Science.gov

Sample records for em motor ciclo

  1. A Behavior Analytic Approach to Exploratory Motor Behavior: How Can Caregivers Teach EM Behavior to Infants with Down Syndrome?

    ERIC Educational Resources Information Center

    Bauer, Sara M.; Jones, Emily A.

    2014-01-01

    Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…

  2. Auto-Gopher: a wireline deep sampler driven by piezoelectric percussive actuator and EM rotary motor

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Ressa, Aaron; Lee, Hyeong Jae; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-04-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  3. Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Ressa, Aaron; Jae Lee, Hyeong; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  4. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  5. Deep drilling and sampling via the wireline auto-gopher driven by piezoelectric percussive actuator and EM rotary motor

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2012-04-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars, Europa, and Enceladus. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. The developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline drill that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism, which is driven by a piezoelectric stack, demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with the objective of reaching as deep as 3 to 5 meters in tufa formation.

  6. Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi

    2012-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.

  7. Motor syndromes.

    PubMed

    Corea, Francesco; Micheli, Sara

    2012-01-01

    Motor disturbances alone or associated with other focal deficits are the most common symptoms suggesting a neurovascular event. An appropriate clinical assessment of these signs and symptoms may help physicians to better diagnose and to both better treat and predict outcome. In this paper the main clinical features of motor deficit are described together with other motor-related events such as ataxia and movement disturbances.

  8. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  9. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  10. Advanced Motors

    SciTech Connect

    Knoth, Edward A; Chelluri, Bhanumathi; Schumaker, Edward J

    2012-12-14

    vProject Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, Motors and Generators for the 21st Century. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can

  11. [Motor rehabilitation].

    PubMed

    Doménech, J; García-Aymerich, V; Juste, J; Ortiz, A

    2002-02-01

    The child's rehabilitation objectives are the same of the early intervention. The early intervention include motor approaches to facilitate the unique way of the newborn's expression: the movement and with it his holistic development. The motor approach is a classic aspect of early intervention but it is not itself early intervention. When the treatment objective is a term or preterm newborn or neonate the motor approach may be the principal method to facilitate perceptions experiences and basic habits. This intervention is not made with a specific physiotherapeutic technique. It is a sequential stimulation or development, without forget that the child must be taken as a whole. This point of view has special importance the first days of life and must be included in perinatal approach routines. In this paper we expose the work method of a Child Rehabilitation Team liked to a Newborn Unit.

  12. Therma motor

    DOEpatents

    Kandarian, R.

    The disclosure is directed to a thermal motor utilizing two tapered prestressed parallel adjacent cylinders lengthwise disposed about one third in a coolant. Heat is applied to contacting portions of the cylinders outside the coolant to cause them to deform and turn. Heat sources such as industrial waste heat, geothermal hot water, solar radiation, etc. can be used.

  13. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  14. Does intrinsic motivation enhance motor cortex excitability?

    PubMed

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research.

  15. Gross motor control

    MedlinePlus

    Gross motor control is the ability to make large, general movements (such as waving an arm or lifting a ... Gross motor control is a milestone in the development of an infant. Infants develop gross motor control before they ...

  16. Starting motor

    SciTech Connect

    Tanaka, T.; Hamano, I

    1989-05-23

    This patent describes a starting motor having a housing, planetary reduction gears including an internal gear in the housing. The improvement consists of an elastic member having a first annular portion mounted in engagement with a fixed annular member of the housing and a plurality of protruding axially extending elastic portions providing a corrugated surface pressed into engagement with an end portion of the internal gear, the elastic member being sandwiched between the internal gear and the housing member, the protruding axially extending elastic portions providing resilient means which flex and incline circumferentially under turning force from the internal gear and exert reactive thrust on the internal gear elastically so that the frictional force at the abutting surfaces of the protruding portions holds the internal gear in resilient engagement with the elastic member and the resilient means acts as a buffer to absorb rotary impact force developing in the planetary reduction gears.

  17. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  18. Wind motor

    SciTech Connect

    Biscomb, L. I.

    1985-07-09

    A spider-like carrier having at least three generally horizontal arms has a hub mounted to the vertical, rotary-axis input shaft of a load. Each arm has at least one horizontal cross-arm secured to it near its radially outer end, which is supported from the ground by a low-friction support device such as a wheel or set of wheels. Mounted on each arm at the cross-arm or cross-arms is at least one sail, vane, airfoil or similar working member which is erected or spread generally normally to the wind when the respective arm is located for the working member to be blown downwind and is feathered or headed to the wind when the respective arm is located for the working member to be driven upwind. Horizontal axis and vertical axis journalling options for the working members and various sail shapes are shown, including a concave/convex sail and motor-oriented airfoil shape which provides lift when being driven upwind are shown.

  19. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  20. Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE

    NASA Astrophysics Data System (ADS)

    Örlü, R.; Fiorini, T.; Segalini, A.; Bellani, G.; Talamelli, A.; Alfredsson, P. H.

    2017-03-01

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.

  1. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  2. Energy efficient motors

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This TechData Sheet is intended to help activity personnel identify cost effective energy projects for energy efficient motors. With this guide an energy manager can identify when an energy efficient induction motor should be used.

  3. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  4. Chronic motor tic disorder

    MedlinePlus

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  5. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  6. Piezoelectric ultrasonic motors

    SciTech Connect

    Wallaschek, J.

    1994-12-31

    Piezoelectric ultrasonic motors are a new type of actuator. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. They also provide a high holding torque even if no power is applied. Compared to electromagnetic actuators the torque per volume ratio of piezoelectric ultrasonic motors can be higher by an order of magnitude. Recently various types of piezoelectric ultrasonic motors have been developed for industrial applications. This paper describes several types of piezoelectric ultrasonic motors.

  7. A Reconfigurable Stepping Motor

    NASA Astrophysics Data System (ADS)

    Rogers, Charles; Selvaggi, Richard

    2009-04-01

    Multiphase brushless actuators, commonly known as the stepper motors, are ubiquitous for many precision control applications. Developments in the microelectronics have lead to their use as efficient drive motors for modern electric vehicles. Understanding the physics and the control logic for interfacing these transducers continues to be important for scientists and engineers. An overview of the stepping motor principles and interfacing requirements is presented and a simple working model used to teach the concepts of stepper motors is described and demonstrated. This model was used to design a much larger stepper motor required to precisely rotate a massive optical system in the undergraduate advanced physics laboratory.

  8. Motor/generator

    DOEpatents

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  9. Solid propellant motor

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  10. Accurate torque-speed performance prediction for brushless dc motors

    NASA Astrophysics Data System (ADS)

    Gipper, Patrick D.

    Desirable characteristics of the brushless dc motor (BLDCM) have resulted in their application for electrohydrostatic (EH) and electromechanical (EM) actuation systems. But to effectively apply the BLDCM requires accurate prediction of performance. The minimum necessary performance characteristics are motor torque versus speed, peak and average supply current and efficiency. BLDCM nonlinear simulation software specifically adapted for torque-speed prediction is presented. The capability of the software to quickly and accurately predict performance has been verified on fractional to integral HP motor sizes, and is presented. Additionally, the capability of torque-speed prediction with commutation angle advance is demonstrated.

  11. Piezoceramic Ultrasonic Motor Technology

    SciTech Connect

    Burden, J.S.

    1999-02-24

    The objective of this project was to team Aerotech and AlliedSignal FM and T (AS) to develop a cost-efficient process for small-batch, high performance PZT motor production. Aerotech would acquire the basic process expertise in motor fabrication, assembly, and testing from AS. Together, Aerotech and AS were to identify appropriate process improvements, focusing on raw material quality, manufacturing processes, and durability assessment. Aerotech would then design and build a motor in consultation with AS. Aerotech engineering observed motor manufacturing in the AS piezo lab and worked side by side with AS personnel to build and test a prototype motor to facilitate learning the technology. Using information from AS and hands-on experience with the AS motor drive system enabled Aerotech to design and build its own laboratory drive system to operate motors. The team compiled information to establish a potential piezo motor users' list, and an intellectual property search was conducted to understand current patent and IP (intellectual property) status of motor design. Work was initiated to identify and develop an American source for piezo motor elements; however, due to manpower restraints created by the resignation of the AS Ph.D. ceramist responsible for these tasks, the project schedule slipped. The project was subsequently terminated before significant activities were accomplished. AS did, however, provide Aerotech with contacts in Japanese industry that are willing and capable of supplying them with special design motor elements.

  12. Motor degradation prediction methods

    SciTech Connect

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  13. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  14. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  15. Insertion of Astronomy as a High School Subject. (Spanish Title: Inserción de Astronomia Como Materia del Ciclo Secundario.) Inserção da Astronomia Como Disciplina Curricular do Ensino Médio

    NASA Astrophysics Data System (ADS)

    Dias, Claudio André C. M.; Santa Rita, Josué R.

    2008-12-01

    Astronomy is considered among the first sciences that man dominated, however, the basic skills for the construction of knowledge, relatively to the contents "Earth and the Universe" are not being developed properly for the majority of students concluding the high school level. The students are concluding this teaching cycle without proper knowledge of several subjects in the area of Astronomy, which are mandatory in the national Curricular National Parameters (PCN). Because of this discrepancy, this work stresses the need of the incorporation of a specific subject of Astronomy in the high school, in order to reduce the gap between what is taught and which should be taught. La Astronomía es considerada una de las primeras ciencias que el hombre dominó. Sin embargo, las habilidades básicas para la construcción del conocimento, relativo al eje temático "Tierra y Universo", no vienen siendo trabajadas adecuadamente con la mayoría de los alumnos que concluyen el ciclo escolar medio. Los alumnos están concluyendo este nivel de enseñanza sin conocimentos de varios temas en el área de Astronomía, que son obligatorios según los Parámetros Curriculares Nacionales (PCN). En virtud de esta discrepancia, este trabajo enfatiza la necesidad de incorporar una disciplina específica de Astronomía em el ciclo medio, em pro de la reducción de las distorsiones entre lo que es enseñado y lo que se debe enseñar. A Astronomia é considerada uma das primeiras ciências que o homem dominou, porém as competências básicas para a construção do conhecimento, relativo ao eixo temático "Terra e Universo", não vêm sendo trabalhadas a contento com a maioria dos alunos que concluem o ensino médio. Os alunos estão concluindo este nível de ensino sem conhecimento de vários temas na área de Astronomia, que são obrigatórios nos Parâmetros Curriculares Nacionais (PCN). Em virtude desta discrepância, este trabalho vem evidenciar a necessidade da incorporação de uma

  16. Dissociating motor cortex from the motor

    PubMed Central

    Schieber, Marc H

    2011-01-01

    Abstract During closed-loop control of a brain–computer interface, neurons in the primary motor cortex can be intensely active even though the subject may be making no detectable movement or muscle contraction. How can neural activity in the primary motor cortex become dissociated from the movements and muscles of the native limb that it normally controls? Here we examine circumstances in which motor cortex activity is known to dissociate from movement – including mental imagery, visuo-motor dissociation and instructed delay. Many such motor cortex neurons may be related to muscle activity only indirectly. Furthermore, the integration of thousands of synaptic inputs by individual α-motoneurons means that under certain circumstances even cortico-motoneuronal cells, which make monosynaptic connections to α-motoneurons, can become dissociated from muscle activity. The natural ability of motor cortex neurons under voluntarily control to become dissociated from bodily movement may underlie the utility of this cortical area for controlling brain–computer interfaces. PMID:22005673

  17. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  18. Sensorless, online motor diagnostics

    SciTech Connect

    Kliman, G.B.; Premerlani, W.J.; Yazici, B.; Koegl, R.A.; Mazereeuw, J.

    1997-04-01

    Electric motors play a very important role in the safe and efficient running of any industrial plant. Early detection of abnormalities in the motors will help avoid expensive failures. Motor current signature analysis (MCSA) implemented in a computer-based motor monitor can contribute to such condition-based maintenance functions. Such a system may also detect an abnormality in the process as well as the motor. Extensive online monitoring of the motors can lead to greater plant availability, extended plant life, higher quality product, and smoother plant operation. With advances in digital technology over the last several years, adequate data processing capability is now available on cost-effective, microprocessor-based, protective-relay platforms to monitor motors for a variety of abnormalities in addition to the normal protection functions. Such multifunction monitors, first introduced by Multilin, are displacing the multiplicity of electromechanical devices commonly applied for many years. Following some background information on motor monitoring, this article features recent developments in providing tools for the diagnosis of faults or incipient faults in electric motor drives: Sensorless torque measurement, direct detection of turn-to-turn short circuits, detection of cracked or broken rotor bars, and detection of bearing deterioration.

  19. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  20. Wireless and Powerless Sensing Node System Developed for Monitoring Motors

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798

  1. Ciclovía Participation and Impacts in San Diego, CA: The First CicloSDias

    PubMed Central

    Engelberg, Jessa K.; Carlson, Jordan A.; Black, Michelle L.; Ryan, Sherry; Sallis, James F.

    2014-01-01

    Objective Ciclovía or Open Streets initiatives support physical activity through cycling/rolling, and walking/running. We evaluated San Diego’s first Open Streets event, CicloSDias, to document attendance, reach and marketing, and effects on social cohesion, businesses, and physical activity. Methods The comprehensive evaluation consisted of a city-wide survey 1 week before and after the event (n=805), counts of event attendees, and surveys of event attendees (n=713) and businesses (n=26). Results An estimated 8,311 people attended the event. Attendees had an average of 144 minutes (SD=85) of physical activity, 97% met the 30 minute/day guideline, and 39% met the 150 minute/week guideline during the event. 27% of attendees would have been inactive without the event. Awareness of the event was 10% before and 26% after the event. When comparing event attendees to San Diego residents, Latinos and non-white race/ethnicities were under-represented. Restaurants/pubs, services, and most retail stores excluding liquor stores and food markets reported positive or neutral impacts on business. Conclusion Open Street initiatives are promising ways to promote physical activity and are desired by the community. Positive effects were observed for physical activity, social cohesion, and businesses, though reach should be expanded to include more underserved community members. Evaluating Open Streets is important for sustaining and improving these efforts. PMID:25459488

  2. Advanced Motor and Motor Control Development

    DTIC Science & Technology

    1988-08-01

    dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for

  3. Information on stepping motors

    NASA Astrophysics Data System (ADS)

    Fongarland, G.

    1982-04-01

    The principles of the stepping motors which are often used in servomechanisms are reviewed. Variable reluctance as well as permanent magnet stepping motors are considered. Their operation is explained which includes permanent rotation, starting, stopping, and resonance effects. Several application examples, drawn from problems in automation, are outlined.

  4. Stepping motor controller

    DOEpatents

    Bourret, Steven C.; Swansen, James E.

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  5. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  6. Induction motor control

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  7. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  8. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  9. Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis

    PubMed Central

    Sharma, Nikhil; Baron, Jean-Claude

    2013-01-01

    Introduction: Motor imagery (MI) is the mental rehearsal of a motor first person action-representation. There is interest in using MI to access the motor network after stroke. Conventional fMRI modeling has shown that MI and executed movement (EM) activate similar cortical areas but it remains unknown whether they share cortical networks. Proving this is central to using MI to access the motor network and as a form of motor training. Here we use multivariate analysis (tensor independent component analysis-TICA) to map the array of neural networks involved during MI and EM. Methods: Fifteen right-handed healthy volunteers (mean-age 28.4 years) were recruited and screened for their ability to carry out MI (Chaotic MI Assessment). fMRI consisted of an auditory-paced (1 Hz) right hand finger-thumb opposition sequence (2,3,4,5; 2…) with two separate runs acquired (MI & rest and EM & rest: block design). No distinction was made between MI and EM until the final stage of processing. This allowed TICA to identify independent-components (IC) that are common or distinct to both tasks with no prior assumptions. Results: TICA defined 52 ICs. Non-significant ICs and those representing artifact were excluded. Components in which the subject scores were significantly different to zero (for either EM or MI) were included. Seven IC remained. There were IC's shared between EM and MI involving the contralateral BA4, PMd, parietal areas and SMA. IC's exclusive to EM involved the contralateral BA4, S1 and ipsilateral cerebellum whereas the IC related exclusively to MI involved ipsilateral BA4 and PMd. Conclusion: In addition to networks specific to each task indicating a degree of independence, we formally demonstrate here for the first time that MI and EM share cortical networks. This significantly strengthens the rationale for using MI to access the motor networks, but the results also highlight important differences. PMID:24062666

  10. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  11. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  12. System and method for motor parameter estimation

    DOEpatents

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  13. Advanced motor and motor control development

    NASA Astrophysics Data System (ADS)

    Wuertz, Kenneth L.; Beauchamp, Edward D.

    1988-08-01

    The capability of operating a high speed permanent magnet brushless dc motor with electronic controller over a wide load and speed range was demonstrated. A centrifugal pump was used as the loading mechanism and hydraulic fluid was pumped in simulation of an aircraft engine fuel pump requirement. A motor speed of 45,000 rpm was reached and a maximum output of 68.5 hp was demonstrated. The response of the system to step commands for speed change was established. Reduction of size and weight of electronic control was established as a primary future goal. The program system concept with minor rotating machine improvements is viable for high speed drive applications up to 100-hp level.

  14. Motor Vehicle Safety

    MedlinePlus

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  15. Booster separation motor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The design, development, fabrication, testing, evaluation and flight qualification of the space shuttle booster separation motor is discussed. Delivery of flight hardware to support the research and development flights of the space shuttle is discussed.

  16. MotorWeek

    ScienceCinema

    None

    2016-07-12

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  17. Molecular Motors from DNA

    NASA Astrophysics Data System (ADS)

    Turberfield, Andrew

    2013-03-01

    DNA is a wonderful material for nanoscale construction: its self-assembly can be programmed by making use of its information-carrying capability and its hybridization or hydrolysis can be used as to provide energy for synthetic molecular machinery. With DNA it is possible to design and build three-dimensional scaffolds, to attach molecular components to them with sub-nanometre precision-and then to make them move. I shall describe our work on autonomous, biomimetic molecular motors powered by chemical fuels and the use of synthetic molecular machinery to control covalent chemical synthesis. I shall demonstrate bipedal motors whose operation depends on the coordination of the chemomechanical cycles of two separate catalytic centres and burnt bridges motors that can be programmed to navigate networks of tracks. I shall also discuss the use of kinesin motor proteins to power synthetic devices.

  18. MotorWeek

    SciTech Connect

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  19. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  20. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  1. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  2. Motor Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  3. Maintaining Motor Skill Performance

    DTIC Science & Technology

    1982-06-18

    trials eacb--ac--yIecon- ,, :;. - taed p- --d-t-trias,--P-t- rilk --r. expermenter-difie-d- ovementu con- strained by the stop. The distance between...processing in motor control-i ... and -laIg- e-rr--’- cae -clrsj--98 I Y. ag.L., K. A., & D5oWe-l, M. R. Serial-position effects in motor short-! term

  4. Development Motor-8

    NASA Technical Reports Server (NTRS)

    1980-01-01

    One of the key tests in the effort to return the Space Shuttle to flight following the Challenger accident was testing the development Motor-8 (DM-8). The 126-foot long, 1.2-million-pound motor, designated DM-8, underwent a full-duration horizontal test firing for two minutes at the Thiokol test facility in Utah. It was fitted with more than 500 instruments to measure such things as acceleration, pressure, deflection thrust, strain, temperature, and electrical properties.

  5. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  6. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  7. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  8. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1990-01-01

    Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.

  9. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  10. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  11. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  12. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  13. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  14. Tuning Multiple Motor Travel Via Single Motor Velocity

    PubMed Central

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  15. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  16. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  17. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b)...

  18. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  19. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  20. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  1. Electric motor model repair specifications

    SciTech Connect

    1995-08-01

    These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

  2. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  3. Perceptual-Motor Dysfunction.

    ERIC Educational Resources Information Center

    Pyfer, Jean L.

    Discussed are theoretical and treatment aspects of perceptual motor dysfunction and rehabilitation in 4- to 12-year-old academically failing children involved in a 3-year investigation at the University of Kansas. The program is said to stress increasing the amount of stimulation received by sensory receptors of the vestibular, reflex, and haptic…

  4. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  5. The St. Louis Motor

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2011-01-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock…

  6. Tandem motors reduce well costs

    SciTech Connect

    Hooper, M.; Daigle, C.; Crowe, R.

    1995-10-01

    The new generation of tandem mud motors that recently appeared on the drilling scene is significantly affecting drilling efficiency worldwide. These motors provide drillers with increased horsepower at the bit, higher torque, and faster rates of penetration (ROP). With advanced engineering and more durable materials, motor life is being extended, thereby increasing the time between bit trips and reducing drilling costs. This article reviews the performance, design, and operation of these motors.

  7. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  8. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  9. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  10. Brushless direct-current motors

    NASA Technical Reports Server (NTRS)

    Bahm, E. J.

    1970-01-01

    Survey results are presented on the use of unconventional motor windings and switching sequences to optimize performance of brushless dc motors. A motor was built, each coil terminal having a separate, accessible lead. With the shaft and all electronics excluded, length and outside diameter measured 1.25 and 0.75 in., respectively.

  11. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  12. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  13. Motor sequence learning and motor adaptation in primary cervical dystonia.

    PubMed

    Katschnig-Winter, Petra; Schwingenschuh, Petra; Davare, Marco; Sadnicka, Anna; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2014-06-01

    Motor sequence learning and motor adaptation rely on overlapping circuits predominantly involving the basal ganglia and cerebellum. Given the importance of these brain regions to the pathophysiology of primary dystonia, and the previous finding of abnormal motor sequence learning in DYT1 gene carriers, we explored motor sequence learning and motor adaptation in patients with primary cervical dystonia. We recruited 12 patients with cervical dystonia and 11 healthy controls matched for age. Subjects used a joystick to move a cursor from a central starting point to radial targets as fast and accurately as possible. Using this device, we recorded baseline motor performance, motor sequence learning and a visuomotor adaptation task. Patients with cervical dystonia had a significantly higher peak velocity than controls. Baseline performance with random target presentation was otherwise normal. Patients and controls had similar levels of motor sequence learning and motor adaptation. Our patients had significantly higher peak velocity compared to controls, with similar movement times, implying a different performance strategy. The preservation of motor sequence learning in cervical dystonia patients contrasts with the previously observed deficit seen in patients with DYT1 gene mutations, supporting the hypothesis of differing pathophysiology in different forms of primary dystonia. Normal motor adaptation is an interesting finding. With our paradigm we did not find evidence that the previously documented cerebellar abnormalities in cervical dystonia have a behavioral correlate, and thus could be compensatory or reflect "contamination" rather than being directly pathological.

  14. Variation in motor output and motor performance in a centrally generated motor pattern.

    PubMed

    Wenning, Angela; Norris, Brian J; Doloc-Mihu, Anca; Calabrese, Ronald L

    2014-07-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved.

  15. Motor technology for mining applications advances

    SciTech Connect

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  16. Modelo de atmosfera solar ajustado às observações do raio solar em 17GHz

    NASA Astrophysics Data System (ADS)

    Selhorst, C. L.; Silva, A. V. R.; Costa, J. E. R.

    2003-08-01

    O estudo das variações do raio solar durante o ciclo de atividades do Sol e das diferenças em relação à sua distribuição angular nos fornece informações importantes sobre as mudanças na estrutura da atmosfera solar. Neste trabalho foram analisados mais de 3600 mapas do Sol em 17 GHz obtidos pelo Rádio Heliógrafo de Nobeyama (NoRH), durante 1 ciclo de atividade solar (1992-2003). O raio solar foi definido no ponto onde a temperatura de brilho do mapa era equivalente à metade da temperatura do Sol calmo (temperatura mais comum no mapa).Em relação à sua variação ao longo do ciclo solar, o estudo foi dividido em duas partes: a) ajuste de uma circunferência a pontos distribuídos ao redor do Sol todo. Este estudo mostrou uma variação correlacionada com o ciclo de atividade do Sol. b) ajuste da circunferência a pontos situados somente nas regiões polares. Neste caso os resultados mostraram que o raio polar sofre pouca variação durante o ciclo, com tendência à anticorrelação com este. Além disto, a média do raio polar, durante o período analisado, foi 1" menor que o raio medido no Sol todo. Para estudar a distribuição angular do raio solar, comparamos a média da distribuição de 10 mapas no período de mínima atividade solar com a média de 10 mapas no período de máximo, este estudo mostrou um grande aumento do raio na região equatorial no período de máxima atividade solar. As medidas do raio foram usadas como um dos parâmetros para a criação de um modelo atmosférico (além da temperatura de brilho do Sol e do abrilhantamento do limbo observado), onde mostramos que um modelo atmosférico com a região de transição situada a 3500 km fornece um raio 5" menor que as medidas observacionais. Esta incompatibilidade do modelo com os dados observacionais foi contornada com a inclusão de espículas, estas fazem com que o raio solar aumente proporcionalmente à altura que estas atingem na atmosfera solar. A anticorrelação do raio

  17. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  18. Molecular Motors and Stochastic Models

    NASA Astrophysics Data System (ADS)

    Lipowsky, Reinhard

    The behavior of single molecular motors such as kinesin or myosin V, which move on linear filaments, involves a nontrivial coupling between the biochemical motor cycle and the stochastic movement. This coupling can be studied in the framework of nonuniform ratchet models which are characterized by spatially localized transition rates between the different internal states of the motor. These models can be classified according to their functional relationships between the motor velocity and the concentration of the fuel molecules. The simplest such relationship applies to two subclasses of models for dimeric kinesin and agrees with experimental observations on this molecular motor.

  19. Prospective errors determine motor learning

    PubMed Central

    Takiyama, Ken; Hirashima, Masaya; Nozaki, Daichi

    2015-01-01

    Diverse features of motor learning have been reported by numerous studies, but no single theoretical framework concurrently accounts for these features. Here, we propose a model for motor learning to explain these features in a unified way by extending a motor primitive framework. The model assumes that the recruitment pattern of motor primitives is determined by the predicted movement error of an upcoming movement (prospective error). To validate this idea, we perform a behavioural experiment to examine the model’s novel prediction: after experiencing an environment in which the movement error is more easily predictable, subsequent motor learning should become faster. The experimental results support our prediction, suggesting that the prospective error might be encoded in the motor primitives. Furthermore, we demonstrate that this model has a strong explanatory power to reproduce a wide variety of motor-learning-related phenomena that have been separately explained by different computational models. PMID:25635628

  20. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1992-01-01

    A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.

  1. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  2. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  3. The St. Louis Motor

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2011-10-01

    The St. Louis Motor, invented in 1909, is unique among physics apparatus for being named for a geographical place rather than a physicist. The sturdy little device (Fig. 1) has never been out of production. Any older school or physics department that has not done a catastrophic housecleaning in the last 20 years will certainly have a small flock of them in the back room.

  4. Motor neurone disease.

    PubMed

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  5. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2004-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  6. Libert-E Motor

    ERIC Educational Resources Information Center

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  7. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2008-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

  8. EPDM rocket motor insulation

    NASA Technical Reports Server (NTRS)

    Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

    2003-01-01

    A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

  9. Dyspraxia, motor function and visual-motor integration in autism.

    PubMed

    Miller, M; Chukoskie, L; Zinni, M; Townsend, J; Trauner, D

    2014-08-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis.

  10. Motor Fuel Excise Taxes

    SciTech Connect

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  11. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  12. Coordinated Switching of Bacterial Flagellar Motors: Evidence for Direct Motor-Motor Coupling?

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Tu, Yuhai

    2013-04-01

    The swimming of Escherichia coli is powered by its multiple flagellar motors. Each motor spins either clockwise or counterclockwise, under the control of an intracellular regulator, CheY-P. There can be two mechanisms (extrinsic and intrinsic) to coordinate the switching of bacterial motors. The extrinsic one arises from the fact that different motors in the same cell sense a common input (CheY-P) which fluctuates near the motors’ response threshold. An alternative, intrinsic mechanism is direct motor-motor coupling which makes synchronized switching energetically favorable. Here, we develop simple models for both mechanisms and uncover their different hallmarks. A quantitative comparison to the recent experiments suggests that the direct coupling mechanism may be accountable for the observed sharp correlation between motors in a single Escherichia coli. Possible origins of this coupling (e.g., hydrodynamic interaction) are discussed.

  13. Wind motor applications for transportation

    SciTech Connect

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B.

    1996-12-31

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  14. Comparison of capabilities of reluctance synchronous motor and induction motor

    NASA Astrophysics Data System (ADS)

    Štumberger, Gorazd; Hadžiselimović, Miralem; Štumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradišnik, Ivan

    2006-09-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements.

  15. Sensory change following motor learning.

    PubMed

    Mattar, Andrew A G; Nasir, Sazzad M; Darainy, Mohammad; Ostry, David J

    2011-01-01

    Here we describe two studies linking perceptual change with motor learning. In the first, we document persistent changes in somatosensory perception that occur following force field learning. Subjects learned to control a robotic device that applied forces to the hand during arm movements. This led to a change in the sensed position of the limb that lasted at least 24 h. Control experiments revealed that the sensory change depended on motor learning. In the second study, we describe changes in the perception of speech sounds that occur following speech motor learning. Subjects adapted control of speech movements to compensate for loads applied to the jaw by a robot. Perception of speech sounds was measured before and after motor learning. Adapted subjects showed a consistent shift in perception. In contrast, no consistent shift was seen in control subjects and subjects that did not adapt to the load. These studies suggest that motor learning changes both sensory and motor function.

  16. Sport expert's motor imagery: functional imaging of professional motor skills and simple motor skills.

    PubMed

    Wei, Gaoxia; Luo, Jing

    2010-06-23

    Numerous studies provide evidence that motor skill acquisition is associated with dynamic changes in cortical and subcortical regions. Athletes are a professional population who are engaged in extensive motor training for long periods. However, the neural substrates of extreme level motor performance have not been clarified. We used kinesthetic imagery task to induce the mental representation of sport expert's extraordinary performance in view of the shared substrates of executing movement and motor imagery. For the first time, we compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 12 professional divers and 12 normal people without extensive training, during imagery of professional skills and imagery of simple motor skills. The sport experts showed significant activation in the parahippocampus during imagery of professional skills relative to the novices, which might reflect the representation adapted to experience-related motor tasks. No significant difference was found between experts and novices when they imagined simple motor skills. These results indicated the experts might utilize their kinesthetic imagery more efficiently than novices, but only for the activity in which they had expertise. The sport experts also demonstrated more focused activation patterns in prefrontal areas in both of imagery tasks, which may be relevant to higher order of motor control during motor imagery. Moreover, this study suggested that the brains of sport experts could be regarded as the ideal subjects to explore the relationship between cerebral plasticity and learning of complex motor skills.

  17. Dissociation of motor maturation.

    PubMed

    DiMario, Francis J

    2003-06-01

    We prospectively acquired clinical data regarding the presentation, evaluation, and developmental progress of all patients identified with dissociated motor maturation to define their clinical outcomes. Children (N = 8) referred for evaluation of suspected cerebral palsy because of delayed sitting or walking and identified to have dissociated motor maturation were followed with serial clinical examination. All displayed the characteristic "sitting on air" posture while held in vertical suspension and had otherwise normal developmental assessments. This posture is composed of the hips held in flexion and abduction with the knees extended and feet plantar or dorsiflexed. Three children were initially evaluated at 10 months of age owing to absence of sitting and five other children were evaluated at a mean of 14 months (range 12-19 months) owing to inability to stand. Follow-up evaluations were conducted over a mean of 10.5 months (range 5-34 months). Five children were born prematurely at 34 to 36 weeks gestation. Denver Developmental Screening Test and general and neurologic examinations were normal except to note hypotonia in six children and the "sitting on air" posture in all of the children. Four children have older siblings or parents who "walked late" (after 15 months). On average, the children attained sitting by 8 months (range 7-10 months). One child did not crawl prior to independent walking, two children scooted rather than crawled, and five children crawled at an average of 13.5 months (range 10-16 months). All children cruised by a mean of 18 months (range 16-21.5 months) and attained independent walking by 20.1 months (range 18-25 months). Neuroimaging and serum creatine kinase enzyme testing were normal in two children who were tested. These eight children conform to the syndrome of dissociated motor maturation. The "sitting on air" posture serves as a diagnostic sign and anticipated excellent prognosis, but follow-up is required to ensure a normal

  18. Electric motor analysis at Dofasco

    SciTech Connect

    Brooks, D.; Morgan, V.A.; Nicholas, J.R. Jr.

    1997-03-01

    Initiatives adopted by Dofasco to enhance electric motor reliability and availability include: Enhancement of the electrical repair shop testing and repair capabilities; More stringent standards for motor repair service vendors; Application of predictive technologies to motors in service within manufacturing units; Training of personnel in electrical predictive condition monitoring and analysis methods; and Periodic audit and comparison of central support and operating unit predictive technology application and integration. The basis for the initiative is discussed together with illustrative case histories.

  19. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  20. Motor timing under microgravity.

    PubMed

    Semjen, A; Leone, G; Lipshits, M

    1998-01-01

    Five participants were tested on their ability to produce accurate and regular inter-response intervals in the 350 to 530 ms time range. Three of them were members of the French-Russian CASSIOPEE 96 spaceflight mission, and the other two were control subjects tested on the ground. During spaceflight, the target inter-response intervals were increasingly undershot and the timing became more variable (less regular). The increase in the timing variability was mostly attributable to the internal timekeeping processes rather than those involved in motor execution. The results are discussed with reference to the physiological mechanisms possibly underlying the timing of fast serial movements.

  1. 76 FR 12792 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY: National Highway Traffic.... SUMMARY: This document grants in full the petition of General Motors Corporation's (GM) petition for...

  2. Motor power control circuit for ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A motor power control of the type which functions by controlling the power factor wherein one of the parameters of power factor current on time is determined by the on time of a triac through which current is supplied to the motor. By means of a positive feedback circuit, a wider range of control is effected.

  3. 27. View, looking north, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View, looking north, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. Motor vehicle drivers' injuries in train-motor vehicle crashes.

    PubMed

    Zhao, Shanshan; Khattak, Aemal

    2015-01-01

    The objectives of this research were to: (1) identify a more suitable model for modeling injury severity of motor vehicle drivers involved in train-motor vehicle crashes at highway-rail grade crossings from among three commonly used injury severity models and (2) to investigate factors associated with injury severity levels of motor vehicle drivers involved in train-motor vehicle crashes at such crossings. The 2009-2013 highway-rail grade crossing crash data and the national highway-rail crossing inventory data were combined to produce the analysis dataset. Four-year (2009-2012) data were used for model estimation while 2013 data were used for model validation. The three injury severity levels-fatal, injury and no injury-were based on the reported intensity of motor-vehicle drivers' injuries at highway-rail grade crossings. The three injury severity models evaluated were: ordered probit, multinomial logit and random parameter logit. A comparison of the three models based on different criteria showed that the random parameter logit model and multinomial logit model were more suitable for injury severity analysis of motor vehicle drivers involved in crashes at highway-rail grade crossings. Some of the factors that increased the likelihood of more severe crashes included higher train and vehicle speeds, freight trains, older drivers, and female drivers. Where feasible, reducing train and motor vehicle speeds and nighttime lighting may help reduce injury severities of motor vehicle drivers.

  5. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed Central

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614

  6. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.

  7. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation.

  8. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  9. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  10. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  11. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  12. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or...

  13. Genetic heterogeneity of motor neuropathies

    PubMed Central

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G.; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F.

    2017-01-01

    Objective: To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Methods: Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). Results: The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62–2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Conclusions: Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. PMID:28251916

  14. Advanced solid propellant motor insulation

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Russ, R. F.

    1972-01-01

    An advanced lightweight insulation system suitable for use in long duration, low pressure planetary orbiter-type motor applications was developed. Experiments included the screening of various filler and binder materials with optimization studies combining the best of each. Small scale test motor data were used to judge the degree of success.

  15. Computational approaches to motor control.

    PubMed

    Flash, T; Sejnowski, T J

    2001-12-01

    New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors.

  16. Motors and Bulbs in Series

    ERIC Educational Resources Information Center

    Whitaker, Robert J.

    2009-01-01

    One of Paul Hewitt's "Figuring Physics" that appeared in this journal dealt with the heating of a motor. This phenomenon can be demonstrated with a miniature motor and a bulb as part of a series of activities with "batteries and bulbs." Students examine the effect on the brightness of a single bulb when a second, identical bulb is placed in series…

  17. Motor Coordination and Executive Functions

    ERIC Educational Resources Information Center

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  18. Conical Bearingless Motor/Generators

    NASA Technical Reports Server (NTRS)

    Kascak, P.; Jansen, R.; Dever, T.

    2008-01-01

    Motor/generators based on conical magnetic bearings have been invented as an improved alternative to prior such machines based, variously, on radial and/or axial magnetic bearings. Both the present and prior machines are members of the class of so-called bearingless or self bearing (in the sense of not containing mechanical bearings) rotary machines. Each motor/generator provides both a torque and force allowing it to either function as a motor and magnetic bearing or a generator and magnetic bearing concurrently. Because they are not subject to mechanical bearing wear, these machines have potentially long operational lives and can function without lubrication and over wide ranges of speed and temperature that include conditions under which lubricants would become depleted, degraded, or ineffective and mechanical bearings would fail. The figure shows three typical configurations of conical bearingless motor/generators. The main elements of each motor/generator are concentric rotor and stator portions having conically tapered surfaces facing each other across a gap. Because a conical motor/generator imposes both radial and axial magnetic forces, it acts, in effect, as a combination of an axial and a radial magnetic bearing. Therefore, only two conical motor/generators - one at each end of a rotor - are needed to effect complete magnetic leviation of the rotor, whereas previously, it was necessary to use a combination of an axial and a radial magnetic bearing at each end of the rotor to achieve complete magnetic levitation and a separate motor to provide torque.

  19. Power control for ac motor

    NASA Technical Reports Server (NTRS)

    Dabney, R. W. (Inventor)

    1984-01-01

    A motor controller employing a triac through which power is supplied to a motor is described. The open circuit voltage appearing across the triac controls the operation of a timing circuit. This timing circuit triggers on the triac at a time following turn off which varies inversely as a function of the amplitude of the open circuit voltage of the triac.

  20. Individualized Motor-Perceptual Study.

    ERIC Educational Resources Information Center

    Portland Public Schools, OR.

    This guide is being used in the Individualized Motor-Perceptual Study to determine whether working directly with kindergarten children to improve performance on motor-perceptual tasks will affect reading ability at the end of grades one, two, and three. The 5-year project involves six schools. In this guide, there are tips for teaching, suggested…

  1. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  2. High efficiency motor rewind study

    NASA Astrophysics Data System (ADS)

    Wallace, A. K.; Spee, R.

    1991-02-01

    The objective of performing this work was to evaluate a new technology used for rewinding electric motors. Motor performance evaluation was conducted at the motor test facility at Oregon State University. The test program consisted of comparing new high efficiency motor technology and standard rewind technology with the Unity-Plus system. The Unity-Plus configuration exhibited reduced efficiency over the complete load range compared to the other motors. Appropriately sized capacitors connected to the terminals of the conventional induction motor produced the same power factor improvement as the Unity-Plus system. Torque production and torque pulsation were very similar for all systems. The Unity-Plus configuration drew lower starting currents but the duration of the starting transient was increased. Motor temperature rise was about the same for all systems. Noise levels were about the same in all systems. Although determination of time to failure was not undertaken, the expected lifetime of the Unit-Plus system is probably less due to higher capacitor stress and higher insulation stress. The investigation concludes that a conventional induction motor with terminal capacitors is the most acceptable way of obtaining good efficiency and power factor and the Unity-Plus system cannot be recommended on the basis of any of the evaluation criteria used in this study.

  3. Activities for a Perceptual Motor Program.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  4. Industrial motor repair in the United States

    SciTech Connect

    Schueler, V.; Leistner, P.; Douglass, J.

    1994-09-01

    This report characterizes the motor repair industry in the United States; summarizes current motor repair and testing practice; and identifies barriers to energy motor repair practice and recommends strategies for overcoming those barriers.

  5. An interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix

    We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.

  6. Motor-operated gearbox efficiency

    SciTech Connect

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  7. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  8. DNA based molecular motors

    NASA Astrophysics Data System (ADS)

    Michaelis, Jens; Muschielok, Adam; Andrecka, Joanna; Kügel, Wolfgang; Moffitt, Jeffrey R.

    2009-12-01

    Most of the essential cellular processes such as polymerisation reactions, gene expression and regulation are governed by mechanical processes. Controlled mechanical investigations of these processes are therefore required in order to take our understanding of molecular biology to the next level. Single-molecule manipulation and force spectroscopy have over the last 15 years been developed into extremely powerful techniques. Applying these techniques to the investigation of proteins and DNA molecules has led to a mechanistic understanding of protein function on the level of single molecules. As examples for DNA based molecular machines we will describe single-molecule experiments on RNA polymerases as well as on the packaging of DNA into a viral capsid-a process that is driven by one of the most powerful molecular motors.

  9. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  10. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  11. Reciprocating linear motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  12. Atypical motor neuron disease and related motor syndromes.

    PubMed

    Verma, A; Bradley, W G

    2001-06-01

    There is an imperative need for the early diagnosis of amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) in the current era of emerging treatments. When evaluating the patient with ALS/MND, the neurologist must consider a number of other motor neuron disorders and related motor syndromes that may have clinical features resembling ALS/MND. The revised Airlie House-El Escorial diagnostic criteria have been established through the consensus of experts meeting at workshops. However, by definition, using these criteria a patient is likely to have fairly advanced disease at the time of a definitive ALS/MND diagnosis. The reasons for the difficulty in making an early ALS/MND diagnosis are several. No surrogate diagnostic marker currently exists for ALS/MND. ALS/MND at its onset is heterogeneous in clinical presentation, its clinical course is variable, and several clinical variants are recognized. In addition, certain motor syndromes, such as monomelic amyotrophy, postpolio muscular atrophy, and multifocal motor neuropathy, can clinically mimic ALS/MND. Therefore, not only may the diagnosis of ALS/MND be clinically missed in the early stages, but worse, the patient may be wrongly labeled as having ALS/MND. The diagnosis of ALS/MND requires a combination of upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Motor syndromes in which the deficit is restricted to the UMN or LMN through the entire course of the disease are described as atypical MND in this review. Approximately 5% of patients with ALS/MND have overt dementia with a characteristic frontal affect. ALS/MND with parkinsonism and dementia is rare outside the western Pacific region. The clinical course of motor disorder in these overlap syndromes does not differ from that in typical ALS/MND.

  13. Optimization and Verification of a Brushless DC-Motor for Cryogenic Mechanisms

    NASA Astrophysics Data System (ADS)

    Eggens, M.; van Loon, D.; Smit, H. P.; Jellema, W.; Dieleman, P.; Detrain, A.; Stokroos, M.; Nieuwenhuizen, A. C. T.

    2013-09-01

    In this paper we report on the results of the investigation on the feasibility of a cryogenic motor for a Filter Wheel Mechanism (FWM) for the instrument SpicA FAR-infrared Instrument (SAFARI). The maximum allowed dissipation of 1 mW is a key requirement, as a result of the limited cooling resources of the satellite. Therefore a quasi 3D electromagnetic (EM) model of a Brushless DC (BLDC) motor has been developed. To withstand the severe launch loads a mechanical concept has been designed to limit the friction torque in the bearings. The model was verified by room temperature and cryogenic measurements on an existing motor from the test setup. The model shows that the proposed BLDC motor design fulfills the requirements.

  14. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  15. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  16. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  17. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  18. The mechanochemistry of molecular motors.

    PubMed Central

    Keller, D; Bustamante, C

    2000-01-01

    A theory of molecular motors is presented that explains how the energy released in single chemical reactions can generate mechanical motion and force. In the simplest case the fluctuating movements of a motor enzyme are well described by a diffusion process on a two-dimensional potential energy surface, where one dimension is a chemical reaction coordinate and the other is the spatial displacement of the motor. The coupling between chemistry and motion results from the shape of the surface, and motor velocities and forces result from diffusion currents on this surface. This microscopic description is shown to possess an equivalent kinetic mechanism in which the rate constants depend on externally applied forces. By using this equivalence we explore the characteristic properties of several broad classes of motor mechanisms and give general expressions for motor velocity versus load force for any member of each class. We show that in some cases simple plots of 1/velocity vs. 1/concentration can distinguish between classes of motor mechanisms and may be used to determine the step at which movement occurs. PMID:10653770

  19. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  20. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The paper describes the Advanced Solid Rocket Motor (ASRM) that is being developed to replace, in 1997, the Redesigned Solid Rocket Motor which currently boosts the Space Shuttle. The ASRM will contain features to improve motor safety (fewer potential leak paths, improved seal materials, stronger case material, and fewer nozzle and case joints), an improved ignition system using through-bulkhead initiators, and highly reproducible manufacturing and inspection techniques with a large number of automated procedures. The ASRM will be able to deliver 12,000 lbs greater payloads to any given orbit of the Shuttle. There are also environmental improvements, realized by waste propellant recovery.

  1. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  2. 26. View, looking east, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. View, looking east, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. The U-bolt and concrete deadman which anchors the cable of the tramway is to the right. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    SciTech Connect

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  4. EMS Student Handbook.

    ERIC Educational Resources Information Center

    Ogle, Patrick

    This student guide is one of a series of self-contained materials for students enrolled in an emergency medical services (EMS) training program. Discussed in the individual sections of the guide are the following topics: the purpose and history of EMS professionals; EMS training, certification and examinations (national and state certification and…

  5. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  6. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  7. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  8. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  9. Mechanical thermal motor

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1976-01-01

    An apparatus is described for converting thermal energy such as solar energy into mechanical motion for driving fluid pumps and similar equipment. The thermal motor comprises an inner concentric cylinder carried by a stationary core member. The core member has a cylindrical disc plate fixed adjacent to a lower portion and extending radially from it. An outer concentric cylinder rotatably carried on the disc plate defining a space between the inner and outer concentric cylinders. A spiral tubular member encircles the inner concentric cylinder and is contained within the space between the inner and outer cylinders. One portion is connected to the inner concentric cylinder and a second portion connected to the outer concentric cylinder. A heated fluid is conveyed through the tubular member and is periodically cooled causing the tubular member to expand and contract. This causes the outer concentric cylinder to reciprocally rotate on the base plate accordingly. The reciprocating motion of the outer concentric cylinder is then utilized to drive a pump member in a pump chamber.

  10. Motor proteins 1: kinesins.

    PubMed

    Bloom, G S; Endow, S A

    1995-01-01

    Progress regarding the kinesins is now being made at a rapid and accelerating rate. The in vivo-functions, and biophysical and enzymatic properties of kinesin itself are being explored at ever increasing levels of detail. The kinesin-related proteins now number several dozen, and although more is known about primary structure than function for most of the proteins, this trend is already reversing. For example, knowledge about the kinesin-related protein, ncd, is expanding rapidly, and more is already known about its three-dimensional structure than is known for kinesin heavy chain. This volume presents a comprehensive review of the major published works on kinesin and kinesin-related proteins. Hopefully, this manuscript will complement other recent review articles [17, 20, 25, 37, 60-62, 67, 69, 75, 85-88, 231, 233, 238, 244, 269-271, 281, 282, 292] or books [49, 227, 293] that have focused on more selective aspects of the kinesin family, or have been aimed more generally at MT motor proteins. In line with the stated purpose of the Protein Profile series, annual updates of the review on the kinesins are planned for at least the next few years.

  11. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A magnetic bearing for passively suspending a rotatable element subjected to axial and radial thrust forces is disclosed. The magnetic bearing employs a taut wire stretched along the longitudinal axis of the bearing between opposed end pieces and an intermediate magnetic section. The intermediate section is segmented to provide oppositely directed magnetic flux paths between the end pieces and may include either an axially polarized magnets interposed between the segments. The end pieces, separated from the intermediate section by air gaps, control distribution of magnetic flux between the intermediate section segments. Coaxial alignment of the end pieces with the intermediate section minimizes magnetic reluctance in the flux paths endowing the bearing with self-centering characteristics when subjected to radial loads. In an alternative embodiment, pairs of oppositely wound armature coils are concentrically interposed between segments of the intermediate section in concentric arcs adjacent to radially polarized magnets to equip a magnetic bearing as a torsion drive motor. The magnetic suspension bearing disclosed provides long term reliability without maintenance with application to long term space missions such as the VISSR/VAS scanning mirror instrument in the GOES program.

  12. Controlled wind motor

    SciTech Connect

    Boswell, F.A.

    1983-12-27

    A mechanical sail including a rotatable mast, the mast including a top vane mount and a bottom vane mount, the mounts being spaced from each other on the mast and rotatable therewith, a series of rotatable vanes spaced from and surrounding the mast and supported by and between the mounts, cam operaters extending between the mounts and connected to the vanes for controlling the rotation of the vanes, a first controller associated with the mast below the bottom vane mount for controlling the cam operators, the first controller being movable vertically with respect to the mast, a second controller for moving the first controller vertically with respect to the mast, the vanes being flexible and bowed outwardly, the bottom vane mount being movable with respect to the mast and connected to the second controller whereby when the second controller is operated, the bottom vane mount will move toward the top vane mount causing the vanes to bow outwardly at a desired arc and whereby when the first controller is moved, the vanes are caused to rotate to the desired angle of attack with respect to wind velocity and direction. When the sail is connected to a motor drive, the vessel may be driven forward or rearward depending on the angle of attack of the vanes through 180/sup 0/.

  13. Plasma motor generator system

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.

  14. Small Solid Rocket Motor Test

    NASA Video Gallery

    It was three-two-one to brilliant fire as NASA's Marshall Space Flight Center tested a small solid rocket motor designed to mimic NASA's Space Launch System booster. The Mar. 14 test provides a qui...

  15. Battery powererd electric motor vehicle

    SciTech Connect

    Muhlbacker, K.

    1984-02-28

    A battery powered vehicle is provided with a vehicle frame and an electric motor whose main shaft is connected to a differential gear by means of a gear train with a variable transmission ratio, the motor shaft and all gear shafts being parallel to the axle of the driving wheels. In order to achieve a compact design and to avoid power-consuming drive elements the electric motor and the variable transmission gear as well as a potential reducing gear mounted between the latter and the differential gear, are positioned on a subframe which is connected to the housing of the driving wheel axle on the one side whereas the other side carrying the electric motor is attached to the vehicle frame by means of a cardanic suspension.

  16. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  17. Motor Activity Improves Temporal Expectancy

    PubMed Central

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  18. Solid rocket motor internal insulation

    NASA Technical Reports Server (NTRS)

    Twichell, S. E. (Editor); Keller, R. B., Jr.

    1976-01-01

    Internal insulation in a solid rocket motor is defined as a layer of heat barrier material placed between the internal surface of the case propellant. The primary purpose is to prevent the case from reaching temperatures that endanger its structural integrity. Secondary functions of the insulation are listed and guidelines for avoiding critical problems in the development of internal insulation for rocket motors are presented.

  19. Meissner-Effect Stepping Motor

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1991-01-01

    Proposed stepping motor derives torque from diamagnetic repulsion produced by Meissner effect - exclusion of magnetic field from interior of superconductor. Design of motor takes advantage of silver-doped YB2Cu3O and other compounds superconductive at temperatures as high as that of liquid nitrogen. Skin of rotor cooled below its superconducting-transition temperature by liquid nitrogen. O-rings prevent leaks of liquid nitrogen from rotor. Weight, cost, and maintenance reduced.

  20. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  1. A soft and dexterous motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Tse, Tony Chun Hin; Inamura, Tokushu; O'Brien, Benjamin M.; McKay, Thomas; Gisby, Todd

    2011-03-01

    We present a soft, bearing-free artificial muscle motor that cannot only turn a shaft but also grip and reposition it through a flexible gear. The bearing-free operation provides a foundation for low complexity soft machines, with multiple degree-of-freedom actuation, that can act simultaneously as motors and manipulators. The mechanism also enables an artificial muscle controlled gear change. Future work will include self-sensing feedback for precision, multidegree-of-freedom operation.

  2. Advanced Motor-Controller Development.

    DTIC Science & Technology

    1983-06-22

    which document the three stages of develop- _ - fment. "U Volume Summary A. Phase I Report Flux Synthesis and PWM Synthesis Techniques Theory and...Three Phase Power Bridge and Evaluation of Motor Controller Volume Summary The three reports assembled in this votume represent work performed...1963-A * I ADVANCED MOTOR-CONTROLLER * DEVELOPMENT Final Report for Period October 1979 - June 1983 June 22, 1983 Report DTNSRDC-PASD-CR-1-83

  3. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  4. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  5. Direct drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  6. 29 CFR 1926.601 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Motor vehicles. 1926.601 Section 1926.601 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.601 Motor vehicles. (a) Coverage. Motor vehicles as covered by this part are those...

  7. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motors. 18.34 Section 18.34 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in...

  8. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Motors. 18.34 Section 18.34 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in...

  9. 29 CFR 1926.601 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Motor vehicles. 1926.601 Section 1926.601 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.601 Motor vehicles. (a) Coverage. Motor vehicles as covered by this part are those...

  10. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  11. EM International. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  12. LTD, RP, and Motor Learning.

    PubMed

    Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji

    2016-02-01

    Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks.

  13. Sensory plasticity in human motor learning

    PubMed Central

    Ostry, David J; Gribble, Paul L

    2015-01-01

    Summary There is accumulating evidence from behavioural, neurophysiological and neuroimaging studies that the acquisition of motor skills involves both perceptual and motor learning. Perceptual learning alters movements, motor learning and motor networks of the brain. Motor learning changes perceptual function and the brain’s sensory circuits. Here we review studies of both human limb movement and speech which indicate that plasticity in sensory and motor systems is reciprocally linked. Taken together, this points to an approach to motor learning in which perceptual learning and sensory plasticity play a fundamental role. PMID:26774345

  14. Sensory Plasticity in Human Motor Learning.

    PubMed

    Ostry, David J; Gribble, Paul L

    2016-02-01

    There is accumulating evidence from behavioral, neurophysiological, and neuroimaging studies that the acquisition of motor skills involves both perceptual and motor learning. Perceptual learning alters movements, motor learning, and motor networks of the brain. Motor learning changes perceptual function and the sensory circuits of the brain. Here, we review studies of both human limb movement and speech that indicate that plasticity in sensory and motor systems is reciprocally linked. Taken together, this points to an approach to motor learning in which perceptual learning and sensory plasticity have a fundamental role.

  15. Supplementary motor area (SMA) volume is associated with psychotic aberrant motor behaviour of patients with schizophrenia.

    PubMed

    Stegmayer, Katharina; Horn, Helge; Federspiel, Andrea; Razavi, Nadja; Bracht, Tobias; Laimböck, Karin; Strik, Werner; Dierks, Thomas; Wiest, Roland; Müller, Thomas J; Walther, Sebastian

    2014-07-30

    We aimed to investigate whether aberrant motor behavior in schizophrenia was associated with structural alterations in the motor system. Whole brain voxel based morphometry of patients with different severity of motor symptoms identified altered gray matter volume in the supplementary motor area (SMA), a key region of the motor system.

  16. The Infant Motor Profile: A Standardized and Qualitative Method to Assess Motor Behaviour in Infancy

    ERIC Educational Resources Information Center

    Heineman, Kirsten R.; Bos, Arend F.; Hadders-Algra, Mijna

    2008-01-01

    A reliable and valid instrument to assess neuromotor condition in infancy is a prerequisite for early detection of developmental motor disorders. We developed a video-based assessment of motor behaviour, the Infant Motor Profile (IMP), to evaluate motor abilities, movement variability, ability to select motor strategies, movement symmetry, and…

  17. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  18. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  19. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  20. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  1. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle...

  2. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  3. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  4. Lower Motor Neuron Findings after Upper Motor Neuron Injury: Insights from Postoperative Supplementary Motor Area Syndrome

    PubMed Central

    Florman, Jeffrey E.; Duffau, Hugues; Rughani, Anand I.

    2013-01-01

    Hypertonia and hyperreflexia are classically described responses to upper motor neuron injury. However, acute hypotonia and areflexia with motor deficit are hallmark findings after many central nervous system insults such as acute stroke and spinal shock. Historic theories to explain these contradictory findings have implicated a number of potential mechanisms mostly relying on the loss of descending corticospinal input as the underlying etiology. Unfortunately, these simple descriptions consistently fail to adequately explain the pathophysiology and connectivity leading to acute hyporeflexia and delayed hyperreflexia that result from such insult. This article highlights the common observation of acute hyporeflexia after central nervous system insults and explores the underlying anatomy and physiology. Further, evidence for the underlying connectivity is presented and implicates the dominant role of supraspinal inhibitory influence originating in the supplementary motor area descending through the corticospinal tracts. Unlike traditional explanations, this theory more adequately explains the findings of postoperative supplementary motor area syndrome in which hyporeflexia motor deficit is observed acutely in the face of intact primary motor cortex connections to the spinal cord. Further, the proposed connectivity can be generalized to help explain other insults including stroke, atonic seizures, and spinal shock. PMID:23508473

  5. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  6. 78 FR 76265 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National... is rules that specifically relate to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, motorcycles, and motor vehicle equipment. DATES: You should submit comments early enough...

  7. 75 FR 76692 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ..., and 571 Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY... passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle equipment... impacts. 523 Vehicle classification. 525 Exemptions from average fuel economy standards. 526 Petitions...

  8. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  9. 75 FR 62879 - Individual Exemption Involving General Motors Company, General Motors Holdings LLC, and General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... Benefits Security Administration Individual Exemption Involving General Motors Company, General Motors Holdings LLC, and General Motors LLC, Located in Detroit, MI AGENCY: Employee Benefits Security... ERISA (the Notice).\\2\\ The proposed exemption was requested in an application filed by General...

  10. Modulation of motor cortex inhibition during motor imagery.

    PubMed

    Chong, Benjamin W X; Stinear, Cathy M

    2017-04-01

    Motor imagery (MI) is similar to overt movement, engaging common neural substrates and facilitating the corticomotor pathway; however, it does not result in excitatory descending motor output. Transcranial magnetic stimulation (TMS) can be used to assess inhibitory networks in the primary motor cortex via measures of 1-ms short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI), and late cortical disinhibition (LCD). These measures are thought to reflect extrasynaptic GABAA tonic inhibition, postsynaptic GABAB inhibition, and presynaptic GABAB disinhibition, respectively. The behavior of 1-ms SICI, LICI, and LCD during MI has not yet been explored. This study aimed to investigate how 1-ms SICI, LICI, and LCD are modulated during MI and voluntary relaxation (VR) of a target muscle. Twenty-five healthy young adults participated. TMS was used to assess nonconditioned motor evoked potential (MEP) amplitude, 1-ms SICI, 100- (LICI100) and 150-ms LICI, and LCD in the right abductor pollicis brevis (APB) and right abductor digiti minimi during rest, MI, and VR of the hand. Compared with rest, MEP amplitudes were facilitated in APB during MI. SICI was not affected by task or muscle. LICI100 decreased in both muscles during VR but not MI, whereas LCD was recruited in both muscles during both tasks. This indicates that VR modulates postsynaptic GABAB inhibition, whereas both tasks modulate presynaptic GABAB inhibition in a non-muscle-specific way. This study highlights further neurophysiological parallels between actual and imagined movement, which may extend to voluntary relaxation.NEW & NOTEWORTHY This is the first study to investigate how 1-ms short-interval intracortical inhibition, long-interval intracortical inhibition, and late cortical disinhibition are modulated during motor imagery and voluntary muscle relaxation. We present novel findings of decreased 100-ms long-interval intracortical inhibition during voluntary muscle

  11. Early identification of motor delay

    PubMed Central

    Harris, Susan R.

    2016-01-01

    Objective To describe the Harris Infant Neuromotor Test (HINT), an infant neuromotor test using Canadian norms published in 2010 that could be used to screen for motor delay during the first year of life. Quality of evidence Extensive research has been published on the intrarater, interrater, and test-retest reliability and the content, concurrent, predictive, and known-groups validity of the HINT, as well as on the sensitivity, specificity, and positive and negative predictive values of parental concerns, as assessed by the HINT. Most evidence is level II. Main message Diagnosing motor delays during the first year of life is important because these often indicate more generalized developmental delays or specific disabilities, such as cerebral palsy. Parental concerns about their children’s motor development are strongly predictive of subsequent diagnoses involving motor delay. Conclusion Only through early identification of developmental motor delays, initially with screening tools such as the HINT, is it possible to provide referrals for early intervention that could benefit both the infant and the family. PMID:27521388

  12. Filament overwrapped motor case technology

    NASA Astrophysics Data System (ADS)

    Compton, Joel P.

    1993-11-01

    Atlantic Research Corporation (ARC) joined with the French Societe Europeenne de Propulsion (SEP) to develop and deliver to the U.S. Navy a small quantity of composite filament wound rocket motors to demonstrate a manufacturing technique that was being applied at the two companies. It was perceived that the manufacturing technique could produce motors that would be light in weight, inexpensive to produce, and that had a good chance of meeting insensitive munitions (IM) requirements that were being formulated by the Navy in the early 1980s. Under subcontract to ARC, SEP designed, tested, and delivered 2.75-inch rocket motors to the U.S. Navy for IM tests that were conducted in 1989 at China Lake, California. The program was one of the first to be founded by Nunn Amendment money. The Government-to-Government program was sponsored by the Naval Air Systems Command and was monitored by the Naval Surface Warfare Center, Indian Head (NSWC-IH), Maryland. The motor propellant that was employed was a new, extruded composite formulation that was under development at the Naval Surface Warfare Center. The following paper describes the highlights of the program and gives the results of structural and ballistic static tests and insensitive munitions tests that were conducted on demonstration motors.

  13. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  14. A miniscale ballistic test motor for propellant burning rate characterization from one motor firing

    NASA Astrophysics Data System (ADS)

    Rast, Robert H.; Boyles, Sharon M.; Obney, Phyllis

    1992-07-01

    A mini ballistic test motor for burn rate characterization from one motor firing has been developed. The small charge weight required for this motor allows ballistic characterization of small scale lot set evaluation and R&D propellant mixes in a rocket motor environment. This paper presents results comparing the mini-motor to the standard Naval Surface Warfare Center, Indian Head (IHDIVNAVSURFWARCEN) ballistic test motor, (BTM). Burn rate data from the standard BTM and mini BTM show excellent agreement.

  15. Learning in the Rodent Motor Cortex.

    PubMed

    Peters, Andrew J; Liu, Haixin; Komiyama, Takaki

    2017-03-31

    The motor cortex is far from a stable conduit for motor commands and instead undergoes significant changes during learning. An understanding of motor cortex plasticity has been advanced greatly using rodents as experimental animals. Two major focuses of this research have been on the connectivity and activity of the motor cortex. The motor cortex exhibits structural changes in response to learning, and substantial evidence has implicated the local formation and maintenance of new synapses as crucial substrates of motor learning. This synaptic reorganization translates into changes in spiking activity, which appear to result in a modification and refinement of the relationship between motor cortical activity and movement. This review presents the progress that has been made using rodents to establish the motor cortex as an adaptive structure that supports motor learning. Expected final online publication date for the Annual Review of Neuroscience Volume 40 is July 8, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Leveraging EMS and VPP

    DTIC Science & Technology

    2009-05-01

    Elements of EMS  International Standards Organization ( ISO ) 14001 , Environmental Management Systems  The Key Elements of EMS: - Policy - Planning...wingman-- ON and OFF duty Fully Conforming vs. Fully Implemented  “Fully Conforming”  Meets standards established in ISO 14001  ESOH council...e n c e Every airman looking out for his wingman-- ON and OFF duty EMS & VPP Commonalities Environmental Management System ISO 14001 : 2004 Voluntary

  17. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  18. Linear Synchronous Motor Repeatability Tests

    SciTech Connect

    Ward, C.R.

    2002-10-18

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility.

  19. Miniaturization of planar horn motors

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-04-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of a stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2×2×2 mm piezoelectric stacks integrated into thin plates that are of the order of 3 × 3 × 0.2 cm.

  20. Miniaturization of Planar Horn Motors

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-01-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2x2x2 mm piezoelectric stacks integrated into thin plates that are of the order of3 x 3x 0.2 cm.

  1. The Advanced Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  2. The Advanced Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  3. Thermoelectric generator for motor vehicle

    DOEpatents

    Bass, John C.

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  4. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  5. Homopolar motor with dual rotors

    DOEpatents

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  6. Motor imagery facilitates force field learning.

    PubMed

    Anwar, Muhammad Nabeel; Tomi, Naoki; Ito, Koji

    2011-06-13

    Humans have the ability to produce an internal reproduction of a specific motor action without any overt motor output. Recent findings show that the processes underlying motor imagery are similar to those active during motor execution and both share common neural substrates. This suggests that the imagery of motor movements might play an important role in acquiring new motor skills. In this study we used haptic robot in conjunction with motor imagery technique to improve learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent and position-dependent mixed force field. The groups performed movements with motor imagery produced higher after effects and decreased muscle co-contraction with respect to no-motor imagery group. These results showed a positive influence of motor imagery on acquiring new motor skill and suggest that motor learning can be facilitated by mental practice and could be used to increase the rate of adaptation.

  7. Chemistry: No turning back for motorized molecules

    NASA Astrophysics Data System (ADS)

    Clayden, Jonathan

    2016-06-01

    Two molecular motors have been developed that use chemical energy to drive rotational motion in a single direction. The findings bring the prospect of devices powered by such motors a tantalizing step closer. See Letter p.235

  8. Duty ratio of cooperative molecular motors.

    PubMed

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  9. Failure analysis of solid rocket apogee motors

    NASA Technical Reports Server (NTRS)

    Martin, P. J.

    1972-01-01

    The analysis followed five selected motors through initial design, development, test, qualification, manufacture, and final flight reports. An audit was conducted at the manufacturing plants to complement the literature search with firsthand observations of the current philosophies and practices that affect reliability of the motors. A second literature search emphasized acquisition of spacecraft and satellite data bearing on solid motor reliability. It was concluded that present practices at the plants yield highly reliable flight hardware. Reliability can be further improved by new developments of aft-end bonding and initiator/igniter nondestructive test methods, a safe/arm device, and an insulation formulation. Minimum diagnostic instrumentation is recommended for all motor flights. Surplus motors should be used in margin testing. Criteria should be established for pressure and zone curing. The motor contractor should be represented at launch. New design analyses should be made of stretched motors and spacecraft/motor pairs.

  10. CDC Vital Signs: Motor Vehicle Crash Deaths

    MedlinePlus

    ... Press Kit Read the MMWR Science Clips Motor Vehicle Crash Deaths How is the US doing? Language: ... Sweden, Switzerland, and the United Kingdom. Problem Motor vehicle crash deaths in the US are still too ...

  11. Duty ratio of cooperative molecular motors

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  12. Trophic Factor Expression in Phrenic Motor Neurons

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2008-01-01

    The function of a motor neuron and the muscle fibers it innervates (i.e., a motor unit) determines neuromotor output. Unlike other skeletal muscles, respiratory muscles (e.g., the diaphragm, DIAm) must function from birth onwards in sustaining ventilation. DIAm motor units are capable of both ventilatory and non-ventilatory behaviors, including expulsive behaviors important for airway clearance. There is significant diversity in motor unit properties across different types of motor units in the DIAm. The mechanisms underlying the development and maintenance of motor unit diversity in respiratory muscles (including the DIAm) are not well understood. Recent studies suggest that trophic factor influences contribute to this diversity. Remarkably little is known about the expression of trophic factors and their receptors in phrenic motor neurons. This review will focus on the contribution of trophic factors to the establishment and maintenance of motor unit diversity in the DIAm, during development and in response to injury or disease. PMID:18708170

  13. Small-Scale Rocket Motor Test

    NASA Video Gallery

    Engineers at NASA's Marshall Space Flight Center in Huntsville, Ala. successfully tested a sub-scale solid rocket motor on May 27. Testing a sub-scale version of a rocket motor is a cost-effective ...

  14. NASA's Advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Mitchell, Royce E.

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  15. Improving Motor Skills through Listening

    ERIC Educational Resources Information Center

    Wang, Lin

    2004-01-01

    In this article, the author discusses how to improve a child's motor skills through listening by using three simple steps--recording the auditory model, determining when to use the auditory model, and considering where to use the auditory model. She points out the importance of using a demonstration technique that helps learners understand the…

  16. Putting Motor Resonance in Perspective

    ERIC Educational Resources Information Center

    Lozano, Sandra C.; Hard, Bridgette Martin; Tversky, Barbara

    2008-01-01

    Perceiving another person's actions changes the spatial perspective people use to describe objects in a scene, possibly because seeing human action induces people to map the actions, including their spatial context, to their own body and motor representations [Lozano, S. C., Hard, B. M., & Tversky, B. (2007). Putting action in perspective.…

  17. Motor neurone disease: an overview.

    PubMed

    Kent, Anna

    Motor neurone disease (MND) is a relatively rare, progressive and incurable neurological condition affecting patients' speech, mobility and respiratory function. Care of patients with MND is complex and involves various healthcare professionals and services. There is a need to discuss symptom management and promote palliative and end of life care from the point of diagnosis to ensure appropriate holistic care is provided.

  18. Fluctuation Relations for Molecular Motors

    NASA Astrophysics Data System (ADS)

    Lacoste, David; Mallick, Kirone

    This review is focused on the application of specific fluctuation relations, such as the Gallavotti-Cohen relation, to ratchet models of a molecular motor. A special emphasis is placed on two-state models such as the flashing ratchet model. We derive the Gallavotti-Cohen fluctuation relation for these models and we discuss some of its implications.

  19. Motor interference in interactive contexts

    PubMed Central

    Chinellato, Eris; Castiello, Umberto; Sartori, Luisa

    2015-01-01

    Action observation and execution share overlapping neural substrates, so that simultaneous activation by observation and execution modulates motor performance. Previous literature on simple prehension tasks has revealed that motor influence can be two-sided: facilitation for observed and performed congruent actions and interference for incongruent actions. But little is known of the specific modulations of motor performance in complex forms of interaction. Is it possible that the very same observed movement can lead either to interference or facilitation effects on a temporally overlapping congruent executed action, depending on the context? To answer this question participants were asked to perform a reach-to-grasp movement adopting a precision grip (PG) while: (i) observing a fixation cross, (ii) observing an actor performing a PG with interactive purposes, (iii) observing an actor performing a PG without interactive purposes. In particular, in the interactive condition the actor was shown trying to pour some sugar on a large cup located out of her reach but close to the participant watching the video, thus eliciting in reaction a complementary whole-hand grasp. Notably, fine-grained kinematic analysis for this condition revealed a specific delay in the grasping and reaching components and an increased trajectory deviation despite the observed and executed movement’s congruency. Moreover, early peaks of trajectory deviation seem to indicate that socially relevant stimuli are acknowledged by the motor system very early. These data suggest that interactive contexts can determine a prompt modulation of stimulus–response compatibility effects. PMID:26113835

  20. Stages of motor skill learning.

    PubMed

    Luft, Andreas R; Buitrago, Manuel M

    2005-12-01

    Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods.

  1. Motor Dynamics of Embodied Cognition

    ERIC Educational Resources Information Center

    Anderson, Sarah Elizabeth

    2011-01-01

    Predominant theories of cognition have previously emphasized the modularity of processing, in which individual isolated modules process information free from the influence of other types of information. However, more recent theories suggest that cognition is much more linked to motor and sensory processes than modular theories suggest. In this…

  2. NASA's Advanced solid rocket motor

    NASA Astrophysics Data System (ADS)

    Mitchell, Royce E.

    The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.

  3. Ironless-armature brushless motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1977-01-01

    Device uses 12-pole samarium cobalt permanent-magnet rotor and three Hall-effect sensors for commutation. In prototype motor, torque constant (3-phase delta) is 65 oz-in/amp; electrical time constant (L/R) is 0.2 x 0.001 sec, and armature resistance is 20 ohms.

  4. Motor systems and postural instability.

    PubMed

    Vassar, Rachel L; Rose, Jessica

    2014-01-01

    Acute alcohol intoxication and chronic alcohol dependence alter the neurologic control of posture and motor function. Ethanol delays the conduction of electric signals from the central nervous system to the muscles controlling posture and impairs the integration of sensory inputs required for maintaining vertical stance. Consequently, alcohol intoxication delays the ability to detect postural changes and enact the appropriate response. Common signs of acute alcohol intoxication include spinocerebellar and vestibulocerebellar ataxia, oculomotor changes, and increased reliance on visuospatial clues. Chronic alcoholism results in postural tremors and excessive sway during quiet stance that can persist even after sobriety is achieved. Underlying neurologic changes due to chronic alcoholism have been found to be associated with these characteristic postural changes and include decreased volume of the anterior superior vermis of the cerebellum, decreased connectivity within the corpus callosum, and overall cortical atrophy. Severity of motor impairments and other symptoms from alcoholism relate to a variety of factors, including duration of alcoholism, age, sex, and other health determinants and comorbidities. Imaging studies highlight the potential for partial recovery from neurologic and motor deficits caused by alcoholism. Emerging evidence on the motor and neurologic changes caused by alcohol dependence may allow for improved treatment and prevention of the morbidities associated with alcoholism.

  5. Motor Action and Emotional Memory

    ERIC Educational Resources Information Center

    Casasanto, Daniel; Dijkstra, Katinka

    2010-01-01

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction…

  6. Technology and Motor Ability Development

    ERIC Educational Resources Information Center

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  7. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  8. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory

  9. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  10. Motorized control for mirror mount apparatus

    SciTech Connect

    Cutburth, R.W.

    1989-03-14

    This patent describes a motorized control and automatic braking system for adjusting mirror mount apparatus. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  11. Lipid - Motor Interactions: Soap Opera or Symphony?

    PubMed

    Pathak, Divya; Mallik, Roop

    2016-09-30

    Intracellular transport of organelles can be driven by multiple motor proteins that bind to the lipid membrane of the organelle and work as a team. We review present knowledge on how lipids orchestrate the recruitment of motors to a membrane. Looking beyond recruitment, we also discuss how heterogeneity and local mechanical properties of the membrane may influence function of motor-teams. These issues gain importance because phagocytosed pathogens use lipid-centric strategies to manipulate motors and survive in host cells.

  12. Frequency modulation drive for a piezoelectric motor

    DOEpatents

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  13. Motor function in the elderly

    PubMed Central

    Vicente-Vytopilova, Pavla; Tavernier, Béatrice; Sabia, Séverine; Dumurgier, Julien; Mazoyer, Bernard; Singh-Manoux, Archana; Tzourio, Christophe

    2013-01-01

    Objective: The reserve hypothesis accounts for the lack of direct relationship between brain pathology and its clinical manifestations. Research has mostly focused on cognition; our objective is to examine whether the reserve hypothesis applies to motor function. We investigated whether education, a marker of reserve, modifies the association between white matter lesions (WMLs), a marker of vascular brain damage, and maximum walking speed (WS), an objective measure of motor function. We also examined the cross-sectional and longitudinal association between education and WS. Methods: Data are from 4,010 participants aged 65–85 years in the longitudinal Three-City–Dijon Study with up to 4 WS measures over 10 years. We examined the interaction between education and WMLs for baseline WS. We studied the association between education and repeated WS measures using linear mixed models, and the role of covariates in explaining the education-WS association. Results: Education was strongly associated with baseline WS; the difference in mean WS between the high and low education groups (0.145 m/s, 95% confidence interval = 0.125–0.165) was equivalent to 7.4 years of age. WMLs were associated with slow WS only in the low education group (p interaction = 0.026). WS declined significantly over time (−0.194 m/s/10 years, 95% confidence interval = −0.206, −0.182), but education did not influence rate of decline. Anthropometric characteristics, parental education, general health, and cognition had the strongest role in explaining the baseline education-WS association. Conclusions: Participants with more education were less susceptible to WMLs' effect on motor function. Higher education was associated with better motor performances but not with motor decline. These results are consistent with the passive reserve hypothesis. PMID:23803317

  14. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  15. 75 FR 49527 - General Motors Company Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ..., Willow Run Transmission Plant Including On-Site Leased Workers From Aerotek; Ypsilanti, MI; Amended... General Motors Company, formerly known as General Motors Corporation, Willow Run Transmission Plant... location of General Motors Company, formerly known as General Motors Corporation, Willow Run...

  16. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  17. 78 FR 4193 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Volvo

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor... is likely to be as effective in reducing and deterring motor vehicle theft as compliance with the... the MY 2014 S60 vehicle line is effective in reducing and deterring motor vehicle theft. Volvo...

  18. 76 FR 12220 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor... on the line as standard equipment is likely to be as effective in reducing and deterring motor... deterring motor vehicle theft as compliance with ] the parts-marking requirements of the Theft...

  19. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor... full the petition of Tesla Motors Inc's. (Tesla) for an exemption of the Model S vehicle line in... is likely to be as effective in reducing and deterring motor vehicle theft as compliance with...

  20. 77 FR 4396 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor... full the petition of Toyota Motor North America, Inc's., (Toyota) petition for an exemption of the... the line as standard equipment is likely to be as effective in reducing and deterring motor...

  1. Assessment of Preschoolers' Gross Motor Proficiency: Revisiting Bruininks-Oseretsky Test of Motor Proficiency

    ERIC Educational Resources Information Center

    Lam, Hazel Mei Yung

    2011-01-01

    Literature reveals that there are very few validated motor proficiency tests for young children. According to Gallahue and Ozmun, the Bruininks-Oseretsky Test of Motor Proficiency is a valid test. However, manipulative skills, which are classified as gross motor skills by most motor development specialists, are only tested in the Upper Limb…

  2. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  3. Agricultural Electricity. Electric Motors. Student Manual.

    ERIC Educational Resources Information Center

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  4. Motor Programming in Apraxia of Speech

    ERIC Educational Resources Information Center

    Maas, Edwin; Robin, Donald A.; Wright, David L.; Ballard, Kirrie J.

    2008-01-01

    Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. "Journal of…

  5. Motor Development: Manual of Alternative Procedures.

    ERIC Educational Resources Information Center

    McCormack, James E.

    The manual of alternative procedures for teaching handicapped children focuses on programming, planning, and implementing training in the gross motor (posture, limb control, locomotion) and fine motor (facial, digital) skills. The manual consists of the following sections: specific teaching tactics commonly used in motor training stiuations…

  6. The Diagnosis of Sensory-Motor Disabilities.

    ERIC Educational Resources Information Center

    Zaeske, Arnold

    The importance of motor and perceptual learning in the educational process is discussed. It is hypothesized that an internalization of sensory-motor learnings is important to the perceptual and cognitive development of a child. Developmental and corrective motor training by physical educationalists is suggested. It is concluded that although the…

  7. Dynamic instability of collective myosin II motors

    NASA Astrophysics Data System (ADS)

    Li, Jin-Fang; Wang, Zi-Qing; Li, Qi-Kun; Xing, Jian-Jun; Wang, Guo-Dong

    2016-11-01

    Some kinds of muscles can oscillate spontaneously, which is related to the dynamic instability of the collective motors. Based on the two-state ratchet model and with consideration of the motor stiffness, the dynamics of collective myosin II motors are studied. It is shown that when the motor stiffness is small, the velocity of the collective motors decreases monotonically with load increasing. When the motor stiffness becomes large, dynamic instability appears in the force-velocity relationship of the collective-motor transport. For a large enough motor stiffness, the zero-velocity point lies in the unstable range of the force-velocity curve, and the motor system becomes unstable before the motion is stopped, so spontaneous oscillations can be generated if the system is elastically coupled to its environment via a spring. The oscillation frequency is related to the motor stiffness, motor binding rate, spring stiffness, and the width of the ATP excitation interval. For a medium motor stiffness, the zero-velocity point lies outside the unstable range of the force-velocity curve, and the motion will be stopped before the instability occurs. Project supported by the National Natural Science Foundation of China (Grant No. 11205123).

  8. Neuropsychological Investigation of Motor Impairments in Autism

    PubMed Central

    Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet

    2013-01-01

    It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036

  9. Proceedings Region East Perceptual Motor Conference.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, and Recreation, Washington, DC.

    This book of conference proceeding presents speeches and panel discussions from the Region East Perceptual-Motor Conference. The purpose of the conference was to seek an understanding of children and their perceptual-motor development through (a) exchange of knowledge and practices in perceptual-motor development, (b) examination of program…

  10. Motor Acquisition Rate in Brazilian Infants

    ERIC Educational Resources Information Center

    Lopes, Virlaine Bardella; de Lima, Carolina Daniel; Tudella, Eloisa

    2009-01-01

    This study used the Alberta Infant Motor Scale (AIMS) with the aim of characterizing motor acquisition rate in 70 healthy 0-6-month-old Brazilian infants, as well as comparing both emergence (initial age) and establishment (final age) of each skill between the study sample and the AIMS normative data. New motor skills were continuously acquired…

  11. Electric Motor Thermal Management R&D

    SciTech Connect

    Bennion, Kevin

    2016-06-07

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  12. Aging and Motor Skill: A Research Frontier.

    ERIC Educational Resources Information Center

    Lersten, Ken

    This report reviews research which characterizes the motor skill capacity of older persons, 50 years of age and beyond. Research dealing with sensory-motor systems, memory, and practice factors receives major attention. Suggestions for future research include the following: (a) social psychological parameters which contribute to motor learning and…

  13. Supporting Young Children's Motor Skill Development.

    ERIC Educational Resources Information Center

    Benelli, Cecelia; Yongue, Bill

    1995-01-01

    Addresses importance of planned motor skill development, providing specific guidelines for adults working with three-, four-, and five-year olds. Describes the influence of motor development on cognitive, language, emotional, and social development. Suggests using verbal feedback, visual assistance, and demonstration for teaching motor skills.…

  14. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be...

  15. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be...

  16. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be...

  17. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be...

  18. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed...

  19. 33 CFR 127.1311 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Motor vehicles. 127.1311 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1311 Motor vehicles. (a) When LHG is... operator shall ensure that no person— (1) Stops or parks a motor vehicle in a space other than a...

  20. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be...

  1. 40 CFR 798.6200 - Motor activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Motor activity. 798.6200 Section 798... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Neurotoxicity § 798.6200 Motor activity. (a) Purpose—(1... the effects of administration of the substance on motor activity is useful when neurotoxicity...

  2. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed...

  3. 33 CFR 127.1311 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor vehicles. 127.1311 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1311 Motor vehicles. (a) When LHG is... operator shall ensure that no person— (1) Stops or parks a motor vehicle in a space other than a...

  4. Motor Development Programming in Trisomic-21 Babies

    ERIC Educational Resources Information Center

    Sanz, Teresa; Menendez, Javier; Rosique, Teresa

    2011-01-01

    The present study contributes to the understanding of gross motor development in babies with Down's syndrome. Also, it facilitates the comprehension of the efficiency of the early motor stimulation as well as of beginning it as early as possible. We worked with two groups of babies with Down's syndrome, beginning the early motor training in each…

  5. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed...

  6. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Motor vehicles. 127.311 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... vehicle in a space that is not designated a parking space; or (2) Refuel any motor vehicle....

  7. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed...

  8. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed...

  9. 33 CFR 127.1311 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Motor vehicles. 127.1311 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1311 Motor vehicles. (a) When LHG is... operator shall ensure that no person— (1) Stops or parks a motor vehicle in a space other than a...

  10. ATP synthase: two motors, two fuels.

    PubMed

    Oster, G; Wang, H

    1999-04-15

    FoF1 ATPase is the universal protein responsible for ATP synthesis. The enzyme comprises two reversible rotary motors: Fo is either an ion 'turbine' or an ion pump, and F1 is either a hydrolysis motor or an ATP synthesizer. Recent biophysical and biochemical studies have helped to elucidate the operating principles for both motors.

  11. Chemistry in motion: tiny synthetic motors.

    PubMed

    Colberg, Peter H; Reigh, Shang Yik; Robertson, Bryan; Kapral, Raymond

    2014-12-16

    CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties

  12. Transcranial direct current stimulation of the motor cortex in waking resting state induces motor imagery.

    PubMed

    Speth, Jana; Speth, Clemens; Harley, Trevor A

    2015-11-01

    This study investigates if anodal and cathodal transcranial direct current stimulation (tDCS) of areas above the motor cortex (C3) influences spontaneous motor imagery experienced in the waking resting state. A randomized triple-blinded design was used, combining neurophysiological techniques with tools of quantitative mentation report analysis from cognitive linguistics. The results indicate that while spontaneous motor imagery rarely occurs under sham stimulation, general and athletic motor imagery (classified as athletic disciplines), is induced by anodal tDCS. This insight may have implications beyond basic consciousness research. Motor imagery and corresponding motor cortical activation have been shown to benefit later motor performance. Electrophysiological manipulations of motor imagery could in the long run be used for rehabilitative tDCS protocols benefitting temporarily immobile clinical patients who cannot perform specific motor imagery tasks - such as dementia patients, infants with developmental and motor disorders, and coma patients.

  13. Evolutionary insights into the unique electromotility motor of mammalian outer hair cel

    PubMed Central

    Okoruwa, Oseremen E.; Weston, Michael D.; Sanjeevi, Divvya C.; Millemon, Amanda R.; Fritzsch, Bernd; Hallworth, Richard; Beisel, Kirk W.

    2009-01-01

    SUMMARY Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through the amalgamation of comparative genomic, evolution, and structural diversification approaches. Comparisons were done among nonmammalian vertebrates, eutherian mammalian species, and the opossum and platypus. The opossum and platypus SLC26A5 proteins were comparable to the eutherian consensus sequence. Suggested from the point-accepted mutation analysis, the meEM motif spans all the transmembrane segments and represented residues 66–503. Within the eutherian clade, the meEM was highly conserved with a substitution frequency of only 39/7497 (0.5%) residues, compared with 5.7% in SLC26A4 and 12.8% in SLC26A6 genes. Clade-specific substitutions were not observed and there was no sequence correlation with low or high hearing frequency specialists. We were able to identify that within the highly conserved meEM motif two regions, which are unique to all therian species, appear to be the most derived features in the SLC26A5 peptide. PMID:18460092

  14. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  15. Theta-burst stimulation over primary motor cortex degrades early motor learning.

    PubMed

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Agostino, Rocco; Nardella, Andrea; Berardelli, Alfredo

    2010-02-01

    Theta-burst stimulation (TBS) is currently used for inducing long-lasting changes in primary motor cortex (M1) excitability. More information is needed on how M1 is involved in early motor learning (practice-related improvement in motor performance, motor retention and motor consolidation). We investigated whether inhibitory continuous TBS (cTBS) is an effective experimental approach for modulating early motor learning of a simple finger movement in healthy humans. In a short task, 11 subjects practised 160 movements, and in a longer task also testing motor consolidation ten subjects practised 600 movements. During both experiments subjects randomly received real or sham cTBS over the left M1. Motor evoked potentials were tested at baseline and 7 min after cTBS. In the 160-movement experiment to test motor retention, 20 movements were repeated 30 min after motor practice ended. In the 600-movement experiment motor retention was assessed 15 and 30 min after motor practice ended, motor consolidation was tested by performing 20 movements 24 h after motor practice ended. Kinematic variables - movement amplitude, peak velocity and peak acceleration - were measured. cTBS significantly reduced the practice-related improvement in motor performance of finger movements in the experiment involving 160 movements and in the first part of the experiment involving 600 movements. After cTBS, peak velocity and peak acceleration of the 20 movements testing motor retention decreased whereas those testing motor consolidation remained unchanged. cTBS over M1 degrades practice-related improvement in motor performance and motor retention, but not motor consolidation of a voluntary finger movement.

  16. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  17. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, D.A.

    1996-01-16

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

  18. Motor neuron dysfunction in frontotemporal dementia.

    PubMed

    Burrell, James R; Kiernan, Matthew C; Vucic, Steve; Hodges, John R

    2011-09-01

    Frontotemporal dementia and motor neuron disease share clinical, genetic and pathological characteristics. Motor neuron disease develops in a proportion of patients with frontotemporal dementia, but the incidence, severity and functional significance of motor system dysfunction in patients with frontotemporal dementia has not been determined. Neurophysiological biomarkers have been developed to document motor system dysfunction including: short-interval intracortical inhibition, a marker of corticospinal motor neuron dysfunction and the neurophysiological index, a marker of lower motor neuron dysfunction. The present study performed detailed clinical and neurophysiological assessments on 108 participants including 40 consecutive patients with frontotemporal dementia, 42 age- and gender-matched patients with motor neuron disease and 26 control subjects. Of the 40 patients with frontotemporal dementia, 12.5% had concomitant motor neuron disease. A further 27.3% of the patients with frontotemporal dementia had clinical evidence of minor motor system dysfunction such as occasional fasciculations, mild wasting or weakness. Biomarkers of motor system function were abnormal in frontotemporal dementia. Average short-interval intracortical inhibition was reduced in frontotemporal dementia (4.3 ± 1.7%) compared with controls (9.1 ± 1.1%, P < 0.05). Short-interval intracortical inhibition was particularly reduced in the progressive non-fluent aphasia subgroup, but was normal in patients with behavioural variant frontotemporal dementia and semantic dementia. The neurophysiological index was reduced in frontotemporal dementia (1.1) compared with controls (1.9, P < 0.001), indicating a degree of lower motor neuron dysfunction, although remained relatively preserved when compared with motor neuron disease (0.7, P < 0.05). Motor system dysfunction in frontotemporal dementia may result from pathological involvement of the primary motor cortex, with secondary

  19. Perceptual and Motor Development in Infants and Children. Second Edition.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Motor behavior, motor performance, and motor learning are discussed at length within the context of infant and child development. Individual chapters focus on the following: the sensory-motor behavior of infants; analysis of selected perceptual-motor programs; beginnings of movement in infants; gross motor attributes in early childhood; visual…

  20. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…

  1. EMS in the pueblos.

    PubMed

    Vigil, M A

    1994-02-01

    Imagine creating a movie by excerpting scenes from "Dances With Wolves," splicing it with footage from "Code 3" or "Emergency Response" and then flavoring the script with the mystery of a Tony Hillerman novel. A film producer would probably find it quite difficult to choreograph a finished product from such a compilation of material. To hundreds of Native American EMS providers, however, such a movie is played out every day in Indian country. And with this movie come some real-life problems, including trauma, which is the number-one cause of premature death among Native Americans. But a high trauma rate is just one of the challenges facing tribal EMS responders. There's also prolonged response and transport, the problems involved in maintaining the unique culture and standard of care, the challenges of tribal EMS administration and EMS education of Native American students, and the unsure future of Native American EMS. Beyond that, there's the fact that EMS is a s unique to each Indian reservation as are the cultures of the native peoples who reside on these lands. Yet while no two systems are alike, most tribal EMS providers face similar challenges.

  2. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  3. Locomotion of chemically powered autonomous nanowire motors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Longqiu; Li, Tianlong; Zhang, Guangyu; Sun, Qian

    2015-08-01

    Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

  4. Molecular Motors: Power Strokes Outperform Brownian Ratchets.

    PubMed

    Wagoner, Jason A; Dill, Ken A

    2016-07-07

    Molecular motors convert chemical energy (typically from ATP hydrolysis) to directed motion and mechanical work. Their actions are often described in terms of "Power Stroke" (PS) and "Brownian Ratchet" (BR) mechanisms. Here, we use a transition-state model and stochastic thermodynamics to describe a range of mechanisms ranging from PS to BR. We incorporate this model into Hill's diagrammatic method to develop a comprehensive model of motor processivity that is simple but sufficiently general to capture the full range of behavior observed for molecular motors. We demonstrate that, under all conditions, PS motors are faster, more powerful, and more efficient at constant velocity than BR motors. We show that these differences are very large for simple motors but become inconsequential for complex motors with additional kinetic barrier steps.

  5. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  6. Solvent-driven chemical motor

    NASA Astrophysics Data System (ADS)

    Mitsumata, Tetsu; Ikeda, Kazuo; Gong, Jian Ping; Osada, Yoshihito

    1998-10-01

    A solvent-driven chemical motor using amphiphilic polymer gel has been fabricated. The driving force of the gel originates from the surface tension of spreading organic fluid which is pumped out by osmotic and hydrostatic pressures in the gel. A tetrahydrofurane-swollen gel equipped with a spouting hole made a controlled translational motion with a velocity of 77 mm/s or rotational motion with a maximum speed of 400 rpm and a torque of 10-9-10-7 Nm on the water surface. A generator to produce an electric power with a maximum electromotive force of 15 mV and electric power of 0.2 μW has also been constructed. The successful fabrication of gel motor may produce a new era of soft machine systems which work without pollution and unnecessary intermediates.

  7. Motor activity under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Cherepakhin, M. A.; Yuganov, Y. M.

    1975-01-01

    The material presented on the motor activity under weightless conditions (brief and long) leads to the conclusion that it is not significantly disrupted, if those being examined are secured at the workplaces. Some discoordination of movement, moderately expressed disruption of the precision of reproduction of assigned muscular forces, etc., were observed. Motor disorders decrease significantly in proportion to the length of stay under weightless conditions. This apparently takes place, as a consequence of formation of a new functional system, adequate to the conditions of weightlessness. Tests on intact and labyrinthectomized animals have demonstrated that signaling from the inner ear receptors is superfluous in weightlessness, since it promotes the onset of disruptions in the combined work of the position analyzers.

  8. Online Monitoring of Induction Motors

    SciTech Connect

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  9. Quo vadis motor neuron disease?

    PubMed Central

    Balendra, Rubika; Patani, Rickie

    2016-01-01

    Motor neuron disease (MND), also known as amyotrophic lateral sclerosis, is a relentlessly progressive neurodegenerative condition that is invariably fatal, usually within 3 to 5 years of diagnosis. The aetio-pathogenesis of MND remains unresolved and no effective treatments exist. The only Food and Drug Administration approved disease modifying therapy is riluzole, a glutamate antagonist, which prolongs survival by up to 3 mo. Current management is largely symptomatic/supportive. There is therefore a desperate and unmet clinical need for discovery of disease mechanisms to guide novel therapeutic strategy. In this review, we start by introducing the organizational anatomy of the motor system, before providing a clinical overview of its dysfunction specifically in MND. We then summarize insights gained from pathological, genetic and animal models and conclude by speculating on optimal strategies to drive the step change in discovery, which is so desperately needed in this arena. PMID:27019797

  10. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  11. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  12. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  13. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  14. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  15. Electrostatic generator/motor configurations

    DOEpatents

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  16. Retention of Motor Skills. Review

    DTIC Science & Technology

    1978-09-01

    PERIOD COVERED TENTION OF MOTOR SKILLS4 REVIEW p Literature review aAU . CONTRACT OR GRANT NUMBER( e ) J. D. Schendel, J. L. Shields,-Afi. S.)Katz S...and ( e ) initial or "natural" ability of the flearner in performance of a task without prior practice. The procedural variables that may affect the long...training; (c) transfer of skills on one task to performance on another task; (d) presence of interfering activities; ( e ) distribution of practice

  17. Heterogeneity in motor driven transport

    NASA Astrophysics Data System (ADS)

    Tabei, Ali

    2015-03-01

    I will discuss quantitative analysis of particle tracking data for motor driven vesicles inside an insulin secreting cell. We use this method to study the dynamical and structural heterogeneity inside the cell. I will discuss our effort to explain the origin of observed heterogeneity in intracellular transport. Finally, I will explain how analyzing directional correlations in transport trajectories reveals self-similarity in the diffusion media.

  18. Solid Rocket Motor Acoustic Testing

    SciTech Connect

    Rogers, J.D.

    1999-03-31

    Acoustic data are often required for the determination of launch and powered flight loads for rocket systems and payloads. Such data are usually acquired during test firings of the solid rocket motors. In the current work, these data were obtained for two tests at a remote test facility where we were visitors. This paper describes the data acquisition and the requirements for working at a remote site, interfacing with the test hosts.

  19. Advanced motor-controller development

    NASA Astrophysics Data System (ADS)

    Lesster, L. E.; Zeitlin, D. B.; Hall, W. B.

    1983-06-01

    The purpose of this development program was to investigate a promising alternative technique for control of a squirrel cage induction motor for subsea propulsion or hydraulic power applications. The technique uses microprocessor based generation of the pulse width modulation waveforms, which in turn permits use of a true integral volt-second pulse width control for the generation of low harmonic content sine waves from a 3 phase Graetz transistor power bridge.

  20. Motor Stereotypies: A Pathophysiological Review

    PubMed Central

    Péter, Zsanett; Oliphant, Melody E.; Fernandez, Thomas V.

    2017-01-01

    Motor stereotypies are common, repetitive, rhythmic movements with typical onset in early childhood. While most often described in children with autism spectrum disorder (ASD) and intellectual disability (ID), stereotypies can also present without developmental delay and persist into adulthood. Stereotypies are often disruptive and harmful, both physically and socially, and effective evidence-based treatments are lacking. This can be attributed, in part, to our incomplete knowledge of the underlying biological and environmental risk. Several studies implicate various neurotransmitters, brain circuits, anatomical loci, and pre- and post-natal environmental influences in stereotypy onset and symptom severity. However, there are few points of convergence among a relatively small number of studies, indicating that more research is needed to confirm the underlying bases of risk. Of particular note is the lack of published genetic studies of stereotypies, despite evidence for Mendelian inheritance patterns in some families. Focusing future studies on typically-developing children with primary motor stereotypies may be a useful approach to minimize potential biological, environmental, and genetic heterogeneity that could theoretically hinder consistent findings. Ultimately, a deeper understanding of the underlying biology and risk factors for motor stereotypies will lead us closer to more effective targeted therapies that will alleviate suffering in affected children.

  1. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  2. Seat Belt Compression Appendicitis following Motor Vehicle Collision

    PubMed Central

    Zia Ullah, Qazi

    2017-01-01

    Appendicitis and trauma both present in emergency department commonly but their presentation together in the same patient is unusual. We present a case of a middle-aged man brought by emergency medical services (EMS) to the emergency department with complaints of abdominal pain after he was involved in motor vehicle collision. He was perfectly fine before the accident. His primary survey was normal. Secondary survey revealed tenderness in right iliac fossa with seat belt mark overlying it. Computerized tomography (CT) of the abdomen and pelvis was performed which showed 8 mm thickening of appendix with minimal adjacent fat stranding. There is also subcutaneous fat stranding of anterior lower abdominal wall possibly due to bruising. Impression of posttraumatic seat belt compression appendicitis was made. Laparoscopic appendectomy was done and patient recovered uneventfully. Histopathology showed inflamed appendix, proving it to be a case of seat belt compression appendicitis. PMID:28337350

  3. Seat Belt Compression Appendicitis following Motor Vehicle Collision.

    PubMed

    Khilji, Muhammad Faisal; Zia Ullah, Qazi

    2017-01-01

    Appendicitis and trauma both present in emergency department commonly but their presentation together in the same patient is unusual. We present a case of a middle-aged man brought by emergency medical services (EMS) to the emergency department with complaints of abdominal pain after he was involved in motor vehicle collision. He was perfectly fine before the accident. His primary survey was normal. Secondary survey revealed tenderness in right iliac fossa with seat belt mark overlying it. Computerized tomography (CT) of the abdomen and pelvis was performed which showed 8 mm thickening of appendix with minimal adjacent fat stranding. There is also subcutaneous fat stranding of anterior lower abdominal wall possibly due to bruising. Impression of posttraumatic seat belt compression appendicitis was made. Laparoscopic appendectomy was done and patient recovered uneventfully. Histopathology showed inflamed appendix, proving it to be a case of seat belt compression appendicitis.

  4. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    PubMed Central

    Reyes-Aldrete, Emilio; Sherman, Michael B.; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J.; Morais, Marc C.

    2016-01-01

    SUMMARY Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring, and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. PMID:26904950

  5. Rhythmic motor behavior of preambulatory motor impaired, Down syndrome and nondisabled children: a comparative analysis.

    PubMed

    MacLean, W E; Ellis, D N; Galbreath, H N; Halpern, L F; Baumeister, A A

    1991-06-01

    The developmental course of rhythmic motor behavior was followed longitudinally for three groups of preambulatory children--normally developing, Down syndrome, and those with profound motor impairment. The groups differed in chronological age but were comparable with respect to motor age. The motor impaired subjects displayed significantly less rhythmic motor behavior than the nondisabled and Down syndrome groups. In comparing particular subtypes of rhythmic motor behavior, differences were found in both the average number of bouts and duration of subtypes among the groups. Longitudinal analyses of the data over the entire observation period revealed that the rhythmic motor behavior of the children with Down syndrome was more similar to that exhibited by the nondisabled children than was the rhythmic motor behavior of the children with motor impairment. However, there was considerable variability among the groups in several particular subtypes.

  6. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  7. The influence of motor imagery on the learning of a fine hand motor skill.

    PubMed

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response sequence had either to be executed, imagined, or withheld. To establish learning effects, the experiment was divided into a practice phase and a test phase. In the latter phase, we compared mean response times and accuracy during the execution of unfamiliar sequences, familiar imagined sequences, and familiar executed sequences. The electroencephalogram was measured in the practice phase to compare activity between motor imagery, motor execution, and a control condition in which responses should be withheld. Event-related potentials (ERPs) and event-related lateralizations (ERLs) showed strong similarities above cortical motor areas on trials requiring motor imagery and motor execution, while a major difference was found with trials on which the response sequence should be withheld. Behavioral results from the test phase showed that response times and accuracy improved after physical and mental practice relative to unfamiliar sequences (so-called sequence-specific learning effects), although the effect of motor learning by motor imagery was smaller than the effect of physical practice. These findings confirm that motor imagery also resembles motor execution in the case of a fine hand motor skill.

  8. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor controller that incorporates Hall-array sensing in a small, 42-gram package that provides 4096 absolute counts per motor revolution position sensing. The unit is the size of a miniature hockey puck, and is a 44-pin male connector that provides many I/O channels, including CANbus, RS-232 communications, general-purpose analog and digital I/O (GPIO), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier. This controller replaces air cooling with conduction cooling via a high-thermal-conductivity epoxy casting. A secondary advantage of the relatively good heat conductivity that comes with ultra-small size is that temperature differences within the controller become smaller, so that it is easier to measure the hottest temperature in the controller with fewer temperature sensors, or even one temperature sensor. Another size-sensitive design feature is in the approach to electrical noise immunity. At a very small size, where conduction paths are much shorter than in conventional designs, the ground becomes essentially isopotential, and so certain (space-consuming) electrical noise control components become unnecessary, which helps make small size possible. One winding-current sensor, applied to all of the windings in fast sequence, is smaller and wastes less power than the two or more sensors conventionally used to sense and control winding currents. An unexpected benefit of using only one current sensor is that it actually improves the precision of current control by using the "same" sensors to read each of the three phases. Folding the encoder directly into the controller electronics eliminates a great deal of redundant electronics, packaging, connectors, and hook-up wiring. The reduction of wires and connectors subtracts substantial bulk and eliminates their role in behaving as EMI (electro-magnetic interference) antennas. A shared

  9. Motor cortex inhibition induced by acoustic stimulation.

    PubMed

    Kühn, Andrea A; Sharott, Andrew; Trottenberg, Thomas; Kupsch, Andreas; Brown, Peter

    2004-09-01

    The influence of the brainstem motor system on cerebral motor areas may play an important role in motor control in health and disease. A new approach to investigate this interaction in man is combining acoustic stimulation activating the startle system with transcranial magnetic stimulation (TMS) over the motor cortex. However, it is unclear whether the inhibition of TMS responses following acoustic stimulation occurs at the level of the motor cortex through reticulo-cortical projections or subcortically, perhaps through reticulo-spinal projections. We compared the influence of acoustic stimulation on motor effects elicited by TMS over motor cortical areas to those evoked with subcortical electrical stimulation (SES) through depth electrodes in five patients treated with deep brain stimulation for Parkinson's disease. SES bypasses the motor cortex, demonstrating any interaction with acoustic stimuli at the subcortical level. EMG was recorded from the contralateral biceps brachii muscle. Acoustic stimulation was delivered binaurally through headphones and used as a conditioning stimulus at an interstimulus interval of 50 ms. When TMS was used as the test stimulus, the area and amplitude of the conditioned motor response was significantly inhibited (area: 57.5+/-12.9%, amplitude: 47.9+/-7.4%, as percentage of unconditioned response) whereas facilitation occurred with SES (area: 110.1+/-4.3%, amplitude: 116.9+/-6.9%). We conclude that a startle-evoked activation of reticulo-cortical projections transiently inhibits the motor cortex.

  10. A computational neuroanatomy for motor control.

    PubMed

    Shadmehr, Reza; Krakauer, John W

    2008-03-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the "cost-to-go" during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

  11. Using the motor to monitor pump conditions

    SciTech Connect

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  12. Attention Deficit Hyperactivity Disorder and Motor Impairment.

    PubMed

    Goulardins, Juliana B; Marques, Juliana C B; De Oliveira, Jorge A

    2017-04-01

    Attention deficit hyperactivity disorder (ADHD) is the most common neurobehavioral disorder during childhood, affecting approximately 3-6% of school-aged children; its cardinal symptoms of high activity, impulsivity, and behavioral distractibility might be assumed to have close relationships to interferences with motor skills. A separate body of literature attests to ways that motor problems can severely impact children's daily lives, as motor problems may occur in 30-50% of children with ADHD. This article critically reviews research on motor impairment in children with ADHD, notable differences in motor performance of individuals with ADHD compared with age-matched controls, and possible neural underpinnings of this impairment. We discuss the highly prevalent link between ADHD and developmental coordination disorder (DCD) and the lack of a clear research consensus about motor difficulties in ADHD. Despite increasing evidence and diagnostic classifications that define DCD by motor impairment, the role of ADHD symptoms in DCD has not been delineated. Similarly, while ADHD may predispose children to motor problems, it is unclear whether any such motor difficulties observed in this population are inherent to ADHD or are mediated by comorbid DCD. Future research should address the exact nature and long-term consequences of motor impairment in children with ADHD and elucidate effective treatment strategies for these disorders together and apart.

  13. Non-motor Parkinson's: integral to motor Parkinson's, yet often neglected

    PubMed Central

    Todorova, Antoniya; Jenner, Peter; Ray Chaudhuri, K

    2014-01-01

    Non-motor symptoms are a key component of Parkinson's disease, possibly representing a clinical biomarker of its premotor phase. The burden of non-motor symptoms can define a patient's health-related quality of life. Non-motor symptoms substantially increase the cost of care—requiring increased hospitalisation and treatment—and pose a major challenge to healthcare professionals. However, clinicians often regard non-motor symptoms and their management as peripheral to that of the motor symptoms. Here, we address the clinical issues and unmet needs of non-motor symptoms in Parkinson's disease. PMID:24699931

  14. Method for assessing in-service motor efficiency and in-service motor/load efficiency

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

  15. Ratchet models of molecular motors

    NASA Astrophysics Data System (ADS)

    Jaster, Nicole

    2003-09-01

    Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks. Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli. Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system. Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle. Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the

  16. Brain oscillatory signatures of motor tasks.

    PubMed

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  17. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.

    PubMed

    Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W; Walter, Wilhelm J; Schwille, Petra; Diez, Stefan

    2016-11-15

    In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors' anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted "membrane-anchored" gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor-cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport.

  18. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    PubMed

    Rodriguez, Amy D; McCabe, Matthew L; Nocera, Joe R; Reilly, Jamie

    2012-01-01

    Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations) are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words) and the motor task (i.e., standing still and finger-tapping). In Experiment 1 (n = 20), we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40), we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  19. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    PubMed

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  20. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity.

    PubMed

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-12-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC.

  1. Modification of motor cortex excitability during muscle relaxation in motor learning.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Saitoh, Kei; Higashi, Toshio

    2016-01-01

    We postulated that gradual muscle relaxation during motor learning would dynamically change activity in the primary motor cortex (M1) and modify short-interval intracortical inhibition (SICI). Thus, we compared changes in M1 excitability both pre and post motor learning during gradual muscle relaxation. Thirteen healthy participants were asked to gradually relax their muscles from an isometric right wrist extension (30% maximum voluntary contraction; MVC) using a tracking task for motor learning. Single or paired transcranial magnetic stimulation (TMS) was applied at either 20% or 80% of the downward force output during muscle release from 30% MVC, and we compared the effects of motor learning immediately after the 1st and 10th blocks. Motor-evoked potentials (MEPs) from the extensor and flexor carpi radialis (ECR and FCR) were then measured and compared to evaluate their relationship before and after motor learning. In both muscles and each downward force output, motor cortex excitability during muscle relaxation was significantly increased following motor learning. In the ECR, the SICI in the 10th block was significantly increased during the 80% waveform decline compared to the SICI in the 1st block. In the FCR, the SICI also exhibited a greater inhibitory effect when muscle relaxation was terminated following motor learning. During motor training, acquisition of the ability to control muscle relaxation increased the SICI in both the ECR and FCR during motor termination. This finding aids in our understanding of the cortical mechanisms that underlie muscle relaxation during motor learning.

  2. Novice motor performance: better not to verbalize.

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Ruthruff, Eric; Didierjean, André; Hartley, Alan A

    2013-02-01

    Offline verbalization about a new motor experience is often assumed to positively influence subsequent performance. Here, we evaluated this presumed positive influence and whether it originates from declarative or from procedural knowledge using the explicit/implicit motor-learning paradigm. To this end, 80 nongolfers learned to perform a golf-putting task with high error rates (i.e., explicit motor learning), and thus relied on declarative knowledge, or low error rates (i.e., implicit motor learning), and thus relied on procedural knowledge. Afterward, they either put their memories of the previous motor experience into words or completed an irrelevant verbal task. Finally, they performed the putting task again. Verbalization did not improve novice motor performance: Putting was impaired, overall, and especially so for high-error learners. We conclude that declarative knowledge is altered by verbalization, whereas procedural knowledge is not.

  3. Novel method for driving the ultrasonic motor.

    PubMed

    Kim, Hyeoung woo; Dong, Shuxiang; Laoratanakul, Pitak; Uchino, Kenji; Park, Tae gone

    2002-10-01

    This paper reports a novel driving method for an annular plate-type ultrasonic motor. Instead of the direct current/alternating current (DC/AC) converter type driver using conventional electromagnetic transformer, a compact disc-type piezoelectric transformer is used to obtain high voltage output for driving the ultrasonic motor. The piezoelectric transformer is operated in the radial vibration mode at resonance frequency close to the resonance frequency of the ultrasonic motor. Later, it was found that the piezoelectric transformer could drive the ultrasonic motor, even if their resonance frequencies are not exactly the same by incorporating the matching network in the circuit. The maximum speed of the ultrasonic motor obtained by using this driving method is over 300 rpm. It is believed that the results of this study will have impact on the integration and miniaturization of the ultrasonic motor and its driving circuit.

  4. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  5. Motor run-up system. [power lines

    NASA Technical Reports Server (NTRS)

    Daeges, J. J. (Inventor)

    1975-01-01

    A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.

  6. Additional Drive Circuitry for Piezoelectric Screw Motors

    NASA Technical Reports Server (NTRS)

    Smythe, Robert; Palmer, Dean; Gursel, Yekta; Reder, Leonard; Savedra, Raymond

    2004-01-01

    Modules of additional drive circuitry have been developed to enhance the functionality of a family of commercially available positioning motors (Picomotor . or equivalent) that provide linear motion controllable, in principle, to within increments .30 nm. A motor of this type includes a piezoelectric actuator that turns a screw. Unlike traditional piezoelectrically actuated mechanisms, a motor of this type does not rely on the piezoelectric transducer to hold position: the screw does not turn except when the drive signal is applied to the actuator.

  7. Energy-Efficient Electric Motor Selection Handbook

    SciTech Connect

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  8. Circuit Regulates Speed Of dc Motor

    NASA Technical Reports Server (NTRS)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  9. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  10. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  11. Timing mechanism for wind motors

    SciTech Connect

    White, H.O.

    1980-09-23

    A plate is carried by the blade support shaft journalled within the frame of a wind motor. The axle shaft of the blade is securable to the plate at variable distances relative the support shaft to selectively vary the offset of the blade. A primary drive element, gear or sprocket, coaxial with the axle shaft and rotatable in response to rotation of the blade, drivingly engages a driven idler element, gear or sprocket, respectively, carried by an idler shaft journalled within the plate. A planetary gear rotatable in response to the driven idler element, drivingly engages a sun gear fixed to the frame coaxial with the support shaft.

  12. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  13. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  14. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  15. Influence of Motor Cortex Stimulation During Motor Training on Neuroplasticity as a Potential Therapeutic Intervention.

    PubMed

    Massie, Crystal L; White, Caylen; Pruit, Katie; Freel, Aubrey; Staley, Kaylin; Backes, Morgan

    2017-02-06

    Rehabilitation options to promote neuroplasticity may be enhanced when patients are engaged in motor practice during repetitive transcranial magnetic stimulation (rTMS). Twelve participants completed 3 separate sessions: motor practice, motor practice with rTMS, and rTMS only: motor practice consisted of 30 isometric contractions and subthreshold rTMS was 30, 3-s trains at 10 Hz. Assessments included the Box and Block Test (BBT), force steadiness (10% of the maximum voluntary contraction), and TMS (cortical excitability, intracortical inhibition, and intracortical facilitation). Participants significantly increased BBT scores following the combined condition. Force steadiness improved after all 3 conditions (p < .05). TMS outcomes depended on intervention condition with significant increases in facilitation following the motor practice plus rTMS condition. All interventions influenced motor control, yet are likely modulated differently when combining motor practice plus rTMS. These results help guide the clinical utility of rTMS as an intervention to influence motor control.

  16. 76 FR 72888 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety...

  17. 77 FR 69586 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... National Highway Traffic Safety Administration 49 CFR Part 571 Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration... specifically relate to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers,...

  18. 75 FR 22317 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... National Highway Traffic Safety Administration 23 CFR Parts 1200 and 1300 Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety... that specifically relate to passenger cars, multipurpose passenger vehicles, trucks, buses,...

  19. Motor current signature analysis method for diagnosing motor-operated devices

    SciTech Connect

    Haynes, H D; Eissenberg, D M

    1986-09-30

    A motor current noise signature analysis method for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in inaccessible or hostile environments. 6 figs.

  20. Modeling an electric motor in 1-D

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  1. Technical Evaluation Motor No. 7 (TEM-7)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil

    1991-01-01

    The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.

  2. A miniature solid propellant rocket motor

    SciTech Connect

    Grubelich, M.C.; Hagan, M.; Mulligan, E.

    1997-08-01

    A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

  3. 24 Inch Reusable Solid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special 'solvent-spirning' process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  4. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The...

  5. Advanced valve motor operator diagnostic system

    SciTech Connect

    Thibault, C.

    1989-01-01

    A brief summary of the current use of diagnostic applications to motor-operated valves (MOVs) to satisfy the requirements of IE Bulletin 85-03, IE 85-03 (Supplement 1), and preventive maintenance applications is presented in this paper. This paper explains a new system for diagnostics, signature analysis, and direct measurement of actual load on MOV in the closed direction. This advanced valve motor operator diagnostic system (AVMODS) system comprises two complementary segments: (1) valve motor operator diagnostic system (V-MODS) and (2) motor current signature analysis (MCSA). AVMODS technical considerations regarding V-MODS and MCSA are discussed.

  6. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  7. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  8. Injury risks of EMS responders: evidence from the National Fire Fighter Near-Miss Reporting System

    PubMed Central

    Taylor, Jennifer A; Davis, Andrea L; Barnes, Brittany; Lacovara, Alicia V; Patel, Reema

    2015-01-01

    Objectives We analysed near-miss and injury events reported to the National Fire Fighter Near-Miss Reporting System (NFFNMRS) to investigate the workplace hazards and safety concerns of Emergency Medical Services (EMS) responders in the USA. Methods We reviewed 769 ‘non-fire emergency event’ reports from the NFFNMRS using a mixed methods approach. We identified 185 emergency medical calls and analysed their narrative text fields. We assigned Mechanism of Near-Miss/Injury and Nature of Injury codes and then tabulated frequencies (quantitative). We coded major themes regarding work hazards and safety concerns reported by the EMS responders (qualitative). Results Of the 185 emergency medical calls, the most commonly identified Mechanisms of Near-Miss/Injury to EMS responders was Assaults, followed by Struck-by Motor Vehicle, and Motor Vehicle Collision. The most commonly identified weapon used in an assault was a firearm. We identified 5 major domains of workplace hazards and safety concerns: Assaults by Patients, Risks from Motor Vehicles, Personal Protective Equipment, Relationships between Emergency Responders, and Policies, Procedures and Practices. Conclusions Narrative text from the NFFNMRS is a rich source of data that can be analysed quantitatively and qualitatively to provide insight into near-misses and injuries sustained by EMS responders. Near-miss reporting systems are critical components for occupational hazard surveillance. PMID:26068510

  9. Development of Ulta-Efficient Electric Motors

    SciTech Connect

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air

  10. Motor Learning in Childhood Education: Curricular, Compensatory, Cognitive.

    ERIC Educational Resources Information Center

    Humphrey, James H.

    Noting that unilateral definitions of motor learning as separate from ideational learning are inadequate, this book identifies and explores certain branches of specific aspects of motor learning. The book is divided into three parts, dealing with curricular motor learning, compensatory motor learning, and cognitive motor learning. Part I is…

  11. 49 CFR 574.9 - Requirements for motor vehicle dealers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Requirements for motor vehicle dealers. 574.9... RECORDKEEPING § 574.9 Requirements for motor vehicle dealers. (a) Each motor vehicle dealer who sells a used motor vehicle for purposes other than resale, who leases a motor vehicle for more than 60 days, that...

  12. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier... major motor carrier safety provisions of the recently enacted Moving Ahead for Progress in the...

  13. No Role for Motor Affordances in Visual Working Memory

    ERIC Educational Resources Information Center

    Pecher, Diane

    2013-01-01

    Motor affordances have been shown to play a role in visual object identification and categorization. The present study explored whether working memory is likewise supported by motor affordances. Use of motor affordances should be disrupted by motor interference, and this effect should be larger for objects that have motor affordances than for…

  14. 41 CFR 109-38.5103 - Motor vehicle utilization standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Motor vehicle... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5103 Motor vehicle utilization standards. (a) The following average utilization...

  15. 41 CFR 109-38.5103 - Motor vehicle utilization standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Motor vehicle... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5103 Motor vehicle utilization standards. (a) The following average utilization...

  16. 49 CFR 574.9 - Requirements for motor vehicle dealers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Requirements for motor vehicle dealers. 574.9... RECORDKEEPING § 574.9 Requirements for motor vehicle dealers. (a) Each motor vehicle dealer who sells a used motor vehicle for purposes other than resale, who leases a motor vehicle for more than 60 days, that...

  17. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory... MCSAC will complete action on Task 11-01, regarding Patterns of Safety Violations by Motor...

  18. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    ERIC Educational Resources Information Center

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  19. Advances in motor neurone disease.

    PubMed

    Bäumer, Dirk; Talbot, Kevin; Turner, Martin R

    2014-01-01

    Motor neurone disease (MND), the commonest clinical presentation of which is amyotrophic lateral sclerosis (ALS), is regarded as the most devastating of adult-onset neurodegenerative disorders. The last decade has seen major improvements in patient care, but also rapid scientific advances, so that rational therapies based on key pathogenic mechanisms now seem plausible. ALS is strikingly heterogeneous in both its presentation, with an average one-year delay from first symptoms to diagnosis, and subsequent rate of clinical progression. Although half of patients succumb within 3-4 years of symptom onset, typically through respiratory failure, a significant minority survives into a second decade. Although an apparently sporadic disorder for most patients, without clear environmental triggers, recent genetic studies have identified disease-causing mutations in genes in several seemingly disparate functional pathways, so that motor neuron degeneration may need to be understood as a common final pathway with a number of upstream causes. This apparent aetiological and clinical heterogeneity suggests that therapeutic studies should include detailed biomarker profiling, and consider genetic as well as clinical stratification. The most common mutation, accounting for 10% of all Western hemisphere ALS, is a hexanucleotide repeat expansion in C9orf72. This and several other genes implicate altered RNA processing and protein degradation pathways in the core of ALS pathogenesis. A major gap remains in understanding how such fundamental processes appear to function without obvious deficit in the decades prior to symptom emergence, and the study of pre-symptomatic gene carriers is an important new initiative.

  20. Imaging the ocular motor nerves.

    PubMed

    Ferreira, Teresa; Verbist, Berit; van Buchem, Mark; van Osch, Thijs; Webb, Andrew

    2010-05-01

    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic resonance imaging is the imaging method of choice in the evaluation of the normal and pathologic ocular motor nerves. CT still plays a limited but important role in the evaluation of the intraosseous portions at the skull base and bony foramina. We describe for each segment of these cranial nerves, the normal anatomy, the most appropriate image sequences and planes, their imaging appearance and pathologic conditions. Magnetic resonance imaging with high magnetic fields is a developing and promising technique. We describe our initial experience with a Phillips 7.0T MRI scanner in the evaluation of the brainstem segments of the OMNs. As imaging becomes more refined, an understanding of the detailed anatomy is increasingly necessary, as the demand on radiology to diagnose smaller lesions also increases.

  1. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  2. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... methods, marking requirements, and energy efficiency levels for three-phase induction motors, March 2010... Performance of Single-Speed Three-Phase Cage Induction Motors, clauses 5.2, 5.4, 6, and 8, and Tables 1, 2, 3... Procedure for Polyphase Induction Motors and Generators, approved February 9, 2004: (i) Section...

  3. Compromised Motor Planning and Motor Imagery in Right Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Craje, Celine; van Elk, Michiel; Beeren, Manuela; van Schie, Hein T.; Bekkering, Harold; Steenbergen, Bert

    2010-01-01

    We investigated whether motor planning problems in people with Hemiparetic Cerebral Palsy (HCP) are paralleled by impaired ability to use Motor Imagery (MI). While some studies have shown that individuals with HCP can solve a mental rotation task, it was not clear if they used MI or Visual Imagery (VI). In the present study, motor planning and MI…

  4. Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients

    PubMed Central

    Wang, Li; Zhang, Jingna; Zhang, Ye; Yan, Rubing; Liu, Hongliang; Qiu, Mingguo

    2016-01-01

    Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function. PMID:27200373

  5. Review of Motor Development, Perceptual-Motor and Physical Fitness Testing.

    ERIC Educational Resources Information Center

    Bundschuh, Ernest; And Others

    Tests of motor development, perceptual-motor coordination, and physical fitness, for the retarded and non-retarded, are reviewed regarding their usage and administration. The tests reviewed are the: Denver Developmental Screening Test, Bayley Scales of Infant Development, Dayton Sensory Motor Awareness Survey, Minnetonka Physical Performance…

  6. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ...This supplemental notice of proposed rulemaking (SNOPR) proposes to clarify certain terms and language in our regulations for certain commercial and industrial equipment, as follows: revise the definitions of certain terms related to electric motors and small electric motors, clarify the scope of energy conservation standards for electric motors, update references to several industry and......

  7. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    ERIC Educational Resources Information Center

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  8. Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients.

    PubMed

    Wang, Li; Zhang, Jingna; Zhang, Ye; Yan, Rubing; Liu, Hongliang; Qiu, Mingguo

    2016-01-01

    Aims. Motor imagery has emerged as a promising technique for the improvement of motor function following stroke, but the mechanism of functional network reorganization in patients during this process remains unclear. The aim of this study is to evaluate the cortical motor network patterns of effective connectivity in stroke patients. Methods. Ten stroke patients with right hand hemiplegia and ten normal control subjects were recruited. We applied conditional Granger causality analysis (CGCA) to explore and compare the functional connectivity between motor execution and motor imagery. Results. Compared with the normal controls, the patient group showed lower effective connectivity to the primary motor cortex (M1), the premotor cortex (PMC), and the supplementary motor area (SMA) in the damaged hemisphere but stronger effective connectivity to the ipsilesional PMC and M1 in the intact hemisphere during motor execution. There were tighter connections in the cortical motor network in the patients than in the controls during motor imagery, and the patients showed more effective connectivity in the intact hemisphere. Conclusions. The increase in effective connectivity suggests that motor imagery enhances core corticocortical interactions, promotes internal interaction in damaged hemispheres in stroke patients, and may facilitate recovery of motor function.

  9. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  10. Bridging the gap between motor imagery and motor execution with a brain-robot interface.

    PubMed

    Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza

    2015-03-01

    According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke.

  11. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... or non-motorized rivercraft on the Snake River and that portion of the Salmon River in the HCNRA... authorizing the use of motorized and non-motorized rivercraft on the Snake River, the authorized officer...

  12. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... or non-motorized rivercraft on the Snake River and that portion of the Salmon River in the HCNRA... authorizing the use of motorized and non-motorized rivercraft on the Snake River, the authorized officer...

  13. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... or non-motorized rivercraft on the Snake River and that portion of the Salmon River in the HCNRA... authorizing the use of motorized and non-motorized rivercraft on the Snake River, the authorized officer...

  14. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... or non-motorized rivercraft on the Snake River and that portion of the Salmon River in the HCNRA... authorizing the use of motorized and non-motorized rivercraft on the Snake River, the authorized officer...

  15. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story

    PubMed Central

    Llinás, Rodolfo R

    2011-01-01

    Abstract Theories concerning the role of the climbing fibre system in motor learning, as opposed to those addressing the olivocerebellar system in the organization of motor timing, are briefly contrasted. The electrophysiological basis for the motor timing hypothesis in relation to the olivocerebellar system is treated in detail. PMID:21486816

  16. EMS in Mauritius.

    PubMed

    Ramalanjaona, Georges; Brogan, Gerald X

    2009-02-01

    Mauritius lies in the southwest Indian Ocean about 1250 miles from the African coast and 500 miles from Madagascar. Mauritius (estimated population 1,230,602) became independent from the United Kingdom in 1968 and has one of the highest GDP per capita in Africa. Within Mauritius there is a well established EMS system with a single 999 national dispatch system. Ambulances are either publicly or privately owned. Public ambulances are run by the Government (SAMU). Megacare is a private subscriber only ambulance service. The Government has recently invested in new technology such as telemedicine to further enhance the role of EMS on the island. This article describes the current state of EMS in Mauritius and depicts its development in the context of Government effort to decentralise and modernise the healthcare system.

  17. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  18. 76 FR 78808 - Airworthiness Directives; Teledyne Continental Motors (TCM) and Rolls-Royce Motors Ltd. (R-RM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... Continental Motors (TCM) and Rolls-Royce Motors Ltd. (R-RM) Series Reciprocating Engines AGENCY: Federal... Motors, Inc., PO Box 90, Mobile, AL 36601; phone: 251-438-3411, or go to http://tcmlink.com...: 2011-26-07 Teledyne Continental Motors (TCM) and Rolls-Royce Motors Ltd. (R-RM) Series...

  19. 76 FR 37682 - Airworthiness Directives; Teledyne Continental Motors (TCM) and Rolls-Royce Motors Ltd. (R-RM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Continental Motors (TCM) and Rolls-Royce Motors Ltd. (R-RM) Series Reciprocating Engines AGENCY: Federal... information identified in this AD, contact Teledyne Continental Motors, Inc., PO Box 90, Mobile, AL 36601... Continental Motors (TCM) and Rolls-Royce Motors Ltd. (R-RM) Series Reciprocating Engines: Docket No....

  20. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  1. Delayed focal involvement of upper motor neurons in the Madras pattern of motor neuron disease.

    PubMed

    Massa, R; Scalise, A; Iani, C; Palmieri, M G; Bernardi, G

    1998-12-01

    We report the case of a young man from the south of India, initially presenting the typical signs of benign monomelic amyotrophy (BMA) in the left upper limb. After several years, the involvement of other limbs and the appearance of bulbar signs suggested the possible diagnosis of the Madras pattern of motor neuron disease (MMND). Serial motor evoked potential (MEP) recordings allowed detection of the onset of a focal involvement of upper motor neurons (UMN) controlling innervation in the originally amyotrophic limb. Therefore, serial MEP recordings can be useful for the early detection of sub-clinical UMN damage in motor neuron disease presenting with pure lower motor neuron (LMN) signs.

  2. The neural correlates of learned motor acuity

    PubMed Central

    Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.

    2014-01-01

    We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466

  3. The left side of motor resonance

    PubMed Central

    Sartori, Luisa; Begliomini, Chiara; Panozzo, Giulia; Garolla, Alice; Castiello, Umberto

    2014-01-01

    Motor resonance is defined as the internal activation of an observer's motor system, specifically attuned to the perceived movement. In social contexts, however, different patterns of observed and executed muscular activation are frequently required. This is the case, for instance, of seeing a key offered with a precision grip and received by opening the hand. Novel evidence suggests that compatibility effects in motor resonance can be altered by social response preparation. What is not known is how handedness modulates this effect. The present study aimed at determining how a left- and a right-handed actor grasping an object and then asking for a complementary response influences corticospinal activation in left- and right-handers instructed to observe the scene. Transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) were thus recorded from the dominant hands of left- and right-handers. Interestingly, requests posed by the right-handed actor induced a motor activation in the participants' respective dominant hands, suggesting that left-handers tend to mirror right-handers with their most efficient hand. Whereas requests posed by the left-handed actor activated the anatomically corresponding muscles (i.e., left hand) in all the participants, right-handers included. Motor resonance effects classically reported in the literature were confirmed when observing simple grasping actions performed by the right-handed actor. These findings indicate that handedness influences both congruent motor resonance and complementary motor preparation to observed actions. PMID:25249966

  4. Motor Coordination and Intelligence Level in Adolescents

    ERIC Educational Resources Information Center

    Planinsec, Jurij; Pisot, Rado

    2006-01-01

    This study investigated the relationship between motor coordination and intelligence level in adolescents. The sample was comprised of 550 adolescents from Slovenia, aged 13.1 years (SD = 0.87), who attended elementary schools. For assessment of motor coordination a battery of eight tests were used. Assessment of intelligence was carried out with…

  5. Detection and Prevalence of Motor Skill Disorders

    ERIC Educational Resources Information Center

    Nikolic, Snezana J.; Ilic-Stosovic, Danijela D.

    2009-01-01

    The main goal of this research was to establish the prevalence, form of manifestation, level and kind of motor skill disorders in three area of motor development functioning: neuromaturation, coordination and balance. The sample included 1165 children, between 6.5 and 11 years of age. The protocol was constructed and contained tests for the…

  6. Motor Control Research Requires Nonlinear Dynamics

    ERIC Educational Resources Information Center

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  7. Mechanochemical models of processive molecular motors

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Sun, Sean X.

    2012-05-01

    Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule experiments can now observe motor protein movement with increasing precision. The emerging data must be combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a modelling framework where quantitative understanding of motor behaviour can be developed based on the protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of protein domains are important in regulating motor function. Simple models of protein domain elasticity are presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely-Simmons description of muscle movement in the mean-field limit.

  8. Imitation in Infancy: Rational or Motor Resonance?

    ERIC Educational Resources Information Center

    Paulus, Markus; Hunnius, Sabine; Vissers, Marlies; Bekkering, Harold

    2011-01-01

    The present study investigates the contribution of 2 mechanisms to imitation in infancy. The principle of rational action suggests that infants normatively evaluate the efficiency of observed actions. In contrast, it has been proposed that motor resonance (i.e., the mapping of others' actions onto one's own motor repertoire) plays a central role…

  9. Characteristic model of travelling wave ultrasonic motor.

    PubMed

    Jingzhuo, Shi; Dongmei, You

    2014-02-01

    In general, the design and analysis of ultrasonic motor and motor's control strategy are based on mathematical model. The academic model is widely used in the analysis of traveling wave ultrasonic motor (TWUSM). But the dispersive characteristic of piezoelectric ceramics and other complicated process, such as the friction, make the model's precision not so accurate. On the other hand, identification modeling method, which is built based on the tested data, has obtained increasing application in the study of ultrasonic motor's control technology. Based on the identification model, many control strategies can be designed easily. But the identification model is an approximate model, so if a more accurate model of ultrasonic motor can be obtained, the analysis and design of motor control system will be more effective. Characteristic model is a kind of identification model which can accurately describe the characteristics of TWUSM. Based on the tested data, this paper proposes the modeling method of ultrasonic motor's characteristic model. The paper also makes a comparison of the effectiveness of different identification algorithms. Aiming at the speed control of ultrasonic motor, the influence of the parameter's initial values on the precision of model is discussed. The calculating results indicate the availability of this characteristic model.

  10. Analysis of Tiny Piezoelectric Ultrasonic Linear Motor

    NASA Astrophysics Data System (ADS)

    Ko, Hyun‑Phill; Lee, Kyong‑Jae; Yoo, Kyoung‑Ho; Kang, Chong‑Yun; Kim, Sangsig; Yoon, Seok‑Jin

    2006-05-01

    A modified structure for tiny ultrasonic linear motors has been developed, and various shaft materials have been tested in order to improve dynamic properties. The shaft material has a direct influence on efficiency, reliability, and quality of the motors and their dynamic properties. The shaft material is crucial to achieve high performance. Shafts of with various materials, such as a stainless steel, stainless steel coated with diamond like carbon (DLC), a Pyrex, and a graphite, can make it possible to improve dynamic properties of the motors over a wide range of tribological conditions. For the motor with a stainless steel shaft coated with DLC at 47 kHz, its velocity is 6.5 mm/s and its force is 110 mN. When the motor has a Pyrex shaft, a force of 140 mN is reached at 52 kHz. Accordingly, the maximum force produced by a motor with a graphite shaft is estimated as 97 mN. The velocity of this motor was 15 mm/s. We found that graphite has a fine surface and a directional texture which can help a moving element achieve linear motion. Finally, the use of a cap resulted in significantly improving stable operation. A motor with a graphite or a Pyrex shaft showed very stable operation and improved dynamic characteristics.

  11. Radial-Gap Motor for Ship Propulsion

    NASA Astrophysics Data System (ADS)

    Yanamoto, Toshiyuki; Yokoyama, Minoru

    The KHI team has developed radial gap high-temperature superconducting (HTS) motors of three sizes, 1 MW-class, 3 MW, and 20 MW, to be used for electric propulsion systems for ships. The volumetric torque density of the assembled 3 MW HTS motor was recorded at 40 kNm/m3 in the load test; the world's highest in the class.

  12. Motor Development and Learning Difficulties. Part Two.

    ERIC Educational Resources Information Center

    van Eyck, J. W. L.

    1980-01-01

    Part Two of the article focuses on the development of manual motor skills in learning disabled children. After a discussion of test methods, the author considers aspects of a medical examination, including a general exam, a neurological exam, an electroencephalogram, and a diagnostic test of hand/motor skill development. (For Part One, see EC 123…

  13. Strength Development and Motor-Sports Improvement.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1974-01-01

    This document examines the effects of strength-development programs on the improvement of motor skills and sports competencies. Part one defines various terms used throughout the development studies. Part two discusses the mixed results of experiments involving speed of movement as the motor item indicative of strength development. Part three…

  14. On the Problem of Motor Skill Development

    ERIC Educational Resources Information Center

    Clark, Jane E.

    2007-01-01

    As a way to address the serious obesity epidemic in the United States, many physical education classes have become fitness centers designed to raise heart rates and burn calories. An unintended consequence of this emphasis on fitness, however, is the lack of attention to motor skill development. Motor skills do not develop miraculously from one…

  15. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  16. Social Interaction and Repetitive Motor Behaviors

    ERIC Educational Resources Information Center

    Loftin, Rachel L.; Odom, Samuel L.; Lantz, Johanna F.

    2008-01-01

    Students with autism have difficulty initiating social interactions and may exhibit repetitive motor behavior (e.g., body rocking, hand flapping). Increasing social interaction by teaching new skills may lead to reductions in problem behavior, such as motor stereotypies. Additionally, self-monitoring strategies can increase the maintenance of…

  17. Electropneumatic transducer automatically limits motor current

    NASA Technical Reports Server (NTRS)

    Lovitt, T. F.

    1966-01-01

    Pneumatic controller regulates the load on a centrifugal freon compressor in a water cooling system, thus limiting the current input to an electric motor driving it. An electromechanical transducer monitoring the motor input current sends out air signals which indicate changes in the current to the pneumatic controller.

  18. Analysing Simple Electric Motors in the Classroom

    ERIC Educational Resources Information Center

    Yap, Jeff; MacIsaac, Dan

    2006-01-01

    Electromagnetic phenomena and devices such as motors are typically unfamiliar to both teachers and students. To better visualize and illustrate the abstract concepts (such as magnetic fields) underlying electricity and magnetism, we suggest that students construct and analyse the operation of a simply constructed Johnson electric motor. In this…

  19. Dual wound dc brush motor gearhead

    NASA Technical Reports Server (NTRS)

    Henson, Barrie W.

    1986-01-01

    The design requirements, the design, development tests and problems, the qualification and life test and the findings of the strip examination of a dual wound DC brushed motor gearhead are described. It is the only space qualified dual wound dc brushed motor gearhead in Europe.

  20. Validating the Rett Syndrome Gross Motor Scale.

    PubMed

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley; Syhler, Birgit; Bisgaard, Anne-Marie; Jacoby, Peter; Leonard, Helen

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  1. Motor Cortex Reorganization across the Lifespan

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  2. The Ball Bearing as a Motor.

    ERIC Educational Resources Information Center

    Gruenberg, H.

    1978-01-01

    Develops a theory to explain the effect that, when a current passes through a ball bearing, it can act as a motor. The motor can run in either direction on both DC and AC and can be self-starting on DC. Presents some experimental results in support of the theory. (Author/GA)

  3. Stochastic Movement of Multiple Motor Transported Cargo

    NASA Astrophysics Data System (ADS)

    Ando, David; Gopinathan, Ajay; Xu, Jing

    2015-03-01

    Experimental observations of cargo position during transport by multiple motors are determined by several coupled stochastic processes. During collective transport, each motor can transition between multiple kinetic states, with the state of each motor influencing the states of the others via mechanical coupling through a common cargo. We measured the motion of a micron sized bead as it is transported by two kinesin motors along a single microtubule track, focusing on cargo displacements which are both axial and transverse to the microtubule. We model the effects of inter-motor interference and the state of each motor throughout time, and back out motor properties using a systematic comparison of experimental observations with simulated model traces over a wide parameter space. Our model captures a surface-associated mode of kinesin, which is only accessible via inter-motor interference in groups, in which kinesin diffuses along the microtubule surface and rapidly ``hops'' between protofilaments without dissociating from the microtubule. This enhances local exploration of the microtubule surface, possibly enabling cellular cargos to overcome macromolecular crowding and to navigate obstacles along micro- tubule tracks without sacrificing overall travel distance.

  4. Assessment of Motor Units in Neuromuscular Disease.

    PubMed

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  5. Electric motor as the controlled mechanical transmission

    NASA Astrophysics Data System (ADS)

    Kukielka, Krzysztof

    2006-03-01

    The paper shows the possibility of using a brushless torque motor as controlled mechanical transmission. A development system for testing the torque motors was described and role of each component was discussed. Measured and observed phenomena of the research has shown the possibility of control the output rotations, preserving torque with simultaneous power consumption or its recovery, dependent on demanded transmission parameters.

  6. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at the flame-arresting portion might require such machining. (4) Ball and roller bearings and oil... clearance(s) shall conform to the requirements of § 18.31. (6) Oil seals shall be removed from motors prior to submission for explosion tests. Note: Oil seals will be removed from motors prior to...

  7. Motor-Cognitive Stimulation of the Elderly

    ERIC Educational Resources Information Center

    Cao, Ana Rey; Lacruz, Inmaculada Canales; Pais, Maria Ines Taboas

    2011-01-01

    This article shows the cognitive and motor-perceptive effects of the application of a cognitive stimulating program through motor function on 234 elderly people. The assessment was carried out prior to and after the program. Significant improvements in the experimental group were observed (p [less than or equal to] 0.05) in six of the eight…

  8. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  9. Gravity Compensation Technique Uses Small dc Motor

    NASA Technical Reports Server (NTRS)

    Hollow, Richard

    1988-01-01

    Small dc servomotor powered by simple constant-current source and with suitable gearing used to cancel effect of gravity upon load. Lead-screw positioning system has load counterbalanced by small supplementary motor powered by constant current source. Motor lighter and more compact alternative to counterbalance. Used in variety of mechanical systems where load positioned or accelerated in vertical plane.

  10. Learning in a Simple Motor System

    ERIC Educational Resources Information Center

    Broussard, Dianne M.; Kassardjian, Charles D.

    2004-01-01

    Motor learning is a very basic, essential form of learning that appears to share common mechanisms across different motor systems. We evaluate and compare a few conceptual models for learning in a relatively simple neural system, the vestibulo-ocular reflex (VOR) of vertebrates. We also compare the different animal models that have been used to…

  11. INTEGRATED DEVELOPMENT, MOTOR APTITUDE AND INTELLECTUAL PERFORMANCE.

    ERIC Educational Resources Information Center

    GRUBER, J.J.; ISMAIL, A.H.

    THE RELATIONSHIP OF MOVEMENT RESPONSES TO LEARNING ACHIEVEMENT WERE INVESTIGATED (1) TO IDENTIFY FACTORS CLAIMED TO MEASURE MOTOR APTITUDE AND INTELLECTUAL ACHIEVEMENT IN PRE-ADOLESCENTS, (2) TO DEVELOP MOTOR APTITUDE TEST BATTERIES FOR PREDICTING INTELLECTUAL ACHIEVEMENT, (3) TO STUDY RELATIONSHIPS OF COORDINATION AND BALANCE TEST ITEMS IN…

  12. Motor cortex layer 4: less is more

    PubMed Central

    Barbas, Helen; García-Cabezas, Miguel Á.

    2015-01-01

    The stratified motor cortex is variously thought to either lack or contain layer 4. Yamawaki et al. described a functional layer 4 in mouse motor cortex with properties and connections similar to layer 4 in sensory areas. Their results bolster a theoretical framework suggesting all primary cortical areas are equivalent. PMID:25868984

  13. Eye movements may cause motor contagion effects.

    PubMed

    Constable, Merryn D; de Grosbois, John; Lung, Tiffany; Tremblay, Luc; Pratt, Jay; Welsh, Timothy N

    2016-10-26

    When a person executes a movement, the movement is more errorful while observing another person's actions that are incongruent rather than congruent with the executed action. This effect is known as "motor contagion". Accounts of this effect are often grounded in simulation mechanisms: increased movement error emerges because the motor codes associated with observed actions compete with motor codes of the goal action. It is also possible, however, that the increased movement error is linked to eye movements that are executed simultaneously with the hand movement because oculomotor and manual-motor systems are highly interconnected. In the present study, participants performed a motor contagion task in which they executed horizontal arm movements while observing a model making either vertical (incongruent) or horizontal (congruent) movements under three conditions: no instruction, maintain central fixation, or track the model's hand with the eyes. A significant motor contagion-like effect was only found in the 'track' condition. Thus, 'motor contagion' in the present task may be an artifact of simultaneously executed incongruent eye movements. These data are discussed in the context of stimulation and associative learning theories, and raise eye movements as a critical methodological consideration for future work on motor contagion.

  14. 48 CFR 908.7101 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles....

  15. 48 CFR 908.7101 - Motor vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles....

  16. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Motor vehicles. 127.311 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... storage tank or loading flange. (b) During transfer operations, no person may— (1) Stop or park a...

  17. Child obesity and motor development delays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Childhood obesity has been associated with delays in motor development using weight-for-length z-scores and subcutaneous fat. To study this further, percent body fat and motor development were assessed in children ages 3 to 24 months. Included were 455 children with a total of 1882 longitudinal obse...

  18. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, James M.; Sereshteh, Ahmad

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  19. Oscillation control system for electric motor drive

    DOEpatents

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  20. 48 CFR 908.7101 - Motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles....

  1. 48 CFR 908.7101 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles....

  2. 48 CFR 908.7101 - Motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles....

  3. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  4. [MICROBIAL DESTRUCTION MINERAL (OIL) MOTOR OIL].

    PubMed

    Homenko, L A; Nogina, T M

    2015-01-01

    In a review information is presented about composition of mineral motor oils and their negative impact on the environment and the ability of microorganisms, in particular actinobacteria, to assimilate hydrocarbon oil components. The role of bacteria is described in the process of cleaning up polluted environments motor oils and the prospect of their use in biotechnology, environmental clean-up of these pollutants.

  5. Motor Activity and the Education of Retardates.

    ERIC Educational Resources Information Center

    Cratty, Bryant J.

    Presented are chapters concerned with the relationship of motor activity to education. The topics discussed are research, movement and performance in infants and children, principles of teaching motor skills; arousal level and attention; scribbling, drawing, writing, strength, flexibility, endurance, and control of large muscles; music and rhythm;…

  6. Perceptual Motor Activities in the Home.

    ERIC Educational Resources Information Center

    Brinning, Dorothy; And Others

    Designed for parents, the guide offers instructions for home activities to supplement the school program for children with perceptual motor disturbances. An individual program sheet is provided; behavioral characteristics and the child's need for structure are explained. Activities detailed include motor planning, body image, fine motor…

  7. Sensory Motor Coordination in Robonaut

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for

  8. Brushless direct-current motor with stationary armature and field

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1970-01-01

    Electronically commutated dc motor has an active fixed field winding, and active fixed armature winding, and passive rotor. By use of brushless dc motor switching technique, motor provides continuous controllable and reversible torque without use of sliding contacts.

  9. MAIN DRIVE MOTOR FOR BLISS #43 HOT ROLL. THIS WESTINGHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAIN DRIVE MOTOR FOR BLISS #43 HOT ROLL. THIS WESTINGHOUSE UNIT HAS SINCE BEEN REPLACED BY A 5000 HP TOSHIBA MOTOR. REHEAT FURNACES ARE SHOWN BEHIND MILL MOTOR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  10. Genetics Home Reference: distal hereditary motor neuropathy, type II

    MedlinePlus

    ... distal hereditary motor neuropathy, type II distal hereditary motor neuropathy, type II Enable Javascript to view the ... PDF Open All Close All Description Distal hereditary motor neuropathy, type II is a progressive disorder that ...

  11. Effect of private versus emergency medical systems transportation in motor vehicle accident victims: Trauma Center Experience in Saudi Arabia

    PubMed Central

    Alshahrani, Mohammed S.

    2017-01-01

    OBJECTIVE: To assess the effect of the mode of transportation of trauma patients (emergency medical service [EMS] vs. non-EMS) on their final clinical outcome in terms of mortality and length of hospital stay. MATERIALS AND METHODS: A retrospective study included all patients who were involved in motor vehicle crashes, and who were transferred immediately to an emergency department of a trauma care center from December 2008 to December 2012. Patients were classified into two groups: those brought through EMS and those brought by non-EMS (private transport). Information on demographic characteristics including age and gender was recorded and medical data such as blood pressure, pulse, oxygen saturation, temperature, initial Glasgow Coma Score (GCS), saturation, temperature, initial Glasgow Coma Score (GCS), injury severity score (ISS), and final outcome (discharged or expired) were obtained. Descriptive statistics, mean and standard deviation (SD) were computed for continuous variables and statistical significance was tested by t-test or Mann-Whitney U-test. Categorical variables were described by frequency distribution and percentages; Chi-square or Fisher's exact test as appropriate were employed to test for statistical significance. Logistics regression was performed with mortality as dependent variable and mode of transport and all demographic and prehospital variables as independent variables. A general linear model analysis was performed to test whether the mode of transport was significant to length of hospital stay in EMS and non-EMS clients. RESULTS: Out of 308 patients identified during the study period, 232 were transported through EMS and 76 through non-EMS. The two groups were similar with regard to mortality and length of stay. The crude mortality rate was 30.6% (95% confidence interval [CI]: 24.64–36.53) in the EMS group and 28.9% (95% CI: 18.44–38.76) in the non-EMS group (p = 0.785). The average length of hospital stay was 9 days (interquartile

  12. A microrotary motor powered by bacteria

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Yuichi; Miyata, Makoto; Tada, Tetsuya; Uyeda, Taro Q. P.

    2006-09-01

    Biological molecular motors have a number of unique advantages over artificial motors, including efficient conversion of chemical energy into mechanical work and the potential for self-assembly into larger structures, as is seen in muscle sarcomeres and bacterial and eukaryotic flagella. The development of an appropriate interface between such biological materials and synthetic devices should enable us to realize useful hybrid micromachines. Here we describe a microrotary motor composed of a 20-μm-diameter silicon dioxide rotor driven on a silicon track by the gliding bacterium Mycoplasma mobile. This motor is fueled by glucose and inherits some of the properties normally attributed to living systems. glucose | micro actuator | motor protein | nanobiotechnology | Mycoplasma gliding

  13. High performance stepper motors for space mechanisms

    NASA Astrophysics Data System (ADS)

    Sega, Patrick; Estevenon, Christine

    1995-05-01

    Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.

  14. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  15. High performance stepper motors for space mechanisms

    NASA Technical Reports Server (NTRS)

    Sega, Patrick; Estevenon, Christine

    1995-01-01

    Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.

  16. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  17. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  18. Torque for an Inertial Piezoelectric Rotary Motor

    PubMed Central

    Xing, Jichun

    2013-01-01

    For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor. PMID:24470794

  19. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); Weber, Steven J. (Inventor); Junkin, Lucien Q. (Inventor); Rogers, James Jonathan (Inventor)

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  20. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    PubMed

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development.

  1. Combined effect of motor imagery and peripheral nerve electrical stimulation on the motor cortex.

    PubMed

    Saito, Kei; Yamaguchi, Tomofumi; Yoshida, Naoshin; Tanabe, Shigeo; Kondo, Kunitsugu; Sugawara, Kenichi

    2013-06-01

    Although motor imagery enhances the excitability of the corticospinal tract, there are no peripheral afferent inputs during motor imagery. In contrast, peripheral nerve electrical stimulation (ES) can induce peripheral afferent inputs; thus, a combination of motor imagery and ES may enhance the excitability of the corticospinal tract compared with motor imagery alone. Moreover, the level of stimulation intensity may also be related to the modulation of the excitability of the corticospinal tract during motor imagery. Here, we evaluated whether a combination of motor imagery and peripheral nerve ES influences the excitability of the corticospinal tract and measured the effect of ES intensity on the excitability induced during motor imagery. The imagined task was a movement that involved touching the thumb to the little finger, whereas ES involved simultaneous stimulation of the ulnar and median nerves at the wrist. Two different ES intensities were used, one above the motor threshold and another above the sensory threshold. Further, we evaluated whether actual movement with afferent input induced by ES modulates the excitability of the corticospinal tract as well as motor imagery. We found that a combination of motor imagery and ES enhanced the excitability of the motor cortex in the thenar muscle compared with the other condition. Furthermore, we established that the modulation of the corticospinal tract was related to ES intensity. However, we found that the excitability of the corticospinal tract induced by actual movement was enhanced by peripheral nerve ES above the sensory threshold.

  2. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  3. Motor vehicle differential gear housing

    SciTech Connect

    Bitcon, L.L.

    1990-06-12

    This patent describes a motor vehicle differential gear housing. It comprises: a substantially box shaped casing having an interior and exterior defined by front, rear, top, bottom and two side panels, the front and rear panels each having an aperture, the apertures being at least partially in axial alignment; first bearing means cooperating with the apertures and demountably secured to each of the front and rear panels. The first bearing means is aligned coaxially with the aligned portions of the apertures; the side panels each having an opening, the openings being at least partially in axial alignment; axle support bearing housings aligned coaxially with the aligned portions of the openings on the side panels and threadedly mounted therein and adapted to have driving axles journaled in second bearing means in the bearing housings; and at least the front and rear panels being removably attached to the side panels.

  4. Honda motor company's CVCC engine

    SciTech Connect

    Abernathy, W.J.; Ronan, L.

    1980-07-01

    Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

  5. Miniature laser ignited bellows motor

    NASA Technical Reports Server (NTRS)

    Renfro, Steven L.; Beckman, Tom M.

    1994-01-01

    A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.

  6. [Functional and motor gastrointestinal disorders].

    PubMed

    Mearin, Fermín; Rey, Enrique; Balboa, Agustín

    2015-09-01

    This article discusses the most interesting studies on functional and motor gastrointestinal disorders presented at Digestive Diseases Week (DDW), 2015. Researchers are still seeking biomarkers for irritable bowel syndrome and have presented new data. One study confirmed that the use of low-dose antidepressants has an antinociceptive effect without altering the psychological features of patients with functional dyspepsia. A contribution that could have immediate application is the use of transcutaneous electroacupuncture, which has demonstrated effectiveness in controlling nausea in patients with gastroparesis. New data have come to light on the importance of diet in irritable bowel syndrome, although the effectiveness of a low-FODMAP diet seems to be losing momentum with time. Multiple data were presented on the long-term efficacy of rifaximin therapy in patients with irritable bowel syndrome and diarrhoea. In addition, among other contributions, and more as a curiosity, a study evaluated the effect of histamine in the diet of patients with irritable bowel syndrome.

  7. PFP supply fan motor starters

    SciTech Connect

    Keck, R.D.

    1995-05-31

    The Plutonium Finishing Plant (PFP) is currently stabilizing about 25 kg of Pu sludge; upon completion of this task, PFP will be maintained in a safe standby condition to await decision from the PFP NEPA review. It can take about 10 years to initiate and complete terminal cleanout after this; the facility will then be decommissioned and decontaminated. The 234-5Z ventilation system must continue to operate until terminal cleanout. Part of the ventilation system is the seismic fan shutdown system which shuts down the ventilation supply fans in case of strong earthquake. This document presents criteria for installing solid state, reduced voltage motor starters and isolation contactors for the 8 main ventilation supply fans. The isolation contactors will shutdown the supply fans in event of earthquake.

  8. Improved Bearingless Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2003-01-01

    The Morrison rotor, named after its inventor, is a hybrid rotor for use in a bearingless switched-reluctance electric motor. The motor is characterized as bearingless in the sense that it does not rely on conventional mechanical bearings: instead, it functions as both a magnetic bearing and a motor. Bearingless switched-reluctance motors are attractive for use in situations in which large variations in temperatures and/or other extreme conditions preclude the use of conventional electric motors and mechanical bearings. In the Morrison motor, as in a prior bearingless switched-reluctance motor, a multipole rotor is simultaneously levitated and rotated. In the prior motor, simultaneous levitation and rotation are achieved by means of two kinds of stator windings: (1) main motor windings and (2) windings that exert levitating forces on a multipole rotor. The multipole geometry is suboptimum for levitation in that it presents a discontinuous surface to the stator pole faces, thereby degrading the vibration-suppression capability of the magnetic bearing. The Morrison rotor simplifies the stator design in that the stator contains only one type of winding. The rotor is a hybrid that includes both (1) a circular lamination stack for levitation and (2) a multipole lamination stack for rotation. A prototype includes six rotor poles and eight stator poles (see figure). During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. The relative lengths of the circular and multipole lamination stacks on the rotor can be chosen to tailor the performance of the motor for a specific application. For a given overall length, increasing the length of the multipole stack relative to the circular stack results in an increase in torque relative to levitation load capacity and stiffness, and vice versa.

  9. Bearingless Switched-Reluctance Motor Improved

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2004-01-01

    The Morrison rotor, named after its inventor, is a hybrid rotor for use in a switched reluctance electric motor. The motor is characterized as bearingless in the sense that it does not rely on conventional mechanical bearings: instead, it functions as both a magnetic bearing and a motor. Bearingless switched-reluctance motors are attractive for use in situations in which large variations in temperatures and/or other extreme conditions preclude the use of conventional electric motors and mechanical bearings. In the Morrison motor, as in prior bearingless switched-reluctance motors, a multipole rotor is simultaneously levitated and rotated. In the prior motors, simultaneous levitation and rotation are achieved by means of two kinds of stator windings: (1) main motor windings and (2) windings that exert levitating forces on a multipole rotor. The multipole geometry is suboptimum for levitation because it presents a discontinuous surface to the stator pole faces, thereby degrading the vibration suppression capability of the magnetic bearing. The Morrison rotor simplifies the stator design in that it contains only one type of winding. The rotor is a hybrid that includes both (1) a circular lamination stack for levitation and (2) a multipole lamination stack for rotation. Simultaneous levitation and rotation at 6000 rpm were achieved with a prototype that included six rotor poles and eight stator poles. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. The relative length of the circular and multipole lamination stacks on the rotor can be chosen to tailor the performance of the motor for a specific application. For a given overall length, increasing the length of the multipole stack relative to the circular stack results in an increase in torque relative to the levitation

  10. Molecular motors: thermodynamics and the random walk.

    PubMed Central

    Thomas, N.; Imafuku, Y.; Tawada, K.

    2001-01-01

    The biochemical cycle of a molecular motor provides the essential link between its thermodynamics and kinetics. The thermodynamics of the cycle determine the motor's ability to perform mechanical work, whilst the kinetics of the cycle govern its stochastic behaviour. We concentrate here on tightly coupled, processive molecular motors, such as kinesin and myosin V, which hydrolyse one molecule of ATP per forward step. Thermodynamics require that, when such a motor pulls against a constant load f, the ratio of the forward and backward products of the rate constants for its cycle is exp [-(DeltaG + u(0)f)/kT], where -DeltaG is the free energy available from ATP hydrolysis and u(0) is the motor's step size. A hypothetical one-state motor can therefore act as a chemically driven ratchet executing a biased random walk. Treating this random walk as a diffusion problem, we calculate the forward velocity v and the diffusion coefficient D and we find that its randomness parameter r is determined solely by thermodynamics. However, real molecular motors pass through several states at each attachment site. They satisfy a modified diffusion equation that follows directly from the rate equations for the biochemical cycle and their effective diffusion coefficient is reduced to D-v(2)tau, where tau is the time-constant for the motor to reach the steady state. Hence, the randomness of multistate motors is reduced compared with the one-state case and can be used for determining tau. Our analysis therefore demonstrates the intimate relationship between the biochemical cycle, the force-velocity relation and the random motion of molecular motors. PMID:11600075

  11. A COMPUTATIONAL NEUROANATOMY FOR MOTOR CONTROL

    PubMed Central

    Shadmehr, Reza; Krakauer, John W.

    2008-01-01

    The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to built internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands. PMID:18251019

  12. ATP-Driven Remodeling of the Linker Domain in the Dynein Motor

    PubMed Central

    Roberts, Anthony J.; Malkova, Bara; Walker, Matt L.; Sakakibara, Hitoshi; Numata, Naoki; Kon, Takahide; Ohkura, Reiko; Edwards, Thomas A.; Knight, Peter J.; Sutoh, Kazuo; Oiwa, Kazuhiro; Burgess, Stan A.

    2012-01-01

    Summary Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states. The structures show key sites of conformational change within the AAA+ ring and a large rearrangement of the “linker” domain, involving a hinge near its middle. Analysis of a mutant in which the linker “undocks” from the ring indicates that linker remodeling requires energy that is supplied by interactions with the AAA+ modules. Fitting the dynein-c structures into flagellar tomograms suggests how this mechanism could drive sliding between microtubules, and also has implications for cytoplasmic cargo transport. PMID:22863569

  13. Motor Recovery of the Affected Hand in Subacute Stroke Correlates with Changes of Contralesional Cortical Hand Motor Representation

    PubMed Central

    Bösl, Kathrin; Nowak, Dennis Alexander

    2017-01-01

    Objective. To investigate the relationship between changes of cortical hand motor representation and motor recovery of the affected hand in subacute stroke. Methods. 17 patients with motor impairment of the affected hand were enrolled in an in-patient neurological rehabilitation program. Hand motor function tests (Wolf Motor Function Test, Action Research Arm Test) and neurophysiological evaluations (resting motor threshold, motor evoked potentials, motor map area size, motor map area volume, and motor map area location) were obtained from both hands and hemispheres at baseline and two, four, and six weeks of in-patient rehabilitation. Results. There was a wide spectrum of hand motor impairment at baseline and hand motor recovery over time. Hand motor function and recovery correlated significantly with (i) reduction of cortical excitability, (ii) reduction in size and volume of cortical hand motor representation, and (iii) a medial and anterior shift of the center of gravity of cortical hand motor representation within the contralesional hemisphere. Conclusion. Recovery of motor function of the affected hand after stroke is accompanied by definite changes in excitability, size, volume, and location of hand motor representation over the contralesional primary motor cortex. These measures may serve as surrogate markers for the outcome of hand motor rehabilitation after stroke. PMID:28286677

  14. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  15. Motor conduction block and high titres of anti-GM1 ganglioside antibodies: pathological evidence of a motor neuropathy in a patient with lower motor neuron syndrome.

    PubMed Central

    Adams, D; Kuntzer, T; Steck, A J; Lobrinus, A; Janzer, R C; Regli, F

    1993-01-01

    A patient with a progressive lower motor neuron syndrome and neurophysiological evidence of motor axon loss, multifocal proximal motor nerve conduction block, and high titres of anti-ganglioside GM1 antibodies. Neuropathological findings included a predominantly proximal motor radiculoneuropathy with multifocal IgG and IgM deposits on nerve fibres associated with a loss of spinal motor neurons. These findings support an autoimmune origin of this lower motor neuron syndrome with retrograde degeneration of spinal motor neurons and severe neurogenic muscular atrophy. Images PMID:8410039

  16. Bio-inspired novel design principles for artificial molecular motors.

    PubMed

    Hugel, Thorsten; Lumme, Christina

    2010-10-01

    Since we have learned that biological organisms like ourselves are driven by tiny biological molecular motors we try to design and produce artificial molecular motors. However, despite the huge efforts since decades, man-made artificial molecular motors are still far from biological molecular motors or macroscopic motors with regard to performance, especially with respect to energy efficiency. This review highlights recent progress towards artificial molecular motors and discusses how their design and development can be guided by the design concepts of biological molecular motors or macroscopic motors.

  17. 78 FR 59293 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Motors, Inc. Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... our proposed airworthiness directive (AD) for certain Continental Motors, Inc., engines with...

  18. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  19. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  20. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  1. Space Digital Controller for Improved Motor Control

    NASA Astrophysics Data System (ADS)

    Alves-Nunes, Samuel; Daras, Gaetan; Dehez, Bruno; Maillard, Christophe; Bekemans, Marc; Michel, Raymond

    2014-08-01

    Performing digital motor control into space equipment is a new challenge. The new DPC (Digital Programmable Controller) is the first chip that we can use as a micro-controller, allowing us to drive motors with digital control schemes. In this paper, the digital control of hybrid stepper motors is considered. This kind of motor is used for solar array rotation and antenna actuation. New digital control technology brings a lot of advantages, allowing an important reduction of thermal losses inside the motor, and a reduction of thermal constraints on power drive electronic components. The opportunity to drive motors with a digital controller also brings many new functionalities like post-failure torque analysis, micro- vibrations and cogging torque reduction, or electro- mechanical damping of solar array oscillations. To evaluate the performance of the system, Field-Oriented Control (FOC) is implemented on a hybrid stepper motor. A test-bench, made of an active load, has been made to emulate the mechanical behaviour of the solar array, by the use of a torsionally-compliant model. The experimental results show that we can drastically reduce electrical power consumption, compared with the currently used open-loop control scheme.

  2. Response inhibition in motor conversion disorder.

    PubMed

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P < .001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society.

  3. Response Inhibition in Motor Conversion Disorder

    PubMed Central

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A.; Hallett, Mark

    2014-01-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P <.001) compared with healthy volunteers, which remained significant after Bonferroni correction for multiple comparisons and after controlling for attention, sustained attention, depression, and anxiety. There were no significant differences in other cognitive measures. We highlight a specific deficit in motor response inhibition that may play a role in impaired inhibition of unwanted movement such as the excessive and aberrant movements seen in motor conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. PMID:23554084

  4. Molecular motors: a traffic cop within?

    PubMed Central

    Welte, M. A.; Gross, S. P.

    2008-01-01

    Intracellular transport along microtubules is often bidirectional, employing multiple plus- and minus-end directed motors. How cells regulate such transport in time and space is a fundamental but unsolved question in cell biology. A recent paper presents a new modeling approach to predict how much of transport can be understood just from our knowledge of the motors involved. The model can generate strikingly complex patterns of motion, mimicking key aspects of cargo transport in vivo. Previous studies had inferred that plus-end motors on bidirectional cargoes are usually turned off when the minus-end motors are engaged (and vice versa). In the model, such motor coordination can arise from motors competing in a tug-of-war, without help from additional regulators. This new theoretical framework should stimulate much research that will help unravel whether regulation of intracellular transport is dominated by higher-order control mechanisms or is achieved simply by tuning basic properties of the motors themselves. PMID:19404428

  5. POGAL B-Axis Motor Test

    SciTech Connect

    Hale, L C; Wulff, T A

    2004-06-28

    The Aerotech model S-180-69-A, a brushless DC motor of slotless design, was selected as the B-axis drive for the Precision Optical Grinder and Lathe (POGAL). It is common knowledge that a slotless motor will have effectively no magnetic cogging and much less torque ripple than a traditional slot-type motor. It is logical to believe that the radial and axial forces generated between the rotor and stator would also be smaller for a slotless design. This is important when a frameless motor is directly coupled to the axis, as these forces directly influence the axis and affect its error motion. It is the purpose of this test to determine the radial and axial forces generated by the Aerotech motor and to estimate their effect on the error motion of the axis using a mathematical model of the hydrostatic bearing being designed for POGAL. The test results combined with a mathematical model of the POGAL B axis indicate that the directly coupled Aerotech motor will be quite acceptable. In the radial direction, the residual motor force, after subtracting out the one-cycle force, could cause sub nanometer level error motion at the tool point. The axial direction is not in a sensitive direction for turning.

  6. How molecular motors shape the flagellar beat

    PubMed Central

    Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank

    2007-01-01

    Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446

  7. Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke.

    PubMed

    Chen, Joyce L; Schlaug, Gottfried

    2013-01-01

    Functional and structural reorganization in the brain occurs after stroke. The ability to predict motor outcomes may depend on patterns of brain functional and structural connectivity. We tested the hypothesis that alterations in motor transcallosal and corticospinal connections correlate with motor impairment in patients with chronic stroke. Eleven ischemic stroke patients underwent the Upper Extremity Fugl-Meyer (UE-FM) assessment, resting state functional magnetic resonance imaging, and diffusion tensor imaging (DTI). Twelve healthy control subjects underwent DTI. We assessed the temporal coupling in neural activity between interhemispheric motor cortex, and white matter integrity by means of fractional anisotropy (FA), in the transcallosal motor fibers and corticospinal tract. Partial correlation analyses were performed to determine whether these connectivity measures correlate with Upper UE-FM scores. Patients compared to controls had reduced FA in common voxels of transcallosal motor and ipsilesional corticospinal fibers. Within the patient group those with higher interhemispheric motor cortex connectivity and higher FA in the transcallosal motor fibers were less impaired. The results show that markers of functional and structural motor cortex connectivity correlate with motor impairment in the chronic stage of stroke.

  8. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  9. Improved Multiple-DOF SAW Piezoelectric Motors

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Hull, Anthony; Wright, John

    2003-01-01

    Surface-acoustic-wave (SAW) piezoelectric motors of a proposed type would be capable of operating in multiple degrees of freedom (DOFs) simultaneously and would be amenable to integration into diverse structures and mechanisms. These motors would be compact and structurally simple and would not contain bearings or lead screws. One example of a particularly useful motor of this type would be a two-dimensional- translation stage. Another such example would be a self-actuated spherical joint that could be made to undergo controlled, simultaneous rotations about two orthogonal axes: Such a motor could serve as a mechanism for aiming an "eyeball" camera or as a compact transducer in, and an integral part of, a joint in a robot arm. The multiple-DOF SAW piezoelectric motors as now proposed would be successors to the ones reported in "Multiple-DOF Surface-Acoustic-Wave Piezoelectric Motors" (NPO-20735), NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 5b. The basic principle of operation of a multiple-DOF SAW piezoelectric motor is a straightforward extension of that of single-DOF SAW piezoelectric motors, which have been reported in several previous NASA Tech Briefs articles: For example, in the case of a linear SAW piezoelectric motor, piezoelectric transducers at opposite ends of a stator excite surface acoustic waves that travel along the surface of the stator. An object (denoted the slider) is pressed against the stator with sufficient pressure (in practice .300 MPa) that it remains in frictional contact with the stator at all times. The slider rides the crests of the waves and is thereby made to move along the surface of the stator. The direction of motion (forward or backward) is controlled by selecting the relative phase of waves generated by the two piezoelectric transducers. The speed increases with the amplitude of the waves and thus with the magnitude of the voltage applied to the transducers.

  10. Neural Control Adaptation to Motor Noise Manipulation

    PubMed Central

    Hasson, Christopher J.; Gelina, Olga; Woo, Garrett

    2016-01-01

    Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in 12 young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation (CV) of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g., delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability. PMID:26973487

  11. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  12. Acute infantile motor unit disorder. Infantile botulism?

    PubMed

    Clay, S A; Ramseyer, J C; Fishman, L S; Sedgwick, R P

    1977-04-01

    Eight infants with an acute reversible motor unit disorder are described, including two infants from whom Clostridum botulinum type A was isolated from stool specimens. The clinical spectrum includes constipation, cranial nerve deficits, pupillary involvement, and generalized hypotonic weakness. There were no deaths, and all infants have had complete clinical recovery. A characteristic electromyographic (EMG) pattern was present in part until clinical recovery. This distinctive pattern consisted of brief, small, abundant for power exerted motor unit potentials. This EMG pattern in the context of the clinical syndrome may well be diagnostic for acute infantile motor unit disorder.

  13. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  14. Variable-Reluctance Motor For Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  15. Three phase full wave dc motor decoder

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1977-01-01

    A three phase decoder for dc motors is disclosed which employs an extremely simple six transistor circuit to derive six properly phased output signals for fullwave operation of dc motors. Six decoding transistors are coupled at their base-emitter junctions across a resistor network arranged in a delta configuration. Each point of the delta configuration is coupled to one of three position sensors which sense the rotational position of the motor. A second embodiment of the invention is disclosed in which photo-optical isolators are used in place of the decoding transistors.

  16. Study of the Synchronous Reluctance Motor Design

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2016-08-01

    The paper focuses on studying the external-rotor synchronous reluctance motor. The analysis is performed to estimate the influence of the number of stator slots and non-magnetic areas in the rotor (i.e., flux barriers) on the electromagnetic torque and torque ripple of the studied motor. It is concluded that the increase in the number of stator slots Z = 6 to Z = 18 causes an approximately twofold decrease in the ripple factor, but torque increases by 5 %. Electromagnetic torque will be increased approximately by 24 %, if non-magnetic flux barriers are created in the rotor of the studied synchronous reluctance motor.

  17. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  18. Robotic endoscope motor module and gearing design.

    PubMed

    Oliveira, Jillian M; Chen, Yi; Hunter, Ian W

    2011-01-01

    Actuation of a robotic endoscope with increased torque output is presented. This paper will specifically focus on the motor module section of a robotic endoscope, which comprises of a pair of motors and gear reduction assemblies. The results for the endoscope and biopsy tool stiffness, as well as the stall force and force versus speed characteristics of the motor module assembly are shown. The scope stiffness was found to be 0.006 N/degree and additional stiffness of the biopsy tools were found to be in the range of 0.09 to 0.13 N/degree. Calculations for worm gearing and efficiency are discussed.

  19. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  20. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.