Science.gov

Sample records for em rna para

  1. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process

    PubMed Central

    Valle, Mikel; Sengupta, Jayati; Swami, Neil K.; Grassucci, Robert A.; Burkhardt, Nils; Nierhaus, Knud H.; Agrawal, Rajendra K.; Frank, Joachim

    2002-01-01

    During the elongation cycle of protein biosynthesis, the specific amino acid coded for by the mRNA is delivered by a complex that is comprised of the cognate aminoacyl-tRNA, elongation factor Tu and GTP. As this ternary complex binds to the ribosome, the anticodon end of the tRNA reaches the decoding center in the 30S subunit. Here we present the cryo- electron microscopy (EM) study of an Escherichia coli 70S ribosome-bound ternary complex stalled with an antibiotic, kirromycin. In the cryo-EM map the anticodon arm of the tRNA presents a new conformation that appears to facilitate the initial codon–anticodon interaction. Furthermore, the elbow region of the tRNA is seen to contact the GTPase-associated center on the 50S subunit of the ribosome, suggesting an active role of the tRNA in the transmission of the signal prompting the GTP hydrolysis upon codon recognition. PMID:12093756

  2. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation.

    PubMed Central

    Hanrahan, C J; Palladino, M J; Ganetzky, B; Reenan, R A

    2000-01-01

    Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs. PMID:10880477

  3. Astronomia para/com crianças carentes em Limeira

    NASA Astrophysics Data System (ADS)

    Bretones, P. S.; Oliveira, V. C.

    2003-08-01

    Em 2001, o Instituto Superior de Ciências Aplicadas (ISCA Faculdades de Limeira) iniciou um projeto pelo qual o Observatório do Morro Azul empreendeu uma parceria com o Centro de Promoção Social Municipal (CEPROSOM), instituição mantida pela Prefeitura Municipal de Limeira para atender crianças e adolescentes carentes. O CEPROSOM contava com dois projetos: Projeto Centro de Convivência Infantil (CCI) e Programa Criança e Adolescente (PCA), que atendiam crianças e adolescentes em Centros Comunitários de diversas áreas da cidade. Esses projetos têm como prioridades estabelecer atividades prazerosas para as crianças no sentido de retirá-las das ruas. Assim sendo, as crianças passaram a ter mais um tipo de atividade - as visitas ao observatório. Este painel descreve as várias fases do projeto, que envolveu: reuniões de planejamento, curso de Astronomia para as orientadoras dos CCIs e PCAs, atividades relacionadas a visitas das crianças ao Observatório, proposta de construção de gnômons e relógios de Sol nos diversos Centros Comunitários de Limeira e divulgação do projeto na imprensa. O painel inclui discussões sobre a aprendizagem de crianças carentes, relatos que mostram a postura das orientadoras sobre a pertinência do ensino de Astronomia, relatos do monitor que fez o atendimento no Observatório e o que o número de crianças atendidas representou para as atividades da instituição desde o início de suas atividades e, em particular, em 2001. Os resultados são baseados na análise de relatos das orientadoras e do monitor do Observatório, registros de visitas e matérias da imprensa local. Conclui com uma avaliação do que tal projeto representou para as Instituições participantes. Para o Observatório, em particular, foi feita uma análise com relação às outras modalidades de atendimentos que envolvem alunos de escolas e público em geral. Também é abordada a questão do compromisso social do Observatório na educação do

  4. OV-Wav: um novo pacote para análise multiescalar em astronomia

    NASA Astrophysics Data System (ADS)

    Pereira, D. N. E.; Rabaça, C. R.

    2003-08-01

    Wavelets e outras formas de análise multiescalar têm sido amplamente empregadas em diversas áreas do conhecimento, sendo reconhecidamente superiores a técnicas mais tradicionais, como as análises de Fourier e de Gabor, em certas aplicações. Embora a teoria dos wavelets tenha começado a ser elaborada há quase trinta anos, seu impacto no estudo de imagens astronômicas tem sido pequeno até bem recentemente. Apresentamos um conjunto de programas desenvolvidos ao longo dos últimos três anos no Observatório do Valongo/UFRJ que possibilitam aplicar essa poderosa ferramenta a problemas comuns em astronomia, como a remoção de ruído, a detecção hierárquica de fontes e a modelagem de objetos com perfis de brilho arbitrários em condições não ideais. Este pacote, desenvolvido para execução em plataforma IDL, teve sua primeira versão concluída recentemente e está sendo disponibilizado à comunidade científica de forma aberta. Mostramos também resultados de testes controlados ao quais submetemos os programas, com a sua aplicação a imagens artificiais, com resultados satisfatórios. Algumas aplicações astrofísicas foram estudadas com o uso do pacote, em caráter experimental, incluindo a análise da componente de luz difusa em grupos compactos de galáxias de Hickson e o estudo de subestruturas de nebulosas planetárias no espaço multiescalar.

  5. Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM

    PubMed Central

    Li, Wen; Agirrezabala, Xabier; Lei, Jianlin; Bouakaz, Lamine; Brunelle, Julie L; Ortiz-Meoz, Rodrigo F; Green, Rachel; Sanyal, Suparna; Ehrenberg, Måns; Frank, Joachim

    2008-01-01

    The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection. PMID:19020518

  6. Uma grade de perfis teóricos para estrelas massivas em transição

    NASA Astrophysics Data System (ADS)

    Nascimento, C. M. P.; Machado, M. A.

    2003-08-01

    Na XXVIII Reunião Anual da Sociedade Astronômica Brasileira (2002) apresentamos uma grade de perfis calculados de acordo com os pontos da trajetória evolutiva de metalicidade solar, Z = 0.02 e taxa de perda de massa () padrão, para estrelas com massa inicial de 25, 40, 60, 85 e 120 massas solares. Estes perfis foram calculados com o auxílio de um código numérico adequado para descrever os ventos de objetos massivos, supondo simetria esférica, estacionaridade e homogeneidade. No presente trabalho, apresentamos a complementação da grade com os perfis teóricos relativos às trajetórias de Z = 0.02 com taxa de perda de massa dobrada em relação a padrão (2´), e de metalicidade Z = 0.008. Para cada ponto das três trajetórias obtemos os perfis teóricos de Ha, Hb, Hg e Hd, e como esperado eles se apresentam em pura emissão, pura absorção ou em P-Cygni. Para valores de taxa de perda de massa muito baixos (~10-7) não há formação de linhas, o que é visto nos primeiros pontos em todas as trajetórias. Em geral, para um mesmo ponto a componente de emissão diminui e a absorção aumenta de Ha para Hd. É verificado que as trajetórias com Z = 0.02 e padrão possuem menos circuitos (loops) do que as com metalicidade Z = 0.02 e 2´ padrão, e seus perfis são, em geral, menos intensos. Em relação a trajetória de Z = 0.008, verifica-se menos circuitos e maior variação em luminosidade, e seus perfis mostram-se em, algumas trajetórias, mais intensos. Verificamos também que, pontos distintos em uma mesma trajetória, apresentam perfis diferentes para valores similares de luminosidade e temperatura efetiva. Sendo assim, uma grade de perfis teóricos parece ser útil para fornecer uma informação preliminar sobre o estágio evolutivo de uma estrela massiva.

  7. Vínculos observacionais para o processo-S em estrelas gigantes de Bário

    NASA Astrophysics Data System (ADS)

    Smiljanic, R. H. S.; Porto de Mello, G. F.; da Silva, L.

    2003-08-01

    Estrelas de bário são gigantes vermelhas de tipo GK que apresentam excessos atmosféricos dos elementos do processo-s. Tais excessos são esperados em estrelas na fase de pulsos térmicos do AGB (TP-AGB). As estrelas de bário são, no entanto, menos massivas e menos luminosas que as estrelas do AGB, assim, não poderiam ter se auto-enriquecido. Seu enriquecimento teria origem em uma estrela companheira, inicialmente mais massiva, que evolui pelo TP-AGB, se auto-enriquece com os elementos do processo-s e transfere material contaminado para a atmosfera da atual estrela de bário. A companheira evolui então para anã branca deixando de ser observada diretamente. As estrelas de bário são, portanto, úteis como testes observacionais para teorias de nucleossíntese pelo processo-s, convecção e perda de massa. Análises detalhadas de abundância com dados de alta qualidade para estes objetos são ainda escassas na literatura. Neste trabalho construímos modelos de atmosferas e, procedendo a uma análise diferencial, determinamos parâmetros atmosféricos e evolutivos de uma amostra de dez gigantes de bário e quatro normais. Determinamos seus padrões de abundância para Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu e Gd, concluindo que algumas estrelas classificadas na literatura como gigantes de bário são na verdade gigantes normais. Comparamos dois padrões médios de abundância, para estrelas com grandes excessos e estrelas com excessos moderados, com modelos teóricos de enriquecimento pelo processo-s. Os dois grupos de estrelas são ajustados pelos mesmos parâmetros de exposição de nêutrons. Tal resultado sugere que a ocorrência do fenômeno de bário com diferentes intensidades não se deve a diferentes exposições de nêutrons. Discutimos ainda efeitos nucleossintéticos, ligados ao processo-s, sugeridos na literatura para os elementos Cu, Mn, V e Sc.

  8. BSSDATA - um programa otimizado para filtragem de dados em radioastronomia solar

    NASA Astrophysics Data System (ADS)

    Martinon, A. R. F.; Sawant, H. S.; Fernandes, F. C. R.; Stephany, S.; Preto, A. J.; Dobrowolski, K. M.

    2003-08-01

    A partir de 1998, entrou em operação regular no INPE, em São José dos Campos, o Brazilian Solar Spectroscope (BSS). O BSS é dedicado às observações de explosões solares decimétricas com alta resolução temporal e espectral, com a principal finalidade de investigar fenômenos associados com a liberação de energia dos "flares" solares. Entre os anos de 1999 e 2002, foram catalogadas, aproximadamente 340 explosões solares classificadas em 8 tipos distintos, de acordo com suas características morfológicas. Na análise detalhada de cada tipo, ou grupo, de explosões solares deve-se considerar a variação do fluxo do sol calmo ("background"), em função da freqüência e a variação temporal, além da complexidade das explosões e estruturas finas registradas superpostas ao fundo variável. Com o intuito de realizar tal análise foi desenvolvido o programa BSSData. Este programa, desenvolvido em linguagem C++, é constituído de várias ferramentas que auxiliam no tratamento e análise dos dados registrados pelo BSS. Neste trabalho iremos abordar as ferramentas referentes à filtragem do ruído de fundo. As rotinas do BSSData para filtragem de ruído foram testadas nos diversos grupos de explosões solares ("dots", "fibra", "lace", "patch", "spikes", "tipo III" e "zebra") alcançando um bom resultado na diminuição do ruído de fundo e obtendo, em conseqüência, dados onde o sinal torna-se mais homogêneo ressaltando as áreas onde existem explosões solares e tornando mais precisas as determinações dos parâmetros observacionais de cada explosão. Estes resultados serão apresentados e discutidos.

  9. RNA.

    ERIC Educational Resources Information Center

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  10. Functional conformations of the L11–ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations

    PubMed Central

    Li, Wen; Sengupta, Jayati; Rath, Bimal K.; Frank, Joachim

    2006-01-01

    The interaction between the GTPase-associated center (GAC) and the aminoacyl-tRNA·EF-Tu·GTP ternary complex is of crucial importance in the dynamic process of decoding and tRNA accommodation. The GAC includes protein L11 and helices 43–44 of 23S rRNA (referred to as L11–rRNA complex). In this study, a method of fitting based on a systematic comparison between cryo-electron microscopy (cryo-EM) density maps and structures obtained by molecular dynamics simulations has been developed. This method has led to the finding of atomic models of the GAC that fit the EM maps with much improved cross-correlation coefficients compared with the fitting of the X-ray structure. Two types of conformations of the L11–rRNA complex, produced by the simulations, match the cryo-EM maps representing the states either bound or unbound to the aa-tRNA·EF-Tu·GTP ternary complex. In the bound state, the N-terminal domain of L11 is extended from its position in the crystal structure, and the base of nucleotide A1067 in the 23S ribosomal RNA is flipped out. This position of the base allows the RNA to reach the elbow region of the aminoacyl-tRNA when the latter is bound in the A/T site. In the unbound state, the N-terminal domain of L11 is rotated only slightly, and A1067 of the RNA is flipped back into the less-solvent-exposed position, as in the crystal structure. By matching our experimental cryo-EM maps with much improved cross-correlation coefficients compared to the crystal structure, these two conformations prove to be strong candidates of the two functional states. PMID:16682558

  11. Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ

    PubMed Central

    Gorzelnik, Karl V.; Cui, Zhicheng; Reed, Catrina A.; Jakana, Joanita; Young, Ry; Zhang, Junjie

    2016-01-01

    Single-stranded (ss) RNA viruses infect all domains of life. To date, for most ssRNA virions, only the structures of the capsids and their associated protein components have been resolved to high resolution. Qβ, an ssRNA phage specific for the conjugative F-pilus, has a T = 3 icosahedral lattice of coat proteins assembled around its 4,217 nucleotides of genomic RNA (gRNA). In the mature virion, the maturation protein, A2, binds to the gRNA and is required for adsorption to the F-pilus. Here, we report the cryo-electron microscopy (cryo-EM) structures of Qβ with and without symmetry applied. The icosahedral structure, at 3.7-Å resolution, resolves loops not previously seen in the published X-ray structure, whereas the asymmetric structure, at 7-Å resolution, reveals A2 and the gRNA. A2 contains a bundle of α-helices and replaces one dimer of coat proteins at a twofold axis. The helix bundle binds gRNA, causing denser packing of RNA in its proximity, which asymmetrically expands the surrounding coat protein shell to potentially facilitate RNA release during infection. We observe a fixed pattern of gRNA organization among all viral particles, with the major and minor grooves of RNA helices clearly visible. A single layer of RNA directly contacts every copy of the coat protein, with one-third of the interactions occurring at operator-like RNA hairpins. These RNA–coat interactions stabilize the tertiary structure of gRNA within the virion, which could further provide a roadmap for capsid assembly. PMID:27671640

  12. Modelos Teoricos de Linhas de Recombinacao EM Radio Frequencias Para Regioes H II

    NASA Astrophysics Data System (ADS)

    Abraham, Z.; Cancoro, A. C. O.

    1987-05-01

    Foram feitos modelos de linhas de recombinção provenientes de regiões HII nas frequências de rádio para distintos números quãnticos. Estes modelos consideram regrões H II esfericamente simétricas com variações radiais na densidade e temperatura eletrônica, efeitos de colisoes inelásticas dos eletrons (alargarnento por pressão), e afastarnento do equiliíbrio termodinâmico local. 0 bojetivo é construir o perfil da linha para cada ponto da nuvern e obter o valor médio resultante da sua convoluçã com o feixe da antena de tarnanho comparável corn o tarnanho angular da nuvern para posterIor cornpara o corn

  13. Implication of microRNA regulation in para-phenylenediamine-induced cell death and senescence in normal human hair dermal papilla cells

    PubMed Central

    LEE, OK-KYU; CHA, HWA JUN; LEE, MYUNG JOO; LIM, KYUNG MI; JUNG, JAE WOOK; AHN, KYU JOONG; AN, IN-SOOK; AN, SUNGKWAN; BAE, SEUNGHEE

    2015-01-01

    Para-phenylenediamine (PPD) is a major component of hair coloring and black henna products. Although it has been largely demonstrated that PPD induces allergic reactions and increases the risk of tumors in the kidney, liver, thyroid gland and urinary bladder, the effect on dermal papilla cells remains to be elucidated. Therefore, the current study evaluated the effects of PPD on growth, cell death and senescence using cell-based assays and microRNA (miRNA) microarray in normal human hair dermal papilla cells (nHHDPCs). Cell viability and cell cycle analyses demonstrated that PPD exhibited a significant cytotoxic effect on nHHDPCs through inducing cell death and G2 phase cell cycle arrest in a dose-dependent manner. It was additionally observed that treatment of nHHDPCs with PPD induced cellular senescence by promoting cellular oxidative stress. In addition, the results of the current study indicated that these PPD-mediated effects were involved in the alteration of miRNA expression profiles. Treatment of nHHDPCs with PPD altered the expression levels of 74 miRNAs by ≥2-fold (16 upregulated and 58 downregulated miRNAs). Further bioinformatics analysis determined that these identified miRNA target genes were likely to be involved in cell growth, cell cycle arrest, cell death, senescence and the induction of oxidative stress. In conclusion, the observations of the current study suggested that PPD was able to induce several cytotoxic effects through alteration of miRNA expression levels in nHHDPCs. PMID:25776079

  14. Uso de modelos mecânicos em curso informal de astronomia para deficientes visuais. Resgate de uma experiência

    NASA Astrophysics Data System (ADS)

    Tavares, E. T., Jr.; Klafke, J. C.

    2003-08-01

    O presente trabalho propõe-se a resgatar uma experiência que teve lugar no Planetário de São Paulo nos anos 60. Em 1962, o Sr. Acácio, então com 37 anos, deficiente visual desde os 27, passou a assistir às aulas ministradas pelo Prof. Aristóteles Orsini aos integrantes do corpo de servidores do Planetário. O Sr. Acácio era o único deficiente da turma e, embora possuísse conhecimentos básicos e relativamente avançados de matemática, enfrentava dificuldades na compreensão e acompanhamento da exposição, como também em estudos posteriores. Com o intuito de auxiliá-lo na superação desses problemas, o Prof. Orsini solicitou a construção de modelos mecânicos que, através do sentido do tato, permitissem o acompanhamento das aulas e a transposição do modelo para o "constructo" mental. Essa prática mostrou-se tão eficaz que facilitou sobejamente o aprendizado da matéria pelo sujeito. O Sr. Acácio passou a integrar o corpo de professores do Planetário/Escola Municipal de Astrofísica, tendo ficado responsável pelo curso de "Introdução à Astronomia" por vários anos. Além disso, a experiência foi tão bem sucedida que alguns dos modelos tiveram seus elementos constitutivos pintados diferencialmente para serem utilizados em cursos regulares do Planetário, tornando-se parte integrante do conjunto de recursos didáticos da instituição. É pensando nessa eficácia, tanto em seu objetivo original permitir o aprendizado de um deficiente visual quanto no subsidiário recurso didático sistemático da instituição que decidimos resgatar essa experiência. Estribados nela, acreditamos ser extremamente produtivo, em termos educacionais, o aperfeiçoamento dos modelos originais, agora resgatados e restaurados, e a criação de outros que pudessem ser utilizados no ensino dessa ciência a deficientes visuais.

  15. RNA Interference

    MedlinePlus

    ... NIGMS Home > Science Education > RNA Interference Fact Sheet RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process ...

  16. Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle

    PubMed Central

    Pickl-Herk, Angela; Luque, Daniel; Vives-Adrián, Laia; Querol-Audí, Jordi; Garriga, Damià; Trus, Benes L.; Verdaguer, Nuria; Blaas, Dieter; Castón, José R.

    2013-01-01

    During infection, viruses undergo conformational changes that lead to delivery of their genome into host cytosol. In human rhinovirus A2, this conversion is triggered by exposure to acid pH in the endosome. The first subviral intermediate, the A-particle, is expanded and has lost the internal viral protein 4 (VP4), but retains its RNA genome. The nucleic acid is subsequently released, presumably through one of the large pores that open at the icosahedral twofold axes, and is transferred along a conduit in the endosomal membrane; the remaining empty capsids, termed B-particles, are shuttled to lysosomes for degradation. Previous structural analyses revealed important differences between the native protein shell and the empty capsid. Nonetheless, little is known of A-particle architecture or conformation of the RNA core. Using 3D cryo-electron microscopy and X-ray crystallography, we found notable changes in RNA–protein contacts during conversion of native virus into the A-particle uncoating intermediate. In the native virion, we confirmed interaction of nucleotide(s) with Trp38 of VP2 and identified additional contacts with the VP1 N terminus. Study of A-particle structure showed that the VP2 contact is maintained, that VP1 interactions are lost after exit of the VP1 N-terminal extension, and that the RNA also interacts with residues of the VP3 N terminus at the fivefold axis. These associations lead to formation of a well-ordered RNA layer beneath the protein shell, suggesting that these interactions guide ordered RNA egress. PMID:24277846

  17. Compilação de dados atômicos e moleculares do UV ao IV próximo para uso em síntese espectral

    NASA Astrophysics Data System (ADS)

    Coelho, P.; Barbuy, B.; Melendez, J.; Allen, D. M.; Castilho, B.

    2003-08-01

    Espectros sintéticos são utéis em uma grande variedade de aplicações, desde análise de abundâncias em espectros estelares de alta resolução ao estudo de populações estelares em espectros integrados. A confiabilidade de um espectro sintético depende do modelo de atmosfera adotado, do código de formação de linhas e da qualidade dos dados atômicos e moleculares que são determinantes no cálculo das opacidades da fotosfera. O nosso grupo no departamento de Astronomia no IAG tem utilizado espectros sintéticos há mais de 15 anos, em aplicações voltadas principalmente para a análise de abundâncias de estrelas G, K e M e populações estelares velhas. Ao longo desse tempo, as listas de linhas vieram sendo construídas e atualizadas continuamente, e alguns acréscimos recentes podem ser citados: Castilho (1999, átomos e moléculas no UV), Schiavon (1998, bandas moleculares de TiO) e Melendez (2001, átomos e moléculas no IV próximo). Com o intuito de calcular uma grade de espectros do UV ao IV próximo para uso no estudo de populações estelares velhas, se fazia necessário compilar e homogeneizar as diversas listas em apenas uma lista atômica e uma molecular. Nesse processo, a nova lista compilada foi correlacionada com outras bases de dados (NIST, Kurucz Database, O' Brian et al. 1991) para atualização dos parâmetros que caracterizam a transição atômica (comprimento de onda, log gf e potencial de excitação). Adicionalmente as constantes de interação C6 foram calculadas segundo a teoria de Anstee & O'Mara (1995) e artigos posteriores. As bandas moleculares de CH e CN foram recalculadas com o programa LIFBASE (Luque & Crosley 1999). Nesse poster estão detalhados os procedimentos citados acima, as comparações entre espectros calculados com as novas listas e espectros observados em alta resolução do Sol e de Arcturus, e uma análise do impacto decorrente da utilização de diferentes modelos de atmosfera no espectro sintético. Ao

  18. Omnipotent RNA.

    PubMed

    Spirin, Alexander S

    2002-10-23

    The capability of polyribonucleotide chains to form unique, compactly folded structures is considered the basis for diverse non-genetic functions of RNA, including the function of recognition of various ligands and the catalytic function. Together with well-known genetic functions of RNA - coding and complementary replication - this has led to the concept of the functional omnipotence of RNA and the hypothesis that an ancient RNA world supposedly preceded the contemporary DNA-RNA-protein life. It is proposed that the Woese universal precursor in the ancient RNA world could be a cell-free community of mixed RNA colonies growing and multiplying on solid surfaces.

  19. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  20. RNA helicases

    PubMed Central

    Owttrim, George W.

    2013-01-01

    Similar to proteins, RNA molecules must fold into the correct conformation and associate with protein complexes in order to be functional within a cell. RNA helicases rearrange RNA secondary structure and RNA-protein interactions in an ATP-dependent reaction, performing crucial functions in all aspects of RNA metabolism. In prokaryotes, RNA helicase activity is associated with roles in housekeeping functions including RNA turnover, ribosome biogenesis, translation and small RNA metabolism. In addition, RNA helicase expression and/or activity are frequently altered during cellular response to abiotic stress, implying they perform defined roles during cellular adaptation to changes in the growth environment. Specifically, RNA helicases contribute to the formation of cold-adapted ribosomes and RNA degradosomes, implying a role in alleviation of RNA secondary structure stabilization at low temperature. A common emerging theme involves RNA helicases acting as scaffolds for protein-protein interaction and functioning as molecular clamps, holding RNA-protein complexes in specific conformations. This review highlights recent advances in DEAD-box RNA helicase association with cellular response to abiotic stress in prokaryotes. PMID:23093803

  1. RNA genetics

    SciTech Connect

    Domingo, E. ); Holland, J.J. . Dept. of Biology); Ahlquist, P. . Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA gentics: Variability of RNA genomes, Volume III. Topics covered include: High error rate, population equilibrium, and evolution of RNA replication systems; Influenza viruses; High rate of nutation and evolution; and Sequence space and quasi species distribution.

  2. RNA genetics

    SciTech Connect

    Domingo, E. ); Holland, J.J. . Dept. of Biology); Ahlquist, P. . Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: RNA-directed virus replication Volume 1. Topics covered include: Replication of the poliovirus genome; Influenza viral RNA transcription and replication; and Relication of the reoviridal: Information derived from gene cloning and expression.

  3. RNA. Introduction.

    PubMed

    Bao, Marie Z; Kruger, Robert P; Rivas, Fabiola; Smith, Orla; Szewczak, Lara

    2009-02-20

    Two scientists walk into a bar. After a pint and an exchange of pleasantries, one says to the other, "Where do you come from? Scientifically, I mean." The queried scientist responds, "Out of the RNA world." "Don't we all," the asker responds chuckling. Fifteen years ago, the joke would have been made with a nod to the notion that life arose from an RNA-based precursor, the so-called "RNA world." Yet had this conversation happened last week, the scientists would also be grinning in appreciation of the extent to which contemporary cellular biology is steeped in all things RNA. Ours is truly an RNA world.In this year's special review issue, the Cell editorial team has brought together articles focused on RNA in the modern world, providing perspectives on classical and emerging areas of inquiry. We extend our thanks to the many distinguished experts who contributed their time and effort as authors and reviewers to make the issue informative, thought-provoking, and timely. We hope that this collection of articles, written as we stand on the verge of a new wave of RNA biology, edifies and inspires by revealing the inner workings of these versatile molecules and by highlighting the next key questions that need to be addressed as we strive to understand the full functional scope of RNA in cells.

  4. RNA Research

    NASA Technical Reports Server (NTRS)

    1998-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. It is widely believed that this RNA World was extensive and therefore a sophisticated nucleic acid replication machinery would presumably predate the translation machinery which would not be needed until later stages in the development of life. This view of an extended RNA World is not necessarily correct. From the point of view of exobiology, the difference in these two views mainly affects the significance of studies of the extent of catalysis possible by RNA- In either case, the origin of the translation machinery and the principles of RNA evolution remain central problems in exobiology. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modem organisms came to exist by the time of the last common ancestor (as detected by 16S RRNA sequence studies). Third, the RNAs that comprise the ribosome are themselves likely of very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.

  5. Engineering Structurally Interacting RNA (sxRNA).

    PubMed

    Doyle, Francis; Lapsia, Sameer; Spadaro, Salvatore; Wurz, Zachary E; Bhaduri-McIntosh, Sumita; Tenenbaum, Scott A

    2017-03-28

    RNA-based three-way junctions (3WJs) are naturally occurring structures found in many functional RNA molecules including rRNA, tRNA, snRNA and ribozymes. 3WJs are typically characterized as resulting from an RNA molecule folding back on itself in cis but could also form in trans when one RNA, for instance a microRNA binds to a second structured RNA, such as a mRNA. Trans-3WJs can influence the final shape of one or both of the RNA molecules and can thus provide a means for modulating the availability of regulatory motifs including potential protein or microRNA binding sites. Regulatory 3WJs generated in trans represent a newly identified regulatory category that we call structurally interacting RNA or sxRNA for convenience. Here we show that they can be rationally designed using familiar cis-3WJ examples as a guide. We demonstrate that an sxRNA "bait" sequence can be designed to interact with a specific microRNA "trigger" sequence, creating a regulatable RNA-binding protein motif that retains its functional activity. Further, we show that when placed downstream of a coding sequence, sxRNA can be used to switch "ON" translation of that sequence in the presence of the trigger microRNA and the amount of translation corresponded with the amount of microRNA present.

  6. Engineering Structurally Interacting RNA (sxRNA)

    PubMed Central

    Doyle, Francis; Lapsia, Sameer; Spadaro, Salvatore; Wurz, Zachary E.; Bhaduri-McIntosh, Sumita; Tenenbaum, Scott A.

    2017-01-01

    RNA-based three-way junctions (3WJs) are naturally occurring structures found in many functional RNA molecules including rRNA, tRNA, snRNA and ribozymes. 3WJs are typically characterized as resulting from an RNA molecule folding back on itself in cis but could also form in trans when one RNA, for instance a microRNA binds to a second structured RNA, such as a mRNA. Trans-3WJs can influence the final shape of one or both of the RNA molecules and can thus provide a means for modulating the availability of regulatory motifs including potential protein or microRNA binding sites. Regulatory 3WJs generated in trans represent a newly identified regulatory category that we call structurally interacting RNA or sxRNA for convenience. Here we show that they can be rationally designed using familiar cis-3WJ examples as a guide. We demonstrate that an sxRNA “bait” sequence can be designed to interact with a specific microRNA “trigger” sequence, creating a regulatable RNA-binding protein motif that retains its functional activity. Further, we show that when placed downstream of a coding sequence, sxRNA can be used to switch “ON” translation of that sequence in the presence of the trigger microRNA and the amount of translation corresponded with the amount of microRNA present. PMID:28350000

  7. Traversing the RNA World.

    PubMed

    Filipowicz, Witold

    2017-04-05

    An invitation to write a ″Reflections″ type of article creates a certain ambivalence: it is a great honor but it also infers the end of your professional career. Before you vanish for good, your colleagues look forward to an interesting but entertaining account of the ups-and-downs of your past research and your views on science in general, peppered with indiscrete anecdotes about your former competitors and collaborators. What follows will disappoint those who await complaint and criticism, for example about the difficulties of doing research in the 1960s and 1970s in Eastern Europe, or those seeking very personal revelations. My scientific life has in fact seen many happy coincidences, much good fortune, and several lucky escapes from situations that at the time were quite scary. I have also been fortunate with regard to competitors and collaborators. Particularly because, whenever possible, I tried to ″neutralize″ my rivals by collaborating with them - to the benefit of all. I recommend this strategy to young researchers to dispel the nightmares when competing against powerful contenders. I have been blessed with the selection of my research topic: RNA biology. Over the last five decades, new and unexpected RNA-related phenomena emerged almost yearly. I experienced them very personally while studying transcription, translation, RNA splicing, ribosome biogenesis, and more recently different classes of regulatory non-coding RNAs, including microRNAs. Some selected research and para-research stories, also covering many wonderful people I had a privilege to work with, are summarized below.

  8. Busca de estruturas em grandes escalas em altos redshifts

    NASA Astrophysics Data System (ADS)

    Boris, N. V.; Sodrã©, L., Jr.; Cypriano, E.

    2003-08-01

    A busca por estruturas em grandes escalas (aglomerados de galáxias, por exemplo) é um ativo tópico de pesquisas hoje em dia, pois a detecção de um único aglomerado em altos redshifts pode por vínculos fortes sobre os modelos cosmológicos. Neste projeto estamos fazendo uma busca de estruturas distantes em campos contendo pares de quasares próximos entre si em z Â3 0.9. Os pares de quasares foram extraídos do catálogo de Véron-Cetty & Véron (2001) e estão sendo observados com os telescópios: 2,2m da University of Hawaii (UH), 2,5m do Observatório de Las Campanas e com o GEMINI. Apresentamos aqui a análise preliminar de um par de quasares observado nos filtros i'(7800 Å) e z'(9500 Å) com o GEMINI. A cor (i'-z') mostrou-se útil para detectar objetos "early-type" em redshifts menores que 1.1. No estudo do par 131046+0006/J131055+0008, com redshift ~ 0.9, o uso deste método possibilitou a detecção de sete objetos candidatos a galáxias "early-type". Num mapa da distribuição projetada dos objetos para 22 < i' < 25 observou-se que estas galáxias estão localizadas próximas a um dos quasares e há indícios de que estejam aglomeradas dentro de um área de ~ 6 arcmin2. Se esse for o caso, estes objetos seriam membros de uma estrutura em grande escala. Um outro argumento em favor dessa hipótese é que eles obedecem uma relação do tipo Kormendy (raio equivalente X brilho superficial dentro desse raio), como a apresentada pelas galáxias elípticas em z = 0.

  9. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network.

  10. RNA as an Enzyme.

    ERIC Educational Resources Information Center

    Cech, Thomas R.

    1986-01-01

    Reviews current findings that explain RNA's function as an enzyme in addition to being an informational molecule. Highlights recent research efforts and notes changes in the information base on RNA activity. Includes models and diagrams of RNA activity. (ML)

  11. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  12. Histones are required for transcription of yeast rRNA genes by RNA polymerase I.

    PubMed

    Tongaonkar, Prasad; French, Sarah L; Oakes, Melanie L; Vu, Loan; Schneider, David A; Beyer, Ann L; Nomura, Masayasu

    2005-07-19

    Nucleosomes and their histone components have generally been recognized to act negatively on transcription. However, purified upstream activating factor (UAF), a transcription initiation factor required for RNA polymerase (Pol) I transcription in Saccharomyces cerevisiae, contains histones H3 and H4 and four nonhistone protein subunits. Other studies have shown that histones H3 and H4 are associated with actively transcribed rRNA genes. To examine their functional role in Pol I transcription, we constructed yeast strains in which synthesis of H3 is achieved from the glucose-repressible GAL10 promoter. We found that partial depletion of H3 (approximately 50% depletion) resulted in a strong inhibition (>80%) of Pol I transcription. A combination of biochemical analysis and electron microscopic (EM) analysis of Miller chromatin spreads indicated that initiation and elongation steps and rRNA processing were compromised upon histone depletion. A clear decrease in relative amounts of UAF, presumably caused by reduced stability, was also observed under the conditions of H3 depletion. Therefore, the observed inhibition of initiation can be explained, in part, by the decrease in UAF concentration. In addition, the EM results suggested that the defects in rRNA transcript elongation and processing may be a result of loss of histones from rRNA genes rather than (or in addition to) an indirect consequence of effects of histone depletion on expression of other genes. Thus, these results show functional importance of histones associated with actively transcribed rRNA genes.

  13. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  14. E. coli initiator tRNA analogs with different nucleotides in the discriminator base position.

    PubMed Central

    Uemura, H; Imai, M; Ohtsuka, E; Ikehara, M; Söll, D

    1982-01-01

    The effect of base changes at the fourth position from the 3'-terminus of Escherichia coli initiator tRNAMet has been studied to test the 'discriminator hypothesis' which proposed that the nucleotide in this position might have a role in the specificity of the aminoacylation reaction. E. coli initiator tRNA lacking the 3'-terminal tetranucleotide was prepared by partial digestion with S1 nuclease. To construct tRNA analogs with different bases in the fourth position this truncated tRNA was joined by RNA ligase to each of four chemically synthesized 2',3'-ethoxy-methylidene tetranucleotides pACCA(em), pCCCA(em), pGCCA(em), and pUCCA(em). In vitro aminoacylation studies showed that all four molecules accepted methionine, albeit with different Vmax values. Images PMID:6294608

  15. Replication of Tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Ishikawa, Masayuki

    2016-08-04

    Tobacco mosaic virus and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5'-terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems.

  16. Extracellular RNA in aging.

    PubMed

    Dluzen, Douglas F; Noren Hooten, Nicole; Evans, Michele K

    2017-03-01

    Since the discovery of extracellular RNA (exRNA) in circulation and other bodily fluids, there has been considerable effort to catalog and assess whether exRNAs can be used as markers for health and disease. A variety of exRNA species have been identified including messenger RNA and noncoding RNA such as microRNA (miRNA), small nucleolar RNA, transfer RNA, and long noncoding RNA. Age-related changes in exRNA abundance have been observed, and it is likely that some of these transcripts play a role in aging. In this review, we summarize the current state of exRNA profiling in various body fluids and discuss age-related changes in exRNA abundance that have been identified in humans and other model organisms. miRNAs, in particular, are a major focus of current research and we will highlight and discuss the potential role that specific miRNAs might play in age-related phenotypes and disease. We will also review challenges facing this emerging field and various strategies that can be used for the validation and future use of exRNAs as markers of aging and age-related disease. WIREs RNA 2017, 8:e1385. doi: 10.1002/wrna.1385 For further resources related to this article, please visit the WIREs website.

  17. Absence of knots in known RNA structures

    PubMed Central

    Micheletti, Cristian; Di Stefano, Marco; Orland, Henri

    2015-01-01

    The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also, abound in viral DNA packaged inside bacteriophages. RNA molecules, however, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the several thousand RNA structures present in the Protein Data Bank (PDB). The search identified no more than three deeply knotted RNA molecules. These entries are rRNAs of about 3,000 nt solved by cryo-EM. Their genuine knotted state is, however, doubtful based on the detailed structural comparison with homologs of higher resolution, which are all unknotted. Compared with the case of proteins and viral DNA, the observed incidence of knots in available RNA structures is, therefore, practically negligible. This fact suggests that either evolutionary selection or thermodynamic and kinetic folding mechanisms act toward minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. A possible general strategy for designing synthetic RNA sequences capable of self-tying in a twist-knot fold is finally proposed. PMID:25646433

  18. Antibodies against RNA hydrolyze RNA and DNA.

    PubMed

    Krasnorutskii, Michael A; Buneva, Valentina N; Nevinsky, Georgy A

    2008-01-01

    Immunization of animals with DNA leads to the production of anti-DNA antibodies (Abs) demonstrating both DNase and RNase activities. It is currently not known whether anti-RNA Abs can possess nuclease activities. In an attempt to address this question, we have shown that immunization of three rabbits with complex of RNA with methylated BSA (mBSA) stimulates production of IgGs with RNase and DNase activities belonging to IgGs, while polyclonal Abs from three non-immunized rabbits and three animals immunized with mBSA are catalytically inactive. Affinity chromatography of IgGs from the sera of autoimmune (AI) patients on DNA-cellulose usually demonstrates a number of fractions, all of which effectively hydrolyze both DNA and RNA, while rabbit catalytic IgGs were separated into Ab subfractions, some of which demonstrated only DNase activity, while others hydrolyzed RNA faster than DNA. The enzymic properties of the RNase and DNase IgGs from rabbits immunized with RNA distinguish them from all known canonical RNases and DNases and DNA- and RNA-hydrolyzing abzymes (Abzs) from patients with different AI diseases. In contrast to RNases and AI RNA-hydrolyzing Abs, rabbit RNase IgGs catalyze only the first step of the hydrolysis reaction but cannot hydrolyze the formed terminal 2',3'-cyclophosphate. The data indicate that Abzs of AI patients hydrolyzing nucleic acids in part may be Abs against RNA and its complexes with proteins.

  19. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  20. Decoding the RNA structurome

    PubMed Central

    Lu, Zhipeng; Chang, Howard Y

    2016-01-01

    Structures of RNA molecules are essential for their architectural, regulatory, and catalytic functions. Recent advances in high throughput sequencing enabled the development of methods for probing RNA structures on a transcriptome-wide scale – termed the RNA structurome. Here we review the state-of-the-art technologies for probing the RNA structurome, and highlight insights gained from these studies. We also point out the limits of current methods and discuss potential directions for future improvements. PMID:26923056

  1. Mucin gene mRNA levels in broilers challenged with eimeria and/or Clostridium perfringens.

    PubMed

    Kitessa, Soressa M; Nattrass, Gregory S; Forder, Rebecca E A; McGrice, Hayley A; Wu, Shu-Biao; Hughes, Robert J

    2014-09-01

    The effects of Eimeria (EM) and Clostridium perfringens (CP) challenges on the mRNA levels of genes involved in mucin (Muc) synthesis (Muc2, Muc5ac, Muc13, and trefoil family factor-2 [TFF2]), inflammation (tumor necrosis factor alpha [TNF-alpha] and interleukin-18 [IL-18]), and metabolic processes (cluster of differentiation [CD]36) in the jejunum of broilers were investigated. Two parallel experiments involving 1) EM challenge and 2) EM and CP challenges were conducted. The first experiment was a 2 X 2 study with 12 birds per treatment (N = 48) involving fishmeal substitution (25%) in the diet (FM) and EM challenge. The treatments were: Control (FM-, EM-), Fishmeal (FM+, EM-), EM challenge (FM-, EM+), and fishmeal substitution and EM challenge (FM+, EM+). The second experiment was a 2 X 2 X 2 experiment with six birds per treatment (N = 48) involving fishmeal (FM-, FM+), Eimeria (EM-, EM+), and C perfringens (CP-, CP+). In both arms of the study, male broilers were given a starter diet for the whole period of 16 days, except those assigned to FM+, where 25% of the starter ration was replaced with fishmeal from days 8 to 14. EM inoculation was performed on day 9 and CP inoculation on days 14 and 15. The EM challenge birds were euthanatized for sampling on day 13; postmortem examination and sampling for the Eimeria plus C perfringens challenge arm of the study were on day 16. In the Eimeria challenge arm of the study, fishmeal supplementation significantly suppressed the mRNA levels of TNF-alpha, TFF2, and IL-18 pre-CP inoculation but simultaneously increased the levels of Muc13 and CD36 mRNAs. Birds challenged with Eimeria exhibited increased mRNA levels of Muc13, Muc5ac, TNF-alpha, and IL-18. In the Eimeria and C. perfringens challenge arm, birds exposed to EM challenge exhibited significantly lower mRNA levels of Muc2 and CD36. The mRNA levels of CD36 were also significantly suppressed by CP challenge. Our results showed that the transcription of mucin synthesis

  2. Cytoplasmic Z-RNA

    SciTech Connect

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-09-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation.

  3. On the Formation of a Study Group to the Realization of Workshops for Teachers: Astronomy in Basic Education in Umuarama-Pr (Spanish Title: De la Formación de un Grupo de Estudios a la Realización de los Talleres Para los Profesores: la Astronomía en la Educación Básica en Umuarama-Pr ) Da Formação de um Grupo de Estudos À Realização de Oficinas Para Professores: a Astronomia na Educação Básica em Umuarama-Pr

    NASA Astrophysics Data System (ADS)

    Belusso, Diane; Akira Sakai, Otávio

    2013-12-01

    In this article, we aimed to present the activities developed by the Astronomy Study Group (ASG) to contribute to the dissemination and improvement of the astronomy teaching-learning. The results of a research carried out in schools of Umuarama-PR are shown, with the intention of checking the students' knowledge and interest in relation to Astronomy. It is reported the realization of workshops for Science teachers linked to the Education Regional Nucleus. The research and the workshop execution promoted the direct contact of the study group with the community; the results were used to diagnose the state of astronomy teaching-learning, in the basic education in Umuarama-PR. En este artículo se intenta presentar las actividades desarrolladas por el Grupo de Estudios de Astronomía (GEA) y contribuir para la divulgación y mejoría de la enseñanza-aprendizaje de la Astronomía. Se presentan los resultados de una investigación realizada en las escuelas de Umuarama-PR, con la intención de determinar el grado de conocimiento y el interés de los estudiantes en relación a la astronomía. Se relata la realización de talleres de capacitación para los profesores de ciencias vinculados al Núcleo Regional del Educación. La ejecución de la investigación y de los talleres promovió el contacto directo del grupo de estudios con la comunidad; los resultados sirvieron de diagnóstico de la enseñanza aprendizaje de la astronomía en la educación básica en Umuarama-PR. Neste artigo, objetiva-se apresentar as atividades desenvolvidas pelo Grupo de Estudos de Astronomia (GEA) e contribuir para a divulgação e melhoria do ensino-aprendizagem de astronomia. São apresentados os resultados de uma pesquisa realizada nas escolas de Umuarama-PR, com o intuito de averiguar o conhecimento e o interesse dos estudantes em relação à astronomia. Relata-se a realização de oficinas de capacitação para professores de ciências vinculados ao Núcleo Regional de Educação. A

  4. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing.

    PubMed

    Koh, Hye Ran; Xing, Li; Kleiman, Lawrence; Myong, Sua

    2014-07-01

    Helicases contribute to diverse biological processes including replication, transcription and translation. Recent reports suggest that unwinding of some helicases display repetitive activity, yet the functional role of the repetitiveness requires further investigation. Using single-molecule fluorescence assays, we elucidated a unique unwinding mechanism of RNA helicase A (RHA) that entails discrete substeps consisting of binding, activation, unwinding, stalling and reactivation stages. This multi-step process is repeated many times by a single RHA molecule without dissociation, resulting in repetitive unwinding/rewinding cycles. Our kinetic and mutational analysis indicates that the two double stand RNA binding domains at the N-terminus of RHA are responsible for such repetitive unwinding behavior in addition to providing an increased binding affinity to RNA. Further, the repetitive unwinding induces an efficient annealing of a complementary RNA by making the unwound strand more accessible. The complex and unusual mechanism displayed by RHA may help in explaining how the repetitive unwinding of helicases contributes to their biological functions.

  5. RNA Viruses Infecting Pest Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA viruses are viruses whose genetic material is ribonucleic acid (RNA). RNA viruses may be double or single-stranded based on the type of RNA they contain. Single-stranded RNA viruses can be further grouped into negative sense or positive-sense viruses according to the polarity of their RNA. Fur...

  6. The eukaryotic RNA exosome.

    PubMed

    Januszyk, Kurt; Lima, Christopher D

    2014-02-01

    The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.

  7. Single nucleotide RNA choreography.

    PubMed

    Hsiao, Chiaolong; Mohan, Srividya; Hershkovitz, Eli; Tannenbaum, Allen; Williams, Loren Dean

    2006-01-01

    New structural analysis methods, and a tree formalism re-define and expand the RNA motif concept, unifying what previously appeared to be disparate groups of structures. We find RNA tetraloops at high frequencies, in new contexts, with unexpected lengths, and in novel topologies. The results, with broad implications for RNA structure in general, show that even at this most elementary level of organization, RNA tolerates astounding variation in conformation, length, sequence and context. However the variation is not random; it is well-described by four distinct modes, which are 3-2 switches (backbone topology variations), insertions, deletions and strand clips.

  8. EMS Student Handbook.

    ERIC Educational Resources Information Center

    Ogle, Patrick

    This student guide is one of a series of self-contained materials for students enrolled in an emergency medical services (EMS) training program. Discussed in the individual sections of the guide are the following topics: the purpose and history of EMS professionals; EMS training, certification and examinations (national and state certification and…

  9. EM International. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  10. Assessing integrity of insect RNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessing total RNA integrity is important for the success of downstream RNA applications. The 2100 Bioanalyzer system with the RNA Integrity Number (RIN) provides a quantitative measure of RNA degradation. Although RINs may not be ascertained for RNA from all organisms, namely those with unusual or...

  11. RNA based evolutionary optimization

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1993-12-01

    The notion of an RNA world has been introduced for a prebiotic scenario that is dominated by RNA molecules and their properties, in particular their capabilities to act as templates for reproduction and as catalysts for several cleavage and ligation reactions of polynucleotides and polypeptides. This notion is used here also for simple experimental assays which are well suited to study evolution in the test tube. In molecular evolution experiments fitness is determined in essence by the molecular structures of RNA molecules. Evidence is presented for adaptation to environment in cell-free media. RNA based molecular evolution experiments have led to interesting spin-offs in biotechnology, commonly called ‘applied molecular evolution’, which make use of Darwinian trial-and-error strategies in order to synthesize new pharmacological compounds and other advanced materials on a biological basis. Error-propagation in RNA replication leads to formation of mutant spectra called ‘quasispecies’. An increase in the error rate broadens the mutant spectrum. There exists a sharply defined threshold beyond which heredity breaks down and evolutionary adaptation becomes impossible. Almost all RNA viruses studied so far operate at conditions close to this error threshold. Quasispecies and error thresholds are important for an understanding of RNA virus evolution, and they may help to develop novel antiviral strategies. Evolution of RNA molecules can be studied and interpreted by considering secondary structures. The notion of sequence space introduces a distance between pairs of RNA sequences which is tantamount to counting the minimal number of point mutations required to convert the sequences into each other. The mean sensitivity of RNA secondary structures to mutation depends strongly on the base pairing alphabet: structures from sequences which contain only one base pair (GC or AU are much less stable against mutation than those derived from the natural (AUGC) sequences

  12. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy

    PubMed Central

    Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.

    2015-01-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599

  13. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  14. Ab initio RNA folding.

    PubMed

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  15. RNA modeling using Gibbs sampling and stochastic context free grammars

    SciTech Connect

    Grate, L.; Herbster, M.; Rughey, R.; Haussler, D.

    1994-12-31

    A new method of discovering the common secondary structure of a family of homologous RNA sequences using Gibbs sampling and stochastic context-free grammars is proposed. Given an unaligned set of sequences, a Gibbs sampling step simultaneously estimates the secondary structure of each sequence and a set of statistical parameters describing the common secondary structure of the set as a whole. These parameters describe a statistical model of the family. After the Gibbs sampling has produced a crude statistical model for the family, this model is translated into a stochastic context-free grammar, which is then refined by an Expectation Maximization (EM) procedure to produce a more complete model. A prototype implementation of the method is tested on tRNA, pieces of 16S rRNA and on U5 snRNA with good results.

  16. ParaDIS_lib

    SciTech Connect

    Cook, Richard D.

    2016-05-25

    The ParaDIS_lib software is a project that is funded by the DOE ASC Program. Its purpose is to provide visualization and analysis capabilities for the existing ParaDIS parallel dislocation dynamics simulation code.

  17. Who discovered messenger RNA?

    PubMed

    Cobb, Matthew

    2015-06-29

    The announcement of the discovery of messenger RNA (mRNA) and the cracking of the genetic code took place within weeks of each other in a climax of scientific excitement during the summer of 1961. Although mRNA is of decisive importance to our understanding of gene function, no Nobel Prize was awarded for its discovery. The large number of people involved, the complex nature of the results, and the tortuous path that was taken over half a century ago, all show that simple claims of priority may not reflect how science works.

  18. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis

    PubMed Central

    Jin, Xi; Feng, Chun-yan; Xiang, Zun; Chen, Yi-peng; Li, You-ming

    2016-01-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH) is still unclear, where involvement of circRNA is considered for its active role as “miRNA sponge”. Therefore, we aimed to investigate the circRNA expression pattern in NASH and further construct the circRNA-miRNA-mRNA network for in-depth mechanism exploration. Briefly, NASH mice model was established by Methionine and choline deficiency (MCD) diet feeding. Liver circRNA and mRNA profile was initially screened by microarray and ensuing qRT-PCR verification was carried out. The overlapped predicted miRNAs as downstream targets of circRNAs and upstream regulators of mRNAs were verified by qRT-PCR and final circRNA-miRNA-mRNA network was constructed. Gene Ontology (GO) and KEGG pathway analysis were further applied to enrich the huge mRNA microarray data. To sum up, there were 69 up and 63 down regulated circRNAs as well as 2760 up and 2465 down regulated mRNAs in NASH group, comparing with control group. Randomly selected 13 of 14 mRNAs and 2 of 8 circRNAs were successfully verified by qRT-PCR. Through predicted overlapped miRNA verification, four circRNA-miRNA-mRNA pathways were constructed, including circRNA_002581-miR-122-Slc1a5, circRNA_002581- miR-122-Plp2, circRNA_002581-miR-122-Cpeb1 and circRNA_007585-miR-326- UCP2. GO and KEGG pathway analysis also enriched specific mRNAs. Therefore, circRNA profile may serve as candidate for NASH diagnosis and circRNA-miRNA -mRNA pathway may provide novel mechanism for NASH. PMID:27677588

  19. lncRNA/MicroRNA interactions in the vasculature

    PubMed Central

    Ballantyne, MD; McDonald, RA

    2016-01-01

    MicroRNA (miRNA) have gained widespread attention for their role in diverse vascular processes including angiogenesis, apoptosis, proliferation, and migration. Despite great understanding of miRNA expression and function, knowledge of long noncoding RNA (lncRNA) molecular mechanisms still remains limited. The influence of miRNA on lncRNA function, and the converse, is now beginning to emerge. lncRNA may regulate miRNA function by acting as endogenous sponges to regulate gene expression and miRNA have been shown to bind and regulate lncRNA stability. A detailed understanding of the molecular and cellular effects of lncRNA‐miRNA‐mediated interactions in vascular pathophysiology could pave the way for new diagnostic markers and therapeutic approaches, but first there is a requirement for a more detailed understanding of the impact of such regulatory networks. PMID:26910520

  20. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  1. Leveraging EMS and VPP

    DTIC Science & Technology

    2009-05-01

    Elements of EMS  International Standards Organization ( ISO ) 14001 , Environmental Management Systems  The Key Elements of EMS: - Policy - Planning...wingman-- ON and OFF duty Fully Conforming vs. Fully Implemented  “Fully Conforming”  Meets standards established in ISO 14001  ESOH council...e n c e Every airman looking out for his wingman-- ON and OFF duty EMS & VPP Commonalities Environmental Management System ISO 14001 : 2004 Voluntary

  2. RNA-Dependent RNA Polymerase Activity in Influenza Virions

    PubMed Central

    Penhoet, Edward; Miller, Henry; Doyle, Michael; Blatti, Stanley

    1971-01-01

    An RNA-dependent RNA polymerase activity has been detected in purified preparations of influenza virus. In contrast to the replicase activity induced in influenza-infected cells, the virion-associated enzyme has an absolute requirement for Mn++. Most of the RNA synthesized in vitro is complementary to virion RNA. PMID:5288388

  3. Multi-target siRNA: Therapeutic Strategy for Hepatocellular Carcinoma

    PubMed Central

    Li, Tiejun; Xue, Yuwen; Wang, Guilan; Gu, Tingting; Li, Yunlong; Zhu, York Yuanyuan; Chen, Li

    2016-01-01

    Multiple targets RNAi strategy is a preferred way to treat multigenic diseases, especially cancers. In the study, multi-target siRNAs were designed to inhibit NET-1, EMS1 and VEGF genes in hepatocellular carcinoma (HCC) cells. And multi-target siRNAs showed better silencing effects on NET-1, EMS1 and VEGF, compared with single target siRNA. Moreover, multi-target siRNA showed greater suppression effects on proliferation, migration, invasion, angiogenesis and induced apoptosis in HCC cells. The results suggested that multi-target siRNA might be a preferred strategy for cancer therapy and NET-1, EMS1 and VEGF could be effective targets for HCC treatments. PMID:27390607

  4. Minotaur is critical for primary piRNA biogenesis.

    PubMed

    Vagin, Vasily V; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A; Malone, Colin D; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J

    2013-08-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur.

  5. Minotaur is critical for primary piRNA biogenesis

    PubMed Central

    Vagin, Vasily V.; Yu, Yang; Jankowska, Anna; Luo, Yicheng; Wasik, Kaja A.; Malone, Colin D.; Harrison, Emily; Rosebrock, Adam; Wakimoto, Barbara T.; Fagegaltier, Delphine; Muerdter, Felix; Hannon, Gregory J.

    2013-01-01

    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur. PMID:23788724

  6. Aminoacyl-RNA synthesis catalyzed by an RNA.

    PubMed

    Illangasekare, M; Sanchez, G; Nickles, T; Yarus, M

    1995-02-03

    An RNA has been selected that rapidly aminoacylates its 2'(3') terminus when provided with phenylalanyl-adenosine monophosphate. That is, the RNA accelerates the same aminoacyl group transfer catalyzed by protein aminoacyl-transfer RNA synthetases. The best characterized RNA reaction requires both Mg2+ and Ca2+. These results confirm a necessary prediction of the RNA world hypothesis and represent efficient RNA reaction (> or = 10(5) times accelerated) at a carbonyl carbon, exemplifying a little explored type of RNA catalysis.

  7. The RNA infrastructure: an introduction to ncRNA networks.

    PubMed

    Collins, Lesley J

    2011-01-01

    The RNA infrastructure connects RNA-based functions. With transcription-to-translation processing forming the core of the network, we can visualise how RNA-based regulation, cleavage and modification are the backbone of cellular function. The key to interpreting the RNA-infrastructure is in understanding how core RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal manner, moving around the nucleus, cytoplasm and organelles during processing, or in response to environmental cues. This chapter summarises the concept of the RNA-infrastructure, and highlights examples of RNA-based networking within prokaryotes and eukaryotes. It describes how transcription-to-translation processes are tightly connected, and explores some similarities and differences between prokaryotic and eukaryotic RNA networking.

  8. Biology Today: Respect for RNA.

    ERIC Educational Resources Information Center

    Flannery, Maura C., Ed.

    1991-01-01

    The high points of the story of RNA are presented. The functions of RNA within the cell, how these functions are carried out, and how they evolved are described. The topics of splicing, self-splicing, RNA editing, transcription and translation, and antisense RNA are discussed. (KR)

  9. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor

    SciTech Connect

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley; Ke, Ailong

    2011-07-25

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.

  10. Stochastic Kinetics of Nascent RNA

    NASA Astrophysics Data System (ADS)

    Xu, Heng; Skinner, Samuel O.; Sokac, Anna Marie; Golding, Ido

    2016-09-01

    The stochastic kinetics of transcription is typically inferred from the distribution of RNA numbers in individual cells. However, cellular RNA reflects additional processes downstream of transcription, hampering this analysis. In contrast, nascent (actively transcribed) RNA closely reflects the kinetics of transcription. We present a theoretical model for the stochastic kinetics of nascent RNA, which we solve to obtain the probability distribution of nascent RNA per gene. The model allows us to evaluate the kinetic parameters of transcription from single-cell measurements of nascent RNA. The model also predicts surprising discontinuities in the distribution of nascent RNA, a feature which we verify experimentally.

  11. Pyrite footprinting of RNA

    SciTech Connect

    Schlatterer, Joerg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  12. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    PubMed Central

    Andronescu, Mirela; Bereg, Vera; Hoos, Holger H; Condon, Anne

    2008-01-01

    Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at . PMID:18700982

  13. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  14. Shaping tRNA

    ERIC Educational Resources Information Center

    Priano, Christine

    2013-01-01

    This model-building activity provides a quick, visual, hands-on tool that allows students to examine more carefully the cloverleaf structure of a typical tRNA molecule. When used as a supplement to lessons that involve gene expression, this exercise reinforces several concepts in molecular genetics, including nucleotide base-pairing rules, the…

  15. The RNA Worlds in Context

    PubMed Central

    Cech, Thomas R.

    2012-01-01

    There are two RNA worlds. The first is the primordial RNA world, a hypothetical era when RNA served as both information and function, both genotype and phenotype. The second RNA world is that of today's biological systems, where RNA plays active roles in catalyzing biochemical reactions, in translating mRNA into proteins, in regulating gene expression, and in the constant battle between infectious agents trying to subvert host defense systems and host cells protecting themselves from infection. This second RNA world is not at all hypothetical, and although we do not have all the answers about how it works, we have the tools to continue our interrogation of this world and refine our understanding. The fun comes when we try to use our secure knowledge of the modern RNA world to infer what the primordial RNA world might have looked like. PMID:21441585

  16. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO.

    PubMed

    Nguyen, Tri C; Cao, Xiaoyi; Yu, Pengfei; Xiao, Shu; Lu, Jia; Biase, Fernando H; Sridhar, Bharat; Huang, Norman; Zhang, Kang; Zhong, Sheng

    2016-06-24

    The pervasive transcription of our genome presents a possibility of revealing new genomic functions by investigating RNA interactions. Current methods for mapping RNA-RNA interactions have to rely on an 'anchor' protein or RNA and often require molecular perturbations. Here we present the MARIO (Mapping RNA interactome in vivo) technology to massively reveal RNA-RNA interactions from unperturbed cells. We mapped tens of thousands of endogenous RNA-RNA interactions from mouse embryonic stem cells and brain. We validated seven interactions by RNA antisense purification and one interaction using single-molecule RNA-FISH. The experimentally derived RNA interactome is a scale-free network, which is not expected from currently perceived promiscuity in RNA-RNA interactions. Base pairing is observed at the interacting regions between long RNAs, including transposon transcripts, suggesting a class of regulatory sequences acting in trans. In addition, MARIO data reveal thousands of intra-molecule interactions, providing in vivo data on high-order RNA structures.

  17. Direct Characterization of Transcription Elongation by RNA Polymerase I

    PubMed Central

    Ucuncuoglu, Suleyman; Engel, Krysta L.; Purohit, Prashant K.; Dunlap, David D.; Schneider, David A.

    2016-01-01

    RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo. PMID:27455049

  18. Structural Basis of RNA Polymerase I Transcription Initiation.

    PubMed

    Engel, Christoph; Gubbey, Tobias; Neyer, Simon; Sainsbury, Sarah; Oberthuer, Christiane; Baejen, Carlo; Bernecky, Carrie; Cramer, Patrick

    2017-03-23

    Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase.

  19. EMS in the pueblos.

    PubMed

    Vigil, M A

    1994-02-01

    Imagine creating a movie by excerpting scenes from "Dances With Wolves," splicing it with footage from "Code 3" or "Emergency Response" and then flavoring the script with the mystery of a Tony Hillerman novel. A film producer would probably find it quite difficult to choreograph a finished product from such a compilation of material. To hundreds of Native American EMS providers, however, such a movie is played out every day in Indian country. And with this movie come some real-life problems, including trauma, which is the number-one cause of premature death among Native Americans. But a high trauma rate is just one of the challenges facing tribal EMS responders. There's also prolonged response and transport, the problems involved in maintaining the unique culture and standard of care, the challenges of tribal EMS administration and EMS education of Native American students, and the unsure future of Native American EMS. Beyond that, there's the fact that EMS is a s unique to each Indian reservation as are the cultures of the native peoples who reside on these lands. Yet while no two systems are alike, most tribal EMS providers face similar challenges.

  20. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  1. RNA-catalysed synthesis of complementary-strand RNA

    NASA Astrophysics Data System (ADS)

    Doudna, Jennifer A.; Szostak, Jack W.

    1989-06-01

    The Tetrahymena ribozyme can splice together multiple oligonucleotides aligned on a template strand to yield a fully complementary product strand. This reaction demonstrates the feasibility of RNA-catalysed RNA replications.

  2. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    PubMed Central

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation (1H–15N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy (1H–1H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a majority

  3. RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology.

    PubMed

    Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya

    2013-01-01

    RNA molecules are versatile biomaterials that act not only as DNA-like genetic materials but also have diverse functions in regulation of cellular biosystems. RNA is capable of regulating gene expression by sequence-specific hybridization. This feature allows the design of RNA-based artificial gene regulators (riboregulators). RNA can also build complex two-dimensional (2D) and 3D nanostructures, which afford protein-like functions and make RNA an attractive material for nanobiotechnology. RNA tectonics is a methodology in RNA nanobiotechnology for the design and construction of RNA nanostructures/nanoobjects through controlled self-assembly of modular RNA units (tectoRNAs). RNA nanostructures designed according to the concept of RNA tectonics are also attractive as tools in synthetic biology, but in vivo RNA tectonics is still in the early stages. This review presents a summary of the achievements of RNA tectonics and its related researches in vitro, and also introduces recent developments that facilitated the use of RNA nanostructures in bacterial cells.

  4. LigandRNA: computational predictor of RNA-ligand interactions.

    PubMed

    Philips, Anna; Milanowska, Kaja; Lach, Grzegorz; Bujnicki, Janusz M

    2013-12-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.

  5. Quantitative Model of microRNA-mRNA interaction

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Lang, Alex; Mehta, Pankaj

    2012-02-01

    MicroRNAs are short RNA sequences that regulate gene expression and protein translation by binding to mRNA. Experimental data reveals the existence of a threshold linear output of protein based on the expression level of microRNA. To understand this behavior, we propose a mathematical model of the chemical kinetics of the interaction between mRNA and microRNA. Using this model we have been able to quantify the threshold linear behavior. Furthermore, we have studied the effect of internal noise, showing the existence of an intermediary regime where the expression level of mRNA and microRNA has the same order of magnitude. In this crossover regime the mRNA translation becomes sensitive to small changes in the level of microRNA, resulting in large fluctuations in protein levels. Our work shows that chemical kinetics parameters can be quantified by studying protein fluctuations. In the future, studying protein levels and their fluctuations can provide a powerful tool to study the competing endogenous RNA hypothesis (ceRNA), in which mRNA crosstalk occurs due to competition over a limited pool of microRNAs.

  6. Protein-RNA networks revealed through covalent RNA marks

    PubMed Central

    Lapointe, Christopher P.; Wilinski, Daniel; Saunders, Harriet A. J.; Wickens, Marvin

    2015-01-01

    Protein-RNA networks are ubiquitous and central in biological control. We present an approach, termed “RNA Tagging,” that identifies protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or crosslinking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA using high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The method revealed that while RNA-binding proteins productively bind specific RNAs to control their function, they also “sample” RNAs without exerting a regulatory effect. We exploited the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. The RNA Tagging approach is well-suited to detect and analyze protein-RNA networks in vivo. PMID:26524240

  7. siRNA vs. shRNA: similarities and differences.

    PubMed

    Rao, Donald D; Vorhies, John S; Senzer, Neil; Nemunaitis, John

    2009-07-25

    RNA interference (RNAi) is a natural process through which expression of a targeted gene can be knocked down with high specificity and selectivity. Using available technology and bioinformatics investigators will soon be able to identify relevant bio molecular tumor network hubs as potential key targets for knockdown approaches. Methods of mediating the RNAi effect involve small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA. The simplicity of siRNA manufacturing and transient nature of the effect per dose are optimally suited for certain medical disorders (i.e. viral injections). However, using the endogenous processing machinery, optimized shRNA constructs allow for high potency and sustainable effects using low copy numbers resulting in less off-target effects, particularly if embedded in a miRNA scaffold. Bi-functional design may further enhance potency and safety of RNAi-based therapeutics. Remaining challenges include tumor selective delivery vehicles and more complete evaluation of the scope and scale of off-target effects. This review will compare siRNA, shRNA and bi-functional shRNA.

  8. Bifunctional transfer-messenger RNA

    PubMed Central

    Ramadoss, Nitya S.

    2011-01-01

    Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses. PMID:21664408

  9. Adenosine Deaminases Acting on RNA, RNA Editing, and Interferon Action

    PubMed Central

    George, Cyril X.; Gan, Zhenji; Liu, Yong

    2011-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein–RNA interactions. PMID:21182352

  10. Structural insights into RNA interference.

    PubMed

    Sashital, Dipali G; Doudna, Jennifer A

    2010-02-01

    Virtually all animals and plants utilize small RNA molecules to control protein expression during different developmental stages and in response to viral infection. Structural and mechanistic studies have begun to illuminate three fundamental aspects of these pathways: small RNA biogenesis, formation of RNA-induced silencing complexes (RISCs), and targeting of complementary mRNAs. Here we review exciting recent progress in understanding how regulatory RNAs are produced and how they trigger specific destruction of mRNAs during RNA interference (RNAi).

  11. Barotrauma em peixes em usinas hidrelétricas: ferramentas para o estudo

    SciTech Connect

    Do Vale Beirao, Bernardo; Castelo Branco Marciano, Natlia; de Souza Dias, Luma; Carvalho Falco, Ricardo; Wander Dias, Edson; Leite Fabrino, Daniela; Barreira Martinez, Carlos; Martins Da Silva, Luiz Gustavo; Walker, Ricardo W.; Brown, Richard S.; Deng, Zhiqun

    2015-09-30

    The main source of electric power generation in Brazil comes from hydropower plants, nevertheless, the installed power is expected to raise 56.8%, reaching a total of 116,000 MW at the year 2020. The increase at the hydroelectric sector will be responsible for a series of fish community impacts. One of the impacts over the fish community is related to fish kills due to downstream passage through turbines or fish entrance at the draft tube from the tailrace. Usually when there is a maneuver and the turbine stops, fish get attracted and enter the draft tube and, just as the downstream passage through a turbine, when the turbine starts, a rapid decompression occurs and can cause barotrauma. When such events happen, according to Boyle’s law (P1V1=P2V2), swim bladder volume expands at the same rate that the pressure decreases, which can lead to the organ’s rupture.

  12. A miRNA-tRNA mix-up: tRNA origin of proposed miRNA.

    PubMed

    Schopman, Nick C T; Heynen, Stephan; Haasnoot, Joost; Berkhout, Ben

    2010-01-01

    The rapid release of new data from DNA genome sequencing projects has led to a variety of misannotations in public databases. Our results suggest that next generation sequencing approaches are particularly prone to such misannotations. Two related miRNA candidates did recently enter the miRBase database, miR-1274b and miR-1274a, but they share identical 18-nucleotide stretches with tRNA (Lys3) and tRNA (Lys5) , respectively. The possibility that the small RNA fragments that led to the description of these two miRNAs originated from the two tRNAs was examined. The ratio of the miR-1274b:miR-1274a fragments does closely resemble the known tRNA lys3:lys5 ratio in the cell. Furthermore, the proposed miRNA hairpins have a very low prediction score and the proposed miRNA genes are in fact endogenous retroviral elements. We searched for other miRNA-mimics in the human genome and found more examples of tRNA-miRNA mimicry. We propose that the corresponding miRNAs should be validated in more detail, as the small RNA fragments that led to their description are likely derived from tRNA processing.

  13. iRNA-PseU: Identifying RNA pseudouridine sites

    PubMed Central

    Chen, Wei; Tang, Hua; Ye, Jing; Lin, Hao; Chou, Kuo-Chen

    2016-01-01

    As the most abundant RNA modification, pseudouridine plays important roles in many biological processes. Occurring at the uridine site and catalyzed by pseudouridine synthase, the modification has been observed in nearly all kinds of RNA, including transfer RNA, messenger RNA, small nuclear or nucleolar RNA, and ribosomal RNA. Accordingly, its importance to basic research and drug development is self-evident. Despite some experimental technologies have been developed to detect the pseudouridine sites, they are both time-consuming and expensive. Facing the explosive growth of RNA sequences in the postgenomic age, we are challenged to address the problem by computational approaches: For an uncharacterized RNA sequence, can we predict which of its uridine sites can be modified as pseudouridine and which ones cannot? Here a predictor called “iRNA-PseU” was proposed by incorporating the chemical properties of nucleotides and their occurrence frequency density distributions into the general form of pseudo nucleotide composition (PseKNC). It has been demonstrated via the rigorous jackknife test, independent dataset test, and practical genome-wide analysis that the proposed predictor remarkably outperforms its counterpart. For the convenience of most experimental scientists, the web-server for iRNA-PseU was established at http://lin.uestc.edu.cn/server/iRNA-PseU, by which users can easily get their desired results without the need to go through the mathematical details.

  14. RNA binding and replication by the poliovirus RNA polymerase

    SciTech Connect

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to {sup 32}P-labeled ribohomopolymeric RNAs was examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K{sub a} for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 {times} 10{sup 9} M{sup {minus}1}. The polymerase binds to a subgenomic RNAs which contain the 3{prime} end of the genome with a K{sub a} similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3{prime} noncoding region.

  15. Amplification of RNA by an RNA polymerase ribozyme

    PubMed Central

    Horning, David P.; Joyce, Gerald F.

    2016-01-01

    In all extant life, genetic information is stored in nucleic acids that are replicated by polymerase proteins. In the hypothesized RNA world, before the evolution of genetically encoded proteins, ancestral organisms contained RNA genes that were replicated by an RNA polymerase ribozyme. In an effort toward reconstructing RNA-based life in the laboratory, in vitro evolution was used to improve dramatically the activity and generality of an RNA polymerase ribozyme by selecting variants that can synthesize functional RNA molecules from an RNA template. The improved polymerase ribozyme is able to synthesize a variety of complex structured RNAs, including aptamers, ribozymes, and, in low yield, even tRNA. Furthermore, the polymerase can replicate nucleic acids, amplifying short RNA templates by more than 10,000-fold in an RNA-catalyzed form of the PCR. Thus, the two prerequisites of Darwinian life—the replication of genetic information and its conversion into functional molecules—can now be accomplished with RNA in the complete absence of proteins. PMID:27528667

  16. RNA-SSPT: RNA Secondary Structure Prediction Tools

    PubMed Central

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  17. Cis-Active RNA Elements (CREs) and Picornavirus RNA Replication

    PubMed Central

    Steil, Benjamin P.; Barton, David J.

    2009-01-01

    Our understanding of picornavirus RNA replication has improved over the past 10 years, due in large part to the discovery of cis-active RNA elements (CREs) within picornavirus RNA genomes. CREs function as templates for the conversion of VPg, the Viral Protein of the genome, into VPgpUpUOH. These so called CREs are different from the previously recognized cis-active RNA sequences and structures within the 5′ and 3′ NTRs of picornavirus genomes. Two adenosine residues in the loop of the CRE RNA structures allow the viral RNA-dependent RNA polymerase 3DPol to add two uridine residues to the tyrosine residue of VPg. Because VPg and/or VPgpUpUOH prime the initiation of viral RNA replication, the asymmetric replication of viral RNA could not be explained without an understanding of the viral RNA template involved in the conversion of VPg into VPgpUpUOH primers. We review the growing body of knowledge regarding picornavirus CREs and discuss how CRE RNAs work coordinately with viral replication proteins and other cis-active RNAs in the 5′ and 3′ NTRs during RNA replication. PMID:18773930

  18. Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G

    PubMed Central

    Li, Wen; Liu, Zheng; Koripella, Ravi Kiran; Langlois, Robert; Sanyal, Suparna; Frank, Joachim

    2015-01-01

    During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaired in guanosine triphosphate (GTP) hydrolysis and thereby stabilizes it on the ribosome. We use cryogenic electron microscopy (cryo-EM) at near-atomic resolution to investigate two complexes formed by EF-G H91A in its GTP state with the ribosome, distinguished by the presence or absence of the intersubunit rotation. Comparison of these two structures argues in favor of a direct role of the conserved histidine in the switch II loop of EF-G in GTPase activation, and explains why GTP hydrolysis cannot proceed with EF-G bound to the unrotated form of the ribosome. PMID:26229983

  19. The impact of mRNA structure on guide RNA targeting in kinetoplastid RNA editing.

    PubMed

    Reifur, Larissa; Yu, Laura E; Cruz-Reyes, Jorge; Vanhartesvelt, Michelle; Koslowsky, Donna J

    2010-08-17

    Mitochondrial mRNA editing in Trypanosoma brucei requires the specific interaction of a guide RNA with its cognate mRNA. Hundreds of gRNAs are involved in the editing process, each needing to target their specific editing domain within the target message. We hypothesized that the structure surrounding the mRNA target may be a limiting factor and involved in the regulation process. In this study, we selected four mRNAs with distinct target structures and investigated how sequence and structure affected efficient gRNA targeting. Two of the mRNAs, including the ATPase subunit 6 and ND7-550 (5' end of NADH dehydrogenase subunit 7) that have open, accessible anchor binding sites show very efficient gRNA targeting. Electrophoretic mobility shift assays indicate that the cognate gRNA for ND7-550 had 10-fold higher affinity for its mRNA than the A6 pair. Surface plasmon resonance studies indicate that the difference in affinity was due to a four-fold faster association rate. As expected, mRNAs with considerable structure surrounding the anchor binding sites were less accessible and had very low affinity for their cognate gRNAs. In vitro editing assays indicate that efficient pairing is crucial for gRNA directed cleavage. However, only the A6 substrate showed gRNA-directed cleavage at the correct editing site. This suggests that different gRNA/mRNA pairs may require different "sets" of accessory factors for efficient editing. By characterizing a number of different gRNA/mRNA interactions, we may be able to define a "bank" of RNA editing substrates with different putative chaperone and other co-factor requirements. This will allow the more efficient identification and characterization of transcript specific RNA editing accessory proteins.

  20. Generation of infectious RNA complexes in orbiviruses: RNA-RNA interactions of genomic segments

    PubMed Central

    Fajardo, Teodoro; AlShaikhahmed, Kinda; Roy, Polly

    2016-01-01

    Viruses with segmented RNA genomes must package the correct number of segments for synthesis of infectious virus particles. Recent studies suggest that the members of the Reoviridae family with segmented double-stranded RNA genomes achieve this challenging task by forming RNA networks of segments prior to their recruitment into the assembling capsid albeit direct evidence is still lacking. Here, we investigated the capability of virus recovery by preformed complexes of ten RNA segments of H Virus (EHDV), a Reoviridae member, by transcribing exact T7 cDNA copies of genomic RNA segments in a single in vitro reaction followed by transfection of mammalian cells. The data obtained was further confirmed by RNA complexes generated from Bluetongue virus, another family member. Formation of RNA complexes was demonstrated by sucrose gradient ultracentrifugation, and RNA-RNA interactions inherent to the formation of the RNA complexes were demonstrated by electrophoretic mobility shift assay. Further, we showed that disruption of RNA complex formation inhibits virus recovery, confirming that recruitment of complete RNA networks is essential for packaging and consequently, virus recovery. This efficient reverse genetics system will allow further understanding of evolutionary relationships of Reoviridae members and may also contribute to development of antiviral molecules. PMID:27736800

  1. Synthesizing topological structures containing RNA.

    PubMed

    Liu, Di; Shao, Yaming; Chen, Gang; Tse-Dinh, Yuk-Ching; Piccirilli, Joseph A; Weizmann, Yossi

    2017-03-31

    Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA-DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT-PCR patterns for an ssRNA knot and circle of the same sequence.

  2. The tmRNA website

    SciTech Connect

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.

  3. The tmRNA website

    DOE PAGES

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  4. The tmRNA website

    PubMed Central

    Hudson, Corey M.; Williams, Kelly P.

    2015-01-01

    The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism. PMID:25378311

  5. Flavivirus RNA Synthesis in vitro

    PubMed Central

    Padmanabhan, Radhakrishnan; Takhampunya, Ratree; Teramoto, Tadahisa; Choi, Kyung H.

    2015-01-01

    Summary Establishment of in vitro systems to study mechanisms of RNA synthesis for positive strand RNA viruses have been very useful in the past and have shed light on the composition of protein and RNA components, optimum conditions, the nature of the products formed, cis-acting RNA elements and trans-acting protein factors required for efficient synthesis. In this review, we summarize our current understanding regarding the requirements for flavivirus RNA synthesis in vitro. We describe details of reaction conditions, the specificity of template used by either the multi-component membrane-bound viral replicase complex or by purified, recombinant RNA-dependent RNA polymerase. We also discuss future perspectives to extend the boundaries of our knowledge. PMID:26272247

  6. The tmRNA website.

    PubMed

    Hudson, Corey M; Williams, Kelly P

    2015-01-01

    The transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from the same organism.

  7. Global Mapping of Human RNA-RNA Interactions.

    PubMed

    Sharma, Eesha; Sterne-Weiler, Tim; O'Hanlon, Dave; Blencowe, Benjamin J

    2016-05-19

    The majority of the human genome is transcribed into non-coding (nc)RNAs that lack known biological functions or else are only partially characterized. Numerous characterized ncRNAs function via base pairing with target RNA sequences to direct their biological activities, which include critical roles in RNA processing, modification, turnover, and translation. To define roles for ncRNAs, we have developed a method enabling the global-scale mapping of RNA-RNA duplexes crosslinked in vivo, "LIGation of interacting RNA followed by high-throughput sequencing" (LIGR-seq). Applying this method in human cells reveals a remarkable landscape of RNA-RNA interactions involving all major classes of ncRNA and mRNA. LIGR-seq data reveal unexpected interactions between small nucleolar (sno)RNAs and mRNAs, including those involving the orphan C/D box snoRNA, SNORD83B, that control steady-state levels of its target mRNAs. LIGR-seq thus represents a powerful approach for illuminating the functions of the myriad of uncharacterized RNAs that act via base-pairing interactions.

  8. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  9. Clinical potential of miRNA-221 as a novel prognostic biomarker for hepatocellular carcinoma.

    PubMed

    Chen, Fan; Li, Xin-Feng; Fu, Dong-Sheng; Huang, Jian-Guo; Yang, Shun-E

    2017-01-01

    miRNA-221 is one of the over 700 kinds of currently known microRNAs (miRNAs) and is up-regulated in multiple tumors, suggesting that it may be a potential carcinogenic miRNA. Few studies have explored the relationship between miRNA-221 and hepatocellular carcinoma (HCC). We performed real-time quantitative polymerase chain reaction (qPCR) to detect miRNA-221 expression in HCC and para-carcinoma tissues and to explore the relationship between abnormal expression of miRNA-221 and clinicopathological features of HCC patients. miRNA-221 expression was significantly higher in HCC tissues than in adjacent tissues (P < 0.001). We analyzed the relationship between miRNA-221 expression level and clinicopathological characteristics of HCC patients. Our results suggested that miRNA-221 expression level was closely related to tumor stage (P = 0.012), number of tumor nodes (P = 0.018), and microvascular invasion (P = 0.010) in HCC patients. The results of survival analysis suggested that HCC patients with up-regulated miRNA-221 expression had a shorter survival time. The high miRNA-221 expression indicates the poor prognosis of HCC patients; thus, miRNA-221 can be regarded an important molecular marker for HCC prognosis.

  10. Long noncoding RNA turnover

    PubMed Central

    Yoon, Je-Hyun; Kim, Jiyoung; Gorospe, Myriam

    2015-01-01

    Most RNAs transcribed in mammalian cells lack protein-coding sequences. Among them is a vast family of long (>200 nt) noncoding (lnc)RNAs. LncRNAs can modulate cellular protein expression patterns by influencing the transcription of many genes, the post-transcriptional fate of mRNAs and ncRNAs, and the turnover and localization of proteins. Given the broad impact of lncRNAs on gene regulation, there is escalating interest in elucidating the mechanisms that govern the steady-state levels of lncRNAs. In this review, we summarize our current knowledge of the factors and mechanisms that modulate mammalian lncRNA stability. PMID:25769416

  11. RNA:RNA interaction can enhance RNA localization in Drosophila oocytes.

    PubMed

    Hartswood, Eve; Brodie, Jim; Vendra, Georgia; Davis, Ilan; Finnegan, David J

    2012-04-01

    RNA localization is a key mechanism for targeting proteins to particular subcellular domains. Sequences necessary and sufficient for localization have been identified, but little is known about factors that affect its kinetics. Transcripts of gurken and the I factor, a non-LTR retrotransposon, colocalize at the nucleus in the dorso-antero corner of the Drosophila oocyte directed by localization signals, the GLS and ILS. I factor RNA localizes faster than gurken after injection into oocytes, due to a difference in the intrinsic localization ability of the GLS and ILS. The kinetics of localization of RNA containing the ILS are enhanced by the presence of a stem-loop, the A loop. This acts as an RNA:RNA interaction element in vivo and in vitro, and stimulates localization of RNA containing other localization signals. RNA:RNA interaction may be a general mechanism for modulating RNA localization and could allow an mRNA that lacks a localization signal to hitchhike on another RNA that has one.

  12. RNA Binding Proteins in the miRNA Pathway.

    PubMed

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2015-12-26

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets.

  13. MicroRNA-9

    PubMed Central

    Yuva-Aydemir, Yeliz; Simkin, Alfred; Gascon, Eduardo

    2011-01-01

    The functional significance of microRNA-9 (miR-9) during evolution is evidenced by its conservation at the nucleotide level from flies to humans but not its diverse expression patterns. Recent studies in several model systems reveal that miR-9 can regulate neurogenesis through its actions in neural or non-neural cell lineages. In vertebrates, miR-9 exerts diverse cell-autonomous effects on the proliferation, migration and differentiation of neural progenitor cells by modulating different mRNA targets. In some developmental contexts, miR-9 suppresses apoptosis and is misregulated in several types of cancer cells, influencing proliferation or metastasis formation. Moreover, downregulation of miR-9 in postmitotic neurons is also implicated in some neurodegenerative diseases. Thus, miR-9 is emerging as an important regulator in development and disease through its ability to modulate different targets in a manner dependent on the developmental stage and the cellular context. PMID:21697652

  14. A emissão em 8mm e as bandas de Merrill-Sanford em estrelas carbonadas

    NASA Astrophysics Data System (ADS)

    de Mello, A. B.; Lorenz-Martins, S.

    2003-08-01

    Estrelas carbonadas possuem bandas moleculares em absorção no visível e, no infravermelho (IR) as principais características espectrais se devem a emissão de grãos. Recentemente foi detectada a presença de bandas de SiC2 (Merrill-Sanford, MS) em emissão sendo atribuída à presença de um disco rico em poeira. Neste trabalho analisamos uma amostra de 14 estrelas carbonadas, observadas no telescópio de 1.52 m do ESO em 4 regiões espectrais diferentes, a fim de detectar as bandas de MS em emissão. Nossa amostra é composta de estrelas que apresentam além da emissão em 11.3 mm, outra em 8 mm. Esta última emissão, não usual nestes objetos, tem sido atribuída ou a moléculas de C2H2, ou a um composto sólido ainda indefinido. A detecção de emissões de MS e aquelas no IR, simultaneamente, revelaria um cenário mais complexo que o habitualmente esperado para os ventos destes objetos. No entanto como primeiro resultado, verificamos que as bandas de Merrill-Sanford encontram-se em absorção, não revelando nenhuma conexão com a emissão a 8 mm. Assim, temos duas hipóteses: (a) a emissão a 8 mm se deve à molécula C2H2 ou (b) essa emissão é resultado da emissão térmica de grãos. Testamos a segunda hipótese modelando a amostra com grãos não-homogêneos de SiC e quartzo, o qual emite em aproximadamente 8mm. Este grão seria produzido em uma fase evolutiva anterior a das carbonadas (estrelas S) e por terem uma estrutura cristalina são destruídos apenas na presença de campos de radiação ultravioleta muito intensos. Os modelos para os envoltórios utilizam o método de Monte Carlo para descrever o problema do transporte da radiação. As conclusões deste trabalho são: (1) as bandas de Merrill-Sanford se encontram em absorção, sugerindo um cenário usual para os ventos das estrelas da amostra; (2) neste cenário, a emissão em 8 mm seria resultado de grãos de quartzo com mantos de SiC, indicando que o quartzo poderia sobreviver a fase

  15. EMS in Mauritius.

    PubMed

    Ramalanjaona, Georges; Brogan, Gerald X

    2009-02-01

    Mauritius lies in the southwest Indian Ocean about 1250 miles from the African coast and 500 miles from Madagascar. Mauritius (estimated population 1,230,602) became independent from the United Kingdom in 1968 and has one of the highest GDP per capita in Africa. Within Mauritius there is a well established EMS system with a single 999 national dispatch system. Ambulances are either publicly or privately owned. Public ambulances are run by the Government (SAMU). Megacare is a private subscriber only ambulance service. The Government has recently invested in new technology such as telemedicine to further enhance the role of EMS on the island. This article describes the current state of EMS in Mauritius and depicts its development in the context of Government effort to decentralise and modernise the healthcare system.

  16. Mitochondrial RNA processing in trypanosomes.

    PubMed

    Aphasizhev, Ruslan; Aphasizheva, Inna

    2011-09-01

    The mitochondrial genome of trypanosomes is composed of ∼50 maxicircles and thousands of minicircles. Maxi-(∼25 kb) and mini-(∼1 kb)circles are catenated and packed into a dense structure called a kinetoplast. Both types of circular DNA are transcribed by a phage-like RNA polymerase: maxicircles yield multicistronic rRNA and mRNA precursors, while guide RNA (gRNA) precursors are produced from minicircles. To function in mitochondrial translation, pre-mRNAs must undergo a nucleolytic processing and 3' modifications, and often uridine insertion/deletion editing. gRNAs, which represent short (50-60 nt) RNAs directing editing reactions, are produced by 3' nucleolytic processing of a much longer precursor followed by 3' uridylation. Ribosomal RNAs are excised from precursors and their 3' ends are also trimmed and uridylated. All tRNAs are imported from the cytoplasm and some are further modified and edited in the mitochondrial matrix. Historically, the fascinating phenomenon of RNA editing has been extensively studied as an isolated pathway in which nuclear-encoded proteins mediate interactions of maxi- and minicircle transcripts to create open reading frames. However, recent studies unraveled a highly integrated network of mitochondrial genome expression including critical pre- and post-editing 3' mRNA processing, and gRNA and rRNA maturation steps. Here we focus on RNA 3' adenylation and uridylation as processes essential for biogenesis, stability and functioning of mitochondrial RNAs.

  17. Quantification of miRNA-mRNA Interactions

    PubMed Central

    Muniategui, Ander; Nogales-Cadenas, Rubén; Vázquez, Miguél; L. Aranguren, Xabier; Agirre, Xabier; Luttun, Aernout; Prosper, Felipe; Pascual-Montano, Alberto; Rubio, Angel

    2012-01-01

    miRNAs are small RNA molecules (′ 22nt) that interact with their corresponding target mRNAs inhibiting the translation of the mRNA into proteins and cleaving the target mRNA. This second effect diminishes the overall expression of the target mRNA. Several miRNA-mRNA relationship databases have been deployed, most of them based on sequence complementarities. However, the number of false positives in these databases is large and they do not overlap completely. Recently, it has been proposed to combine expression measurement from both miRNA and mRNA and sequence based predictions to achieve more accurate relationships. In our work, we use LASSO regression with non-positive constraints to integrate both sources of information. LASSO enforces the sparseness of the solution and the non-positive constraints restrict the search of miRNA targets to those with down-regulation effects on the mRNA expression. We named this method TaLasso (miRNA-Target LASSO). We used TaLasso on two public datasets that have paired expression levels of human miRNAs and mRNAs. The top ranked interactions recovered by TaLasso are especially enriched (more than using any other algorithm) in experimentally validated targets. The functions of the genes with mRNA transcripts in the top-ranked interactions are meaningful. This is not the case using other algorithms. TaLasso is available as Matlab or R code. There is also a web-based tool for human miRNAs at http://talasso.cnb.csic.es/. PMID:22348024

  18. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  19. microRNA Decay: Refining microRNA Regulatory Activity.

    PubMed

    Pepin, Genevieve; Gantier, Michael P

    2016-01-01

    MicroRNAs (miRNAs) are short 19-25 nucleotide RNA molecules that impact on most biological processes by regulating the efficiency of messenger RNA (mRNA) translation. To date, most research activities have been focused on the control of miRNA expression and its functional consequences. Nonetheless, much remains unknown about the mechanisms affecting the level of specific miRNAs in the cell, a critical feature impacting their regulatory activity. This review focuses on the factors that regulate the abundance of miRNAs, including synthesis, post-transcriptional modifications, nucleases, target binding, and secretion.

  20. Nuclear RNA Isolation and Sequencing.

    PubMed

    Dhaliwal, Navroop K; Mitchell, Jennifer A

    2016-01-01

    Most transcriptome studies involve sequencing and quantification of steady-state mRNA by isolating and sequencing poly (A) RNA. Although this type of sequencing data is informative to determine steady-state mRNA levels it does not provide information on transcriptional output and thus may not always reflect changes in transcriptional regulation of gene expression. Furthermore, sequencing poly (A) RNA may miss transcribed regions of the genome not usually modified by polyadenylation which includes many long noncoding RNAs. Here, we describe nuclear-RNA sequencing (nucRNA-seq) which investigates the transcriptional landscape through sequencing and quantification of nuclear RNAs which are both unspliced and spliced transcripts for protein-coding genes and nuclear-retained long noncoding RNAs.

  1. RNA metabolism in plant mitochondria.

    PubMed

    Hammani, Kamel; Giegé, Philippe

    2014-06-01

    Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.

  2. Tiempo para un cambio

    NASA Astrophysics Data System (ADS)

    Woltjer, L.

    1987-06-01

    En la reunion celebrada en diciembre dei ano pasado informe al Consejo de mi deseo de terminar mi contrato como Director General de la ESO una vez que fuera aprobado el proyecto dei VLT, que se espera sucedera hacia fines de este aAo. Cuando fue renovada mi designacion hace tres aAos, el Consejo conocia mi intencion de no completar los cinco aAos dei contrato debido a mi deseo de disponer de mas tiempo para otras actividades. Ahora, una vez terminada la fase preparatoria para el VLT, Y habiendose presentado el proyecto formalmente al Consejo el dia 31 de marzo, y esperando su muy probable aprobacion antes dei termino de este ano, me parece que el 10 de enero de 1988 presenta una excelente fecha para que se produzca un cambio en la administracion de la ESO.

  3. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition.

    PubMed

    Madina, Bhaskara R; Kumar, Vikas; Metz, Richard; Mooers, Blaine H M; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-07-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3'-to-5' in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3' ends and strain-specific alternative 3' editing within 3' UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.

  4. Geminiviruses and RNA silencing.

    PubMed

    Vanitharani, Ramachandran; Chellappan, Padmanabhan; Fauquet, Claude M

    2005-03-01

    Geminiviruses are single-stranded circular DNA viruses that cause economically significant diseases in a wide range of crop plants worldwide. In plants, post-transcriptional gene silencing (PTGS) acts as a natural anti-viral defense system and plays a role in genome maintenance and development. During the past decade there has been considerable evidence of PTGS suppression by viruses, which is often required to establish infection in plants. In particular, nuclear-replicating geminiviruses, which have no double-stranded RNA phase in their replication cycle, can induce and suppress the PTGS and become targets for PTGS. Here, we summarize recent developments in determining how these viruses trigger PTGS and how they suppress the induced PTGS, as well as how we can use the system to control these viruses in plants better and manipulate the system to study functional genomics in crop plants.

  5. RNA helicases in splicing.

    PubMed

    Cordin, Olivier; Beggs, Jean D

    2013-01-01

    In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.

  6. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  7. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  8. Hyperexpansion of RNA Bacteriophage Diversity.

    PubMed

    Krishnamurthy, Siddharth R; Janowski, Andrew B; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-03-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent.

  9. Bringing RNA into View: RNA and Its Roles in Biology.

    ERIC Educational Resources Information Center

    Atkins, John F.; Ellington, Andrew; Friedman, B. Ellen; Gesteland, Raymond F.; Noller, Harry F.; Pasquale, Stephen M.; Storey, Richard D.; Uhlenbeck, Olke C.; Weiner, Alan M.

    This guide presents a module for college students on ribonucleic acid (RNA) and its role in biology. The module aims to integrate the latest research and its findings into college-level biology and provide an opportunity for students to understand biological processes. Four activities are presented: (1) "RNA Structure: Tapes to Shapes"; (2) "RNA…

  10. RNA mediated assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Rouge, Jessica Lynn

    The first chapter of this work presents a comprehensive look at RNA mediated nanoparticle formation. The overall goal of this research is to gain a deeper understanding of the RNA-particle formation mechanism and the basic properties of the materials selected by modified RNA molecules. Understanding such RNA-substrate interactions and how they translate into the physical and chemical characteristics of the nanoparticles they create are important fundamental concepts when considering these biotemplated materials as potential chemical catalysts. The RNA sequences discussed in the first chapter (referred to as Pdases) were discovered using RNA in vitro selection techniques. These Pdases were found to be capable of forming inorganic palladium (Pd) containing nanoparticles with impressive control over an individual particle's size and shape, despite incubation with the same organometallic precursor. This discovery held exciting implications for inorganic nanoparticle design while also generating numerous questions regarding the mechanism of RNA mediated particle growth. The central question that arose after this initial discovery was how could a biomolecule be used to tailor the physical size and shape of inorganic materials? Starting with a chemical proof designed to uncover the composition of the nanoparticles formed by RNA mediation, this chapter investigates the basic material properties of the nanoparticles while also introducing surprising results regarding the effect of multiple sequences on nanoparticle growth outcomes. In the second chapter, the experiments shift to developing methods to investigate nanoparticle growth mechanisms by fluorescence spectroscopy. A fluorescence polarization anisotropy (FPA) assay is presented in which the strengths of the technique are adapted for studying the formation of RNA mediated Pd nanoparticles in real time. This is a unique application of FPA, as it has been adapted to encompass both the biochemical and materials analysis

  11. RNA immunoprecipitation for determining RNA-protein associations in vivo.

    PubMed

    Gilbert, Chris; Svejstrup, Jesper Q

    2006-08-01

    Similar to chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP) can be used to detect the association of individual proteins with specific nucleic acid regions, in this case on RNA. Live cells are treated with formaldehyde to generate protein-RNA cross-links between molecules that are in close proximity in vivo. RNA sequences that cross-link with a given protein are isolated by immunoprecipitation of the protein, and reversal of the formaldehyde cross-linking permits recovery and quantitative analysis of the immunoprecipitated RNA by reverse transcription PCR. The basics of RIP are very similar to those of ChIP, but with some important caveats. This unit describes the RIP procedure for Saccharomyces cerevisiae. Although the corresponding steps for metazoan cells have not yet been worked out, it is likely that the yeast procedure can easily be adapted for use in other organisms.

  12. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription

    PubMed Central

    Sola, Isabel; Mateos-Gomez, Pedro A; Almazan, Fernando; Zuñiga, Sonia

    2011-01-01

    Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5′ and 3′ untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins.1 By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD),2 it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region.3 Many cellular proteins interacting with regulatory CoV RNA sequences4 are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription.5–7 In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures. PMID:21378501

  13. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules.

    PubMed

    Chetverin, Alexander B; Kopein, Damir S; Chetverina, Helena V; Demidenko, Alexander A; Ugarov, Victor I

    2005-03-11

    An earlier developed purified cell-free system was used to explore the potential of two RNA-directed RNA polymerases (RdRps), Qbeta phage replicase and the poliovirus 3Dpol protein, to promote RNA recombination through a primer extension mechanism. The substrates of recombination were fragments of complementary strands of a Qbeta phage-derived RNA, such that if aligned at complementary 3'-termini and extended using one another as a template, they would produce replicable molecules detectable as RNA colonies grown in a Qbeta replicase-containing agarose. The results show that while 3Dpol efficiently extends the aligned fragments to produce the expected homologous recombinant sequences, only nonhomologous recombinants are generated by Qbeta replicase at a much lower yield and through a mechanism not involving the extension of RNA primers. It follows that the mechanisms of RNA recombination by poliovirus and Qbeta RdRps are quite different. The data favor an RNA transesterification reaction catalyzed by a conformation acquired by Qbeta replicase during RNA synthesis and provide a likely explanation for the very low frequency of homologous recombination in Qbeta phage.

  14. Self-assembling RNA square

    SciTech Connect

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-12-22

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

  15. Catalysis and prebiotic RNA synthesis

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  16. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  17. Exploration of RNA structure spaces

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1991-01-01

    In order to understand the structure of real structure spaces, we are studying the 5S rRNA structure space experimentally. A plasmid containing a synthetic 5S rRNA gene, two rRNA promoters, and transcription terminators has been assembled. Assays are conducted to determine if the foreign 5S rRNA is expressed, and to see whether or not it is incorporated into ribosomes. Evolutionary competition is used to determine the relative fitness of strains containing the foreign 5S rRNA and a control 5S rRNA. By using site directed mutagenesis, a number of mutants can be made in order to study the boundaries of the structure space and how sharply defined they are. By making similar studies in the vicinity of structure space, it will be possible to determine how homogeneous the 5S rRNA structure space is. Useable experimental protocols have been developed, and a number of mutants have already been studied. Initial results suggest an explanation of why single stranded regions of the RNA are less subject to mutation than double stranded regions.

  18. [Capping strategies in RNA viruses].

    PubMed

    Bouvet, Mickaël; Ferron, François; Imbert, Isabelle; Gluais, Laure; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; Decroly, Etienne

    2012-04-01

    Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential.

  19. Statistical Analysis of RNA Backbone

    PubMed Central

    Hershkovitz, Eli; Sapiro, Guillermo; Tannenbaum, Allen; Williams, Loren Dean

    2009-01-01

    Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones. PMID:17048391

  20. RNA splicing: disease and therapy.

    PubMed

    Douglas, Andrew G L; Wood, Matthew J A

    2011-05-01

    The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. The mechanism of pre-mRNA splicing is highly complex, requiring multiple interactions between pre-mRNA, small nuclear ribonucleoproteins and splicing factor proteins. Regulation of this process is even more complicated, relying on loosely defined cis-acting regulatory sequence elements, trans-acting protein factors and cellular responses to varying environmental conditions. Many different human diseases can be caused by errors in RNA splicing or its regulation. Targeting aberrant RNA provides an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. Antisense oligonucleotide therapies show particular promise in this area and, if coupled with improved delivery strategies, could open the door to a multitude of novel personalized therapies.

  1. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  2. Functional oligomerization of poliovirus RNA-dependent RNA polymerase.

    PubMed Central

    Pata, J D; Schultz, S C; Kirkegaard, K

    1995-01-01

    Using a hairpin primer/template RNA derived from sequences present at the 3' end of the poliovirus genome, we investigated the RNA-binding and elongation activities of highly purified poliovirus 3D polymerase. We found that surprisingly high polymerase concentrations were required for efficient template utilization. Binding of template RNAs appeared to be the primary determinant of efficient utilization because binding and elongation activities correlated closely. Using a three-filter binding assay, polymerase binding to RNA was found to be highly cooperative with respect to polymerase concentration. At pH 5.5, where binding was most cooperative, a Hill coefficient of 5 was obtained, indicating that several polymerase molecules interact to retain the 110-nt RNA in a filter-bound complex. Chemical crosslinking with glutaraldehyde demonstrated physical polymerase-polymerase interactions, supporting the cooperative binding data. We propose a model in which poliovirus 3D polymerase functions both as a catalytic polymerase and as a cooperative single-stranded RNA-binding protein during RNA-dependent RNA synthesis. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 8 PMID:7489508

  3. The RNA synthesis machinery of negative-stranded RNA viruses

    SciTech Connect

    Ortín, Juan; Martín-Benito, Jaime

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  4. RNA splicing and debranching viewed through analysis of RNA lariats.

    PubMed

    Cheng, Zhi; Menees, Thomas M

    2011-12-01

    Intron lariat RNAs, created by pre-mRNA splicing, are sources of information on gene expression and structure. Although produced equivalently to their corresponding mRNAs, the vast majority of intron lariat RNAs are rapidly degraded. However, their levels are enhanced in cells deficient for RNA debranching enzyme, which catalyzes linearization of these RNAs, the rate-limiting step in their degradation. Furthermore, RNA lariats are resistant to degradation by the 3' exonuclease polynucleotide phosphorylase (PNPase), providing a means to enrich for lariat RNAs. Working with the yeast Saccharomyces cerevisiae as a model organism, our goal was to develop novel combinations of methods to enhance the use of intron lariat RNAs as objects of study. Using RT-PCR assays developed for detecting and quantifying specific lariat RNAs, we demonstrate the resistance of RNA lariats to degradation by PNPase and their sensitivity to cleavage by RNA debranching enzyme. We also employ sequential treatments with these two enzymes to produce characteristic effects on linear and lariat RNAs. We establish the utility of the methods for analyzing RNA debranching enzyme variants and in vitro debranching reactions and discuss several possible applications, including measuring relative rates of transcription and combining these methods with non-gene-specific RNA sequencing as a novel approach for genome annotation. In summary, enzymatic treatments that produce characteristic effects on linear and lariat RNAs, combined with RT-PCR or RNA sequencing, can be powerful tools to advance studies on gene expression, alternative splicing, and any process that depends on the RNA debranching enzyme.

  5. Biological significance of RNA editing in cells.

    PubMed

    Tang, Wei; Fei, Yongjun; Page, Michael

    2012-09-01

    RNA editing is one of the post-transcriptional RNA processes. RNA editing generates RNA and protein diversity in eukaryotes and results in specific amino acid substitutions, deletions, and changes in gene expression levels. Adenosine-to-inosine RNA editing represents the most important class of editing in human and affects function of many genes. The importance of balancing RNA modification levels across time and space is becoming increasingly evident. In this review, we overview the biological significance of RNA editing including RNA editing in tumorigenesis, RNA editing in neuronal tissues, RNA editing as a regulator of gene expression, and RNA editing in dsRNA-mediated gene silencing, which may increase our understanding of RNA biology.

  6. Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter

    PubMed Central

    Gerlach, Piotr; Malet, Hélène; Cusack, Stephen; Reguera, Juan

    2015-01-01

    Summary Segmented negative-strand RNA virus (sNSV) polymerases transcribe and replicate the viral RNA (vRNA) within a ribonucleoprotein particle (RNP). We present cryo-EM and X-ray structures of, respectively, apo- and vRNA bound La Crosse orthobunyavirus (LACV) polymerase that give atomic-resolution insight into how such RNPs perform RNA synthesis. The complementary 3′ and 5′ vRNA extremities are sequence specifically bound in separate sites on the polymerase. The 5′ end binds as a stem-loop, allosterically structuring functionally important polymerase active site loops. Identification of distinct template and product exit tunnels allows proposal of a detailed model for template-directed replication with minimal disruption to the circularised RNP. The similar overall architecture and vRNA binding of monomeric LACV to heterotrimeric influenza polymerase, despite high sequence divergence, suggests that all sNSV polymerases have a common evolutionary origin and mechanism of RNA synthesis. These results will aid development of replication inhibitors of diverse, serious human pathogenic viruses. PMID:26004069

  7. RNA turnover in Trypanosoma brucei.

    PubMed Central

    Ehlers, B; Czichos, J; Overath, P

    1987-01-01

    Regulation of variant surface glycoprotein (VSG) mRNA turnover in Trypanosoma brucei was studied in bloodstream forms, in procyclic cells, and during in vitro transformation of bloodstream forms to procyclic cells by approach-to-equilibrium labeling and pulse-chase experiments. Upon initiation of transformation at 27 degrees C in the presence of citrate-cis-aconitate, the half-life of VSG mRNA was reduced from 4.5 h in bloodstream forms to 1.2 h in transforming cells. Concomitantly, an approximately 25-fold decrease in the rate of transcription was observed, resulting in a 100-fold reduction in the steady-state level of de novo-synthesized VSG mRNA. This low level of expression was maintained for at least 7 h, finally decreasing to an undetectable level after 24 h. Transcription of the VSG gene in established procyclic cells was undetectable. For comparison, the turnover of polyadenylated and nonpolyadenylated RNA, beta-tubulin mRNA, and mini-exon-derived RNA (medRNA) was studied. For medRNA, no significant changes in the rate of transcription or stability were observed during differentiation. In contrast, while the rate of transcription of beta-tubulin mRNA in in vitro-cultured bloodstream forms, transforming cells, and established procyclic cells was similar, the half life was four to five times longer in procyclic cells (t1/2, 7 h) than in cultured bloodstream forms (t1/2, 1.4 h) or transforming cells (t1/2, 1.7 h). Inhibition of protein synthesis in bloodstream forms at 37 degrees Celsius caused a dramatic 20-fold decrease in the rate of VSG mRNA synthesis and a 6-fold decrease in half-life to 45 min, while beta-tubulin mRNA was stabilized 2- to 3-fold and mRNA stability remained unaffected. It is postulated that triggering transformation or inhibiting protein synthesis induces changes in the abundance of the same regulatory molecules which effect the shutoff of VSG gene transcription in addition to shortening the half-life of VSG mRNA. Images PMID:2436040

  8. EMS & the DEA.

    PubMed

    Beeson, Jeff; Ayres, Chris

    2010-01-01

    It's clear that EMS medical directors and management staff must be vigilant in their oversight of implementation, administration and monitoring of controlled substances within their agencies to best serve the public and avoid running afoul of investigation and incurring significant penalties. Those potentially affected by the need for individual registrations of both emergency vehicles and central inventory systems should carefully monitor upcoming developments in the interpretation od DEA regulations.

  9. Evolution in an RNA World

    PubMed Central

    Joyce, Gerald F.

    2009-01-01

    A longstanding research goal has been to develop a self-sustained chemical system that is capable of undergoing Darwinian evolution. The notion of primitive RNA-based life suggests this goal might be achieved by constructing an RNA enzyme that catalyzes the replication of RNA molecules, including the RNA enzyme itself. This reaction recently was demonstrated in a cross-catalytic system involving two RNA enzymes that catalyze each other’s synthesis from a total of four component substrates. The cross-replicating RNA enzymes undergo self-sustained exponential amplification at a constant temperature in the absence of proteins or other biological materials. Amplification occurs with a doubling time of 30–60 min, and can be continued indefinitely. Small populations of cross-replicating RNA enzymes can be made to compete for limited resources within a common environment. The molecules reproduce with high fidelity, but occasionally give rise to recombinants that also can replicate. Over the course of many “generations” of selective amplification, novel variants arise and grow to dominate the population based on their relative fitness under the chosen reaction conditions. This is the first example, outside of biology, of evolutionary adaptation in a molecular genetic system. PMID:19667013

  10. Tagetitoxin inhibits chloroplast RNA synthesis

    SciTech Connect

    Mathews, D.E.; Durbin, R.D.

    1987-04-01

    Tagetitoxin is a non-host specific phytotoxin which inhibits chloroplast development. Chloroplast encoded gene products as well as their transcripts are conspicuously depleted in toxin-treated tissue. Intact chloroplasts from 8-9 day old peas were incubated for 60 min. in the presence of tagetitoxin. This treatment reduced RNA synthesis but did not affect protein synthesis as measured by the incorporation of radiolabeled uridine or methionine, respectively. Tagetitoxin also inhibited chloroplast RNA synthesis in vitro. Total UTP incorporation was reduced 50% by 0.5..mu..M tagetitoxin in transcriptionally active chloroplast extracts containing 5mg/ml protein. In vitro transcription with purified E. coli RNA polymerase was also inhibited by tagetitoxin, yet wheat germ RNA polymerase II and several bacteriophage RNA polymerase enzymes were unaffected. Recent evidence suggests that RNA polymerase from chloroplasts and prokaryotes may share extensive homology. In light of this evidence and the authors own data, they propose that tagetitoxin directly inhibits chloroplast RNA polymerase.

  11. Cofactors in the RNA World

    NASA Technical Reports Server (NTRS)

    Ditzler, Mark A.

    2014-01-01

    RNA world theories figure prominently in many scenarios for the origin and early evolution of life. These theories posit that RNA molecules played a much larger role in ancient biology than they do now, acting both as the dominant biocatalysts and as the repository of genetic information. Many features of modern RNA biology are potential examples of molecular fossils from an RNA world, such as the pervasive involvement of nucleotides in coenzymes, the existence of natural aptamers that bind these coenzymes, the existence of natural ribozymes, a biosynthetic pathway in which deoxynucleotides are produced from ribonucleotides, and the central role of ribosomal RNA in protein synthesis in the peptidyl transferase center of the ribosome. Here, we uses both a top-down approach that evaluates RNA function in modern biology and a bottom-up approach that examines the capacities of RNA independent of modern biology. These complementary approaches exploit multiple in vitro evolution techniques coupled with high-throughput sequencing and bioinformatics analysis. Together these complementary approaches advance our understanding of the most primitive organisms, their early evolution, and their eventual transition to modern biochemistry.

  12. Radiation target analysis of RNA.

    PubMed

    Benstein, S L; Kempner, E

    1996-06-25

    Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.

  13. Radiation target analysis of RNA.

    PubMed Central

    Benstein, S L; Kempner, E

    1996-01-01

    Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro. Images Fig. 2 PMID:8692828

  14. RNA Sociology: Group Behavioral Motifs of RNA Consortia

    PubMed Central

    Witzany, Guenther

    2014-01-01

    RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional) needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives. PMID:25426799

  15. Alphavirus polymerase and RNA replication.

    PubMed

    Pietilä, Maija K; Hellström, Kirsi; Ahola, Tero

    2017-01-16

    Alphaviruses are typically arthropod-borne, and many are important pathogens such as chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1-4), initially produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully processed nsP1-nsP4 is responsible for the production of genomic and subgenomic plus strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the binding also requires the other nsPs. The alphavirus polymerase has been purified and is capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3' end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses induce membrane invaginations called spherules, which form a microenvironment for RNA synthesis by concentrating replication components and protecting double-stranded RNA intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis in vitro, but high-resolution structure of the RC has not been achieved, and thus the arrangement of viral and possible host components remains unknown. For some alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus polymerase inhibitors have been described.

  16. Alternative RNA splicing and cancer.

    PubMed

    Liu, Sali; Cheng, Chonghui

    2013-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.

  17. RNA-dependent RNA polymerase activity associated with the yeast viral p91/20S RNA ribonucleoprotein complex.

    PubMed Central

    García-Cuéllar, M P; Esteban, R; Fujimura, T

    1997-01-01

    20S RNA is a noninfectious viral single-stranded RNA found in most laboratory strains of the yeast Saccharomyces cerevisiae. 20S RNA encodes a protein of 91 kDa (p91) that contains the common motifs found among RNA-dependent RNA polymerases from RNA viruses. p91 and 20S RNA are noncovalently associated in vivo, forming a ribonucleoprotein complex. We detected an RNA polymerase activity in p91/20S RNA complexes isolated by high-speed centrifugation. The activity was not inhibited by actinomycin D nor alpha-amanitin. The majority of the in vitro products was 20S RNA and the rest was the complementary strands of 20S RNA. Because the extracts were prepared from cells accumulating 20S RNA over its complementary strands, these in vitro products reflect the corresponding activities in vivo. When the p91/20S RNA complexes were subjected to sucrose gradient centrifugation, the polymerase activity cosedimented with the complexes. Furthermore, an RNA polymerase activity was detected in the complex by an antibody-linked polymerase assay using anti-p91 antiserum, suggesting that p91 is present in the active RNA polymerase machinery. These results together indicate that p91 is the RNA-dependent RNA polymerase or a subunit thereof responsible for 20S RNA replication. PMID:8990396

  18. Detection Methods for Archaeal RNA Virus Discovery

    NASA Astrophysics Data System (ADS)

    Bolduc, B.; Roberto, F.; Young, M.

    2010-04-01

    We have a poor understanding in the relationship between cellular and viral evolution. We have successfully amplified archaeal, viral-enriched samples shown to be RNA-rich showing similarity to reverse transcriptases and RNA-directed RNA polymerases.

  19. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    PubMed

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-03-16

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  20. RNA interference: unraveling a mystery.

    PubMed

    Montgomery, Mary K

    2006-12-01

    Andrew Fire and Craig Mello have won the Nobel Prize in Medicine or Physiology for their discovery of RNA interference. Mary K. Montgomery, then a postdoc in the Fire laboratory, participated in some of the key experiments.

  1. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  2. RNA pseudoknots: folding and finding

    PubMed Central

    Liu, Biao; Mathews, David H

    2010-01-01

    RNA pseudoknots are important for function. Three-dimensional structural information is available, insights into factors affecting pseudoknot stability are being reported, and computer programs are available for predicting pseudoknots. PMID:20495679

  3. Molecular mechanisms of RNA interference.

    PubMed

    Wilson, Ross C; Doudna, Jennifer A

    2013-01-01

    Small RNA molecules regulate eukaryotic gene expression during development and in response to stresses including viral infection. Specialized ribonucleases and RNA-binding proteins govern the production and action of small regulatory RNAs. After initial processing in the nucleus by Drosha, precursor microRNAs (pre-miRNAs) are transported to the cytoplasm, where Dicer cleavage generates mature microRNAs (miRNAs) and short interfering RNAs (siRNAs). These double-stranded products assemble with Argonaute proteins such that one strand is preferentially selected and used to guide sequence-specific silencing of complementary target mRNAs by endonucleolytic cleavage or translational repression. Molecular structures of Dicer and Argonaute proteins, and of RNA-bound complexes, have offered exciting insights into the mechanisms operating at the heart of RNA-silencing pathways.

  4. Deciphering the RNA landscape by RNAome sequencing

    PubMed Central

    Derks, Kasper WJ; Misovic, Branislav; van den Hout, Mirjam CGN; Kockx, Christel EM; Payan Gomez, Cesar; Brouwer, Rutger WW; Vrieling, Harry; Hoeijmakers, Jan HJ; van IJcken, Wilfred FJ; Pothof, Joris

    2015-01-01

    Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. PMID:25826412

  5. Inosine in DNA and RNA.

    PubMed

    Alseth, Ingrun; Dalhus, Bjørn; Bjørås, Magnar

    2014-06-01

    Deamination of the nucleobases in DNA and RNA is a result of spontaneous hydrolysis, endogenous or environmental factors as well as deaminase enzymes. Adenosine is deaminated to inosine which is miscoding and preferentially base pairs with cytosine. In the case of DNA, this is a premutagenic event that is counteracted by DNA repair enzymes specifically engaged in recognition and removal of inosine. However, in RNA, inosine is an essential modification introduced by specialized enzymes in a highly regulated manner to generate transcriptome diversity. Defect editing is seen in various human disease including cancer, viral infections and neurological and psychiatric disorders. Enzymes catalyzing the deaminase reaction are well characterized and recently an unexpected function of Endonuclease V in RNA processing was revealed. Whereas bacterial Endonuclease V enzymes are classified as DNA repair enzymes, it appears that the mammalian enzymes are involved in processing of inosine in RNA. This yields an interesting yet unexplored, link between DNA and RNA processing. Further work is needed to gain understanding of the impact of inosine in DNA and RNA under normal physiology and disease progression.

  6. Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes.

    PubMed

    Posthuma, Clara C; Te Velthuis, Aartjan J W; Snijder, Eric J

    2017-02-06

    Coronaviruses and arteriviruses are distantly related human and animal pathogens that belong to the order Nidovirales. Nidoviruses are characterized by their polycistronic plus-stranded RNA genome, the production of subgenomic mRNAs and the conservation of a specific array of replicase domains, including key RNA-synthesizing enzymes. Coronaviruses (26-34 kilobases) have the largest known RNA genomes and their replication presumably requires a processive RNA-dependent RNA polymerase (RdRp) and enzymatic functions that suppress the consequences of the typically high error rate of viral RdRps. The arteriviruses have significantly smaller genomes and form an intriguing package with the coronaviruses to analyse viral RdRp evolution and function. The RdRp domain of nidoviruses resides in a cleavage product of the replicase polyprotein named non-structural protein (nsp) 12 in coronaviruses and nsp9 in arteriviruses. In all nidoviruses, the C-terminal RdRp domain is linked to a conserved N-terminal domain, which has been coined NiRAN (nidovirus RdRp-associated nucleotidyl transferase). Although no structural information is available, the functional characterization of the nidovirus RdRp and the larger enzyme complex of which it is part, has progressed significantly over the past decade. In coronaviruses several smaller, non-enzymatic nsps were characterized that direct RdRp function, while a 3'-to-5' exoribonuclease activity in nsp14 was implicated in fidelity. In arteriviruses, the nsp1 subunit was found to maintain the balance between genome replication and subgenomic mRNA production. Understanding RdRp behaviour and interactions during RNA synthesis and subsequent processing will be key to rationalising the evolutionary success of nidoviruses and the development of antiviral strategies.

  7. Interstitial contacts in an RNA-dependent RNA polymerase lattice

    PubMed Central

    Tellez, Andres B.; Wang, Jing; Tanner, Elizabeth J.; Spagnolo, Jeannie F.; Kirkegaard, Karla; Bullitt, Esther

    2011-01-01

    Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the ‘thumb’ domain of one polymerase and the back of the ‘palm’ domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, a hybrid approach of both electron microscopic and biochemical evaluation of wild-type and mutant viral polymerases was used to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality, or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should faciliate antiviral drug design and provide a precedent for other positive-strand RNA viruses. PMID:21839092

  8. miSolRNA: A tomato micro RNA relational database

    PubMed Central

    2010-01-01

    Background The economic importance of Solanaceae plant species is well documented and tomato has become a model for functional genomics studies. In plants, important processes are regulated by microRNAs (miRNA). Description We describe here a data base integrating genetic map positions of miRNA-targeted genes, their expression profiles and their relations with quantitative fruit metabolic loci and yield associated traits. miSolRNA provides a metadata source to facilitate the construction of hypothesis aimed at defining physiological modes of action of regulatory process underlying the metabolism of the tomato fruit. Conclusions The MiSolRNA database allows the simple extraction of metadata for the proposal of new hypothesis concerning possible roles of miRNAs in the regulation of tomato fruit metabolism. It permits i) to map miRNAs and their predicted target sites both on expressed (SGN-UNIGENES) and newly annotated sequences (BAC sequences released), ii) to co-locate any predicted miRNA-target interaction with metabolic QTL found in tomato fruits, iii) to retrieve expression data of target genes in tomato fruit along their developmental period and iv) to design further experiments for unresolved questions in complex trait biology based on the use of genetic materials that have been proven to be a useful tools for map-based cloning experiments in Solanaceae plant species. PMID:21059227

  9. RNA catalyzes nuclear pre-mRNA splicing

    PubMed Central

    Fica, Sebastian M.; Tuttle, Nicole; Novak, Thaddeus; Li, Nan-Sheng; Lu, Jun; Koodathingal, Prakash; Dai, Qing; Staley, Jonathan P.; Piccirilli, Joseph A.

    2014-01-01

    SUMMARY In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a multi-megadalton machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, following the discovery of self-splicing group II intron RNAs, the snRNAs were hypothesized to catalyze splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported to date. By using metal rescue strategies, here we show that the U6 snRNA catalyzes both splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Strikingly, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms, and likely common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome. PMID:24196718

  10. Using RNA interference to identify genes required for RNA interference

    PubMed Central

    Dudley, Nathaniel R.; Labbé, Jean-Claude; Goldstein, Bob

    2002-01-01

    RNA interference (RNAi) is a phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression. By injecting pools of dsRNAs into Caenorhabditis elegans, we identified a dsRNA that acts as a potent suppressor of the RNAi mechanism. We have used coinjection of dsRNAs to identify four additional candidates for genes involved in the RNAi mechanism in C. elegans. Three of the genes are C. elegans mes genes, some of which encode homologs of the Drosophila chromatin-binding Polycomb-group proteins. We have used loss-of-function mutants to confirm a role for mes-3, -4, and -6 in RNAi. Interestingly, introducing very low levels of dsRNA can bypass a requirement for these genes in RNAi. The finding that genes predicted to encode proteins that associate with chromatin are involved in RNAi in C. elegans raises the possibility that chromatin may play a role in RNAi in animals, as it does in plants. PMID:11904378

  11. A new RNA-RNA crosslinking reagent and its application to ribosomal 5S RNA.

    PubMed Central

    Wagner, R; Garrett, R A

    1978-01-01

    The synthesis of a new RNA specific bifunctional crosslinking reagent, 1.4-phenyl-diglyoxal, is described which reacts exclusively with guanosines. The properties of the crosslinked products enabled us to develop a straightforward method for identifying the reacted nucleotides. Results obtained with ribosomal 5S RNA of Escherichia coli demonstrate the formation of an intramolecular crosslink between guanosine-2 and guanosine-112 in the stem region. Images PMID:724507

  12. RNA polymerase I-Rrn3 complex at 4.8 Å resolution

    NASA Astrophysics Data System (ADS)

    Engel, Christoph; Plitzko, Jürgen; Cramer, Patrick

    2016-07-01

    Transcription of ribosomal DNA by RNA polymerase I (Pol I) requires the initiation factor Rrn3. Here we report the cryo-EM structure of the Pol I-Rrn3 complex at 4.8 Å resolution. The structure reveals how Rrn3 binding converts an inactive Pol I dimer into an initiation-competent monomeric complex and provides insights into the mechanisms of Pol I-specific initiation and regulation.

  13. RNA Editing by Adenosine Deaminases That Act on RNA

    PubMed Central

    Bass, Brenda L.

    2007-01-01

    ADARs are RNA editing enzymes that target double-stranded regions of nuclear-encoded RNA and viral RNA. These enzymes are particularly abundant in the nervous system, where they diversify the information encoded in the genome, for example, by altering codons in mRNAs. The functions of ADARs in known substrates suggest that the enzymes serve to fine-tune and optimize many biological pathways, in ways that we are only starting to imagine. ADARs are also interesting in regard to the remarkable double-stranded structures of their substrates and how enzyme specificity is achieved with little regard to sequence. This review summarizes ongoing investigations of the enzyme family and their substrates, focusing on biological function as well as biochemical mechanism. PMID:12045112

  14. RNA Splicing Factors and RNA-Directed DNA Methylation.

    PubMed

    Huang, Chao-Feng; Zhu, Jian-Kang

    2014-03-26

    RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway.

  15. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli

    PubMed Central

    Takada, Hiraku; Shimada, Tomohiro; Dey, Debashish; Quyyum, M. Zuhaib; Nakano, Masahiro; Ishiguro, Akira; Yoshida, Hideji; Yamamoto, Kaneyoshi; Sen, Ranjan

    2016-01-01

    Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3’ proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed

  16. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  17. Data of protein-RNA binding sites.

    PubMed

    Lee, Wook; Park, Byungkyu; Choi, Daesik; Han, Kyungsook

    2017-02-01

    Despite the increasing number of protein-RNA complexes in structure databases, few data resources have been made available which can be readily used in developing or testing a method for predicting either protein-binding sites in RNA sequences or RNA-binding sites in protein sequences. The problem of predicting protein-binding sites in RNA has received much less attention than the problem of predicting RNA-binding sites in protein. The data presented in this paper are related to the article entitled "PRIdictor: Protein-RNA Interaction predictor" (Tuvshinjargal et al. 2016) [1]. PRIdictor can predict protein-binding sites in RNA as well as RNA-binding sites in protein at the nucleotide- and residue-levels. This paper presents four datasets that were used to test four prediction models of PRIdictor: (1) model RP for predicting protein-binding sites in RNA from protein and RNA sequences, (2) model RaP for predicting protein-binding sites in RNA from RNA sequence alone, (3) model PR for predicting RNA-binding sites in protein from protein and RNA sequences, and (4) model PaR for predicting RNA-binding sites in protein from protein sequence alone. The datasets supplied in this article can be used as a valuable resource to evaluate and compare different methods for predicting protein-RNA binding sites.

  18. Transcription by RNA polymerases I and III

    PubMed Central

    Paule, Marvin R.; White, Robert J.

    2000-01-01

    The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesises the large rRNA, pol II synthesises mRNA and pol III synthesises tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences. PMID:10684922

  19. Lipid nanoparticles for short interfering RNA delivery.

    PubMed

    Leung, Alex K K; Tam, Yuen Yi C; Cullis, Pieter R

    2014-01-01

    The discovery of RNA interference (RNAi) in mammalian cells has created a new class of therapeutics based on the reversible silencing of specific disease-causing genes. This therapeutic potential depends on the ability to deliver inducers of RNAi, such as short-interfering RNA (siRNA) and micro-RNA (miRNA), to cells of target tissues. This chapter reviews various challenges and delivery strategies for siRNA, with a particular focus on the development of lipid nanoparticle (LNP) delivery technologies. Currently, LNP delivery systems are the most advanced technology for systemic delivery of siRNA, with numerous formulations under various stages of clinical trials. We also discuss methods to improve gene silencing potency of LNP-siRNA, as well as application of LNP technologies beyond siRNA to the encapsulation of other nucleic acids such as mRNA and clustered regularly interspaced short palindromic repeats (CRISPR).

  20. High sensitivity RNA pseudoknot prediction.

    PubMed

    Huang, Xiaolu; Ali, Hesham

    2007-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. The PLM model is derived from the existing Pseudobase entries. The innovative DPSS approach calculates the optimally lowest stacking energy between two partner sequences. Combined with the Mfold, PLMM_DPSS can also be used in predicting complicated pseudoknots. The test results of PLMM_DPSS, PKNOTS, iterated loop matching, pknotsRG and HotKnots with Pseudobase sequences have shown that PLMM_DPSS is the most sensitive among the five methods. PLMM_DPSS also provides manageable pseudoknot folding scenarios for further structure determination.

  1. Shapes of RNA pseudoknot structures.

    PubMed

    Reidys, Christian M; Wang, Rita R

    2010-11-01

    In this article, we study abstract shapes of k-noncrossing, σ-canonical RNA pseudoknot structures. We consider lv1k- and lv5k-shapes, which represent a generalization of the abstract π'- and π-shapes of RNA secondary structures introduced by Giegerich et al. Using a novel approach, we compute the generating functions of lv1k- and lv5k-shapes as well as the generating functions of all lv1k- and lv5k-shapes induced by all k-noncrossing, σ-canonical RNA structures for fixed n. By means of singularity analysis of the generating functions, we derive explicit asymptotic expressions For online Supplementary Material, see www.liebertonline.com.

  2. Cellular stress and RNA splicing.

    PubMed

    Biamonti, Giuseppe; Caceres, Javier F

    2009-03-01

    In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.

  3. Hairpins under tension: RNA versus DNA

    PubMed Central

    Bercy, Mathilde; Bockelmann, Ulrich

    2015-01-01

    We use optical tweezers to control the folding and unfolding of individual DNA and RNA hairpins by force. Four hairpin molecules are studied in comparison: two DNA and two RNA ones. We observe that the conformational dynamics is slower for the RNA hairpins than for their DNA counterparts. Our results indicate that structures made of RNA are dynamically more stable. This difference might contribute to the fact that DNA and RNA play fundamentally different biological roles in spite of chemical similarity. PMID:26323319

  4. [Immunoregulation by interference RNA (iRNA) - mechanisms, role, perspective].

    PubMed

    Sikora, Emilia; Ptak, Włodzimierz; Bryniarski, Krzysztof

    2011-08-05

    The functioning of an organism depends on the precise control mechanisms, constantly adjusted to the actual state. Therefore, there is a need for efficient communication between both adjacent and distant cells, which may be executed by proteins such as hormones, neurotransmitters and cytokines. Recently another means of regulation has emerged - short regulatory RNAs (srRNAs). Although discovered only a couple of years ago, the mechanism of RNA interference has already become a topic of thousands of publications, defining its roles in both physiological and pathological processes, such as cancerogenesis and autoimmunization. RNAs regulating cell function may be coded in its genome (both exons and introns) or be introduced from the external environment. In mammals microRNAs (miRNAs) cooperate with proteins from the Ago/PIWI family to form effector ribonucleoprotein complexes, and owing to their complementarity to the target mRNA, control genes' expression at the posttranscriptional level, either through the suppression of mRNA translation or through mRNA degradation. SrRNAs are crucial regulators throughout the development of immune cells, starting from hematopoietic stem cells, up to the effector cells of the adaptive immune response. Moreover, some of the regulatory cells perform their function by releasing miRNAs, which are then transported to the target cells, possibly enclosed in the exosomes.

  5. RNA Study Using DNA Nanotechnology.

    PubMed

    Tadakuma, Hisashi; Masubuchi, Takeya; Ueda, Takuya

    2016-01-01

    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit.

  6. RNA Challenges for Computational Chemists†

    PubMed Central

    Yildirim, Ilyas; Turner, Douglas H.

    2013-01-01

    Some experimental results for the thermodynamics of RNA folding cannot be explained by simple pairwise hydrogen-bonding models. Such effects include the stabilities of isoguanosine–isocytidine (iG–iC) base pairs and of various 2 × 2 nucleotide internal loops. Presumably, these results can be explained by base stacking effects, which can be partitioned into Coulombic and overlap effects. We review experimental measurements that provide benchmarks for testing the approximations and theories used for modeling nucleic acids. Quantitative agreement between experiment and theory will indicate understanding of the interactions determining RNA stability and structure. PMID:16201748

  7. The rise of regulatory RNA

    PubMed Central

    Morris, K.V.; Mattick, J.S.

    2015-01-01

    Discoveries over the last decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also in the regulation of genome organization and gene expression, which is increasingly elaborated in complex organisms. Regulatory RNAs appear to operate at many levels, but in particular to play an important role in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here we survey the emergence of the previously unsuspected world of regulatory RNAs from an historical perspective. PMID:24776770

  8. RNA research in the rustbelt.

    PubMed

    Coller, Jeff; Rueda, David

    2009-01-01

    Deep in the heart of Ohio, scientists from across the Midwest gathered in October to share their latest findings and highlight the strength of RNA research in the heartland. Represented were researchers from Delaware, Indiana, Kentucky, Michigan, Ohio, Pennsylvania and West Virginia. With over 220 participants, the 2008 annual Rustbelt RNA Meeting (RRM) was the largest gathering of this group in its 10-year history. The success of this year's RRM lies on the extraordinary efforts of organizers Dawn Chandler (Ohio State University) and Girish Shukla (Cleveland State University).

  9. Erythromycin and clarithromycin modulation of growth factor-induced expression of heparanase mRNA on human lung cancer cells in vitro.

    PubMed Central

    Sasaki, M; Ito, T; Kashima, M; Fukui, S; Izumiyama, N; Watanabe, A; Sano, M; Fujiwara, Y; Miura, M

    2001-01-01

    Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis. PMID:11759110

  10. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  11. Evaluation of ribosomal RNA removal protocols for Salmonella RNA-Seq projects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencing is a powerful technology and its application to sequencing entire RNA populations of food-borne pathogens will provide valuable insights. A problem unique to prokaryotic RNA-Seq is the massive abundance of ribosomal RNA. Unlike eukaryotic messenger RNA (mRNA), bacterial ...

  12. miRNA Isolation from FFPET Specimen: A Technical Comparison of miRNA and Total RNA Isolation Methods.

    PubMed

    Nagy, Zsófia Brigitta; Wichmann, Barnabás; Kalmár, Alexandra; Barták, Barbara Kinga; Tulassay, Zsolt; Molnár, Béla

    2016-07-01

    MiRNA remain stable for detection and PCR-based amplification in FFPE tissue samples. Several miRNA extraction kits are available, however miRNA fraction, as part of total RNA can be isolated using total RNA purification methods, as well. Our primary aim was to compare four different miRNA and total RNA isolation methods from FFPE tissues. Further purposes were to evaluate quantitatively and qualitatively the yield of the isolated miRNA. MiRNAs were isolated from normal colorectal cancer FFPE specimens from the same patients. Two miRNA isolation kits (High Pure miRNA Isolation Kit, miRCURY™ RNA Isolation Kit) and two total RNA isolation kits were compared (High Pure RNA Paraffin Kit, MagNA Pure 96 Cellular RNA LV Kit). Quantity and quality were determined, expression analysis was performed by real-time PCR using qPCR Human Panel I + II (Exiqon) method detecting 742 human miRNAs in parallel. The yield of total RNA was found to be higher than miRNA purification protocols (in CRC: Ex: 0203 ± 0021 μg; HPm: 1,45 ± 0,8 μg; HPp: 21,36 ± 4,98 μg; MP: 8,6 ± 5,1 μg). MiRNAs were detected in lower relative quantity of total RNA compared to the miRNA kits. Higher number of miRNAs could be detected by the miRNA isolation kits in comparison to the total RNA isolation methods. (Ex: 497 ± 16; HPm: 542 ± 11; HPp: 332 ± 36; MP: 295 ± 74). Colon specific miRNAs (miR-21-5p;-34-5p) give satisfying results by miRNA isolation kits. Although miRNA can be detected also after total RNA isolation methods, for reliable and reproducible miRNA expression profiling the use of miRNA isolation kits are more suitable.

  13. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing.

    PubMed

    Fukuda, Masatora; Umeno, Hiromitsu; Nose, Kanako; Nishitarumizu, Azusa; Noguchi, Ryoma; Nakagawa, Hiroyuki

    2017-02-02

    As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method.

  14. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing

    PubMed Central

    Fukuda, Masatora; Umeno, Hiromitsu; Nose, Kanako; Nishitarumizu, Azusa; Noguchi, Ryoma; Nakagawa, Hiroyuki

    2017-01-01

    As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method. PMID:28148949

  15. Detecção inesperada de efeitos de lentes fracas em grupos de galáxias pouco luminosos em raios-X

    NASA Astrophysics Data System (ADS)

    Carrasco, R.; Mendes de Oliveira, C.; Sodrã©, L., Jr.; Lima Neto, G. B.; Cypriano, E. S.; Lengruber, L. L.; Cuevas, H.; Ramirez, A.

    2003-08-01

    Obtivemos, como parte do programa de verificação científica do GMOS Sul, imagens profundas de três grupos de galáxias: G97 e G102 (z~0,4) e G124 (z = 0,17). Esses alvos foram selecionados a partir do catálogo de fontes extensas de Vikhlinin (1998), por terem luminosidades em raios X menores que 3´1043 ergs s-1, valor cerca de uma ou duas ordens de grandeza inferior ao de aglomerados de galáxias. O objetivo primário dessas observações é o estudo da evolução de galáxias em grupos. Grupos são ambientes menos densos que aglomerados, contêm a grande maioria das galáxias do Universo mas que, até o momento, foram estudados detalhadamente apenas no Universo local (z~0). Com esses dados efetuamos uma análise estatística da distorção na forma das galáxias de fundo (lentes gravitacionais fracas) como forma de inferir o conteúdo e a distribuição de massa nesses grupos apesar de que, em princípio, esse efeito não deveria ser detectado uma vez que os critérios de seleção adotados previlegiam sistemas de baixa massa. De fato, para G124 obtivemos apenas um limite superior para sua massa que é compatível com sua luminosidade em raios X. De modo contrário e surpreendente, os objetos G102 e G097, aparentam ter massas que resultariam em dispersões de velocidade maiores que 1000 km s-1, muito maiores do que se espera para grupos de galáxias. Com efeito, para G097 obtivemos, a partir de dados do satélite XMM, uma estimativa para a temperatura do gás intragrupo de kT = 2,6 keV, que é tipica de sistemas com dispersões de velocidade de ~ 600 km s-1, bem característica de grupos. Essas contradições aparentes entre lentes fracas e raios X podem ser explicadas de dois modos: i) a massa obtida por lentes estaria sobreestimada devido à superposição de estruturas massivas ao longo da linha de visada ou ii) a temperatura do gás do meio intra-grupo reflete o potencial gravitacional de estruturas menores que estariam se fundindo para formar uma

  16. Early lethality of shRNA-transgenic pigs due to saturation of microRNA pathways.

    PubMed

    Dai, Zhen; Wu, Rong; Zhao, Yi-cheng; Wang, Kan-kan; Huang, Yong-ye; Yang, Xin; Xie, Zi-cong; Tu, Chang-chun; Ouyang, Hong-sheng; Wang, Tie-dong; Pang, Da-xin

    2014-05-01

    RNA interference (RNAi) is considered as a potential modality for clinical treatment and anti-virus animal breeding. Here, we investigate the feasibility of inhibiting classical swine fever virus (CSFV) replication by short hairpin RNA (shRNA) in vitro and in vivo. We generate four different shRNA-positive clonal cells and two types of shRNA-transgenic pigs. CSFV could be effectively inhibited in shRNA-positive clonal cells and tail tip fibroblasts of shRNA-transgenic pigs. Unexpectedly, an early lethality due to shRNA is observed in these shRNA-transgenic pigs. With further research on shRNA-positive clonal cells and transgenic pigs, we report a great induction of interferon (IFN)-responsive genes in shRNA-positive clonal cells, altered levels of endogenous microRNAs (miRNA), and their processing enzymes in shRNA-positive cells. What is more, abnormal expressions of miRNAs and their processing enzymes are also observed in the livers of shRNA-transgenic pigs, indicating saturation of miRNA/shRNA pathways induced by shRNA. In addition, we investigate the effects of shRNAs on the development of somatic cell nuclear transfer (SCNT) embryos. These results show that shRNA causes adverse effects in vitro and in vivo and shRNA-induced disruption of the endogenous miRNA pathway may lead to the early lethality of shRNA-transgenic pigs. We firstly report abnormalities of the miRNA pathway in shRNA-transgenic animals, which may explain the early lethality of shRNA-transgenic pigs and has important implications for shRNA-transgenic animal preparation.

  17. RNA editing in plant mitochondria.

    PubMed

    Hiesel, R; Wissinger, B; Schuster, W; Brennicke, A

    1989-12-22

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  18. RNA Editing in Plant Mitochondria

    NASA Astrophysics Data System (ADS)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  19. RNA Methylation Clears the Way.

    PubMed

    Kontur, Cassandra; Giraldez, Antonio

    2017-03-13

    During the maternal-to-zygotic transition, maternal mRNAs are cleared by multiple distinct but interrelated pathways. A recent study in Nature by Zhao et al. (2017) finds that YTHDF2, a reader of N(6)- methylation, facilitates maternal mRNA decay, introducing an additional facet of control over transcript fate and developmental reprogramming.

  20. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  1. Engineered microRNA therapeutics.

    PubMed

    Gibson, N W

    2014-01-01

    Targeting of microRNAs that are overexpressed or replacement of microRNAs whose expression is lost are two distinct and novel approaches to treat disease(s) driven by microRNA dysregulation. This can be achieved by chemical modification of either a single stranded oligonucleotide called an antimiR or a double stranded nucleic acid molecule termed a microRNA mimic.With hundreds of microRNAs identified and knowledge of their role in disease becoming clearer there is the prospect, over the coming years, to harness engineered microRNA therapeutics to revolutionise the way diseases are treated.Both types of engineered microRNA therapeutics have advanced into clinical development with human proof of concept achieved with an anti-miR targeting miR-122 (one of the most abundant microRNAs in human hepatocytes that is utilised by the hepatitis C virus to enable its function and replication). Rather than targeting individual proteins or enzymes involved in human disease, an opportunity now exists to modulate multiple different proteins/enzymes which act in concert in the progression of disease.

  2. Network Theory Tools for RNA Modeling

    PubMed Central

    Kim, Namhee; Petingi, Louis; Schlick, Tamar

    2014-01-01

    An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology. PMID:25414570

  3. Network Theory Tools for RNA Modeling.

    PubMed

    Kim, Namhee; Petingi, Louis; Schlick, Tamar

    2013-09-01

    An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology.

  4. RNA isolation and fractionation with compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, J. C.; Fox, G. E.; Willson, R. C.

    2001-01-01

    A new approach to the isolation of RNA from bacterial lysates employs selective precipitation by compaction agents, such as hexammine cobalt and spermidine. Using 3.5 mM hexammine cobalt, total RNA can be selectively precipitated from a cell lysate. At a concentration of 2 mM hexammine cobalt, rRNA can be fractionated from low molecular weight RNA. The resulting RNA mixture is readily resolved to pure 5S and mixed 16S/23S rRNA by nondenaturing anion-exchange chromatography. Using a second stage of precipitation at 8 mM hexammine cobalt, the low molecular weight RNA fraction can be isolated by precipitation. Compaction precipitation was also applied to the purification of an artificial stable RNA derived from Escherichia coli 5S rRNA and to the isolation of an Escherichia coli-expressed ribozyme. Copyright 2001 Academic Press.

  5. Hydration of protein–RNA recognition sites

    PubMed Central

    Barik, Amita; Bahadur, Ranjit Prasad

    2014-01-01

    We investigate the role of water molecules in 89 protein–RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein–RNA interfaces are hydrated less than protein–DNA interfaces, but more than protein–protein interfaces. Majority of the waters at protein–RNA interfaces makes multiple H-bonds; however, a fraction do not make any. Those making H-bonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein–DNA interfaces, mainly due to the presence of the 2′OH, the ribose in protein–RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein–RNA interfaces is hydrated more than the major groove, while in protein–DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein–RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein–RNA recognition and should be carefully treated while engineering protein–RNA interfaces. PMID:25114050

  6. RNA-protein distance patterns in ribosomes reveal the mechanism of translational attenuation.

    PubMed

    Yu, DongMei; Zhang, Chao; Qin, PeiWu; Cornish, Peter V; Xu, Dong

    2014-11-01

    Elucidating protein translational regulation is crucial for understanding cellular function and drug development. A key molecule in protein translation is ribosome, which is a super-molecular complex extensively studied for more than a half century. The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography, Cryo-EM, and single molecule biophysics. Current studies of the ribosome have shown multiple functional states, each with a unique conformation. In this study, we analyzed the RNA-protein distances of ribosome (2.5 MDa) complexes and compared these changes among different ribosome complexes. We found that the RNA-protein distance is significantly correlated with the ribosomal functional state. Thus, the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions. In particular, the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.

  7. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation

    PubMed Central

    Sun, Chaomin; Querol-Audí, Jordi; Mortimer, Stefanie A.; Arias-Palomo, Ernesto; Doudna, Jennifer A.; Nogales, Eva; Cate, Jamie H. D.

    2013-01-01

    The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome. PMID:23766293

  8. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme.RNA complex.

    PubMed Central

    Altmann, C R; Solow-Cordero, D E; Chamberlin, M J

    1994-01-01

    In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the sigma factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA.RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein. Images PMID:7513426

  9. EPA LABORATORIES IMPLEMENT EMS PROGRAM

    EPA Science Inventory

    This paper highlights the breadth and magnitude of carrying out an effective Environmental Management System (EMS) program at the U.S. EPA's research and development laboratories. Federal research laboratories have unique operating challenges compared to more centralized industr...

  10. RNA-based drugs and vaccines.

    PubMed

    Lundstrom, Kenneth

    2015-02-01

    RNA-based approaches have provided novel alternatives for modern drug discovery. The application of RNA as therapeutic agents has, until recently, been hampered by issues related to poor delivery and stability, but chemical modifications and new delivery approaches have increased progress. Moreover, the discovery of the importance of RNA in gene regulation and gene silencing has revealed new drug targets, especially related to treatment of cancer and other diseases. Recent engineering of small molecules designed from RNA sequences to target miRNAs opens up new possibilities in drug development. Furthermore, RNA-based vaccines have been engineered applying RNA virus vectors and non-viral delivery for vaccine development.

  11. Modular arrangement of regulatory RNA elements

    PubMed Central

    Roßmanith, Johanna; Narberhaus, Franz

    2017-01-01

    ABSTRACT Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed. PMID:28010165

  12. Modular arrangement of regulatory RNA elements.

    PubMed

    Roßmanith, Johanna; Narberhaus, Franz

    2017-03-04

    Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.

  13. [Posttranscriptional messenger RNA modifications in eukaryotes].

    PubMed

    Laptev, I G; Golovina, A Ya; Sergiev, P V; Dontsova, O A

    2015-01-01

    Genomewide mapping of posttranscriptional modification in eukaryotic RNA allowed to reveal tens of thousands modification sites. Among modified nucleotides of eukaryotic RNA 6-methyladenosine, 5-methylcytidine, pseudouridine, inosine, and others. Many modification sites are conserved, many are regulated. Function is known for a small subset of modified nucleotides, while the role of majority of them is still obscure. Global character of mRNA modifications allowed scientists to coin a new term, RNA epigenetics. The review is about posttranscriptional messenger RNA modifications in eukaryotes. Main modifications, their role in cell, their mapping techniques and proteins, that are responsible for such RNA modifications are observed.

  14. Modelling HIV-RNA viral load in vertically infected children.

    PubMed

    Gray, Linsay; Cortina-Borja, Mario; Newell, Marie-Louise

    2004-03-15

    Human immunodeficiency virus (HIV) ribo-nucleic acid (RNA) viral load is a measure of actively replicating virus and is used as a marker of disease progression. For a thorough understanding of the dynamics of the evolution of the virus in the early life of HIV-1 vertically infected children, it is important to elucidate the pattern of HIV-RNA viral load over age. An aspect of assay systems used in the quantification of RNA viral load is that they measure values above particular cut-off values for detection, below which the assays used are not sufficiently sensitive. In this way, measurements are potentially left-censored. Recent adult studies suggest that to adequately model RNA pattern over age, it is necessary to account for within-subject correlation, due to repeated measures, and censoring. The aim of this study, therefore, was to establish whether it is necessary to use complex methods to allow for repeated measures within individuals and censoring of the HIV-RNA viral load in children enrolled in a cohort study. The approach involved the identification of an appropriate model for the basic pattern of RNA viral load by age and subsequent assessment of various estimation procedures accounting for repeated measures and censoring in different ways. Methods developed by Hughes involving the expectation-maximization (EM) algorithm and the Gibbs sampler were taken as the benchmark for comparison of simpler alternatives. Other approaches considered involve linear mixed-effects and ordinary least squares in which censoring is dealt with informally by taking the cut-off value as absolute or taking the mid-point between cut-off and zero. Fractional polynomials provided a substantially superior approach for modelling the dynamics of viral load over age compared to conventional polynomials or change-point models. Allowing for repeated measures was necessary to improve the power of the likelihood ratio tests required to establish the final model, but methods beyond taking

  15. [Function analysis of the effective strain Rhodococcus ruber Em1 in wastewater treatment system by quantitative competitive PCR].

    PubMed

    Huang, Ling; Li, Xi-wu; Li, Xu-dong; Liu, Shuang-jiang; Liu, Zhi-pei; Tan, Zhou-liang

    2007-04-01

    A quantitative competitive PCR (QC-PCR) system was developed to quantify the number and analyze the function of the Rhodococcus ruber Em1 strain in a wastewater treatment system in Nanchong oil refinery plant. Strain Em1 was able to degrade various kinds of hydrocarbons and aromatic compounds with high efficiency and produce bioemulsifier, so it was introduced into the waste liquid petroleum-disposing system. The sediment samples were collected from the disposing system in the range of 5 months, and then the numbers of strain Eml and degrading efficiencies were studied. The results showed that the primers based on 16S rRNA gene sequence of strain Em1 were specific at species level. The PCR products amplified from sediment total DNA with the specific primers were cloned and sequenced, in which 62.2% were the fragments of 16S rRNA gene of strain Em1. Furthermore, the number of Em1 strain ranging from 3.4 x 10(5) - 4.3 x 10(8) CFU/g in the sediment samples were detected, which indicated that the strain Eml added into purposely did exist stably and reproduced well in the waste-deposing system during a long period. The high relativity, with relative coefficient R2 of 0.89, between Eml cell number and the amount of COD (Chemical Oxygen Demand) removal proved that the strain Em1 played an important role in this bio-augmentation treatment system.

  16. Structure-Function Relationships Among RNA-Dependent RNA Polymerases

    PubMed Central

    Ng, Kenneth K.-S.; Arnold, Jamie J.; Cameron, Craig E.

    2008-01-01

    RNA-dependent RNA polymerases (RdRPs) play key roles in viral transcription and genome replication, as well as epigenetic and post-transcriptional control of cellular gene expression. In this article, we review the crystallographic, biochemical, and molecular genetic data available for viral RdRPs that have led to a detailed description of substrate and cofactor binding, fidelity of nucleotide selection and incorporation, and catalysis. It is likely that the cellular RdRPs will share some of the basic structural and mechanistic principles gleaned from studies of viral RdRPs. Therefore, studies of the viral RdRP establish a framework for the study of cellular RdRPs, an important yet understudied class of nucleic acid polymerases. PMID:18268843

  17. How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs.

    PubMed

    Thomas, Justin M; Beal, Peter A

    2017-04-01

    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X-ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable light on how the catalytic domains of these enzymes bind RNA and promote adenosine deamination. Here we review in detail the deaminase domain-RNA contact surfaces and present models of how full length ADARs, bearing double stranded RNA-binding domains (dsRBDs) and deaminase domains, could process naturally occurring substrate RNAs.

  18. [The multifunctional RNA polymerase L protein of non-segmented negative strand RNA viruses catalyzes unique mRNA capping].

    PubMed

    Ogino, Tomoaki

    2014-01-01

    Non-segmented negative strand RNA viruses belonging to the Mononegavirales order possess RNA-dependent RNA polymerase L proteins within viral particles. The L protein is a multifunctional enzyme catalyzing viral RNA synthesis and processing (i.e., mRNA capping, cap methylation, and polyadenylation). Using vesicular stomatitis virus (VSV) as a prototypic model virus, we have shown that the L protein catalyzes the unconventional mRNA capping reaction, which is strikingly different from the eukaryotic reaction. Furthermore, co-transcriptional pre-mRNA capping with the VSV L protein was found to be required for accurate stop?start transcription to synthesize full-length mRNAs in vitro and virus propagation in host cells. This article provides a review of historical and present studies leading to the elucidation of the molecular mechanism of VSV mRNA capping.

  19. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Miksys, Algirdas; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2013-05-01

    The Cas9-crRNA complex of the Streptococcus thermophilus DGCC7710 CRISPR3-Cas system functions as an RNA-guided endonuclease with crRNA-directed target sequence recognition and protein-mediated DNA cleavage. We show here that an additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), co-purifies with the Cas9 protein isolated from the heterologous E. coli strain carrying the S. thermophilus DGCC7710 CRISPR3-Cas system. We provide experimental evidence that tracrRNA is required for Cas9-mediated DNA interference both in vitro and in vivo. We show that Cas9 specifically promotes duplex formation between the precursor crRNA (pre-crRNA) transcript and tracrRNA, in vitro. Furthermore, the housekeeping RNase III contributes to primary pre-crRNA-tracrRNA duplex cleavage for mature crRNA biogenesis. RNase III, however, is not required in the processing of a short pre-crRNA transcribed from a minimal CRISPR array containing a single spacer. Finally, we show that an in vitro-assembled ternary Cas9-crRNA-tracrRNA complex cleaves DNA. This study further specifies the molecular basis for crRNA-based re-programming of Cas9 to specifically cleave any target DNA sequence for precise genome surgery. The processes for crRNA maturation and effector complex assembly established here will contribute to the further development of the Cas9 re-programmable system for genome editing applications.

  20. Template-free generation of RNA species that replicate with bacteriophage T7 RNA polymerase.

    PubMed Central

    Biebricher, C K; Luce, R

    1996-01-01

    A large variety of different RNA species that are replicated by DNA-dependent RNA polymerase from bacteriophage T7 have been generated by incubating high concentrations of this enzyme with substrate for extended time periods. The products differed from sample to sample in molecular weight and sequence, their chain lengths ranging from 60 to 120. The mechanism of autocatalytic amplification of RNA by T7 RNA polymerase proved to be analogous to that observed with viral RNA-dependent RNA polymerases (replicases): only single-stranded templates are accepted and complementary replica strands are synthesized. With enzyme in excess, exponential growth was observed; linear growth resulted when the enzyme was saturated by RNA template. The plus strands, present at 90% of the replicating RNA species, were found to have GG residues at both termini. Consensus sequences were not found among the sequences of the replicating RNA species. The secondary structures of all species sequenced turned out to be hairpins. The RNA species were specifically replicated by T7 RNA polymerase; they were not accepted as templates by the RNA polymerases from Escherichia coli or bacteriophage SP6 or by Qbeta replicase; T3 RNA polymerase was partially active. Template-free production of RNA was completely suppressed by addition of DNA to the incubation mixture. When both DNA and RNA templates were present, transcription and replication competed, but T7 RNA polymerase preferred DNA as a template. No replicating RNA species were detected in vivo in cells expressing T7 RNA polymerase. Images PMID:8670848

  1. Depletion of Ribosomal RNA Sequences from Single-Cell RNA-Sequencing Library.

    PubMed

    Fang, Nan; Akinci-Tolun, Rumeysa

    2016-07-01

    Recent advances in single-cell RNA sequencing technologies have revealed high heterogeneity of gene expression profiles in individual cells. However, most current single-cell RNA-seq methods use oligo-dT priming in the reverse transcription steps and detect only polyA-positive for more accuracy, since there are also polyA-positive non-coding RNAs transcripts, not other important RNA species, such as polyA-negative noncoding RNA. Reverse transcription using random oligos enables detection of not only the noncoding RNA species without polyA tails, but also ribosomal RNA (rRNA). rRNA comprises more than 90% of the total RNA and should be depleted from the RNA-seq library to ensure efficient usage of the sequencing capacity. Commonly used hybridization-based rRNA depletion methods can preserve noncoding RNA in the standard RNA-seq library. However, such rRNA depletion methods require high input amounts of total RNA and do not work at the single-cell level or with limited input DNA. This unit describes a novel procedure for RNA-seq library construction from single cells or a minimal amount of RNA. A thermostable duplex-specific nuclease is used in this method to effectively remove ribosomal RNA sequences following whole-transcriptome amplification and sequencing library construction. © 2016 by John Wiley & Sons, Inc.

  2. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers

    PubMed Central

    Feng, Li; Li, Feng; Sun, Zeguo; Wu, Tan; Shi, Xinrui; Li, Jing; Li, Xia

    2016-01-01

    Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis. PMID:27580177

  3. The PARA-suite: PAR-CLIP specific sequence read simulation and processing

    PubMed Central

    Kloetgen, Andreas; Borkhardt, Arndt; Hoell, Jessica I.

    2016-01-01

    Background Next-generation sequencing technologies have profoundly impacted biology over recent years. Experimental protocols, such as photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), which identifies protein–RNA interactions on a genome-wide scale, commonly employ deep sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides into nascent transcripts leads to high rates of specific nucleotide conversions during reverse transcription. So far, the specific properties of PAR-CLIP-derived sequencing reads have not been assessed in depth. Methods We here compared PAR-CLIP sequencing reads to regular transcriptome sequencing reads (RNA-Seq) to identify distinctive properties that are relevant for reference-based read alignment of PAR-CLIP datasets. We developed a set of freely available tools for PAR-CLIP data analysis, called the PAR-CLIP analyzer suite (PARA-suite). The PARA-suite includes error model inference, PAR-CLIP read simulation based on PAR-CLIP specific properties, a full read alignment pipeline with a modified Burrows–Wheeler Aligner algorithm and CLIP read clustering for binding site detection. Results We show that differences in the error profiles of PAR-CLIP reads relative to regular transcriptome sequencing reads (RNA-Seq) make a distinct processing advantageous. We examine the alignment accuracy of commonly applied read aligners on 10 simulated PAR-CLIP datasets using different parameter settings and identified the most accurate setup among those read aligners. We demonstrate the performance of the PARA-suite in conjunction with different binding site detection algorithms on several real PAR-CLIP and HITS-CLIP datasets. Our processing pipeline allowed the improvement of both alignment and binding site detection accuracy. Availability The PARA-suite toolkit and the PARA-suite aligner are available at https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA

  4. How a chemist looks at RNA.

    PubMed

    Cech, Thomas R

    2013-01-02

    RNA, just another starting material? Nobel Laureate Tom Cech shows that with an education steeped in kinetics, thermodynamics, and molecular structure, and armed with the ability to synthesize molecules, the chemist is ideally suited to investigate RNA.

  5. RNALocate: a resource for RNA subcellular localizations.

    PubMed

    Zhang, Ting; Tan, Puwen; Wang, Liqiang; Jin, Nana; Li, Yana; Zhang, Lin; Yang, Huan; Hu, Zhenyu; Zhang, Lining; Hu, Chunyu; Li, Chunhua; Qian, Kun; Zhang, Changjian; Huang, Yan; Li, Kongning; Lin, Hao; Wang, Dong

    2017-01-04

    Increasing evidence has revealed that RNA subcellular localization is a very important feature for deeply understanding RNA's biological functions after being transported into intra- or extra-cellular regions. RNALocate is a web-accessible database that aims to provide a high-quality RNA subcellular localization resource and facilitate future researches on RNA function or structure. The current version of RNALocate documents more than 37 700 manually curated RNA subcellular localization entries with experimental evidence, involving more than 21 800 RNAs with 42 subcellular localizations in 65 species, mainly including Homo sapiens, Mus musculus and Saccharomyces cerevisiae etc. Besides, RNA homology, sequence and interaction data have also been integrated into RNALocate. Users can access these data through online search, browse, blast and visualization tools. In conclusion, RNALocate will be of help in elucidating the entirety of RNA subcellular localization, and developing new prediction methods. The database is available at http://www.rna-society.org/rnalocate/.

  6. Engineering RNA-binding proteins for biology.

    PubMed

    Chen, Yu; Varani, Gabriele

    2013-08-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins.

  7. RNALocate: a resource for RNA subcellular localizations

    PubMed Central

    Zhang, Ting; Tan, Puwen; Wang, Liqiang; Jin, Nana; Li, Yana; Zhang, Lin; Yang, Huan; Hu, Zhenyu; Zhang, Lining; Hu, Chunyu; Li, Chunhua; Qian, Kun; Zhang, Changjian; Huang, Yan; Li, Kongning; Lin, Hao; Wang, Dong

    2017-01-01

    Increasing evidence has revealed that RNA subcellular localization is a very important feature for deeply understanding RNA's biological functions after being transported into intra- or extra-cellular regions. RNALocate is a web-accessible database that aims to provide a high-quality RNA subcellular localization resource and facilitate future researches on RNA function or structure. The current version of RNALocate documents more than 37 700 manually curated RNA subcellular localization entries with experimental evidence, involving more than 21 800 RNAs with 42 subcellular localizations in 65 species, mainly including Homo sapiens, Mus musculus and Saccharomyces cerevisiae etc. Besides, RNA homology, sequence and interaction data have also been integrated into RNALocate. Users can access these data through online search, browse, blast and visualization tools. In conclusion, RNALocate will be of help in elucidating the entirety of RNA subcellular localization, and developing new prediction methods. The database is available at http://www.rna-society.org/rnalocate/. PMID:27543076

  8. Avian influenza virus RNA extraction.

    PubMed

    Spackman, Erica; Lee, Scott A

    2014-01-01

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from experimentally infected birds. Samples can generally be divided into two types; enriched (e.g. virus stocks) and clinical. Clinical type samples, which may be tissues or swab material, are the most difficult to process due to the complex sample composition and possibly low virus titers. In this chapter two well established procedures for the isolation of AI virus RNA from common clinical specimen types and enriched virus stocks for further molecular applications will be presented.

  9. Toward all RNA structures, concisely

    PubMed Central

    Weeks, Kevin M.

    2014-01-01

    Profound insights regarding nucleic acid structure and function can be gleaned from very simple, direct, and chemistry-based strategies. Our approach strives to incorporate the elegant physical insights that Don Crothers instilled in those who trained in his laboratory. Don emphasized the advantages of focusing on direct and concise experiments, even when the final objective was to understand something complex – potentially including the large-scale architectures of the genomes of RNA viruses and the transcriptomes of cells. Here, I review the intellectual path, plus a few detours, that led to development of the SHAPE-MaP and RING-MaP technologies for interrogating RNA structure and function at large scales. I also argue that greater attention to creating direct, less inferential experiments will convert 'omics investigations into lasting and definitive contributions to our understanding of biological function. PMID:25546503

  10. Henipavirus RNA in African Bats

    PubMed Central

    Gloza-Rausch, Florian; Seebens, Antje; Annan, Augustina; Ipsen, Anne; Kruppa, Thomas; Müller, Marcel A.; Kalko, Elisabeth K. V.; Adu-Sarkodie, Yaw; Oppong, Samuel; Drosten, Christian

    2009-01-01

    Background Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. Methodology/Principal Findings Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. Conclusions/Significance The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans. PMID:19636378

  11. RNA and Proteins: Mutual Respect

    PubMed Central

    Hall, Kathleen B.

    2017-01-01

    Proteins and RNA are often found in ribonucleoprotein particles (RNPs), where they function in cellular processes to synthesize proteins (the ribosome), chemically modify RNAs (small nucleolar RNPs), splice pre-mRNAs (the spliceosome), and, on a larger scale, sequester RNAs, degrade them, or process them (P bodies, Cajal bodies, and nucleoli). Each RNA–protein interaction is a story in itself, as both molecules can change conformation, compete for binding sites, and regulate cellular functions. Recent studies of Xist long non-coding RNP, the U4/5/6 tri-small nuclear RNP complex, and an activated state of a spliceosome reveal new features of RNA interactions with proteins, and, although their stories are incomplete, they are already fascinating.

  12. Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data

    PubMed Central

    Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo

    2015-01-01

    Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737

  13. RNA-mediated gene activation

    PubMed Central

    Jiao, Alan L; Slack, Frank J

    2014-01-01

    The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms. PMID:24185374

  14. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  15. RNA Structure Analysis of Viruses Using SHAPE

    PubMed Central

    Burrill, Cecily P.; Andino, Raul

    2016-01-01

    Selective 2'hydroxyl acylation analyzed by primer extension (SHAPE) provides a means to investigate RNA structure with better resolution and higher throughput than has been possible with traditional methods. We present several protocols, which are based on a variety of previously published methods and were adapted and optimized for the analysis of poliovirus RNA in the Andino laboratory. These include methods for non-denaturing RNA extraction, RNA modification and primer extension, and data processing in ShapeFinder. PMID:24510890

  16. Messenger RNA Methylation Regulates Glioblastoma Tumorigenesis.

    PubMed

    Dixit, Deobrat; Xie, Qi; Rich, Jeremy N; Zhao, Jing Crystal

    2017-04-10

    Messenger RNA (mRNA) modification provides an additional layer of gene regulation in cells. In this issue of Cancer Cell, Zhang et al. report that ALKBH5, a demethylase of the mRNA modification N(6)-methyladenosine, regulates proliferation and self-renewal of glioblastoma stem-like cells by modulating pre-mRNA stability and expression of the FOXM1 gene.

  17. Current techniques for visualizing RNA in cells

    PubMed Central

    Mannack, Lilith V.J.C.; Eising, Sebastian; Rentmeister, Andrea

    2016-01-01

    Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations. PMID:27158473

  18. Riboswitches and the RNA World

    PubMed Central

    Breaker, Ronald R.

    2012-01-01

    Summary Riboswitches are structured noncoding RNA domains that selectively bind metabolites and control gene expression (Mandal and Breaker 2004a; Coppins et al. 2007; Roth and Breaker 2009). Nearly all examples of the known riboswitches reside in noncoding regions of messenger RNAs where they control transcription or translation. Newfound classes of riboswitches are being reported at a rate of about three per year (Ames and Breaker 2009), and these have been shown to selectively respond to fundamental metabolites including coenzymes, nucleobases or their derivatives, amino acids, and other small molecule ligands. The characteristics of some riboswitches suggest they could be modern descendents of an ancient sensory and regulatory system that likely functioned before the emergence of enzymes and genetic factors made of protein (Nahvi et al. 2002; Vitreschak et al. 2004; Breaker 2006). If true, then some of the riboswitch structures and functions that serve modern cells so well may accurately reflect the capabilities of RNA sensors and switches that existed in the RNA World. This article will address some of the characteristics of modern riboswitches that may be relevant to ancient versions of these metabolite-sensing RNAs. PMID:21106649

  19. Discovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA.

    PubMed

    Georgiev, G P

    2016-01-01

    On August 9-11, 2014, Cold Spring Harbor (USA) hosted a special symposium dedicated to the discovery of messenger or informational RNA and the main events in the subsequent studies of its synthesis, regulation of synthesis, maturation, and transport. The existence of mRNA in bacteria was first suggested in 1961 by Jacob and Monod, based on genetic studies [1]. The same year, Brenner et al. confirmed the hypothesis [2]. Our laboratory played a key role in the discovery of messenger RNA in eukaryotes, as well as in the discovery of the nuclear ribonucleoproteins that contain it and in the elucidation of their structural organization. Therefore, I was invited to represent Russia at the Symposium and deliver a speech on these topics. However, my visa had only been issued after the end of the Symposium, and, therefore, the presentation was delivered by my former colleague G.N. Yenikolopov, who works at Cold Spring Harbor Laboratory. The transcript of the lecture is presented below.

  20. Discovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA

    PubMed Central

    Georgiev, G.P.

    2016-01-01

    On August 9–11, 2014, Cold Spring Harbor (USA) hosted a special symposium dedicated to the discovery of messenger or informational RNA and the main events in the subsequent studies of its synthesis, regulation of synthesis, maturation, and transport. The existence of mRNA in bacteria was first suggested in 1961 by Jacob and Monod, based on genetic studies [1]. The same year, Brenner et al. confirmed the hypothesis [2]. Our laboratory played a key role in the discovery of messenger RNA in eukaryotes, as well as in the discovery of the nuclear ribonucleoproteins that contain it and in the elucidation of their structural organization. Therefore, I was invited to represent Russia at the Symposium and deliver a speech on these topics. However, my visa had only been issued after the end of the Symposium, and, therefore, the presentation was delivered by my former colleague G.N. Yenikolopov, who works at Cold Spring Harbor Laboratory. The transcript of the lecture is presented below. PMID:27099780

  1. Perda de massa em ventos empoeirados de estrelas supergigantes

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.; Jatenco-Pereira, V.

    2003-08-01

    Em praticamente todas as regiões do diagrama HR, as estrelas apresentam evidências observacionais de perda de massa. Na literatura, pode-se encontrar trabalhos que tratam tanto do diagnóstico da perda de massa como da construção de modelos que visam explicá-la. O amortecimento de ondas Alfvén tem sido utilizado como mecanismo de aceleração de ventos homogêneos. Entretanto, sabe-se que os envelopes de estrelas frias contêm grãos sólidos e moléculas. Com o intuito de estudar a interação entre as ondas Alfvén e a poeira e a sua conseqüência na aceleração do vento estelar, Falceta-Gonçalves & Jatenco-Pereira (2002) desenvolveram um modelo de perda de massa para estrelas supergigantes. Neste trabalho, apresentamos um estudo do modelo acima proposto para avaliar a dependência da taxa de perda de massa com alguns parâmetros iniciais como, por exemplo, a densidade r0, o campo magnético B0, o comprimento de amortecimento da onda L0, seu fluxo f0, entre outros. Sendo assim, aumentando f0 de 10% a partir de valores de referência, vimos que aumenta consideravelmente, enquanto que um aumento de mesmo valor em r0, B0 e L0 acarreta uma diminuição em .

  2. RNA Chaperones Step Out of Hfq's Shadow.

    PubMed

    Attaiech, Laetitia; Glover, J N Mark; Charpentier, Xavier

    2017-04-01

    The stability and function of regulatory small RNAs (sRNAs) often require a specialized RNA-binding protein called an RNA chaperone. Recent findings show that proteins containing a ProQ/FinO domain constitute a new class of RNA chaperones that could play key roles in post-transcriptional gene regulation throughout bacterial species.

  3. Endogenous polyamine function—the RNA perspective

    PubMed Central

    Lightfoot, Helen L.; Hall, Jonathan

    2014-01-01

    Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes. PMID:25232095

  4. Dissemination of 6S RNA among Bacteria

    PubMed Central

    Wehner, Stefanie; Damm, Katrin; Hartmann, Roland K; Marz, Manja

    2014-01-01

    6S RNA is a highly abundant small non-coding RNA widely spread among diverse bacterial groups. By competing with DNA promoters for binding to RNA polymerase (RNAP), the RNA regulates transcription on a global scale. RNAP produces small product RNAs derived from 6S RNA as template, which rearranges the 6S RNA structure leading to dissociation of 6S RNA:RNAP complexes. Although 6S RNA has been experimentally analysed in detail for some species, such as Escherichia coli and Bacillus subtilis, and was computationally predicted in many diverse bacteria, a complete and up-to-date overview of the distribution among all bacteria is missing. In this study we searched with new methods for 6S RNA genes in all currently available bacterial genomes. We ended up with a set of 1,750 6S RNA genes, of which 1,367 are novel and bona fide, distributed among 1,610 bacteria, and had a few tentative candidates among the remaining 510 assembled bacterial genomes accessible. We were able to confirm two tentative candidates by Northern blot analysis. We extended 6S RNA genes of the Flavobacteriia significantly in length compared to the present Rfam entry. We describe multiple homologs of 6S RNAs (including split 6S RNA genes) and performed a detailed synteny analysis. PMID:25483037

  5. RNA-directed DNA methylation in Arabidopsis

    PubMed Central

    Aufsatz, Werner; Mette, M. Florian; van der Winden, Johannes; Matzke, Antonius J. M.; Matzke, Marjori

    2002-01-01

    In plants, double-stranded RNA that is processed to short RNAs ≈21–24 nt in length can trigger two types of epigenetic gene silencing. Posttranscriptional gene silencing, which is related to RNA interference in animals and quelling in fungi, involves targeted elimination of homologous mRNA in the cytoplasm. RNA-directed DNA methylation involves de novo methylation of almost all cytosine residues within a region of RNA–DNA sequence identity. RNA-directed DNA methylation is presumed to be responsible for the methylation observed in protein coding regions of posttranscriptionally silenced genes. Moreover, a type of transcriptional gene silencing and de novo methylation of homologous promoters in trans can occur if a double-stranded RNA contains promoter sequences. Although RNA-directed DNA methylation has been described so far only in plants, there is increasing evidence that RNA can also target genome modifications in other organisms. To understand how RNA directs methylation to identical DNA sequences and how changes in chromatin configuration contribute to initiating or maintaining DNA methylation induced by RNA, a promoter double-stranded RNA-mediated transcriptional gene silencing system has been established in Arabidopsis. A genetic analysis of this system is helping to unravel the relationships among RNA signals, DNA methylation, and chromatin structure. PMID:12169664

  6. Small catalytic RNA: Structure, function and application

    SciTech Connect

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  7. De Novo Initiation of RNA Synthesis by the RNA-Dependent RNA Polymerase (NS5B) of Hepatitis C Virus

    PubMed Central

    Luo, Guangxiang; Hamatake, Robert K.; Mathis, Danielle M.; Racela, Jason; Rigat, Karen L.; Lemm, Julie; Colonno, Richard J.

    2000-01-01

    Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo. PMID:10623748

  8. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing

    PubMed Central

    Vourekas, Anastassios; Fu, Qi; Maragkakis, Manolis; Alexiou, Panagiotis; Ma, Jing; Pillai, Ramesh S.

    2015-01-01

    Piwi–piRNA (Piwi-interacting RNA) ribonucleoproteins (piRNPs) enforce retrotransposon silencing, a function critical for preserving the genome integrity of germ cells. The molecular functions of most of the factors that have been genetically implicated in primary piRNA biogenesis are still elusive. Here we show that MOV10L1 exhibits 5′-to-3′ directional RNA-unwinding activity in vitro and that a point mutation that abolishes this activity causes a failure in primary piRNA biogenesis in vivo. We demonstrate that MOV10L1 selectively binds piRNA precursor transcripts and is essential for the generation of intermediate piRNA processing fragments that are subsequently loaded to Piwi proteins. Multiple analyses suggest an intimate coupling of piRNA precursor processing with elements of local secondary structures such as G quadruplexes. Our results support a model in which MOV10L1 RNA helicase activity promotes unwinding and funneling of the single-stranded piRNA precursor transcripts to the endonuclease that catalyzes the first cleavage step of piRNA processing. PMID:25762440

  9. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle.

    PubMed

    Kuhn, Claus-D

    2016-05-01

    tRNAs undergo multiple conformational changes during the translation cycle that are required for tRNA translocation and proper communication between the ribosome and translation factors. Recent structural data on how destabilized tRNAs utilize the CCA-adding enzyme to proofread themselves put a spotlight on tRNA flexibility beyond the translation cycle. In analogy to tRNA surveillance, this review finds that other processes also exploit versatile tRNA folding to achieve, amongst others, specific aminoacylation, translational regulation by riboswitches or a block of bacterial translation. tRNA flexibility is thereby not restricted to the hinges utilized during translation. In contrast, the flexibility of tRNA is distributed all over its L-shape and is actively exploited by the tRNA-interacting partners to discriminate one tRNA from another. Since the majority of tRNA modifications also modulate tRNA flexibility it seems that cells devote enormous resources to tightly sense and regulate tRNA structure. This is likely required for error-free protein synthesis.

  10. Detection of dsRNA-binding domains in RNA helicase A and Drosophila maleless: implications for monomeric RNA helicases.

    PubMed Central

    Gibson, T J; Thompson, J D

    1994-01-01

    Searches with dsRNA-binding domain profiles detected two copies of the domain in each of RNA helicase A, Drosophila maleless and C. elegans ORF T20G5-11 (of unknown function). RNA helicase A is unusual in being one of the few characterised DEAD/DExH helicases that are active as monomers. Other monomeric DEAD/DExH RNA helicases (p68, NPH-II) have domains that match another RNA-binding motif, the RGG repeat. The DEAD/DExH domain appears to be insufficient on its own to promote helicase activity and additional RNA-binding capacity must be supplied either as domains adjacent to the DEAD/DExH-box or by bound partners as in the eIF-4AB dimer. The presence or absence of extra RNA-binding domains should allow classification of DEAD/DExH proteins as monomeric or multimeric helicases. Images PMID:8041617

  11. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    PubMed

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation.

  12. Estudo comparativo entre estrelas centrais de nebulosas planetárias deficientes em hidrogênio

    NASA Astrophysics Data System (ADS)

    Marcolino, W. L. F.; de Araújo, F. X.

    2003-08-01

    Apresentamos neste trabalho o resultado de um estudo das principais características espectrais das estrelas centrais de nebulosas planetárias (ECNP) deficientes em hidrogênio. A origem e a evolução dessas estrelas ainda constitui um problema em aberto na evolução estelar. Geralmente esses objetos são divididos em [WCE], [WCL] e [WELS]. Os tipos [WCE] e [WCL] apresentam um espectro típico de uma estrela Wolf-Rayet carbonada de população I e as [WELS] apresentam linhas fracas de carbono e oxigênio em emissão. Existem evidências que apontam a seguinte sequência evolutiva : [WCL] = > [WCE] = > [WELS] = > PG 1159 (pré anã-branca). No entanto, tal cenário apresenta falhas como por exemplo a falta de ECNP entre os tipos [WCL] e [WCE]. Baseados em uma amostra de 24 objetos obtida no telescópio de 1.52m em La Silla, Chile (acordo ESO/ON), ao longo do ano 2000, apresentamos os resultados da comparação das larguras equivalentes de diversas linhas relevantes entre os tipos [WCL], [WCE] e [WELS]. Verificamos que nossos dados estão de acordo com a sequência evolutiva. Baseado nas linhas de C IV, conseguimos dividir pela primeira vez as [WELS] em dois grupos principais. Além disso, os dados reforçam a afirmação de que as [WCE] são as estrelas que possuem a maior temperatura entre as ECNP deficientes em hidrogênio. Discutimos ainda, a escassez de dados disponíveis na literatura e a necessidade da obtenção de parametros físicos para estes objetos.

  13. Sobre o uso das séries de Puiseux em mecanica celeste

    NASA Astrophysics Data System (ADS)

    Miloni, O. I.

    2003-08-01

    Neste trabalho é apresentada uma demonstração do uso dos diferentes desenvolvimentos em séries para as equações de perturbação em Mecânica Celeste no marco Hamiltoniano. Em trabalhos clássicos como os de Poincaré (Poincaré, 1893) por exemplo, já esta planteado o uso de potências não inteiras no pequeno parâmetro, o que evidencia a não analiticidade das funções quando uma ressonância ocorre. Nestes trabalhos os desenvolvimentos são na raíz quadrada da massa de Júpiter (o pequeno parâmetro). Mais recentemente (Ferraz-Mello, 1985) outros tipos de desenvolvimentos foram aplicados modificando substancialmente as ordens de grandeza e a velocidade de convergência das séries. Com esta abordagem, os desenvolvimentos foram expressados em termos da raíz cúbica do pequeno parâmetro. Neste trabalho apresentamos um enfoque geral, onde os diferentes tipos de desenvolvimentos em séries de Puiseux (Valiron, 1950) são obtidos a partir da aplicação de Teorema de Preparação de Weierstrass (Goursat, 1916) considerando a equação de Hamilton-Jacobi como uma equação algébrica. Os resultados são aplicados ao problema restrito dos três corpos em ressonância de primeira ordem e, dependendo da grandeza da excentricidade do asteróide em relação à de Júpiter, obtemos os diferentes desenvolvimentos, em raíz quadrada ou raíz cúbica da massa de Júpiter.

  14. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    SciTech Connect

    Eyre, Nicholas S.; Hampton-Smith, Rachel J.; Aloia, Amanda L.; Eddes, James S.; Simpson, Kaylene J.; Hoffmann, Peter; Beard, Michael R.

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  15. Multisubunit RNA Polymerases IV and V: Purveyors of Non-Coding RNA for Plant Gene Silencing

    SciTech Connect

    Haag, Jeremy R.; Pikaard, Craig S.

    2011-08-01

    In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.

  16. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases

    PubMed Central

    Bruenn, Jeremy A.

    2003-01-01

    A systematic bioinformatic approach to identifying the evolutionarily conserved regions of proteins has verified the universality of a newly described conserved motif in RNA-dependent RNA polymerases (motif F). In combination with structural comparisons, this approach has defined two regions that may be involved in unwinding double-stranded RNA (dsRNA) for transcription. One of these is the N-terminal portion of motif F and the second is a large insertion in motif F present in the RNA-dependent RNA polymerases of some dsRNA viruses. PMID:12654997

  17. Predicting RNA structure: advances and limitations.

    PubMed

    Hofacker, Ivo L; Lorenz, Ronny

    2014-01-01

    RNA secondary structures can be predicted using efficient algorithms. A widely used software package implementing a large number of computational methods is the ViennaRNA Package. This chapter describes how to use programs from the ViennaRNA Package to perform common tasks such as prediction of minimum free-energy structures, suboptimal structures, or base pairing probabilities, and generating secondary structure plots with reliability annotation. Moreover, we present recent methods to assess the folding kinetics of an RNA via 2D projections of the energy landscape, identification of local minima and energy barriers, or simulation of RNA folding as a Markov process.

  18. RNA catalysis and the origins of life

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1986-01-01

    The role of RNA catalysis in the origins of life is considered in connection with the discovery of riboszymes, which are RNA molecules that catalyze sequence-specific hydrolysis and transesterification reactions of RNA substrates. Due to this discovery, theories positing protein-free replication as preceding the appearance of the genetic code are more plausible. The scope of RNA catalysis in biology and chemistry is discussed, and it is noted that the development of methods to select (or predict) RNA sequences with preassigned catalytic functions would be a major contribution to the study of life's origins.

  19. 5' termini of poliovirus RNA: difference between virion and nonencapsidated 35S RNA.

    PubMed Central

    Fernandez-Muñoz, R; Lavi, U

    1977-01-01

    Poliovirus cytoplasmic, nonencapsidated 35S RNA yields approximately one pUp per molecule upon T2 RNase digestion, indicating that this RNA has the same 5' end as the polyribosome-associated viral RNA fraction. Double-stranded, replicative form RNA after the same treatment yielded approximately four pNp structures per molecule, 65% of which was pUp. In contrast, the 35S RNA from mature virions contained no detectable pNp, indicating that the 5' end of the virion RNA is different from that of the nonencapsidated RNA. None of the above molecules contained pppNp, ppNp, or GpppNp structures present in host mRNA. The virion RNA molecules, as we have shown previously for thenonencapsidated 35S viral RNA (Fernandez-Muñoz and Darnell, 1976), is not labeled with [methyl-3H]methionine. PMID:189096

  20. Concentrations of individual RNA sequences in polyadenylated nuclear and cytoplasmic RNA populations of Drosophila cells.

    PubMed Central

    Biessmann, H

    1980-01-01

    Steady state concentrations of individual RNA sequences in poly(A) nuclear and cytoplasmic RNA populations of Drosophila Kc cells were determined using cloned cDNA fragments. These cDNAs represent poly(A) RNA sequences of different abundance in the cytoplasm of Kc cells, but their steady state concentrations in poly(A) hnRNA was always lower. Of ten different sequences analysed, eight showed some four-fold lower concentration in hnRNA mRNA, two were underrepresented in hnRNA relative to the others. The obvious clustering of mRNA/hnRNA ratios is discussed in relation to sequence complexity and turnover rates of these RNA populations. Images PMID:6162158

  1. Cytoplasmic RNA Granules and Viral Infection

    PubMed Central

    Tsai, Wei-Chih; Lloyd, Richard E.

    2016-01-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principle types of cytoplasmic RNA granules are stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P-bodies, PBs), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts, thus, viruses repress RNA granule functions to favor replication. This review discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently mechanisms for virus manipulation of RNA granules can be loosely grouped into three non-exclusive categories; i) cleavage of key RNA granule factors, ii) regulation of PKR activation and iii) co-opting RNA granule factors for new roles in viral replication. Viral repression of RNA granules supports productive infection by inhibiting their gene silencing functions and counteracting their role in linking stress sensing with innate immune activation. PMID:26958719

  2. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  3. Characteristics and Prediction of RNA Structure

    PubMed Central

    Zhu, Daming; Zhang, Caiming; Han, Huijian; Crandall, Keith A.

    2014-01-01

    RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding. PMID:25110687

  4. Análise da medição do raio solar em ultravioleta

    NASA Astrophysics Data System (ADS)

    Saraiva, A. C. V.; Giménez de Castro, C. G.; Costa, J. E. R.; Selhorst, C. L.; Simões, P. J. A.

    2003-08-01

    A medição acurada do raio solar em qualquer banda do espectro eletromagnético é de relevância na formulação e calibração de modelos da estrutura e atmosfera solar. Esses modelos atribuem emissão do contínuo do Sol calmo em microondas à mesma região da linha Ha do Hell. Apresentamos a medição do raio solar em UV com imagens do EIT (Extreme Ultraviolet Image Telescope) entre 1996 e 2002, no comprimento de onda 30,9 nm (Ha do Hell), que se forma na região de transição/cromosfera solar. A técnica utilizada para o cálculo do raio UV foi baseada na transformada Wavelet B3spline. Fizemos um banco de dados com 1 imagem por dia durante o período citado. Obtivemos como resultado o raio médio da ordem de 975.61" e uma diminuição do mesmo para o período citado variando em média -0,45" /ano. Comparamos estes dados com os valores obtidos pelo ROI (Radio Observatório de Itapetinga) em 22/48 GHz e Nobeyama Radio Heliograph em 17 GHz mostrando que os raios médios são muito próximos o que indica que a região de formação nessas freqüências é a mesma conforme os modelos. Comparamos os resultados também com outros índices de atividade solar.

  5. TruSeq Stranded mRNA and Total RNA Sample Preparation Kits

    Cancer.gov

    Total RNA-Seq enabled by ribosomal RNA (rRNA) reduction is compatible with formalin-fixed paraffin embedded (FFPE) samples, which contain potentially critical biological information. The family of TruSeq Stranded Total RNA sample preparation kits provides a unique combination of unmatched data quality for both mRNA and whole-transcriptome analyses, robust interrogation of both standard and low-quality samples and workflows compatible with a wide range of study designs.

  6. Optimal alphabets for an RNA world.

    PubMed Central

    Gardner, Paul P; Holland, Barbara R; Moulton, Vincent; Hendy, Mike; Penny, David

    2003-01-01

    Experiments have shown that the canonical AUCG genetic alphabet is not the only possible nucleotide alphabet. In this work we address the question 'is the canonical alphabet optimal?' We make the assumption that the genetic alphabet was determined in the RNA world. Computational tools are used to infer the RNA secondary structure (shape) from a given RNA sequence, and statistics from RNA shapes are gathered with respect to alphabet size. Then, simulations based upon the replication and selection of fixed-sized RNA populations are used to investigate the effect of alternative alphabets upon RNA's ability to step through a fitness landscape. These results show that for a low copy fidelity the canonical alphabet is fitter than two-, six- and eight-letter alphabets. In higher copy-fidelity experiments, six-letter alphabets outperform the four-letter alphabets, suggesting that the canonical alphabet is indeed a relic of the RNA world. PMID:12816657

  7. Crystal structure of a plectonemic RNA supercoil

    SciTech Connect

    Stagno, Jason R.; Ma, Buyong; Li, Jess; Altieri, Amanda S.; Byrd, R. Andrew; Ji, Xinhua

    2012-12-14

    Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.

  8. The Emerging Field of RNA Nanotechnology

    PubMed Central

    Guo, Peixuan

    2011-01-01

    RNA can be designed and manipulated just like DNA while having different rules for base-pairing and displaying functions similar to proteins. The large variety of loops and motifs in RNA allow them to fold into numerous complicated structures. This diversity provides a platform for identifying viable building blocks for particle assemblies, substrate binding and manufacture engineering. RNA thermal stability allows production of multivalent nanostructures with defined stoichiometry. Here we review the unique qualities of RNA nanotechnology and their distinct properties inside the body. We describe techniques for constructing RNA nanoparticles from different building blocks and their applications in nanomedicine. Finally, we discuss challenges in predicting and synthesizing RNA and offer some perspectives on the yield and cost of RNA production. PMID:21102465

  9. In vitro translation of plant viral RNA.

    PubMed

    Browning, Karen S; Mayberry, Laura

    2006-06-01

    This unit describes the preparation of a wheat germ extract that provides all the soluble components of the plant translational machinery. Many RNA plant viruses have positive-strand genomes and the viral RNA serves as messenger RNA (mRNA). The preparation of mRNA by in vitro transcription is also described. The translation assay requires optimization of the amount of wheat germ extract, level of mRNA, and the concentration of Mg(2+) and K(+) for each mRNA. The translational efficiency of RNAs or mutants may be compared (e.g., capped versus uncapped RNAs to measure cap-independent translation) or the amount/size of the protein product may be determined.

  10. Understanding the transcriptome through RNA structure

    PubMed Central

    Wan, Yue; Kertesz, Michael; Spitale, Robert C.; Segal, Eran; Chang, Howard

    2013-01-01

    RNA structure is critical for gene regulation and function. In the past, transcriptomes have been largely parsed by primary sequences and expression levels, but it is now becoming feasible to annotate and compare transcriptomes based on RNA structure. In addition to computational prediction methods, the recent advent of experimental techniques to probe RNA structure by deep sequencing has enabled genome-wide measurements of RNA structure, and provided the first picture of the structural organization of an eukaryotic transcriptome—the “RNA structurome”. With additional advances in method refinement and interpretation, structural views of the transcriptome should help to identify and validate regulatory RNA motifs that are involved in diverse cellular processes, and thereby increase understanding of RNA function. PMID:21850044

  11. RNA sequence analysis using covariance models.

    PubMed Central

    Eddy, S R; Durbin, R

    1994-01-01

    We describe a general approach to several RNA sequence analysis problems using probabilistic models that flexibly describe the secondary structure and primary sequence consensus of an RNA sequence family. We call these models 'covariance models'. A covariance model of tRNA sequences is an extremely sensitive and discriminative tool for searching for additional tRNAs and tRNA-related sequences in sequence databases. A model can be built automatically from an existing sequence alignment. We also describe an algorithm for learning a model and hence a consensus secondary structure from initially unaligned example sequences and no prior structural information. Models trained on unaligned tRNA examples correctly predict tRNA secondary structure and produce high-quality multiple alignments. The approach may be applied to any family of small RNA sequences. Images PMID:8029015

  12. RNA families in Epstein-Barr virus.

    PubMed

    Moss, Walter N; Lee, Nara; Pimienta, Genaro; Steitz, Joan A

    2014-01-01

    Epstein-Barr virus (EBV) is a tumorigenic human γ-herpesvirus, which produces several known structured RNAs with functional importance: two are implicated in latency maintenance and tumorigenic phenotypes, EBER1 and EBER2; a viral small nucleolar RNA (v-snoRNA1) that may generate a small regulatory RNA; and an internal ribosomal entry site in the EBNA1 mRNA. A recent bioinformatics and RNA-Seq study of EBV identified two novel EBV non-coding (nc)RNAs with evolutionary conservation in lymphocryptoviruses and likely functional importance. Both RNAs are transcribed from a repetitive region of the EBV genome (the W repeats) during a highly oncogenic type of viral latency. One novel ncRNA can form a massive (586 nt) hairpin, while the other RNA is generated from a short (81 nt) intron and is found in high abundance in EBV-infected cells.

  13. RNA families in Epstein–Barr virus

    PubMed Central

    Moss, Walter N; Lee, Nara; Pimienta, Genaro; Steitz, Joan A

    2014-01-01

    Epstein–Barr virus (EBV) is a tumorigenic human γ-herpesvirus, which produces several known structured RNAs with functional importance: two are implicated in latency maintenance and tumorigenic phenotypes, EBER1 and EBER2; a viral small nucleolar RNA (v-snoRNA1) that may generate a small regulatory RNA; and an internal ribosomal entry site in the EBNA1 mRNA. A recent bioinformatics and RNA-Seq study of EBV identified two novel EBV non-coding (nc)RNAs with evolutionary conservation in lymphocryptoviruses and likely functional importance. Both RNAs are transcribed from a repetitive region of the EBV genome (the W repeats) during a highly oncogenic type of viral latency. One novel ncRNA can form a massive (586 nt) hairpin, while the other RNA is generated from a short (81 nt) intron and is found in high abundance in EBV-infected cells. PMID:24441309

  14. DNA repair investigations using siRNA.

    PubMed

    Miller, Holly; Grollman, Arthur P

    2003-06-11

    Small interfering RNA (siRNA) is a revolutionary tool for the experimental modulation of gene expression, in many cases making redundant the need for specific gene mutations and allowing examination of the effect of modulating essential genes. It has now been shown that siRNA phenotypes resulting from stable transfection with short hairpin RNA (shRNA) can be transmitted through the mouse germ line and Rosenquist and his colleagues have used shRNA, which is processed in vivo to siRNA, to create germline transgenic mice in which a target DNA repair gene has been silenced. Here, Holly Miller and Arthur P. Grollman give the background of these discoveries, provide an overview of current uses, and look at future applications of this research.

  15. Investigating RNA editing factors from trypanosome mitochondria

    PubMed Central

    Aphasizheva, Inna; Zhang, Liye; Aphasizhev, Ruslan

    2016-01-01

    Mitochondrial U-insertion/deletion mRNA editing is carried out by two principal multiprotein assemblies, enzymatic RNA editing core (RECC) and RNA editing substrate binding (RESC) complexes, and a plethora of auxiliary factors. An integral part of mitochondrial gene expression, editing receives inputs from primary mRNA and gRNA precursor processing pathways, and generates substrates for mRNA polyadenylation and translation. Although nearly all RECC-embedded enzymes have been implicated in specific editing reactions, the majority of proteins that populate the RESC are also essential for generating edited mRNAs. However, lack of recognizable motifs in RESC subunits limits the prowess of bioinformatics in guiding biochemical experiments and elucidating their specific biological functions. In this chapter, we describe a generic workflow for investigating mitochondrial mRNA editing in Trypanosoma brucei and focus on several methods that proved instrumental is assigning definitive functions to editing factors lacking known signature sequences. PMID:27020893

  16. Discos de acresção em sistemas Be-X

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Janot-Pacheco, E.

    2003-08-01

    Alguns fenômenos de outbursts em Be-X sugerem a existência, mesmo que temporária, de um disco de acresção quando da passagem do objeto compacto pelo periastro orbital. Neste trabalho avaliamos a possibilidade de formação do disco de acresção em sistemas Be+estrela de neutrons e Be+anã branca, e a influência da excentricidade orbital na ocorrência deste fenômeno. Utilizamos a expressão analítica para o momento angular específico da matéria constituinte de um meio em expansão lenta, como é o caso do disco circunstelar das estrelas Be, proposta por Wang(1981), sob a condição básica de que o raio de circularização deva ser maior do que o raio de Alfvén. Concluímos que existe um limite para o período orbital do sistema acima do qual não é possível a formação do disco de acresção, e que este valor aumenta para sistemas com excentricidade orbital maior.

  17. Rural Emergency Medical Services (EMS) and Trauma

    MedlinePlus

    ... a rural EMS unit find funding for major equipment, such as an ambulance? The following programs can ... EMS units. Grants may be used to purchase equipment (including vehicles), provide training, establish wellness and fitness ...

  18. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    PubMed Central

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-01-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation. PMID:27418187

  19. Structure of the initiation-competent RNA polymerase I and its implication for transcription

    NASA Astrophysics Data System (ADS)

    Pilsl, Michael; Crucifix, Corinne; Papai, Gabor; Krupp, Ferdinand; Steinbauer, Robert; Griesenbeck, Joachim; Milkereit, Philipp; Tschochner, Herbert; Schultz, Patrick

    2016-07-01

    Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.

  20. Pseudoknots in RNA folding landscapes

    PubMed Central

    Kucharík, Marcel; Hofacker, Ivo L.; Stadler, Peter F.; Qin, Jing

    2016-01-01

    Motivation: The function of an RNA molecule is not only linked to its native structure, which is usually taken to be the ground state of its folding landscape, but also in many cases crucially depends on the details of the folding pathways such as stable folding intermediates or the timing of the folding process itself. To model and understand these processes, it is necessary to go beyond ground state structures. The study of rugged RNA folding landscapes holds the key to answer these questions. Efficient coarse-graining methods are required to reduce the intractably vast energy landscapes into condensed representations such as barrier trees or basin hopping graphs (BHG) that convey an approximate but comprehensive picture of the folding kinetics. So far, exact and heuristic coarse-graining methods have been mostly restricted to the pseudoknot-free secondary structures. Pseudoknots, which are common motifs and have been repeatedly hypothesized to play an important role in guiding folding trajectories, were usually excluded. Results: We generalize the BHG framework to include pseudoknotted RNA structures and systematically study the differences in predicted folding behavior depending on whether pseudoknotted structures are allowed to occur as folding intermediates or not. We observe that RNAs with pseudoknotted ground state structures tend to have more pseudoknotted folding intermediates than RNAs with pseudoknot-free ground state structures. The occurrence and influence of pseudoknotted intermediates on the folding pathway, however, appear to depend very strongly on the individual RNAs so that no general rule can be inferred. Availability and implementation: The algorithms described here are implemented in C++ as standalone programs. Its source code and Supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. Contact: qin@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  1. RNA Dimerization Promotes PKR Dimerization and Activation

    PubMed Central

    Heinicke, Laurie A.; Wong, C. Jason; Lary, Jeffrey; Nallagatla, Subba Rao; Diegelman-Parente, Amy; Zheng, Xiaofeng; Cole, James L.; Bevilacqua, Philip C.

    2009-01-01

    The double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays a major role in the innate immune response in humans. PKR binds dsRNA non-sequence specifically and requires a minimum of 15 bp dsRNA for one protein to bind and 30 bp dsRNA to induce protein dimerization and activation by autophosphorylation. PKR phosphorylates eIF2α, a translation initiation factor, resulting in the inhibition of protein synthesis. We investigated the mechanism of PKR activation by an RNA hairpin with a number of base pairs intermediate between these 15 to 30 bp limits: HIV-I TAR RNA, a 23 bp hairpin with three bulges that is known to dimerize. To test whether RNA dimerization affects PKR dimerization and activation, TAR monomers and dimers were isolated from native gels and assayed for RNA and protein dimerization. To modulate the extent of dimerization, we included TAR mutants with different secondary features. Native gel mixing experiments and analytical ultracentrifugation indicate that TAR monomers bind one PKR monomer and that TAR dimers bind two or three PKRs, demonstrating that RNA dimerization drives the binding of multiple PKR molecules. Consistent with functional dimerization of PKR, TAR dimers activated PKR while TAR monomers did not, and RNA dimers with fewer asymmetrical secondary structure defects, as determined by enzymatic structure mapping, were more potent activators. Thus, the secondary structure defects in the TAR RNA stem function as antideterminants to PKR binding and activation. Our studies support that dimerization of a 15–30 bp hairpin RNA, which effectively doubles its length, is a key step in driving activation of PKR and provide a model for how RNA folding can be related to human disease. PMID:19445956

  2. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA

    PubMed Central

    Santiago-Frangos, Andrew; Kavita, Kumari; Schu, Daniel J.; Gottesman, Susan

    2016-01-01

    The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq’s RNA chaperone activity, the function of Hfq’s intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA–mRNA interactions and rapidly cycle between competing targets in the cell. PMID:27681631

  3. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World.

    PubMed

    Gavette, Jesse V; Stoop, Matthias; Hud, Nicholas V; Krishnamurthy, Ramanarayanan

    2016-10-10

    The RNA world hypothesis posits that DNA and proteins were later inventions of early life, or the chemistry that gave rise to life. Most scenarios put forth for the emergence of DNA assume a clean separation of RNA and DNA polymer, and a smooth transition between RNA and DNA. However, based on the reality of "clutter" and lack of sophisticated separation/discrimination mechanisms in a protobiological (and/or prebiological) world, heterogeneous RNA-DNA backbone containing chimeric sequences could have been common-and have not been fully considered in models transitioning from an RNA world to an RNA-DNA world. Herein we show that there is a significant decrease in Watson-Crick duplex stability of the heterogeneous backbone chimeric duplexes that would impede base-pair mediated interactions (and functions). These results point to the difficulties for the transition from one homogeneous system (RNA) to another (RNA/DNA) in an RNA world with a heterogeneous mixture of ribo- and deoxyribonucleotides and sequences, while suggesting an alternative scenario of prebiological accumulation and co-evolution of homogeneous systems (RNA and DNA).

  4. RNAi: Mammalian oocytes do it without RNA-dependent RNA polymerase

    PubMed Central

    STEIN, PAULA; SVOBODA, PETR; ANGER, MARTIN; SCHULTZ, RICHARD M.

    2003-01-01

    Studies in mutant organisms deficient in RNA interference (RNAi) and related post-transcriptional gene silencing implicated a role for a single class of RNA-dependent RNA polymerases (RdRp). Nevertheless, sequence homologs to these RdRps have not been found in coelomate organisms such as Drosophila or mammals. This lack of homologous sequences does not exclude that an RdRp functions in RNAi in these organisms because an RdRp could be acquired by horizontal transfer from an RNA virus. In fact, such a sequence is found in mice (Aquarius) and we observe that it is expressed in mouse oocytes and early embryos, which exhibit RNAi. We report here that cordycepin, an inhibitor of RNA synthesis, does not prevent Mos double-strand RNA (dsRNA) to target endogenous Mos mRNA in mouse oocytes and that targeting a chimeric Mos–EGFP mRNA with dsRNA to EGFP does not reduce the endogenous Mos mRNA, but does target the chimeric mRNA. These results indicate that an RdRp is not involved in dsRNA-mediated mRNA degradation in mammalian oocytes, and possibly in mammals in general, and therefore that only homologous sequences to the dsRNA are targeted for degradation. PMID:12554861

  5. c-Myc co-ordinates mRNA cap methylation and ribosomal RNA production

    PubMed Central

    Dunn, Sianadh; Lombardi, Olivia; Cowling, Victoria H.

    2017-01-01

    The mRNA cap is a structure added to RNA pol II transcripts in eukaryotes, which recruits factors involved in RNA processing, nuclear export and translation initiation. RNA guanine-7 methyltransferase (RNMT)–RNA-activating miniprotein (RAM), the mRNA cap methyltransferase complex, completes the basic functional mRNA cap structure, cap 0, by methylating the cap guanosine. Here, we report that RNMT–RAM co-ordinates mRNA processing with ribosome production. Suppression of RNMT–RAM reduces synthesis of the 45S ribosomal RNA (rRNA) precursor. RNMT–RAM is required for c-Myc expression, a major regulator of RNA pol I, which synthesises 45S rRNA. Constitutive expression of c-Myc restores rRNA synthesis when RNMT–RAM is suppressed, indicating that RNMT–RAM controls rRNA production predominantly by controlling c-Myc expression. We report that RNMT–RAM is recruited to the ribosomal DNA locus, which may contribute to rRNA synthesis in certain contexts. PMID:27934633

  6. The cellular factor TRP-185 regulates RNA polymerase II binding to HIV-1 TAR RNA.

    PubMed Central

    Wu-Baer, F; Lane, W S; Gaynor, R B

    1995-01-01

    Activation of HIV-1 gene expression by the transactivator Tat is dependent on an RNA regulatory element located downstream of the transcription initiation site known as TAR. To characterize cellular factors that bind to TAR RNA and are involved in the regulation of HIV-1 transcription, HeLa nuclear extract was fractionated and RNA gel-retardation analysis was performed. This analysis indicated that only two cellular factors, RNA polymerase II and the previously characterized TAR RNA loop binding protein TRP-185, were capable of binding specifically to TAR RNA. To elucidate the function of TRP-185, it was purified from HeLa nuclear extract, amino acid microsequence analysis was performed and a cDNA encoding TRP-185 was isolated. TRP-185 is a novel protein of 1621 amino acids which contains a leucine zipper and potentially a novel RNA binding motif. In gel-retardation assays, the binding of both recombinant TRP-185 and RNA polymerase II was dependent on the presence of an additional group of proteins designated cellular cofactors. Both the TAR RNA loop and bulge sequences were critical for RNA polymerase II binding, while TRP-185 binding was dependent only on TAR RNA loop sequences. Since binding of TRP-185 and RNA polymerase II to TAR RNA was found to be mutually exclusive, our results suggest that TRP-185 may function either alone or in conjunction with Tat to disengage RNA polymerase II which is stalled upon binding to nascently synthesized TAR RNA during transcriptional elongation. Images PMID:8846792

  7. c-Myc co-ordinates mRNA cap methylation and ribosomal RNA production.

    PubMed

    Dunn, Sianadh; Lombardi, Olivia; Cowling, Victoria H

    2017-02-01

    The mRNA cap is a structure added to RNA pol II transcripts in eukaryotes, which recruits factors involved in RNA processing, nuclear export and translation initiation. RNA guanine-7 methyltransferase (RNMT)-RNA-activating miniprotein (RAM), the mRNA cap methyltransferase complex, completes the basic functional mRNA cap structure, cap 0, by methylating the cap guanosine. Here, we report that RNMT-RAM co-ordinates mRNA processing with ribosome production. Suppression of RNMT-RAM reduces synthesis of the 45S ribosomal RNA (rRNA) precursor. RNMT-RAM is required for c-Myc expression, a major regulator of RNA pol I, which synthesises 45S rRNA. Constitutive expression of c-Myc restores rRNA synthesis when RNMT-RAM is suppressed, indicating that RNMT-RAM controls rRNA production predominantly by controlling c-Myc expression. We report that RNMT-RAM is recruited to the ribosomal DNA locus, which may contribute to rRNA synthesis in certain contexts.

  8. Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA.

    PubMed

    Shanker, Savita; Paulson, Ariel; Edenberg, Howard J; Peak, Allison; Perera, Anoja; Alekseyev, Yuriy O; Beckloff, Nicholas; Bivens, Nathan J; Donnelly, Robert; Gillaspy, Allison F; Grove, Deborah; Gu, Weikuan; Jafari, Nadereh; Kerley-Hamilton, Joanna S; Lyons, Robert H; Tepper, Clifford; Nicolet, Charles M

    2015-04-01

    This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Multiple recent publications on RNA sequencing (RNA-seq) have demonstrated the power of next-generation sequencing technologies in whole-transcriptome analysis. Vendor-specific protocols used for RNA library construction often require at least 100 ng total RNA. However, under certain conditions, much less RNA is available for library construction. In these cases, effective transcriptome profiling requires amplification of subnanogram amounts of RNA. Several commercial RNA amplification kits are available for amplification prior to library construction for next-generation sequencing, but these kits have not been comprehensively field evaluated for accuracy and performance of RNA-seq for picogram amounts of RNA. To address this, 4 types of amplification kits were tested with 3 different concentrations, from 5 ng to 50 pg, of a commercially available RNA. Kits were tested at multiple sites to assess reproducibility and ease of use. The human total reference RNA used was spiked with a control pool of RNA molecules in order to further evaluate quantitative recovery of input material. Additional control data sets were generated from libraries constructed following polyA selection or ribosomal depletion using established kits and protocols. cDNA was collected from the different sites, and libraries were synthesized at a single site using established protocols. Sequencing runs were carried out on the Illumina platform. Numerous metrics were compared among the kits and dilutions used. Overall, no single kit appeared to meet all the challenges of small input material. However, it is encouraging that excellent data can be recovered with even the 50 pg input total RNA.

  9. An all RNA hypercycle network

    NASA Astrophysics Data System (ADS)

    Vaidya, Nilesh; Lehman, Niles

    The RNA world hypothesis suggests RNA-based catalysis and information storage as the first step in the evolution of life on the Earth. The central process of the RNA world was the replica-tion of RNA, which may have involved the joining of oligonucleotides, perhaps by recombination rather than organization along a linear template. To assist this build-up of information, a hy-percycle may have played a significant role by allowing cooperation between autocatalytic units in a cyclic linkage in such a way that there is a mutual survival and regulated growth of all the units involved (1). Compared to non-coupled self-replicating units, which can only sustain a limited amount of genetic information, the hypercycle allows the maintenance of large amounts of information through cooperation among otherwise competitive units. However, hypercycles have never been empirically demonstrated in the absence of cell-like compartmentalization. In the current work, hypercyclic behavior is demonstrated in the autocatalytic assembly of Azoar-cus group I ribozyme (2). Three different constructs of the Azoarcus ribozyme with different internal guide sequences (IGS) -GUG (canonical), GAG, and GCG -are capable of a min-imal amount of self-assembly when broken into two fragments. Here, self-assembly depends on a mismatch with non-complementary sequences, CGU, CAU and CUU, respectively, to be recognized by IGS via autocatalysis. Yet when all three constructs are present in the same reaction vessel, concomitant assembly of all three is enhanced through an interdependent hy-percyclic reaction network. Analysis of these reactions indicates that each system is capable of guiding its own reproduction weakly, along with providing enhanced catalytic support for the reproduction of one other construct system through matched IGS-tag interactions. Also, when co-incubated with non-interacting (i.e., selfish) yet efficient self-assembly systems, the hypercyclic assembly outcompetes the selfish self

  10. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2

    PubMed Central

    Xu, Jianwen; Chen, Yihan; Qian, Luofeng; Mu, Rong; Yuan, Xi; Fang, Huimin; Huang, Xi; Xu, Enshun; Zhang, Hongsheng; Huang, Ji

    2017-01-01

    The Stress Associated RNA-binding protein 1 (SRP1) repressed by ABA, salt and cold encodes a C2C2-type zinc finger protein in Arabidopsis. The knock-out mutation in srp1 reduced the sensitivity of seed to ABA and salt stress during germination and post-germinative growth stages. In contrast, SRP1-overexpressing seedlings were more sensitive to ABA and salt compared to wild type plants. In the presence of ABA, the transcript levels of ABA signaling and germination-related genes including ABI3. ABI5. EM1 and EM6 were less induced in srp1 compared to WT. Interestingly, expression of ABI2 encoding a protein phosphatase 2C protein were significantly up-regulated in srp1 mutants. By in vitro analysis, SRP1 was identified as a novel RNA-binding protein directly binding to 3′UTR of ABI2 mRNA. Moreover, transient expression assay proved the function of SRP1 in reducing the activity of luciferase whose coding sequence was fused with the ABI2 3’UTR. Together, it is suggested that SRP1 is involved in the ABA signaling by post-transcriptionally repressing ABI2 expression in Arabidopsis. PMID:28174577

  11. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs

    PubMed Central

    Yip, W. S. Vincent; Shigematsu, Hideki; Taylor, David W.; Baserga, Susan J.

    2016-01-01

    Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. PMID:27342279

  12. REDIdb: the RNA editing database.

    PubMed

    Picardi, Ernesto; Regina, Teresa Maria Rosaria; Brennicke, Axel; Quagliariello, Carla

    2007-01-01

    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.

  13. Estudo em microondas do aprisionamento e precipitação de elétrons em explosões solares

    NASA Astrophysics Data System (ADS)

    Rosal, A. C.; Costa, J. E. R.

    2003-08-01

    Uma explosão solar é uma variação rápida e intensa do brilho que ocorre nas chamadas regiões ativas da atmosfera, constituídas por um plasma magnetizado com intensa indução magnética. Os modelos de explosões solares atuais, discutidos na literatura, apresentam características de aprisionamento e precipitação de elétrons em ambientes magnéticos simplificados. Neste trabalho, nos propusemos a separar a emissão dos elétrons aprisionados da emissão dos elétrons em precipitação apenas a partir da emissão em microondas, melhorando portanto o controle sobre o conjunto de parâmetros inferidos. A emissão em microondas da população em precipitação é bastante fraca e portanto da nossa base de dados de 130 explosões observadas pelo Rádio Polarímetro de Nobeyama, em sete freqüências, apenas para 32 foi possível separar as duas componentes de emissão com uma boa razão sinal/ruído. A partir de estudos das escalas de tempo das emissões devidas à variação gradual da emissão no aprisionamento e da variação rápida da emissão dos elétrons em precipitação foi possível obter a separação utilizando um filtro temporal nas emissões resultantes. Em nossa análise destas explosões estudamos os espectros girossincrotrônicos da emissão gradual, a qual associamos provir do topo dos arcos magnéticos e da emissão de variação rápida associada aos elétrons em precipitação. Estes espectros foram calculados e dos quais inferimos que a indução magnética efetiva do topo e dos pés foi em média, Btopo = 236 G e Bpés = 577 G, inferidas das freqüências de pico dos espectros em ntopo = 11,8 GHz e npés = 14,6 GHz com leve anisotropia (pequeno alargamento espectral). O índice espectral da distribuição não-térmica de elétrons d, inferido do índice espectral de fótons da emissão em regime opticamente fino, foi de dtopo = 3,3 e dpés = 3,9. Estes parâmetros são típicos da maioria das análises realizadas em ambiente único de

  14. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production.

    PubMed

    Han, Bo W; Wang, Wei; Li, Chengjian; Weng, Zhiping; Zamore, Phillip D

    2015-05-15

    PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence.

  15. Movement of regulatory RNA between animal cells

    PubMed Central

    Jose, Antony M.

    2015-01-01

    Summary Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. PMID:26138457

  16. Modeling sRNA-Regulated Plasmid Maintenance

    PubMed Central

    Klumpp, Stefan

    2017-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin’s mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, a short half-life of the protein toxin is also beneficial to the function of the toxin-antitoxin system. In addition, we study a therapeutic scenario in which a competitor mRNA is introduced to sequester the sRNA antitoxin, causing the toxic protein to be expressed. PMID:28085919

  17. The evolution of chloroplast RNA editing.

    PubMed

    Tillich, Michael; Lehwark, Pascal; Morton, Brian R; Maier, Uwe G

    2006-10-01

    RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria.

  18. Computational approaches for RNA energy parameter estimation

    PubMed Central

    Andronescu, Mirela; Condon, Anne; Hoos, Holger H.; Mathews, David H.; Murphy, Kevin P.

    2010-01-01

    Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params. PMID:20940338

  19. Computational Prediction of RNA Tertiary Structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yunjie; Gong, Zhou; Chen, Changjun; Xiao, Yi

    2012-02-01

    RNAs have been found to be involved in the biological processes. The large RNA usually consists of two basic elements: RNA hairpins and duplex. Due to the experimental determination difficulties, the few RNA tertiary structures limit our understanding of the specific regulation mechanisms and functions. Therefore, RNA tertiary structure prediction is very important for understanding RNA biological functions. Since RNA often folds hierarchically, one of the possible RNA structure prediction approaches is through the hierarchical steps. Here, we focus on the prediction method of RNA tertiary hairpin and duplex structures in which assembles the small tertiary structure fragments from well-defined RNA structural motifs. In a benchmark test with known experiment structures, more than half of the cases agree with the experimental structure better than 3 å RMSD over all the heavy atoms. The prediction results also reproduce the native like complementary base pairs of the secondary structures. Most importantly, the method performs the atomic accuracy of tertiary structures by about several minutes. We expect that the method will be a useful resource for RNA tertiary structure prediction and helpful to the biological research community.

  20. Coronavirus cis-Acting RNA Elements.

    PubMed

    Madhugiri, R; Fricke, M; Marz, M; Ziebuhr, J

    2016-01-01

    Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.

  1. Chloroplast DNA codes for transfer RNA.

    PubMed Central

    McCrea, J M; Hershberger, C L

    1976-01-01

    Transfer RNA's were isolated from Euglena gracilis. Chloroplast cistrons for tRNA were quantitated by hybridizing tRNA to ct DNA. Species of tRNA hybridizing to ct DNA were partially purified by hybridization-chromatography. The tRNA's hybridizing to ct DNA and nuclear DNA appear to be different. Total cellular tRNA was hybridized to ct DNA to an equivalent of approximately 25 cistrons. The total cellular tRNA was also separated into 2 fractions by chromatography on dihydroxyboryl substituted amino ethyl cellulose. Fraction I hybridized to both nuclear and ct DNA. Hybridizations to ct DNA indicated approximately 18 cistrons. Fraction II-tRNA hybridized only to ct DNA, saturating at a level of approximately 7 cistrons. The tRNA from isolated chloroplasts hybridized to both chloroplast and nuclear DNA. The level of hybridization to ct DNA indicated approximately 18 cistrons. Fraction II-type tRNA could not be detected in the isolated chloroplasts. PMID:823529

  2. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  3. Controlled evolution of an RNA enzyme

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1991-01-01

    It is generally thought that prior to the origin of protein synthesis, life on earth was based on self-replicating RNA molecules. This idea has become especially popular recently due to the discovery of catalytic RNA (ribozymes). RNA has both genotypic and phenotypic properties, suggesting that it is capable of undergoing Darwinian evolution. RNA evolution is likely to have played a critical role in the early history of life on earth, and thus is important in considering the possibility of life elsewhere in the solar system. We have constructed an RNA-based evolving system in the laboratory, combining amplification and mutation of an RNA genotype with selection of a corresponding RNA phenotype. This system serves as a functional model of a primitive organism. It can also be used as a tool to explore the catalytic potential of RNA. By altering the selection constraints, we are attempting to modify the substrate specificity of an existing ribozyme in order to develop ribozymes with novel catalytic function. In this way, we hope to gain a better understanding of RNA's catalytic versatility and to assess its suitability for the role of primordial catalyst. All of the RNA enzymes that are known to exist in contemporary biology carry out cleavage/ligation reactions involving RNA substrates. The Tetrahymena ribozyme, for example, catalyzes phosphoester transfer between a guanosine containing and an oligopyrimidine containing substrate. We tested the ability of mutant forms of the Tetrahymena ribozyme to carry out a comparable reaction using DNA, rather than RNA substrate. An ensemble of structural variants of the ribozyme was prepared and tested for their ability to specifically cleave d(GGCCCTCT-A3TA3TA) at the phosphodiester bond following the sequence CCCTCT. We recovered a mutant form of the enzyme that cleaves DNA more efficiently than does the wild-type. Beginning with this selected mutant we have now scattered random mutations throughout the ribozyme and have begun

  4. Implementation of RNA profiling in forensic casework.

    PubMed

    Lindenbergh, Alexander; Maaskant, Petra; Sijen, Titia

    2013-01-01

    An essential aspect for forensic methods is the prevention of cognitive (confirmation, expectation or motivational) bias. While implementing RNA profiling in casework, we developed a stepwise procedure for unbiased assessment in which: (1) the RNA researcher who generates DNA/RNA fractions and performs RNA profiling, remains uninformed about the context of the case and (2) presents RNA profiling results that are derived by clear guidelines in a results table that uses six different scoring categories, (3) the DNA fractions are processed and analysed by DNA analysts following the standard routine after which (4) reporting officers interpret the DNA profiles and establish the relation to the RNA results which is succeeded by (5) collating all generated results in the case and formulating conclusions in expert reports. The scoring guidelines and results table have a general purpose and can apply to any RNA multiplex. This procedure was applied in a comparative study encompassing seven mock cases designed to be especially interesting for body fluid identification by RNA profiling. Samples were prepared in duplicates and subjected to either presumptive testing combined with standard DNA typing or RNA/DNA co-extraction followed by RNA and DNA profiling. For all cases, the results from presumptive testing and RNA profiling agreed to the level of details the tests can give and concordant DNA results were obtained. RNA profiling was especially useful when (1) menstrual secretion and peripheral blood needed to be distinguished, (2) presence of vaginal mucosa was questioned or (3) presence of skin cells was informative. For forensic reports, we propose to use sets of hypotheses evaluated by the conclusions obtained with DNA and RNA analyses.

  5. Telescópio de patrulhamento solar em 12 GHz

    NASA Astrophysics Data System (ADS)

    Utsumi, F.; Costa, J. E. R.

    2003-08-01

    O telescópio de patrulhamento solar é um instrumento dedicado à observação de explosões solares com início de suas operações em janeiro de 2002, trabalhando próximo ao pico de emissão do espectro girossincrotrônico (12 GHz). Trata-se de um arranjo de três antenas concebido para a detecção de explosões e determinação em tempo real da localização da região emissora. Porém, desde sua implementação em uma montagem equatorial movimentada por um sistema de rotação constante (15 graus/hora) o rastreio apresentou pequenas variações de velocidade e folgas nas caixas de engrenagens. Assim, tornou-se necessária a construção de um sistema de correção automática do apontamento que era de fundamental importância para os objetivos do projeto. No segundo semestre de 2002 empreendemos uma série de tarefas com o objetivo de automatizar completamente o rastreio, a calibração, a aquisição de dados, controle de ganhos, offsets e transferência dos dados pela internet através de um projeto custeado pela FAPESP. O rastreio automático é realizado através de um inversor que controla a freqüência da rede de alimentação do motor de rastreio podendo fazer micro-correções na direção leste-oeste conforme os radiômetros desta direção detectem uma variação relativa do sinal. Foi adicionado também um motor na direção da declinação para correção automática da variação da direção norte-sul. Após a implementação deste sistema a precisão do rastreio melhorou para um desvio máximo de 30 segundos de arco, o que está muito bom para este projeto. O Telescópio se encontra em funcionamento automático desde março de 2003 e já conta com várias explosões observadas após a conclusão desta fase de automação. Estamos apresentando as explosões mais intensas do período e com as suas respectivas posições no disco solar.

  6. The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells

    PubMed Central

    Lusamba Kalonji, Nadine; Nomura, Kazuhiro; Kawase, Tetsuaki; Ota, Chiharu; Kubo, Hiroshi; Sato, Takeya; Yanagisawa, Teruyuki; Sunazuka, Toshiaki; Ōmura, Satoshi; Yamaya, Mutsuo

    2015-01-01

    The anti-inflammatory effects of macrolides may be associated with a reduced frequency of exacerbation of chronic obstructive pulmonary disease (COPD). However, because the long-term use of antibiotics may promote the growth of drug-resistant bacteria, the development of a treatment to prevent COPD exacerbation with macrolides that do not exert anti-bacterial effects is necessary. Additionally, the inhibitory effects of nonantibiotic macrolides on the replication of rhinovirus (RV), which is the major cause of COPD exacerbation, have not been demonstrated. Primary cultures of human tracheal epithelial cells and nasal epithelial cells were pretreated with the nonantibiotic macrolide EM900 for 72 h prior to infection with a major group RV type 14 rhinovirus (RV14) and were further treated with EM900 after infection. Treatment with EM900 before and after infection reduced RV14 titers in the supernatants and viral RNA within the cells. Moreover, cytokine levels, including interleukin (IL)-1β and IL-6, were reduced in the supernatants following RV14 infection. Treatment with EM900 before and after infection also reduced the mRNA and protein expression of intercellular adhesion molecule-1 (ICAM-1), which is the receptor for RV14, after infection and reduced the activation of the nuclear factor kappa-B protein p50 in nuclear extracts after infection. Pretreatment with EM900 reduced the number and fluorescence intensity of the acidic endosomes through which RV RNA enters the cytoplasm. Thus, pretreatment with EM900 may inhibit RV infection by reducing the ICAM-1 levels and acidic endosomes and thus modulate the airway inflammation associated with RV infections. PMID:26462747

  7. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    NASA Astrophysics Data System (ADS)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  8. Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins

    PubMed Central

    de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin

    2016-01-01

    Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381

  9. Prohead RNA: a noncoding viral RNA of novel structure and function

    PubMed Central

    Hill, Alyssa C.; Bartley, Laura E.

    2016-01-01

    Prohead RNA (pRNA) is an essential component of the powerful Φ29‐like bacteriophage DNA packaging motor. However, the specific role of this unique RNA in the Φ29 packaging motor remains unknown. This review examines pRNA as a noncoding RNA of novel structure and function. In order to highlight the reasons for exploring the structure and function of pRNA, we (1) provide an overview of Φ29‐like bacteriophage and the Φ29 DNA packaging motor, including putative motor mechanisms and structures of its component parts; (2) discuss pRNA structure and possible roles for pRNA in the Φ29 packaging motor; (3) summarize pRNA self‐assembly; and (4) describe the prospective therapeutic applications of pRNA. Many questions remain to be answered in order to connect what is currently known about pRNA structure to its novel function in the Φ29 packaging motor. The knowledge gained from studying the structure, function, and sequence variation in pRNA will help develop tools to better navigate the conformational landscapes of RNA. WIREs RNA 2016, 7:428–437. doi: 10.1002/wrna.1330 For further resources related to this article, please visit the WIREs website. PMID:26810250

  10. Role of RNase MRP in viral RNA degradation and RNA recombination.

    PubMed

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  11. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance

    PubMed Central

    Urayama, Syun-ichi; Takaki, Yoshihiro; Nunoura, Takuro

    2016-01-01

    Knowledge of the distribution and diversity of RNA viruses is still limited in spite of their possible environmental and epidemiological impacts because RNA virus-specific metagenomic methods have not yet been developed. We herein constructed an effective metagenomic method for RNA viruses by targeting long double-stranded (ds)RNA in cellular organisms, which is a hallmark of infection, or the replication of dsRNA and single-stranded (ss)RNA viruses, except for retroviruses. This novel dsRNA targeting metagenomic method is characterized by an extremely high recovery rate of viral RNA sequences, the retrieval of terminal sequences, and uniform read coverage, which has not previously been reported in other metagenomic methods targeting RNA viruses. This method revealed a previously unidentified viral RNA diversity of more than 20 complete RNA viral genomes including dsRNA and ssRNA viruses associated with an environmental diatom colony. Our approach will be a powerful tool for cataloging RNA viruses associated with organisms of interest. PMID:26877136

  12. The European Mobile System (EMS)

    NASA Technical Reports Server (NTRS)

    Jongejans, A.; Rogard, R.; Mistretta, I.; Ananasso, F.

    1993-01-01

    The European Space Agency is presently procuring an L band payload in order to promote a regional European L band system coping with the specific needs of the European market. The payload, and the two communications systems to be supported, are described below. The potential market for EMS in Europe is discussed.

  13. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells

    PubMed Central

    Meng, Lingyu; Liu, Cuicui; Lü, Jinhui; Zhao, Qian; Deng, Shengqiong; Wang, Guangxue; Qiao, Jing; Zhang, Chuyi; Zhen, Lixiao; Lu, Ying; Li, Wenshu; Zhang, Yuzhen; Pestell, Richard G.; Fan, Huiming; Chen, Yi-Han; Liu, Zhongmin; Yu, Zuoren

    2017-01-01

    MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed ‘small RNA zipper'. It is designed to connect miRNA molecules end to end, forming a DNA–RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30–50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes. PMID:28045030

  14. Cymbidium ringspot virus harnesses RNA silencing to control the accumulation of virus parasite satellite RNA.

    PubMed

    Pantaleo, Vitantonio; Burgyán, József

    2008-12-01

    Cymbidium ringspot virus (CymRSV) satellite RNA (satRNA) is a parasitic subviral RNA replicon that replicates and accumulates at the cost of its helper virus. This 621-nucleotide (nt) satRNA species has no sequence similarity to the helper virus, except for a 51-nt-long region termed the helper-satellite homology (HSH) region, which is essential for satRNA replication. We show that the accumulation of satRNA strongly depends on temperature and on the presence of the helper virus p19 silencing suppressor protein, suggesting that RNA silencing plays a crucial role in satRNA accumulation. We also demonstrate that another member of the Tombusvirus genus, Carnation Italian ringspot virus (CIRV), supports satRNA accumulation at a higher level than CymRSV. Our results suggest that short interfering RNA (siRNA) derived from CymRSV targets satRNA more efficiently than siRNA from CIRV, possibly because of the higher sequence similarity between the HSH regions of the helper and CIRV satRNAs. RNA silencing sensor RNA carrying the putative satRNA target site in the HSH region was efficiently cleaved when transiently expressed in CymRSV-infected plants but not in CIRV-infected plants. Strikingly, replacing the CymRSV HSH box2 sequence with that of CIRV restores satRNA accumulation both at 24 degrees C and in the absence of the p19 suppressor protein. These findings demonstrate the extraordinary adaptation of this virus to its host in terms of harnessing the antiviral silencing response of the plant to control the virus parasite satRNA.

  15. DNA display of folded RNA libraries enabling RNA-SELEX without reverse transcription.

    PubMed

    MacPherson, I S; Temme, J S; Krauss, I J

    2017-03-02

    A method for the physical attachment of folded RNA libraries to their encoding DNA is presented as a way to circumvent the reverse transcription step during systematic evolution of RNA ligands by exponential enrichment (RNA-SELEX). A DNA library is modified with one isodC base to stall T7 polymerase and a 5' "capture strand" which anneals to the nascent RNA transcript. This method is validated in a selection of RNA aptamers against human α-thrombin with dissociation constants in the low nanomolar range. This method will be useful in the discovery of RNA aptamers and ribozymes containing base modifications that make them resistant to accurate reverse transcription.

  16. Rapid RNA analysis of individual Caenorhabditis elegans☆

    PubMed Central

    Ly, Kien; Reid, Suzanne J.; Snell, Russell G.

    2015-01-01

    Traditional RNA extraction methods rely on the use of hazardous chemicals such as phenol, chloroform, guanidinium thiocyanate to disrupt cells and inactivate RNAse simultaneously. RNA isolation from Caenorhabditis elegans presents another challenge due to its tough cuticle, therefore several repeated freeze–thaw cycles may be needed to disrupt the cuticle before the cell contents are released. In addition, a large number of animals are required for successful RNA isolation. To overcome these issues, we have developed a simple and efficient method using proteinase K and a brief heat treatment to release RNA of quality suitable for quantitative PCR analysis.The benefits of the method are: • Faster and safer compared to conventional RNA extraction methods • Released RNA can be used directly for cDNA synthesis without purification • As little as a single worm is sufficient PMID:26150972

  17. Messenger RNA degradation in bacterial cells.

    PubMed

    Hui, Monica P; Foley, Patricia L; Belasco, Joel G

    2014-01-01

    mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.

  18. Therapeutic RNA Manipulation in Liver Disease

    PubMed Central

    Kerr, Thomas A.; Davidson, Nicholas O.

    2010-01-01

    Summary Posttranscriptional regulation of gene expression is increasingly recognized as a model for inherited and acquired disease. Recent work has expanded understanding of the range of mechanisms that regulate several of these distinct steps including mRNA splicing, trafficking, and/or stability. Each of these pathways is implicated in disease pathogenesis and each represent important avenues for therapeutic intervention. This review will summarize important mechanisms controlling mRNA processing and the regulation of mRNA degradation, including the role of miRNAs and RNA binding proteins. These pathways provide important opportunities for therapeutic targeting directed at splicing and degradation in order to attenuate genetic defects in RNA metabolism. We will highlight developments in vector development and validation for therapeutic manipulation of mRNA expression with a focus on potential applications in metabolic and immune-mediated liver disease. PMID:19918970

  19. Designing synthetic RNA for delivery by nanoparticles

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  20. Autocatalytic Sets and RNA Secondary Structure.

    PubMed

    Hordijk, Wim

    2017-04-04

    The dominant paradigm in origin of life research is that of an RNA world. However, despite experimental progress towards the spontaneous formation of RNA, the RNA world hypothesis still has its problems. Here, we introduce a novel computational model of chemical reaction networks based on RNA secondary structure and analyze the existence of autocatalytic sub-networks in random instances of this model, by combining two well-established computational tools. Our main results are that (i) autocatalytic sets are highly likely to exist, even for very small reaction networks and short RNA sequences, and (ii) sequence diversity seems to be a more important factor in the formation of autocatalytic sets than sequence length. These findings could shed new light on the probability of the spontaneous emergence of an RNA world as a network of mutually collaborative ribozymes.

  1. Replicon RNA Viral Vectors as Vaccines

    PubMed Central

    Lundstrom, Kenneth

    2016-01-01

    Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions. PMID:27827980

  2. Mitochondria: mitochondrial RNA metabolism and human disease.

    PubMed

    Nicholls, Thomas J; Rorbach, Joanna; Minczuk, Michal

    2013-04-01

    Post-transcriptional control of RNA stability, processing, modification, and degradation is key to the regulation of gene expression in all living cells. In mitochondria, these post-transcriptional processes are also vital for proper expression of the thirteen proteins encoded by the mitochondrial genome, as well as mitochondrial tRNAs and rRNAs. Our knowledge on mitochondrial RNA (mt-RNA) metabolic pathways, however, is far from complete. All the proteins involved in mt-RNA metabolism are encoded by the nucleus, and must be imported into the organelle. Mutations in these nuclear genes can lead to perturbations in mitochondrial RNA processing, modification, stability and decay and thus are a cause of human mitochondrial disease. This review summarises the current knowledge on mt-RNA metabolism and its links with human mitochondrial pathologies.

  3. Rna catalysis and the origin of life

    NASA Astrophysics Data System (ADS)

    Pace, Norman R.; Marsh, Terry L.

    1985-06-01

    Until the discovery of catalytic RNAs, first the self-splicing intron inTetrahymena and then the bacterial RNAse P, cellular enzymes had always seemed to be protein in nature. The recognition that RNA can catalytically make and break phosphodiester bonds simplifies some of the assumptions required of a rudimentary self-replicating entity. Available information on the chemistry of RNA-catalyzed reactions is reviewed, with particular attention to self-splicing introns and tRNA processing by RNase P. An explicit model for a self-replicating RNA is described. The model postulates a nucleotide binding/polymerization site in the RNA, and takes advantage of intrinsic fluidity in RNA higher order structure to dissociate parent and progeny complementary strands.

  4. Preparation of Total RNA from Fission Yeast.

    PubMed

    Bähler, Jürg; Wise, Jo Ann

    2017-04-03

    Treatment with hot phenol breaks open fission yeast cells and begins to strip away bound proteins from RNA. Deproteinization is completed by multiple extractions with chloroform/isoamyl alcohol and separation of the aqueous and organic phases using MaXtract gel, an inert material that acts as a physical barrier between the phases. The final step is concentration of the RNA by ethanol precipitation. The protocol can be used to prepare RNA from several cultures grown in parallel, but it is important not to process too many samples at once because delays can be detrimental to RNA quality. A reasonable number of samples to process at once would be three to four for microarray or RNA sequencing analyses and six for preliminary investigations of mutants implicated in RNA metabolism.

  5. Jpx RNA Activates Xist by Evicting CTCF

    PubMed Central

    Sun, Sha; Del Rosario, Brian C.; Szanto, Attila; Ogawa, Yuya; Jeon, Yesu; Lee, Jeannie T.

    2013-01-01

    Summary In mammals, dosage compensation between XX and XY individuals occurs through X chromosome inactivation (XCI). The noncoding Xist RNA is expressed and initiates XCI only when more than one X chromosome is present. Current models invoke a dependency on the X-to-autosome ratio (X:A), but molecular factors remain poorly defined. Here, we demonstrate that molecular titration between an X-encoded RNA and an autosomally encoded protein dictates Xist induction. In pre-XCI cells, CTCF protein represses Xist transcription. At the onset of XCI, Jpx RNA is upregulated, binds CTCF, and extricates CTCF from one Xist allele. We demonstrate that CTCF is an RNA-binding protein and is titrated away from the Xist promoter by Jpx RNA. Thus, Jpx activates Xist by evicting CTCF. The functional antagonism via molecular titration reveals a role for long noncoding RNA in epigenetic regulation. PMID:23791181

  6. RNA degradation in antiviral immunity and autoimmunity

    PubMed Central

    Rigby, Rachel E.; Rehwinkel, Jan

    2015-01-01

    Post-transcriptional control determines the fate of cellular RNA molecules. Nonsense-mediated decay (NMD) provides quality control of mRNA, targeting faulty cellular transcripts for degradation by multiple nucleases including the RNA exosome. Recent findings have revealed a role for NMD in targeting viral RNA molecules, thereby restricting virus infection. Interestingly, NMD is also linked to immune responses at another level: mutations affecting the NMD or RNA exosome machineries cause chronic activation of defence programmes, resulting in autoimmune phenotypes. Here we place these observations in the context of other links between innate antiviral immunity and type I interferon mediated disease and examine two models: one in which expression or function of pathogen sensors is perturbed and one wherein host-derived RNA molecules with a propensity to activate such sensors accumulate. PMID:25709093

  7. Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines.

    PubMed

    Wu, Qian; Guo, Li; Jiang, Fei; Li, Lei; Li, Zhong; Chen, Feng

    2015-12-01

    Recently, rapid advances in bioinformatics analysis have expanded our understanding of the transcriptome to a genome-wide level. miRNA-mRNA-lncRNA interactions have been shown to play critical regulatory role in cancer biology. In this study, we discussed the use of an integrated systematic approach to explore new facets of the oestrogen receptor (ER)-regulated transcriptome. The identification of RNAs that are related to the expression status of the ER may be useful in clinical therapy and prognosis. We used a network modelling strategy. First, microarray expression profiling of mRNA, lncRNA and miRNA was performed in MCF-7 (ER-positive) and MDA-MB-231 cells (ER- negative). A co-expression network was then built using co-expression relationships of the differentially expressed mRNAs and lncRNAs. Finally, the selected miRNA-mRNA network was added to the network. The key miRNA-mRNA-lncRNA interaction can be inferred from the network. The mRNA and non-coding RNA expression profiles of the cells with different ER phenotypes were distinct. Among the aberrantly expressed miRNAs, the expression levels of miR-19a-3p, miR-19b-3p and miR-130a-3p were much lower in the MCF-7 cells, whereas that of miR-148b-3p was much higher. In a cluster of miR-17-92, the expression levels of six of seven miRNAs were lower in the MCF-7 cells, in addition to miR-20b in the miR-106a-363 cluster. However, the levels of all the miRNAs in the miR-106a-25 cluster were higher in the MCF-7 cells. In the co-expression networking, CD74 and FMNL2 gene which is involved in the immune response and metastasis, respectively, had a stronger correlation with ER. Among the aberrantly expressed lncRNAs, lncRNA-DLEU1 was highly expressed in the MCF-7 cells. A statistical analysis revealed that there was a co-expression relationship between ESR1 and lncRNA-DLEU1. In addition, miR-19a and lncRNA-DLEU1 are both located on the human chromosome 13q. We speculate that miR-19a might be co-expressed with lncRNA-DLEU1

  8. Circulating Extracellular RNA Markers of Liver Regeneration

    PubMed Central

    Yan, Irene K.; Wang, Xue; Asmann, Yan W.; Haga, Hiroaki; Patel, Tushar

    2016-01-01

    Background and Aims Although a key determinant of hepatic recovery after injury is active liver regeneration, the ability to detect ongoing regeneration is lacking. The restoration of liver mass after hepatectomy involves systemic changes with coordinated changes in gene expression guiding regenerative responses, activation of progenitor cells, and proliferation of quiescent hepatocytes. We postulated that these responses involve intercellular communication involving extracellular RNA and that these could represent biomarkers of active regenerative responses. Methods RNA sequencing was performed to identify temporal changes in serum extracellular non-coding RNA after partial hepatectomy in C57BL/6 male mice. Tissue expression of selected RNA was performed by microarray analysis and validated using qRT-PCR. Digital PCR was used to detect and quantify serum expression of selected RNA. Results A peak increase in extracellular RNA content occurred six hours after hepatectomy. RNA sequencing identified alterations in several small non-coding RNA including known and novel microRNAs, snoRNAs, tRNA, antisense and repeat elements after partial hepatectomy. Combinatorial effects and network analyses identified signal regulation, protein complex assembly, and signal transduction as the most common biological processes targeted by miRNA that altered. miR-1A and miR-181 were most significantly altered microRNA in both serum and in hepatic tissues, and their presence in serum was quantitated using digital PCR. Conclusions Extracellular RNA selectively enriched during acute regeneration can be detected within serum and represent biomarkers of ongoing liver regeneration in mice. The ability to detect ongoing active regeneration would improve the assessment of hepatic recovery from liver injury. PMID:27415797

  9. DNA and RNA technology in soil biodiversity

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2016-04-01

    DNA technology has come a long way and state of the art techniques are currently used in the analysis of soil biodiversity. Current methods will be presented and their strengths and limitations discussed. RNA technology, for the study of gene expression and potential activity of functional groups in the soil, is lagging behind, mostly due to the difficulties of extracting stable RNA from the soil. The potentials and challenges of adopting RNA technology for soil analysis will be discussed.

  10. Computational Biology in microRNA.

    PubMed

    Li, Yue; Zhang, Zhaolei

    2015-01-01

    MicroRNA (miRNA) is a class of small endogenous noncoding RNA species, which regulate gene expression post-transcriptionally by forming imperfect base-pair at the 3' untranslated regions of the messenger RNAs. Since the 1993 discovery of the first miRNA let-7 in worms, a vast number of studies have been dedicated to functionally characterizing miRNAs with a special emphasis on their roles in cancer. A single miRNA can potentially target ∼ 400 distinct genes, and there are over a 1000 distinct endogenous miRNAs in the human genome. Thus, miRNAs are likely involved in virtually all biological processes and pathways including carcinogenesis. However, functionally characterizing miRNAs hinges on the accurate identification of their mRNA targets, which has been a challenging problem due to imperfect base-pairing and condition-specific miRNA regulatory dynamics. In this review, we will survey the current state-of-the-art computational methods to predict miRNA targets, which are divided into three main categories: (1) sequence-based methods that primarily utilizes the canonical seed-match model, evolutionary conservation, and binding energy; (2) expression-based target prediction methods using the increasingly available miRNA and mRNA expression data measured for the same sample; and (3) network-based method that aims identify miRNA regulatory modules, which reflect their synergism in conferring a global impact to the biological system of interest. We hope that the review will serve as a good reference to the new comers to the ever-growing miRNA research field as well as veterans, who would appreciate the detailed review on the technicalities, strength, and limitations of each representative computational method.

  11. RNA virus reverse genetics and vaccine design.

    PubMed

    Stobart, Christopher C; Moore, Martin L

    2014-06-25

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.

  12. A Cross-chiral RNA Polymerase Ribozyme

    PubMed Central

    Sczepanski, Jonathan T.; Joyce, Gerald F.

    2014-01-01

    Thirty years ago it was shown that the non-enzymatic, template-directed polymerization of activated mononucleotides proceeds readily in a homochiral system, but is severely inhibited by the presence of the opposing enantiomer.1 This finding poses a severe challenge for the spontaneous emergence of RNA-based life, and has led to the suggestion that either RNA was preceded by some other genetic polymer that is not subject to chiral inhibition2 or chiral symmetry was broken through chemical processes prior to the origin of RNA-based life.3,4 Once an RNA enzyme arose that could catalyze the polymerization of RNA, it would have been possible to distinguish among the two enantiomers, enabling RNA replication and RNA-based evolution to occur. It is commonly thought that the earliest RNA polymerase and its substrates would have been of the same handedness, but this is not necessarily the case. Replicating D-and L-RNA molecules may have emerged together, based on the ability of structured RNAs of one handedness to catalyze the templated polymerization of activated mononucleotides of the opposite handedness. Such a cross-chiral RNA polymerase has now been developed using in vitro evolution. The D-RNA enzyme, consisting of 83 nucleotides, catalyzes the joining of L-mono- or oligonucleotide substrates on a complementary L-RNA template, and similarly for the L-enzyme with D-substrates and a D-template. Chiral inhibition is avoided because the 106-fold rate acceleration of the enzyme only pertains to cross-chiral substrates. The enzyme's activity is sufficient to generate full-length copies of its enantiomer through the templated joining of 11 component oligonucleotides. PMID:25363769

  13. MicroRNA and Breast Cancer Progression

    DTIC Science & Technology

    2007-08-01

    AD_________________ Award Number: W81XWH-05-1-0428 TITLE: MicroRNA and Breast Cancer Progression...3. DATES COVERED (From - To) 15 JUL 2005 - 14 JUL 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER MicroRNA and Breast Cancer Progression 5b...We hypothesized that certain miRNA species are differentially expressed in the normal breast epithelium and breast cancer cells. Our concept was that

  14. Small catalytic RNA: Structure, function and application

    SciTech Connect

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus_minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  15. Mechanical unfolding of RNA hairpins.

    PubMed

    Hyeon, Changbong; Thirumalai, D

    2005-05-10

    Mechanical unfolding trajectories, generated by applying constant force in optical-tweezer experiments, show that RNA hairpins and the P5abc subdomain of the group I intron unfold reversibly. We use coarse-grained Go-like models for RNA hairpins to explore forced unfolding over a broad range of temperatures. A number of predictions that are amenable to experimental tests are made. At the critical force, the hairpin jumps between folded and unfolded conformations without populating any discernible intermediates. The phase diagram in the force-temperature (f, T) plane shows that the hairpin unfolds by an all-or-none process. The cooperativity of the unfolding transition increases dramatically at low temperatures. Free energy of stability, obtained from time averages of mechanical unfolding trajectories, coincides with ensemble averages, which establishes ergodicity. The hopping time between the native basin of attraction (NBA) and the unfolded basin increases dramatically along the phase boundary. Thermal unfolding is stochastic, whereas mechanical unfolding occurs in "quantized steps" with great variations in the step lengths. Refolding times, upon force quench, from stretched states to the NBA are at least an order of magnitude greater than folding times by temperature quench. Upon force quench from stretched states, the NBA is reached in at least three stages. In the initial stages, the mean end-to-end distance decreases nearly continuously, and there is a sudden transition to the NBA only in the last stage. Because of the generality of the results, we propose that similar behavior should be observed in force quench refolding of proteins.

  16. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA

    SciTech Connect

    Wasmuth, Elizabeth V.; Januszyk, Kurt; Lima, Christopher D.

    2014-08-20

    The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.

  17. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    PubMed

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  18. VfoldCPX Server: Predicting RNA-RNA Complex Structure and Stability

    PubMed Central

    Xu, Xiaojun; Chen, Shi-Jie

    2016-01-01

    RNA-RNA interactions are essential for genomic RNA dimerization, mRNA splicing, and many RNA-related gene expression and regulation processes. The prediction of the structure and folding stability of RNA-RNA complexes is a problem of significant biological importance and receives substantial interest in the biological community. The VfoldCPX server provides a new web interface to predict the two-dimensional (2D) structures of RNA-RNA complexes from the nucleotide sequences. The VfoldCPX server has several novel advantages including the ability to treat RNAs with tertiary contacts (crossing base pairs) such as loop-loop kissing interactions and the use of physical loop entropy parameters. Based on a partition function-based algorithm, the server enables prediction for structure with and without tertiary contacts. Furthermore, the server outputs a set of energetically stable structures, ranked by their stabilities. The results allow users to gain extensive physical insights into RNA-RNA interactions and their roles in RNA function. The web server is freely accessible at “http://rna.physics.missouri.edu/vfoldCPX”. PMID:27657918

  19. dsRNA with 5' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants.

    PubMed

    Fukunaga, Ryuya; Doudna, Jennifer A

    2009-03-04

    In plants, SGS3 and RNA-dependent RNA polymerase 6 (RDR6) are required to convert single- to double-stranded RNA (dsRNA) in the innate RNAi-based antiviral response and to produce both exogenous and endogenous short-interfering RNAs. Although a role for RDR6-catalysed RNA-dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA-binding protein with unexpected substrate selectivity favouring 5'-overhang-containing dsRNA. The conserved XS and coiled-coil domains are responsible for RNA-binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi-based host immune response, is a dsRNA-binding protein with similar specificity to SGS3. In competition-binding experiments, V2 outcompetes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5' overhang is required for subsequent steps in RNA-mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs.

  20. The Origins of the RNA World

    PubMed Central

    Robertson, Michael P; Joyce, Gerald F

    2012-01-01

    The general notion of an “RNA World” is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA and genetically encoded proteins were not involved as catalysts. There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life. However, arguments regarding whether life on Earth began with RNA are more tenuous. It might be imagined that all of the components of RNA were available in some prebiotic pool, and that these components assembled into replicating, evolving polynucleotides without the prior existence of any evolved macromolecules. A thorough consideration of this “RNA-first” view of the origin of life must reconcile concerns regarding the intractable mixtures that are obtained in experiments designed to simulate the chemistry of the primitive Earth. Perhaps these concerns will eventually be resolved, and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA World is far from being solved, and it is fruitful to consider the alternative possibility that RNA was preceded by some other replicating, evolving molecule, just as DNA and proteins were preceded by RNA. PMID:20739415

  1. MicroRNA biogenesis pathways in cancer

    PubMed Central

    Lin, Shuibin; Gregory, Richard I.

    2016-01-01

    MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual ‘oncomiRs’ or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer. PMID:25998712

  2. RNA interference spreading in C. elegans.

    PubMed

    May, Robin C; Plasterk, Ronald H A

    2005-01-01

    The phenomenon of RNA interference (RNAi) occurs in eukaryotic organisms from across the boundaries of taxonomic kingdoms. In all cases, the basic mechanism of RNAi appears to be conserved--an initial trigger [double-stranded RNA (dsRNA) containing perfect homology over at least 19-21/bp with an endogenous gene] is processed into short interfering RNA (siRNA) molecules and these siRNAs stimulate degradation of the homologous mRNA. In the vast majority of species, RNAi can only be initiated following the deliberate introduction of dsRNA into a cell by microinjection, electroporation, or transfection. However, in the nematode worm Caenorhabditis elegans, RNAi can be simply initiated by supplying dsRNA in the surrounding medium or in the diet. Following uptake, this dsRNA triggers a systemic effect, initiating RNAi against the corresponding target gene in tissues that are not in direct contact with the external milieu. This phenomenon of systemic RNAi, or RNAi spreading, is notably absent from mammalian species, a fact that is likely to prove a substantial barrier to the wider use of RNAi as a clinical therapy. An understanding of the mechanism of systemic RNAi is therefore of considerable importance, and several advances of the last few years have begun to shed light on this process. Here we review our current understanding of systemic RNAi in C. elegans and draw comparisons with systemic RNAi pathways in other organisms.

  3. The RNA World and its origins

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.

    1995-01-01

    The theory of the "RNA World" states that the first molecular systems to display the properties of self-replication and evolution were RNA molecules. The origin of life not only depended crucially upon this event, but RNA molecules can even be viewed as the first "living" things. In recent years this theory has gained ascendancy over competing ideas and is now largely accepted by biologists as the most satisfactory explanation for the origin of life. The reasons for this development will be reviewed and the problem of the origin of the first RNA molecules will be discussed.

  4. RNA-Seq Experiment and Data Analysis.

    PubMed

    Liang, Hanquan; Zeng, Erliang

    2016-01-01

    With the ability to obtain tens of millions of reads, high-throughput messenger RNA sequencing (RNA-Seq) data offers the possibility of estimating abundance of isoforms and finding novel transcripts. In this chapter, we describe a protocol to construct an RNA-Seq library for sequencing on Illumina NGS platforms, and a computational pipeline to perform RNA-Seq data analysis. The protocols described in this chapter can be applied to the analysis of differential gene expression in control versus 17β-estradiol treatment of in vivo or in vitro systems.

  5. A new way to see RNA.

    PubMed

    Keating, Kevin S; Humphris, Elisabeth L; Pyle, Anna Marie

    2011-11-01

    Unlike proteins, the RNA backbone has numerous degrees of freedom (eight, if one counts the sugar pucker), making RNA modeling, structure building and prediction a multidimensional problem of exceptionally high complexity. And yet RNA tertiary structures are not infinite in their structural morphology; rather, they are built from a limited set of discrete units. In order to reduce the dimensionality of the RNA backbone in a physically reasonable way, a shorthand notation was created that reduced the RNA backbone torsion angles to two (η and θ, analogous to φ and ψ in proteins). When these torsion angles are calculated for nucleotides in a crystallographic database and plotted against one another, one obtains a plot analogous to a Ramachandran plot (the η/θ plot), with highly populated and unpopulated regions. Nucleotides that occupy proximal positions on the plot have identical structures and are found in the same units of tertiary structure. In this review, we describe the statistical validation of the η/θ formalism and the exploration of features within the η/θ plot. We also describe the application of the η/θ formalism in RNA motif discovery, structural comparison, RNA structure building and tertiary structure prediction. More than a tool, however, the η/θ formalism has provided new insights into RNA structure itself, revealing its fundamental components and the factors underlying RNA architectural form.

  6. Molecular organization of Leishmania RNA virus 1.

    PubMed Central

    Stuart, K D; Weeks, R; Guilbride, L; Myler, P J

    1992-01-01

    The complete 5284-nucleotide sequence of the double-stranded RNA genome of Leishmania RNA virus 1 (LRV1) was determined and contains three open reading frames (ORFs) on the plus (+) (mRNA) strand. The predicted amino acid sequence of ORF3 has motifs characteristic of viral RNA-dependent RNA polymerases. ORF2, which may encode the major viral coat protein, overlaps ORF3 by 71 nucleotides, suggesting a +1 translational frameshift to produce a gag-pol type of fusion protein. Two alternative models for the frameshift are presented. The 5' splice leader sequence of kinetoplastid mRNAs is not in LRV1 RNA. This suggests that the 450-base region at the 5' end of the LRV1 (+)-strand, which contains ORF1 and is highly conserved among viral strains, does not encode protein but has a role in initiation of translation and/or RNA stability. The similarity of LRV1 genomic organization, replication cycle, and RNA-dependent RNA polymerase sequence to those of the yeast virus ScV L-A suggests a common ancestral origin. The possibility that LRV1 affects pathogenesis in leishmaniasis is intriguing. Images PMID:1382295

  7. The relationship between RNA catalytic processes

    NASA Astrophysics Data System (ADS)

    Cedergren, Robert; Lang, B. Franz; Gravel, Denis

    1988-09-01

    Proposals that an RNA-based genetic system preceeded DNA, stem from the ability of RNA to store genetic information and to promote simple catalysis. However, to be a valid basis for the RNA world, RNA catalysis must demonstrate or be related to intrinsic chemical properties which could have existed in primordial times. We analyze this question by first classifying RNA catalysis and related processes according to their mechanism. We define: (A) thedisjunct nucleophile class which leads to 5'-phosphates. These include Group I and II intron splicing, nuclear mRNA splicing and RNase P reactions. Although Group I introns and its excision mechanism is likely to have existed in primordial times, present-day examples have arisen independently in different phyla much more recently. Comparative methodology indicates that RNase P catalysis originated before the divergence of the major kingdoms. In addition, alldisjunct nucleophile reactions can be interrelated by a proposed mechanism involving a distant 2-OH nucleophile. (B) theconjunct nucleophile class leading to 3'-phosphates. This class is composed of self-cleaving RNAs found in plant viruses and the newt. We propose that tRNA splicing is related to this mechanism rather than the previous one. The presence of introns in tRNA genes of eukaryotes and archaebacteria supports the idea that tRNA splicing predates the divergence of these cell types.

  8. RNA Structure Determination Using SAXS Data

    PubMed Central

    Yang, Sichun; Parisien, Marc; Major, François; Roux, Benoît

    2011-01-01

    Exploiting the experimental information from small-angle x-ray solution scattering (SAXS) in conjunction with structure prediction algorithms can be advantageous in the case of ribonucleic acids (RNA), where global restraints on the 3D fold are often lacking. Traditional usage of SAXS data often starts by attempting to reconstruct the molecular shape ab initio, which is subsequently used to assess the quality of model Here, an alternative strategy is explored whereby the models from a very large decoy set are directly sorted according to their fit to the SAXS data is developed. For rapid computation of SAXS patterns, the method developed here makes use of a coarse-grained representation of RNA. It also accounts for the explicit treatment of the contribution to the scattering of water molecules and ions surrounding the RNA. The method, called Fast-SAXS-RNA, is first calibrated using a transfer RNA (tRNA-val) and then tested on the P4-P6 fragment of group I intron (P4-P6). Fast-SAXS-RNA is then used as a filter for decoy models generated by the MC-Fold and MC-Sym pipeline, a suite of RNA 3D all-atoms structure algorithms that encode and exploit RNA 3D architectural principles. The ability of Fast-SAXS-RNA to discriminate native folds is tested against three widely used RNA molecules in molecular modeling benchmarks: the tRNA, the P4-P6, and a synthetic hairpin suspected to assemble into a homodimer. For each molecule, a large pool of decoys are generated, scored, and ranked using Fast-SAXS-RNA. The method is able to identify low-RMSD models among top ranking structures, for both tRNA and P4-P6. For the hairpin, the approach correctly identifies the dimeric state as the solution structure over the monomeric state and alternative secondary structures. The method offers a powerful strategy for recognizing native RNA conformations as well as multimeric assemblies and alternative secondary structures, thus enabling high-throughput RNA structure determination using SAXS

  9. Continuous and Discontinuous RNA Synthesis in Coronaviruses.

    PubMed

    Sola, Isabel; Almazán, Fernando; Zúñiga, Sonia; Enjuanes, Luis

    2015-11-01

    Replication of the coronavirus genome requires continuous RNA synthesis, whereas transcription is a discontinuous process unique among RNA viruses. Transcription includes a template switch during the synthesis of subgenomic negative-strand RNAs to add a copy of the leader sequence. Coronavirus transcription is regulated by multiple factors, including the extent of base-pairing between transcription-regulating sequences of positive and negative polarity, viral and cell protein-RNA binding, and high-order RNA-RNA interactions. Coronavirus RNA synthesis is performed by a replication-transcription complex that includes viral and cell proteins that recognize cis-acting RNA elements mainly located in the highly structured 5' and 3' untranslated regions. In addition to many viral nonstructural proteins, the presence of cell nuclear proteins and the viral nucleocapsid protein increases virus amplification efficacy. Coronavirus RNA synthesis is connected with the formation of double-membrane vesicles and convoluted membranes. Coronaviruses encode proofreading machinery, unique in the RNA virus world, to ensure the maintenance of their large genome size.

  10. Large Variations in Bacterial Ribosomal RNA Genes

    PubMed Central

    Lim, Kyungtaek; Furuta, Yoshikazu; Kobayashi, Ichizo

    2012-01-01

    Ribosomal RNA (rRNA) genes, essential to all forms of life, have been viewed as highly conserved and evolutionarily stable, partly because very little is known about their natural variations. Here, we explored large-scale variations of rRNA genes through bioinformatic analyses of available complete bacterial genomic sequences with an emphasis on formation mechanisms and biological significance. Interestingly, we found bacterial genomes in which no 16S rRNA genes harbor the conserved core of the anti–Shine-Dalgarno sequence (5′-CCTCC-3′). This loss was accompanied by elimination of Shine-Dalgarno–like sequences upstream of their protein-coding genes. Those genomes belong to 1 or 2 of the following categories: primary symbionts, hemotropic Mycoplasma, and Flavobacteria. We also found many rearranged rRNA genes and reconstructed their history. Conjecturing the underlying mechanisms, such as inversion, partial duplication, transposon insertion, deletion, and substitution, we were able to infer their biological significance, such as co-orientation of rRNA transcription and chromosomal replication, lateral transfer of rRNA gene segments, and spread of rRNA genes with an apparent structural defect through gene conversion. These results open the way to understanding dynamic evolutionary changes of rRNA genes and the translational machinery. PMID:22446745

  11. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein.

    PubMed Central

    Minvielle-Sebastia, L; Winsor, B; Bonneaud, N; Lacroute, F

    1991-01-01

    In Saccharomyces cerevisiae, temperature-sensitive mutations in the genes RNA14 and RNA15 correlate with a reduction of mRNA stability and poly(A) tail length. Although mRNA transcription is not abolished in these mutants, the transcripts are rapidly deadenylated as in a strain carrying an RNA polymerase B(II) temperature-sensitive mutation. This suggests that the primary defect could be in the control of the poly(A) status of the mRNAs and that the fast decay rate may be due to the loss of this control. By complementation of their temperature-sensitive phenotype, we have cloned the wild-type genes. They are essential for cell viability and are unique in the haploid genome. The RNA14 gene, located on chromosome H, is transcribed as three mRNAs, one major and two minor, which are 2.2, 1.5, and 1.1 kb in length. The RNA15 gene gives rise to a single 1.2-kb transcript and maps to chromosome XVI. Sequence analysis indicates that RNA14 encodes a 636-amino-acid protein with a calculated molecular weight of 75,295. No homology was found between RNA14 and RNA15 or between RNA14 and other proteins contained in data banks. The RNA15 DNA sequence predicts a protein of 296 amino acids with a molecular weight of 32,770. Sequence comparison reveals an N-terminal putative RNA-binding domain in the RNA15-encoded protein, followed by a glutamine and asparagine stretch similar to the opa sequences. Both RNA14 and RNA15 wild-type genes, when cloned on a multicopy plasmid, are able to suppress the temperature-sensitive phenotype of strains bearing either the rna14 or the rna15 mutation, suggesting that the encoded proteins could interact with each other. Images PMID:1674817

  12. Mensaje para alumnos y padres

    NASA Video Gallery

    El astronauta de la NASA José Hernández alienta a los estudiantes a que sigan sus sueños. Hernández también habla acerca del papel que juegan los padres para ayudar a que sus hijos hagan realidad s...

  13. Extraction of high-quality RNA from human articular cartilage.

    PubMed

    Le Bleu, Heather K; Kamal, Fadia A; Kelly, Meghan; Ketz, John P; Zuscik, Michael J; Elbarbary, Reyad A

    2017-02-01

    Extracting high-quality RNA from articular cartilage is challenging due to low cellularity and high proteoglycan content. This problem hinders efficient application of RNA sequencing (RNA-seq) analysis in studying cartilage homeostasis. Here we developed a method that purifies high-quality RNA directly from cartilage. Our method optimized the collection and homogenization steps so as to minimize RNA degradation, and modified the conventional TRIzol protocol to enhance RNA purity. Cartilage RNA purified using our method has appropriate quality for RNA-seq experiments including an RNA integrity number of ∼8. Our method also proved efficient in extracting high-quality RNA from subchondral bone.

  14. Identification and characterization of two novel genomic RNA segments of fig mosaic virus, RNA5 and RNA6.

    PubMed

    Ishikawa, Kazuya; Maejima, Kensaku; Komatsu, Ken; Kitazawa, Yugo; Hashimoto, Masayoshi; Takata, Daisuke; Yamaji, Yasuyuki; Namba, Shigetou

    2012-07-01

    Fig mosaic virus (FMV), a negative-strand RNA virus, is recognized as a causal agent of fig mosaic disease. We performed RT-PCR for 14 FMV isolates collected from symptomatic fig plants in Japan and Serbia using primers corresponding to the conserved 13 nt stretches found at the termini of FMV genomic segments. The resulting simultaneous amplification of all FMV genomic segments yielded four previously identified segments of FMV and two novel segments. These novel FMV genomic RNA segments were found in each of the 14 FMV isolates analysed. In Northern blot studies, both the sense and antisense strands of these novel RNA molecules accumulated in FMV-infected fig leaves but not in uninfected fig leaves, confirming that they replicate as FMV genomic segments. Sequence analysis showed that the novel RNA segments are similar, in their structural organization and molecular evolutionary patterns, to those of known FMV genomic RNA segments. Our findings thus indicate that these newly discovered RNA segments are previously unidentified FMV genomic segments, which we have designated RNA5 and RNA6.

  15. siRNA and miRNA processing: new functions for Cajal bodies.

    PubMed

    Pontes, Olga; Pikaard, Craig S

    2008-04-01

    In diverse eukaryotes, micro-RNAs (miRNAs) and small interfering RNAs (siRNAs) regulate important processes that include mRNA inactivation, viral defense, chromatin modification, and transposon silencing. Recently, nucleolus-associated Cajal bodies in plants have been implicated as sites of siRNA and miRNA biogenesis, whereas in animals siRNA and miRNA dicing occurs in the cytoplasm. The plant nucleolus also contains proteins of the nonsense-mediated mRNA decay pathway that in animals are found associated with cytoplasmic processing bodies (P-bodies). P-bodies also function in the degradation of mRNAs subjected to miRNA and siRNA targeting. Collectively, these observations suggest interesting variations in the way siRNAs and miRNAs can accomplish their similar functions in plants and animals.

  16. Single-molecule tracking of mRNA exiting from RNA polymerase II.

    PubMed

    Andrecka, Joanna; Lewis, Robert; Brückner, Florian; Lehmann, Elisabeth; Cramer, Patrick; Michaelis, Jens

    2008-01-08

    Single-pair fluorescence resonance energy transfer was used to track RNA exiting from RNA polymerase II (Pol II) in elongation complexes. Measuring the distance between the RNA 5' end and three known locations within the elongation complex allows us determine its position by means of triangulation. RNA leaves the polymerase active center cleft via the previously proposed exit tunnel and then disengages from the enzyme surface. When the RNA reaches lengths of 26 and 29 nt, its 5' end associates with Pol II at the base of the dock domain. Because the initiation factor TFIIB binds to the dock domain and exit tunnel, exiting RNA may prevent TFIIB reassociation during elongation. RNA further extends toward the linker connecting to the polymerase C-terminal repeat domain (CTD), which binds the 5'-capping enzyme and other RNA processing factors.

  17. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis.

    PubMed

    Mohn, Fabio; Handler, Dominik; Brennecke, Julius

    2015-05-15

    In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3'-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3' and 5' ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3' end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5' and 3' ends.

  18. Evolution of catalytic RNA in the laboratory

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1992-01-01

    We are interested in the biochemistry of existing RNA enzymes and in the development of RNA enzymes with novel catalytic function. The focal point of our research program has been the design and operation of a laboratory system for the controlled evolution of catalytic RNA. This system serves as working model of RNA-based life and can be used to explore the catalytic potential of RNA. Evolution requires the integration of three chemical processes: amplification, mutation, and selection. Amplification results in additional copies of the genetic material. Mutation operates at the level of genotype to introduce variability, this variability in turn being expressed as a range of phenotypes. Selection operates at the level of phenotype to reduce variability by excluding those individuals that do not conform to the prevailing fitness criteria. These three processes must be linked so that only the selected individuals are amplified, subject to mutational error, to produce a progeny distribution of mutant individuals. We devised techniques for the amplification, mutation, and selection of catalytic RNA, all of which can be performed rapidly in vitro within a single reaction vessel. We integrated these techniques in such a way that they can be performed iteratively and routinely. This allowed us to conduct evolution experiments in response to artificially-imposed selection constraints. Our objective was to develop novel RNA enzymes by altering the selection constraints in a controlled manner. In this way we were able to expand the catalytic repertoire of RNA. Our long-range objective is to develop an RNA enzyme with RNA replicase activity. If such an enzyme had the ability to produce additional copies of itself, then RNA evolution would operate autonomously and the origin of life will have been realized in the laboratory.

  19. A strategy for developing a hammerhead ribozyme for selective RNA cleavage depending on substitutional RNA editing

    PubMed Central

    Fukuda, Masatora; Kurihara, Kei; Tanaka, Yasuyoshi; Deshimaru, Masanobu

    2012-01-01

    Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo. PMID:22798264

  20. RNA recognition by a human antibody against brain cytoplasmic 200 RNA.

    PubMed

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-06-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation.

  1. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    PubMed

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.

  2. Spectrophotometric assays for monitoring tRNA aminoacylation and aminoacyl-tRNA hydrolysis reactions.

    PubMed

    First, Eric A; Richardson, Charles J

    2017-01-15

    Aminoacyl-tRNA synthetases play a central role in protein synthesis, catalyzing the attachment of amino acids to their cognate tRNAs. Here, we describe a spectrophotometric assay for tyrosyl-tRNA synthetase in which the Tyr-tRNA product is cleaved, regenerating the tRNA substrate. As tRNA is the limiting substrate in the assay, recycling it substantially increases the sensitivity of the assay while simultaneously reducing its cost. The tRNA aminoacylation reaction is monitored spectrophotometrically by coupling the production of AMP to the conversion of NAD(+) to NADH. We have adapted the tyrosyl-tRNA synthetase assay to monitor: (1) aminoacylation of tRNA by l- or d-tyrosine, (2) cyclodipeptide formation by cyclodipeptide synthases, (3) hydrolysis of d-aminoacyl-tRNAs by d-tyrosyl-tRNA deacylase, and (4) post-transfer editing by aminoacyl-tRNA synthetases. All of these assays are continuous and homogenous, making them amenable for use in high-throughput screens of chemical libraries. In the case of the cyclodipeptide synthase, d-tyrosyl-tRNA deacylase, and post-transfer editing assays, the aminoacyl-tRNAs are generated in situ, avoiding the need to synthesize and purify aminoacyl-tRNA substrates prior to performing the assays. Lastly, we describe how the tyrosyl-tRNA synthetase assay can be adapted to monitor the activity of other aminoacyl-tRNA synthetases and how the approach to regenerating the tRNA substrate can be used to increase the sensitivity and decrease the cost of commercially available aminoacyl-tRNA synthetase assays.

  3. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.

    PubMed

    Miao, Zhichao; Adamiak, Ryszard W; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M; Chen, Shi-Jie; Cheng, Clarence; Chojnowski, Grzegorz; Chou, Fang-Chieh; Cordero, Pablo; Cruz, José Almeida; Ferré-D'Amaré, Adrian R; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V; Dunin-Horkawicz, Stanislaw; Kladwang, Wipapat; Krokhotin, Andrey; Lach, Grzegorz; Magnus, Marcin; Major, François; Mann, Thomas H; Masquida, Benoît; Matelska, Dorota; Meyer, Mélanie; Peselis, Alla; Popenda, Mariusz; Purzycka, Katarzyna J; Serganov, Alexander; Stasiewicz, Juliusz; Szachniuk, Marta; Tandon, Arpit; Tian, Siqi; Wang, Jian; Xiao, Yi; Xu, Xiaojun; Zhang, Jinwei; Zhao, Peinan; Zok, Tomasz; Westhof, Eric

    2015-06-01

    This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.

  4. The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.

    PubMed Central

    Sissler, M; Giegé, R; Florentz, C

    1998-01-01

    Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system. PMID:9622124

  5. BS-RNA: An efficient mapping and annotation tool for RNA bisulfite sequencing data.

    PubMed

    Liang, Fang; Hao, Lili; Wang, Jinyue; Shi, Shuo; Xiao, Jingfa; Li, Rujiao

    2016-12-01

    Cytosine methylation is one of the most important RNA epigenetic modifications. With the development of experimental technology, scientists attach more importance to RNA cytosine methylation and find bisulfite sequencing is an effective experimental method for RNA cytosine methylation study. However, there are only a few tools can directly deal with RNA bisulfite sequencing data efficiently. Herein, we developed a specialized tool BS-RNA, which can analyze cytosine methylation of RNA based on bisulfite sequencing data and support both paired-end and single-end sequencing reads from directional bisulfite libraries. For paired-end reads, simply removing the biased positions from the 5' end may result in "dovetailing" reads, where one or both reads seem to extend past the start of the mate read. BS-RNA could map "dovetailing" reads successfully. The annotation result of BS-RNA is exported in BED (.bed) format, including locations, sequence context types (CG/CHG/CHH, H=A,T, or C), reference sequencing depths, cytosine sequencing depths, and methylation levels of covered cytosine sites on both Watson and Crick strands. BS-RNA is an efficient, specialized and highly automated mapping and annotation tool for RNA bisulfite sequencing data. It performs better than the existing program in terms of accuracy and efficiency. BS-RNA is developed by Perl language and the source code of this tool is freely available from the website: http://bs-rna.big.ac.cn.

  6. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    PubMed

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation.

  7. From Protein-RNA Predictions toward a Peptide-RNA Code.

    PubMed

    Brannan, Kristopher W; Yeo, Gene W

    2016-11-03

    The RNA field is undergoing a renaissance, with a deluge of proteins being identified to bind RNA. Two reports now introduce proteome-wide approaches that identify the peptides that are crosslinked to RNA (Castello et al., 2016; He et al., 2016).

  8. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles.

    PubMed

    Haque, Farzin; Guo, Peixuan

    2015-01-01

    RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

  9. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  10. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  11. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing.

    PubMed

    Nguyen, Anh H; Lee, Jong Uk; Sim, Sang Jun

    2016-02-28

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ∼29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  12. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing

    PubMed Central

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-01-01

    ABSTRACT Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  13. RNA Bricks—a database of RNA 3D motifs and their interactions

    PubMed Central

    Chojnowski, Grzegorz; Waleń, Tomasz; Bujnicki, Janusz M.

    2014-01-01

    The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions. PMID:24220091

  14. RNA Quality Control as a Key to Suppressing RNA Silencing of Endogenous Genes in Plants.

    PubMed

    Liu, Lin; Chen, Xuemei

    2016-06-06

    RNA quality control of endogenous RNAs is an integral part of eukaryotic gene expression and often relies on exonucleolytic degradation to eliminate dysfunctional transcripts. In parallel, exogenous and selected endogenous RNAs are degraded through RNA silencing, which is a genome defense mechanism used by many eukaryotes. In plants, RNA silencing is triggered by the production of double-stranded RNAs (dsRNAs) by RNA-DEPENDENT RNA POLYMERASEs (RDRs) and proceeds through small interfering (si) RNA-directed, ARGONAUTE (AGO)-mediated cleavage of homologous transcripts. Many studies revealed that plants avert inappropriate posttranscriptional gene silencing of endogenous coding genes by using RNA surveillance mechanisms as a safeguard to protect their transcriptome profiles. The tug of war between RNA surveillance and RNA silencing ensures the appropriate partitioning of endogenous RNA substrates among these degradation pathways. Here we review recent advances on RNA quality control and its role in the suppression of RNA silencing at endogenous genes and discuss the mechanisms underlying the crosstalk among these pathways.

  15. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets.

  16. The ribosome triggers the stringent response by RelA via a highly distorted tRNA

    PubMed Central

    Agirrezabala, Xabier; Fernández, Israel S; Kelley, Ann C; Cartón, David Gil; Ramakrishnan, Venki; Valle, Mikel

    2013-01-01

    The bacterial stringent response links nutrient starvation with the transcriptional control of genes. This process is initiated by the stringent factor RelA, which senses the presence of deacylated tRNA in the ribosome as a symptom of amino-acid starvation to synthesize the alarmone (p)ppGpp. Here we report a cryo-EM study of RelA bound to ribosomes bearing cognate, deacylated tRNA in the A-site. The data show that RelA on the ribosome stabilizes an unusual distorted form of the tRNA, with the acceptor arm making contact with RelA and far from its normal location in the peptidyl transferase centre. PMID:23877429

  17. EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome.

    PubMed

    Zhang, Dejiu; Yan, Kaige; Liu, Guangqiao; Song, Guangtao; Luo, Jiejian; Shi, Yi; Cheng, Erchao; Wu, Shan; Jiang, Taijiao; Lou, Jizhong; Gao, Ning; Qin, Yan

    2016-02-01

    EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome.

  18. ACTH Action on Messenger RNA Stability Mechanisms

    PubMed Central

    Desroches-Castan, Agnès; Feige, Jean-Jacques; Cherradi, Nadia

    2017-01-01

    The regulation of mRNA stability has emerged as a critical control step in dynamic gene expression. This process occurs in response to modifications of the cellular environment, including hormonal variations, and regulates the expression of subsets of proteins whose levels need to be rapidly adjusted. Modulation of messenger RNA stability is usually mediated by stabilizing or destabilizing RNA-binding proteins (RNA-BP) that bind to the 3′-untranslated region regulatory motifs, such as AU-rich elements (AREs). Destabilizing ARE-binding proteins enhance the decay of their target transcripts by recruiting the mRNA decay machineries. Failure of such mechanisms, in particular misexpression of RNA-BP, has been linked to several human diseases. In the adrenal cortex, the expression and activity of mRNA stability regulatory proteins are still understudied. However, ACTH- or cAMP-elicited changes in the expression/phosphorylation status of the major mRNA-destabilizing protein TIS11b/BRF1 or in the subcellular localization of the stabilizing protein Human antigen R have been reported. They suggest that this level of regulation of gene expression is also important in endocrinology. PMID:28163695

  19. Automated modeling of RNA 3D structure.

    PubMed

    Rother, Kristian; Rother, Magdalena; Skiba, Pawel; Bujnicki, Janusz M

    2014-01-01

    This chapter gives an overview over the current methods for automated modeling of RNA structures, with emphasis on template-based methods. The currently used approaches to RNA modeling are presented with a side view on the protein world, where many similar ideas have been used. Two main programs for automated template-based modeling are presented: ModeRNA assembling structures from fragments and MacroMoleculeBuilder performing a simulation to satisfy spatial restraints. Both approaches have in common that they require an alignment of the target sequence to a known RNA structure that is used as a modeling template. As a way to find promising template structures and to align the target and template sequences, we propose a pipeline combining the ParAlign and Infernal programs on RNA family data from Rfam. We also briefly summarize template-free methods for RNA 3D structure prediction. Typically, RNA structures generated by automated modeling methods require local or global optimization. Thus, we also discuss methods that can be used for local or global refinement of RNA structures.

  20. The ribosome challenge to the RNA world.

    PubMed

    Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2015-04-01

    An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.

  1. The NIH Extracellular RNA Communication Consortium

    PubMed Central

    Ainsztein, Alexandra M.; Brooks, Philip J.; Dugan, Vivien G.; Ganguly, Aniruddha; Guo, Max; Howcroft, T. Kevin; Kelley, Christine A.; Kuo, Lillian S.; Labosky, Patricia A.; Lenzi, Rebecca; McKie, George A.; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S.; Srinivas, Pothur R.; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A.; Tucker, Jessica M.; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c) identifying exRNA biomarkers of disease, (d) demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e) developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators. PMID:26320938

  2. Changing genetic information through RNA editing

    NASA Technical Reports Server (NTRS)

    Maas, S.; Rich, A.

    2000-01-01

    RNA editing, the post-transcriptional alteration of a gene-encoded sequence, is a widespread phenomenon in eukaryotes. As a consequence of RNA editing, functionally distinct proteins can be produced from a single gene. The molecular mechanisms involved include single or multiple base insertions or deletions as well as base substitutions. In mammals, one type of substitutional RNA editing, characterized by site-specific base-modification, was shown to modulate important physiological processes. The underlying reaction mechanism of substitutional RNA editing involves hydrolytic deamination of cytosine or adenosine bases to uracil or inosine, respectively. Protein factors have been characterized that are able to induce RNA editing in vitro. A supergene family of RNA-dependent deaminases has emerged with the recent addition of adenosine deaminases specific for tRNA. Here we review the developments that have substantially increased our understanding of base-modification RNA editing over the past few years, with an emphasis on mechanistic differences, evolutionary aspects and the first insights into the regulation of editing activity.

  3. RNA Encapsidation and Packaging in the Phleboviruses

    PubMed Central

    Hornak, Katherine E.; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2016-01-01

    The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV), severe fever with thrombocytopenia syndrome virus (SFTSV), Uukuniemi virus (UUKV), and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA) are synthesized. The interaction between the vRNA and the viral nucleocapsid (N) protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP) architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses. PMID:27428993

  4. Geometric similarity between protein-RNA interfaces.

    PubMed

    Zhou, Peng; Zou, Jianwei; Tian, Feifei; Shang, Zhicai

    2009-12-01

    A new method is described to measure the geometric similarity between protein-RNA interfaces quantitatively. The method is based on a procedure that dissects the interface geometry in terms of the spatial relationships between individual amino acid nucleotide pairs. Using this technique, we performed an all-on-all comparison of 586 protein-RNA interfaces deposited in the current Protein Data Bank, as the result, an interface-interface similarity score matrix was obtained. Based upon this matrix, hierarchical clustering was carried out which yielded a complete clustering tree for the 586 protein-RNA interfaces. By investigating the organizing behavior of the clustering tree and the SCOP classification of protein partners in complexes, a geometrically nonredundant, diverse data set (representative data set) consisting of 45 distinct protein-RNA interfaces was extracted for the purpose of studying protein-RNA interactions, RNA regulations, and drug design. We classified protein-RNA interfaces into three types. In type I, the families and interface structural classes of the protein partners, as well as the interface geometries are all similar. In type II, the interface geometries and the interface structural classes are similar, whereas the protein families are different. In type III, only the interface geometries are similar but the protein families and the interface structural classes are distinct. Furthermore, we also show two new RNA recognition themes derived from the representative data set.

  5. Staufen-mediated mRNA decay

    PubMed Central

    Park, Eonyoung; Maquat, Lynne E.

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777

  6. RNA self-splicing and energy localization

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1991-02-01

    We establish a mechanism for energy localization in regions of the sugar-phosphate RNA backbone which leads to the formation of transesterification or hydrolysis hot spots. In particular, our results account for the site specificity of the covalent cyclization and cycle reopening in the catalytic intervening sequence (IVS) of a ribosomal RNA.

  7. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  8. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction

    PubMed Central

    Tu, Jianbo; Gaur, Uma; Mao, Xueping; Fan, Xiaolan; Li, Diyan; Li, Ying; Yang, Mingyao

    2016-01-01

    Dietary restriction (DR) extends lifespan in many species which is a well-known phenomenon. Long non-coding RNAs (lncRNAs) play an important role in regulation of cell senescence and important age-related signaling pathways. Here, we profiled the lncRNA and mRNA transcriptome of fruit flies at 7 day and 42 day during DR and fully-fed conditions, respectively. In general, 102 differentially expressed lncRNAs and 1406 differentially expressed coding genes were identified. Most informatively we found a large number of differentially expressed lncRNAs and their targets enriched in GO and KEGG analysis. We discovered some new aging related signaling pathways during DR, such as hippo signaling pathway-fly, phototransduction-fly and protein processing in endoplasmic reticulum etc. Novel lncRNAs XLOC_092363 and XLOC_166557 are found to be located in 10 kb upstream sequences of hairy and ems promoters, respectively. Furthermore, tissue specificity of some novel lncRNAs had been analyzed at 7 day of DR in fly head, gut and fat body. Also the silencing of lncRNA XLOC_076307 resulted in altered expression level of its targets including Gadd45 (involved in FoxO signaling pathway). Together, the results implicated many lncRNAs closely associated with dietary restriction, which could provide a resource for lncRNA in aging and age-related disease field. PMID:27687893

  9. Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein-RNA complex

    SciTech Connect

    Alayyoubi, Maher; Leser, George P.; Kors, Christopher A.; Lamb, Robert A.

    2015-05-20

    Parainfluenza virus 5 (PIV5) is a member of the Paramyxoviridae family of membrane-enveloped viruses with a negative-sense RNA genome that is packaged and protected by long filamentous nucleocapsid-helix structures (RNPs). These RNPs, consisting of ~2,600 protomers of nucleocapsid (N) protein, form the template for viral transcription and replication. We have determined the 3D X-ray crystal structure of the nucleoprotein (N)-RNA complex from PIV5 to 3.11-Å resolution. The structure reveals a 13-mer nucleocapsid ring whose diameter, cavity, and pitch/height dimensions agree with EM data from early studies on the Paramyxovirinae subfamily of native RNPs, indicating that it closely represents one-turn in the building block of the RNP helices. The PIV5-N nucleocapsid ring encapsidates a nuclease resistant 78-nt RNA strand in its positively charged groove formed between the N-terminal (NTD) and C-terminal (CTD) domains of its successive N protomers. Six nucleotides precisely are associated with each N protomer, with alternating three-base-in three-base-out conformation. The binding of six nucleotides per protomer is consistent with the "rule of six" that governs the genome packaging of the Paramyxovirinae subfamily of viruses. PIV5-N protomer subdomains are very similar in structure to the previously solved Nipah-N structure, but with a difference in the angle between NTD/CTD at the RNA hinge region. Based on the Nipah-N structure we modeled a PIV5-N open conformation in which the CTD rotates away from the RNA strand into the inner spacious nucleocapsid-ring cavity. This rotation would expose the RNA for the viral polymerase activity without major disruption of the nucleocapsid structure.

  10. Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein–RNA complex

    PubMed Central

    Alayyoubi, Maher; Leser, George P.; Kors, Christopher A.; Lamb, Robert A.

    2015-01-01

    Parainfluenza virus 5 (PIV5) is a member of the Paramyxoviridae family of membrane-enveloped viruses with a negative-sense RNA genome that is packaged and protected by long filamentous nucleocapsid-helix structures (RNPs). These RNPs, consisting of ∼2,600 protomers of nucleocapsid (N) protein, form the template for viral transcription and replication. We have determined the 3D X-ray crystal structure of the nucleoprotein (N)-RNA complex from PIV5 to 3.11-Å resolution. The structure reveals a 13-mer nucleocapsid ring whose diameter, cavity, and pitch/height dimensions agree with EM data from early studies on the Paramyxovirinae subfamily of native RNPs, indicating that it closely represents one-turn in the building block of the RNP helices. The PIV5-N nucleocapsid ring encapsidates a nuclease resistant 78-nt RNA strand in its positively charged groove formed between the N-terminal (NTD) and C-terminal (CTD) domains of its successive N protomers. Six nucleotides precisely are associated with each N protomer, with alternating three-base-in three-base-out conformation. The binding of six nucleotides per protomer is consistent with the “rule of six” that governs the genome packaging of the Paramyxovirinae subfamily of viruses. PIV5-N protomer subdomains are very similar in structure to the previously solved Nipah-N structure, but with a difference in the angle between NTD/CTD at the RNA hinge region. Based on the Nipah-N structure we modeled a PIV5-N open conformation in which the CTD rotates away from the RNA strand into the inner spacious nucleocapsid-ring cavity. This rotation would expose the RNA for the viral polymerase activity without major disruption of the nucleocapsid structure. PMID:25831513

  11. Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein–RNA complex

    DOE PAGES

    Alayyoubi, Maher; Leser, George P.; Kors, Christopher A.; ...

    2015-03-23

    Parainfluenza virus 5 (PIV5) is a member of the Paramyxoviridae family of membrane-enveloped viruses with a negative-sense RNA genome that is packaged and protected by long filamentous nucleocapsid-helix structures (RNPs). These RNPs, consisting of ~2,600 protomers of nucleocapsid (N) protein, form the template for viral transcription and replication. In this paper, we have determined the 3D X-ray crystal structure of the nucleoprotein (N)-RNA complex from PIV5 to 3.11-Å resolution. The structure reveals a 13-mer nucleocapsid ring whose diameter, cavity, and pitch/height dimensions agree with EM data from early studies on the Paramyxovirinae subfamily of native RNPs, indicating that it closelymore » represents one-turn in the building block of the RNP helices. The PIV5-N nucleocapsid ring encapsidates a nuclease resistant 78-nt RNA strand in its positively charged groove formed between the N-terminal (NTD) and C-terminal (CTD) domains of its successive N protomers. Six nucleotides precisely are associated with each N protomer, with alternating three-base-in three-base-out conformation. The binding of six nucleotides per protomer is consistent with the “rule of six” that governs the genome packaging of the Paramyxovirinae subfamily of viruses. PIV5-N protomer subdomains are very similar in structure to the previously solved Nipah-N structure, but with a difference in the angle between NTD/CTD at the RNA hinge region. Based on the Nipah-N structure we modeled a PIV5-N open conformation in which the CTD rotates away from the RNA strand into the inner spacious nucleocapsid-ring cavity. Finally, this rotation would expose the RNA for the viral polymerase activity without major disruption of the nucleocapsid structure.« less

  12. Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein–RNA complex

    SciTech Connect

    Alayyoubi, Maher; Leser, George P.; Kors, Christopher A.; Lamb, Robert A.

    2015-03-23

    Parainfluenza virus 5 (PIV5) is a member of the Paramyxoviridae family of membrane-enveloped viruses with a negative-sense RNA genome that is packaged and protected by long filamentous nucleocapsid-helix structures (RNPs). These RNPs, consisting of ~2,600 protomers of nucleocapsid (N) protein, form the template for viral transcription and replication. In this paper, we have determined the 3D X-ray crystal structure of the nucleoprotein (N)-RNA complex from PIV5 to 3.11-Å resolution. The structure reveals a 13-mer nucleocapsid ring whose diameter, cavity, and pitch/height dimensions agree with EM data from early studies on the Paramyxovirinae subfamily of native RNPs, indicating that it closely represents one-turn in the building block of the RNP helices. The PIV5-N nucleocapsid ring encapsidates a nuclease resistant 78-nt RNA strand in its positively charged groove formed between the N-terminal (NTD) and C-terminal (CTD) domains of its successive N protomers. Six nucleotides precisely are associated with each N protomer, with alternating three-base-in three-base-out conformation. The binding of six nucleotides per protomer is consistent with the “rule of six” that governs the genome packaging of the Paramyxovirinae subfamily of viruses. PIV5-N protomer subdomains are very similar in structure to the previously solved Nipah-N structure, but with a difference in the angle between NTD/CTD at the RNA hinge region. Based on the Nipah-N structure we modeled a PIV5-N open conformation in which the CTD rotates away from the RNA strand into the inner spacious nucleocapsid-ring cavity. Finally, this rotation would expose the RNA for the viral polymerase activity without major disruption of the nucleocapsid structure.

  13. Complaints against an EMS system.

    PubMed

    Colwell, Christopher B; Pons, Peter T; Pi, Randy

    2003-11-01

    Complaints against Emergency Medical Services (EMS) agencies represent a concerning and potentially time-consuming problem for all involved in the delivery of prehospital emergency medical care. The objective of this study was to identify the source of complaints against an EMS system to help focus quality and performance improvement and customer service efforts. We conducted a retrospective review of complaints filed against a busy urban EMS agency over a 6-year period. All complaints were included, totaled by season and by year, and categorized by originator and nature of the complaint. A total of 286 complaints were registered during the 6-year period, with an average of 48 per year and 9.3 per 10,000 responses. The most common originators of complaints were patients (53%) followed by medical personnel (19%) and family members or friends (12%). Rude behavior accounted for 23% of the complaints registered, followed by technical skills (20%), transport problems (18%), and loss of belongings (13%). The identification of areas of dissatisfaction will allow focused quality and performance improvement programs directed at customer service and risk management.

  14. Coenzymes, viruses and the RNA world.

    PubMed

    Reyes-Prieto, Fabián; Hernández-Morales, Ricardo; Jácome, Rodrigo; Becerra, Arturo; Lazcano, Antonio

    2012-07-01

    The results of a detailed bioinformatic search for ribonucleotidyl coenzyme biosynthetic sequences in DNA- and RNA viral genomes are presented. No RNA viral genome sequence available as of April 2011 appears to encode for sequences involved in coenzyme biosynthesis. In both single- and double-stranded DNA viruses a diverse array of coenzyme biosynthetic genes has been identified, but none of the viral genomes examined here encodes for a complete pathway. Although our conclusions may be constrained by the unexplored diversity of viral genomes and the biases in the construction of viral genome databases, our results do not support the possibility that RNA viruses are direct holdovers from an ancient RNA/protein world. Extrapolation of our results to evolutionary epochs prior to the emergence of DNA genomes suggest that during those early stages living entities may have depended on discontinuous genetic systems consisting of multiple small-size RNA sequences.

  15. Evidence for RNA template-directed elongation

    NASA Astrophysics Data System (ADS)

    Kakimoto, Y.; Fujinuma, A.; Sakamoto, T.; Kikuchi, Y.; Umekage, S.

    2015-02-01

    In vitro cryptic transcription product is often observed when using T7 RNA polymerase. We obtained a ca. 35 mer of cryptic RNA by-product, which was originally designed to be 23 mer by in vitro run-off transcription. Biochemical research and structural analysis indicated that the cryptic by-product was synthesized through the process of aberrant extension by the T7 RNA polymerase. This extension could have occurred through two pathways. One pathway could have been an aberrant termination of transcription, which met a conventional prolonged extension without precise transcription termination, and the other could have been a re-extension of nascent RNA by binding with T7 RNA polymerase.

  16. Genome recoding by tRNA modifications

    PubMed Central

    Tuorto, Francesca

    2016-01-01

    RNA modifications are emerging as an additional regulatory layer on top of the primary RNA sequence. These modifications are particularly enriched in tRNAs where they can regulate not only global protein translation, but also protein translation at the codon level. Modifications located in or in the vicinity of tRNA anticodons are highly conserved in eukaryotes and have been identified as potential regulators of mRNA decoding. Recent studies have provided novel insights into how these modifications orchestrate the speed and fidelity of translation to ensure proper protein homeostasis. This review highlights the prominent modifications in the tRNA anticodon loop: queuosine, inosine, 5-methoxycarbonylmethyl-2-thiouridine, wybutosine, threonyl–carbamoyl–adenosine and 5-methylcytosine. We discuss the functional relevance of these modifications in protein translation and their emerging role in eukaryotic genome recoding during cellular adaptation and disease. PMID:27974624

  17. Forms and Functions of Telomerase RNA

    NASA Astrophysics Data System (ADS)

    Collins, Kathleen

    Telomerase adds single-stranded telomeric DNA repeats to chromosome ends. Unlike other polymerases involved in genome replication, telomerase synthe¬sizes DNA without use of a DNA template. Instead, the enzyme active site copies a template carried within the integral RNA subunit of the telomerase ribonucleo-protein (RNP) complex. In addition to providing a template, telomerase RNA has non-template motifs with critical functions in the catalytic cycle of repeat synthesis. In its complexity of structure and function, telomerase RNA resembles the non-coding RNAs of RNP machines like the ribosome and spliceosome that evolved from catalytic RNAs of the RNA World. However, unlike these RNPs, telomerase evolved its RNP identity after advent of the Protein World. Insights about telomer-ase have broad significance for understanding non-coding RNA biology as well as chromosome end maintenance and human disease.

  18. MicroRNA profiling: approaches and considerations

    PubMed Central

    Pritchard, Colin C.; Cheng, Heather H.; Tewari, Muneesh

    2015-01-01

    MicroRNAs (miRNAs) are small RNAs (~22 nt long) that post-transcriptionally regulate the expression of thousands of genes in a broad range of organisms, in both normal physiologic and disease contexts. MiRNA expression profiling is gaining popularity because miRNAs, as key regulators in gene expression networks, can influence many biological processes and have also shown promise as biomarkers for disease. Technological advances have enabled the development of various platforms for miRNA profiling, and an understanding of the strengths and pitfalls of different approaches can aid in the effective use of miRNA profiling for diverse applications. We review here the major considerations for carrying out and interpreting results of miRNA profiling studies, as well as current and emerging applications of miRNA profiling. PMID:22510765

  19. Molecular scissors: RNA enzymes go commercial

    SciTech Connect

    Gibbons, A.

    1991-02-01

    When Thomas Cech of the University of Colorado discovered in 1982 that RNA can act as an enzyme, catalyzing specific biological reactions, the result surprised molecular biologists. Only proteins, they thought, could act as enzymes. The work not only led to a Nobel Prize for Cech, it prompted prophecies of a new kind of genetic engineering - one based on RNA instead of the conventional DNA. Foreign governments launched research efforts, and researchers scrambled to file patents. The stakes were so high that American and Australian researchers became embroiled in a dispute over patent rights for catalytic RNA. Last week the US Patent Office awarded Cech and the University of Colorado an unusually broad patent for the use and synthesis of enzymatic RNA - also known as ribozymes. The significance of the patent stems from Cech's unexpected observation that preribosomal RNA can cut and splice itself, removing sequences not needed for biological function.

  20. Aging - RNA in Development and Disease

    PubMed Central

    Cookson, Mark R

    2011-01-01

    Given that RNA is involved in virtually all biological processes, it is perhaps not surprising that several RNA binding proteins are associated with aging and with different age related disorders. Other chapters in this volume will discuss some specific examples of diseases where RNA plays a role that are also associated with aging, such as cancer and inflammation, so here I will discuss some general aspects of how RNA changes with the aging process. I will also discuss some specific examples of RNA binding proteins that are associated with age-dependent neurological diseases as these provide an interesting framework to examine how lifetime mutations might lead to a late onset disease, although the answers to these questions are still not well understood. PMID:21898829

  1. Plant RNA silencing in viral defence.

    PubMed

    Pantaleo, Vitantonio

    2011-01-01

    RNA silencing is described in plants and insects as a defence mechanism against foreign nucleic acids, such as invading viruses. The RNA silencing-based antiviral defence involves the production of virus-derived small interfering RNAs and their association to effector proteins, which together drive the sequence specific inactivation of viruses. The entire process of antiviral defence 'borrows' several plant factors involved in other specialized RNA silencing endogenous pathways. Different viruses use variable strategies to infect different host plants, which render the antiviral RNA silencing a complex phenomenon far to be completely clarified. This chapter reports current advances in understanding the main steps of the plant's RNA-silencing response to viral invasion and discusses some of the key questions still to be answered.

  2. Neurodegeneration and RNA-binding proteins.

    PubMed

    De Conti, Laura; Baralle, Marco; Buratti, Emanuele

    2017-03-01

    In the eukaryotic nucleus, RNA-binding proteins (RBPs) play a very important role in the life cycle of both coding and noncoding RNAs. As soon as they are transcribed, in fact, all RNA molecules within a cell are bound by distinct sets of RBPs that have the task of regulating its correct processing, transport, stability, and function/translation up to its final degradation. These tasks are particularly important in cells that have a complex RNA metabolism, such as neurons. Not surprisingly, therefore, recent findings have shown that the misregulation of genes involved in RNA metabolism or the autophagy/proteasome pathway plays an important role in the onset and progression of several neurodegenerative diseases. In this article, we aim to review the recent advances that link neurodegenerative processes and RBP proteins. WIREs RNA 2017, 8:e1394. doi: 10.1002/wrna.1394 For further resources related to this article, please visit the WIREs website.

  3. Origins and evolution of eukaryotic RNA interference

    PubMed Central

    Shabalina, Svetlana A.; Koonin, Eugene V.

    2009-01-01

    Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have a RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral proteins of archaeal, bacterial and phage origins that are involved in DNA repair and RNA-processing pathways. PMID:18715673

  4. Understanding splicing regulation through RNA splicing maps.

    PubMed

    Witten, Joshua T; Ule, Jernej

    2011-03-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein-RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation.

  5. Building programmable jigsaw puzzles with RNA.

    PubMed

    Chworos, Arkadiusz; Severcan, Isil; Koyfman, Alexey Y; Weinkam, Patrick; Oroudjev, Emin; Hansma, Helen G; Jaeger, Luc

    2004-12-17

    One challenge in supramolecular chemistry is the design of versatile, self-assembling building blocks to attain total control of arrangement of matter at a molecular level. We have achieved reliable prediction and design of the three-dimensional structure of artificial RNA building blocks to generate molecular jigsaw puzzle units called tectosquares. They can be programmed with control over their geometry, topology, directionality, and addressability to algorithmically self-assemble into a variety of complex nanoscopic fabrics with predefined periodic and aperiodic patterns and finite dimensions. This work emphasizes the modular and hierarchical characteristics of RNA by showing that small RNA structural motifs can code the precise topology of large molecular architectures. It demonstrates that fully addressable materials based on RNA can be synthesized and provides insights into self-assembly processes involving large populations of RNA molecules.

  6. Long noncoding RNA in hematopoiesis and immunity.

    PubMed

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases.

  7. Oomycete pathogens encode RNA silencing suppressors.

    PubMed

    Qiao, Yongli; Liu, Lin; Xiong, Qin; Flores, Cristina; Wong, James; Shi, Jinxia; Wang, Xianbing; Liu, Xigang; Xiang, Qijun; Jiang, Shushu; Zhang, Fuchun; Wang, Yuanchao; Judelson, Howard S; Chen, Xuemei; Ma, Wenbo

    2013-03-01

    Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.

  8. RNA-splicing endonuclease structure and function.

    PubMed

    Calvin, K; Li, H

    2008-04-01

    The RNA-splicing endonuclease is an evolutionarily conserved enzyme responsible for the excision of introns from nuclear transfer RNA (tRNA) and all archaeal RNAs. Since its first identification from yeast in the late 1970s, significant progress has been made toward understanding the biochemical mechanisms of this enzyme. Four families of the splicing endonucleases possessing the same active sites and overall architecture but with different subunit compositions have been identified. Two related consensus structures of the precursor RNA splice sites and the critical elements required for intron excision have been established. More recently, a glimpse was obtained of the structural mechanism by which the endonuclease recognizes the consensus RNA structures and cleaves at the splice sites. This review summarizes these findings and discusses their implications in the evolution of intron removal processes.

  9. RNA editing in human cancer: review.

    PubMed

    Skarda, Jozef; Amariglio, Ninette; Rechavi, Gideon

    2009-08-01

    In eukaryotes mRNA transcripts are extensively processed by different post-transcriptional events such as alternative splicing and RNA editing in order to generate many different mRNAs from the same gene, increasing the transcriptome and then the proteome diversity. The most frequent RNA editing mechanism in mammals involves the conversion of specific adenosines into inosines by the ADAR family of enzymes. This editing event can alter the sequence and the secondary structure of RNA molecules, with consequences for final proteins and regulatory RNAs. Alteration in RNA editing has been connected to tumor progression and many other important human diseases. Analysis of many editing sites in various cancer types is expected to provide new diagnostic and prognostic markers and might contribute to early detection of cancer, the monitoring of response to therapy, and to the detection of minimal residual disease.

  10. Taxas de eventos para as fontes astrofísicas do detector Mario Schenberg

    NASA Astrophysics Data System (ADS)

    Castro, C. S.; Araujo, J. C. N.; Miranda, O. D.; Aguiar, O. D.

    2003-08-01

    O detector de ondas gravitacionais Mario Schenberg será sensível a sinais que cheguem à Terra com amplitude h~10-21 e dentro da faixa em frequências que varia de 3,0 a 3,4 kHz. As principais fontes astrofísicas em condições de gerar um sinal detectável pela antena Schenberg são: colapsos estelares que produzam eventos do tipo supernova; instabilidades hidrodinâmicas em estrelas de nêutrons; excitação dos modos fluído (modos f) de estrelas de nêutrons; excitação dos primeiros modos quadrupolares de buracos negros com massa ~ 3,8 M¤; coalescências de estrelas de nêutrons e buracos negros em sistemas binários e, ainda, espiralações de mini-buracos negros. Neste trabalho nós determinamos as taxas de eventos para o Schenberg associadas a dois tipos de fontes: através da de-excitação dos modos f de estrelas de nêutrons e através da coalescência de mini-buracos negros de 0,5 M¤ (que atualmente têm sido colocados como possíveis candidatos a objetos massivos do halo Galáctico). Nós mostramos que esses tipos de fontes poderão produzir sinais em ondas gravitacionais com uma taxa em torno de um evento por ano dentro da banda do Schenberg.

  11. Four RNA families with functional transient structures

    PubMed Central

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM

  12. Four RNA families with functional transient structures.

    PubMed

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All

  13. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression

    PubMed Central

    Guo, Li; Zhang, Qiang; Ma, Xiao; Wang, Jun; Liang, Tingming

    2017-01-01

    Recent studies suggest that mRNAs may be differentially expressed between males and females. This study aimed to perform expression analysis of mRNA and its main regulatory molecule, microRNA (miRNA), to discuss the potential sex-specific expression patterns using abnormal expression profiles from The Cancer Genome Atlas database. Generally, deregulated miRNAs and mRNAs had consistent expression between males and females, but some miRNAs may be oppositely expressed in specific diseases: up-regulated in one group and down-regulated in another. Studies of miRNA gene families and clusters further confirmed that these sequence or location related miRNAs might have opposing expression between sexes. The specific miRNA might have greater expression divergence across different groups, suggesting flexible expression across different individuals, especially in tumor samples. The typical analysis regardless of the sex will ignore or balance these sex-specific deregulated miRNAs. Compared with flexible miRNAs, their targets of mRNAs showed relative stable expression between males and females. These relevant results provide new insights into miRNA-mRNA interaction and sex difference. PMID:28045090

  14. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine.

    PubMed

    Delatte, Benjamin; Wang, Fei; Ngoc, Long Vo; Collignon, Evelyne; Bonvin, Elise; Deplus, Rachel; Calonne, Emilie; Hassabi, Bouchra; Putmans, Pascale; Awe, Stephan; Wetzel, Collin; Kreher, Judith; Soin, Romuald; Creppe, Catherine; Limbach, Patrick A; Gueydan, Cyril; Kruys, Véronique; Brehm, Alexander; Minakhina, Svetlana; Defrance, Matthieu; Steward, Ruth; Fuks, François

    2016-01-15

    Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.

  15. RNA editing and drug discovery for cancer therapy.

    PubMed

    Huang, Wei-Hsuan; Tseng, Chao-Neng; Tang, Jen-Yang; Yang, Cheng-Hong; Liang, Shih-Shin; Chang, Hsueh-Wei

    2013-01-01

    RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  16. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    PubMed

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  17. Base de linhas moleculares para síntese espectral estelar

    NASA Astrophysics Data System (ADS)

    Milone, A.; Sanzovo, G.

    2003-08-01

    A análise das abundâncias quí micas fotosféricas em estrelas do tipo solar ou tardia, através do cálculo teórico de seus espectros, emprega a espectroscopia de alta resolução e necessita de uma base representativa de linhas atômicas e moleculares com suas respectivas constantes bem determinadas. Nesse trabalho, utilizamos como ponto de partida as extensas listas de linhas espectrais de sistemas eletrônicos de algumas moléculas diatômicas compiladas por Kurucz para a construção de uma base de linhas moleculares para a sí ntese espectral estelar. Revisamos as determinações dos fatores rotacionais de Honl-London das forças de oscilador das linhas moleculares, para cada banda vibracional de alguns sistemas eletrônicos, seguindo a regra usual de normalização. Usamos as forças de oscilador eletrônicas da literatura. Os fatores vibracionais de Franck-Condon de cada banda foram especialmente recalculados empregando-se novas constantes moleculares. Reproduzimos, com êxito, as absorções espectrais de determinadas bandas eletrônicas-vibracionais das espécies moleculares C12C12, C12N14 e Mg24H em espectros de estrelas de referência como o Sol e Arcturus.

  18. Cryo-EM study of start codon selection during archaeal translation initiation

    PubMed Central

    Coureux, Pierre-Damien; Lazennec-Schurdevin, Christine; Monestier, Auriane; Larquet, Eric; Cladière, Lionel; Klaholz, Bruno P.; Schmitt, Emmanuelle; Mechulam, Yves

    2016-01-01

    Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAiMet) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2. PMID:27819266

  19. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase.

    PubMed

    Nohales, María-Ángeles; Flores, Ricardo; Daròs, José-Antonio

    2012-08-21

    Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5'-phosphomonoester and 3'-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.

  20. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation.

    PubMed

    Popow, Johannes; Alleaume, Anne-Marie; Curk, Tomaz; Schwarzl, Thomas; Sauer, Sven; Hentze, Matthias W

    2015-11-01

    Mitochondrial RNA processing is an essential step for the synthesis of the components of the electron transport chain in all eukaryotic organisms, yet several aspects of mitochondrial RNA biogenesis and regulation are not sufficiently understood. RNA interactome capture identified several disease-relevant RNA-binding proteins (RBPs) with noncanonical RNA-binding architectures, including all six members of the FASTK (FAS-activated serine/threonine kinase) family of proteins. A mutation within one of these newly assigned FASTK RBPs, FASTKD2, causes a rare form of Mendelian mitochondrial encephalomyopathy. To investigate whether RNA binding of FASTKD2 contributes to the disease phenotype, we identified the RNA targets of FASTKD2 by iCLIP. FASTKD2 interacts with a defined set of mitochondrial transcripts including 16S ribosomal RNA (RNR2) and NADH dehydrogenase subunit 6 (ND6) messenger RNA. CRISPR-mediated deletion of FASTKD2 leads to aberrant processing and expression of RNR2 and ND6 mRNA that encodes a subunit of the respiratory complex I. Metabolic phenotyping of FASTKD2-deficient cells reveals impaired cellular respiration with reduced activities of all respiratory complexes. This work identifies key aspects of the molecular network of a previously uncharacterized, disease-relevant RNA-binding protein, FASTKD2, by a combination of genomic, molecular, and metabolic analyses.

  1. miRNA Digger: a comprehensive pipeline for genome-wide novel miRNA mining.

    PubMed

    Yu, Lan; Shao, Chaogang; Ye, Xinghuo; Meng, Yijun; Zhou, Yincong; Chen, Ming

    2016-01-06

    MicroRNAs (miRNAs) are important regulators of gene expression. The recent advances in high-throughput sequencing (HTS) technique have greatly facilitated large-scale detection of the miRNAs. However, thoroughly discovery of novel miRNAs from the available HTS data sets remains a major challenge. In this study, we observed that Dicer-mediated cleavage sites for the processing of the miRNA precursors could be mapped by using degradome sequencing data in both animals and plants. In this regard, a novel tool, miRNA Digger, was developed for systematical discovery of miRNA candidates through genome-wide screening of cleavage signals based on degradome sequencing data. To test its sensitivity and reliability, miRNA Digger was applied to discover miRNAs from four organs of Arabidopsis. The results revealed that a majority of already known mature miRNAs along with their miRNA*s expressed in these four organs were successfully recovered. Notably, a total of 30 novel miRNA-miRNA* pairs that have not been registered in miRBase were discovered by miRNA Digger. After target prediction and degradome sequencing data-based validation, eleven miRNA-target interactions involving six of the novel miRNAs were identified. Taken together, miRNA Digger could be applied for sensitive detection of novel miRNAs and it could be freely downloaded from http://www.bioinfolab.cn/miRNA_Digger/index.html.

  2. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi.

    PubMed

    Colmenares, Serafin U; Buker, Shane M; Buhler, Marc; Dlakić, Mensur; Moazed, Danesh

    2007-08-03

    The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.

  3. Conformational selection and induced fit for RNA polymerase and RNA/DNA hybrid backtracked recognition

    PubMed Central

    Wu, Jian; Ye, Wei; Yang, Jingxu; Chen, Hai-Feng

    2015-01-01

    RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD) simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15, and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS) P-test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein. PMID:26594643

  4. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155

    PubMed Central

    Chung, Kwan-Ho; Hart, Christopher C.; Al-Bassam, Sarmad; Avery, Adam; Taylor, Jennifer; Patel, Paresh D.; Vojtek, Anne B.; Turner, David L.

    2006-01-01

    Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem–loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications. PMID:16614444

  5. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency

    PubMed Central

    Chen, Cheng; Zhu, Changhong; Huang, Jian; Zhao, Xian; Deng, Rong; Zhang, Hailong; Dou, Jinzhuo; Chen, Qin; Xu, Ming; Yuan, Haihua; Wang, Yanli; Yu, Jianxiu

    2015-01-01

    Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K48-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. PMID:26582366

  6. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis.

    PubMed

    Suzuki, Hiroshi I; Young, Richard A; Sharp, Phillip A

    2017-03-09

    Super-enhancers are an emerging subclass of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here, we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and an unrecognized higher-order property of super-enhancers in RNA processing beyond transcription.

  7. MicroRNA expression analysis using the Affymetrix Platform.

    PubMed

    Dee, Suzanne; Getts, Robert C

    2012-01-01

    Microarrays have been used extensively for messenger RNA expression monitoring. Recently, microarrays have been designed to interrogate expression levels of noncoding RNAs. Here, we describe methods for RNA labeling and the use of a miRNA array to identify and measure microRNA present in RNA samples.

  8. RNA Synthesis by in Vitro Selected Ribozymes for Recreating an RNA World

    PubMed Central

    Martin, Lyssa L.; Unrau, Peter J.; Müller, Ulrich F.

    2015-01-01

    The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory. PMID:25610978

  9. Influenza virion RNA-dependent RNA polymerase: stimulation by guanosine and related compounds.

    PubMed Central

    McGeoch, D; Kitron, N

    1975-01-01

    The activity of RNA-dependent RNA polymerase of several influenza viruses is stimulated by guanosine. Depending upon the virus strain used, the stimulation of initial reaction rate is up to 10-fold. 5'-GMP, 3',5'-cyclic GMP, and 5'-GDP show lesser stimulation effects. No other nucleosides of 5'-NMPs stimulate, but the dinucleoside monophosphates GpG and GpC show large stimulations. We present evidence that the stimulation represents preferential initiation of genome complementary RNA chains with guanosine: (i) [3-H] guanosine is incorporated specifically at the 5'terminus of RNA in polymerase reaction mixes in vitro. (ii) This incorporation reaction has several properties similar to those of the virion polymerase elongation reaction. (iii) RNA made in the stimulated reaction behaves as complementary RNA in annealing kinetic studies, as does RNA labeled with [3-H]guanosine. PMID:163915

  10. Biochemical characterization of G4 quadruplex telomerase RNA unwinding by the RNA helicase RHAU.

    PubMed

    Booy, Evan P; McRae, Ewan K S; McKenna, Sean A

    2015-01-01

    G4 quadruplexes are stable secondary structures prevalent in DNA and RNA that exhibit diverse regulatory functions. Herein, we describe an in vitro technique using the purified RNA helicase RHAU to unwind a G4 quadruplex identified near the 5' end of the human telomerase RNA (hTR). A synthetic RNA corresponding to the quadruplex forming region of hTR (hTR10-43), as well as a predicted complementary strand (25P1), are combined in a reaction containing the purified helicase and ATP. Reaction products and appropriate controls are resolved by native gel electrophoresis. Gels can be stained using a combination of total RNA and quadruplex-specific dyes to observe the expected quadruplex to duplex conversion. This straightforward method can be extended to study structural changes in other inter- or intramolecular quadruplex containing DNA/RNA molecules with the RHAU helicase or other RNA/DNA remodeling enzymes.

  11. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  12. Inducible Control of mRNA transport using reprogrammable RNA-binding proteins.

    PubMed

    Abil, Zhanar; Gumy, Laura F; Zhao, Huimin; Hoogenraad, Casper C

    2017-03-06

    Localization of mRNA is important in a number of cellular processes such as embryogenesis, cellular motility, polarity, and a variety of neurological processes. A synthetic device that controls cellular mRNA localization would facilitate investigations on the significance of mRNA localization in cellular function and allow an additional level of controlling gene expression. In this work, we developed the PUF (Puilio and FBF homology domain) -assisted Localization of RNA (PULR) system, which utilizes a eukaryotic cell's cytoskeletal transport machinery to re-position mRNA within a cell. Depending on the cellular motor used, we show ligand-dependent transport of mRNA towards either pole of the microtubular network of cultured cells. In addition, implementation of the re-programmable PUF domain allowed the transport of untagged endogenous mRNA in primary neurons.

  13. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    PubMed Central

    Ludwig, Nicole; Werner, Tamara V.; Backes, Christina; Trampert, Patrick; Gessler, Manfred; Keller, Andreas; Lenhof, Hans-Peter; Graf, Norbert; Meese, Eckart

    2016-01-01

    Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT. PMID:27043538

  14. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.

    PubMed

    Shanmugam, Raghuvaran; Aklujkar, Muktak; Schäfer, Matthias; Reinhardt, Richard; Nickel, Olaf; Reuter, Gunter; Lovley, Derek R; Ehrenhofer-Murray, Ann; Nellen, Wolfgang; Ankri, Serge; Helm, Mark; Jurkowski, Tomasz P; Jeltsch, Albert

    2014-06-01

    Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.

  15. Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator.

    PubMed

    Sasano, Yu; Kariya, Takahiro; Usugi, Shogo; Sugiyama, Minetaka; Harashima, Satoshi

    2017-12-01

    As yeast is commonly used for RNA production, it is industrially important to breed strains with high RNA contents. The upstream activating factor (UAF) plays an important role in transcription of ribosomal RNA (rRNA), a major constituent of intracellular RNA species. Here, we targeted the essential rRNA transcription regulator Rrn5 of Saccharomyces cerevisiae, a component of the UAF complex, and disrupted the genomic RRN5 gene using a helper plasmid carrying an RRN5 gene. Then we isolated nine suppressor mutants (Sup mutants) of RRN5 gene disruption, causing deficiency in rRNA transcription. The Sup mutants had RNA contents of approximately 40% of the wild type level and expansion of rDNA repeats to ca. 400-700 copies. Reintroduction of a functional RRN5 gene into Sup mutants caused a reduction in the number of rDNA repeats to close to the wild type level but did not change RNA content. However, we found that reintroduction of RRN5 into the Sup16 mutant (in which the FOB1 gene encoding the rDNA replication fork barrier site binding protein was disrupted) resulted in a significant increase (17%) in RNA content compared with wild type, although the rDNA repeat copy number was almost identical to the wild type strain. In this case, upregulated transcription of non-transcribed spacers (NTS) occurred, especially in the NTS2 region; this was likely mediated by RNA polymerase II and accounted for the increased RNA content. Thus, we propose a novel breeding strategy for developing high RNA content yeast by harnessing the essential rRNA transcription regulator.

  16. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  17. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.

    PubMed

    Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F

    2010-04-08

    RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.

  18. Artificial small RNA for sequence specific cleavage of target RNA through RNase III endonuclease Dicer

    PubMed Central

    Liu, Yali; Liu, Li; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Chen, Mingwei; Li, Jianfa; Cai, Zhiming; Huang, Weiren; Zhang, Yong

    2016-01-01

    CRISPR-Cas9 system uses a guide RNA which functions in conjunction with Cas9 proteins to target a DNA and cleaves double-strand DNA. This phenomenon raises a question whether an artificial small RNA (asRNA), composed of a Dicer–binding RNA element and an antisense RNA, could also be used to induce Dicer to process and degrade a specific RNA. If so, we could develop a new method which is named DICERi for gene silencing or RNA editing. To prove the feasibility of asRNA, we selected MALAT-1 as target and used Hela and MDA-MB-231 cells as experimental models. The results of qRT-PCR showed that the introduction of asRNA decreased the relative expression level of target gene significantly. Next, we analyzed cell proliferation using CCK-8 and EdU staining assays, and then cell migration using wound scratch and Transwell invasion assays. We found that cell proliferation and cell migration were both suppressed remarkably after asRNA was expressed in Hela and MDA-MB-231 cells. Cell apoptosis was also detected through Hoechst staining and ELISA assays and the data indicated that he numbers of apoptotic cell in experimental groups significantly increased compared with negative controls. In order to prove that the gene silencing effects were caused by Dicer, we co-transfected shRNA silencing Dicer and asRNA. The relative expression levels of Dicer and MALAT-1 were both detected and the results indicated that when the cleavage role of Dicer was silenced, the relative expression level of MALAT-1 was not affected after the introduction of asRNA. All the above results demonstrated that these devices directed by Dicer effectively excised target RNA and repressed the target genes, thus causing phenotypic changes. Our works adds a new dimension to gene regulating technologies and may have broad applications in construction of gene circuits. PMID:27231846

  19. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP).

    PubMed

    Quinn, Jeffrey J; Chang, Howard Y

    2015-01-01

    Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a technique for dissecting the functional domains of a target RNA in situ. For an RNA of interest, dChIRP can identify domain-level intramolecular and intermolecular RNA-RNA, RNA-protein, and RNA-DNA interactions and maps the RNA's genomic binding sites with higher precision than domain-agnostic methods. We illustrate how this technique has been applied to the roX1 lncRNA to resolve its domain-level architecture, discover its protein- and chromatin-interacting domains, and map its occupancy on the X chromosome.

  20. Use of DNA, RNA, and Chimeric Templates by a Viral RNA-Dependent RNA Polymerase: Evolutionary Implications for the Transition from the RNA to the DNA World

    PubMed Central

    Siegel, Robert W.; Bellon, Laurent; Beigelman, Leonid; Kao, C. Cheng

    1999-01-01

    All polynucleotide polymerases have a similar structure and mechanism of catalysis, consistent with their evolution from one progenitor polymerase. Viral RNA-dependent RNA polymerases (RdRp) are expected to have properties comparable to those from this progenitor and therefore may offer insight into the commonalities of all classes of polymerases. We examined RNA synthesis by the brome mosaic virus RdRp on DNA, RNA, and hybrid templates and found that precise initiation of RNA synthesis can take place from all of these templates. Furthermore, initiation can take place from either internal or penultimate initiation sites. Using a template competition assay, we found that the BMV RdRp interacts with DNA only three- to fourfold less well than it interacts with RNA. Moreover, a DNA molecule with a ribonucleotide at position −11 relative to the initiation nucleotide was able to interact with RdRp at levels comparable to that observed with RNA. These results suggest that relatively few conditions were needed for an ancestral RdRp to replicate DNA genomes. PMID:10400735

  1. Structure of yeast Argonaute with guide RNA

    SciTech Connect

    Nakanishi, Kotaro; Weinberg, David E.; Bartel, David P.; Patel, Dinshaw J.

    2012-06-26

    The RNA-induced silencing complex, comprising Argonaute and guide RNA, mediates RNA interference. Here we report the 3.2 {angstrom} crystal structure of Kluyveromyces polysporus Argonaute (KpAGO) fortuitously complexed with guide RNA originating from small-RNA duplexes autonomously loaded and processed by recombinant KpAGO. Despite their diverse sequences, guide-RNA nucleotides 1-8 are positioned similarly, with sequence-independent contacts to bases, phosphates and 2{prime}-hydroxyl groups pre-organizing the backbone of nucleotides 2-8 in a near-A-form conformation. Compared with prokaryotic Argonautes, KpAGO has numerous surface-exposed insertion segments, with a cluster of conserved insertions repositioning the N domain to enable full propagation of guide-target pairing. Compared with Argonautes in inactive conformations, KpAGO has a hydrogen-bond network that stabilizes an expanded and repositioned loop, which inserts an invariant glutamate into the catalytic pocket. Mutation analyses and analogies to ribonuclease H indicate that insertion of this glutamate finger completes a universally conserved catalytic tetrad, thereby activating Argonaute for RNA cleavage.

  2. Stacking interactions in PUF-RNA complexes

    SciTech Connect

    Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen; Opperman, Laura; Gross, Leah; Tanaka Hall, Traci M; Wickens, Marvin

    2012-07-02

    Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.

  3. Progress in MicroRNA Delivery

    PubMed Central

    Zhang, Yu; Wang, Zaijie; Gemeinhart, Richard A.

    2013-01-01

    MicroRNAs (miRNAs) are non-coding endogenous RNAs that direct post-transcriptional regulation of gene expression by several mechanisms. Activity is primarily through binding to the 3’ untranslated regions (UTRs) of messenger RNAs (mRNA) resulting in degradation and translation repression. Unlike other small-RNAs, miRNAs do not require perfect base pairing, and thus, can regulate a network of broad, yet specific, genes. Although we have only just begun to gain insights into the full range of biologic functions of miRNA, their involvement in the onset and progression of disease has generated significant interest for therapeutic development. Mounting evidence suggests that miRNA-based therapies, either restoring or repressing miRNAs expression and activity, hold great promise. However, despite the early promise and exciting potential, critical hurdles often involving delivery of miRNA-targeting agents remain to be overcome before transition to clinical applications. Limitations that may be overcome by delivery include, but are not limited to, poor in vivo stability, inappropriate biodistribution, disruption and saturation of endogenous RNA machinery, and untoward side effects. Both viral vectors and nonviral delivery systems can be developed to circumvent these challenges. Viral vectors are efficient delivery agents but toxicity and immunogenicity limit their clinical usage. Herein, we review the recent advances in the mechanisms and strategies of nonviral miRNA delivery systems and provide a perspective on the future of miRNA-based therapeutics. PMID:24075926

  4. Bioengineered nanoparticles for siRNA delivery.

    PubMed

    Kozielski, Kristen L; Tzeng, Stephany Y; Green, Jordan J

    2013-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of nonprotein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery.

  5. Nonenzymatic microorganism identification based on ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  6. Small RNA combination therapy for lung cancer.

    PubMed

    Xue, Wen; Dahlman, James E; Tammela, Tuomas; Khan, Omar F; Sood, Sabina; Dave, Apeksha; Cai, Wenxin; Chirino, Leilani M; Yang, Gillian R; Bronson, Roderick; Crowley, Denise G; Sahay, Gaurav; Schroeder, Avi; Langer, Robert; Anderson, Daniel G; Jacks, Tyler

    2014-08-26

    MicroRNAs (miRNAs) and siRNAs have enormous potential as cancer therapeutics, but their effective delivery to most solid tumors has been difficult. Here, we show that a new lung-targeting nanoparticle is capable of delivering miRNA mimics and siRNAs to lung adenocarcinoma cells in vitro and to tumors in a genetically engineered mouse model of lung cancer based on activation of oncogenic Kirsten rat sarcoma viral oncogene homolog (Kras) and loss of p53 function. Therapeutic delivery of miR-34a, a p53-regulated tumor suppressor miRNA, restored miR-34a levels in lung tumors, specifically down-regulated miR-34a target genes, and slowed tumor growth. The delivery of siRNAs targeting Kras reduced Kras gene expression and MAPK signaling, increased apoptosis, and inhibited tumor growth. The combination of miR-34a and siRNA targeting Kras improved therapeutic responses over those observed with either small RNA alone, leading to tumor regression. Furthermore, nanoparticle-mediated small RNA delivery plus conventional, cisplatin-based chemotherapy prolonged survival in this model compared with chemotherapy alone. These findings demonstrate that RNA combination therapy is possible in an autochthonous model of lung cancer and provide preclinical support for the use of small RNA therapies in patients who have cancer.

  7. The microRNA toolkit of insects

    PubMed Central

    Ylla, Guillem; Fromm, Bastian; Piulachs, Maria-Dolors; Belles, Xavier

    2016-01-01

    Is there a correlation between miRNA diversity and levels of organismic complexity? Exhibiting extraordinary levels of morphological and developmental complexity, insects are the most diverse animal class on earth. Their evolutionary success was in particular shaped by the innovation of holometabolan metamorphosis in endopterygotes. Previously, miRNA evolution had been linked to morphological complexity, but astonishing variation in the currently available miRNA complements of insects made this link unclear. To address this issue, we sequenced the miRNA complement of the hemimetabolan Blattella germanica and reannotated that of two other hemimetabolan species, Locusta migratoria and Acyrthosiphon pisum, and of four holometabolan species, Apis mellifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster. Our analyses show that the variation of insect miRNAs is an artefact mainly resulting from poor sampling and inaccurate miRNA annotation, and that insects share a conserved microRNA toolkit of 65 families exhibiting very low variation. For example, the evolutionary shift toward a complete metamorphosis was accompanied only by the acquisition of three and the loss of one miRNA families. PMID:27883064

  8. Time-resolved RNA SHAPE chemistry.

    PubMed

    Mortimer, Stefanie A; Weeks, Kevin M

    2008-12-03

    Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry yields quantitative RNA secondary and tertiary structure information at single nucleotide resolution. SHAPE takes advantage of the discovery that the nucleophilic reactivity of the ribose 2'-hydroxyl group is modulated by local nucleotide flexibility in the RNA backbone. Flexible nucleotides are reactive toward hydroxyl-selective electrophiles, whereas constrained nucleotides are unreactive. Initial versions of SHAPE chemistry, which employ isatoic anhydride derivatives that react on the minute time scale, are emerging as the ideal technology for monitoring equilibrium structures of RNA in a wide variety of biological environments. Here, we extend SHAPE chemistry to a benzoyl cyanide scaffold to make possible facile time-resolved kinetic studies of RNA in approximately 1 s snapshots. We then use SHAPE chemistry to follow the time-dependent folding of an RNase P specificity domain RNA. Tertiary interactions form in two distinct steps with local tertiary contacts forming an order of magnitude faster than long-range interactions. Rate-determining tertiary folding requires minutes despite that no non-native interactions must be disrupted to form the native structure. Instead, overall folding is limited by simultaneous formation of interactions approximately 55 A distant in the RNA. Time-resolved SHAPE holds broad potential for understanding structural biogenesis and the conformational interconversions essential to the functions of complex RNA molecules at single nucleotide resolution.

  9. SHAPE-Directed RNA Secondary Structure Prediction

    PubMed Central

    Low, Justin T.; Weeks, Kevin M.

    2010-01-01

    The diverse functional roles of RNA are determined by its underlying structure. Accurate and comprehensive knowledge of RNA structure would inform a broader understanding of RNA biology and facilitate exploiting RNA as a biotechnological tool and therapeutic target. Determining the pattern of base pairing, or secondary structure, of RNA is a first step in these endeavors. Advances in experimental, computational, and comparative analysis approaches for analyzing secondary structure have yielded accurate structures for many small RNAs, but only a few large (>500 nts) RNAs. In addition, most current methods for determining a secondary structure require considerable effort, analytical expertise, and technical ingenuity. In this review, we outline an efficient strategy for developing accurate secondary structure models for RNAs of arbitrary length. This approach melds structural information obtained using SHAPE chemistry with structure prediction using nearest-neighbor rules and the dynamic programming algorithm implemented in the RNAstructure program. Prediction accuracies reach ≥95% for RNAs on the kilobase scale. This approach facilitates both development of new models and refinement of existing RNA structure models, which we illustrate using the Gag-Pol frameshift element in an HIV-1 M-group genome. Most promisingly, integrated experimental and computational refinement brings closer the ultimate goal of efficiently and accurately establishing the secondary structure for any RNA sequence. PMID:20554050

  10. Progress in microRNA delivery.

    PubMed

    Zhang, Yu; Wang, Zaijie; Gemeinhart, Richard A

    2013-12-28

    MicroRNAs (miRNAs) are non-coding endogenous RNAs that direct post-transcriptional regulation of gene expression by several mechanisms. Activity is primarily through binding to the 3' untranslated regions (UTRs) of messenger RNAs (mRNA) resulting in degradation and translation repression. Unlike other small-RNAs, miRNAs do not require perfect base pairing, and thus, can regulate a network of broad, yet specific, genes. Although we have only just begun to gain insights into the full range of biologic functions of miRNA, their involvement in the onset and progression of disease has generated significant interest for therapeutic development. Mounting evidence suggests that miRNA-based therapies, either restoring or repressing miRNAs expression and activity, hold great promise. However, despite the early promise and exciting potential, critical hurdles often involving delivery of miRNA-targeting agents remain to be overcome before transition to clinical applications. Limitations that may be overcome by delivery include, but are not limited to, poor in vivo stability, inappropriate biodistribution, disruption and saturation of endogenous RNA machinery, and untoward side effects. Both viral vectors and nonviral delivery systems can be developed to circumvent these challenges. Viral vectors are efficient delivery agents but toxicity and immunogenicity limit their clinical usage. Herein, we review the recent advances in the mechanisms and strategies of nonviral miRNA delivery systems and provide a perspective on the future of miRNA-based therapeutics.

  11. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  12. Conserved RNA secondary structures promote alternative splicing.

    PubMed

    Shepard, Peter J; Hertel, Klemens J

    2008-08-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

  13. Nondenaturing agarose gel electrophoresis of RNA.

    PubMed

    Rio, Donald C; Ares, Manuel; Hannon, Gregory J; Nilsen, Timothy W

    2010-06-01

    INTRODUCTION Perhaps the most important and certainly the most often used technique in RNA analysis is gel electrophoresis. Because RNAs are negatively charged, they migrate toward the anode in the presence of electric current. The gel acts as a sieve to selectively impede the migration of the RNA in proportion to its mass, given that its mass is generally proportional to its charge. Because mass is approximately related to chain length, the length of an RNA is more generally determined by its migration. In addition, topology (i.e., circularity) can affect migration, making RNAs appear longer on the gel than they actually are. There are two common types of gel: polyacrylamide and agarose. For most applications involving RNAs of < or =600 nucleotides, denaturing acrylamide gels are most appropriate. In contrast, agarose gels are generally used to analyze RNAs of > or =600 nucleotides, and are especially useful for analysis of mRNAs (e.g., by Northern blotting). RNA analysis on agarose gels is essentially identical to DNA analysis (except that the gel boxes used must be dedicated to RNA work or to other ribonuclease-free work). Here we describe the use of straightforward Tris borate, EDTA (TBE) gels for routine analysis. These gels are appropriate for determining the quantity and integrity of RNA before using it for other applications. This procedure should not be used to determine size with accuracy, because the RNA will not remain in its extended state throughout the run.

  14. Spermine Condenses DNA, but Not RNA Duplexes

    SciTech Connect

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  15. Evolução química em galáxias compactas azuis (BCGs)

    NASA Astrophysics Data System (ADS)

    Lanfranchi, G. A.; Matteucci, F.

    2003-08-01

    Neste trabalho, a formação estelar e evolução quí mica em galáxias Compactas Azuis (Blue Compact Galaxies - BCGs) foram estudadas através da comparação de previsões de modelos de evolução quí mica a várias razões de abundância quí mica observadas nestas galáxias. Modelos detalhados com recentes dados de nucleossí ntese e que levam em consideração o papel desempenahdo por supernovas de ambos os tipos (II e Ia) na evolução galáctica foram desenvolvidos para as BCGs permitindo seguir a evolução de vários elementos quí micos (H, D, He, C, N, O, Mg, Si, S, Ca, e Fe). O modelo é caracterizado pelas prescrições adotadas para a formação estelar, a qual ocorre em vários surtos de atividade separados por longos perí odos quiescentes. Após ajustar os melhores modelos aos dados observacionais, as previsões destes modelos foram comparadas também a razões de abundância observadas em sistemas Damped Lyman alpha (DLAs) e a origem do N (primária ou secundária) foi discutida. Alguns dos resultados obtidos são: i) as razões de abundância observadas nas BCGs são reproduzidas por modelos com 2 a 7 surtos de formação estelar com eficiência entre n = 0.2-0.9 Gano-1; ii) os baixos valores de N/O observados nestas galáxias são um resultado natural de uma formação estelar em surtos; iii) os modelos para BCGs podem reproduzir os dados dos DLAs, iv) uma quantidade "baixa" de N primário produzido em estrelas de alta massa pode ser uma explicação para os baixos valores de [N/a] observados em DLAs.

  16. Estudo de soluções locais e cosmológicas em teorias do tipo tensor-escalar

    NASA Astrophysics Data System (ADS)

    Silva E Costa, S.

    2003-08-01

    Teorias do tipo tensor-escalar são a mais simples extensão possí vel da Relatividade Geral. Nessas teorias, cujo modelo padrão é a teoria de Brans-Dicke, a curvatura do espaço-tempo, descrita por componentes tensoriais, aparece acoplada a um campo escalar que, de certo modo, representa uma variação na constante de acoplamento da gravitação. Tais teorias apresentam soluções locais e cosmológicas que, em determinados limites, recaem nas apresentadas pela Relatividade Geral, mas que em outros limites trazem novidades, tais como conseqüências observacionais da evolução de flutuações primordiais distintas daquelas previstas pela Relatividade Geral (ver, por ex., Nagata et al., PRD 66, p. 103510 (2002)). Graças a esta possibilidade de trazer à luz novidades em relação à gravitação, teorias do tipo tensor-escalar podem ser vistas como um interessante campo alternativo de pesquisas para soluções dos problemas de massa faltante (ou escura) e/ou energia escura. Seguindo tal linha, este trabalho, ainda em sua fase inicial, apresenta soluções gerais de teorias do tipo tensor-escalar para diversas situações, verificando-se em que consiste a divergência dessas soluções dos casos tradicionais possí veis na Relatividade Geral. Como exemplos das soluções aqui apresentadas pode-se destacar uma expressão geral para diferentes soluções cosmológicas englobando diferentes tipos de matéria (representados por diferentes equações de estado), e a expressão para uma solução local representando um buraco negro com rotação, similar à solução de Kerr da Relatividade Geral. Por fim, é importante ressaltar que, embora aqui apresentem-se poucos resultados novos, na literatura sobre o assunto a maior parte das soluções apresentadas limita-se a uns poucos casos especí ficos, tal como soluções cosmológicas apenas com curvatura nula, e que mesmo as soluções disponí veis são, em geral, pouco divulgadas e, portanto, pouco conhecidas, e

  17. Transcription and translation in an RNA world

    PubMed Central

    Taylor, William R

    2006-01-01

    The RNA world hypothesis requires a ribozyme that was an RNA-directed RNA polymerase (ribopolymerase). If such a replicase makes a reverse complementary copy of any sequence (including itself), in a simple RNA world, there is no mechanism to prevent self-hybridization. It is proposed that this can be avoided through the synthesis of a parallel complementary copy. The logical consequences of this are pursued and developed in a computer simulation, where the behaviour of the parallel copy is compared to the conventional reverse complementary copy. It is found that the parallel copy is more efficient at higher temperatures (up to 90°C). A model for the ribopolymerase, based on the core of the large subunit (LSU) of the ribosome, is described. The geometry of a potential active site for this ribopolymerase suggests that it contained a cavity (now occupied by the aminoacyl-tRNA) and that an amino acid binding in this might have ‘poisoned’ the ribopolymerase by cross-reacting with the nucleoside-triphosphate before polymerization could occur. Based on a similarity to the active site components of the class-I tRNA synthetase enzymes, it is proposed that the amino acid could become attached to the nascent RNA transcript producing a variety of aminoacylated tRNA-like products. Using base-pairing interactions, some of these molecules might cross-link two ribopolymerases, giving rise to a precursor of the modern ribosome. A hybrid dimer, half polymerase and half proto-ribosome, could account for mRNA translocation before the advent of protein elongation factors. PMID:17008216

  18. RNA Interference: Biology, Mechanism, and Applications

    PubMed Central

    Agrawal, Neema; Dasaradhi, P. V. N.; Mohmmed, Asif; Malhotra, Pawan; Bhatnagar, Raj K.; Mukherjee, Sunil K.

    2003-01-01

    Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes. PMID:14665679

  19. PMRD: plant microRNA database

    PubMed Central

    Zhang, Zhenhai; Yu, Jingyin; Li, Daofeng; Zhang, Zuyong; Liu, Fengxia; Zhou, Xin; Wang, Tao; Ling, Yi; Su, Zhen

    2010-01-01

    MicroRNAs (miRNA) are ∼21 nucleotide-long non-coding small RNAs, which function as post-transcriptional regulators in eukaryotes. miRNAs play essential roles in regulating plant growth and development. In recent years, research into the mechanism and consequences of miRNA action has made great progress. With whole genome sequence available in such plants as Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Glycine max, etc., it is desirable to develop a plant miRNA database through the integration of large amounts of information about publicly deposited miRNA data. The plant miRNA database (PMRD) integrates available plant miRNA data deposited in public databases, gleaned from the recent literature, and data generated in-house. This database contains sequence information, secondary structure, target genes, expression profiles and a genome browser. In total, there are 8433 miRNAs collected from 121 plant species in PMRD, including model plants and major crops such as Arabidopsis, rice, wheat, soybean, maize, sorghum, barley, etc. For Arabidopsis, rice, poplar, soybean, cotton, medicago and maize, we included the possible target genes for each miRNA with a predicted interaction site in the database. Furthermore, we provided miRNA expression profiles in the PMRD, including our local rice oxidative stress related microarray data (LC Sciences miRPlants_10.1) and the recently published microarray data for poplar, Arabidopsis, tomato, maize and rice. The PMRD database was constructed by open source technology utilizing a user-friendly web interface, and multiple search tools. The PMRD is freely available at http://bioinformatics.cau.edu.cn/PMRD. We expect PMRD to be a useful tool for scientists in the miRNA field in order to study the function of miRNAs and their target genes, especially in model plants and major crops. PMID:19808935

  20. Effect of RNA Integrity Determined With the Agilent 2100 Bioanalyzer on Bacterial RNA Quantification with RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA integrity is critical for successful RNA quantification. The level of integrity required differs among sources and extraction procedures and has not been determined for bacterial RNA. Three RNA isolation methods were evaluated for their ability to produce high quality RNA from D. dadantii. The i...

  1. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  2. Comparison of nucleic acid targets prepared from total RNA or poly(A) RNA for DNA oligonucleotide microarray hybridization.

    PubMed

    Petersen, Kjell; Oyan, Anne Margrete; Rostad, Kari; Olsen, Sue; Bø, Trond Hellem; Salvesen, Helga B; Gjertsen, Bjørn Tore; Bruserud, Oystein; Halvorsen, Ole Johan; Akslen, Lars Andreas; Steen, Vidar M; Jonassen, Inge; Kalland, Karl-Henning

    2007-07-01

    The aim of this work was to compare DNA microarray results using either total RNA or affinity-purified poly(A) RNA from the same biological sample for target preparation. The high-density oligonucleotide microarrays of both Agilent Technologies (based on two-color detection) and Applied Biosystems (based on single-color detection) were evaluated. Real-time quantitative PCR was used to quantify messenger RNA (mRNA) and ribosomal RNA (rRNA) at different stages of target preparations. Poly(A) RNA versus total RNA target hybridizations exhibited slightly lower correlation coefficients than did self versus self hybridizations (i.e., poly(A) RNA targets vs. poly(A) RNA targets or total RNA targets vs. total RNA targets). Only a small fraction of all transcripts appeared to be significantly over- or underrepresented when total RNA targets or poly(A) RNA targets from the same biological sample were compared. Therefore, the conclusion is that poly(A) affinity purification from total RNA can be omitted during target preparation for routine mRNA expression analysis using high-density oligonucleotide microarrays. Among consistently overrepresented transcripts in total RNA targets were histone mRNAs known to lack poly(A) tails. Therefore, structurally exceptional RNA species can be identified by comparing targets derived from either poly(A) RNA or total RNA using microarray hybridization.

  3. The nuclear RNA binding protein RBP33 influences mRNA and spliced leader RNA abundance in Trypanosoma brucei.

    PubMed

    Cirovic, Olivera; Trikin, Roman; Hoffmann, Anneliese; Doiron, Nicholas; Jakob, Martin; Ochsenreiter, Torsten

    2017-03-01

    RNA recognition motif (RRM) containing proteins are important regulators of gene expression in trypanosomes. Here we expand our current knowledge on the exclusively nuclear localized RRM domain containing protein RBP33 of Trypanosoma brucei. Overexpression of RBP33 leads to a quick growth arrest in G2/M in bloodstream form cells likely due to an overall mRNA- and spliced leader abundance decrease while the ribosomal RNAs remain unaffected. The recombinant RBP33 binds to poly(A) and random sequence RNA in vitro confirming its role as a RNA binding protein. Finally super-resolution microscopy detects RBP33 in small punctae throughout the nucleus and surrounding the nucleolus, however the signal is depleted inside the nucleolus.

  4. RNA virus genomics: a world of possibilities

    PubMed Central

    Holmes, Edward C.

    2009-01-01

    The increasing availability of complete genome sequences of RNA viruses has the potential to shed new light on fundamental aspects of their biology. Here, I use case studies of 3 RNA viruses to explore the impact of genomic sequence data, with particular emphasis on influenza A virus. Notably, the studies of RNA virus genomics undertaken to date largely focused on issues of evolution and epidemiology, and they have given these disciplines new impetus. However, genomic data have so far made fewer inroads into areas of more direct importance for disease, prevention, and control; thus, harnessing their full potential remains an important goal. PMID:19729846

  5. RNA polymerase II transcription: structure and mechanism.

    PubMed

    Liu, Xin; Bushnell, David A; Kornberg, Roger D

    2013-01-01

    A minimal RNA polymerase II (pol II) transcription system comprises the polymerase and five general transcription factors (GTFs) TFIIB, -D, -E, -F, and -H. The addition of Mediator enables a response to regulatory factors. The GTFs are required for promoter recognition and the initiation of transcription. Following initiation, pol II alone is capable of RNA transcript elongation and of proofreading. Structural studies reviewed here reveal roles of GTFs in the initiation process and shed light on the transcription elongation mechanism. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  6. Modeling Equilibrium of microRNA Expression

    PubMed Central

    Chan, Lawrence W. C.

    2011-01-01

    MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation. PMID:22303331

  7. Identification of plant microRNA homologs.

    PubMed

    Dezulian, Tobias; Remmert, Michael; Palatnik, Javier F; Weigel, Detlef; Huson, Daniel H

    2006-02-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that regulate gene and protein expression in plants and animals. MiRNAs have so far been identified mostly by specific cloning of small RNA molecules, complemented by computational methods. We present a computational identification approach that is able to identify candidate miRNA homologs in any set of sequences, given a query miRNA. The approach is based on a sequence similarity search step followed by a set of structural filters.

  8. Modelling RNA folding under mechanical tension

    PubMed Central

    VIEREGG, JEFFREY R.; TINOCO, IGNACIO

    2006-01-01

    We investigate the thermodynamics and kinetics of RNA unfolding and refolding under mechanical tension. The hierarchical nature of RNA structure and the existence of thermodynamic parameters for base pair formation based on nearest-neighbour interactions allows modelling of sequence-dependent folding dynamics for any secondary structure. We calculate experimental observables such as the transition force for unfolding, the end-to-end distribution function and its variance, as well as kinetic information, for a representative RNA sequence and for a sequence containing two homopolymer segments: A.U and G.C. PMID:16969426

  9. MicroRNA therapeutics in neurological disease.

    PubMed

    Greenberg, David S; Soreq, Hermona

    2014-01-01

    Developing microRNA therapeutics for neurological diseases is both a promising opportunity and an extremely challenging topic for several reasons. The promise stems from the very small size of microRNAs, which makes them amenable for manipulation via short synthetic oligonucleotides or engineered viruses. Also, the fact that each microRNA may regulate numerous target transcripts of the same pathway predicts that such manipulations may affect an entire pathway rather than a single gene and gives reason to hope that low dose therapeutic targeting of the top microRNA in such a hierarchic pyramid would suffice to induce a focused change in the entire pyramid. However, these same features, which make microRNAs such promising targets for therapeutic manipulations also present great challenges. Thus the plethora of functional targets for each microRNA in specific cell types is yet far from being elucidated, which implies that the targets to be affected may not be those planned to be manipulated (a risk of 'off-target' effects). Also, the hierarchic order of microRNA regulation is yet unknown, which predicts a risk of complex, multi-leveled consequences following the manipulation of a single microRNA; and the delivery of oligonucleotide therapeutics into the brain is a challenge due to the blood-brain barrier. In this chapter, we briefly outline the current state of knowledge regarding microRNA regulation in different neuropathologies and sketch the emerging principles for the development of microRNA therapeutics for these diseases.We address issues such as modes of delivery and consideration of the inherited and acquired variability between individuals in the susceptibility to such treatments. We further refer in a somewhat more in-depth manner to the issue of manipulating microRNA functioning in the parasympathetic system and the pathway of cholinergic signaling. Beyond the brain and within it, cholinergic signaling controls inflammatory reactions, and microRNA changes

  10. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta

    PubMed Central

    Wang, Ray Yu-Ruei; Song, Yifan; Barad, Benjamin A; Cheng, Yifan; Fraser, James S; DiMaio, Frank

    2016-01-01

    Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3–4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids – typical in a macromolecular assembly – is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps. DOI: http://dx.doi.org/10.7554/eLife.17219.001 PMID:27669148

  11. Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity.

    PubMed

    Rieswijk, Linda; Brauers, Karen J J; Coonen, Maarten L J; Jennen, Danyel G J; van Breda, Simone G J; Kleinjans, Jos C S

    2016-09-01

    The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78

  12. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA.

    PubMed

    James, Amanda Marie; Baker, Meredith B; Bao, Gang; Searles, Charles D

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.

  13. RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana.

    PubMed

    Ying, Xiao-Bao; Dong, Li; Zhu, Hui; Duan, Cheng-Guo; Du, Quan-Sheng; Lv, Dian-Qiu; Fang, Yuan-Yuan; Garcia, Juan Antonio; Fang, Rong-Xiang; Guo, Hui-Shan

    2010-04-01

    Endogenous eukaryotic RNA-dependent RNA polymerases (RDRs) produce double-stranded RNA intermediates in diverse processes of small RNA synthesis in RNA silencing pathways. RDR6 is required in plants for posttranscriptional gene silencing induced by sense transgenes (S-PTGS) and has an important role in amplification of antiviral silencing. Whereas RDR1 is also involved in antiviral defense in plants, this does not necessarily proceed through triggering silencing. In this study, we show that Nicotiana benthamiana transformed with RDR1 from Nicotiana tabacum (Nt-RDR1 plants) exhibits hypersusceptibility to Plum pox potyvirus and other viruses, resembling RDR6-silenced (RDR6i) N. benthamiana. Analysis of transient induction of RNA silencing in N. benthamiana Nt-RDR1 and RDR6i plants revealed that Nt-RDR1 possesses silencing suppression activity. We found that Nt-RDR1 does not interfere with RDR6-dependent siRNA accumulation but turns out to suppress RDR6-dependent S-PTGS. Our results, together with previously published data, suggest that RDR1 might have a dual role, contributing, on one hand, to salicylic acid-mediated antiviral defense, and suppressing, on the other hand, the RDR6-mediated antiviral RNA silencing. We propose a scenario in which the natural loss-of-function variant of RDR1 in N. benthamiana may be the outcome of selective pressure to maintain a high RDR6-dependent antiviral defense, which would be required to face the hypersensitivity of this plant to a large number of viruses.

  14. MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA

    PubMed Central

    James, Amanda Marie; Baker, Meredith B.; Bao, Gang; Searles, Charles D.

    2017-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples. PMID:28255356

  15. Efficient Interaction between Arenavirus Nucleoprotein (NP) and RNA-Dependent RNA Polymerase (L) Is Mediated by the Virus Nucleocapsid (NP-RNA) Template.

    PubMed

    Iwasaki, Masaharu; Ngo, Nhi; Cubitt, Beatrice; de la Torre, Juan C

    2015-05-01

    In this study, we document that efficient interaction between arenavirus nucleoprotein (NP) and RNA-dependent RNA polymerase (L protein), the two trans-acting viral factors required for both virus RNA replication and gene transcription, requires the presence of virus-specific RNA sequences located within the untranslated 5' and 3' termini of the viral genome.

  16. Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells.

    PubMed Central

    Collis, P S; O'Donnell, B J; Barton, D J; Rogers, J A; Flanegan, J B

    1992-01-01

    Full-length and subgenomic poliovirus RNAs were transcribed in vitro and transfected into HeLa cells to study viral RNA replication in vivo. RNAs with deletion mutations were analyzed for the ability to replicate in either the absence or the presence of helper RNA by using a cotransfection procedure and Northern (RNA) blot analysis. An advantage of this approach was that viral RNA replication and genetic complementation could be characterized without first isolating conditional-lethal mutants. A subgenomic RNA with a large in-frame deletion in the capsid coding region (P1) replicated more efficiently than full-length viral RNA transcripts. In cotransfection experiments, both the full-length and subgenomic RNAs replicated at slightly reduced levels and appeared to interfere with each other's replication. In contrast, a subgenomic RNA with a similarly sized out-of-frame deletion in P1 did not replicate in transfected cells, either alone or in the presence of helper RNA. Similar results were observed with an RNA transcript containing a large in-frame deletion spanning the P1, P2, and P3 coding regions. A mutant RNA with an in-frame deletion in the P1-2A coding sequence was self-replicating but at a significantly reduced level. The replication of this RNA was fully complemented after cotransfection with a helper RNA that provided 2A in trans. A P1-2A-2B in-frame deletion, however, totally blocked RNA replication and was not complemented. Control experiments showed that all of the expected viral proteins were both synthesized and processed when the RNA transcripts were translated in vitro. Thus, our results indicated that 2A was a trans-acting protein and that 2B and perhaps other viral proteins were cis acting during poliovirus RNA replication in vivo. Our data support a model for poliovirus RNA replication which directly links the translation of a molecule of plus-strand RNA with the formation of a replication complex for minus-strand RNA synthesis. Images PMID

  17. On Ensino de Astronomia: Desafios para Implantação

    NASA Astrophysics Data System (ADS)

    Faria, R. Z.; Voelzke, M. R.

    2008-09-01

    Em 2002 o ensino de Astronomia foi proposto como um dos temas estruturadores pelos Parâmetros Curriculares Nacionais e sugerido como facilitador para que o aluno compreendesse a Física como construção humana e parte do seu mundo vivencial, mas raramente seus conceitos foram ensinados. A presente pesquisa discute dois aspectos relacionados à abordagem de Astronomia. O primeiro aspecto é se ela está sendo abordada pelos professores do Ensino Médio e o segundo, aborda a maneira como ela está sendo ensinada. Optou-se pela aplicação de um questionário a partir do 2° semestre de 2006 e durante o ano de 2007 com professores que ministram a disciplina de Física, os quais trabalham em escolas estaduais em Rio Grande da Serra, Ribeirão Pires e Mauá no estado São Paulo. Dos 66,2% dos professores que responderam ao questionário nos municípios de Rio Grande da Serra, Ribeirão Pires e Mauá, 57,4% não aplicaram nenhum tópico de astronomia, 70,2% não utilizaram laboratório, 89,4% não utilizaram qualquer tipo de programa computacional, 83,0% nunca fizeram visitas com alunos a museus e planetários e 38,3% não indicaram qualquer tipo de livro ou revista referente à astronomia aos seus alunos. Mesmo considerando a Astronomia um conteúdo potencialmente significativo, esta não fez parte dos planejamentos escolares. Portanto são necessárias propostas que visem estratégias para a educação continuada dos professores como, por exemplo, cursos específicos sobre o ensino em Astronomia.

  18. Inhibition of RNA binding to hepatitis C virus RNA-dependent RNA polymerase: a new mechanism for antiviral intervention

    PubMed Central

    Ahmed-Belkacem, Abdelhakim; Guichou, Jean-François; Brillet, Rozenn; Ahnou, Nazim; Hernandez, Eva; Pallier, Coralie; Pawlotsky, Jean-Michel

    2014-01-01

    The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) is a key target for antiviral intervention. The goal of this study was to identify the binding site and unravel the molecular mechanism by which natural flavonoids efficiently inhibit HCV RdRp. Screening identified the flavonol quercetagetin as the most potent inhibitor of HCV RdRp activity. Quercetagetin was found to inhibit RdRp through inhibition of RNA binding to the viral polymerase, a yet unknown antiviral mechanism. X-ray crystallographic structure analysis of the RdRp-quercetagetin complex identified quercetagetin's binding site at the entrance of the RNA template tunnel, confirming its original mode of action. This antiviral mechanism was associated with a high barrier to resistance in both site-directed mutagenesis and long-term selection experiments. In conclusion, we identified a new mechanism for non-nucleoside inhibition of HCV RdRp through inhibition of RNA binding to the enzyme, a mechanism associated with broad genotypic activity and a high barrier to resistance. Our results open the way to new antiviral approaches for HCV and other viruses that use an RdRp based on RNA binding inhibition, that could prove to be useful in human, animal or plant viral infections. PMID:25053847

  19. RNA-RNA interactions and pre-mRNA mislocalization as drivers of group II intron loss from nuclear genomes.

    PubMed

    Qu, Guosheng; Dong, Xiaolong; Piazza, Carol Lyn; Chalamcharla, Venkata R; Lutz, Sheila; Curcio, M Joan; Belfort, Marlene

    2014-05-06

    Group II introns are commonly believed to be the progenitors of spliceosomal introns, but they are notably absent from nuclear genomes. Barriers to group II intron function in nuclear genomes therefore beg examination. A previous study showed that nuclear expression of a group II intron in yeast results in nonsense-mediated decay and translational repression of mRNA, and that these roadblocks to expression are group II intron-specific. To determine the molecular basis for repression of gene expression, we investigated cellular dynamics of processed group II intron RNAs, from transcription to cellular localization. Our data show pre-mRNA mislocalization to the cytoplasm, where the RNAs are targeted to foci. Furthermore, tenacious mRNA-pre-mRNA interactions, based on intron-exon binding sequences, result in reduced abundance of spliced mRNAs. Nuclear retention of pre-mRNA prevents this interaction and relieves these expression blocks. In addition to providing a mechanistic rationale for group II intron-specific repression, our data support the hypothesis that RNA silencing of the host gene contributed to expulsion of group II introns from nuclear genomes and drove the evolution of spliceosomal introns.

  20. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  1. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.

  2. Mapping RNA–RNA interactome and RNA structure in vivo by MARIO

    PubMed Central

    Nguyen, Tri C.; Cao, Xiaoyi; Yu, Pengfei; Xiao, Shu; Lu, Jia; Biase, Fernando H.; Sridhar, Bharat; Huang, Norman; Zhang, Kang; Zhong, Sheng

    2016-01-01

    The pervasive transcription of our genome presents a possibility of revealing new genomic functions by investigating RNA interactions. Current methods for mapping RNA–RNA interactions have to rely on an ‘anchor' protein or RNA and often require molecular perturbations. Here we present the MARIO (Mapping RNA interactome in vivo) technology to massively reveal RNA–RNA interactions from unperturbed cells. We mapped tens of thousands of endogenous RNA–RNA interactions from mouse embryonic stem cells and brain. We validated seven interactions by RNA antisense purification and one interaction using single-molecule RNA–FISH. The experimentally derived RNA interactome is a scale-free network, which is not expected from currently perceived promiscuity in RNA–RNA interactions. Base pairing is observed at the interacting regions between long RNAs, including transposon transcripts, suggesting a class of regulatory sequences acting in trans. In addition, MARIO data reveal thousands of intra-molecule interactions, providing in vivo data on high-order RNA structures. PMID:27338251

  3. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

    PubMed

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M

    2015-06-20

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.

  4. The RIPper case: identification of RNA-binding protein targets by RNA immunoprecipitation.

    PubMed

    Köster, Tino; Haas, Meike; Staiger, Dorothee

    2014-01-01

    Control at the posttranscriptional level emerges as an important layer of regulation in the circadian timing system. RNA-binding proteins that specifically interact with cis-regulatory motifs within pre-mRNAs are key elements of this regulation. While the ability to interact with RNA in vitro has been demonstrated for numerous Arabidopsis RNA-binding proteins, a full understanding of posttranscriptional networks controlled by an RNA-binding protein requires the identification of its immediate in vivo targets. Here we describe differential RNA immunoprecipitation in transgenic Arabidopsis thaliana plants expressing RNA-binding protein variants epitope-tagged with green fluorescent protein. To control for RNAs that nonspecifically co-purify with the RNA-binding protein, transgenic plants are generated with a mutated version of the RNA-binding protein that is not capable of binding to its target RNAs. The RNA-binding protein variants are expressed under the control of their authentic promoter and cis-regulatory motifs. Incubation of the plants with formaldehyde in vivo cross-links the proteins to their RNA targets. A whole-cell extract is then prepared and subjected to immunoprecipitation with an antibody against the GFP tag and to mock precipitation with an antibody against the unrelated red fluorescent protein. The RNAs coprecipitating with the proteins are eluted from the immunoprecipitate and identified via reverse transcription-PCR.

  5. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases.

    PubMed

    Miropolskaya, Nataliya; Esyunina, Daria; Kulbachinskiy, Andrey

    2017-02-27

    RNA cleavage by RNA polymerase (RNAP) is the central step in co-transcriptional RNA proofreading. Bacterial RNAPs were proposed to rely on the same mobile element of the active site, the trigger loop (TL), for both nucleotide addition and RNA cleavage. RNA cleavage can also be stimulated by universal Gre factors, which should replace the TL to get access to the RNAP active site. The contributions of the TL and Gre factors to RNA cleavage reportedly vary between RNAPs from different bacterial species and, probably, different types of transcription complexes. Here, by comparing RNAPs from Escherichia coli (Eco), Deinococcus radiodurans (Dra) and Thermus aquaticus (Taq) we show that the functions of the TL and Gre factors in RNA cleavage are conserved in various species, with important variations which may be related to extremophilic adaptation. Deletions of the TL strongly impair intrinsic RNA cleavage by all three RNAPs and eliminate the inter-species differences in the reaction rates. GreA factors activate RNA cleavage by wild-type RNAPs to similar levels. The rates of GreA-dependent cleavage are lower for ΔTL RNAP variants, suggesting that the TL contributes to the Gre function. Finally, neither the TL nor GreA can efficiently activate RNA cleavage in certain types of backtracked transcription complexes suggesting that these complexes adopt a catalytically inactive conformation probably important for transcription regulation.

  6. TARDIS, a targeted RNA directional sequencing method for rare RNA discovery.

    PubMed

    Portal, Maximiliano M; Pavet, Valeria; Erb, Cathie; Gronemeyer, Hinrich

    2015-12-01

    High-throughput transcriptional analysis has unveiled a myriad of novel RNAs. However, technical constraints in RNA sequencing library preparation and platform performance hamper the identification of rare transcripts contained within the RNA repertoire. Herein we present targeted-RNA directional sequencing (TARDIS), a hybridization-based method that allows subsets of RNAs contained within the transcriptome to be interrogated independently of transcript length, function, the presence or absence of poly-A tracts, or the mechanism of biogenesis. TARDIS is a modular protocol that is subdivided into four main phases, including the generation of random DNA traps covering the region of interest, purification of input RNA material, DNA trap-based RNA capture, and finally RNA-sequencing library construction. Importantly, coupling RNA capture to strand-specific RNA sequencing enables robust identification and reconstruction of novel transcripts, the definition of sense and antisense RNA pairs and, by the concomitant analysis of long and natural small RNA pools, it allows the user to infer potential precursor-product relations. TARDIS takes ∼10 d to implement.

  7. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes

    PubMed Central

    Aizawa, Shu; Fujiwara, Yuuki; Contu, Viorica Raluca; Hase, Katsunori; Takahashi, Masayuki; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2016-01-01

    ABSTRACT Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy. PMID:27046251

  8. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA.

    PubMed Central

    Teigelkamp, S; McGarvey, M; Plumpton, M; Beggs, J D

    1994-01-01

    The RNA helicase-like splicing factor PRP2 interacts only transiently with spliceosomes. To facilitate analysis of interactions of PRP2 with spliceosomal components, PRP2 protein was stalled in splicing complexes by two different methods. A dominant negative mutant form of PRP2 protein, which associates stably with spliceosomes, was found to interact directly with pre-mRNAs, as demonstrated by UV-crosslinking experiments. The use of various mutant and truncated pre-mRNAs revealed that this interaction requires a spliceable pre-mRNA and an assembled spliceosome; a 3' splice site is not required. To extend these observations to the wild-type PRP2 protein, spliceosomes were depleted of ATP; PRP2 protein interacts with pre-mRNA in these spliceosomes in an ATP-independent fashion. Comparison of RNA binding by PRP2 protein in the presence of ATP or gamma S-ATP showed that ATP hydrolysis rather than mere ATP binding is required to release PRP2 protein from pre-mRNA. As PRP2 is an RNA-stimulated ATPase, these experiments strongly suggest that the pre-mRNA is the native co-factor stimulating ATP hydrolysis by PRP2 protein in spliceosomes. Since PRP2 is a putative RNA helicase, we propose that the pre-mRNA is the target of RNA displacement activity of PRP2 protein, promoting the first step of splicing. Images PMID:8112302

  9. Trans-regulation of RNA-binding protein motifs by microRNA

    PubMed Central

    Doyle, Francis; Tenenbaum, Scott A.

    2014-01-01

    The wide array of vital functions that RNA performs is dependent on its ability to dynamically fold into different structures in response to intracellular and extracellular changes. RNA-binding proteins regulate much of this activity by targeting specific RNA structures or motifs. One of these structures, the 3-way RNA junction, is characteristically found in ribosomal RNA and results from the RNA folding in cis, to produce three separate helices that meet around a central unpaired region. Here we demonstrate that 3-way junctions can also form in trans as a result of the binding of microRNAs in an unconventional manner with mRNA by splinting two non-contiguous regions together. This may be used to reinforce the base of a stem-loop motif being targeted by an RNA-binding protein. Trans interactions between non-coding RNA and mRNA may be used to control the post-transcriptional regulatory code and suggests a possible role for some of the recently described transcripts of unknown function expressed from the human genome. PMID:24795744

  10. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model

    PubMed Central

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A.; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2015-01-01

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  11. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex.

    PubMed

    Parker, James S; Roe, S Mark; Barford, David

    2005-03-31

    RNA interference and related RNA silencing phenomena use short antisense guide RNA molecules to repress the expression of target genes. Argonaute proteins, containing amino-terminal PAZ (for PIWI/Argonaute/Zwille) domains and carboxy-terminal PIWI domains, are core components of these mechanisms. Here we show the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA. The structure contains a highly conserved metal-binding site that anchors the 5' nucleotide of the guide RNA. The first base pair of the duplex is unwound, separating the 5' nucleotide of the guide from the complementary nucleotide on the target strand, which exits with the 3' overhang through a short channel. The remaining base-paired nucleotides assume an A-form helix, accommodated within a channel in the PIWI domain, which can be extended to place the scissile phosphate of the target strand adjacent to the putative slicer catalytic site. This study provides insights into mechanisms of target mRNA recognition and cleavage by an Argonaute-siRNA guide complex.

  12. Efficient oil palm total RNA extraction with a total RNA extraction kit.

    PubMed

    Habib, S H; Saud, H M; Kausar, H

    2014-04-03

    Oil palm tissues are rich in polyphenols, polysaccharides and secondary metabolites; these can co-precipitate with RNA, causing problems for downstream applications. We compared two different methods (one conventional and a kit-based method - Easy-Blue(TM) Total RNA Extraction Kit) to isolate total RNA from leaves, roots and shoot apical meristems of tissue culture derived truncated leaf syndrome somaclonal oil palm seedlings. The quality and quantity of total RNA were compared through spectrophotometry and formaldehyde gel electrophoresis. The specificity and applicability of the protocols were evaluated for downstream applications, including cDNA synthesis and RT-PCR analysis. We found that the conventional method gave higher yields of RNA but took longer, and it was contaminated with genomic DNA. This method required extra genomic DNA removal steps that further reduced the RNA yield. The kit-based method, on the other hand, produced good yields as well as well as good quality RNA, within a very short period of time from a small amount of starting material. Moreover, the RNA from the kit-based method was more suitable for synthesizing cDNA and RT-PCR amplification than the conventional method. Therefore, we conclude that the Easy-BlueTM Total RNA Extraction Kit method is suitable and superior for isolation of total RNA from oil palm leaf, root and shoot apical meristem.

  13. Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding.

    PubMed Central

    Hardt, W D; Warnecke, J M; Erdmann, V A; Hartmann, R K

    1995-01-01

    We have used Rp-phosphorothioate modifications and a binding interference assay to analyse the role of phosphate oxygens in tRNA recognition by Escherichia coli ribonuclease P (RNase P) RNA. Total (100%) Rp-phosphorothioate modification at A, C or G positions of RNase P RNA strongly impaired tRNA binding and pre-tRNA processing, while effects were less pronounced at U positions. Partially modified E. coli RNase P RNAs were separated into tRNA binding and non-binding fractions by gel retardation. Rp-phosphorothioate modifications that interfered with tRNA binding were found 5' of nucleotides A67, G68, U69, C70, C71, G72, A130, A132, A248, A249, G300, A317, A330, A352, C353 and C354. Manganese rescue at positions U69, C70, A130 and A132 identified, for the first time, sites of direct metal ion coordination in RNase P RNA. Most sites of interference are at strongly conserved nucleotides and nine reside within a long-range base-pairing interaction present in all known RNase P RNAs. In contrast to RNase P RNA, 100% Rp-phosphorothioate substitutions in tRNA showed only moderate effects on binding to RNase P RNAs from E. coli, Bacillus subtilis and Chromatium vinosum, suggesting that pro-Rp phosphate oxygens of mature tRNA contribute relatively little to the formation of the tRNA-RNase P RNA complex. Images PMID:7540978

  14. [In vivo imaging of liposomal small interfering RNA (siRNA) trafficking by positron emission tomography].

    PubMed

    Ando, Hidenori; Yonenaga, Norihito; Asai, Tomohiro; Hatanaka, Kentaro; Koide, Hiroyuki; Tsuzuku, Takuma; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2012-01-01

    In the development of nucleic acid medicines such as small interfering RNA (siRNA) drugs, one problem is how to study the pharmacokinetics and pharmacodynamics, since the precise in vivo behavior of siRNA is hard to detect. In this research, to establish a highly sensitive detection system of siRNA biodistribution in the whole body, the technology of positron imaging was applied. First, a one-step synthetic method in which double-stranded siRNA was directly labeled by a positron emitter, (18)F, was developed. By using [(18)F]-labeled siRNA ([(18)F]-siRNA), the complex of siRNA and polycation liposomes (PCL) containing dicetylphosphate tetraethylenepentamine (TEPA-PCL) was prepared. Then, the biodistribution of the siRNA after intravenous administration to mice was analyzed by planar positron imaging system (PPIS). As a result, whereas naked [(18)F]-siRNA was immediately excreted in mouse bladder after administration, the complex with cationic liposome (CL) was trapped in the lungs. Furthermore, [(18)F]-siRNA carried with PEGylated CL (PL) was distributed throughout the body, suggesting that it circulated in the bloodstream for an extended period of time. Additionally, PET imaging revealed more detailed biodistribution of the siRNA than in vivo imaging system (IVIS) because PET imaging is not affected by the depth variation of target tissues. On the other hand, to induce high accumulation of siRNAs against c-myc, MDM2, and VEGF in tumor tissue, a tumor-targeting probe, RGD peptide, was grafted at the top of PEG chain in PEGylated TEPA-PCL and the effect of the complex on experimental lung metastasis of B16 melanoma was examined. The complex suppressed the progression of tumor. We believe that the positron imaging data would support the development of siRNA agent for clinical use.

  15. DOE/EM Criticality Safety Needs Assessment

    SciTech Connect

    Westfall, Robert Michael; Hopper, Calvin Mitchell

    2011-02-01

    The issue of nuclear criticality safety (NCS) in Department of Energy Environmental Management (DOE/EM) fissionable material operations presents challenges because of the large quantities of material present in the facilities and equipment that are committed to storage and/or material conditioning and dispositioning processes. Given the uncertainty associated with the material and conditions for many DOE/EM fissionable material operations, ensuring safety while maintaining operational efficiency requires the application of the most-effective criticality safety practices. In turn, more-efficient implementation of these practices can be achieved if the best NCS technologies are utilized. In 2002, DOE/EM-1 commissioned a survey of criticality safety technical needs at the major EM sites. These needs were documented in the report Analysis of Nuclear Criticality Safety Technology Supporting the Environmental Management Program, issued May 2002. Subsequent to this study, EM safety management personnel made a commitment to applying the best and latest criticality safety technology, as described by the DOE Nuclear Criticality Safety Program (NCSP). Over the past 7 years, this commitment has enabled the transfer of several new technologies to EM operations. In 2008, it was decided to broaden the basis of the EM NCS needs assessment to include not only current needs for technologies but also NCS operational areas with potential for improvements in controls, analysis, and regulations. A series of NCS workshops has been conducted over the past years, and needs have been identified and addressed by EM staff and contractor personnel. These workshops were organized and conducted by the EM Criticality Safety Program Manager with administrative and technical support by staff at Oak Ridge National Laboratory (ORNL). This report records the progress made in identifying the needs, determining the approaches for addressing these needs, and assimilating new NCS technologies into EM

  16. Metabolic influences on RNA biology and translation.

    PubMed

    Lee, Chien-Der; Tu, Benjamin P

    2017-04-01

    Protein translation is one of the most energetically demanding processes for a cell to undertake. Changes in the nutrient environment may result in conditions that cannot support the rates of translation required for cell proliferation. As such, a cell must monitor its metabolic state to determine which mRNAs to translate into protein. How the various RNA species that participate in translation might relay information about metabolic state to regulate this process is not well understood. In this review, we discuss emerging examples of the influence of metabolism on aspects of RNA biology. We discuss how metabolic state impacts the localization and fate of different RNA species, as well as how nutrient cues can impact post-transcriptional modifications of RNA to regulate their functions in the control of translation.

  17. From the RNA world to the clinic.

    PubMed

    Sullenger, Bruce A; Nair, Smita

    2016-06-17

    The study of RNA has continually emphasized the structural and functional versatility of RNA molecules. This versatility has inspired translational and clinical researchers to explore the utility of RNA-based therapeutic agents for a wide variety of medical applications. Several RNA therapeutics, with diverse modes of action, are being evaluated in large late-stage clinical trials, and many more are in early clinical development. Hundreds of patients are enrolled in large trials testing messenger RNAs to combat cancer, small interfering RNAs to treat renal and hepatic disorders, and aptamers to combat ocular and cardiovascular disease. Results from these studies are generating considerable interest among the biomedical community and the public and will be important for the future development of this emerging class of therapeutic agents.

  18. Conservation of small RNA pathways in platypus.

    PubMed

    Murchison, Elizabeth P; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J

    2008-06-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense.

  19. Widespread RNA 3'-end oligouridylation in mammals.

    PubMed

    Choi, Yun S; Patena, Weronika; Leavitt, Andrew D; McManus, Michael T

    2012-03-01

    Nontemplated 3'-end oligouridylation of RNA occurs in many species, including humans. Unlike the familiar phenomenon of polyadenylation, nontemplated addition of uridines to RNA is poorly characterized in higher eukaryotes. Recent studies have reported nontemplated 3'-end oligouridylation of small RNAs and mRNAs. Oligouridylation is involved in many aspects of microRNA biology from biogenesis to turnover of the mature species, and it may also mark long mRNAs for degradation by promoting decapping of the protective 5'-cap structure. To determine the prevalence of oligouridylation in higher eukaryotes, we used next-generation sequencing technology to deeply examine the population of small RNAs in human cells. Our data revealed widespread nontemplated nucleotide addition to the 3' ends of many classes of RNA, with short stretches of uridine being the most frequently added nucleotide.

  20. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.