Takashi; Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-12-01

    Long interspersed element-1 (LINE-1) is a mammalian transposable element, and its genomic insertion could cause neurological disorders in humans. Incidentally, LINE-1 is present in intron 3 of the microphthalmia-associated transcription factor (Mitf) gene of the black-eyed white mouse (Mitf(mi-bw) allele). Mice homozygous for the Mitf(mi-bw) allele show the white coat color with black eye and deafness. Here, we explored the functional consequences of the LINE-1 insertion in the Mitf gene using homozygous Mitf(mi-bw) mice on the C3H background (C3H-bw mice) or on the C57BL/6 background (bw mice). The open-field test showed that C3H-bw mice moved more irregularly in an unfamiliar environment during the 20-min period, compared to wild-type mice, suggesting the altered emotionality. Moreover, C3H-bw mice showed the lower serum creatinine levels, which may reflect the creatine deficiency. In fact, morphologically abnormal neurons and astrocytes were detected in the frontal cortex of bw mice. The immunohistochemical analysis of bw mouse tissues showed the lower intensity for expression of guanidinoacetate methyltransferase, a key enzyme in creatine synthesis, in neurons of the frontal cortex and in glomeruli and renal tubules. Thus, Mitf may ensure the elongation of axons and dendrites by maintaining creatine synthesis in the frontal cortex. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  5. Mutations in Elongation Factor Ef-1α Affect the Frequency of Frameshifting and Amino Acid Misincorporation in Saccharomyces Cerevisiae

    PubMed Central

    Sandbaken, M. G.; Culbertson, M. R.

    1988-01-01

    A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688

  6. Protective effect of berberine on antioxidant enzymes and positive transcription elongation factor b expression in diabetic rat liver.

    PubMed

    Zhou, Ji-Yin; Zhou, Shi-Wen

    2011-03-01

    The protective effect of berberine against antioxidant, antilipid peroxidation in serum and liver tissue, and positive transcription elongation factor b (P-TEFb) expression in liver tissue of type 2 diabetic rats was investigated. Overnight fasted rats were intraperitoneally injected 35 mg/kg streptozotocin. Diabetic rats were admitted after 2 weeks and given a high-carbohydrate/high-fat diet to induce hyperlipidemias. From week 16, diabetic rats were treated with 75, 150, 300 mg/kg berberine, 100mg/kg fenofibrate or 4 mg/kg rosiglitazone for another 16 weeks. P-TEFb (composed of cyclin-dependent kinase 9 and cyclin T1) mRNA and protein expression in liver tissue were detected by real time PCR and immunohistochemistry, respectively. Berberine significantly up-regulated the declined cyclin-dependent kinase 9, cyclin T1 mRNA and protein expression in diabetic rat liver. Berberine obviously decreased malondialdehyde level and increased catalase, superoxide dismutase, glutathione peroxidase, and glutathione activities in liver tissue and serum of diabetic rats. These results suggest that the effects of berberine on up-regulation of P-TEFb expression, antioxidant and antilipid peroxidation may be related to its protective potential on diabetes.

  7. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR.

    PubMed

    Lu, Fen; Wang, Huiqin; Wang, Shanzhi; Jiang, Wendi; Shan, Changlin; Li, Bin; Yang, Jun; Zhang, Shiyong; Sun, Wenxian

    2015-07-01

    The elongation factor Tu (EF-Tu) receptor (EFR) in cruciferous plants specifically recognizes the N-terminal acetylated elf18 region of bacterial EF-Tu and thereby activates plant immunity. It has been demonstrated that Arabidopsis EFR confers broad-spectrum bacterial resistance in the EFR transgenic solanaceous plants. Here, the transgenic rice plants (Oryza sativa L. ssp. japonica cv. Zhonghua 17) and cell cultures with constitutive expression of AtEFR were developed to investigate whether AtEFR senses EF-Tu and thus enhances bacterial resistance in the monocot plants. We demonstrated that the Xanthomonas oryzae-derived elf18 peptide induced oxidative burst and mitogen-activated protein kinase activation in the AtEFR transgenic rice cells and plants, respectively. Pathogenesis-related genes, such as OsPBZ1, were upregulated dramatically in transgenic rice plant and cell lines in response to elf18 stimulation. Importantly, pretreatment with elf18 triggered strong resistance to X. oryzae pv. oryzae in the transgenic plants, which was largely dependent on the AtEFR expression level. These plants also exhibited enhanced resistance to rice bacterial brown stripe, but not to rice fungal blast. Collectively, the results indicate that the rice plants with heterologous expression of AtEFR recognize bacterial EF-Tu and exhibit enhanced broad-spectrum bacterial disease resistance and that pattern recognition receptor-mediated immunity may be manipulated across the two plant classes, dicots and monocots.

  8. tRNA(Pro) -mediated downregulation of elongation factor P is required for mgtCBR expression during Salmonella infection.

    PubMed

    Nam, Daesil; Choi, Eunna; Shin, Dongwoo; Lee, Eun-Jin

    2016-10-01

    Bacterial ribosome requires elongation factor P to translate fragments harbouring consecutive proline codons. Given the abundance of ORFs with potential EF-P regulated sites, EF-P was assumed to be constitutively expressed. Here, we report that the intracellular pathogen Salmonella enterica serovar Typhimurium decreases efp mRNA levels during course of infection. We determined that the decrease in efp mRNA is triggered by low levels of charged tRNA(Pro) , a condition that Salmonella experiences when inside a macrophage phagosome. Surprisingly, downregulation of EF-P selectively promotes expression of the virulence mgtC gene and contributes to Salmonella's ability to survive inside macrophages. The decrease in EF-P levels induces ribosome stalling at the consecutive proline codons of the mgtP open reading frame in the mgtCBR leader RNA, and thus allows formation of a stem-loop structure promoting transcription of the mgtC gene. The substitution of proline codons in the mgtP gene eliminates EF-P-mediated mgtC expression and thus Salmonella's survival inside macrophages. Our findings indicate that Salmonella benefits virulence genes by decreasing EF-P levels and inducing the stringent response inside host.

  9. Interaction of turnip yellow mosaic virus Val-RNA with eukaryotic elongation factor EF-1 [alpha]. Search for a function.

    PubMed

    Joshi, R L; Ravel, J M; Haenni, A L

    1986-06-01

    The 3'-terminal tRNA-like structure in turnip yellow mosaic virus (TYMV) RNA can be adenylated by tRNA nucleotidyltransferase and subsequently aminoacylated by valyl-tRNA synthetase. Here we present evidence that TYMV Val-RNA can form a stable complex with eukaryotic wheat germ elongation factor EF-1alpha and GTP: the Val-RNA is protected by EF-1alpha.. GTP against digestion by RNase A. By affinity chromatography of TYMV Val-RNA fragments on immobilized EF-1alpha . GTP, it has been established that the valylated aminoacyl RNA domain, which in TYMV RNA is formed by the 3' half of the tRNA-like region, is sufficient for complex formation with EF-1alpha . GTP. The aminoacyl RNA domain is equivalent in tRNAs to the continuous helix formed by the acceptor stem and the T stem and loop. In line with these results, the aminoacyl RNA domain in TYMV Val-RNA complexed to EF-1 alpha . GTP is resistant to digestion by RNase A. It is also shown that the TYMV RNA replicase (RNA-dependent RNA polymerase) isolated from TYMV-infected Chinese cabbage leaves does not contain tRNA nucleotidyltransferase, valyl-tRNA synthetase or EF-1alpha. This suggests that interaction of TYMV RNA with EF-1alpha is not mandatory for replicase activity.

  10. [Expression of elongation factor-1 alpha-A and beta-actin promoters in embryos of transgenic Medaka (Oryzias latipes)].

    PubMed

    Long, Hua

    2003-06-01

    Two expression vectors with the promoter of either Medaka (Oryzias latipes) elongation factor gene or beta-actin gene were constructed based on pBluescript SK+. Both of them are linked with green-fluorescent protein (GFP) gene. And they are named as pB-EF and pB-BA, respectively. The microinjection experiments were conducted with fertilized Medaka eggs at one-cell stage. The expression of two vectors, pB-EF and pB-BA, was observed under stereo-fluorescence microscope. The detection results showed that both EF-1 alpha-A promoter and beta-actin promoter are strong. In the process of embryo development, the activity of beta-actin promoter became stronger while that of EF-1 alpha-A promoter weaker gradually. beta-actin promoter was but EF-1 alpha-A promoter distributed throughout fish body uniformly. The expression rate of two vectors, pB-EF and pB-BA, are 8.23% and 6.10%, respectively.

  11. Identification and characterisation of elongation factor Tu, a novel protein involved in Paracoccidioides brasiliensis-host interaction.

    PubMed

    Marcos, Caroline Maria; de Oliveira, Haroldo Cesar; da Silva, Julhiany de Fátima; Assato, Patricia Akemi; Yamazaki, Daniella Sayuri; da Silva, Rosângela Aparecida Moraes; Santos, Cláudia Tavares; Santos-Filho, Norival Alves; Portuondo, Deivys Leandro; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-11-01

    Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Identification and cloning of two immunogenic C. perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO) of Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic C. perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by reaction with...

  13. Characterization and phylogeny of entomopathogenic Isaria spp. (Ascomycota: Hypocreales) using ITS1-5.8X-ITS2 and elongation factor 1-alpha sequences

    USDA-ARS?s Scientific Manuscript database

    The elongation factor 1-alpha (EF1-a) and the internal transcribed spacer regions ITS1 and ITS2 (ITS1-5.8S-ITS2) sequences were used to characterize and identify Isaria isolates from Argentina and Brazil, as well as to study the phylogenetic relationships among these isolates and other related fungi...

  14. Characterization of two malaria parasite organelle translation elongation factor G proteins: the likely targets of the anti-malarial fusidic acid.

    PubMed

    Johnson, Russell A; McFadden, Geoffrey I; Goodman, Christopher D

    2011-01-01

    Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.

  15. Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells.

    PubMed

    Ashour, Ahmed A; Abdel-Aziz, Abdel-Aziz H; Mansour, Ahmed M; Alpay, S Neslihan; Huo, Longfei; Ozpolat, Bulent

    2014-01-01

    Pancreatic cancer (PaCa) is one of the most aggressive, apoptosis-resistant and currently incurable cancers with a poor survival rate. Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase, whose role in PaCa survival is not yet known. Here, we show that eEF-2K is overexpressed in PaCa cells and its down-regulation induces apoptotic cell death. Rottlerin (ROT), a polyphenolic compound initially identified as a PKC-δ inhibitor, induces apoptosis and autophagy in a variety of cancer cells including PaCa cells. We demonstrated that ROT induces intrinsic apoptosis, with dissipation of mitochondrial membrane potential (ΔΨm), and stimulates extrinsic apoptosis with concomitant induction of TNF-related apoptosis inducing ligand (TRAIL) receptors, DR4 and DR5, with caspase-8 activation, in PANC-1 and MIAPaCa-2 cells. Notably, while none of these effects were dependent on PKC-δ inhibition, ROT down-regulates eEF-2K at mRNA level, and induce eEF-2K protein degradation through ubiquitin-proteasome pathway. Down-regulation of eEF-2K recapitulates the events observed after ROT treatment, while its over-expression suppressed the ROT-induced apoptosis. Furthermore, eEF-2K regulates the expression of tissue transglutaminase (TG2), an enzyme previously implicated in proliferation, drug resistance and survival of cancer cells. Inhibition of eEF-2K/TG2 axis leads to caspase-independent apoptosis which is associated with induction of apoptosis-inducing factor (AIF). Collectively, these results indicate, for the first time, that the down-regulation of eEF-2K leads to induction of intrinsic, extrinsic as well as AIF-dependent apoptosis in PaCa cells, suggesting that eEF-2K may represent an attractive therapeutic target for the future anticancer agents in PaCa.

  16. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases.

    PubMed

    Tzivelekidis, Tina; Jank, Thomas; Pohl, Corinna; Schlosser, Andreas; Rospert, Sabine; Knudsen, Charlotte R; Rodnina, Marina V; Belyi, Yury; Aktories, Klaus

    2011-01-01

    Legionella pneumophila, which is the causative organism of Legionnaireś disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (lgt's), which selectively modify eukaryotic elongation factor (eEF) 1A at Ser-53 in the GTP binding domain. Glucosylation results in inhibition of protein synthesis. Here we show that in vitro glucosylation of yeast and mouse eEF1A by Lgt3 in the presence of the factors Phe-tRNA(Phe) and GTP was enhanced 150 and 590-fold, respectively. The glucosylation of eEF1A catalyzed by Lgt1 and 2 was increased about 70-fold. By comparison of uncharged tRNA with two distinct aminoacyl-tRNAs (His-tRNA(His) and Phe-tRNA(Phe)) we could show that aminoacylation is crucial for Lgt-catalyzed glucosylation. Aminoacyl-tRNA had no effect on the enzymatic properties of lgt's and did not enhance the glucosylation rate of eEF1A truncation mutants, consisting of the GTPase domain only or of a 5 kDa peptide covering Ser-53 of eEF1A. Furthermore, binding of aminoacyl-tRNA to eEF1A was not altered by glucosylation. Taken together, our data suggest that the ternary complex, consisting of eEF1A, aminoacyl-tRNA and GTP, is the bona fide substrate for lgt's. © 2011 Tzivelekidis et al.

  17. Aminoacyl-tRNA-Charged Eukaryotic Elongation Factor 1A Is the Bona Fide Substrate for Legionella pneumophila Effector Glucosyltransferases

    PubMed Central

    Pohl, Corinna; Schlosser, Andreas; Rospert, Sabine; Knudsen, Charlotte R.; Rodnina, Marina V.; Belyi, Yury; Aktories, Klaus

    2011-01-01

    Legionella pneumophila, which is the causative organism of Legionnaireś disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (lgt's), which selectively modify eukaryotic elongation factor (eEF) 1A at Ser-53 in the GTP binding domain. Glucosylation results in inhibition of protein synthesis. Here we show that in vitro glucosylation of yeast and mouse eEF1A by Lgt3 in the presence of the factors Phe-tRNAPhe and GTP was enhanced 150 and 590-fold, respectively. The glucosylation of eEF1A catalyzed by Lgt1 and 2 was increased about 70-fold. By comparison of uncharged tRNA with two distinct aminoacyl-tRNAs (His-tRNAHis and Phe-tRNAPhe) we could show that aminoacylation is crucial for Lgt-catalyzed glucosylation. Aminoacyl-tRNA had no effect on the enzymatic properties of lgt's and did not enhance the glucosylation rate of eEF1A truncation mutants, consisting of the GTPase domain only or of a 5 kDa peptide covering Ser-53 of eEF1A. Furthermore, binding of aminoacyl-tRNA to eEF1A was not altered by glucosylation. Taken together, our data suggest that the ternary complex, consisting of eEF1A, aminoacyl-tRNA and GTP, is the bona fide substrate for lgt's. PMID:22216304

  18. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.).

    PubMed

    Zheng, Jun; Liu, Hong; Wang, Yuquan; Wang, Lanfen; Chang, Xiaoping; Jing, Ruilian; Hao, Chenyang; Zhang, Xueyong

    2014-10-01

    In this study, TaTEF-7A, a member of the transcript elongation factor gene family, and its flanking sequences were isolated. TaTEF-7A was located on chromosome 7A and was flanked by markers Xwmc83 and XP3156.3. Subcellular localization revealed that TaTEF-7A protein was localized in the nucleus. This gene was expressed in all organs, but the highest expression occurred in young spikes and developing seeds. Overexpression of TaTEF-7A in Arabidopsis thaliana produced pleiotropic effects on vegetative and reproductive development that enhanced grain length, silique number, and silique length. No diversity was found in the coding region of TaTEF-7A, but 16 single nucleotide polymorphisms and Indels were detected in the promoter regions of different cultivars. Markers based on sequence variations in the promoter regions (InDel-629 and InDel-604) were developed, and three haplotypes were identified based on those markers. Haplotype-trait association analysis of the Chinese wheat mini core collection revealed that TaTEF-7A was significantly associated with grain number per spike. Phenotyping of near-isogenic lines (NILs) confirmed that TaTEF-7A increases potential grain yield and yield-related traits. Frequency changes in favoured haplotypes gradually increased in cultivars released in China from the 1940s. Geographic distributions of favoured haplotypes were characterized in six major wheat production regions worldwide. The presence of Hap-7A-3, the favoured haplotype, showed a positive correlation with yield in a global set of breeding lines. These results suggest that TaTEF-7A is a functional regulatory factor for grain number per spike and provide a basis for marker-assisted selection. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.)

    PubMed Central

    Zheng, Jun; Liu, Hong; Wang, Yuquan; Wang, Lanfen; Chang, Xiaoping; Jing, Ruilian; Hao, Chenyang; Zhang, Xueyong

    2014-01-01

    In this study, TaTEF-7A, a member of the transcript elongation factor gene family, and its flanking sequences were isolated. TaTEF-7A was located on chromosome 7A and was flanked by markers Xwmc83 and XP3156.3. Subcellular localization revealed that TaTEF-7A protein was localized in the nucleus. This gene was expressed in all organs, but the highest expression occurred in young spikes and developing seeds. Overexpression of TaTEF-7A in Arabidopsis thaliana produced pleiotropic effects on vegetative and reproductive development that enhanced grain length, silique number, and silique length. No diversity was found in the coding region of TaTEF-7A, but 16 single nucleotide polymorphisms and Indels were detected in the promoter regions of different cultivars. Markers based on sequence variations in the promoter regions (InDel-629 and InDel-604) were developed, and three haplotypes were identified based on those markers. Haplotype–trait association analysis of the Chinese wheat mini core collection revealed that TaTEF-7A was significantly associated with grain number per spike. Phenotyping of near-isogenic lines (NILs) confirmed that TaTEF-7A increases potential grain yield and yield-related traits. Frequency changes in favoured haplotypes gradually increased in cultivars released in China from the 1940s. Geographic distributions of favoured haplotypes were characterized in six major wheat production regions worldwide. The presence of Hap-7A-3, the favoured haplotype, showed a positive correlation with yield in a global set of breeding lines. These results suggest that TaTEF-7A is a functional regulatory factor for grain number per spike and provide a basis for marker-assisted selection. PMID:25056774

  20. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A.

    PubMed Central

    Yates, Susan P; Merrill, Allan R

    2004-01-01

    Pseudomonas aeruginosa produces the virulence factor, ETA (exotoxin A), which catalyses an ADP-ribosyltransferase reaction of its target protein, eEF2 (eukaryotic elongation factor-2). Currently, this protein-protein interaction is poorly characterized and this study was aimed at identifying the contact sites between eEF2 and the catalytic domain of ETA (PE24H, an ETA from P. aeruginosa, a 24 kDa C-terminal fragment containing a His6 tag). Single-cysteine residues were introduced into the toxin at 21 defined surface-exposed sites and labelled with the fluorophore, IAEDANS [5-(2-iodoacetylaminoethylamino)-1-napthalenesulphonic acid]. Fluorescence quenching studies using acrylamide, and fluorescence lifetime and wavelength emission maxima analyses were conducted in the presence and absence of eEF2. Large changes in the microenvironment of the AEDANS [5-(2-aminoethylamino)-1-naphthalenesulphonic acid] probe after eEF2 binding were not observed as dictated by both fluorescence lifetime and wavelength emission maxima values. This supported the proposed minimal contact model, which suggests that only small, discrete contacts occur between these proteins. As dictated by the bimolecular quenching constant (k(q)) for acrylamide, binding of eEF2 with toxin caused the greatest change in acrylamide accessibility (>50%) when the fluorescence label was near the active site or was located within a known catalytic loop. All mutant proteins showed a decrease in accessibility to acrylamide once eEF2 bound, although the relative change varied for each labelled protein. From these data, a low-resolution model of the toxin-eEF2 complex was constructed based on the minimal contact model with the intention of enhancing our knowledge on the mode of inactivation of the ribosome translocase by the Pseudomonas toxin. PMID:14733615

  1. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    PubMed Central

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M.; Denis, Clyde L.

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  2. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

    PubMed

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M; Denis, Clyde L

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.

  3. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  4. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  5. Translation Elongation Factor eEF1A2 is a Novel Anticancer Target for the Marine Natural Product Plitidepsin

    PubMed Central

    Losada, Alejandro; Muñoz-Alonso, María José; García, Carolina; Sánchez-Murcia, Pedro A.; Martínez-Leal, Juan Fernando; Domínguez, Juan Manuel; Lillo, M. Pilar; Gago, Federico; Galmarini, Carlos M.

    2016-01-01

    eEF1A2 is one of the isoforms of the alpha subunit of the eukaryotic Elongation Factor 1. It is overexpressed in human tumors and is endowed with oncogenic properties, favoring tumor cell proliferation while inhibiting apoptosis. We demonstrate that plitidepsin, an antitumor agent of marine origin that has successfully completed a phase-III clinical trial for multiple myeloma, exerts its antitumor activity by targeting eEF1A2. The drug interacts with eEF1A2 with a KD of 80 nM and a target residence time of circa 9 min. This protein was also identified as capable of binding [14C]-plitidepsin in a cell lysate from K-562 tumor cells. A molecular modelling approach was used to identify a favorable binding site for plitidepsin at the interface between domains 1 and 2 of eEF1A2 in the GTP conformation. Three tumor cell lines selected for at least 100-fold more resistance to plitidepsin than their respective parental cells showed reduced levels of eEF1A2 protein. Ectopic expression of eEF1A2 in resistant cells restored the sensitivity to plitidepsin. FLIM-phasor FRET experiments demonstrated that plitidepsin localizes in tumor cells sufficiently close to eEF1A2 as to suggest the formation of drug-protein complexes in living cells. Altogether, our results strongly suggest that eEF1A2 is the primary target of plitidepsin. PMID:27713531

  6. Molecular control of the amount, subcellular location, and activity state of translation elongation factor 2 in neurons experiencing stress.

    PubMed

    Argüelles, Sandro; Camandola, Simonetta; Hutchison, Emmette R; Cutler, Roy G; Ayala, Antonio; Mattson, Mark P

    2013-08-01

    Eukaryotic elongation factor 2 (eEF-2) is an important regulator of the protein translation machinery whereby it controls the movement of the ribosome along the mRNA. The activity of eEF-2 is regulated by changes in cellular energy status and nutrient availability and by posttranslational modifications such as phosphorylation and mono-ADP-ribosylation. However, the mechanisms regulating protein translation under conditions of cellular stress in neurons are unknown. Here we show that when rat hippocampal neurons experience oxidative stress (lipid peroxidation induced by exposure to cumene hydroperoxide; CH), eEF-2 is hyperphosphorylated and ribosylated, resulting in reduced translational activity. The degradation of eEF-2 requires calpain proteolytic activity and is accompanied by accumulation of eEF-2 in the nuclear compartment. The subcellular localization of both native and phosphorylated forms of eEF-2 is influenced by CRM1 and 14.3.3, respectively. In hippocampal neurons p53 interacts with nonphosphorylated (active) eEF-2, but not with its phosphorylated form. The p53-eEF-2 complexes are present in cytoplasm and nucleus, and their abundance increases when neurons experience oxidative stress. The nuclear localization of active eEF-2 depends upon its interaction with p53, as cells lacking p53 contain less active eEF-2 in the nuclear compartment. Overexpression of eEF-2 in hippocampal neurons results in increased nuclear levels of eEF-2 and decreased cell death after exposure to CH. Our results reveal novel molecular mechanisms controlling the differential subcellular localization and activity state of eEF-2 that may influence the survival status of neurons during periods of elevated oxidative stress.

  7. Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2

    PubMed Central

    Bottermann, Katharina; Reinartz, Michael; Barsoum, Marian; Kötter, Sebastian; Gödecke, Axel

    2013-01-01

    AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90), Cdc37, heat shock protein 70 kDa (HSP70), 78 kDa glucose regulated protein (GRP78), tubulin, GAPDH, α-enolase and elongation factor 2 (EF2) as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC) revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA), no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism. PMID:23823123

  8. Functional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance

    PubMed Central

    Liu, Mingying; Qiu, Wenming; He, Xuelian; Zheng, Liu; Song, Xixi; Han, Xiaojiao; Jiang, Jing; Qiao, Guirong; Sang, Jian; Liu, Mingqing; Zhuo, Renying

    2016-01-01

    Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library screening for genes related to cadmium tolerance identified a gene resembling the rubber elongation factor gene designated as SaREFl. The heterologous expression of SaREFl rescued the growth of a transformed Cd-sensitive strain (ycf1). Furthermore, SaREFl-expressing Arabidopsis plants were more tolerant to cadmium stress compared with wild type by measuring parameters of root length, fresh weight and physiological indexes. When under four different heavy metal treatments, we found that SaREFl responded most strongly to Cd and the root was the plant organ most sensitive to this heavy metal. Yeast two-hybrid screening of SaREFl as a bait led to the identification of five possible interacting targets in Sedum alfredii Hance. Among them, a gene annotated as prenylated Rab acceptor 1 (PRA1) domain protein was detected with a high frequency. Moreover, subcellular localization of SaREF1-GFP fusion protein revealed some patchy spots in cytosol suggesting potential association with organelles for its cellular functions. Our findings would further enrich the connotation of REF-like genes and provide theoretical assistance for the application in breeding heavy metal-tolerant plants. PMID:27446189

  9. Toxoplasma gondii Elongation Factor 1-Alpha (TgEF-1α) Is a Novel Vaccine Candidate Antigen against Toxoplasmosis.

    PubMed

    Wang, Shuai; Zhang, Zhenchao; Wang, Yujian; Gadahi, Javaid A; Xu, Lixin; Yan, Ruofeng; Song, Xiaokai; Li, Xiangrui

    2017-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular parasite which can infect almost all warm-blood animals, leading to toxoplasmosis. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, the recombinant T. gondii elongation factor 1-alpha (rTgEF-1α) was successfully expressed in in Escherichia coli. Passive immunization of mice with anti-rTgEF-1α polyclonal antibody following challenge with a lethal dose of tachyzoites significantly increased the survival time compared with PBS control group. The survival time of mice challenged with tachyzoites pretreated with anti-rTgEF-1α PcAb also was significantly increased. Invasion of tachyzoites into mouse macrophages was significantly inhibited in the anti-rTgEF-1α PcAb pretreated group. Mice vaccinated with rTgEF-1α induced a high level of specific anti-T. gondii antibodies and production of IFN-gamma, interleukin-4. The expression levels of MHC-I and MHC-II molecules as well as the percentages of CD4(+) and CD8(+) T cells in mice vaccinated with rTgEF-1α was significantly increased, respectively (P < 0.05), compared with all the controls. Immunization with rTgEF-1α significantly (P < 0.05) prolonged survival time (14.53 ± 1.72 days) after challenge infection with the virulent T. gondii RH strain. These results indicate that T. gondii EF-1α plays an essential role in mediating host cell invasion by the parasite and, as such, could be a candidate vaccine antigen against toxoplasmosis.

  10. Toxoplasma gondii Elongation Factor 1-Alpha (TgEF-1α) Is a Novel Vaccine Candidate Antigen against Toxoplasmosis

    PubMed Central

    Wang, Shuai; Zhang, Zhenchao; Wang, Yujian; Gadahi, Javaid A.; Xu, Lixin; Yan, Ruofeng; Song, Xiaokai; Li, Xiangrui

    2017-01-01

    Toxoplasma gondii (T. gondii) is an obligate intracellular parasite which can infect almost all warm-blood animals, leading to toxoplasmosis. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, the recombinant T. gondii elongation factor 1-alpha (rTgEF-1α) was successfully expressed in in Escherichia coli. Passive immunization of mice with anti-rTgEF-1α polyclonal antibody following challenge with a lethal dose of tachyzoites significantly increased the survival time compared with PBS control group. The survival time of mice challenged with tachyzoites pretreated with anti-rTgEF-1α PcAb also was significantly increased. Invasion of tachyzoites into mouse macrophages was significantly inhibited in the anti-rTgEF-1α PcAb pretreated group. Mice vaccinated with rTgEF-1α induced a high level of specific anti-T. gondii antibodies and production of IFN-gamma, interleukin-4. The expression levels of MHC-I and MHC-II molecules as well as the percentages of CD4+ and CD8+ T cells in mice vaccinated with rTgEF-1α was significantly increased, respectively (P < 0.05), compared with all the controls. Immunization with rTgEF-1α significantly (P < 0.05) prolonged survival time (14.53 ± 1.72 days) after challenge infection with the virulent T. gondii RH strain. These results indicate that T. gondii EF-1α plays an essential role in mediating host cell invasion by the parasite and, as such, could be a candidate vaccine antigen against toxoplasmosis. PMID:28243226

  11. Translation Elongation Factor eEF1A2 is a Novel Anticancer Target for the Marine Natural Product Plitidepsin.

    PubMed

    Losada, Alejandro; Muñoz-Alonso, María José; García, Carolina; Sánchez-Murcia, Pedro A; Martínez-Leal, Juan Fernando; Domínguez, Juan Manuel; Lillo, M Pilar; Gago, Federico; Galmarini, Carlos M

    2016-10-07

    eEF1A2 is one of the isoforms of the alpha subunit of the eukaryotic Elongation Factor 1. It is overexpressed in human tumors and is endowed with oncogenic properties, favoring tumor cell proliferation while inhibiting apoptosis. We demonstrate that plitidepsin, an antitumor agent of marine origin that has successfully completed a phase-III clinical trial for multiple myeloma, exerts its antitumor activity by targeting eEF1A2. The drug interacts with eEF1A2 with a KD of 80 nM and a target residence time of circa 9 min. This protein was also identified as capable of binding [(14)C]-plitidepsin in a cell lysate from K-562 tumor cells. A molecular modelling approach was used to identify a favorable binding site for plitidepsin at the interface between domains 1 and 2 of eEF1A2 in the GTP conformation. Three tumor cell lines selected for at least 100-fold more resistance to plitidepsin than their respective parental cells showed reduced levels of eEF1A2 protein. Ectopic expression of eEF1A2 in resistant cells restored the sensitivity to plitidepsin. FLIM-phasor FRET experiments demonstrated that plitidepsin localizes in tumor cells sufficiently close to eEF1A2 as to suggest the formation of drug-protein complexes in living cells. Altogether, our results strongly suggest that eEF1A2 is the primary target of plitidepsin.

  12. Characterization of the translation elongation factor 1-α gene in a wide range of pathogenic Aspergillus species.

    PubMed

    Nouripour-Sisakht, Sadegh; Ahmadi, Bahram; Makimura, Koichi; Hoog, Sybren de; Umeda, Yoshiko; Alshahni, Mohamed Mahdi; Mirhendi, Hossein

    2017-04-21

    We aimed to evaluate the resolving power of the translation elongation factor (TEF)-1α gene for phylogenetic analysis of Aspergillus species. Sequences of 526 bp representing the coding region of the TEF-1α gene were used for the assessment of levels of intra- and inter-specific nucleotide polymorphism in 33 species of Aspergillus, including 57 reference, clinical and environmental strains. Analysis of TEF-1α sequences indicated a mean similarity of 92.6 % between the species, with inter-species diversity ranging from 0 to 70 nucleotides. The species with the closest resemblance were A. candidus/A. carneus, and A. flavus/A. oryzae/A. ochraceus, with 100 and 99.8 % identification, respectively. These species are phylogenetically very close and the TEF-1α gene appears not to have sufficient discriminatory power to differentiate them. Meanwhile, intra-species differences were found within strains of A. clavatus, A. clavatonanicus, A. candidus, A. fumigatus, A. terreus, A. alliaceus, A. flavus, Eurotium amstelodami and E. chevalieri. The tree topology with strongly supported clades (≥70 % bootstrap values) was almost compatible with the phylogeny inferred from analysis of the DNA sequences of the beta tubulin gene (BT2). However, the backbone of the tree exhibited low bootstrap values, and inter-species correlations were not obvious in some clades; for example, tree topologies based on BT2 and TEF-1α genes were incompatible for some species, such as A. deflectus, A. janus and A. penicillioides. The gene was not phylogenetically more informative than other known molecular markers. It will be necessary to test other genes or larger genomic regions to better understand the taxonomy of this important group of fungi.

  13. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein.

    PubMed

    Bartholomeeusen, Koen; Xiang, Yanhui; Fujinaga, Koh; Peterlin, B Matija

    2012-10-19

    By phosphorylating elongation factors and the C-terminal domain of RNA polymerase II, the positive transcription elongation factor b (P-TEFb) is the critical kinase for transcription elongation and co-transcriptional processing of eukaryotic genes. It exists in inactive small nuclear ribonucleoprotein (7SK snRNP) and active (free P-TEFb) complexes in cells. The P-TEFb equilibrium determines the state of cellular activation, proliferation, and differentiation. Free P-TEFb, which is required for growth, can be recruited to RNA polymerase II via transcription factors, BRD4, or the super elongation complex (SEC). UV light, various signaling cascades, transcriptional blockade, or compounds such as hexamethylene bisacetamide (HMBA), suberoylanilide hydroxamic acid (SAHA), and other histone deacetylase inhibitors lead to a rapid release of free P-TEFb, followed by its reassembly into the 7SK snRNP. As a consequence, transcription of HEXIM1, a critical 7SK snRNP subunit, and HIV is induced. In this study, we found that a bromodomain and extra-terminal (BET) bromodomain inhibitor, JQ1, which inhibits BRD4 by blocking its association with chromatin, also leads to the rapid release of free P-TEFb from the 7SK snRNP. Indeed, JQ1 transiently increased levels of free P-TEFb and BRD4·P-TEFb and SEC·P-TEFb complexes in cells. As a consequence, the levels of HEXIM1 and HIV proteins rose. Importantly, the knockdown of ELL2, a subunit of the SEC, blocked the ability of JQ1 to increase HIV transcription. Finally, the effects of JQ1 and HMBA or SAHA on the P-TEFb equilibrium were cooperative. We conclude that HMBA, SAHA, and JQ1 affect transcription elongation by a similar and convergent mechanism.

  14. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system.

    PubMed Central

    Mansilla, Francisco; Friis, Irene; Jadidi, Mandana; Nielsen, Karen M; Clark, Brian F C; Knudsen, Charlotte R

    2002-01-01

    In eukaryotes, the eukaryotic translation elongation factor eEF1A responsible for transporting amino-acylated tRNA to the ribosome forms a higher-order complex, eEF1H, with its guanine-nucleotide-exchange factor eEF1B. In metazoans, eEF1B consists of three subunits: eEF1B alpha, eEF1B eta and eEF1B gamma. The first two subunits possess the nucleotide-exchange activity, whereas the role of the last remains poorly defined. In mammals, two active tissue-specific isoforms of eEF1A have been identified. The reason for this pattern of differential expression is unknown. Several models on the basis of in vitro experiments have been proposed for the macromolecular organization of the eEF1H complex. However, these models differ in various aspects. This might be due to the difficulties of handling, particularly the eEF1B beta and eEF1B gamma subunits in vitro. Here, the human eEF1H complex is for the first time mapped using the yeast two-hybrid system, which is a powerful in vivo technique for analysing protein-protein interactions. The following complexes were observed: eEF1A1:eEF1B alpha, eEF1A1:eEF1B beta, eEF1B beta:eEF1B beta, eEF1B alpha:eEF1B gamma, eEF1B beta:eEF1B gamma and eEF1B alpha:eEF1B gamma:eEF1B beta, where the last was observed using a three-hybrid approach. Surprisingly, eEF1A2 showed no or only little affinity for the guanine-nucleotide-exchange factors. Truncated versions of the subunits of eEF1B were used to orientate these subunits within the resulting model. The model unit is a pentamer composed of two molecules of eEF1A, each interacting with either eEF1B alpha or eEF1B beta held together by eEF1B gamma. These units can dimerize via eEF1B beta. Our model is compared with other models, and structural as well as functional aspects of the model are discussed. PMID:11985494

  15. Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer

    PubMed Central

    Parmer, T G; Ward, M D; Yurkow, E J; Vyas, V H; Kearney, T J; Hait, W N

    1999-01-01

    Calmodulin-dependent protein kinase III (CaM kinase III, elongation factor-2 kinase) is a unique member of the Ca2+/CaM-dependent protein kinase family. Activation of CaM kinase III leads to the selective phosphorylation of elongation factor 2 (eEF-2) and transient inhibition of protein synthesis. Recent cloning and sequencing of CaM kinase III revealed that this enzyme represents a new superfamily of protein kinases. The activity of CaM kinase III is selectively activated in proliferating cells; inhibition of the kinase blocked cells in G0/G1-S and decreased viability. To determine the significance of CaM kinase III in breast cancer, we measured the activity of the kinase in human breast cancer cell lines as well as in fresh surgical specimens. The specific activity of CaM kinase III in human breast cancer cell lines was equal to or greater than that seen in a variety of cell lines with similar rates of proliferation. The specific activity of CaM kinase III was markedly increased in human breast tumour specimens compared with that of normal adjacent breast tissue. The activity of this enzyme was regulated by breast cancer mitogens. In serum-deprived MDA-MB-231 cells, the combination of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) stimulated cell proliferation and activated CaM kinase III to activities observed in the presence of 10% serum. Inhibition of enzyme activity blocked cell proliferation induced by growth factors. In MCF-7 cells separated by fluorescence-activated cell sorting, CaM kinase III was increased in S-phase over that of other phases of the cell cycle. In summary, the activity of Ca2+/CaM-dependent protein kinase III is controlled by breast cancer mitogens and appears to be constitutively activated in human breast cancer. These results suggest that CaM kinase III may contribute an important link between growth factor/receptor interactions, protein synthesis and the induction of cellular proliferation in human breast

  16. Structural insights into Elongator function.

    PubMed

    Glatt, Sebastian; Müller, Christoph W

    2013-04-01

    The eukaryotic Elongator complex was initially identified in yeast as a RNA polymerase II (Pol II) associated transcription elongation factor, although there is accumulating evidence that its main cellular function is the specific modification of uridines at the wobble base position of tRNAs. Elongator complex is built up by six highly conserved subunits and was shown to be involved in a variety of different cellular activities. Here, we summarize structural and functional information on individual Elongator subunits or subcomplexes. On the basis of homology models of the Elp1, Elp2 and Elp3 subunits and the crystal structure of the Elp456 subcomplex, the role of each subunit in Elongator complex assembly and catalytic activity is discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Secretomic Analysis of Host-Pathogen Interactions Reveals That Elongation Factor-Tu Is a Potential Adherence Factor of Helicobacter pylori during Pathogenesis.

    PubMed

    Chiu, Kuo-Hsun; Wang, Ling-Hui; Tsai, Tsung-Ting; Lei, Huan-Yao; Liao, Pao-Chi

    2017-01-06

    The secreted proteins of bacteria are usually accompanied by virulence factors, which can cause inflammation and damage host cells. Identifying the secretomes arising from the interactions of bacteria and host cells could therefore increase understanding of the mechanisms during initial pathogenesis. The present study used a host-pathogen coculture system of Helicobacter pylori and monocytes (THP-1 cells) to investigate the secreted proteins associated with initial H. pylori pathogenesis. The secreted proteins from the conditioned media from H. pylori, THP-1 cells, and the coculture were collected and analyzed using SDS-PAGE and LC-MS/MS. Results indicated the presence of 15 overexpressed bands in the coculture. Thirty-one proteins were identified-11 were derived from THP-1 cells and 20 were derived from H. pylori. A potential adherence factor from H. pylori, elongation factor-Tu (EF-Tu), was selected for investigation of its biological function. Results from confocal microscopic and flow cytometric analyses indicated the contribution of EF-Tu to the binding ability of H. pylori in THP-1. The data demonstrated that fluorescence of EF-Tu on THP-1 cells increased after the addition of the H. pylori-conditioned medium. This study reports a novel secretory adherence factor in H. pylori, EF-Tu, and further elucidates mechanisms of H. pylori adaptation for host-pathogen interaction during pathogenesis.

  18. A major substrate for MPF: cDNA cloning and expression of polypeptide chain elongation factor 1 gamma from goldfish (Carassius auratus).

    PubMed

    Tokumoto, Mika; Nagahama, Yoshitaka; Tokumoto, Toshinobu

    2002-02-01

    One of the eukaryotic polypeptide chain elongation factors, EF-1 beta gamma delta complex, is involved in polypeptide chain elongation via the GDP/GTP exchange activity of EF-1 alpha. In the complex, EF-1 gamma has been reported to be a major substrate for maturation promoting factor (MPF). Here, we present the cloning, sequencing and expression analysis of goldfish, Carassius auratus, EF-1 gamma from the goldfish ovary. The cloned cDNA was 1490 bp in length and encoded 442 amino acids. The deduced amino acid sequence was highly homologous to EF-1 gamma from other species. Although, the phosphorylation site identified in Xenopus EF-1 gamma was not conserved in the goldfish homologue, phosphorylation analysis showed that the goldfish EF-1 gamma was phosphorylated by MPF. We concluded that EF-1 gamma is a substrate for MPF during oocyte maturation in goldfish.

  19. MicroRNA-182 promotes tumor cell growth by targeting transcription elongation factor A-like 7 in endometrial carcinoma.

    PubMed

    Guo, Ying; Liao, Ying; Jia, Chunyan; Ren, Jianlin; Wang, Jianchao; Li, Ting

    2013-01-01

    Endometrial carcinoma (EC) is the most common gynecological malignancy among women worldwide. Despite its prevalence, the molecular mechanisms underlying endometrial carcinogenesis are poorly understood. The purpose of this study was to examine the role of microRNA-182 and its target gene transcription elongation factor A-like 7 (TCEAL7) in EC. The expression of miR-182 in human normal endometrial epithelial cells (NEEC) and in three human endometrial carcinoma cell lines (HEC-1B, RL95-2 and AN3CA) was measured by qRT-PCR, and the mRNA and protein expression of TCEAL7 were assessed in the same three endometrial carcinoma cell lines and NEEC by qRT-PCR and western blotting, respectively. Subsequently, the target of miR-182 was predicted by bioinformatics and confirmed using a luciferase assay. Cell proliferation and colony formation of RL95-2 cells were examined by MTT assay and crystal violet staining, respectively. The expression of NFκB-p65, c-Myc and cyclin D1 proteins was determined by Western blot analysis. MiR-182 was significantly upregulated and TCEAL7 was downregulated in EC cell lines compared to NEEC. We showed that MiR-182 binds directly to a conserved 8 bp sequence in the 3'-UTR of TCEAL7, and inhibition of miR-182 upregulated TCEAL7 mRNA and protein expression to levels comparable to those induced by lentiviral-mediated overexpression of TCEAL7. MiR-182 inhibition decreased cell proliferation and colony formation ability, downregulated the expression of the pro-proliferative genes c-Myc and cyclin D1, and inhibited NFκB activation, and these effects were mimicked by TCEAL7 overexpression. miR-182 acts as an oncogenic miRNA in EC, promoting cell proliferation by targeting the tumor suppressor gene TCEAL7 and modulating the activity of its downstream effectors c-Myc, cyclin D1 and NFκB. © 2013 S. Karger AG, Basel.

  20. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.

    PubMed Central

    Tubulekas, I; Hughes, D

    1993-01-01

    Elongation factor Tu (EF-Tu).GTP has the primary function of promoting the efficient and correct interaction of aminoacyl-tRNA with the ribosome. Very little is known about the elements in EF-Tu involved in this interaction. We describe a mutant form of EF-Tu, isolated in Salmonella typhimurium, that causes a severe defect in the interaction of the ternary complex with the ribosome. The mutation causes the substitution of Val for Gly-280 in domain II of EF-Tu. The in vivo growth and translation phenotypes of strains harboring this mutation are indistinguishable from those of strains in which the same tuf gene is insertionally inactivated. Viable cells are not obtained when the other tuf gene is inactivated, showing that the mutant EF-Tu alone cannot support cell growth. We have confirmed, by partial protein sequencing, that the mutant EF-Tu is present in the cells. In vitro analysis of the natural mixture of wild-type and mutant EF-Tu allows us to identify the major defect of this mutant. Our data shows that the EF-Tu is homogeneous and competent with respect to guanine nucleotide binding and exchange, stimulation of nucleotide exchange by EF-Ts, and ternary complex formation with aminoacyl-tRNA. However various measures of translational efficiency show a significant reduction, which is associated with a defective interaction between the ribosome and the mutant EF-Tu.GTP.aminoacyl-tRNA complex. In addition, the antibiotic kirromycin, which blocks translation by binding EF-Tu on the ribosome, fails to do so with this mutant EF-Tu, although it does form a complex with EF-Tu. Our results suggest that this region of domain II in EF-Tu has an important function and influences the binding of the ternary complex to the codon-programmed ribosome during protein synthesis. Models involving either a direct or an indirect effect of the mutation are discussed. Images PMID:8416899

  1. Neisseria meningitidis Translation Elongation Factor P and Its Active-Site Arginine Residue Are Essential for Cell Viability.

    PubMed

    Yanagisawa, Tatsuo; Takahashi, Hideyuki; Suzuki, Takehiro; Masuda, Akiko; Dohmae, Naoshi; Yokoyama, Shigeyuki

    2016-01-01

    Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational β-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The β-lysyl EF-P modification pathway is conserved among only 26-28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl-EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli β-lysyl-EF-P. The possible reasons for the unique requirement of rhamnosyl-EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others.

  2. Neisseria meningitidis Translation Elongation Factor P and Its Active-Site Arginine Residue Are Essential for Cell Viability

    PubMed Central

    Yanagisawa, Tatsuo; Takahashi, Hideyuki; Suzuki, Takehiro; Masuda, Akiko; Dohmae, Naoshi; Yokoyama, Shigeyuki

    2016-01-01

    Translation elongation factor P (EF-P), a ubiquitous protein over the entire range of bacterial species, rescues ribosomal stalling at consecutive prolines in proteins. In Escherichia coli and Salmonella enterica, the post-translational β-lysyl modification of Lys34 of EF-P is important for the EF-P activity. The β-lysyl EF-P modification pathway is conserved among only 26–28% of bacteria. Recently, it was found that the Shewanella oneidensis and Pseudomonas aeruginosa EF-P proteins, containing an Arg residue at position 32, are modified with rhamnose, which is a novel post-translational modification. In these bacteria, EF-P and its Arg modification are both dispensable for cell viability, similar to the E. coli and S. enterica EF-P proteins and their Lys34 modification. However, in the present study, we found that EF-P and Arg32 are essential for the viability of the human pathogen, Neisseria meningitidis. We therefore analyzed the modification of Arg32 in the N. meningitidis EF-P protein, and identified the same rhamnosyl modification as in the S. oneidensis and P. aeruginosa EF-P proteins. N. meningitidis also has the orthologue of the rhamnosyl modification enzyme (EarP) from S. oneidensis and P. aeruginosa. Therefore, EarP should be a promising target for antibacterial drug development specifically against N. meningitidis. The pair of genes encoding N. meningitidis EF-P and EarP suppressed the slow-growth phenotype of the EF-P-deficient mutant of E. coli, indicating that the activity of N. meningitidis rhamnosyl–EF-P for rescuing the stalled ribosomes at proline stretches is similar to that of E. coli β-lysyl–EF-P. The possible reasons for the unique requirement of rhamnosyl–EF-P for N. meningitidis cells are that more proline stretch-containing proteins are essential and/or the basal ribosomal activity to synthesize proline stretch-containing proteins in the absence of EF-P is lower in this bacterium than in others. PMID:26840407

  3. The phylogenetic position of an Armillaria species from Amami-Oshima, a subtropical island of Japan, based on elongation factor and ITS sequences

    Treesearch

    Yuko Ota; Mee-Sook Kim; Hitoshi Neda; Ned B. Klopfenstein; Eri Hasegawa

    2011-01-01

    An undetermined Armillaria species was collected on Amami-Oshima, a subtropical island of Japan. The phylogenetic position of the Armillaria sp. was determined using sequences of the elongation factor-1a (EF-1a) gene and the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of ribosomal DNA (rDNA). The phylogenetic analyses based on EF-1a and ITS sequences...

  4. Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription.

    PubMed

    Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh; Bartholomeeusen, Koen; Nilson, Kyle A; Price, David H; Peterlin, B Matija

    2014-04-04

    By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis.

  5. Oxidation of a Cysteine Residue in Elongation Factor EF-Tu Reversibly Inhibits Translation in the Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Yutthanasirikul, Rayakorn; Nagano, Takanori; Jimbo, Haruhiko; Hihara, Yukako; Kanamori, Takashi; Ueda, Takuya; Haruyama, Takamitsu; Konno, Hiroki; Yoshida, Keisuke; Hisabori, Toru; Nishiyama, Yoshitaka

    2016-03-11

    Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner.

  6. [Analysis of protein-on-DNA binding profiles, detected with chIP-seq method, reveals possible interaction of specific transcription factors with RNA polymerase II in the process of transcription elongation].

    PubMed

    Belostotskiĭ, A A

    2012-01-01

    It is thought that in the course of mRNA transcription almost all transcription factors stay on a promoter while RNA polymerase II "clears" the promoter and "proceeds" to elongation. However, analysis of some specific transcription factors and RNA polymerase II binding profiles on DNA, detected with ChIP-seq method, revealed the possibility of interaction between transcription factors and RNA polymerase II in the process of transcription elongation.

  7. Elongation factor Tu D138N, a mutant with modified substrate specificity, as a tool to study energy consumption in protein biosynthesis.

    PubMed

    Weijland, A; Parlato, G; Parmeggiani, A

    1994-09-06

    Substitution Asp138-->Asn changes the substrate specificity of elongation factor (EF) Tu from GTP to XTP [Hwang & Miller (1987) J. Biol. Chem. 262, 13081-13085]. This mutated EF-Tu (EF-Tu D138N) was used to show that 2 XTP molecules are hydrolyzed for each elongation cycle [Weijland & Parmeggiani (1993) Science 259, 1311-1313]. Here we extend the study of the properties of this EF-Tu mutant and its function in the elongation process. In poly(U)-directed poly(phenylalanine) synthesis, the number of peptide chains synthesized using EF-Tu D138N.XTP was 30% higher than with EF-Tu wild type (wt).GTP. However, since in the former case the average peptide chain length was correspondingly reduced, the number of the residues incorporated turned out to be nearly the same in both systems. The K'd values of the XTP and XDP complexes of EF-Tu D138N were similar to those of the GTP and GDP complexes of EF-Tu wt. The extent of leucine misincorporation and the kirromycin effect were also comparable to those in the EF-Tu wt/GTP system. The hydrolysis of two XTP molecules, very likely as part of two EF-Tu D138N.XTP complexes, for each elongation cycle was found to be independent of (i) MgCl2 concentration, (ii) ribosome concentration, and (iii) temperature (5-40 degrees C). With rate-limiting amounts of XTP the K'm of its XTPase activity corresponded to the K'm for XTP of poly(phenylalanine) synthesis (0.3-0.6 microM).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Hsp33 Controls Elongation Factor-Tu Stability and Allows Escherichia coli Growth in the Absence of the Major DnaK and Trigger Factor Chaperones*

    PubMed Central

    Bruel, Nicolas; Castanié-Cornet, Marie-Pierre; Cirinesi, Anne-Marie; Koningstein, Gregory; Georgopoulos, Costa; Luirink, Joen; Genevaux, Pierre

    2012-01-01

    Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed. PMID:23148222

  9. Mutation in subdomain G' of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle

    PubMed Central

    Smits, Paulien; Antonicka, Hana; van Hasselt, Peter M; Weraarpachai, Woranontee; Haller, Wolfram; Schreurs, Marieke; Venselaar, Hanka; Rodenburg, Richard J; Smeitink, Jan A; van den Heuvel, Lambert P

    2011-01-01

    The mitochondrial translation system is responsible for the synthesis of 13 proteins required for oxidative phosphorylation (OXPHOS), the major energy-generating process of our cells. Mitochondrial translation is controlled by various nuclear encoded proteins. In 27 patients with combined OXPHOS deficiencies, in whom complex II (the only complex that is entirely encoded by the nuclear DNA) showed normal activities, and mutations in the mitochondrial genome as well as polymerase gamma were excluded, we screened all mitochondrial translation factors for mutations. Here, we report a mutation in mitochondrial elongation factor G1 (GFM1) in a patient affected by severe, rapidly progressive mitochondrial encephalopathy. This mutation is predicted to result in an Arg250Trp substitution in subdomain G' of the elongation factor G1 protein and is presumed to hamper ribosome-dependent GTP hydrolysis. Strikingly, the decrease in enzyme activities of complex I, III and IV detected in patient fibroblasts was not found in muscle tissue. The OXPHOS system defects and the impairment in mitochondrial translation in fibroblasts were rescued by overexpressing wild-type GFM1, establishing the GFM1 defect as the cause of the fatal mitochondrial disease. Furthermore, this study evinces the importance of a thorough diagnostic biochemical analysis of both muscle tissue and fibroblasts in patients suspected to suffer from a mitochondrial disorder, as enzyme deficiencies can be selectively expressed. PMID:21119709

  10. Knockdown of selenocysteine-specific elongation factor in Amblyomma maculatum alters the pathogen burden of Rickettsia parkeri with epigenetic control by the Sin3 histone deacetylase corepressor complex.

    PubMed

    Adamson, Steven W; Browning, Rebecca E; Budachetri, Khemraj; Ribeiro, José M C; Karim, Shahid

    2013-01-01

    Selenocysteine is the 21st naturally-occurring amino acid. Selenoproteins have diverse functions and many remain uncharacterized, but they are typically associated with antioxidant activity. The incorporation of selenocysteine into the nascent polypeptide chain recodes the TGA stop codon and this process depends upon a number of essential factors including the selenocysteine elongation factor (SEF). The transcriptional expression of SEF did not change significantly in tick midguts throughout the blood meal, but decreased in salivary glands to 20% at the end of the fast feeding phase. Since selenoprotein translation requires this specialized elongation factor, we targeted this gene for knockdown by RNAi to gain a global view of the role selenoproteins play in tick physiology. We found no significant differences in tick engorgement and embryogenesis but detected no antioxidant capacity in tick saliva. The transcriptional profile of selenoproteins in R. parkeri-infected Amblyomma maculatum revealed declined activity of selenoprotein M and catalase and increased activity of selenoprotein O, selenoprotein S, and selenoprotein T. Furthermore, the pathogen burden was significantly altered in SEF-knockdowns. We then determined the global impact of SEF-knockdown by RNA-seq, and mapped huge shifts in secretory gene expression that could be the result of downregulation of the Sin3 histone deacetylase corepressor complex.

  11. Knockdown of Selenocysteine-Specific Elongation Factor in Amblyomma maculatum Alters the Pathogen Burden of Rickettsia parkeri with Epigenetic Control by the Sin3 Histone Deacetylase Corepressor Complex

    PubMed Central

    Adamson, Steven W.; Browning, Rebecca E.; Budachetri, Khemraj; Ribeiro, José M. C.; Karim, Shahid

    2013-01-01

    Selenocysteine is the 21st naturally-occurring amino acid. Selenoproteins have diverse functions and many remain uncharacterized, but they are typically associated with antioxidant activity. The incorporation of selenocysteine into the nascent polypeptide chain recodes the TGA stop codon and this process depends upon a number of essential factors including the selenocysteine elongation factor (SEF). The transcriptional expression of SEF did not change significantly in tick midguts throughout the blood meal, but decreased in salivary glands to 20% at the end of the fast feeding phase. Since selenoprotein translation requires this specialized elongation factor, we targeted this gene for knockdown by RNAi to gain a global view of the role selenoproteins play in tick physiology. We found no significant differences in tick engorgement and embryogenesis but detected no antioxidant capacity in tick saliva. The transcriptional profile of selenoproteins in R. parkeri-infected Amblyomma maculatum revealed declined activity of selenoprotein M and catalase and increased activity of selenoprotein O, selenoprotein S, and selenoprotein T. Furthermore, the pathogen burden was significantly altered in SEF-knockdowns. We then determined the global impact of SEF-knockdown by RNA-seq, and mapped huge shifts in secretory gene expression that could be the result of downregulation of the Sin3 histone deacetylase corepressor complex. PMID:24282621

  12. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5.

    PubMed

    Blythe, Amanda; Gunasekara, Sanjika; Walshe, James; Mackay, Joel P; Hartzog, Grant A; Vrielink, Alice

    2014-08-01

    Spt4/5 is a hetero-dimeric transcription elongation factor that can both inhibit and promote transcription elongation by RNA polymerase II (RNAPII). However, Spt4/5's mechanism of action remains elusive. Spt5 is an essential protein and the only universally-conserved RNAP-associated transcription elongation factor. The protein contains multiple Kyrpides, Ouzounis and Woese (KOW) domains. These domains, in other proteins, are thought to bind RNA although there is little direct evidence in the literature to support such a function in Spt5. This could be due, at least in part, to difficulties in expressing and purifying recombinant Spt5. When expressed in Escherichia coli (E. coli), Spt5 is innately insoluble. Here we report a new approach for the successful expression and purification of milligram quantities of three different multi-KOW domain complexes of Saccharomyces cerevisiae Spt4/5 for use in future functional studies. Using the E. coli strain Rosetta2 (DE3) we have developed strategies for co-expression of Spt4 and multi-KOW domain Spt5 complexes from the bi-cistronic pET-Duet vector. In a second strategy, Spt4/5 was expressed via co-transformation of Spt4 in the vector pET-M11 with Spt5 ubiquitin fusion constructs in the vector pHUE. We characterized the multi-KOW domain Spt4/5 complexes by Western blot, limited proteolysis, circular dichroism, SDS-PAGE and size exclusion chromatography-multiangle light scattering and found that the proteins are folded with a Spt4:Spt5 hetero-dimeric stoichiometry of 1:1. These expression constructs encompass a larger region of Spt5 than has previously been reported, and will provide the opportunity to elucidate the biological function of the multi-KOW containing Spt5.

  13. Silencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells.

    PubMed

    Xie, Chuan-Ming; Liu, Xiao-Yu; Sham, Kathy W Y; Lai, Josie M Y; Cheng, Christopher H K

    2014-09-01

    EEF2K (eukaryotic elongation factor-2 kinase), also known as Ca (2+)/calmodulin-dependent protein kinase III, functions in downregulating peptide chain elongation through inactivation of EEF2 (eukaryotic translation elongation factor 2). Currently, there is a limited amount of information on the promotion of autophagic survival by EEF2K in breast and glioblastoma cell lines. However, the precise role of EEF2K in carcinogenesis as well as the underlying mechanism involved is still poorly understood. In this study, contrary to the reported autophagy-promoting activity of EEF2K in certain cancer cells, EEF2K is shown to negatively regulate autophagy in human colon cancer cells as indicated by the increase of LC3-II levels, the accumulation of LC3 dots per cell, and the promotion of autophagic flux in EEF2K knockdown cells. EEF2K negatively regulates cell viability, clonogenicity, cell proliferation, and cell size in colon cancer cells. Autophagy induced by EEF2K silencing promotes cell survival and does not potentiate the anticancer efficacy of the AKT inhibitor MK-2206. In addition, autophagy induced by silencing of EEF2K is attributed to induction of protein synthesis and activation of the AMPK-ULK1 pathway, independent of the suppression of MTOR activity and ROS generation. Knockdown of AMPK or ULK1 significantly abrogates EEF2K silencing-induced increase of LC3-II levels, accumulation of LC3 dots per cell as well as cell proliferation in colon cancer cells. In conclusion, silencing of EEF2K promotes autophagic survival via activation of the AMPK-ULK1 pathway in colon cancer cells. This finding suggests that upregulation of EEF2K activity may constitute a novel approach for the treatment of human colon cancer.

  14. Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex.

    PubMed

    Cao, Qing-Fu; Yamamoto, Junichi; Isobe, Tomoyasu; Tateno, Shumpei; Murase, Yuki; Chen, Yexi; Handa, Hiroshi; Yamaguchi, Yuki

    2015-10-01

    Restores TBP function 1 (Rtf1) is generally considered to be a subunit of the Paf1 complex (PAF1C), a multifunctional protein complex involved in histone modification and transcriptional or posttranscriptional regulation. Rtf1, however, is not stably associated with the PAF1C in most species except Saccharomyces cerevisiae, and its biochemical functions are not well understood. Here, we show that human Rtf1 is a transcription elongation factor that may function independently of the PAF1C. Rtf1 requires "Rtf1 coactivator" activity, which is most likely unrelated to the PAF1C or DSIF, for transcriptional activation in vitro. A mutational study revealed that the Plus3 domain of human Rtf1 is critical for its coactivator-dependent function. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation studies in HeLa cells showed that Rtf1 and the PAF1C play distinct roles in regulating the expression of a subset of genes. Moreover, contrary to the finding in S. cerevisiae, the PAF1C was apparently recruited to the genes examined in an Rtf1-independent manner. The present study establishes a role for human Rtf1 as a transcription elongation factor and highlights the similarities and differences between the S. cerevisiae and human Rtf1 proteins.

  15. Heat Shock Protein 90 Facilitates Latent HIV Reactivation through Maintaining the Function of Positive Transcriptional Elongation Factor b (p-TEFb) under Proteasome Inhibition.

    PubMed

    Pan, Xiao-Yan; Zhao, Wei; Wang, Chun-Yan; Lin, Jian; Zeng, Xiao-Yun; Ren, Ru-Xia; Wang, Keng; Xun, Tian-Rong; Shai, Yechiel; Liu, Shu-Wen

    2016-12-09

    The persistence of HIV in resting memory CD4(+) T cells at a latent state is considered as the major barrier on the path to achieve a cure for HIV. Proteasome inhibitors (PIs) were previously reported as latency reversing agents (LRAs) but the mechanism underlying this function is yet unclear. Here we demonstrate that PIs reactivate latent HIV ex vivo without global T cell activation, and may facilitate host innate immune responses. Mechanistically, latent HIV reactivation induced by PIs is mediated by heat shock factor 1 (HSF1) via the recruitment of the heat shock protein (HSP) 90-positive transcriptional elongation factor b (p-TEFb) complex. Specifically, HSP90 downstream HSF1 gives positive feedback to the reactivation process through binding to cyclin-dependent kinase 9 (CDK9) and preventing it from undergoing degradation by the proteasome. Overall, these findings suggest proteasome inhibitors as potential latency reversing agents. In addition, HSF1/HSP90 involved in HIV transcription elongation, may serve as therapeutic targets in HIV eradication. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax

    SciTech Connect

    Mann, Melanie C. Strobel, Sarah Fleckenstein, Bernhard Kress, Andrea K.

    2014-09-15

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. - Highlights: • ELL2, a transcription elongation factor, is upregulated in HTLV-1-positive T-cells. • Tax transactivates the ELL2 promoter. • Tax and ELL2 synergistically activate the HTLV-1 promoter. • Tax and ELL2 interact in vivo.

  17. Transcription elongation regulator 1 is a co-integrator of the cell fate determination factor Dachshund homolog 1.

    PubMed

    Zhou, Jie; Liu, Yang; Zhang, Wei; Popov, Vladimir M; Wang, Min; Pattabiraman, Nagarajan; Suñé, Carlos; Cvekl, Ales; Wu, Kongming; Jiang, Jie; Wang, Chenguang; Pestell, Richard G

    2010-12-17

    DACH1 (Dachshund homolog 1) is a key component of the retinal determination gene network and regulates gene expression either indirectly as a co-integrator or through direct DNA binding. The current studies were conducted to understand, at a higher level of resolution, the mechanisms governing DACH1-mediated transcriptional repression via DNA sequence-specific binding. DACH1 repressed gene transcription driven by the DACH1-responsive element (DRE). Recent genome-wide ChIP-Seq analysis demonstrated DACH1 binding sites co-localized with Forkhead protein (FOX) binding sites. Herein, DACH1 repressed, whereas FOX proteins enhanced, both DRE and FOXA-responsive element-driven gene expression. Reduced DACH1 expression using a shRNA approach enhanced FOX protein activity. As DACH1 antagonized FOX target gene expression and attenuated FOX signaling, we sought to identify limiting co-integrator proteins governing DACH1 signaling. Proteomic analysis identified transcription elongation regulator 1 (TCERG1) as the transcriptional co-regulator of DACH1 activity. The FF2 domain of TCERG1 was required for DACH1 binding, and the deletion of FF2 abolished DACH1 trans-repression function. The carboxyl terminus of DACH1 was necessary and sufficient for TCERG1 binding. Thus, DACH1 represses gene transcription through direct DNA binding to the promoter region of target genes by recruiting the transcriptional co-regulator, TCERG1.

  18. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2010-01-12

    Stress-induced mutagenesis describes the accumulation of mutations that occur in nongrowing cells, in contrast to mutagenesis that occurs in actively dividing populations, and has been referred to as stationary-phase or adaptive mutagenesis. The most widely studied system for stress-induced mutagenesis involves monitoring the appearance of Lac(+) revertants of the strain FC40 under starvation conditions in Escherichia coli. The SOS-inducible translesion DNA polymerase DinB plays an important role in this phenomenon. Loss of DinB (DNA pol IV) function results in a severe reduction of Lac(+) revertants. We previously reported that NusA, an essential component of elongating RNA polymerases, interacts with DinB. Here we report our unexpected observation that wild-type NusA function is required for stress-induced mutagenesis. We present evidence that this effect is unlikely to be due to defects in transcription of lac genes but rather is due to an inability to adapt and mutate in response to environmental stress. Furthermore, we extended our analysis to the formation of stress-induced mutants in response to antibiotic treatment, observing the same striking abolition of mutagenesis under entirely different conditions. Our results are the first to implicate NusA as a crucial participant in the phenomenon of stress-induced mutagenesis. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes

    PubMed Central

    Crepin, Thibaut; Shalak, Vyacheslav F.; Yaremchuk, Anna D.; Vlasenko, Dmytro O.; McCarthy, Andrew; Negrutskii, Boris S.; Tukalo, Michail A.; El'skaya, Anna V.

    2014-01-01

    Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon–anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the ‘GTP’- and ‘GDP’-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis. PMID:25326326

  20. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes.

    PubMed

    Crepin, Thibaut; Shalak, Vyacheslav F; Yaremchuk, Anna D; Vlasenko, Dmytro O; McCarthy, Andrew; Negrutskii, Boris S; Tukalo, Michail A; El'skaya, Anna V

    2014-11-10

    Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Structure of the Kti11/Kti13 heterodimer and its double role in modifications of tRNA and eukaryotic elongation factor 2.

    PubMed

    Glatt, Sebastian; Zabel, Rene; Vonkova, Ivana; Kumar, Amit; Netz, Daili J; Pierik, Antonio J; Rybin, Vladimir; Lill, Roland; Gavin, Anne-Claude; Balbach, Jochen; Breunig, Karin D; Müller, Christoph W

    2015-01-06

    The small, highly conserved Kti11 alias Dph3 protein encoded by the Kluyveromyces lactis killer toxin insensitive gene KTI11/DPH3 is involved in the diphthamide modification of eukaryotic elongation factor 2 and, together with Kti13, in Elongator-dependent tRNA wobble base modifications, thereby affecting the speed and accuracy of protein biosynthesis through two distinct mechanisms. We have solved the crystal structures of Saccharomyces cerevisiae Kti13 and the Kti11/Kti13 heterodimer at 2.4 and 2.9 Å resolution, respectively, and validated interacting residues through mutational analysis in vitro and in vivo. We show that metal coordination by Kti11 and its heterodimerization with Kti13 are essential for both translational control mechanisms. Our structural and functional analyses identify Kti13 as an additional component of the diphthamide modification pathway and provide insight into the molecular mechanisms that allow the Kti11/Kti13 heterodimer to coregulate two consecutive steps in ribosomal protein synthesis.

  2. A single nucleotide polymorphism in the translation elongation factor 1α gene correlates with the ability to produce fumonisin in Japanese Fusarium fujikuroi.

    PubMed

    Suga, Haruhisa; Kitajima, Miha; Nagumo, Riku; Tsukiboshi, Takao; Uegaki, Ryuichi; Nakajima, Takashi; Kushiro, Masayo; Nakagawa, Hiroyuki; Shimizu, Masafumi; Kageyama, Koji; Hyakumachi, Mitsuro

    2014-04-01

    PCR-RFLP based on the translation elongation factor 1α (TEF) gene was developed to identify Fusarium fujikuroi in the Fusarium (Gibberella) fujikuroi species complex. Ninety-three strains, most of which were obtained from various sources in Japan, were identified as F. fujikuroi and their capability to produce fumonisin was investigated using an in vitro assay. Fumonisin production was detected in 50 strains isolated from maize, strawberry, wheat, and rice, whereas it was undetectable in 43 strains derived from rice seeds and rice seedlings carrying the bakanae disease, and from unknown sources. A single nucleotide polymorphism in the TEF gene (T618G) correlated with the ability to synthesize fumonisin. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones.

    PubMed

    Truttmann, Matthias C; Cruz, Victor E; Guo, Xuanzong; Engert, Christoph; Schwartz, Thomas U; Ploegh, Hidde L

    2016-05-01

    Protein AMPylation by Fic domain-containing proteins (Fic proteins) is an ancient and conserved post-translational modification of mostly unexplored significance. Here we characterize the Caenorhabditis elegans Fic protein FIC-1 in vitro and in vivo. FIC-1 is an AMPylase that localizes to the nuclear surface and modifies core histones H2 and H3 as well as heat shock protein 70 family members and translation elongation factors. The three-dimensional structure of FIC-1 is similar to that of its human ortholog, HYPE, with 38% sequence identity. We identify a link between FIC-1-mediated AMPylation and susceptibility to the pathogen Pseudomonas aeruginosa, establishing a connection between AMPylation and innate immunity in C. elegans.

  4. Degradation of newly synthesized polypeptides by ribosome-associated RACK1/c-Jun N-terminal kinase/eukaryotic elongation factor 1A2 complex.

    PubMed

    Gandin, Valentina; Gutierrez, Gustavo J; Brill, Laurence M; Varsano, Tal; Feng, Yongmei; Aza-Blanc, Pedro; Au, Qingyan; McLaughlan, Shannon; Ferreira, Tiago A; Alain, Tommy; Sonenberg, Nahum; Topisirovic, Ivan; Ronai, Ze'ev A

    2013-07-01

    Folding of newly synthesized polypeptides (NSPs) into functional proteins is a highly regulated process. Rigorous quality control ensures that NSPs attain their native fold during or shortly after completion of translation. Nonetheless, signaling pathways that govern the degradation of NSPs in mammals remain elusive. We demonstrate that the stress-induced c-Jun N-terminal kinase (JNK) is recruited to ribosomes by the receptor for activated protein C kinase 1 (RACK1). RACK1 is an integral component of the 40S ribosome and an adaptor for protein kinases. Ribosome-associated JNK phosphorylates the eukaryotic translation elongation factor 1A isoform 2 (eEF1A2) on serines 205 and 358 to promote degradation of NSPs by the proteasome. These findings establish a role for a RACK1/JNK/eEF1A2 complex in the quality control of NSPs in response to stress.

  5. The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones

    PubMed Central

    Truttmann, Matthias C.; Guo, Xuanzong; Engert, Christoph; Schwartz, Thomas U.; Ploegh, Hidde L.

    2016-01-01

    Protein AMPylation by Fic domain-containing proteins (Fic proteins) is an ancient and conserved post-translational modification of mostly unexplored significance. Here we characterize the Caenorhabditis elegans Fic protein FIC-1 in vitro and in vivo. FIC-1 is an AMPylase that localizes to the nuclear surface and modifies core histones H2 and H3 as well as heat shock protein 70 family members and translation elongation factors. The three-dimensional structure of FIC-1 is similar to that of its human ortholog, HYPE, with 38% sequence identity. We identify a link between FIC-1-mediated AMPylation and susceptibility to the pathogen Pseudomonas aeruginosa, establishing a connection between AMPylation and innate immunity in C. elegans. PMID:27138431

  6. Cetuximab-associated elongation of the eyelashes: case report and review of eyelash trichomegaly secondary to epidermal growth factor receptor inhibitors.

    PubMed

    Cohen, Philip R; Escudier, Susan M; Kurzrock, Razelle

    2011-02-01

    Eyelash trichomegaly is an uncommon drug-associated sequelae experienced during treatment with epidermal growth factor receptor (EGFR) inhibitors. Elongation of the eyelashes induced by these agents has predominantly been observed in oncology patients with either colorectal or lung cancer. It is most frequently associated with cetuximab and erlotinib; however, it has also been described in individuals treated with gefitinib or panitumumab. We describe cetuximab-associated eyelash trichomegaly in a woman with metastatic rectal carcinoma. We review the clinical presentation, adverse effects, and management of EGFR inhibitor-related eyelash trichomegaly. The long eyelashes are not a drug-limiting adverse effect and some patients consider the change to be cosmetically enhancing. Trimming the lashes with scissors can usually ameliorate local symptoms. The eyelashes often return to their original length at variable time periods after EGFR inhibitor therapy is discontinued.

  7. Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB from Escherichia coli in complex with RNA

    SciTech Connect

    Soler, Nicolas; Fourmy, Dominique; Yoshizawa, Satoko

    2007-05-01

    The mRNA-binding domain of E. coli selenocysteine-specific elongation factor SelB (residues 478–614; SelB-WH3/4) was overproduced in E. coli and its cognate mRNA ligand, 23 nucleotides of the SECIS RNA hairpin, was prepared by in vitro transcription. The purified SelB-WH3/4–SECIS RNA complex crystallized in space group C2 and diffracted to 2.3 Å. In bacteria, selenocysteine (the 21st amino acid) is incorporated into proteins via machinery that includes SelB, a specific translational elongation factor. SelB binds to an mRNA hairpin called the selenocysteine-insertion sequence (SECIS) and delivers selenocysteyl-tRNA{sup Sec} to the ribosomal A site. The minimum C-terminal fragment (residues 478–614) of Escherichia coli SelB (SelB-WH3/4) required for SECIS binding has been overexpressed and purified. This protein was crystallized in complex with 23 nucleotides of the SECIS hairpin at 294 K using the hanging-drop vapour-diffusion method. A data set was collected to 2.3 Å resolution from a single crystal at 100 K using ESRF beamline BM-30. The crystal belongs to space group C2, with unit-cell parameters a = 103.50, b = 56.51, c = 48.41 Å. The asymmetric unit contains one WH3/4-domain–RNA complex. The Matthews coefficient was calculated to be 3.37 Å{sup 3} Da{sup −1} and the solvent content was estimated to be 67.4%.

  8. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy

    PubMed Central

    Espinoza-Derout, Jorge; Wagner, Michael; Shahmiri, Katayoun; Mascareno, Eduardo; Chaqour, Brahim; Siddiqui, M. A. Q.

    2009-01-01

    Objective Our aim was to determine if the expression pattern of CLP-1 in developing heart is consistent with its role in controlling RNA transcript elongation by transcriptional elongation factor b (P-TEFb) and if the inhibitory control exerted over P-TEFb by CLP-1 is released under hypertrophic conditions. Methods We performed immunoblot and immunofluorescence analysis of CLP-1 and the P-TEFb components cdk9 and cyclin T in fetal mouse heart and 2 day post-natal mouse cardiomyocytes to determine if they are co-localized. We induced hypertrophy in rat cardiomyocytes either by mechanical stretch or treatment with hypertrophic agents such as endothelin-1 and phenylephrine to determine if CLP-1 is released from P-TEFb in response to hypertrophic stimuli. The involvement of the Jak/STAT signal transduction pathway in this process was studied by blocking this pathway with the Jak2 kinase inhibitor, AG490, and assessing the association of CLP-1 with P-TEFb complexes. Results We found that CLP-1 is expressed along with P-TEFb components in developing heart during the period in which knockout mice lacking the CLP-1 gene develop cardiac hypertrophy and die. Under conditions of hypertrophy induced by mechanical stretch or agonist treatment, CLP-1 dissociates from the P-TEFb complex, a finding consistent with the de-repression of P-TEFb kinase activity seen in hypertrophic cardiomyocytes. Blockage of Jak/STAT signaling by AG490 prevented release of CLP-1 from P-TEFb despite the ongoing presence of hypertrophic stimulation by mechanical stretch. Conclusions CLP-1 expression in developing heart and isolated post-natal cardiomyocytes colocalizes with P-TEFb expression and therefore has the potential to regulate RNA transcript elongation by controlling P-TEFb cdk9 kinase activity in heart. We further conclude that the dissociation of CLP-1 from P-TEFb is responsive to hypertrophic stimuli transduced by cellular signal transduction pathways. This process may be part of the genomic

  9. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy.

    PubMed

    Espinoza-Derout, Jorge; Wagner, Michael; Shahmiri, Katayoun; Mascareno, Eduardo; Chaqour, Brahim; Siddiqui, M A Q

    2007-07-01

    Our aim was to determine if the expression pattern of CLP-1 in developing heart is consistent with its role in controlling RNA transcript elongation by transcriptional elongation factor b (P-TEFb) and if the inhibitory control exerted over P-TEFb by CLP-1 is released under hypertrophic conditions. We performed immunoblot and immunofluorescence analysis of CLP-1 and the P-TEFb components cdk9 and cyclin T in fetal mouse heart and 2 day post-natal mouse cardiomyocytes to determine if they are co-localized. We induced hypertrophy in rat cardiomyocytes either by mechanical stretch or treatment with hypertrophic agents such as endothelin-1 and phenylephrine to determine if CLP-1 is released from P-TEFb in response to hypertrophic stimuli. The involvement of the Jak/STAT signal transduction pathway in this process was studied by blocking this pathway with the Jak2 kinase inhibitor, AG490, and assessing the association of CLP-1 with P-TEFb complexes. We found that CLP-1 is expressed along with P-TEFb components in developing heart during the period in which knockout mice lacking the CLP-1 gene develop cardiac hypertrophy and die. Under conditions of hypertrophy induced by mechanical stretch or agonist treatment, CLP-1 dissociates from the P-TEFb complex, a finding consistent with the de-repression of P-TEFb kinase activity seen in hypertrophic cardiomyocytes. Blockage of Jak/STAT signaling by AG490 prevented release of CLP-1 from P-TEFb despite the ongoing presence of hypertrophic stimulation by mechanical stretch. CLP-1 expression in developing heart and isolated post-natal cardiomyocytes colocalizes with P-TEFb expression and therefore has the potential to regulate RNA transcript elongation by controlling P-TEFb cdk9 kinase activity in heart. We further conclude that the dissociation of CLP-1 from P-TEFb is responsive to hypertrophic stimuli transduced by cellular signal transduction pathways. This process may be part of the genomic stress response resulting in

  10. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction

    PubMed Central

    1996-01-01

    The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin- binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F- actin, we have studied the effect of F-actin on the ability of EF- 1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa- tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF- 1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus. PMID:8922379

  11. Effect of elongation factor 1alpha promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase.

    PubMed

    Alméciga-Díaz, Carlos J; Rueda-Paramo, Maria A; Espejo, Angela J; Echeverri, Olga Y; Montaño, Adriana; Tomatsu, Shunji; Barrera, Luis A

    2009-09-01

    Morquio A is an autosomal recessive disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to the lysosomal accumulation of keratan-sulfate and chondroitin-6-sulfate. We evaluated in HEK293 cells the effect of the cytomegalovirus immediate early enhancer/promoter (CMV) or the elongation factor 1alpha (EF1alpha) promoters, and the coexpression with the sulfatase modifying factor 1 (SUMF1) on GALNS activity. Four days postransfection GALNS activity in transfected cells with CMV-pIRES-GALNS reached a plateau, whereas in cells transfected with EF1alpha-pIRES-GALNS continued to increase until day 8. Co-transfection with pCXN-SUMF1 showed an increment up to 2.6-fold in GALNS activity. Finally, computational analysis of transcription factor binding-sites and CpG islands showed that EF1alpha promoter has long CpG islands and high-density binding-sites for Sp1 compared to CMV. These results show the advantage of the SUMF1 coexpression on GALNS activity and indicate a considerable effect on the expression stability using EF1alpha promoter compared to CMV.

  12. Immobilized nerve growth factor and microtopography have distinct effects on polarization versus axon elongation in hippocampal cells in culture.

    PubMed

    Gomez, Natalia; Lu, Yi; Chen, Shaochen; Schmidt, Christine E

    2007-01-01

    Cell interfacing with biomaterial surfaces dictates important aspects of cell behavior. In particular, axon extension in neurons is effectively influenced by surface properties, both for the initial formation of an axon as well as for the maintenance of axon growth. Here, we investigated how neurons behaved on poly(dimethyl siloxane) (PDMS) surfaces decorated with biochemical and physical cues presented individually or in combination. In particular, nerve growth factor (NGF) was covalently tethered to PDMS to create a bioactive surface, and microtopography was introduced to the material in the form of microchannels. Embryonic hippocampal neurons were used to investigate the impact of these surface cues on polarization (i.e., axon initiation or axogenesis) and overall axon length. We found that topography had a more pronounced effect on polarization (68% increase over controls) compared to immobilized NGF (0.1 ng/mm(2)) (27% increase). However, the effect of NGF was negligible when both types of stimuli were simultaneously presented on the biomaterial surface. In addition to axon formation, chemical and physical cues are also involved in axon growth following the initiation process. Interestingly, for the same studies described above, the effects of microchannels and NGF were opposite from the effects on polarization; the most evident effect was for the immobilized growth factor (10% increase in axon length with respect to controls) whereas there was no effect in general for the microtopography. More importantly, when the two surface stimuli were presented in combination, a synergistic increase in axon length was detected (25% increase with respect to controls), which could be a result of faster polarization triggered by topography plus enhanced growth from NGF. Additionally, axon orientation was also analyzed and we found the well-known tendency of perpendicular or parallel axonal alignment to be dependent on the width and depth of the channels. This investigation

  13. Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow.

    PubMed

    Colace, Thomas V; Diamond, Scott L

    2013-01-01

    In severe stenosis, von Willebrand factor (vWF) experiences millisecond exposures to pathological wall shear rates (γ(w)). We sought to evaluate the deposition of vWF onto collagen surfaces under flow in these environments. Distinct from viscometry experiments that last many seconds, we deployed microfluidic devices for single-pass perfusion of whole blood or platelet-free plasma over fibrillar type 1 collagen (<50 ms transit time) at pathological γ(w) or spatial wall shear rate gradients (grad γ(w)). Using fluorescent anti-vWF, long thick vWF fibers (>20 μm) bound to collagen were visualized at constant γ(w)>30000 s(-1) during perfusion of platelet-free plasma, a process enhanced by EDTA. Rapid acceleration or deceleration of EDTA platelet-free plasma at grad γ(w)=±1.1×10(5) to ±4.3×10(7) s(-1)/cm did not promote vWF deposition. At 19400 s(-1), EDTA blood perfusion resulted in rolling vWF-platelet nets, although blood perfusion (normal Ca(2+)) generated large vWF/platelet deposits that repeatedly embolized and were blocked by anti-glycoprotein Ib or the α(IIb)β(3) inhibitor GR144053 and did not require grad γ(w). Blood perfusion at venous shear rate (200 s(-1)) produced a stable platelet deposit that was a substrate for massive but unstable vWF-platelet aggregates when flow was increased to 7800 s(-1). Triggered by collagen and enhanced by platelet glycoprotein Ib and α(IIb)β(3), vWF fiber formation occurred during acute exposures to pathological γ(w) and did not require gradients in wall shear rate.

  14. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells.

    PubMed

    Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R

    2016-01-01

    Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Elongation factor 2 diphthamide is critical for translation of two IRES-dependent protein targets, XIAP and FGF2, under oxidative stress conditions.

    PubMed

    Argüelles, Sandro; Camandola, Simonetta; Cutler, Roy G; Ayala, Antonio; Mattson, Mark P

    2014-02-01

    Elongation factor-2 (eEF2) catalyzes the movement of the ribosome along the mRNA. A single histidine residue in eEF2 (H715) is modified to form diphthamide. A role for eEF2 in the cellular stress response is highlighted by the fact that eEF2 is sensitive to oxidative stress and that it must be active to drive the synthesis of proteins that help cells to mitigate the adverse effects of oxidative stress. Many of these proteins are encoded by mRNAs containing a sequence called an "internal ribosomal entry site" (IRES). Under high oxidative stress conditions diphthamide-deficient cells were significantly more sensitive to cell death. These results suggest that diphthamide may play a role in protection against the degradation of eEF2. This protection is especially important in those situations in which eEF2 is necessary for the reprogramming of translation from global to IRES synthesis. Indeed, we found that the expression of X-linked inhibitor of apoptosis (XIAP) and fibroblast growth factor 2 (FGF2), two proteins synthesized from mRNAs with IRESs that promote cell survival, is deregulated in diphthamide-deficient cells. Our findings therefore suggest that eEF2 diphthamide controls the selective translation of IRES-dependent protein targets XIAP and FGF2, critical for cell survival under conditions of oxidative stress.

  16. UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter[W][OPEN

    PubMed Central

    Binkert, Melanie; Kozma-Bognár, László; Terecskei, Kata; De Veylder, Lieven; Nagy, Ferenc; Ulm, Roman

    2014-01-01

    In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/GHY5-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B. PMID:25351492

  17. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths.

    PubMed

    Cho, S; Mitchell, A; Regier, J C; Mitter, C; Poole, R W; Friedlander, T P; Zhao, S

    1995-07-01

    Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.

  18. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax.

    PubMed

    Mann, Melanie C; Strobel, Sarah; Fleckenstein, Bernhard; Kress, Andrea K

    2014-09-01

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters

    PubMed Central

    Zhang, Ning; McHale, Leah K.; Finer, John J.

    2016-01-01

    Introns, especially the first intron in the 5’ untranslated region (5’UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement. PMID:27806110

  20. Organization and nucleotide sequences of the Spiroplasma citri genes for ribosomal protein S2, elongation factor Ts, spiralin, phosphofructokinase, pyruvate kinase, and an unidentified protein.

    PubMed Central

    Chevalier, C; Saillard, C; Bové, J M

    1990-01-01

    The gene for spiralin, the major membrane protein of the helical mollicute Spiroplasma citri, was cloned in Escherichia coli as a 5-kilobase-pair (kbp) DNA fragment. The complete nucleotide sequence of the 5.0-kbp spiroplasmal DNA fragment was determined (GenBank accession no. M31161). The spiralin gene was identified by the size and amino acid composition of its translational product. Besides the spiralin gene, the spiroplasmal DNA fragment was found to contain five additional open reading frames (ORFs). The translational products of four of these ORFs were identified by their amino acid sequence homologies with known proteins: ribosomal protein S2, elongation factor Ts, phosphofructokinase, and pyruvate kinase, respectively encoded by the genes rpsB, tsf, pfk, and pyk. The product of the fifth ORF remains to be identified and was named protein X (X gene). The order of the above genes was tsf--X--spiralin gene--pfk--pyk. These genes were transcribed in one direction, while the gene for ribosomal protein S2 (rpsB) was transcribed in the opposite direction. Images PMID:2139649

  1. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome.

    PubMed

    Kothe, Ute; Wieden, Hans-Joachim; Mohr, Dagmar; Rodnina, Marina V

    2004-03-05

    Elongation factor Tu (EF-Tu) promotes binding of aminoacyl-tRNA to the A site of the ribosome. Here, we report the effects of mutations in helix D of EF-Tu and in the C-terminal domain of L7/12 on the kinetics of A-site binding. Reaction rates were measured by stopped-flow and quench-flow techniques. The rates of A-site binding were decreased by mutations at positions 144, 145, 148, and 152 in helix D of EF-Tu as well as at positions 65, 66, 69, 70, 73, and 84 in helices 4 and 5 of L7/12. The effect was due primarily to the lower association rate constant of ternary complex binding to the ribosome. These results suggest that helix D of EF-Tu is involved in an initial transient contact with helices 4 and 5 of L7/12 that promotes ternary complex binding to the ribosome. By analogy to the interaction of helix D of EF-Tu with the N-terminal domain of EF-Ts, the contact area is likely to consist of a hydrophobic patch flanked by two salt-bridges.

  2. The three-dimensional structure of the Moorella thermoacetica selenocysteine insertion sequence RNA hairpin and its interaction with the elongation factor SelB

    PubMed Central

    Beribisky, Alexander V.; Tavares, Tony J.; Amborski, Andrew N.; Motamed, Mina; Johnson, Anne E.; Mark, Tobi L.; Johnson, Philip E.

    2007-01-01

    Incorporation of the amino acid selenocysteine into a growing protein chain involves the interaction between a hairpin in the mRNA termed the selenocysteine insertion sequence (SECIS) and the special elongation factor SelB. Here we present the structure of the SECIS from the thermophilic organism Moorella thermoacetica (SECIS-MT) determined using nuclear magnetic resonance (NMR) spectroscopy. The SECIS-MT hairpin structure contains a pentaloop with the first and fourth nucleotides of the loop forming a noncanonical GC base pair; the fifth loop nucleotide is bulged out and unstructured. The G and U in positions two and three are on opposite sides of the loop and solvent exposed. The backbone resonances of the SECIS-binding domain from the M. thermoacetica SelB protein were assigned, and the degree of chemical shift perturbations that occur upon SECIS binding were mapped onto the structure of the complex. We demonstrate that a region in the third winged-helix domain of SelB, not previously implicated in binding, is affected by SECIS binding. PMID:17901155

  3. Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes.

    PubMed

    Archambaud, Cristel; Gouin, Edith; Pizarro-Cerda, Javier; Cossart, Pascale; Dussurget, Olivier

    2005-04-01

    Listeria monocytogenes is a pathogen that causes listeriosis, a severe food-borne infection. This bacterium, in order to survive and grow in the multiple conditions encountered in the host and the environment, has evolved a large number of regulatory elements, in particular many signal transduction systems based on reversible phosphorylation. The genome sequence has revealed genes for 16 putative two-component systems, four putative tyrosine phosphatases, three putative serine-threonine kinases and two putative serine-threonine phosphatases. We found that one of the latter genes, stp, encodes a functional Mn(2+)-dependent serine-threonine phosphatase similar to PPM eukaryotic phosphatases (Mg(2+)-or Mn(2+)-dependent protein phosphatase) and is required for growth of L. monocytogenes in a murine model of infection. We identified as the first target for Stp, the elongation factor EF-Tu. Post-translational phosphorylation of EF-Tu had been shown to prevent its binding to amino-acylated transfer RNA as well as to kirromycin, an antibiotic known to inhibit EF-Tu function. Accordingly, an stp deletion mutant is less sensitive to kirromycin. These results suggest an important role for Stp in regulating EF-Tu and controlling bacterial survival in the infected host.

  4. Aging and Oxidative Stress Decrease Pineal Elongation Factor 2: In Vivo Protective Effect of Melatonin in Young Rats Treated With Cumene Hydroperoxide.

    PubMed

    Muñoz, Mario F; Argüelles, Sandro; Cano, Mercedes; Marotta, Francesco; Ayala, Antonio

    2017-01-01

    We studied the alterations of Elongation Factor 2 (eEF2) in the pineal gland of aged rats as well as the possible protective role of exogenous melatonin on these changes in young rats treated with cumene hydroperoxide (CH), a compound that promotes lipid peroxidation and inhibits protein synthesis. The study was performed using male Wistar rats of 3 (control), 12, and 24 months and 3-month-old rats treated with CH, melatonin, and CH plus melatonin. We found that pineal eEF-2 is affected by aging and CH, these changes being prevented by exogenous melatonin in the case of CH-treated rats. The proteomic studies show that many other proteins are affected by aging and oxidative stress in the pineal gland. The results suggest that one of the possible mechanisms underlying pineal gland dysfunction during aging is the effect of lipid peroxidation on eEF-2, which is a key component of protein synthesis machinery. J. Cell. Biochem. 118: 182-190, 2017. © 2016 Wiley Periodicals, Inc.

  5. Elongation factor-1 alpha occurs as two copies in bees: implications for phylogenetic analysis of EF-1 alpha sequences in insects.

    PubMed

    Danforth, B N; Ji, S

    1998-03-01

    We report the complete sequence of a paralogous copy of elongation factor-1 alpha (EF-1 alpha) in the honeybee, Apis mellifera (Hymenoptera: Apidae). This copy differs from a previously described copy in the positions of five introns and in 25% of the nucleotide sites in the coding regions. The existence of two paralogous copies of EF-1 alpha in Drosophila and Apis suggests that two copies of EF-1 alpha may be widespread in the holometabolous insect orders. To distinguish between a single, ancient gene duplication and parallel, independent fly and bee gene duplications, we performed a phylogenetic analysis of hexapod EF-1 alpha sequences. Unweighted parsimony analysis of nucleotide sequences suggests an ancient gene duplication event, whereas weighted parsimony analysis of nucleotides and unweighted parsimony analysis of amino acids suggests the contrary: that EF-1 alpha underwent parallel gene duplications in the Diptera and the Hymenoptera. The hypothesis of parallel gene duplication is supported both by congruence among nucleotide and amino acid data sets and by topology-dependent permutation tail probability (T-PTP) tests. The resulting tree topologies are also congruent with current views on the relationships among the holometabolous orders included in this study (Diptera, Hymenoptera, and Lepidoptera). More sequences, from diverse orders of holometabolous insects, will be needed to more accurately assess the historical patterns of gene duplication in EF-1 alpha.

  6. Developmental regulation of elongation factor-1 delta in sea urchin suggests appearance of a mechanism for alternative poly(A) site selection in gastrulae.

    PubMed

    Delalande, C; Monnier, A; Minella, O; Genevière, A M; Mulner-Lorillon, O; Bellé, R; Cormier, P

    1998-07-10

    Elongation factor-1 delta gene expression was analyzed during sea urchin development. EF-1 delta mRNA is present as a single 2.7-kb transcript in unfertilized eggs and in rapidly dividing cleavage stage embryos. It decreases rapidly 6 h after fertilization and then reappears at the gastrula stage as two transcripts of 2.7 and 2.0 kb. cDNA clones encoding the 2.7- and 2.0-kb transcripts were isolated from a sea urchin embryos library. The two cDNAs originate from alternative poly(A) site selection from a unique precursor. Both cDNAs are terminated by a poly(A) tail and were shown to encode for the same protein identified as EF-1 delta. Thus, EF-1 delta gene expression undergoes developmental regulation in early embryos leading to the presence of two poly(A) forms of the transcript. Since the 2.0-kb polyadenylated form of the EF-1 delta transcript appears at gastrula stage, our results suggest that a mechanism for alternative poly(A) site selection of the EF-1 delta transcript appears during embryonic development.

  7. Haploinsufficiency for translation elongation factor eEF1A2 in aged mouse muscle and neurons is compatible with normal function.

    PubMed

    Griffiths, Lowri A; Doig, Jennifer; Churchhouse, Antonia M D; Davies, Faith C J; Squires, Charlotte E; Newbery, Helen J; Abbott, Catherine M

    2012-01-01

    Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2.

  8. Development of a polymerase chain reaction-restriction fragment length polymorphism method for identification of the Fusarium genus using the transcription elongation factor-1α gene.

    PubMed

    Zarrin, Majid; Ganj, Farzaneh; Faramarzi, Sama

    2016-12-01

    Fusarium species are well-known plant pathogens and food contaminants that have also appeared as one of the most important groups of medically significant fungi. The sequences of the translation elongation factor (TEF)-1α gene have been broadly employed for species detection. A total of 50 strains of Fusarium spp., including environmental, clinical and reference isolates were used for the current study. The primer sets, Fu3f and Fu3r, were used to amplify an ~420-bp DNA fragment of the TEF-1α gene. Double digestion with two restriction enzymes, XhoI and SduI was used for discrimination of the Fusarium species in the TEF-1α gene fragment. Double digestion of the TEF-1α gene fragment from five clinically important Fusarium species were clearly differentiated from each other: The F. solani species complex, F. oxysporum species complex, F. verticillioides, F. proliferatum and F. fujikuroi. This method facilitates detection and enables verification of the Fusarium genus; therefore, it may be applied for disease control.

  9. Characterization and phylogeny of Isaria spp. strains (Ascomycota: Hypocreales) using ITS1-5.8S-ITS2 and elongation factor 1-alpha sequences.

    PubMed

    D'Alessandro, Celeste P; Jones, Leandro R; Humber, Richard A; López Lastra, Claudia C; Sosa-Gomez, Daniel R

    2014-07-01

    The elongation factor 1-alpha (EF1-α) and the internal transcribed spacer (ITS) regions ITS1 and ITS2 (ITS1-5.8S-ITS2) sequences were used to characterize and to identify Isaria isolates from Argentina, Mexico, and Brazil, as well as to study the phylogenetic relationships among these isolates and other related fungi from the order Hypocreales. The molecular characterization, which was performed by PCR-RFLP of EF1-α and ITS1-5.8-ITS2 genes, was useful for resolving representative isolates of Isaria fumosorosea, Isaria farinosa, and Isaria tenuipes and to confirm the taxonomic identity of fungi from Argentina, Mexico, and Brazil. The phylogenetic analyses showed three clades corresponding to three families of Hypocreales. The genus Isaria was confirmed as polyphyletic and in family Cordycipitaceae, Isaria species were related to anamorphic species of Beauveria, Lecanicillium, and Simplicillium and to teleomorphic Cordyceps and Torrubiella. Therefore, EF1-α and ITS1-5.8S-ITS2 genes were found to be powerful tools for improving the characterization, identification, and phylogenetic relationship of the Isaria species and other entomopathogenic fungi.

  10. veA-dependent RNA-pol II transcription elongation factor like protein, RtfA, is associated with secondary metabolism and morphological development in Aspergillus nidulans

    PubMed Central

    Ramamoorthy, Vellaisamy; Shantappa, Sourabha; Dhingra, Sourabh; Calvo, Ana M.

    2012-01-01

    In Aspergillus nidulans the global regulatory gene veA is necessary for the biosynthesis of several secondary metabolites, including the mycotoxin sterigmatocystin (ST). In order to identify additional veA-dependent genetic elements involved in regulating ST production, we performed a mutagenesis on a deletion veA (ΔveA) strain to obtain revertant mutants (RM) that regained the capability to produce toxin. Genetic analysis and molecular characterization of one of the revertant mutants, RM3, revealed that a point mutation occurred at the coding region of the rtfA gene, encoding a RNA-pol II transcription elongation factor like protein, similar to Saccharomyces cerevisiae Rtf1. The A. nidulans rtfA gene product accumulates in nuclei. Deletion of rtfA gene in a ΔveA background restored mycotoxin production in a medium-dependent manner. rtfA also affects the production of other metabolites including penicillin. Biosynthesis of this antibiotic decreased in the absence of rtfA. Furthermore, rtfA is necessary for normal morphological development. Deletion of the rtfA gene in wild-type strains (veA+) resulted in a slight decrease in growth rate, drastic reduction in conidiation, and complete loss of sexual development. This is the first study of an Rtf1 like gene in filamentous fungi. We found rtfA putative orthologs extensively conserved in numerous fungal species. PMID:22783880

  11. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO) of C. perfringens.

    PubMed

    Lee, Kyungwoo; Lillehoj, Hyun S; Li, Guangxing; Park, Myeong-Seon; Jang, Seung I; Jeong, Wooseog; Jeoung, Hye-Young; An, Dong-Jun; Lillehoj, Erik P

    2011-12-01

    Clostridium-related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by reaction with immune sera from commercial meat-type chickens with clinical outbreak of Clostridium infections. In addition to the genes encoding EF-Tu and PFO, C. perfringens alpha-toxin and necrotic enteritis B-like (NetB) toxin were also expressed in Escherichia coli and their corresponding recombinant proteins were purified. Using the four recombinant proteins as target antigens in ELISA immunoassays, high serum antibody titers were observed not only in chickens with clinical signs of Clostridium infections, but also in apparently healthy animals from the same disease-endemic farm. By contrast, no antibodies against any of the proteins were present in the serum of a specific pathogen-free bird. In ELISA using recombinant proteins of C. perfringens, the levels of anti-bacterial protein antibodies were also higher in chickens which were experimentally induced to show NE clinical signs after co-infection with C. perfringens and Eimeria maxima compared with uninfected controls. These results show that two antigenic C. perfringens proteins, EF-Tu and PFO can be useful detection antigens for C. perfringens-afflicted infections in commercial poultry.

  12. Development of a polymerase chain reaction-restriction fragment length polymorphism method for identification of the Fusarium genus using the transcription elongation factor-1α gene

    PubMed Central

    Zarrin, Majid; Ganj, Farzaneh; Faramarzi, Sama

    2016-01-01

    Fusarium species are well-known plant pathogens and food contaminants that have also appeared as one of the most important groups of medically significant fungi. The sequences of the translation elongation factor (TEF)-1α gene have been broadly employed for species detection. A total of 50 strains of Fusarium spp., including environmental, clinical and reference isolates were used for the current study. The primer sets, Fu3f and Fu3r, were used to amplify an ~420-bp DNA fragment of the TEF-1α gene. Double digestion with two restriction enzymes, XhoI and SduI was used for discrimination of the Fusarium species in the TEF-1α gene fragment. Double digestion of the TEF-1α gene fragment from five clinically important Fusarium species were clearly differentiated from each other: The F. solani species complex, F. oxysporum species complex, F. verticillioides, F. proliferatum and F. fujikuroi. This method facilitates detection and enables verification of the Fusarium genus; therefore, it may be applied for disease control. PMID:28105337

  13. Structure of the Acinetobacter baumannii dithiol oxidase DsbA bound to elongation factor EF-Tu reveals a novel protein interaction site.

    PubMed

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K; King, Gordon J; Halili, Maria A; Heras, Begoña; Martin, Jennifer L

    2014-07-18

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.

  14. A Leader Intron of a Soybean Elongation Factor 1A (eEF1A) Gene Interacts with Proximal Promoter Elements to Regulate Gene Expression in Synthetic Promoters.

    PubMed

    Zhang, Ning; McHale, Leah K; Finer, John J

    2016-01-01

    Introns, especially the first intron in the 5' untranslated region (5'UTR), can significantly impact gene expression via intron-mediated enhancement (IME). In this study, we demonstrate the leader intron of a soybean elongation factor 1A (eEF1A) gene (GmScreamM8) was essential for the high activity of the native promoter. Furthermore, the interaction of the GmScreamM8 leader intron with regulatory element sequences from several soybean eEF1A promoters was studied using synthetic promoters, which consisted of element tetramers upstream of a core promoter used to regulate a green fluorescent protein (gfp) reporter gene. Element tetramers, placed upstream of a GmScreamM8 core promoter, showed very high activity using both transient expression in lima bean cotyledons and stable expression in soybean hairy roots, only if the native leader intron was included, suggesting an interaction between intronic sequences and promoter elements. Partial deletions of the leader intron showed that a 222 bp intronic sequence significantly contributed to very high levels of GFP expression. Generation of synthetic intron variants with a monomeric or trimeric repeat of the 222 bp intronic sequence, yielded almost two-fold higher expression compared to the original intron, while partial deletion of the 222 bp intronic repeated sequence significantly decreased gene expression, indicating that this intronic sequence was essential for the intron-element interaction enhancement.

  15. The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis

    PubMed Central

    Regmi, Sandesh; Rothberg, Karen G; Hubbard, James G; Ruben, Larry

    2008-01-01

    RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow. PMID:18786142

  16. tRNA is entrapped in similar, but distinct, nuclear and cytoplasmic ribonucleoprotein complexes, both of which contain vigilin and elongation factor 1 alpha.

    PubMed Central

    Kruse, C; Grünweller, A; Willkomm, D K; Pfeiffer, T; Hartmann, R K; Müller, P K

    1998-01-01

    Vigilin, which is found predominantly in cells and tissues with high levels of protein biosynthesis, was isolated in its native form from human HEp-2 cells (A.T.C.C. CCL23) by immunoaffinity chromatography. Here we demonstrate that vigilin is part of a novel large tRNA-binding ribonucleoprotein complex (tRNP), found not only in the cytoplasm, but also in the nuclei of human cells. Compositional differences in the protein pattern were detected between the nuclear and cytoplasmic tRNPs, although some properties of the purified nuclear tRNP, such as tRNA protection against nuclease attack, were identical with those of the cytoplasmic tRNP. By using either a pool of total human nuclear RNA or radioactively labelled yeast tRNAAsp in rebinding experiments, we could show that tRNA is specifically recaptured by the RNA-depleted, vigilin-containing nuclear complex. We could also show that vigilin is capable of binding tRNA in vitro. Another tRNA-binding protein is elongation factor 1 alpha, which appears to be enriched in the cytoplasmic and nuclear tRNP complexes. This suggests that the cytoplasmic tRNP may be involved in the channelled tRNA cycle in the cytoplasm of eukaryotic cells. Our results also suggest that the nuclear vigilin-containing tRNP may be related to the nuclear export of tRNA. PMID:9445390

  17. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis.

    PubMed

    Tang, Weijiang; Ji, Qiang; Huang, Yongping; Jiang, Zhimin; Bao, Manzhu; Wang, Haiyang; Lin, Rongcheng

    2013-10-01

    Light and the phytohormone abscisic acid (ABA) regulate overlapping processes in plants, such as seed germination and seedling development. However, the molecular mechanism underlying the interaction between light and ABA signaling is largely unknown. Here, we show that FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two key positive transcription factors in the phytochrome A pathway, directly bind to the promoter of ABA-Insensitive5 and activate its expression in Arabidopsis (Arabidopsis thaliana). Disruption of FHY3 and/or FAR1 reduces the sensitivity to ABA-mediated inhibition of seed germination, seedling development, and primary root growth. The seed germination of the fhy3 mutant is also less sensitive to salt and osmotic stress than that of the wild type. Constitutive expression of ABA-Insensitive5 restores the seed germination response of fhy3. Furthermore, the expression of several ABA-responsive genes is decreased in the fhy3 and/or far1 mutants during seed imbibition. Consistently, FHY3 and FAR1 transcripts are up-regulated by ABA and abiotic stresses. Moreover, the fhy3 and far1 mutants have wider stomata, lose water faster, and are more sensitive to drought than the wild type. These findings demonstrate that FHY3 and FAR1 are positive regulators of ABA signaling and provide insight into the integration of light and ABA signaling, a process that may allow plants to better adapt to environmental stresses.

  18. A translation system reconstituted with human factors proves that processing of encephalomyocarditis virus proteins 2A and 2B occurs in the elongation phase of translation without eukaryotic release factors.

    PubMed

    Machida, Kodai; Mikami, Satoshi; Masutani, Mamiko; Mishima, Kurumi; Kobayashi, Tominari; Imataka, Hiroaki

    2014-11-14

    The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase

    PubMed Central

    Bayraktar, Recep; Pichler, Martin; Kanlikilicer, Pinar; Ivan, Cristina; Bayraktar, Emine; Kahraman, Nermin; Aslan, Burcu; Oguztuzun, Serpil; Ulasli, Mustafa; Arslan, Ahmet; Calin, George; Lopez-Berestein, Gabriel; Ozpolat, Bulent

    2017-01-01

    Triple negative breast cancer (TNBC) is an aggressive type of breast cancer characterized by the absence of defined molecular targets, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and is associated with high rates of relapse and distant metastasis despite surgery and adjuvant chemotherapy. The lack of effective targeted therapies for TNBC represents an unmet therapeutic challenge. Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical calcium/calmodulin-dependent serine/threonine kinase that promotes TNBC tumorigenesis, progression, and drug resistance, representing a potential novel molecular target. However, the mechanisms regulating eEF2K expression are unknown. Here, we report that eEF2K protein expression is highly up-regulated in TNBC cells and patient tumors and it is associated with poor patient survival and clinical outcome. We found that loss/reduced expression of miR-603 leads to eEF2K overexpression in TNBC cell lines. Its expression results in inhibition of eEF2K by directly targeting the 3-UTR and the inhibition of tumor cell growth, migration and invasion in TNBC. In vivo therapeutic gene delivery of miR-603 into TNBC xenograft mouse models by systemic administration of miR-603-nanoparticles led to a significant inhibition of eEF2K expression and tumor growth, which was associated with decreased activity of the downstream targets of eEF2K, including Src, Akt, cyclin D1 and c-myc. Our findings suggest that miR-603 functions as a tumor suppressor and loss of miR-603 expression leads to increase in eEF2K expression and contributes to the growth, invasion, and progression of TNBC. Taken together, our data suggest that miR-603-based gene therapy is a potential strategy against TNBC. PMID:28036267

  20. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells

    PubMed Central

    Hamurcu, Zuhal; Ashour, Ahmed; Kahraman, Nermin; Ozpolat, Bulent

    2016-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K), an emerging molecular target for cancer therapy, contributes to cancer proliferation, cell survival, tumorigenesis, and invasion, disease progression and drug resistance. Although eEF2K is highly up-regulated in various cancers, the mechanism of gene regulation has not been elucidated. In this study, we examined the role of Forkhead Box M1 (FOXM1) proto-oncogenic transcription factor in triple negative breast cancer (TNBC) cells and the regulation of eEF2K. We found that FOXM1 is highly upregulated in TNBC and its knockdown by RNA interference (siRNA) significantly inhibited eEF2K expression and suppressed cell proliferation, colony formation, migration, invasion and induced apoptotic cell death, recapitulating the effects of eEF2K inhibition. Knockdown of FOXM1 inhibited regulators of cell cycle, migration/invasion and survival, including cyclin D1, Src and MAPK-ERK signaling pathways, respectively. We also demonstrated that FOXM1 (1B and 1C isoforms) directly binds to and transcriptionally regulates eEF2K gene expression by chromatin immunoprecipitation (ChIP) and luciferase gene reporter assays. Furthermore, in vivo inhibition of FOXM1 by liposomal siRNA-nanoparticles suppressed growth of MDA-MB-231 TNBC tumor xenografts in orthotopic models. In conclusion, our study provides the first evidence about the transcriptional regulation of eEF2K in TNBC and the role of FOXM1 in mediating breast cancer cell proliferation, survival, migration/invasion, progression and tumorgenesis and highlighting the potential of FOXM1/eEF2K axis as a molecular target in breast and other cancers. PMID:26918606

  1. Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells

    PubMed Central

    Benson, Micah J.; Äijö, Tarmo; Chang, Xing; Gagnon, John; Pape, Utz J.; Anantharaman, Vivek; Aravind, L.; Pursiheimo, Juha-Pekka; Oberdoerffer, Shalini; Liu, X. Shirley; Lahesmaa, Riitta; Lähdesmäki, Harri; Rao, Anjana

    2012-01-01

    B cells and plasma cells possess distinct RNA processing environments that respectively promote the expression of membrane-associated Ig by B cells versus the secretion of Ig by plasma cells. Through a combination of transcriptional profiling and screening using a lentiviral short-hairpin RNA interference library, we show that both the splicing factor hnRNPLL and the transcription elongation factor ELL2 modulate the ratio of secreted versus membrane-encoding Ighg2b transcripts in MPC11 plasmacytoma cell lines. hnRNPLL and ELL2 are both highly expressed in primary plasma cells relative to B cells, but hnRNPLL binds Ighg2b mRNA transcripts and promotes an increase in levels of the membrane-encoding Ighg2b isoform at the expense of the secreted Ighg2b isoform, whereas ELL2 counteracts this effect and drives Ig secretion by increasing the frequency of the secreted Ighg2b isoform. As in T cells, hnRNPLL also alters the splicing pattern of mRNA encoding the adhesion receptor CD44, promoting exon inclusion, and decreasing the overall level of CD44 expression. Further characterization of ELL2-dependent transcription by RNA-Seq revealed that ∼12% of transcripts expressed by plasma cells were differentially processed because of the activities of ELL2, including B-cell maturation antigen BCMA, a receptor with a defined role in plasma cell survival. Taken together, our data identify hnRNPLL and ELL2 as regulators of pre-mRNA processing in plasma cells. PMID:22991471

  2. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  3. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  4. In vivo characterization of the role of tissue-specific translation elongation factor 1A2 in protein synthesis reveals insights into muscle atrophy.

    PubMed

    Doig, Jennifer; Griffiths, Lowri A; Peberdy, David; Dharmasaroja, Permphan; Vera, Maria; Davies, Faith J C; Newbery, Helen J; Brownstein, David; Abbott, Catherine M

    2013-12-01

    Translation elongation factor 1A2 (eEF1A2), uniquely among translation factors, is expressed specifically in neurons and muscle. eEF1A2-null mutant wasted mice develop an aggressive, early-onset form of neurodegeneration, but it is unknown whether the wasting results from denervation of the muscles, or whether the mice have a primary myopathy resulting from loss of translation activity in muscle. We set out to establish the relative contributions of loss of eEF1A2 in the different tissues to this postnatal lethal phenotype. We used tissue-specific transgenesis to show that correction of eEF1A2 levels in muscle fails to ameliorate the overt phenotypic abnormalities or time of death of wasted mice. Molecular markers of muscle atrophy such as Fbxo32 were dramatically upregulated at the RNA level in wasted mice, both in the presence and in the absence of muscle-specific expression of eEF1A2, but the degree of upregulation at the protein level was significantly lower in those wasted mice without transgene-derived expression of eEF1A2 in muscle. This provides the first in vivo confirmation that eEF1A2 plays an important role in translation. In spite of the inability of the nontransgenic wasted mice to upregulate key atrogenes at the protein level in response to denervation to the same degree as their transgenic counterparts, there were no measurable differences between transgenic and nontransgenic wasted mice in terms of weight loss, grip strength, or muscle pathology. This suggests that a compromised ability fully to execute the atrogene pathway in denervated muscle does not affect the process of muscle atrophy in the short term.

  5. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs.

    PubMed

    Farra, Rossella; Scaggiante, Bruna; Guerra, Chiara; Pozzato, Gabriele; Grassi, Mario; Zanconati, Fabrizio; Perrone, Francesca; Ferrari, Cinzia; Trotta, Francesco; Grassi, Gabriele; Dapas, Barbara

    2017-02-13

    Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect.

  6. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase.

    PubMed

    Bayraktar, Recep; Pichler, Martin; Kanlikilicer, Pinar; Ivan, Cristina; Bayraktar, Emine; Kahraman, Nermin; Aslan, Burcu; Oguztuzun, Serpil; Ulasli, Mustafa; Arslan, Ahmet; Calin, George; Lopez-Berestein, Gabriel; Ozpolat, Bulent

    2016-12-27

    Triple negative breast cancer (TNBC) is an aggressive type of breast cancer characterized by the absence of defined molecular targets, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and is associated with high rates of relapse and distant metastasis despite surgery and adjuvant chemotherapy. The lack of effective targeted therapies for TNBC represents an unmet therapeutic challenge. Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical calcium/calmodulin-dependent serine/threonine kinase that promotes TNBC tumorigenesis, progression, and drug resistance, representing a potential novel molecular target. However, the mechanisms regulating eEF2K expression are unknown. Here, we report that eEF2K protein expression is highly up-regulated in TNBC cells and patient tumors and it is associated with poor patient survival and clinical outcome. We found that loss/reduced expression of miR-603 leads to eEF2K overexpression in TNBC cell lines. Its expression results in inhibition of eEF2K by directly targeting the 3-UTR and the inhibition of tumor cell growth, migration and invasion in TNBC. In vivo therapeutic gene delivery of miR-603 into TNBC xenograft mouse models by systemic administration of miR-603-nanoparticles led to a significant inhibition of eEF2K expression and tumor growth, which was associated with decreased activity of the downstream targets of eEF2K, including Src, Akt, cyclin D1 and c-myc. Our findings suggest that miR-603 functions as a tumor suppressor and loss of miR-603 expression leads to increase in eEF2K expression and contributes to the growth, invasion, and progression of TNBC. Taken together, our data suggest that miR-603-based gene therapy is a potential strategy against TNBC.

  7. Elongate Hemlock Scale

    Treesearch

    Mark McClure

    2002-01-01

    The elongate hemlock scale, Fiorinia externa Ferris, native to Japan, is a pest of eastern hemlock, Tsuga canadensis, and Carolina hemlock, T. caroliniana, in the Eastern United States. It has been found in the District of Columbia and in nine states from Virginia to southern New England and west to Ohio. F. externa attacks the lower surface of the hemlock needle,...

  8. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    PubMed

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  9. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice

    PubMed Central

    Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue

    2016-01-01

    Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep. PMID:27537186

  10. Elongation Factor-1α Is a Novel Protein Associated with Host Cell Invasion and a Potential Protective Antigen of Cryptosporidium parvum *

    PubMed Central

    Matsubayashi, Makoto; Teramoto-Kimata, Isao; Uni, Shigehiko; Lillehoj, Hyun S.; Matsuda, Haruo; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi

    2013-01-01

    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis. PMID:24085304

  11. Molecular Phylogeny and Evolution of Parabasalia with Improved Taxon Sampling and New Protein Markers of Actin and Elongation Factor-1α

    PubMed Central

    Noda, Satoko; Mantini, Cléa; Meloni, Dionigia; Inoue, Jun-Ichi; Kitade, Osamu; Viscogliosi, Eric; Ohkuma, Moriya

    2012-01-01

    Background Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa—in particular determining the root—is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. Principal Findings Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. Conclusions/Significance We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in

  12. In vitro and in vivo protection by melatonin against the decline of elongation factor-2 caused by lipid peroxidation: preservation of protein synthesis.

    PubMed

    Argüelles, Sandro; Muñoz, Mario F; Cano, Mercedes; Machado, Alberto; Ayala, Antonio

    2012-08-01

    As organisms age, a considerable decrease in protein synthesis takes place in all tissues. Among the possible causes of the decline of translation in old animals are the modifications of elongation factor-2 (eEF-2). eEF-2 occupies an essential role in protein synthesis where it catalyzes the ribosomal translocation reaction. eEF-2 is particularly sensitive to increased oxidative stress. However, all oxidants do not affect eEF-2, only compounds that increase lipid peroxidation. As peroxides are unstable compounds, they decompose and generate a series of highly reactive compounds, including aldehydes malondialdehyde (MDA) and 4-hydroxynoenal (HNE). We have previously reported that hepatic eEF-2 forms adducts with low-molecular weight aldehydes, MDA and HNE. Therefore, the protection of eEF-2 must be specifically carried out by a compound with lipoperoxyl radical-scavenging features such as melatonin. In this article, we show the ability of melatonin to protect against the changes that occur in the eEF-2 under conditions of lipid peroxidation induced by cumene hydroperoxide (CH), a compound used experimentally to induce lipid breakdown. As experimental models, we used cultured cells and rats treated with this oxidant compound. eEF-2 levels, adduct formation of this protein with MDA and HNE, and lipid peroxides were determined. In the cultured cells, protein synthesis rate was also measured. Our results show that melatonin prevented the molecular changes in eEF-2 and the decline in protein synthesis rate secondary to lipid peroxidation. The results also show that serum levels of several hormones were affected by CH-induced oxidative stress, which was partially or totally prevented by melatonin.

  13. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice.

    PubMed

    Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue

    2016-01-01

    Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.

  14. Spectrophotometric and kinetic studies on the interaction of antibiotic X5108, the N-methylated derivative of kirromycin, with elongation factor Tu from Escherichia coli.

    PubMed

    Eccleston, J F

    1981-04-10

    The absorption spectrum of antibiotic X5108, the N-methylated derivative of kirromycin, has been found to be decreased in intensity on binding to elongation factor (EF)-Tu . GDP, EF-Tu . GTP, and nucleotide-free EF-Tu. This has allowed the binding of X5108 to be studied directly. In agreement with previous studies, a 1:1 stoichiometry is observed, with a dissociation constant of less than 1 microM. Identical results were obtained with all three EF-Tu species. The absorption spectrum of X5108 in increasing concentrations of isopropyl alcohol first intensifies and then decreases, 80% isopropyl alcohol giving the same spectrum as that of X5108 bound to EF-Tu. This result is interpreted as showing that the chromophoric moiety of X5108 is bound in a highly hydrophobic environment on EF-Tu. The rate of binding of X5108 to EF-Tu . GDP was measured using a stopped flow spectrophotometer. This rate was proportional to the concentration of X5108, giving a second order binding rate constant of 4.8 X 10(3) M-1 s-1. Since this is several orders of magnitude too slow for a diffusion-controlled reaction, the results are interpreted based on a two-step binding process. A half-time of about 10 min is calculated for the dissociation of X5108 from EF-Tu . GDP. The fact that X5108 bound to EF-Tu is not in rapid equilibrium with X5108 free in solution needs to be considered in studies on the effect of X5108 and kirromycin on partial reactions of protein biosynthesis.

  15. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis.

    PubMed

    Huang, Shaobai; Taylor, Nicolas L; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2013-02-01

    Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co-expressed with a number of genes encoding mitochondrial proteins, including SDH1-1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin-adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein-bound flavin-adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro-respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth.

  16. The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers

    PubMed Central

    OJI, YUSUKE; TATSUMI, NAOYA; FUKUDA, MARI; NAKATSUKA, SHIN-ICHI; AOYAGI, SAYAKA; HIRATA, ERIKA; NANCHI, ISAMU; FUJIKI, FUMIHIRO; NAKAJIMA, HIROKO; YAMAMOTO, YUMIKO; SHIBATA, SYOHEI; NAKAMURA, MICHIYO; HASEGAWA, KANA; TAKAGI, SAYAKA; FUKUDA, IKUYO; HOSHIKAWA, TOMOKO; MURAKAMI, YUI; MORI, MASAHIDE; INOUE, MASAYOSHI; NAKA, TETSUJI; TOMONAGA, TAKESHI; SHIMIZU, YOSHIFUMI; NAKAGAWA, MASASHI; HASEGAWA, JUNICHI; NEZU, RIICHIRO; INOHARA, HIDENORI; IZUMOTO, SHUICHI; NONOMURA, NORIO; YOSHIMINE, TOSHIKI; OKUMURA, MEINOSHIN; MORII, EIICHI; MAEDA, HAJIME; NISHIDA, SUMIYUKI; HOSEN, NAOKI; TSUBOI, AKIHIRO; OKA, YOSHIHIRO; SUGIYAMA, HARUO

    2014-01-01

    Recent studies have shown that cancer immunotherapy could be a promising therapeutic approach for the treatment of cancer. In the present study, to identify novel tumor-associated antigens (TAAs), the proteins expressed in a panel of cancer cells were serologically screened by immunoblot analysis and the eukaryotic elongation factor 2 (eEF2) was identified as an antigen that was recognized by IgG autoantibody in sera from a group of patients with head and neck squamous cell carcinoma (HNSCC) or colon cancer. Enzyme-linked immunosorbent assay showed that serum eEF2 IgG Ab levels were significantly higher in colorectal and gastric cancer patients compared to healthy individuals. Immunohistochemistry experiments showed that the eEF2 protein was overexpressed in the majority of lung, esophageal, pancreatic, breast and prostate cancers, HNSCC, glioblastoma multiforme and non-Hodgkin’s lymphoma (NHL). Knockdown of eEF2 by short hairpin RNA (shRNA) significantly inhibited the growth in four eEF2-expressing cell lines, PC14 lung cancer, PCI6 pancreatic cancer, HT1080 fibrosarcoma and A172 glioblastoma cells, but not in eEF2-undetectable MCF7 cells. Furthermore, eEF2-derived 9-mer peptides, EF786 (eEF2 786–794 aa) and EF292 (eEF2 292–300 aa), elicited cytotoxic T lymphocyte (CTL) responses in peripheral blood mononuclear cells (PBMCs) from an HLA-A*24:02- and an HLA-A*02:01-positive healthy donor, respectively, in an HLA-A-restricted manner. These results indicated that the eEF2 gene is overexpressed in the majority of several types of cancers and plays an oncogenic role in cancer cell growth. Moreover, the eEF2 gene product is immunogenic and a promising target molecule of cancer immunotherapy for several types of cancers. PMID:24589652

  17. METTL21B is a novel human lysine methyltransferase of translation elongation factor 1A: discovery by CRISPR/Cas9 knock out.

    PubMed

    Hamey, Joshua J; Wienert, Beeke; Quinlan, Kate G R; Wilkins, Marc R

    2017-06-29

    Lysine methylation is widespread on human proteins, however the enzymes that catalyse its addition remain largely unknown. This limits our capacity to study the function and regulation of this modification. Here we used the CRISPR/Cas9 system to knock out putative protein methyltransferases METTL21B and METTL23 in K562 cells, to determine if they methylate elongation factor eEF1A. The known eEF1A methyltransferase EEF1AKMT1 was also knocked out as a control. Targeted mass spectrometry revealed the loss of lysine 165 methylation upon knock out of METTL21B, and the expected loss of lysine 79 methylation on knock out of EEF1AKMT1. No loss of eEF1A methylation was seen in the METTL23 knock out. Recombinant METTL21B was shown in vitro to catalyse methylation on lysine 165 in eEF1A1 and eEF1A2, confirming it as the methyltransferase responsible for this methylation site. Proteomic analysis by SILAC revealed specific upregulation of large ribosomal subunit proteins in the METTL21B knock out, and changes to further processes related to eEF1A function in knock outs of both METTL21B and EEF1AKMT1. This indicates that the methylation of lysine 165 in human eEF1A has a very specific role. METTL21B exists only in vertebrates, with its target lysine showing similar evolutionary conservation. We suggest METTL21B be renamed eEF1A-KMT3. This is the first study to specifically generate CRISPR/Cas9 knock outs of putative protein methyltransferase genes, for the purpose of substrate discovery and site mapping. Our approach should prove useful for the discovery of further novel methyltransferases, and more generally for the discovery of sites for other protein-modifying enzymes. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  18. Structure of the Acinetobacter baumannii Dithiol Oxidase DsbA Bound to Elongation Factor EF-Tu Reveals a Novel Protein Interaction Site

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K.; King, Gordon J.; Halili, Maria A.; Heras, Begoña; Martin, Jennifer L.

    2014-01-01

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA. PMID:24860094

  19. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissue-specific transcription elongation.

    PubMed Central

    Yue, X; Favot, P; Dunn, T L; Cassady, A I; Hume, D A

    1993-01-01

    The gene encoding the receptor for macrophage colony-stimulating factor 1 (CSF-1), the c-fms protooncogene, is selectively expressed in immature and mature mononuclear phagocytes and trophoblasts. Exon 1 is expressed only in trophoblasts. Isolation and sequencing of genomic DNA flanking exon 2 of the murine c-fms gene revealed a TATA-less promoter with significant homology to human c-fms. Reverse transcriptase primer extension analysis using exon 2 primers identified multiple clustered transcription initiation sites. Their position was confirmed by RNase protection. The same primer extension products were detected in equal abundance from macrophage or nonmacrophage sources of RNA. c-fms mRNA is acutely down-regulated in primary macrophages by CSF-1, bacterial lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). Each of these agents reduced the abundance of c-fms RNA detectable by primer extension using an exon 3 primer without altering the abundance of presumptive short c-fms transcripts detected with exon 2 primers. Primer extension analysis with an intron 2 primer detected products at greater abundance in nonmacrophages. Templates detected with the intronic primer were induced in macrophages by LPS, PMA, and CSF-1, suggesting that each of the agents caused a shift from full-length c-fms mRNA production to production of unspliced, truncated transcripts. The c-fms promoter functioned constitutively in the RAW264 macrophage cell line, the B-cell line MOPC.31C, and several nonhematopoietic cell lines. Macrophage-specific expression and responsiveness to selective repression by LPS and PMA was achieved by the incorporation of intron 2 into the c-fms promoter-reporter construct. The results suggest that expression of the c-fms gene in macrophages is controlled by sequences in intron 2 that act by regulating transcription elongation. Images PMID:8497248

  20. LIM kinase 1 (LIMK1) interacts with tropomyosin-related kinase B (TrkB) and Mediates brain-derived neurotrophic factor (BDNF)-induced axonal elongation.

    PubMed

    Dong, Qing; Ji, Yun-Song; Cai, Chang; Chen, Zhe-Yu

    2012-12-07

    BDNF/TrkB signaling plays critical roles in axonal outgrowth of neurons, the process of which requires the remodeling of the cytoskeleton structure, including microtubules and filamentous actin. However, the mechanism by which BDNF/TrkB signaling regulates cytoskeleton reorganization is still unclear. Here, we identified a novel interaction between LIMK1 and TrkB, which is required for the BDNF-induced axonal elongation. We demonstrated that BDNF-induced TrkB dimerization led to LIMK1 dimerization and transphosphorylation independent of TrkB kinase activity, which could further enhance the activation and stabilization of LIMK1. Moreover, activated LIMK1 translocated to the membrane fraction and phosphorylated its substrate cofilin, thus promoting actin polymerization and axonal elongation. Our findings provided evidence of a novel mechanism for the BDNF-mediated signal transduction leading to axonal elongation.

  1. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO) of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related diseases such as gangrenous dermatitis (GD) and necrotic enteritis (NE) are increasingly emerging as major diseases in recent years with high economic loss around the world. In this report, we characterized two immunogenic Clostridium perfringens (CP) proteins (e.g., elongation f...

  2. Regulation of Transcript Elongation

    PubMed Central

    Belogurov, Georgiy A.; Artsimovitch, Irina

    2015-01-01

    Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections. PMID:26132790

  3. Elongation of Flare Ribbons

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.; Priest, Eric R.

    2017-03-01

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s‑1. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  4. Optic Nerve Elongation

    PubMed Central

    Alvi, Aijaz; Janecka, Ivo P.; Kapadia, Silloo; Johnson, Bruce L.; McVay, William

    1996-01-01

    The length of the optic nerves is a reflection of normal postnatal cranio-orbital development. Unilateral elongation of an optic nerve has been observed in two patients with orbital and skull base neoplasms. In the first case as compared to the patient's opposite, normal optic nerve, an elongated length of the involved optic nerve of 45 mm was present. The involved optic nerve in the second patient was 10 mm longer than the normal opposite optic nerve. The visual and extraocular function was preserved in the second patient. The first patient had only light perception in the affected eye. In this paper, the embryology, anatomy, and physiology of the optic nerve and its mechanisms of stretch and repair are discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:17170975

  5. Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation.

    PubMed

    Capella, Matías; Ribone, Pamela A; Arce, Agustín L; Chan, Raquel L

    2015-08-01

    Arabidopsis thaliana HomeoBox 1 (AtHB1) is a homeodomain-leucine zipper transcription factor described as a transcriptional activator with unknown function. Its role in A. thaliana development was investigated. AtHB1 expression was analyzed in transgenic plants bearing its promoter region fused to reporter genes. Knock-down mutant and overexpressor plant phenotypes were analyzed in different photoperiod regimes. AtHB1 was mainly expressed in hypocotyls and roots and up-regulated in seedlings grown under a short-day photoperiod. AtHB1 knock-down mutants and overexpressors showed shorter and longer hypocotyls, respectively, than wild type (WT). AtHB1 transcript levels were lower in PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) mutants than in controls, suggesting that AtHB1 is regulated by PIF1 in hypocotyls. β-glucuronidase (GUS) activity in Nicotiana benthamiana leaves cotransformed with PromAtHB1::GUS and 35S::PIF1 indicated that PIF1 induces AtHB1 expression. Hypocotyl lenght was measured in seedlings of athb1, pif1, or double athb1/pif1 mutants and PIF1 or AtHB1 overexpressors in WT, athb1 or pif1 backgrounds, both in short- or long-day. These analyses allowed us to determine that AtHB1 is a factor acting downstream of PIF1. Finally, a transcriptome analysis of athb1 mutant hypocotyls revealed that AtHB1 regulates genes involved in cell wall composition and elongation. The results suggest that AtHB1 acts downstream of PIF1 to promote hypocotyl elongation, especially in response to short-day photoperiods. No claim to original Argentinean government works New Phytologist © 2015 New Phytologist Trust.

  6. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients.

    PubMed

    Ahn, Ei Yong; Yoo, Jeong Eun; Rhee, Hyungjin; Kim, Myung Soo; Choi, Junjeong; Ko, Jung Eun; Lee, Jee San; Park, Young Nyun

    2014-05-31

    Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P<0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P<0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P<0.05). EF1α histoscores were also positively correlated with TIF (P<0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P<0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF

  7. Molecular characterization, expression analysis and RNAi knock-down of elongation factor 1α and 1γ from Nilaparvata lugens and its yeast-like symbiont.

    PubMed

    Wang, W X; Zhu, T H; Li, K L; Chen, L F; Lai, F X; Fu, Q

    2016-11-04

    In the present paper, four cDNAs encoding the alpha and gamma subunits of elongation factor 1 (EF-1) were cloned and sequenced from Nilaparvata lugens, named NlEF-1α, NlEF-1γ, and its yeast-like symbiont (YLS), named YsEF-1α and YsEF-1γ, respectively. Comparisons with sequences from other species indicated a greater conservation for EF-1α than for EF-1γ. NlEF-1α has two identical copies. The deduced amino acid sequence homology of NlEF-1α and NlEF-1γ is 96 and 64%, respectively, compared with Homalodisca vitripennis and Locusta migratoria. The deduced amino acid sequence homology of YsEF-1α and YsEF-1γ is 96 and 74%, respectively, compared with Metarhizium anisopliae and Ophiocordyceps sinensis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that the expression level of NlEF-1α and NlEF-1γ mRNA in hemolymph, ovary, fat body and salivary glands were higher than the midgut and leg tissue. YsEF-1α and YsEF-1γ was highly expressed in fat body. The expression level of NlEF-1α was higher than that of NlEF-1γ. Through RNA interference (RNAi) of the two genes, the mortality of nymph reached 92.2% at the 11th day after treatment and the ovarian development was severely hindered. The RT-qPCR analysis verified the correlation between mortality, sterility and the down-regulation of the target genes. The expression and synthesis of vitellogenin (Vg) protein in insects injected with NlEF-1α and NlEF-1γ double-stranded RNA (dsRNA) was significantly lower than control groups. Attempts to knockdown the YsEF-1 genes in the YLS was unsuccessful. However, the phenotype of N. lugens injected with YsEF-1α dsRNA was the same as that injected with NlEF-1α dsRNA, possibly due to the high similarity (up to 71.9%) in the nucleotide sequences between NlEF-1α and YsEF-1α. We demonstrated that partial silencing of NlEF-1α and NlEF-1γ genes caused lethal and sterility effect on N. lugens. NlEF-1γ shares low identity with that of

  8. The RNA polymerase II elongation complex.

    PubMed

    Aso, T; Conaway, J W; Conaway, R C

    1995-11-01

    The initiation stage of transcription by RNA polymerase II has long been regarded as the primary site for regulation of eukaryotic gene expression. Nevertheless, a growing body of evidence reveals that the RNA polymerase II elongation complex is also a major target for regulation. Biochemical studies are implicating an increasing number of transcription factors in the regulation of elongation, and these transcription factors are being found to function by a diverse collection of mechanisms. Moreover, unexpected features of the structure and catalytic mechanism of RNA polymerase II are forcing a reconsideration of long-held views on the mechanics of some of the most basic aspects of polymerase function. In this review, we will describe recent insights into the structures and functions of RNA polymerase II and the transcription factors that control its activity during the elongation stage of eukaryotic messenger RNA synthesis.

  9. Stable high-level expression of factor VIII in Chinese hamster ovary cells in improved elongation factor-1 alpha-based system.

    PubMed

    Orlova, Nadezhda A; Kovnir, Sergey V; Gabibov, Alexandre G; Vorobiev, Ivan I

    2017-03-24

    Recombinant factor VIII (FVIII), used for haemophilia A therapy, is one of the most challenging among the therapeutic proteins produced in heterologous expression systems. Deletion variant of FVIII, in which the entire domain B is replaced by a short linker peptide, was approved for medical use. Efficacy and safety of this FVIII deletion variant are similar to full-length FVIII preparations while the level of production in CHO cells is substantially higher. Typical levels of productivity for CHO cell lines producing deletion variant FVIII-BDD SQ, described elsewhere, are 0.5-2 IU/ml, corresponding to the concentration of FVIII of about 0.2 μg/ml. Using standard vectors based on the cytomegalovirus promoter (CMV) and the dihydrofolate reductase cDNA we have previously obtained the cell line secreting 0.5 IU/ml of FVIII-BDD, which roughly corresponds to the previously published data. An expression system based on CHO genomic sequences including CHO-EEF1A promoter and Epstein-Barr virus terminal repeat fragment allowed us to achieve 80-fold increase in the production level as compared with the conventional expression system based on the CMV promoter. Immediately after the primary selection FVIII -producing cells secreted 5-10 IU/ml of FVIII-BDD, and after multi-stage methotrexate-driven amplification a stable clonal line 11A4H was selected, secreting 39 IU/ml of FVIII-BDD in the simple batch culturing conditions, which considerably exceeds known indicators for industrial producers of this protein. In contrast to other FVIII-BDD producing lines 11A4H accumulates low proportion of the secreted FVIII on the membrane. Its productivity may be further increased approximately two-fold by adding sodium butyrate and butylated hydroxyanisol to the culture medium. A five-stage purification process for the factor VIII was employed. It allowed isolation of the intact FVIII-BDD as was confirmed by mass spectrometry. Purified FVIII-BDD has a specific activity of 11,000

  10. Elongated Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan N. (Inventor); Buhrow, Jerry W. (Inventor); Perusich, Stephen A. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor)

    2015-01-01

    Elongated microcapsules, such as elongated hydrophobic-core and hydrophilic-core microcapsules, may be formed by pulse stirring an emulsion or shearing an emulsion between two surfaces moving at different velocities. The elongated microcapsules may be dispersed in a coating formulation, such as paint.

  11. Purification and characterization of the human elongator complex.

    PubMed

    Hawkes, Nicola A; Otero, Gabriel; Winkler, G Sebastiaan; Marshall, Nick; Dahmus, Michael E; Krappmann, Daniel; Scheidereit, Claus; Thomas, Claire L; Schiavo, Giampietro; Erdjument-Bromage, Hediye; Tempst, Paul; Svejstrup, Jesper Q

    2002-01-25

    Human Elongator complex was purified to virtual homogeneity from HeLa cell extracts. The purified factor can exist in two forms: a six-subunit complex, holo-Elongator, which has histone acetyltransferase activity directed against histone H3 and H4, and a three-subunit core form, which does not have histone acetyltransferase activity despite containing the catalytic Elp3 subunit. Elongator is a component of early elongation complexes formed in HeLa nuclear extracts and can interact directly with RNA polymerase II in solution. Several human homologues of the yeast Elongator subunits were identified as subunits of the human Elongator complex, including StIP1 (STAT-interacting protein 1) and IKAP (IKK complex-associated protein). Mutations in IKAP can result in the severe human disorder familial dysautonomia, raising the possibility that this disease might be due to compromised Elongator function and therefore could be a transcription disorder.

  12. Mitochondrial respiration inhibitors suppress protein translation and hypoxic signaling via the hyperphosphorylation and inactivation of translation initiation factor eIF2α and elongation factor eEF2.

    PubMed

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G; Zhou, Yu-Dong

    2011-09-23

    Over 20,000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 and 0.068 μM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods.

  13. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    PubMed Central

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  14. Increased expression of stathmin and elongation factor 1α in precancerous nodules with telomere dysfunction in hepatitis B viral cirrhotic patients

    PubMed Central

    2014-01-01

    Background Telomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice. Methods In the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry. Result The expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P < 0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P < 0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P < 0.05). EF1α histoscores were also positively correlated with TIF (P < 0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P < 0.05). p21WAF1

  15. The plant RNA polymerase II elongation complex: a hub coordinating transcript elongation and mRNA processing.

    PubMed

    Grasser, Marion; Grasser, Klaus D

    2017-09-08

    Characterisation of the Arabidopsis RNA polymerase II (RNAPII) elongation complex revealed an assembly of a conserved set of transcript elongation factors associated with chromatin remodellers, histone modifiers as well as with various pre-mRNA splicing and polyadenylation factors. Therefore, transcribing RNAPII streamlines the processes of mRNA synthesis and processing in plants.

  16. Seeds' physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis).

    PubMed

    Silva, Giovanni Eustáquio Alves; Ramos, Flávia Toledo; de Faria, Ana Paula; França, Marcel Giovanni Costa

    2014-10-01

    We determined the length, volume, dry biomass, and density in seeds of five castor bean cultivars and verified notable physicochemical trait differences. Seeds were then subjected to different toxic aluminum (Al) concentrations to evaluate germination, relative root elongation, and the role of root apices' rhizosphere mucilage layer. Seeds' physicochemical traits were associated with Al toxicity responses, and the absence of Al in cotyledons near to the embryo was revealed by Al-hematoxylin staining, indicating that Al did not induce significant germination reduction rates between cultivars. However, in the more sensitive cultivar, Al was found around the embryo, contributing to subsequent growth inhibition. After this, to investigate the role of mucilage in Al tolerance, an assay was conducted using NH4Cl to remove root mucilage before or after exposure to different Al concentrations. Sequentially, the roots were stained with hematoxylin and a quantitative analysis of staining intensity was obtained. These results revealed the significant contribution of the mucilage layer to Al toxicity responses in castor bean seedlings. Root growth elongation under Al toxicity confirmed the role of the mucilage layer, which jointly indicated the differential Al tolerance between cultivars and an efficient Al-exclusion mechanism in the tolerant cultivar.

  17. Structures and Activities of the Elongator Complex and Its Cofactors.

    PubMed

    Kolaj-Robin, Olga; Séraphin, Bertrand

    2017-01-01

    Elongator is a highly conserved eukaryotic protein complex consisting of two sets of six Elp proteins, while homologues of its catalytic subunit Elp3 are found in all the kingdoms of life. Although it was originally described as a transcription elongation factor, cumulating evidence suggests that its primary function is catalyzing tRNA modifications. In humans, defects in Elongator subunits are associated with neurological disorders and cancer. Although further studies are still required, a clearer picture of the molecular mechanism of action of Elongator and its cofactors has started to emerge within recent years that have witnessed significant development in the field. In this review we summarize recent Elongator-related findings provided largely by crystal structures of several subunits of the complex, the electron microscopy structure of the entire yeast holoenzyme, as well as the structure of the Elongator cofactor complex Kti11/Kti13. © 2017 Elsevier Inc. All rights reserved.

  18. Sea urchin elongation factor 1delta (EF1delta) and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase.

    PubMed

    Boulben, S; Monnier, A; Le Breton, M; Morales, J; Cormier, P; Bellé, R; Mulner-Lorillon, O

    2003-10-01

    Eukaryotic elongation factor 1 (eEF1) is a translational multimolecular complex reported in higher eukaryotes to be a target of CDK1/cyclin B, the universal regulator of M phase, but whose role in the cell cycle remains to be determined. A specific polyclonal antibody was produced and used to characterize the delta subunit of sea urchin elongation factor 1 (SgEF1delta) in early embryos, a powerful model for investigating cell cycle regulation. The SgEF1delta protein was present in unfertilized eggs as two isoforms of 35 and 37 kDa, issued from two different mRNAs. The two canonical eEF1delta partners, eEF1gamma and eEF1beta, were shown to co-immunoprecipitate with the SgEF1delta isoforms. Both isoforms were associated in a macromolecular complex, which resolved upon gel filtration chromatography at a molecular weight > 400 kDa, suggesting association with other yet unidentified partners. After fertilization, the amount as well as the ratio of both SgEF1delta isoforms remained constant during the first cell division as judged by Western blotting. Immunofluorescence analysis showed that a pool of the protein concentrated as a ring at the embryo nuclear location around the period of nuclear envelope breakdown and was visualized later as two large spheres around the mitotic spindle poles. Thus, the eEF1delta protein shows cell cycle-specific localization changes in sea urchin embryos.

  19. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD.

    PubMed

    Park, Sungjin; Park, Joo Min; Kim, Sangmok; Kim, Jin-Ah; Shepherd, Jason D; Smith-Hicks, Constance L; Chowdhury, Shoaib; Kaufmann, Walter; Kuhl, Dietmar; Ryazanov, Alexey G; Huganir, Richard L; Linden, David J; Worley, Paul F

    2008-07-10

    Group I metabotropic glutamate receptors (mGluR) induce long-term depression (LTD) that requires protein synthesis. Here, we demonstrate that Arc/Arg3.1 is translationally induced within 5 min of mGluR activation, and this response is essential for mGluR-dependent LTD. The increase in Arc/Arg3.1 translation requires eEF2K, a Ca(2+)/calmodulin-dependent kinase that binds mGluR and dissociates upon mGluR activation, whereupon it phosphorylates eEF2. Phospho-eEF2 acts to slow the elongation step of translation and inhibits general protein synthesis but simultaneously increases Arc/Arg3.1 translation. Genetic deletion of eEF2K results in a selective deficit of rapid mGluR-dependent Arc/Arg3.1 translation and mGluR-LTD. This rapid translational mechanism is disrupted in the fragile X disease mouse (Fmr1 KO) in which mGluR-LTD does not require de novo protein synthesis but does require Arc/Arg3.1. We propose a model in which eEF2K-eEF2 and FMRP coordinately control the dynamic translation of Arc/Arg3.1 mRNA in dendrites that is critical for synapse-specific LTD.

  20. l-Ascorbic acid 2-phosphate promotes elongation of hair shafts via the secretion of insulin-like growth factor-1 from dermal papilla cells through phosphatidylinositol 3-kinase.

    PubMed

    Kwack, M H; Shin, S H; Kim, S R; Im, S U; Han, I S; Kim, M K; Kim, J C; Sung, Y K

    2009-06-01

    l-Ascorbic acid 2-phosphate (Asc 2-P), a derivative of l-ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice. To investigate whether the promotion of hair growth by Asc 2-P is mediated by insulin-like growth factor-1 (IGF-1) and, if so, to investigate the mechanism of the Asc 2-P-induced IGF-1 expression. Dermal papilla (DP) cells were cultured and IGF-1 level was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay after Asc 2-P treatment in the absence or presence of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Also, hair shaft elongation in cultured human scalp hair follicles and proliferation of cocultured keratinocytes were examined after Asc 2-P treatment in the absence or presence of neutralizing antibody against IGF-1. In addition, keratinocyte proliferation in cultured hair follicles after Asc 2-P treatment in the absence or presence of LY294002 was examined by Ki-67 immunostaining. IGF-1 mRNA in DP cells was upregulated and IGF-1 protein in the conditioned medium of DP cells was significantly increased after treatment with Asc 2-P. Immunohistochemical staining showed that IGF-1 staining is increased in the DP of cultured human hair follicles by Asc 2-P. The neutralizing antibody against IGF-1 significantly suppressed the Asc 2-P-mediated elongation of hair shafts in hair follicle organ culture and significantly attenuated Asc 2-P-induced growth of cocultured keratinocytes. LY294002 significantly attenuated Asc 2-P-inducible IGF-1 expression and proliferation of follicular keratinocytes in cultured hair follicles. These data show that Asc 2-P-inducible IGF-1 from DP cells promotes proliferation of follicular keratinocytes and stimulates hair follicle growth in vitro via PI3K.

  1. Elongated mandibular coronoid process as a cause of mandibular hypomobility.

    PubMed

    Kursoglu, Pinar; Capa, Nuray

    2006-07-01

    There are multiple factors in cases of mandibular hypomobility. One of these factors is elongated coronoid process. Two cases are presented to illustrate elongated coronoid process leading to mandibular hypomobility to help prevent misdiagnosis by clinicians. Coronoid process elongation is a rare condition. Both cases reported here had pulpitis on the teeth, however endodontic treatment could not be performed due to the restricted mouth opening in both cases. There were clinical findings of restricted range of motion, especially during protrusive movements. The restrictive movements did not cause pain for either patient, and the patients were not aware of their restricted mouth opening. Panoromic radiographs were taken and evaluated. The radiographs showed elongated coronoid process bilaterally. Three-dimensional computerized tomography was taken in one case only, due to the patient's financial restrictions. In cases of restricted mandibular opening, elongated coronoid process must be considered when diagnosing the cause.

  2. Cell division versus cell elongation: the control of radicle elongation during thermoinhibition of Tagetes minuta achenes.

    PubMed

    Taylor, Nicky J; Hills, Paul N; van Staden, Johannes

    2007-12-01

    Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.

  3. Thermodynamic Model of Transcription Elongation

    NASA Astrophysics Data System (ADS)

    Tadigotla, Vasisht; O'Maoileidigh, Daibhid; Sengupta, Anirvan; Epshtein, Vitaly; Ebright, Richard; Nudler, Evgeny; Ruckenstein, Andrei

    2006-03-01

    We present a statistical mechanics approach to the prediction of backtracked pauses in prokaryotic transcription elongation derived from structural models of the transcription elongation complex (TEC). Our algorithm is based on the thermodynamic stability of TEC along the DNA template calculated from the sequence dependent free-energy of DNA-DNA, DNA-RNA and RNA-RNA base pairing associated with (a) the translocation and size fluctuations of the transcription bubble; (b) the changes in the DNA-RNA hybrid; and (c) the changes in the RNA folding free-energy. The calculations involve no adjustable parameters apart from a cutoff used to discriminate paused from non-paused complexes. When applied to 100 experimental pauses in transcription elongation by E. coli RNA polymerase on ten DNA templates the approach produces highly statistically significant results. Transcription elongation is an inherently kinetic process and a simplified kinetic model with the same predictive power is presented separately.

  4. Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    EPA Science Inventory

    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMPs) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure i...

  5. Morphological and Chemical Mechanisms of Elongated Mineral Particle Toxicities

    EPA Science Inventory

    Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMPs) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure i...

  6. Sound propagation in elongated superfluid fermionic clouds

    SciTech Connect

    Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.

    2006-02-15

    We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor {radical}(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate.

  7. Effects of administration of exogenous growth factors on biomechanical properties of the elongation-type anterior cruciate ligament injury with partial laceration.

    PubMed

    Kondo, Eiji; Yasuda, Kazunori; Yamanaka, Masanori; Minami, Akio; Tohyama, Harukazu

    2005-02-01

    No studies have been conducted to clarify the in vivo effect of growth factor application on healing in the injured anterior cruciate ligament. Administration of exogenous growth factors significantly increases the structural properties of the injured anterior cruciate ligament. Controlled laboratory study. Thirty-six rabbits were randomly divided into 4 groups of 9 animals each after an overstretched injury was made in the right anterior cruciate ligament. In group 1, no treatment was applied around the injured anterior cruciate ligament. In group 2, 0.2 mL fibrin sealant was applied around it. In group 3, 4 ng transforming growth factor-beta1 mixed with 0.2 mL fibrin sealant was applied. In group 4, 20 microg platelet-derived growth factor-BB mixed with 0.2 mL fibrin sealant was applied. Each rabbit was sacrificed at 12 weeks after the surgery. In addition, 9 knees randomly harvested from all the left knees were used to obtain normal control data. The femur-anterior cruciate ligament-tibia complex specimens were biomechanically and histologically evaluated. Concerning the maximum load and the stiffness, group 3 was significantly greater than groups 1 and 2, whereas there were no significant differences among groups 1, 2, and 4. Groups 1, 2, 3, and 4 were significantly lower than the control group. The application of 4 ng transforming growth factor-beta1 significantly enhances healing in the injured anterior cruciate ligament. Administration of certain growth factors is of value to be studied as one of the future therapeutic options for the overstretched anterior cruciate ligament injury.

  8. High elongation elastomers

    NASA Technical Reports Server (NTRS)

    Brady, V. L.; Reed, R.; Merwin, L.; Nissan, R.

    1994-01-01

    A new class of liquid curable elastomers with unusual strength and elasticity has been developed at the Naval Air Warfare Center Weapons Division, China Lake. Over the years, studies have been conducted on polymer structure and its influence on the mechanical properties of the ensuing composites. Different tools, including nuclear magnetic resonance, have been used. This paper presents a summary of the factors controlling the mechanical behavior of composites produced with the new liquid curable elastomers, including the effects of plasticizers. It also provides an overview of the nuclear magnetic resonance study on polymer structure, the composition and properties of some live and inert formulations produced at China Lake, and some possible peace-time applications for these new elastomeric materials.

  9. Post-meal responses of elongation factor 2 (eEF2) and adenosine monophosphate-activated protein kinase (AMPK) to leucine and carbohydrate supplements for regulating protein synthesis duration and energy homeostasis in rat skeletal muscle.

    PubMed

    Wilson, Gabriel J; Moulton, Christopher J; Garlick, Peter J; Anthony, Tracy G; Layman, Donald K

    2012-11-13

    Previous research demonstrates that the anabolic response of muscle protein synthesis (MPS) to a meal is regulated at the level of translation initiation with signals derived from leucine (Leu) and insulin to activate mTORC1 signaling. Recent evidence suggests that the duration of the meal response is limited by energy status of the cell and inhibition of translation elongation factor 2 (eEF2). This study evaluates the potential to extend the anabolic meal response with post-meal supplements of Leu or carbohydrates. Adult (~256 g) male Sprague-Dawley rats were food deprived for 12 h, then either euthanized before a standard meal (time 0) or at 90 or 180 min post-meal. At 135 min post-meal, rats received one of five oral supplements: 270 mg leucine (Leu270), 80:40:40 mg leucine, isoleucine, and valine (Leu80), 2.63 g carbohydrates (CHO2.6), 1 g carbohydrates (CHO1.0), or water (Sham control). Following the standard meal, MPS increased at 90 min then declined to pre-meal baseline at 180 min. Rats administered Leu270, Leu80, CHO2.6, or CHO1.0 maintained elevated rates of MPS at 180 min, while Sham controls declined from peak values. Leu80 and CHO1.0 treatments maintained MPS, but with values intermediate between Sham controls and Leu270 and CHO2.6 supplements. Consistent with MPS findings, the supplements maintained elongation activity and cellular energy status by preventing increases in AMP/ATP and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase ACC and eEF2. The impact of the supplements on MPS and cellular energy status was in proportion to the energy content within the individual treatments (i.e., Leu270 > Leu80; CHO2.6 > CHO1.0), but the Leu supplements produced a disproportionate anabolic stimulation of MPS, eEF2 and energy status with significantly lower energy content. In summary, the incongruity between MPS and translation initiation at 180 min reflects a block in translation elongation due to reduced

  10. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  11. Control of Transcriptional Elongation by RNA Polymerase II: A Retrospective.

    PubMed

    Brannan, Kris; Bentley, David L

    2012-01-01

    The origins of our current understanding of control of transcription elongation lie in pioneering experiments that mapped RNA polymerase II on viral and cellular genes. These studies first uncovered the surprising excess of polymerase molecules that we now know to be situated at the at the 5' ends of most genes in multicellular organisms. The pileup of pol II near transcription start sites reflects a ubiquitous bottle-neck that limits elongation right at the start of the transcription elongation. Subsequent seminal work identified conserved protein factors that positively and negatively control the flux of polymerase through this bottle-neck, and make a major contribution to control of gene expression.

  12. Presence of translation elongation factor-1A (eEF1A) in the excitatory postsynaptic density of rat cerebral cortex.

    PubMed

    Cho, Sun-Jung; Jung, Jae-Seob; Ko, Bok Hyun; Jin, IngNyol; Moon, Il Soo

    2004-08-05

    The postsynaptic density (PSD) is a proteinaceous cellular structure that is specialized for postsynaptic signal transduction. Here, we show that eukaryotic translation factor-1A (eEF1A; formerly known as eEF-1alpha) is associated with the excitatory PSD in rat forebrain. Immunoblot analysis showed that eEF1A in the PSD fraction is enriched over homogenate. Salt (1.0M NaCl), but not non-ionic detergents such as Triton X-100 (1.0%) and n-octyl glucoside (1.0%), could dissociate eEF1A from the PSD core. In cultured cortical neurons, eEF1A was colocalized with postsynaptic markers (PSD95 and SynGAPalpha), but not with a presynaptic marker (synaptophysin). These results indicate that eEF1A is present in the PSD of the excitatory synapses.

  13. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): Differential gene expression and thyroid hormones dependence during metamorphosis

    PubMed Central

    Infante, Carlos; Asensio, Esther; Cañavate, José Pedro; Manchado, Manuel

    2008-01-01

    Background Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized. Results The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. Conclusion We have identified five

  14. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): differential gene expression and thyroid hormones dependence during metamorphosis.

    PubMed

    Infante, Carlos; Asensio, Esther; Cañavate, José Pedro; Manchado, Manuel

    2008-01-30

    Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis) is a commercially important flatfish in which eEF1A gene remains to be characterized. The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. We have identified five different eEF1A genes in the

  15. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-09-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.

  16. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.].

    PubMed

    Xiang, Jishan; Tang, Sha; Zhi, Hui; Jia, Guanqing; Wang, Huajun; Diao, Xianmin

    2017-01-01

    Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1), which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II). A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  17. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) induces phosphorylation of eukaryotic elongation factor-2 (eEF2): a cautionary note on the anticancer mechanism of an eEF2 kinase inhibitor.

    PubMed

    Chen, Zehan; Gopalakrishnan, Sujatha M; Bui, Mai-Ha; Soni, Niru B; Warrior, Usha; Johnson, Eric F; Donnelly, Jennifer B; Glaser, Keith B

    2011-12-23

    Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies.

  18. Plasma column changes at small solar elongations

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.

    1973-01-01

    The differenced range versus integrated Doppler (DRVID) technique was used to study charged particle changes in the ray path between earth and Mariner 9. For plasma activity near the sun, DRVID data were obtained from August 10 to October 24, 1972, surrounding the Mariner 9 superior conjunction on September 7. If the records are viewed in terms of range change or range change rate, the day-to-day fluctuations in these quantities mask the changes expected due to the varying solar elongation. Thus, while the steady-state total electron content varies by a factor of 4, the columnar content changes show no systematic variations.

  19. Development of a rubber elongation factor, surface-imprinted polymer-quartz crystal microbalance sensor, for quantitative determination of Hev b1 rubber latex allergens present in natural rubber latex products.

    PubMed

    Sontimuang, Chonlatid; Suedee, Roongnapa; Canyuk, Bhutorn; Phadoongsombut, Narubodee; Dickert, Franz L

    2011-02-21

    Molecularly imprinted polymers (MIPs) for screening to detect rubber latex allergens (Hev b1) in natural rubber based products were designed as artificial recognition polymeric materials coated onto a quartz crystal microbalance (QCM). The polymers were prepared using a stamp imprinting procedure after mixing optimum amounts of methacrylic acid-vinylpyrrolidone-dihydroxyethylene bisacrylamide and Hev b1 latex allergen proteins, obtained from rubber gloves. QCM measurements showed that the resulting polymer layers after removal of the proteins used in their preparation could incorporate structures and features down to nanometer scale of protein templates into the imprinted polymer much better than a non-specific control polymer under controlled sensor conditions and an optimized polymerization process. This selective polymer but not the non-selective polymer clearly distinguished between the latex allergen Hev b1 and proteins such as lysozyme, ovalbumin and bovine serum albumin, with a selectivity factor of from 2 to 4, and the response of the rubber elongation factors by an astonishing factor of 12. The imprinted cavities recognized specific binding sites and could distinguish among related hevein latex allergenic proteins isolated from fresh natural rubber latex; Hev b1, Hev b2, and Hev b3 with a selectivity factor of from 4 to 6. The different QCM measurements obtained presumably reflected slightly different conformations and affinities to the MIP binding sites. The sensor layers selectively adsorbed Hev b1 within minutes in amounts ranging from 10 to 1500 μg L⁻¹ and with a detection limit of 1 μg L⁻¹. This work has demonstrated that this new sensor provides a fast and reliable response to natural rubber latex protein, even after being extracted from the matrix of rubber gloves.

  20. Amyloid-like fibril elongation follows michaelis-menten kinetics.

    PubMed

    Milto, Katazyna; Botyriute, Akvile; Smirnovas, Vytautas

    2013-01-01

    A number of proteins can aggregate into amyloid-like fibrils. It was noted that fibril elongation has similarities to an enzymatic reaction, where monomers or oligomers would play a role of substrate and nuclei/fibrils would play a role of enzyme. The question is how similar these processes really are. We obtained experimental data on insulin amyloid-like fibril elongation at the conditions where other processes which may impact kinetics of fibril formation are minor and fitted it using Michaelis-Menten equation. The correlation of the fit is very good and repeatable. It speaks in favour of enzyme-like model of fibril elongation. In addition, obtained [Formula: see text] and [Formula: see text] values at different conditions may help in better understanding influence of environmental factors on the process of fibril elongation.

  1. Direct Characterization of Transcription Elongation by RNA Polymerase I.

    PubMed

    Ucuncuoglu, Suleyman; Engel, Krysta L; Purohit, Prashant K; Dunlap, David D; Schneider, David A; Finzi, Laura

    2016-01-01

    RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo.

  2. Direct Characterization of Transcription Elongation by RNA Polymerase I

    PubMed Central

    Ucuncuoglu, Suleyman; Engel, Krysta L.; Purohit, Prashant K.; Dunlap, David D.; Schneider, David A.

    2016-01-01

    RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo. PMID:27455049

  3. The elongation, termination, and recycling phases of translation in eukaryotes.

    PubMed

    Dever, Thomas E; Green, Rachel

    2012-07-01

    This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.

  4. Elongated grains in a hopper

    NASA Astrophysics Data System (ADS)

    Börzsönyi, Tamás; Somfai, Ellák; Szabó, Balázs; Wegner, Sandra; Ashour, Ahmed; Stannarius, Ralf

    2017-06-01

    Flow and clogging of granular materials in a 3-dimensional hopper is investigated experimentally. We use X-ray tomography and optical methods to study this phenomenon for spherical and elongated particles. The X-ray tomograms provide information on the bulk of the hopper filling, and allow to determine the particle positions and orientations inside the silo, as well as spatial variations of the local packing density. We find that particles show a preferred orientation and thereby an enhanced order in the flowing zone of the silo. Similarly to simple shear flows, the average orientation of the particles is not parallel to the streamlines but encloses a certain angle with them. The clogged state is characterized by a dome, i. e. the geometry of the layer of grains blocking the outflow. The number of grains forming this blocking layer is larger for elongated grains compared to the case of spheres of the same volume.

  5. Hack's Law: Sinuosity, convexity, elongation

    NASA Astrophysics Data System (ADS)

    Willemin, James H.

    2000-11-01

    Hack's law, an empirical, power law relationship between drainage basin area and the length of the main stream channel, has long been taken to imply that drainage basins become more elongate (relatively longer and narrower) with increasing basin size. A study of the geometry of 38 basins from three distinct geomorphic settings shows that this geometric interpretation of Hack's law is only occasionally true: Even though Hack's power law relationship holds between basin area and main channel length, these basins do not necessarily become more elongate with increasing size. Rather, Hack's law is an expression of a balance between changes in basin shape and changes in channel planform geometry. For the basins in this study, changes in channel sinuosity play the most important role in this balance; changes in basin shape are far less regular. Local conditions appear to determine the partitioning of importance between changes in basin shape and channel sinuosity.

  6. Elongation Transducer For Tensile Tests

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  7. Optimal architectures of elongated viruses

    PubMed Central

    Luque, Antoni; Zandi, Roya; Reguera, David

    2010-01-01

    Many viruses protect their genetic material by a closed elongated protein shell. Unlike spherical viruses, the structure of these prolates is not yet well understood, and only a few of them have been fully characterized. We present the results of a simple phenomenological model, which describes the remarkable structures of prolate or bacilliform viral shells. Surprisingly, we find that the special well-defined geometry of these elongated viruses arises just as a consequence of free-energy minimization of a generic interaction between the structural units of the capsid. Hemispherical T-number caps centered along the 5-, 3-, and 2-fold axes with hexagonally ordered cylindrical bodies are found to be local energy minima, thus justifying their occurrence as optimal viral structures. Moreover, closed elongated viruses show a sequence of magic numbers for the end-caps, leading to strict selection rules for the length and structure of the body as well as for the number of capsomers and proteins of the capsid. The model reproduces the architecture of spherical and bacilliform viruses, both in vivo and in vitro, and constitutes an important step towards understanding viral assembly and its potential control for biological and nanotechnological applications. PMID:20212146

  8. ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana.

    PubMed

    Miyazaki, Yuji; Takase, Tomoyuki; Kiyosue, Tomohiro

    2015-01-01

    Hypocotyl cell elongation has been studied as a model to understand how cellular expansion contributes to plant organ growth. Hypocotyl elongation is affected by multiple environmental factors, including light quantity and light quality. Red light inhibits hypocotyl growth via the phytochrome signaling pathways. Proteins of the flavin-binding KELCH repeat F-box 1 / LOV KELCH protein 2 / ZEITLUPE family are positive regulators of hypocotyl elongation under red light in Arabidopsis. These proteins were suggested to reduce phytochrome-mediated inhibition of hypocotyl elongation. Here, we show that ZEITLUPE also functions as a positive regulator in warmth-induced hypocotyl elongation under light in Arabidopsis.

  9. Comparison of genomes of Brucella melitensis M28 and the B. melitensis M5-90 derivative vaccine strain highlights the translation elongation factor Tu gene tuf2 as an attenuation-related gene.

    PubMed

    Wang, Fangkun; Qiao, Zujian; Hu, Sen; Liu, Wenxing; Zheng, Huajun; Liu, Sidang; Zhao, Xiaomin; Bu, Zhigao

    2013-08-01

    Brucella melitensis causes brucellosis, a disease affecting sheep, cattle, and sometimes humans. Attenuated B. melitensis strain M5-90, derived from virulent strain M28, is widely used as a live vaccine in ruminants in China. Genetic differences between the strains may cast light on the mechanism of attenuation. We recently reported the complete genomic sequences of M28 and M5-90. Genome organization is highly conserved between these isolates, and also with virulent strains 16 M and ATCC 23457. Analysis revealed 23 open reading frames (ORFs) with consistent differences between M5-90 and the virulent strains. Notably, the tuf2 gene encoding translation elongation factor EF-Tu from M5-90 contained 50 single nucleotide polymorphisms (SNPs) and 9 gaps (indels) compared to tuf2 of M28 or of the other virulent strains. There were no changes in tuf1. To evaluate the potential role of EF-Tu in pathogenesis, tuf1 and tuf2 mutants of M28 and an M5-90 strain harboring wild-type tuf2 were constructed, and their virulence/attenuation was evaluated in vivo. We report that the tuf2 gene plays an important role in the attenuation of M5-90 virulence.

  10. What doesn’t kill them makes them stronger: an association between elongation factor 1-α overdominance in the sea star Pisaster ochraceus and “sea star wasting disease”

    PubMed Central

    Schiebelhut, Lauren M.

    2016-01-01

    In recent years, a massive mortality event has killed millions of sea stars, of many different species, along the Pacific coast of North America. This disease event, known as ‘sea star wasting disease’ (SSWD), is linked to viral infection. In one affected sea star (Pisaster ochraceus), previous work had identified that the elongation factor 1-α locus (EF1A) harbored an intronic insertion allele that is lethal when homozygous yet appears to be maintained at moderate frequency in populations through increased fitness for heterozygotes. The environmental conditions supporting this increased fitness are unknown, but overdominance is often associated with disease. Here, we evaluate populations of P. ochraceus to identify the relationship between SSWD and EF1A genotype. Our data suggest that there may be significantly decreased occurrence of SSWD in individuals that are heterozygous at this locus. These results suggest further studies are warranted to understand the functional relationship between diversity at EF1A and survival in P. ochraceus. PMID:27069810

  11. Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).

    PubMed

    Ayoub, Nadia A; Garb, Jessica E; Hedin, Marshal; Hayashi, Cheryl Y

    2007-02-01

    Spider systematics has overwhelmingly relied on morphological characters to resolve higher-level phylogenetic questions. Molecular phylogenetic studies of spiders above the genus level have been rare, partly because of a paucity of characterized genes available for amplification and sequencing. Here we show the phylogenetic utility of a new molecular marker, elongation factor-1 gamma (EF-1gamma) for discerning family level relationships in the spider infraorder, Mygalomorphae. We included genomic sequences from 26 mygalomorph genera in 14 families as well as cDNA sequences from 10 families in the infraorder Araneomorphae. We found strong support for the traditional split of mygalomorphs into atypoids (Antrodiaetidae, Atypidae, and Mecicobothriidae) and non-atypoids (all other families). Some families with multiple generic representatives were found to be polyphyletic or paraphyletic, such as the Nemesiidae, Ctenizidae, and Hexathelidae. A small portion of genomic EF-1gamma that could be amplified from araneomorphs contained a short intron, suggesting that longer genomic sequences could not be amplified due to the presence of introns. This intron may be useful for intra-familial araneomorph relationships. A tentative timeline for spider evolution is proposed using the evolutionary rate of EF-1gamma, estimated to be approximately 0.22% pairwise divergence per million years based on a non-parametric smoothing method (NPRS) and fossil constraints.

  12. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice.

    PubMed

    Zhao, Jiying; Liu, Pengcheng; Li, Chunrong; Wang, Yanyan; Guo, Lequn; Jiang, Guanghuai; Zhai, Wenxue

    2017-02-20

    Lesion mimic mutant (LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5, which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A (eEF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indica-specific manner, respectively. In addition, high-throughput mRNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous eEF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.

  13. Aortoiliac elongation after endovascular aortic aneurysm repair.

    PubMed

    Chandra, Venita; Rouer, Martin; Garg, Trit; Fleischmann, Dominik; Mell, Matthew

    2015-07-01

    Aortoiliac elongation after endovascular aortic aneurysm repair (EVAR) is not well studied. We sought to assess the long-term morphologic changes after EVAR and identify potentially modifiable factors associated with such a change. An institutional review board-approved retrospective review was conducted for 88 consecutive patients who underwent EVAR at a single academic center from 2003 to 2007 and who also had at least 2 follow-up computed tomography angiograms (CTAs) available for review up to 5 years after surgery. Standardized centerline aortic lengths and diameters were obtained on Aquarius iNtuition 3D workstation (TeraRecon Inc., San Mateo, CA) on postoperative and all-available follow-up CTAs. Relationships to aortic elongation were determined using Wilcoxon rank-sum test or linear regression (Stata version 12.1, College Station, TX). Changes in length over time were determined by mixed-effects analysis (SAS version 9.3, Cary, NC). The study cohort was composed of mostly men (88%), with a mean age of (76 ± 8) and a mean follow-up of 3.2 years (range, 0.4-7.5 years). Fifty-seven percent of patients (n = 50) had devices with suprarenal fixation and 43% (n = 38) had no suprarenal fixation. Significant lengthening was observed over the study period in the aortoiliac segments, but not in the iliofemoral segments. Aortoiliac elongation over time was not associated with sex (P = 0.3), hypertension (P = 0.7), coronary artery disease (P = 0.3), diabetes (P = 0.3), or tobacco use (P = 0.4), but was associated with the use of statins (P = 0.03) and the presence of chronic obstructive pulmonary disease (P = 0.02). Significant aortic lengthening was associated with increased type I endoleaks (P = 0.03) and reinterventions (P = 0.03). Over the study period, 4 different devices were used; Zenith (Cook Medical Inc., Bloomington, IN), Talent (Medtronic, Minneapolis, MN), Aneuryx (Medtronic), and Excluder (W. L. Gore and Associates Inc., Flagstaff, AZ). After adjusting for

  14. How slow RNA polymerase II elongation favors alternative exon skipping.

    PubMed

    Dujardin, Gwendal; Lafaille, Celina; de la Mata, Manuel; Marasco, Luciano E; Muñoz, Manuel J; Le Jossic-Corcos, Catherine; Corcos, Laurent; Kornblihtt, Alberto R

    2014-05-22

    Splicing is functionally coupled to transcription, linking the rate of RNA polymerase II (Pol II) elongation and the ability of splicing factors to recognize splice sites (ss) of various strengths. In most cases, slow Pol II elongation allows weak splice sites to be recognized, leading to higher inclusion of alternative exons. Using CFTR alternative exon 9 (E9) as a model, we show here that slowing down elongation can also cause exon skipping by promoting the recruitment of the negative factor ETR-3 onto the UG-repeat at E9 3' splice site, which displaces the constitutive splicing factor U2AF65 from the overlapping polypyrimidine tract. Weakening of E9 5' ss increases ETR-3 binding at the 3' ss and subsequent E9 skipping, whereas strengthening of the 5' ss usage has the opposite effect. This indicates that a delay in the cotranscriptional emergence of the 5' ss promotes ETR-3 recruitment and subsequent inhibition of E9 inclusion.

  15. Phage display biopanning identifies the translation initiation and elongation factors (IF1α-3 and eIF-3) as components of Hsp70-peptide complexes in breast tumour cells.

    PubMed

    Siebke, Christina; James, Tharappel C; Cummins, Robert; O'Grady, Tony; Kay, Elaine; Bond, Ursula

    2012-03-01

    The heat shock protein, HSP70, is over-expressed in many tumours and acts at the crossroads of key intracellular processes in its role as a molecular chaperone. HSP70 associates with a vast array of peptides, some of which are antigenic and can mount adaptive immune responses against the tumour from which they are derived. The pool of peptides associated with HSP70 represents a unique barcode of protein metabolism in tumour cells. With a view to identifying unique protein targets that may be developed as tumour biomarkers, we used purified HSP70 and its associated peptide pool (HSP70-peptide complexes, HSP70-PCs) from different human breast tumour cell lines as targets for phage display biopanning. Our results show that HSP70-PCs from each cell line interact with unique sets of peptides within the phage display library. One of the peptides, termed IST, enriched in the biopanning process, was used in a 'pull-down' assay to identify the original protein from which the HSP70-associated peptides may have been derived. The eukaryotic translation initiation factor 3 (eIF-3), a member of the elongation factor EF1α family, and the HSP GRP78, were pulled down by the IST peptide. All of these proteins are known to be up-regulated in cancer cells. Immunohistochemical staining of tumour tissue microarrays showed that the peptide co-localised with HSP70 in breast tumour tissue. The data indicate that the reservoir of peptides associated with HSP70 can act as a unique indicator of cellular protein activity and a novel source of potential tumour biomarkers.

  16. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  17. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment

    PubMed Central

    Loyola, Rodrigo; Herrera, Daniela; Mas, Abraham; Wong, Darren Chern Jan; Höll, Janine; Cavallini, Erika; Amato, Alessandra; Azuma, Akifumi; Ziegler, Tobias; Aquea, Felipe; Castellarin, Simone Diego; Bogs, Jochen; Tornielli, Giovanni Battista; Peña-Neira, Alvaro; Czemmel, Stefan; Alcalde, José Antonio; Matus, José Tomás; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera. We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures. PMID:27543604

  18. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment.

    PubMed

    Loyola, Rodrigo; Herrera, Daniela; Mas, Abraham; Wong, Darren Chern Jan; Höll, Janine; Cavallini, Erika; Amato, Alessandra; Azuma, Akifumi; Ziegler, Tobias; Aquea, Felipe; Castellarin, Simone Diego; Bogs, Jochen; Tornielli, Giovanni Battista; Peña-Neira, Alvaro; Czemmel, Stefan; Alcalde, José Antonio; Matus, José Tomás; Arce-Johnson, Patricio

    2016-10-01

    Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.

  19. Immunization with a Polyprotein Vaccine Consisting of the T-Cell Antigens Thiol-Specific Antioxidant, Leishmania major Stress-Inducible Protein 1, and Leishmania Elongation Initiation Factor Protects against Leishmaniasis

    PubMed Central

    Coler, Rhea N.; Skeiky, Yasir A. W.; Bernards, Karen; Greeson, Kay; Carter, Darrick; Cornellison, Charisa D.; Modabber, Farrokh; Campos-Neto, Antonio; Reed, Steven G.

    2002-01-01

    Development of an effective vaccine against Leishmania infection is a priority of tropical disease research. We have recently demonstrated protection against Leishmania major in the murine and nonhuman primate models with individual or combinations of purified leishmanial recombinant antigens delivered as plasmid DNA constructs or formulated with recombinant interleukin-12 (IL-12) as adjuvant. In the present study, we immunized BALB/c mice with a recombinant polyprotein comprising a tandem fusion of the leishmanial antigens thiol-specific antioxidant, L. major stress-inducible protein 1 (LmSTI1), and Leishmania elongation initiation factor (LeIF) delivered with adjuvants suitable for human use. Aspects of the safety, immunogenicity, and vaccine efficacy of formulations with each individual component, as well as the polyprotein referred to as Leish-111f, were assessed by using the L. major challenge model with BALB/c mice. No adverse reactions were observed when three subcutaneous injections of the Leish-111f polyprotein formulated with either MPL-squalene (SE) or Ribi 529-SE were given to BALB/c mice. A predominant Th1 immune response characterized by in vitro lymphocyte proliferation, gamma interferon production, and immunoglobulin G2A antibodies was observed with little, if any, IL-4. Moreover, Leish-111f formulated with MPL-SE conferred immunity to leishmaniasis for at least 3 months. These data demonstrate success at designing and developing a prophylactic leishmaniasis vaccine that proved effective in a preclinical model using multiple leishmanial antigens produced as a single protein delivered with a powerful Th1 adjuvant suitable for human use. PMID:12117930

  20. Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis.

    PubMed

    Coler, Rhea N; Skeiky, Yasir A W; Bernards, Karen; Greeson, Kay; Carter, Darrick; Cornellison, Charisa D; Modabber, Farrokh; Campos-Neto, Antonio; Reed, Steven G

    2002-08-01

    Development of an effective vaccine against Leishmania infection is a priority of tropical disease research. We have recently demonstrated protection against Leishmania major in the murine and nonhuman primate models with individual or combinations of purified leishmanial recombinant antigens delivered as plasmid DNA constructs or formulated with recombinant interleukin-12 (IL-12) as adjuvant. In the present study, we immunized BALB/c mice with a recombinant polyprotein comprising a tandem fusion of the leishmanial antigens thiol-specific antioxidant, L. major stress-inducible protein 1 (LmSTI1), and Leishmania elongation initiation factor (LeIF) delivered with adjuvants suitable for human use. Aspects of the safety, immunogenicity, and vaccine efficacy of formulations with each individual component, as well as the polyprotein referred to as Leish-111f, were assessed by using the L. major challenge model with BALB/c mice. No adverse reactions were observed when three subcutaneous injections of the Leish-111f polyprotein formulated with either MPL-squalene (SE) or Ribi 529-SE were given to BALB/c mice. A predominant Th1 immune response characterized by in vitro lymphocyte proliferation, gamma interferon production, and immunoglobulin G2A antibodies was observed with little, if any, IL-4. Moreover, Leish-111f formulated with MPL-SE conferred immunity to leishmaniasis for at least 3 months. These data demonstrate success at designing and developing a prophylactic leishmaniasis vaccine that proved effective in a preclinical model using multiple leishmanial antigens produced as a single protein delivered with a powerful Th1 adjuvant suitable for human use.

  1. Inhibition of the outgrowth and elongation of neurites from pheochromocytoma cells by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and preventive effects of dimethylsulfoniopropionate in the presence of nerve growth factor.

    PubMed

    Nakajima, Kenji; Minematsu, Masaharu; Miyamoto, Yuuichi

    2008-04-01

    The combined effects of dimethylsulfoniopropionate (DMSP) (10(-3), 10(-4) and 10(-5) M) with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (5 ng/mL) and the nerve growth factor (NGF) (5 ng/mL) on the outgrowth and elongation of neurites from pheochromocytoma (PC12) cells were examined on RPMI medium containing fetal bovine serum and horse serum with penicillin and streptomycin in collagen-coated dishes for 5 d. The growth was higher in increasing order of the DMSP (10(-3) M), MPTP and NGF, the DMSP (10(-5) M), MPTP and NGF, the MPTP and NGF group and the control group up to 3 d, but not in the NGF and the DMSP (10(-4) M), MPTP and NGF groups. The growth in all the experimental groups showed plateaus from days 4 to 5. The appearance of neurites from the cells in all the groups showed maxima on the 3rd day. The administration of NGF significantly stimulated the outgrowth of neurites from the cells, while the supplementation of MPTP noticeably inhibited the appearance of neurites even in the presence of NGF up to 5 d. However, the addition of DMSP (10(-3 )and 10(-4) M) to the latter group completely prevented the inhibition of the MPTP. These facts were significantly supported by the photographs of neurite-bearing cells on the 3rd day and also by the photometric analyses examining the reaction of MPTP to DMSP, NGF or Collagen IV.

  2. Quantitative Analysis of Transcription Elongation by RNA Polymerase I In Vitro

    PubMed Central

    Schneider, David Alan

    2016-01-01

    The elongation step in transcription has gained attention for its roles in regulation of eukaryotic gene expression and for its influence on RNA processing. Sophisticated genetic analyses have identified factors and/or conditions that may affect transcription elongation rate or processivity; however, differentiation of direct and indirect effects on transcription is difficult using in vivo strategies. Therefore, effective, reproducible in vitro assays have been developed to test whether a given factor or condition can have a direct effect on the kinetics of transcription elongation. We have adapted a fully reconstituted transcription system for RNA polymerase I (Pol I) for kinetic analysis of transcription elongation rate in vitro. The assay described here has proven to be effective in the characterization of defects or enhancement of wild-type transcription elongation by RNA Pol I. Since transcription elongation by RNA Pol I has only recently gained significant attention, this assay will be a valuable resource for years to come. PMID:22113301

  3. Locomotion in elongate fishes: A contact sport.

    PubMed

    Ward, Andrea B; Costa, Alyssa; Monroe, Stephanie L; Aluck, Robert J; Mehta, Rita S

    2015-10-01

    Despite the physical differences between water and air, a number of fish lineages are known to make terrestrial excursions on land. Many of these fishes exhibit an elongate body plan. Elongation of the body can occur in several ways, the most common of which is increasing the number of vertebrae in one or both regions of the axial skeleton--precaudal and/or caudal. Elongate species are often found in three-dimensionally complex habitats. It has been hypothesized that elongate fishes use this structure to their locomotor advantage. In this study, we consider how elongation and differences in vertebral regionalization correspond with the use of wooden pegs, which are provided as analogs to vertically oriented substrate, structures that protrude above the ground. We compare aquatic and terrestrial locomotor behaviors of Polypterus senegalus, Erpetoichthys calabaricus, and Gymnallabes typus as they move through a peg array. When considering axial elongation we find that the highly elongate species, E. calabaricus and G. typus, contact more pegs but on average move slower in both environments than P. senegalus. When considering axial regionalization, we find that the precaudally elongate species, P. senegalus and E. calabaricus, differ in the patterns of peg contact between the two environments whereas the caudally elongate species, G. typus, exhibits similar peg contact between the two environments. Our study highlights the importance of incorporating body shape and vertebral regionalization to understand how elongate fishes move in water and on land.

  4. Hox genes control vertebrate body elongation by collinear Wnt repression.

    PubMed

    Denans, Nicolas; Iimura, Tadahiro; Pourquié, Olivier

    2015-02-26

    In vertebrates, the total number of vertebrae is precisely defined. Vertebrae derive from embryonic somites that are continuously produced posteriorly from the presomitic mesoderm (PSM) during body formation. We show that in the chicken embryo, activation of posterior Hox genes (paralogs 9-13) in the tail-bud correlates with the slowing down of axis elongation. Our data indicate that a subset of progressively more posterior Hox genes, which are collinearly activated in vertebral precursors, repress Wnt activity with increasing strength. This leads to a graded repression of the Brachyury/T transcription factor, reducing mesoderm ingression and slowing down the elongation process. Due to the continuation of somite formation, this mechanism leads to the progressive reduction of PSM size. This ultimately brings the retinoic acid (RA)-producing segmented region in close vicinity to the tail bud, potentially accounting for the termination of segmentation and axis elongation.

  5. Bilateral elongated mandibular coronoid process in an Anatolian skull

    PubMed Central

    Çorumlu, Ufuk; Demir, Mehmet Tevfik; Pirzirenli, Mennan Ece

    2016-01-01

    Elongation or hyperplasia of coronoid process of mandible is rare condition characterized by abnormal bone development which cause malocclusion and the limited mouth opening. In this study, in an Anatolian skull, a case of bilateral elongation of mandibular coronoid process was presented. Levandoski panographic analysis was performed on the panoramic radiographie to determine the hyperplasia of the coronoid process. The right condylar process was exactly hyperplastic. The measurements of Kr-Go/Cd-Go were 95.10 mm/79.03 mm on right side and 97.53 mm/87.80 mm on left side. The ratio of Kr-Go/Cd-Go on the right side was 1.20. Elongated coronoid process is one of the factors cause mandibular hypomobility, it as reported here might lead to limited mouth opening. The knowledge of this variation or abnormality can be useful for the radiologist and surgeons and prevent misdiagnosis. PMID:27722017

  6. Experimental and Theoretical Investigations of Phonation Threshold Pressure as a Function of Vocal Fold Elongation

    PubMed Central

    Tao, Chao; Regner, Michael F.; Zhang, Yu; Jiang, Jack J.

    2014-01-01

    Summary The relationship between the vocal fold elongation and the phonation threshold pressure (PTP) was experimentally and theoretically investigated. The PTP values of seventeen excised canine larynges with 0% to 15% bilateral vocal fold elongations in 5% elongation steps were measured using an excised larynx phonation system. It was found that twelve larynges exhibited a monotonic relationship between PTP and elongation; in these larynges, the 0% elongation condition had the lowest PTP. Five larynges exhibited a PTP minimum at 5% elongation. To provide a theoretical explanation of these phenomena, a two-mass model was modified to simulate vibration of the elongated vocal folds. Two pairs of longitudinal springs were used to represent the longitudinal elastin in the vocal folds. This model showed that when the vocal folds were elongated, the increased longitudinal tension would increase the PTP value and the increased vocal fold length would decrease the PTP value. The antagonistic effects contributed by these two factors were found to be able to cause either a monotonic or a non-monotonic relationship between PTP and elongation, which were consistent with experimental observations. Because PTP describes the ease of phonation, this study suggests that there may exist a nonzero optimal vocal fold elongation for the greatest ease for phonation in some larynges. PMID:25530744

  7. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  8. Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B

    NASA Astrophysics Data System (ADS)

    Sánchez-Murcia, Pedro A.; Cortés-Cabrera, Álvaro; Gago, Federico

    2017-09-01

    At least four classes of structurally distinct natural products with potent antiproliferative activities target the translation elongation factor eEF1A1, which is best known as the G-protein that delivers amino acyl transfer RNAs (aa-tRNAs) to ribosomes during mRNA translation. We present molecular models in atomic detail that provide a common structural basis for the high-affinity binding of didemnin B, ternatin, ansatrienin B and nannocystin A to eEF1A1, as well as a rationale based on molecular dynamics results that accounts for the deleterious effect of replacing alanine 399 with valine. The proposed binding site, at the interface between domains I and III, is eminently hydrophobic and exists only in the GTP-bound conformation. Drug binding at this site is expected to disrupt neither loading of aa-tRNAs nor GTP hydrolysis but would give rise to stabilization of this particular conformational state, in consonance with reported experimental findings. The experimental solution of the three-dimensional structure of mammalian eEF1A1 has proved elusive so far and the highly homologous eEF1A2 from rabbit muscle has been crystallized and solved only as a homodimer in a GDP-bound conformation. Interestingly, in this dimeric structure the large interdomain cavity where the drugs studied are proposed to bind is occupied by a mostly hydrophobic α-helix from domain I of the same monomer. Since binding of this α-helix and any of these drugs to domain III of eEF1A(1/2) is, therefore, mutually exclusive and involves two distinct protein conformations, one intriguing possibility that emerges from our study is that the potent antiproliferative effect of these natural products may arise not only from inhibition of protein synthesis, which is the current dogma, but also from interference with some other non-canonical functions. From this standpoint, this type of drugs could be considered antagonists of eEF1A1/2 oligomerization, a hypothesis that opens up novel areas of research.

  9. Getting up to speed with transcription elongation by RNA polymerase II

    PubMed Central

    Jonkers, Iris; Lis, John T.

    2016-01-01

    Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription regulation. Moreover, after the release of Pol II from the promoter-proximal region, elongation rates are highly dynamic throughout the transcription of a gene, and vary on a gene-by-gene basis. Interestingly, Pol II elongation rates affect co-transcriptional processes such as splicing, termination and genome stability. Increasing numbers of factors and regulatory mechanisms have been associated with the steps of transcription elongation by Pol II, revealing that elongation is a highly complex process. Elongation is thus now recognized as a key phase in the regulation of transcription by Pol II. PMID:25693130

  10. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro.

    PubMed

    Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R

    2014-11-01

    Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.

  11. Translational Control of Cell Division by Elongator

    PubMed Central

    Bauer, Fanelie; Matsuyama, Akihisa; Candiracci, Julie; Dieu, Marc; Scheliga, Judith; Wolf, Dieter A.; Yoshida, Minoru; Hermand, Damien

    2012-01-01

    SUMMARY Elongator is required for the synthesis of the mcm5s2 modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions. PMID:22768388

  12. Structural insights into NusG regulating transcription elongation

    PubMed Central

    Liu, Bin; Steitz, Thomas A.

    2017-01-01

    NusG is an essential transcription factor that plays multiple key regulatory roles in transcription elongation, termination and coupling translation and transcription. The core role of NusG is to enhance transcription elongation and RNA polymerase processivity. Here, we present the structure of Escherichia coli RNA polymerase complexed with NusG. The structure shows that the NusG N-terminal domain (NGN) binds at the central cleft of RNA polymerase surrounded by the β' clamp helices, the β protrusion, and the β lobe domains to close the promoter DNA binding channel and constrain the β' clamp domain, but with an orientation that is different from the one observed in the archaeal β' clamp–Spt4/5 complex. The structure also allows us to construct a reliable model of the complete NusG-associated transcription elongation complex, suggesting that the NGN domain binds at the upstream fork junction of the transcription elongation complex, similar to σ2 in the transcription initiation complex, to stabilize the junction, and therefore enhances transcription processivity. PMID:27899640

  13. Key patterning genes contribute to leg elongation in water striders.

    PubMed

    Refki, Peter Nagui; Khila, Abderrahman

    2015-01-01

    How adaptive phenotypes are shaped by the action of key developmental genes during ontogeny remains poorly understood. Water striders, a group of hemipteran insects, present a unique example of adaptation to life on the fluid water surface substrate. The group has undergone a set of leg modifications allowing them to efficiently move on the water surface and hence invade a variety of niches from ponds to open oceans. The elongated legs of water striders play a key role in generating efficient movement on the fluid by acting as propelling oars. To determine the developmental mechanisms underlying leg elongation, we examined the function of the key developmental genes decapentaplegic (dpp), wingless (wg), epidermal growth factor receptor (egfr), and hedgehog (hh) during embryonic development in the water strider Limnoporus dissortis. By analyzing expression patterns and RNAi knockdown phenotypes, we uncover the role of these genes in leg growth and patterning during embryogenesis. Our results indicate that wg and egfr contribute to the elongation of all the three segments of all thoracic legs, whereas hh specifies distal leg segments. Together, our results suggest that key patterning genes contribute to the dramatic elongation of thoracic appendages in water striders.

  14. Activation of the transcription factor nuclear factor-kappa B in uterine luminal epithelial cells by interleukin 1 Beta 2: a novel interleukin 1 expressed by the elongating pig conceptus.

    PubMed

    Mathew, Daniel J; Newsom, Emily M; Guyton, Jennifer M; Tuggle, Christopher K; Geisert, Rodney D; Lucy, Matthew C

    2015-04-01

    Conceptus mortality is greatest in mammals during the peri-implantation period, a time when conceptuses appose and attach to the uterine surface epithelium while releasing proinflammatory molecules. Interleukin 1 beta (IL1B), a master proinflammatory cytokine, is released by the primate, rodent, and pig blastocyst during the peri-implantation period and is believed to be essential for establishment of pregnancy. The gene encoding IL1B has duplicated in the pig, resulting in a novel gene. Preliminary observations indicate that the novel IL1B is specifically expressed by pig conceptuses during the peri-implantation period. To verify this, IL1B was cloned from mRNA isolated from Day 12 pig conceptuses and compared with IL1B cloned from mRNA isolated from pig peripheral blood leukocytes (PBLs). The pig conceptuses, but not the PBLs, expressed a novel IL1B, referred to here as interleukin 1 beta 2 (IL1B2). Porcine endometrium was treated with recombinant porcine interleukin 1 beta 1 (IL1B1), the prototypical cytokine, and IL1B2 proteins. Immunohistochemistry and real-time RT-PCR were used to measure activation of nuclear factor-kappa B (NFKB) and NFKB-regulated transcripts, respectively, within the endometrium. Both IL1B1 and IL1B2 activated NFKB in the uterine luminal epithelium within 4 h. The NFKB activation and related gene expression, however, were lower in endometrium treated with IL1B2, suggesting that the conceptus-derived cytokine may have reduced activity within the uterus. In conclusion, the peri-implantation pig conceptus expresses a novel IL1B that can activate NFKB within the uterine surface epithelium, likely creating a proinflammatory microenvironment during establishment of pregnancy in the pig. © 2015 by the Society for the Study of Reproduction, Inc.

  15. A review of penile elongation surgery

    PubMed Central

    Gillis, Joshua

    2017-01-01

    Penile elongation surgery is less commonly performed in the public sector, but involves a collaborative approach between urology and plastic surgery. Congenital and acquired micropenis are the classic surgical indications for penile elongation surgery. The goal of intervention in these patients is to restore a functional penis size in order to allow normal standing micturition, enable satisfying sexual intercourse and improve patient quality of life. Many men seeking elongation actually have normal length penises, but perceive themselves to be small, a psychologic condition termed ‘penile dysmorphophobia’. This paper will review the anatomy and embryology of congenital micropenis and discuss both conservative and surgical management options for men seeking penile elongation therapy. PMID:28217452

  16. Elongated Deposits in Southern Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Nussbaumer, J. W.

    2012-03-01

    In the Elysium Planitia region, deposits have elongated elevations that resemble terrestrial drumlins or yardangs. Drumlins and drumlin clusters are glacial landforms that have been extensively studied. In contrast, Yardangs are formed by wind.

  17. Effects of elongation delay in transcription dynamics.

    PubMed

    Zhang, Xuan; Jin, Huiqin; Yang, Zhuoqin; Lei, Jinzhi

    2014-12-01

    In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry.

  18. Numerical Experiments with Flows of Elongated Granules

    DTIC Science & Technology

    1992-01-01

    NASA AVSCOM Technical Memorandum 105567 Technical Report 91- C- 006 𔃼e- 0ok, Numerical Experiments With Flows of Elongated Granules AD-A251 853 DTIC...EXPERIMENTS WITH FLOWS OF ELONGATED GRANULES H.G. Elrod 14 Cromwell Court Old Saybrook, Connecticut 06475 and D.E. Brewe Propulsion Directorate U.S. Army...granular flows (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely-wide slider. Each granule is simulated by a

  19. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  20. Visualization of large elongated DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  1. The marine polyketide myriaporone 3/4 stalls translation by targeting the elongation phase.

    PubMed

    Muthukumar, Yazh; Roy, Myriam; Raja, Aruna; Taylor, Richard E; Sasse, Florenz

    2013-01-21

    Myriaporone 3/4, a cytotoxic polyketide, has been reported as an inhibitor of eukaryotic protein synthesis. However, the mechanism by which it inhibits translation was unknown. Here we show that myriaporone 3/4 stalls protein synthesis in the elongation phase by inducing phosphorylation of eukaryotic elongation factor 2. The phosphorylation results from direct binding of myriaporone 3/4 to eukaryotic elongation factor 2 kinase. Our study also shows that myriaporone 3/4 in the nanomolar range inhibits in vitro tube formation by endothelial cells without being cytotoxic. In general, myriaporone 3/4 was at least 300 times less toxic to primary cells than to tumor cells.

  2. Synthesis of rhamnosylated arginine glycopeptides and determination of the glycosidic linkage in bacterial elongation factor P† †Electronic supplementary information (ESI) available: Materials and methods, compound characterization, 1D and 2D NMR and mass spectrometry data of glycopeptides. See DOI: 10.1039/c6sc03847f Click here for additional data file.

    PubMed Central

    Wang, Siyao; Corcilius, Leo; Sharp, Phillip P.; Rajkovic, Andrei; Ibba, Michael; Parker, Benjamin L.

    2017-01-01

    A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies. PMID:28451332

  3. Transcriptional activation domains stimulate initiation and elongation at different times and via different residues.

    PubMed Central

    Brown, S A; Weirich, C S; Newton, E M; Kingston, R E

    1998-01-01

    Transcriptional activators can stimulate multiple steps in the transcription process. We have used GAL4 fusion proteins to characterize the ability of different transcriptional activation domains to stimulate transcriptional elongation on the hsp70 gene in vitro. Stimulation of elongation apparently occurs via a mechanistic pathway different from that of stimulation of initiation: the herpes simplex virus VP16, heat shock factor 1 (HSF1) and amphipathic helix (AH) activation domains all stimulate initiation, but only VP16 and HSF1 stimulate elongation; and mutations in hydrophobic residues of the HSF1 activation domains impair stimulation of elongation but not of initiation, while mutations in adjacent acidic residues impair stimulation of initiation more than of elongation. Experiments in which activators were exchanged between initiation and elongation demonstrate that the elongation function of HSF1 will stimulate RNA polymerase that has initiated and is transcriptionally engaged. Transcriptional activators thus appear to have at least two distinct functions that reside in the same domain, and that act at different times to stimulate initiation and elongation. PMID:9606196

  4. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  5. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo

    PubMed Central

    Gerber, Mark; Ma, Jiyan; Dean, Kimberly; Eissenberg, Joel C.; Shilatifard, Ali

    2001-01-01

    Several factors have been biochemically characterized based on their ability to increase the overall rate of transcription elongation catalyzed by the multiprotein complex RNA polymerase II (Pol II). Among these, the ELL family of elongation factors has been shown to increase the catalytic rate of transcription elongation in vitro by suppressing transient pausing. Several fundamental biological aspects of this class of elongation factors are not known. We have cloned the Drosophila homolog (dELL) in order to test whether ELL family proteins are actually associated with the elongating Pol II in vivo. Here we report that dELL is a nuclear protein, which, like its mammalian homologs, can increase the catalytic rate of transcription elongation by Pol II in vitro. Interestingly, we find that dELL co-localizes extensively with the phosphorylated, actively elongating form of Pol II at transcriptionally active sites on Drosophila polytene chromosomes. Furthermore, dELL is relocalized from a widespread distribution pattern on polytenes under normal conditions to very few transcriptionally active puff sites upon heat shock. This observation indicates a dynamic pattern of localization of dELL in cells, which is a predicted characteristic of a Pol II general elongation factor. We also demonstrate that dELL physically interacts with Pol II. Our results strongly suggest that dELL functions with elongating RNA polymerase II in vivo. PMID:11689450

  6. Elongation growth and gravitropic curvature in the Flammulina velutipes (Agaricales) fruiting body.

    PubMed

    Haindl, E; Monzer, J

    1994-06-01

    Differential elongation of stipe hyphae drives the gravitropic reorientation of Flammulina velutipes (Agaricales) fruiting bodies. The gravitropic curvature is strictly dependent on the presence of the transition zone between pileus and stipe. Elongation growth, providing the driving force for curvature, is also promoted by the pileus. Gravitropic curvature is successfully suppressed by clinostatic rotation, but the elongation rate is not affected. Explantation of fruiting body stipes lowers curvature and elongation rates corresponding to explant size reduction. In Flammulina, 25 mm length of transition zone explants is an efficient size for reproducible curvature and elongation during 48- to 72-h curvature tests. Submersion of specimens in aqueous medium causes cessation of the gravitropic curvature, but does not affect elongation. Thus the involvement of a diffusible factor in transmission of the curvature signal is probable. Splitting the fruiting body stipe in segments of 1/8 diameter does not suppress the gravitropic response, and the segments are individually reoriented to the vertical. It is concluded that the graviresponse of the Flammulina fruiting body is based on cellular perception of the gravistimulus and that a differential growth signal is transmitted in the stipe by a soluble factor that regulates hyphal elongation.

  7. Architecture of the yeast Elongator complex.

    PubMed

    Dauden, Maria I; Kosinski, Jan; Kolaj-Robin, Olga; Desfosses, Ambroise; Ori, Alessandro; Faux, Celine; Hoffmann, Niklas A; Onuma, Osita F; Breunig, Karin D; Beck, Martin; Sachse, Carsten; Séraphin, Bertrand; Glatt, Sebastian; Müller, Christoph W

    2017-02-01

    The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.

  8. Ethylene-promoted Elongation: an Adaptation to Submergence Stress

    PubMed Central

    Jackson, Michael B.

    2008-01-01

    Background A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. Scope Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. Conclusions Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water. PMID:17956854

  9. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  10. Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system

    PubMed Central

    Zhu, Manlu; Dai, Xiongfeng; Wang, Yi-Ping

    2016-01-01

    Bacterial growth significantly depends on protein synthesis catalyzed by ribosome. Ribosome translation elongation speed is a key factor determining the bacterial protein synthesis rate. However, existing methods for determining translation elongation speed have limited applications. Here we developed a simple and convenient method for measuring bacterial translation elongation speed based on LacZα complementation system. It enables the measurement of in vivo translation elongation speed of different individual genes. Tests related to ribosome translation elongation speed under various growth perturbations including different nutrient conditions, low temperature, a low-speed ribosome mutant, and fusidic acid treatment, were performed to quantitatively validate this method. Using this approach, we further found that nutrient starvation caused a remarkable slow-down of ribosome translation of Escherichia coli (E. coli). We also studied the dynamic change of translation elongation speed during the process of nutrient up-shift. This method will boost the quantitative understanding of bacterial ribosome translation capacity and growth. PMID:27903884

  11. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium[OPEN

    PubMed Central

    Pacheco-Villalobos, David; Tamaki, Takayuki; Gujas, Bojan; Jaspert, Nina; Oecking, Claudia; Bulone, Vincent; Hardtke, Christian S.

    2016-01-01

    The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots. PMID:27169463

  12. Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin

    PubMed Central

    Frohloff, Frank; Fichtner, Lars; Jablonowski, Daniel; Breunig, Karin D.; Schaffrath, Raffael

    2001-01-01

    Kluyveromyces lactis killer strains secrete a zymocin complex that inhibits proliferation of sensitive yeast genera including Saccharomyces cerevisiae. In search of the putative toxin target (TOT), we used mTn3:: tagging to isolate zymocin-resistant tot mutants from budding yeast. Of these we identified the TOT1, TOT2 and TOT3 genes (isoallelic with ELP1, ELP2 and ELP3, respectively) coding for the histone acetyltransferase (HAT)-associated Elongator complex of RNA polymerase II holoenzyme. Other than the typical elp ts-phenotype, tot phenocopies hypersensitivity towards caffeine and Calcofluor White as well as slow growth and a G1 cell cycle delay. In addition, TOT4 and TOT5 (isoallelic with KTI12 and IKI1, respectively) code for components that associate with Elongator. Intriguingly, strains lacking non-Elongator HATs (gcn5Δ, hat1Δ, hpa3Δ and sas3Δ) or non-Elongator transcription elongation factors TFIIS (dst1Δ) and Spt4p (spt4Δ) cannot confer resistance towards the K.lactis zymocin, thus providing evidence that Elongator equals TOT and that Elongator plays an important role in signalling toxicity of the K.lactis zymocin. PMID:11296232

  13. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation.

    PubMed Central

    Costa, P J; Arndt, K M

    2000-01-01

    Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast. PMID:11014804

  14. Tbx1 is Necessary for Palatal Elongation and Elevation

    PubMed Central

    Goudy, Steven; Law, Amy; Sanchez, Gabriela; Baldwin, H. Scott; Brown, Christopher

    2010-01-01

    The transcription factor TBX1 is a key mediator of developmental abnormalities associated with DiGeorge/Velocardiofacial Syndrome. Studies in mice have demonstrated that decreased dosage of Tbx1 results in defects in pharyngeal arch, cardiovascular, and craniofacial development. The role of Tbx1 in cardiac development has been intensely studied; however, its role in palatal development is poorly understood. By studying the Tbx1-/- mice we found defects during the critical points of palate elongation and elevation. The intrinsic palate defects in the Tbx1-/- mice were determined by measuring changes in palate shelf length, proliferation, apoptosis, expression of relevant growth factors, and in palate fusion assays. Tbx1-/- embryos exhibit cleft palate with failed palate elevation in 100% and abnormal palatal-oral fusions in 50%. In the Tbx1-/- mice the palate shelf length was reduced and tongue height was greater, demonstrating a physical impediment to palate elevation and apposition. In vitro palate fusion assays demonstrate that Tbx1-/- palate shelves are capable of fusion but a roller culture assay showed that the null palatal shelves were unable to elongate. Diminished hyaluronic acid production in the Tbx1-/- palate shelves may explain failed palate shelf elevation. In addition, cell proliferation and apoptosis were perturbed in Tbx1-/- palates. A sharp decrease of Fgf8 expression was detected in the Tbx1-/- palate shelves, suggesting that Fgf8 is dependent on Tbx1 in the palate. Fgf10 is also up-regulated in the Tbx1-/- palate shelves and tongue. These data demonstrate that Tbx1 is a critical transcription factor that guides palatal elongation and elevation and that Fgf8 expression in the palate is Tbx1-dependent. PMID:20214979

  15. pix-1 controls early elongation in parallel with mel-11 and let-502 in Caenorhabditis elegans.

    PubMed

    Martin, Emmanuel; Harel, Sharon; Nkengfac, Bernard; Hamiche, Karim; Neault, Mathieu; Jenna, Sarah

    2014-01-01

    Cell shape changes are crucial for metazoan development. During Caenorhabditis elegans embryogenesis, epidermal cell shape changes transform ovoid embryos into vermiform larvae. This process is divided into two phases: early and late elongation. Early elongation involves the contraction of filamentous actin bundles by phosphorylated non-muscle myosin in a subset of epidermal (hypodermal) cells. The genes controlling early elongation are associated with two parallel pathways. The first one involves the rho-1/RHOA-specific effector let-502/Rho-kinase and mel-11/myosin phosphatase regulatory subunit. The second pathway involves the CDC42/RAC-specific effector pak-1. Late elongation is driven by mechanotransduction in ventral and dorsal hypodermal cells in response to body-wall muscle contractions, and involves the CDC42/RAC-specific Guanine-nucleotide Exchange Factor (GEF) pix-1, the GTPase ced-10/RAC and pak-1. In this study, pix-1 is shown to control early elongation in parallel with let-502/mel-11, as previously shown for pak-1. We show that pix-1, pak-1 and let-502 control the rate of elongation, and the antero-posterior morphology of the embryos. In particular, pix-1 and pak-1 are shown to control head, but not tail width, while let-502 controls both head and tail width. This suggests that let-502 function is required throughout the antero-posterior axis of the embryo during early elongation, while pix-1/pak-1 function may be mostly required in the anterior part of the embryo. Supporting this hypothesis we show that low pix-1 expression level in the dorsal-posterior hypodermal cells is required to ensure high elongation rate during early elongation.

  16. pix-1 Controls Early Elongation in Parallel with mel-11 and let-502 in Caenorhabditis elegans

    PubMed Central

    Nkengfac, Bernard; Hamiche, Karim; Neault, Mathieu; Jenna, Sarah

    2014-01-01

    Cell shape changes are crucial for metazoan development. During Caenorhabditis elegans embryogenesis, epidermal cell shape changes transform ovoid embryos into vermiform larvae. This process is divided into two phases: early and late elongation. Early elongation involves the contraction of filamentous actin bundles by phosphorylated non-muscle myosin in a subset of epidermal (hypodermal) cells. The genes controlling early elongation are associated with two parallel pathways. The first one involves the rho-1/RHOA-specific effector let-502/Rho-kinase and mel-11/myosin phosphatase regulatory subunit. The second pathway involves the CDC42/RAC-specific effector pak-1. Late elongation is driven by mechanotransduction in ventral and dorsal hypodermal cells in response to body-wall muscle contractions, and involves the CDC42/RAC-specific Guanine-nucleotide Exchange Factor (GEF) pix-1, the GTPase ced-10/RAC and pak-1. In this study, pix-1 is shown to control early elongation in parallel with let-502/mel-11, as previously shown for pak-1. We show that pix-1, pak-1 and let-502 control the rate of elongation, and the antero-posterior morphology of the embryos. In particular, pix-1 and pak-1 are shown to control head, but not tail width, while let-502 controls both head and tail width. This suggests that let-502 function is required throughout the antero-posterior axis of the embryo during early elongation, while pix-1/pak-1 function may be mostly required in the anterior part of the embryo. Supporting this hypothesis we show that low pix-1 expression level in the dorsal-posterior hypodermal cells is required to ensure high elongation rate during early elongation. PMID:24732978

  17. Fluorescent Methods to Study Transcription Initiation and Transition into Elongation

    PubMed Central

    Deshpande, Aishwarya P.; Sultana, Shemaila

    2015-01-01

    The DNA-dependent RNA polymerases induce specific conformational changes in the promoter DNA during transcription initiation. Fluorescence spectroscopy sensitively monitors these DNA conformational changes in real time and at equilibrium providing powerful ways to estimate interactions in transcriptional complexes and to assess how transcription is regulated by the promoter DNA sequence, transcription factors, and small ligands. Ensemble fluorescence methods described here probe the individual steps of promoter binding, bending, opening, and transition into the elongation using T7 phage and mitochondrial transcriptional systems as examples. PMID:25095993

  18. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation.

    PubMed

    Nelissen, Hilde; De Groeve, Steven; Fleury, Delphine; Neyt, Pia; Bruno, Leonardo; Bitonti, Maria Beatrice; Vandenbussche, Filip; Van der Straeten, Dominique; Yamaguchi, Takahiro; Tsukaya, Hirokazu; Witters, Erwin; De Jaeger, Geert; Houben, Andreas; Van Lijsebettens, Mieke

    2010-01-26

    In eukaryotes, transcription of protein-encoding genes is strongly regulated by posttranslational modifications of histones that affect the accessibility of the DNA by RNA polymerase II (RNAPII). The Elongator complex was originally identified in yeast as a histone acetyltransferase (HAT) complex that activates RNAPII-mediated transcription. In Arabidopsis thaliana, the Elongator mutants elo1, elo2, and elo3 with decreased leaf and primary root growth due to reduced cell proliferation identified homologs of components of the yeast Elongator complex, Elp4, Elp1, and Elp3, respectively. Here we show that the Elongator complex was purified from plant cell cultures as a six-component complex. The role of plant Elongator in transcription elongation was supported by colocalization of the HAT enzyme, ELO3, with euchromatin and the phosphorylated form of RNAPII, and reduced histone H3 lysine 14 acetylation at the coding region of the SHORT HYPOCOTYL 2 auxin repressor and the LAX2 auxin influx carrier gene with reduced expression levels in the elo3 mutant. Additional auxin-related genes were down-regulated in the transcriptome of elo mutants but not targeted by the Elongator HAT activity showing specificity in target gene selection. Biological relevance was apparent by auxin-related phenotypes and marker gene analysis. Ethylene and jasmonic acid signaling and abiotic stress responses were up-regulated in the elo transcriptome and might contribute to the pleiotropic elo phenotype. Thus, although the structure of Elongator and its substrate are conserved, target gene selection has diverged, showing that auxin signaling and influx are under chromatin control.

  19. Vibrational modes of elongated sessile liquid droplets.

    PubMed

    Temperton, Robert H; Sharp, James S

    2013-04-16

    Vibrations of small (microliter) sessile liquid droplets were studied using a simple optical deflection technique. The droplets were made to elongate in one direction by taking advantage of the anisotropic wetting of the liquids on structured diffraction grating surfaces. They were vibrated by applying a puff of nitrogen gas. Motion of the droplets was monitored by scattering laser light from their surfaces. The scattered light was collected using a photodiode, and the resulting time-dependent intensity signals were Fourier-transformed to obtain the vibrational response of the drops. The vibrational spectra of elongated sessile drops were observed to contain two closely spaced peaks. A simple model that considers the frequency of capillary wave fluctuations on the surfaces of the drops was used to show that the vibrational frequencies of these peaks correspond to standing wave states that exist along the major and minor profile lengths of the droplets.

  20. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  1. Measuring Hole Elongation in Bolted Joints

    NASA Technical Reports Server (NTRS)

    Wichorek, G. R.

    1986-01-01

    Measurement does not affect joint parameters. Verification of analytical and strength-prediction methods for bolted composite joints based generally on data obtained experimentally from double-lap-joint specimens. In mechanically fastened joints, stresses maximal at fastener holes. Ability to measure accurately hole elongations without affecting joint parameters provides better understanding of elastic and plastic behavior of joint material leading to failure mechanisms in mechanically fastened joints required for design of more-efficient, lightweight composite joints.

  2. How do roots elongate in a structured soil?

    PubMed

    Jin, Kemo; Shen, Jianbo; Ashton, Rhys W; Dodd, Ian C; Parry, Martin A J; Whalley, William R

    2013-11-01

    In this review, we examine how roots penetrate a structured soil. We first examine the relationship between soil water status and its mechanical strength, as well as the ability of the soil to supply water to the root. We identify these as critical soil factors, because it is primarily in drying soil that mechanical constraints limit root elongation. Water supply to the root is important because root water status affects growth pressures and root stiffness. To simplify the bewildering complexity of soil-root interactions, the discussion is focused around the special cases of root elongation in soil with pores much smaller than the root diameter and the penetration of roots at interfaces within the soil. While it is often assumed that the former case is well understood, many unanswered questions remain. While low soil-root friction is often viewed as a trait conferring better penetration of strong soils, it may also increase the axial pressure on the root tip and in so doing reduce the rate of cell division and/or expansion. The precise trade-off between various root traits involved in root elongation in homogeneous soil remains to be determined. There is consensus that the most important factors determining root penetration at an interface are the angle at which the root attempts to penetrate the soil, root stiffness, and the strength of the soil to be penetrated. The effect of growth angle on root penetration implicates gravitropic responses in improved root penetration ability. Although there is no work that has explored the effect of the strength of the gravitropic responses on penetration of hard layers, we attempt to outline possible interactions. Impacts of soil drying and strength on phytohormone concentrations in roots, and consequent root-to-shoot signalling, are also considered.

  3. Elongational viscosity of photo-oxidated LDPE

    SciTech Connect

    Rolón-Garrido, Víctor H. E-mail: manfred.wagner@tu-berlin.de; Wagner, Manfred H. E-mail: manfred.wagner@tu-berlin.de

    2014-05-15

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  4. Elongational viscosity of photo-oxidated LDPE

    NASA Astrophysics Data System (ADS)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2014-05-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  5. Quasigeostrohpic flow over isolated elongated topography

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.

    1982-09-01

    The finite amplitude perturbations to a uniform stream caused by the presence of elongated topography is considered using two simple models. The first considers elliptic seamounts with scales L and l ( L ⪖ l) and gives a smooth interpolation between axisymmetric models L ; l at one extreme and infinite ridges of fixed cross-section L å l at the other. Basing the Rossby number of the flow on the shorter scale gives blocking heights of order unity for all elongations, whereas it is the longer scale that determines the horizontal extent of the region affected by the topography. The second model considers greatly elongated topography (L å l) of variable cross section showing that the topographic velocity parallel to the ridges is given by ƒ A∗/2d , where A∗ is the local cross-section area, d the depth, and f the Coriolis parameter. The component perpendicular to the ridge is obtained directly from the parallel component via a linear transform. Topographically generated velocities may thus be obtained rapidly from contours of bottom topography and an example is given using the seamount 'Brontosaurus Bump' from GOULD, HENDRY AND HUPPERT (Deep-Sea Research, 28, 409-440, 1981).

  6. Dimerization of elongator protein 1 is essential for Elongator complex assembly.

    PubMed

    Xu, Huisha; Lin, Zhijie; Li, Fengzhi; Diao, Wentao; Dong, Chunming; Zhou, Hao; Xie, Xingqiao; Wang, Zheng; Shen, Yuequan; Long, Jiafu

    2015-08-25

    The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities.

  7. Dimerization of elongator protein 1 is essential for Elongator complex assembly

    PubMed Central

    Xu, Huisha; Lin, Zhijie; Li, Fengzhi; Diao, Wentao; Dong, Chunming; Zhou, Hao; Xie, Xingqiao; Wang, Zheng; Shen, Yuequan; Long, Jiafu

    2015-01-01

    The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities. PMID:26261306

  8. Brassinosteroid is required for sugar promotion of hypocotyl elongation in Arabidopsis in darkness.

    PubMed

    Zhang, Yongqiang; Liu, Zhongjuan; Wang, Jianfeng; Chen, Yadi; Bi, Yurong; He, Junxian

    2015-10-01

    Brassinosteroid is necessary for sugar promotion of Arabidopsis hypocotyl elongation in darkness, and sugar positively regulates BRASSINAZOLE RESISTANT1 (BZR1) at both transcription and protein levels. Sugar has the ability to induce Arabidopsis hypocotyl elongation in the dark, but the detailed mechanisms remain not well understood. Here, we report that the steroidal phytohormone brassinosteroid (BR) is involved in sugar promotion of hypocotyl elongation in the dark. Sugar-induced hypocotyl elongation was significantl