Sample records for elpidite

  1. Crystal chemistry of elpidite from Khan Bogdo (Mongolia) and its K- and Rb-exchanged forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigor'eva, A. A.; Zubkova, N. V., E-mail: nata_zubkova@rambler.ru; Pekov, I. V.

    2011-09-15

    Elpidite Na{sub 2}ZrSi{sub 6}O{sub 15} {center_dot} 3H{sub 2}O [space group Pbcm, a = 7.1312(12), b = 14.6853(12), and c = 14.6349(15) Angstrom-Sign ] from Khan Bogdo (Mongolia) and its K- and Rb-exchanged forms K{sub 1.78}Na{sub 0.16}H{sub 0.06}ZrSi{sub 6}O{sub 15} {center_dot} 0.85H{sub 2}O [Cmce, a = 14.054(3), b = 14.308(3), and c = 14.553(3) Angstrom-Sign ] and Na{sub 1.58}Rb{sub 0.2}H{sub 0.22}ZrSi{sub 6}O{sub 15} {center_dot} 2.69H{sub 2}O [Pbcm, a = 7.1280(10), b = 14.644(3), and c = 14.642(3) Angstrom-Sign ] that were obtained by cation exchange at 90 Degree-Sign C, as well as K{sub 1.84}Na{sub 0.11}H{sub 0.05}ZrSi{sub 6}O{sub 15} {center_dot} 0.91H{sub 2}Omore » [Cmce, a = 14.037(3), b = 14.226(3), and c = 14.552(3) Angstrom-Sign ] and Rb{sub 1.78}Na{sub 0.06}H{sub 0.16}ZrSi{sub 6}O{sub 15} {center_dot} 0.90H{sub 2}O [Cmce, a = 14.2999(12), b = 14.4408(15), and c = 14.7690(12) Angstrom-Sign ], obtained at 150 Degree-Sign C are studied by single-crystal X-ray diffraction and IR spectroscopy. The base of the structures is a heteropolyhedral Zr-Si-O framework whose cavities accommodate Na (K, Rb) cations and H{sub 2}O molecules.« less

  2. The role of pegmatites and acid fluids for REE/HFSE mobilization in the Strange Lake peralkaline granitic pluton, Canada

    NASA Astrophysics Data System (ADS)

    Gysi, A. P.; Williams-Jones, A.

    2012-12-01

    The Strange Lake pluton in Canada is a mid-Proterozoic peralkaline granitic intrusion that is host to a world-class rare earth element (REE), yttrium (Y) and high-field strength element (HFSE) deposit containing more than 50 Mt ore at >1.5 wt.% REE and >3 wt.% Zr. The highest REE/HFSE concentrations are found in pegmatite-rich zones characterized by intense alteration. Previous studies of Strange Lake and other peralkaline and alkaline intrusions, such as Khan Bogd (Mongolia) and Tamazeght (Morocco) plutons have shown that hydrothermal alteration may play an important role in the mobility of the REE/HFSE. However, the fluid chemistry and conditions of alteration (i.e., P, T, pH, fO2, ligand activity) in these systems still need to be constrained to evaluate the importance and scale of such hydrothermal mobilization. We present new data from the B-zone, a pegmatite-rich zone located in NW Strange Lake. The pegmatites are generally zoned and form two main types. The border-type pegmatites consist of quartz, K-feldspar and hematized aegirine, whereas volatile-rich pegmatites consist of hydrothermal quartz and fluorite. Transitions between both types were also observed, with the K-feldspar being partly altered and replaced by Al-Si-rich phyllosilicates. The heavy (H)REE and Zr were primarily concentrated in zirconosilicates such as elpidite, now pseudomorphed by zircon or gittinsite, whereas light (L)REE and Y were concentrated in REE-F-(CO2)-minerals such as fluocerite and bastnäsite. Textural and mineralogical observations indicate that these minerals are primary and were partly to completely leached upon fluid-rock interaction in the pegmatites. Secondary phases include Ca-F-Y-rich minerals, mainly hydrothermal fluorite, that fill vugs and replaced primary REEHFSE minerals. The presence of hydrothermal fluorite veins, micro-veins, vugs and micro-breccia in the most altered parts of the B-zone are interpreted to reflect interaction of the rocks with a F-rich fluid. We modeled the interaction of HF-NaCl and HF-HCl-NaCl fluids with a Strange Lake pegmatite at 400-250 °C to test different alteration scenarios. The simulations indicated that a stronger acid than HF is needed to shift the system towards fluid buffered pH values, which are required to remobilize the REE and Zr. Comparison of the field study with numerical simulation indicates that for the effective hydrothermal remobilization of REE/HFSE, the system needs a source of elevated acidity and high fluid/rock ratios. We propose a model in which the Strange Lake pegmatites were a source of acidic fluids and upon cooling were affected by autometasomatic alteration due to increased acidity of the fluids, creating pathways for REE/HFSE mobilization.

  3. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    NASA Astrophysics Data System (ADS)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and thermobarometric evidence suggests that apatite-fluorite rocks were formed from the residual fluid-melt, separated after crystallization of rare-metal pegmatites. Petrochemical and geochemical data Burpalinsky are in accord of general trend of crystal differentiation of alkaline magma containing small concentrations of CO2 and higher P2O5 and F, which accumulated significantly separated from the pegmatite melts. In some pegmatites fluorite with rare-metal minerals (flyuocerit etc) are separating in schlieren. Apatite-fluorite rocks are cut by leucogranite dyke, having genetic connection with rare-metal pegmatites. Late granitic phases has its own association of rare-metal minerals described by A.A. Ganzeev (1972). Thermobarometric geochemical study of apatite-fluorite rocks Burpala massif found a large number of primary fluid inclusions (15-50 micrometers). Thermal and cryometric research of 60 individual fluid inclusions in fluorite showed the domination of Na, Ca, Mg chlorides and high temperatures salt inclusions in fluorites (above 550C) and melt inclusions in apatites (800C). Apatite-fluorite rocks in massif are similar to foskorites in carbonatite complexes, with similar high Ca content, but instead fluorite, together with other "foskoritovymi" minerals - apatite, magnetite, mica, and pyroxene were formed instead for calcite. Isotopic studies (Sr-Nd) indicate the mantle source of primary magma Burpala massif close to EM-2, which is characteristic of alkaline intrusions in the folded belts (Vladykin 2009). RBRF grant 14-45-04057

  4. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model

    NASA Astrophysics Data System (ADS)

    Gysi, Alexander P.; Williams-Jones, Anthony E.

    2013-12-01

    Petrological and geochemical observations of pegmatites in the Strange Lake pluton, Canada, have been combined with numerical simulations to improve our understanding of fluid-rock interaction in peralkaline granitic systems. In particular, they have made it possible to evaluate reaction paths responsible for hydrothermal mobilization and mineralization of rare earth elements (REE) and Zr. The focus of the study was the B-Zone in the northwest of the pluton, which contains a pegmatite swarm and is the target of exploration for an economically exploitable REE deposit. Many of the pegmatites are mineralogically zoned into a border consisting of variably altered primary K-feldspar, arfvedsonite, quartz, and zirconosilicates, and a core rich in quartz, fluorite and exotic REE minerals. Textural relationships indicate that the primary silicate minerals in the pegmatites were leached and/or replaced during acidic alteration by K-, Fe- and Al-phyllosilicates, aegirine, hematite, fluorite and/or quartz, and that primary zirconosilicates (e.g., elpidite) were replaced by gittinsite and/or zircon. Reaction textures recording coupled dissolution of silicate minerals and crystallization of secondary REE-silicates indicate hydrothermal mobilization of the REE. The mobility of the light (L)REE was limited by the stability of REE-F-(CO2)-minerals (basnäsite-(Ce) and fluocerite-(Ce)), whereas zirconosilicates and secondary gadolinite-group minerals controlled the mobility of Zr and the heavy (H)REE. Hydrothermal fluorite and fluorite-fluocerite-(Ce) solid solutions are interpreted to indicate the former presence of F-bearing saline fluids in the pegmatites. Numerical simulations show that the mobilization of REE and Zr in saline HCl-HF-bearing fluids is controlled by pH, ligand activity and temperature. Mobilization of Zr is significant in both saline HF- and HCl-HF-bearing fluids at low temperature (250 °C). In contrast, the REE are mobilized by saline HCl-bearing fluids, particularly at high temperature (400 °C). The LREE are more mobile than the HREE in saline HCl-bearing fluids due to the greater stability of LREE-chloride complexes. The simulated mineralogy is consistent with the zonation observed in the pegmatites and with fluid-rock interaction at conditions that were rock-buffered in the pegmatite borders (low fluid/rock ratio; and pH > 4) and fluid-buffered in the cores (high fluid/rock ratio; pH ⩽ 2). We propose a model in which saline HCl-HF-bearing fluids created pathways during acidic alteration from the pegmatite cores outward. This led to the mobilization of REE and Zr due to progressive alteration of primary silicate minerals and increased acidity upon cooling. The key requirement for REE and Zr mobilization in peralkaline igneous intrusions is the formation of an acidic subsystem with high fluid/rock ratios that increases the overall permeability of the rocks. In these zones, the extent of late stage hydrothermal redistribution and concentration of REE and Zr depends on the buffering capacity of the rocks and the availability of fluids that may produce autometasomatic rock alteration, interact with external rock units and/or mix with fluids from other sources. b The detection limits of Yb were 1043 ppm for zircon, 380 ppm for gadolinite-group minerals and 380 ppm for REE-F-(CO2)-minerals. bAja et al. (1995). cMigdisov et al. (2011). dTagirov et al. (1997). eTagirov and Schott (2001). fMigdisov et al. (2009) with REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). b Calculated using the methods of the Chermak and Rimstidt (1989), Berman and Brown (1985) and Holland (1989) with molar volume of arfvedsonite from Hawthorne (1976). cZotov et al. (1998). d GEM-Selektor v.3 database (http://gems.web.psi.ch). eMigdisov et al. (2009).

Top