Science.gov

Sample records for embedded characterization technique

  1. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    SciTech Connect

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Ridgway, Mark C.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.

    2009-01-29

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  2. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  3. Synthesis and characterization of composite films of silver nanoparticles embedded in DLC matrix prepared by plasma CVD technique

    NASA Astrophysics Data System (ADS)

    Paul, R.; Gayen, R. N.; Hussain, S.; Khanna, V.; Bhar, R.; Pal, A. K.

    2009-07-01

    Composite films containing silver nanoparticles embedded in diamond-like carbon (DLC) matrix were deposited on glass substrates by using capacitatively coupled plasma (CCP) chemical vapour deposition techninique (CVD). Particle size and metal volume fraction were tailored by varying the relative amount of methane of a gas mixture of methane + argon in the plasma. Optical constants of the films were evaluated. Bonding environment in these films were obtained from Raman and FTIR studies. Blue-shift of the surface plasmon resonance peak in the optical absorbance spectra of the films could be associated with the reduction of the particle size while red shift was associated with the increase in volume fraction of metal particles. The experimental results have been discussed in light of the existing Mie theory.

  4. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  5. Biometric feature embedding using robust steganography technique

    NASA Astrophysics Data System (ADS)

    Rashid, Rasber D.; Sellahewa, Harin; Jassim, Sabah A.

    2013-05-01

    This paper is concerned with robust steganographic techniques to hide and communicate biometric data in mobile media objects like images, over open networks. More specifically, the aim is to embed binarised features extracted using discrete wavelet transforms and local binary patterns of face images as a secret message in an image. The need for such techniques can arise in law enforcement, forensics, counter terrorism, internet/mobile banking and border control. What differentiates this problem from normal information hiding techniques is the added requirement that there should be minimal effect on face recognition accuracy. We propose an LSB-Witness embedding technique in which the secret message is already present in the LSB plane but instead of changing the cover image LSB values, the second LSB plane will be changed to stand as a witness/informer to the receiver during message recovery. Although this approach may affect the stego quality, it is eliminating the weakness of traditional LSB schemes that is exploited by steganalysis techniques for LSB, such as PoV and RS steganalysis, to detect the existence of secrete message. Experimental results show that the proposed method is robust against PoV and RS attacks compared to other variants of LSB. We also discussed variants of this approach and determine capacity requirements for embedding face biometric feature vectors while maintain accuracy of face recognition.

  6. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  7. Non-integer expansion embedding techniques for reversible image watermarking

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Wang, Yi

    2015-12-01

    This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.

  8. The research and realization of embedded GIS cross platform technique

    NASA Astrophysics Data System (ADS)

    Hu, Ze-ming; Li, Jing; Wang, Zhi-gang; Yue, Chun-sheng

    2008-10-01

    For the reason of embedded processors and embedded operating systems, and under the rapid motivation of application demands, cross platform technique has become a key point and developing direction in embedded GIS field, with the main purpose that once the application software has been written, it can run on multiple platforms with little modification or without modification. At present, cross platform technique includes three major aspects: middleware technique, Java Virtual Machine technique and abstract layer technique. Among these three techniques, the realization process of middleware has a close contact with the host operating system platform. Java Language has a good cross platform property relying on Java virtual machine, but code execution efficiency is poor. Abstract layer technique also has a good cross platform property, high code execution efficiency and better expansibility, but the interface definition and relative realization of abstract layer are more complicated. A fine software system architecture structure is important to ensure success for any software system. Obeying the hierarchical and modular design principle of cross platform software methods, after analyzing and comparing the advantages and disadvantages of the three cross platform techniques in details, abstract layer technique is adopted in this paper to design the software system architecture of embedded GIS cross platform, and describes the interior components of software developing platform layer. At present this cross platform architecture has been successfully realized on WinCE and Vxworks platforms, and the performance of operating map is very good.

  9. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  10. Reversible data embedding into images using wavelet techniques and sorting.

    PubMed

    Kamstra, Lute; Heijmans, Henk J A M

    2005-12-01

    The proliferation of digital information in our society has enticed a lot of research into data-embedding techniques that add information to digital content, like images, audio, and video. In this paper, we investigate high-capacity lossless data-embedding methods that allow one to embed large amounts of data into digital images (or video) in such a way that the original image can be reconstructed from the watermarked image. We present two new techniques: one based on least significant bit prediction and Sweldens' lifting scheme and another that is an improvement of Tian's technique of difference expansion. The new techniques are then compared with various existing embedding methods by looking at capacity-distortion behavior and capacity control. PMID:16370461

  11. Strain characterization of embedded aerospace smart materials using shearography

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  12. Characterization of sand lenses embedded in tills

    NASA Astrophysics Data System (ADS)

    Kessler, T. C.; Klint, K. E. S.; Nilsson, B.; Bjerg, P. L.

    2012-10-01

    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric parameters is defined to allow characterization of sand lenses. The proposed classification scheme uses a stringent terminology to distinguish several types of sand lenses based on the geometry. It includes sand layers, sand sheets, sand bodies, sand pockets and sand stringers. The methodology has been applied at the Kallerup field site in the Eastern part of Denmark. The site offers exposures in a number of till types that underwent different levels of glaciotectonic deformation. Sand lenses show high spatial variability and only weak uniformity in terms of extent and shape. Secondly, the genesis of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses in various glacial environments. Due to the complex and mutable appearance of sand lenses, geometric descriptions can reveal the deformation history and even give indications on the palaeo-glaciological conditions during the deposition of the surrounding tills. This information can support the understanding of till genesis and further inform till classifications. In this regard, structural heterogeneity such as sand lenses can supplement traditional directional element analysis

  13. Structural characterization of copolymer embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  14. Techniques for Embedding Instrumentation in Pressure Vessel Test Articles

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael

    2006-01-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  15. Techniques for Characterizing Microwave Printed Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee; Lee, Richard Q.

    2003-01-01

    The combination of a de-embedding technique and a direct on-substrate measurement technique has been devised to enable measurement of the electrical characteristics (impedances, scattering parameters, and gains) of microwave printed antennas that may be formed integrally with feed networks that include slot lines, coplanar striplines, and/or coplanar waveguides. The combination of techniques eliminates the need for custom test fixtures, including transitions between (1) coaxial or waveguide feed lines in typical test equipment and (2) the planar waveguide structures of the printed circuits under test. The combination of techniques can be expected to be especially useful for rapid, inexpensive, and accurate characterization of antennas for miniature wireless communication units that operate at frequencies from a few to tens of gigahertz.

  16. Machine learning techniques for energy optimization in mobile embedded systems

    NASA Astrophysics Data System (ADS)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  17. Characterization of tissue and slide artifacts from automated embedding systems.

    PubMed

    Goldberg, Matthew S; Wetherington, Sarah J; Susa, Joseph S; Wickless, Scott C; Cockerell, Clay J

    2015-11-01

    With recent technological advances and cost reductions, automated embedding systems are rapidly becoming routine in the processing of skin biopsy specimens. The efficiency advantages of this technique are due in part to the use of patented sectionable cassettes that hold formalin-fixed tissue from the time of grossing through tissue sectioning. In this process, the final paraffin block contains both the tissue and the cassette, which are sectioned and stained in unison. Here, we report the multiple tissue and slide artifacts commonly seen with automated embedding systems that are unique to this method of tissue processing. The most frequently observed tissue changes are patterned molding of the biopsy specimen around the cassette material. The most common slide artifacts are due to the presence of geometrically shaped polarizable cassette material adjacent to or overlying the stained tissue. As many of these artifacts strongly resemble the shapes seen in the classic 1980s video game, Tetris, we propose the term of Tetris-like artifacts for these findings. Although we remain confident that use of an automated embedding system does not decrease diagnostic reliability, increased familiarity with the standard appearance of slides processed using this technique will help avoid confusion when evaluating these cases.

  18. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  19. Single Cell Electrical Characterization Techniques.

    PubMed

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-01-01

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell's electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell's electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed. PMID:26053399

  20. Single Cell Electrical Characterization Techniques

    PubMed Central

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-01-01

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed. PMID:26053399

  1. Surface Characterization Techniques: An Overview

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2002-01-01

    To understand the benefits that surface modifications provide, and ultimately to devise better ones, it is necessary to study the physical, mechanical, and chemical changes they cause. This chapter surveys classical and leading-edge developments in surface structure and property characterization methodologies. The primary emphases are on the use of these techniques as they relate to surface modifications, thin films and coatings, and tribological engineering surfaces and on the implications rather than the instrumentation.

  2. A practical approach for the correction of iatrogenic penile skin loss in children: Scrotal embedding technique

    PubMed Central

    Ziylan, Orhan; Acar, Ömer; Özden, Burcu Celet; Tefik, Tzevat; Dönmez, M. İrfan; Oktar, Tayfun

    2015-01-01

    The aim of this particular study is to determine the efficacy of scrotal embedding technique in children with overly deficient penile shaft skin, which takes advantage of the rich vascular supply of the scrotal layers and provides adequate tissue coverage. We give the operative and clinical details of two consecutive cases for which we preferred scrotal embedding technique to replace deficient penile skin. The mean operative time for the first and second stages was 72.5 and 52.5 min, respectively. Intraoperative and postoperative courses and convalescences were uneventful. The patients were hospitalized for a mean duration of 2 days. After a mean follow-up of 29 months, cosmetic and functional results were satisfactory. Scrotal embedding technique should be considered as a feasible surgical alternative while reconstructing the penile shaft in iatrogenic cases with overly deficient shaft skin. PMID:26623155

  3. Characterization of multifunctional structural capacitors for embedded energy storage

    NASA Astrophysics Data System (ADS)

    Lin, Yirong; Sodano, Henry A.

    2009-12-01

    Multifunctional composites are a class of materials that combine structural and other functionalities such as sensing, actuation, energy harvesting, and vibration control in order to maximize structural performance while minimizing weight and complexity. Among all the multifunctional composites developed so far, piezoelectric composites have been widely studied due to the high coupling of energy between the electrical and mechanical domains and the inherently high dielectric constant. Several piezoelectric fiber composites have been developed for sensing and actuation applications; however, none of the previously studied composites fully embed all components of an energy storage device as load bearing members of the structure. A multifunctional fiber that can be embedded in a composite material to perform sensing and actuation has been recently developed [Y. Lin and H. A. Sodano, Adv. Funct. Mater. 18, 592 (2008)], in addition to providing load bearing functionality. The design was achieved by coating a common structural fiber, silicon carbide, with a barium titanate piezoelectric shell, and poling the active material radically by employing the structural fiber as one of the electrodes. The silicon carbide core fiber also carries external mechanical loading to protect the brittle barium titanate shell from fracture. The excellent piezoelectric and dielectric properties of the barium titanate material make the active structural fiber an outstanding candidate for converting and storing ambient mechanical energy into electrical energy to power other electric devices in the system. This paper focuses on the characterization of energy storage capability of the multifunctional fiber provided by the dielectric properties of the barium titanate shell. The capacitances of the multifunctional fibers with four different aspect ratios are tested and compared with the theoretical expressions for the cylindrical capacitor, while the breakdown voltages of the multifunctional

  4. Dimensional characterization of anesthesia dynamic in reconstructed embedding space.

    PubMed

    Gifani, P; Rabiee, H R; Hashemi, M; Ghanbari, M

    2007-01-01

    The depth of anesthesia quantification has been one of the most research interests in the field of EEG signal processing and nonlinear dynamical analysis has emerged as a novel method for the study of complex systems in the past few decades. In this investigation we use the concept of nonlinear time series analysis techniques to reconstruct the attractor of anesthesia from EEG signal which have been obtained from different hypnotic states during surgery to give a characterization of the dimensional complexity of EEG by Correlation Dimension estimation. The dimension of the anesthesia strange attractor can be thought of as a measure of the degrees of freedom or the ;complexity' of the dynamics at different hypnotic levels. The results imply that for awaked state the correlation dimension is high, On the other hand, for light, moderate and deep hypnotic states these values decrease respectively; which means for anesthetized situation we expect lower correlation dimension.

  5. A fiber-optic cure monitoring technique with accuracy improvement of distorted embedded sensors

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Hyunjin; Kim, Dae-gil; Song, Minho

    2015-07-01

    A fiber-optic epoxy cure monitoring technique for efficient wind turbine blade manufacturing and monitoring is presented. To optimize manufacturing cycle, fiber-optic sensors are embedded in composite materials of wind turbine blades. The reflection spectra of the sensors indicate the onset of gelification and the completion of epoxy curing. After manufacturing process, the same sensors are utilized for in-field condition monitoring. Because of residual stresses and strain gradients from the curing process, the embedded sensors may experience distortions in reflection spectra, resulting in measurement errors. We applied a Gaussian curve-fitting algorithm to the distorted spectra, which substantially improved the measurement accuracy.

  6. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  7. Use of Raman Spectroscopy in Characterizing Formalin-Fixed, Paraffin-Embedded Breast Tumor Samples (abstract)

    NASA Astrophysics Data System (ADS)

    Downey, Frances; Cade, Nicholas; Cook, Richard; Springall, Robert; Gillet, Cheryl; Richards, David; Festy, Frederic

    2009-04-01

    Formalin-fixed, paraffin-embedded (FFPE) sections of breast tissue are used by pathologists to correctly type and grade the primary tumor and to assess the extent of a patient's disease. The cut sections represent a reproducible likeness of the morphology of the tissue when viewed through a microscope, although the fixation technique creates some artifacts. What is not known is how the sections differ chemically from how the tumor would look or behave within the breast. Raman spectroscopy is, like many other optical techniques, fast, noninvasive, and generally inexpensive. The advantage Raman has over other techniques is its powerful ability to identify specific chemicals, molecules, and bonds within a sample. Using Raman spectroscopy the chemicals present in both fresh tissue and FFPE sections can be identified and compared, allowing any differences between them to be identified. This information may be useful to the pathologist as an aid to further treatment regimes or novel molecular techniques, and as an aid to patient management. If these sections are found to be chemically similar to fresh tissue, they could be used to further characterize breast tumors, particularly rare tumors, using Raman spectroscopy.

  8. Graph Embedding Techniques for Bounding Condition Numbers of Incomplete Factor Preconditioning

    NASA Technical Reports Server (NTRS)

    Guattery, Stephen

    1997-01-01

    We extend graph embedding techniques for bounding the spectral condition number of preconditioned systems involving symmetric, irreducibly diagonally dominant M-matrices to systems where the preconditioner is not diagonally dominant. In particular, this allows us to bound the spectral condition number when the preconditioner is based on an incomplete factorization. We provide a review of previous techniques, describe our extension, and give examples both of a bound for a model problem, and of ways in which our techniques give intuitive way of looking at incomplete factor preconditioners.

  9. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique.

    PubMed

    Cebral, Juan R; Löhner, Rainald

    2005-04-01

    The simulation of blood flow past endovascular devices such as coils and stents is a challenging problem due to the complex geometry of the devices. Traditional unstructured grid computational fluid dynamics relies on the generation of finite element grids that conform to the boundary of the computational domain. However, the generation of such grids for patient-specific modeling of cerebral aneurysm treatment with coils or stents is extremely difficult and time consuming. This paper describes the application of an adaptive grid embedding technique previously developed for complex fluid structure interaction problems to the simulation of endovascular devices. A hybrid approach is used: the vessel walls are treated with body conforming grids and the endovascular devices with an adaptive mesh embedding technique. This methodology fits naturally in the framework of image-based computational fluid dynamics and opens the door for exploration of different therapeutic options and personalization of endovascular procedures. PMID:15822805

  10. Ambient air contamination: Characterization and detection techniques

    NASA Technical Reports Server (NTRS)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  11. Experimental characterization of sensor and actuator embedded in intelligent materials

    SciTech Connect

    Burford, M.K.; Murphy, K.A.; Claus, R.O.; Miller, M.S.; Grace, J.L.; Carman, G.P.

    1994-12-31

    The authors report results from a research program which investigating the feasibility of utilizing optical fiber sensors to experimentally verify actuator properties as well as to determine the nonlinear behavior of the actuators. The measurement of longitudinal strain by extrinsic Fabry-Perot interferometers (EFPI`s) is presented for three PZT/material configurations as the voltage applied to the specimen is ramped up and down under various loading and clamping conditions. These arrangements simulate an actuator (1) by itself, (2) embedded in a composite laminate, and (3) attached to a composite laminate. Loaded and unloaded conditions are tested for two configurations to determine the nonlinear effects of loads on the PZT material. Experimental results are presented.

  12. A novel margin-based linear embedding technique for visual object recognition

    NASA Astrophysics Data System (ADS)

    Dornaika, F.; Assoum, A.

    2012-01-01

    Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Although many linear discriminant analysis methods have been proposed in the literature, they suffer from at least one of the following shortcomings: i) they require the setting of many parameters (e.g., the neighborhood sizes for homogeneous and heterogeneous samples), ii) they suffer from the Small Sample Size problem that often occurs when dealing with visual data sets for which the number of samples is less than the dimension of the sample, and iii) most of the traditional subspace learning methods have to determine the dimension of the projected space by either cross-validation or exhaustive search. In this paper, we propose a novel margin-based linear embedding method that exploits the nearest hit and the nearest miss samples only. Our proposed method tackles all the above shortcomings. It finds the projection directions such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearancebased face recognition. Experimental results performed on four public face databases show that the proposed approach can give better generalization performance than the competing methods. These competing methods used for performance comparison were: Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Average Neighborhood Margin Maximization (ANMM), and Maximally Collapsing Metric Learning algorithm (MCML). The proposed approach could also be applied to other category of objects characterized by large variations in their appearance.

  13. Design of multifunctional structure with embedded electronic circuitry using composite laminate optimization techniques

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Crossley, William

    2008-10-01

    This research investigates the optimization of a multifunctional structure with embedded electronic circuitry, following traditional composite laminate optimization methods. A heavily 'de-featured' finite element model provides thermal and mechanical analyses of the structure. The model places point heat sources at the surface component locations, and the optimization problem enforces strain constraints at these locations. A simple problem seeks the least-mass I-beam whose shear web contains a simple circuit, subject to strength and strain constraints. A second problem finds the lowest mass unmanned aerial vehicle (UAV) wing box configuration containing embedded circuitry subject to strength, deflection and strain constraints under two load cases. Sequential unconstrained minimization techniques and sequential quadratic programming perform the optimization; combinatorial methods are computationally impractical. Despite the model de-featuring and the use of calculus-based methods, the problem requires significant computational effort. The surface-component strain constraints result in structures with more mass than those without surface components.

  14. Characterization of embedded fiber optic strain sensors into metallic structures via ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Schomer, John J.; Hehr, Adam J.; Dapino, Marcelo J.

    2016-04-01

    Fiber Bragg Grating (FBG) sensors measure deviation in a reflected wavelength of light to detect in-situ strain. These sensors are immune to electromagnetic interference, and the inclusion of multiple FBGs on the same fiber allows for a seamlessly integrated sensing network. FBGs are attractive for embedded sensing in aerospace applications due to their small noninvasive size and prospect of constant, real-time nondestructive evaluation. In this study, FBG sensors are embedded in aluminum 6061 via ultrasonic additive manufacturing (UAM), a rapid prototyping process that uses high power ultrasonic vibrations to weld similar and dissimilar metal foils together. UAM was chosen due to the desire to embed FBG sensors at low temperatures, a requirement that excludes other additive processes such as selective laser sintering or fusion deposition modeling. In this paper, the embedded FBGs are characterized in terms of birefringence losses, post embedding strain shifts, consolidation quality, and strain sensing performance. Sensors embedded into an ASTM test piece are compared against an exterior surface mounted foil strain gage at both room and elevated temperatures using cyclic tensile tests.

  15. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO.

    PubMed

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; El-Khoury, P Z; Kayani, Asghar; Hess, W P; Thevuthasan, S

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag(+) ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. PMID:23403363

  16. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  17. Revisiting fixation and embedding techniques for optimal detection of dendritic cell subsets in tissues.

    PubMed

    Accart, Nathalie; Sergi, Florinda; Rooke, Ronald

    2014-09-01

    Organ-specific cell types are maintained by tissue homeostasis and may vary in nature and/or frequency in pathological situations. Moreover, within a cell lineage, some sub-populations, defined by combinations of cell-surface markers, may have specific functions. Dendritic cells are the epitome of such a population as they may be subdivided into discrete sub-groups with defined functions in specific compartments of various organs. Technically, to study the distribution of DC sub-populations, it involves performing multiparametric immunofluorescence on well-conserved organ structures. However, immunodetection may be impacted by protein cross-linking and antigenic epitope masking by the use of 10% neutral-buffered formalin. To circumvent this and to preserve a good morphological tissue structure, we evaluated alternative fixatives such as Periodate Lysine Paraformaldehyde or Tris Zinc fixatives in combination with other embedding techniques. The cryosection protocols were adapted for optimal antigen detection but offered a poor morphological preservation. We therefore developed a new methodology based on Tris Zinc fixative, gelatin-sucrose embedding and freezing. Using multiple DC markers, we demonstrate that this treatment is an optimal protocol for cell-surface marker detection on high-quality tissue sections. PMID:24874853

  18. Blind image watermarking technique based on differential embedding in DWT and DCT domains

    NASA Astrophysics Data System (ADS)

    Benoraira, Ali; Benmahammed, Khier; Boucenna, Noureddine

    2015-12-01

    This paper presents a new blind and robust image watermarking scheme based on discrete wavelet transform (DWT) and discrete cosine transform (DCT). Two DCT-transformed sub-vectors are used to embed the bits of the watermark sequence in a differential manner. The original sub-vectors are obtained by the sub-sampling of the approximation coefficients of the DWT transform of the host image. During the extraction stage, the simple difference between the corresponding sub-vectors of the watermarked image, gives directly the embedded watermark sequence. Experimental results demonstrate that the proposed technique successfully fulfills the requirement of imperceptibility and provides high robustness against a number of image-processing attacks, such as JPEG compression, noise adding, low-pass filtering, sharpening, and bit-plane removal. Our scheme exhibits also an acceptable to good performance against some geometrical attacks such as resizing and cropping.

  19. New characterization techniques for LSST sensors

    SciTech Connect

    Nomerotski, A.

    2015-06-18

    Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.

  20. New Techniques in Characterization of Ferroelectric Materials

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp

    2008-01-01

    Two new techniques have been developed to characterize Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) based ferroelectric single crystals: (i) electro-thermal imaging, and (ii) single crystal x-ray diffraction in the transmission mode. (i) Electro-thermal imaging is a remote sensing technique that can detect the polarization direction and poling state of a whole crystal slice. This imaging technique utilizes an IR camera to determine the field induced temperature change and does not require any special or destructive sample preparation. In the resulting images it is possible to distinguish regions of 180 deg domains. This powerful technique can be used remotely during poling to determine the poling state of the crystal to avoid over-poling that can result in inferior properties and/or cracking of the crystals. Electro-thermal imaging produced the first direct observations of polarization rotation. Under bipolar field, the domains near the corners were the first to switch direction. As the field increased above the coercive field, domains at the center part of the crystals switched direction. (ii) X-ray diffraction in the transmission mode has long been used in structure determination of organic crystals and proteins; however, it is not used much to characterize inorganic systems. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were examined by this XRD technique for the first time, and a never-before-seen super-lattice was revealed with a doubling of the unit cell in all three directions, giving a cell volume eight times that of a traditional perovskite unit cell. The significance of the super-lattice peaks increased with poling, indicating a structural contribution to ordering. Lack of such observations by electron diffraction in the transmission electron microscope examinations suggests the presence of a bulk effect.

  1. Deterministic embedding of a single gold nanoparticle into polymeric microstructures by direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Nguyen, Dam Thuy Trang; Pelissier, Aurélien; Montes, Kevin; Tong, Quang Cong; Ngo, Hoang Minh; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-04-01

    We have precisely positioned and embedded a single gold nanoparticle (Au NP) into a desired polymeric photonic structure (PS) using a simple and low-cost technique called low one-photon absorption direct laser writing (LOPA DLW), with a two-step process: identification and fabrication. First, the position of the Au NP was identified with a precision of 20 nm by using DLW technique with ultralow excitation laser power (μW). This power did not induce the polymerization of the photoresist (SU8) due to its low absorption at the excitation wavelength (532 nm). Then, the structure containing the NP was fabricated by using the same DLW system with high excitation power (mW). Different 2D photonic structures have been fabricated, which contain a single Au NP at desired position. In particular, we obtained a microsphere instead of a micropillar at the position of the Au NP. The formation of such microsphere was explained by the thermal effect of the Au NP at the wavelength of 532 nm, which induced thermal polymerization of surrounding photoresist. The effect of the post-exposure bake on the quality of structures was taken into account, revealing a more efficient fabrication way by exploiting the local thermal effect of the laser. We studied further the influence of the NP size on the NP/PS coupling by investigating the fabrication and fluorescence measurement of Au NPs of different sizes: 10, 30, 50, 80, and 100 nm. The photon collection enhancements in each case were 12.9 +/- 2.5, 12.6 +/- 5.6, 3.9 +/- 2.7, 5.9 +/- 4.4, and 6.6 +/- 5.1 times, respectively. The gain in fluorescence could reach up to 36.6 times for 10-nm gold NPs.

  2. Techniques for physicochemical characterization of nanomaterials

    PubMed Central

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  3. Geologic flow characterization using tracer techniques

    SciTech Connect

    Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

  4. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    SciTech Connect

    Eydam, Agnes Suchaneck, Gunnar Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-11-05

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes.

  5. Compton back scatter imaging for mild steel rebar detection and depth characterization embedded in concrete

    NASA Astrophysics Data System (ADS)

    Margret, M.; Menaka, M.; Venkatraman, B.; Chandrasekaran, S.

    2015-01-01

    A novel non-destructive Compton scattering technique is described to ensure the feasibility, reliability and applicability of detecting the reinforcing steel bar in concrete. The indigenously developed prototype system presented in this paper is capable of detecting the reinforcement of varied diameters embedded in the concrete and as well as up to 60 mm depth, with the aid of Caesium-137(137Cs) radioactive source and a high resolution HPGe detector. The technique could also detect the inhomogeneities present in the test specimen by interpreting the material density variation caused due to the count rate. The experimental results are correlated using established techniques such as radiography and rebar locators. The results obtained from its application to locate the rebars are quite promising and also been successfully used for reinforcement mapping. This method can be applied, especially when the intrusion is located underneath the cover of the concrete or considerably at larger depths and where two sided access is restricted.

  6. Background Characterization Techniques For Pattern Recognition Applications

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Noah, Paul V.; Schroeder, John W.; Kessler, Bernard V.; Chernick, Julian A.

    1989-08-01

    The Department of Defense has a requirement to investigate technologies for the detection of air and ground vehicles in a clutter environment. The use of autonomous systems using infrared, visible, and millimeter wave detectors has the potential to meet DOD's needs. In general, however, the hard-ware technology (large detector arrays with high sensitivity) has outpaced the development of processing techniques and software. In a complex background scene the "problem" is as much one of clutter rejection as it is target detection. The work described in this paper has investigated a new, and innovative, methodology for background clutter characterization, target detection and target identification. The approach uses multivariate statistical analysis to evaluate a set of image metrics applied to infrared cloud imagery and terrain clutter scenes. The techniques are applied to two distinct problems: the characterization of atmospheric water vapor cloud scenes for the Navy's Infrared Search and Track (IRST) applications to support the Infrared Modeling Measurement and Analysis Program (IRAMMP); and the detection of ground vehicles for the Army's Autonomous Homing Munitions (AHM) problems. This work was sponsored under two separate Small Business Innovative Research (SBIR) programs by the Naval Surface Warfare Center (NSWC), White Oak MD, and the Army Material Systems Analysis Activity at Aberdeen Proving Ground MD. The software described in this paper will be available from the respective contract technical representatives.

  7. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, M.S.; Moran, E.H.; Ourso, R.T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (???2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wade-able and contained gravel - cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  8. Development of embedded modulated scatterer technique: Single- and dual-loaded scatterers

    NASA Astrophysics Data System (ADS)

    Donnell, Kristen Marie

    Health monitoring of infrastructure is an important ongoing issue. Therefore, it is important that a cost-effective and practical method for evaluating complex composite structures be developed. A promising microwave-based embedded sensor technology is developed based on the Modulated Scatterer Technique (MST). MST is based on illuminating a probe, commonly a dipole antenna loaded with a PIN diode (also referred to as a single-loaded scatterer, or SLS), with an electromagnetic wave. This impinging wave induces a current along the scatterer length, which causes a scattered field to be reradiated. Modulating the PIN diode also modulates the signal scattered by the probe, resulting in two different states of the probe. By measuring this scattered field, information about the material in the vicinity of the probe may be determined. Using the ratio of both states of the probe removes the dependency of MST on several measurement parameters. In order to separate the scattered signal from reflections from other targets present in the total detected signal, a swept-frequency measurement process and subsequent Fourier Transform (time-gate method) was incorporated into MST. Additionally, a full electromagnetic study of the SLS, as applied to MST, was also conducted. The increased measurement complexity and data processing resulting from the time-gate method prompted the development of a novel dual-loaded scatterer (DLS) probe design, with four possible modulation states. By taking a differential ratio, the reflections from other targets can be effectively removed, while preserving the measurement parameter independence of the SLS ratio. A full electromagnetic derivation and analysis of the capabilities of the DLS as applied to MST is included in this investigation, as well as representative measurements using the DLS probe.

  9. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Mannarino, Manuel; Chintala, Ravi; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof; Vandervorst, Wilfried

    2015-12-01

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III-V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III-V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  10. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    SciTech Connect

    Mannarino, Manuel E-mail: manuelmannarino@gmail.com; Chintala, Ravi; Vandervorst, Wilfried; Moussa, Alain; Merckling, Clement; Eyben, Pierre; Paredis, Kristof

    2015-12-14

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of different chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.

  11. [Morphologic HIV demonstration in formalin embedded material--techniques, problems, results].

    PubMed

    Zietz, C; Speiser, B; Hell, W; Stürzl, M; Wolf, H; Roth, W K

    1991-01-01

    Formalin-fixed, paraffin-embedded material of archival specimens is suitable for a morphological HIV-detection: Infected cells with HIV in the proliferative phase can be demonstrated with reliable results on tissue sections by immunohistological technics using new antibodies. In situ nucleic acid hybridisation technics can also show HIV in the expression phase on paraffin-embedded material, but often fail in demonstrating latently HIV-infected cells. The DNA-Polymerase chain reaction can detect latent Provirus in morphologically defined areas of paraffin sections even in autopsy material, i.e. lymphnodes and even eyes of patients with HIV-Infection, but requires precaution and control with respect to contamination.

  12. Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice.

    PubMed

    Yang, J; Guzman, R C; Popnikolov, N; Bandyopadhyay, G K; Christov, K; Collins, G; Nandi, S

    1994-06-30

    We have developed a method to characterize the phenotypes and tumorigenicity of dissociated human breast epithelial cells. The dissociated cells were first embedded in collagen gels and subsequently transplanted subcutaneously in vivo in athymic nude mice. The transplantation of dissociated epithelial cells from reduction mammoplasties, presumed to be normal, always resulted in normal histomorphology. Epithelial cells were arranged as short tubular structures consisting of lumina surrounded by epithelial cells with an occasional more complex branching structure. These outgrowths were surrounded by intact basement membrane and were embedded in collagen gel that, at termination, contained collagenous stroma with fibroblasts and blood vessels. In contrast, transplantation of dissociated breast epithelial cells from breast cancer specimens resulted in outgrowths with an invasive pattern infiltrating the collagen gel as well as frank invasion into vascular space, nerves and muscles. These observations were made long before the subsequent palpable stage which resulted if left in the mouse for a long enough time. The dissociated human breast epithelial cells thus retained their intrinsic property to undergo morphogenesis to reflect their original phenotype when placed in a suitable environment, the collagen gel.

  13. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature

    PubMed Central

    Huang, C.-Y.; Trask, R. S.; Bond, I. P.

    2010-01-01

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension. PMID:20150337

  14. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature.

    PubMed

    Huang, C-Y; Trask, R S; Bond, I P

    2010-08-01

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension.

  15. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    PubMed Central

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven. PMID:25961383

  16. A micro-computed tomography technique to study the quality of fibre optics embedded in composite materials.

    PubMed

    Chiesura, Gabriele; Luyckx, Geert; Voet, Eli; Lammens, Nicolas; Van Paepegem, Wim; Degrieck, Joris; Dierick, Manuel; Van Hoorebeke, Luc; Vanderniepen, Pieter; Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Berghmans, Francis

    2015-01-01

    Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven.

  17. [Morphologic HIV demonstration in formalin embedded material--techniques, problems, results].

    PubMed

    Zietz, C; Speiser, B; Hell, W; Stürzl, M; Wolf, H; Roth, W K

    1991-01-01

    Formalin-fixed, paraffin-embedded material of archival specimens is suitable for a morphological HIV-detection: Infected cells with HIV in the proliferative phase can be demonstrated with reliable results on tissue sections by immunohistological technics using new antibodies. In situ nucleic acid hybridisation technics can also show HIV in the expression phase on paraffin-embedded material, but often fail in demonstrating latently HIV-infected cells. The DNA-Polymerase chain reaction can detect latent Provirus in morphologically defined areas of paraffin sections even in autopsy material, i.e. lymphnodes and even eyes of patients with HIV-Infection, but requires precaution and control with respect to contamination. PMID:1724819

  18. Characterizing odors from cattle feedlots with different odor techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odors from cattle feedlots negatively affect local communities. The purpose of this study was to characterize odors and odorants using different odor sampling techniques. Odors were characterized with field olfactometers (Nasal Ranger®), sensory techniques (GC-O) and analytical techniques (sorbent t...

  19. Complex Retrieval of Embedded IVC Filters: Alternative Techniques and Histologic Tissue Analysis

    SciTech Connect

    Kuo, William T.; Cupp, John S.; Louie, John D.; Kothary, Nishita; Hofmann, Lawrence V.; Sze, Daniel Y.; Hovsepian, David M.

    2012-06-15

    Purpose: We evaluated the safety and effectiveness of alternative endovascular methods to retrieve embedded optional and permanent filters in order to manage or reduce risk of long-term complications from implantation. Histologic tissue analysis was performed to elucidate the pathologic effects of chronic filter implantation. Methods: We studied the safety and effectiveness of alternative endovascular methods for removing embedded inferior vena cava (IVC) filters in 10 consecutive patients over 12 months. Indications for retrieval were symptomatic chronic IVC occlusion, caval and aortic perforation, and/or acute PE (pulmonary embolism) from filter-related thrombus. Retrieval was also performed to reduce risk of complications from long-term filter implantation and to eliminate the need for lifelong anticoagulation. All retrieved specimens were sent for histologic analysis. Results: Retrieval was successful in all 10 patients. Filter types and implantation times were as follows: one Venatech (1,495 days), one Simon-Nitinol (1,485 days), one Optease (300 days), one G2 (416 days), five Guenther-Tulip (GTF; mean 606 days, range 154-1,010 days), and one Celect (124 days). There were no procedural complications or adverse events at a mean follow-up of 304 days after removal (range 196-529 days). Histology revealed scant native intima surrounded by a predominance of neointimal hyperplasia and dense fibrosis in all specimens. Histologic evidence of photothermal tissue ablation was confirmed in three laser-treated specimens. Conclusion: Complex retrieval methods can now be used in select patients to safely remove embedded optional and permanent IVC filters previously considered irretrievable. Neointimal hyperplasia and dense fibrosis are the major components that must be separated to achieve successful retrieval of chronic filter implants.

  20. Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval.

    PubMed

    O'Rourke, Matthew B; Padula, Matthew P

    2016-01-01

    Since emerging in the late 19(th) century, formaldehyde fixation has become a standard method for preservation of tissues from clinical samples. The advantage of formaldehyde fixation is that fixed tissues can be stored at room temperature for decades without concern for degradation. This has led to the generation of huge tissue banks containing thousands of clinically significant samples. Here we review techniques for proteomic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue samples with a specific focus on the methods used to extract and break formaldehyde crosslinks. We also discuss an error-of-interpretation associated with the technique known as "antigen retrieval." We have discovered that this term has been mistakenly applied to two disparate molecular techniques; therefore, we argue that a terminology change is needed to ensure accurate reporting of experimental results. Finally, we suggest that more investigation is required to fully understand the process of formaldehyde fixation and its subsequent reversal. PMID:27177815

  1. Transient Electrical and Thermal Characterization of InGaAlAs Thin Films with embedded ErAs Nanoparticles.

    NASA Astrophysics Data System (ADS)

    Favaloro, Tela; Singh, Rajeev; Christofferson, James; Ezzahri, Younes; Bian, Zhixi; Shakouri, Ali; Zeng, Gehong; Bahk, Je-Hyeoung; Bowers, John; Lu, Hong; Gossard, Arthur

    2009-03-01

    We developed a system for accurate high-temperature characterization of thermoelectric materials and devices. This system can be used for electrical measurements of thermoelectric properties and contains an integrated optical thermoreflectance imaging system is integrated into the thermostat for analysis of sample surface temperature profile resulting from the Peltier effect, Joule heating or external thermal excitation within the sample. Transient electrical and thermal measurements are useful to extract material diffusivity of each layer. We have performed high temperature transient analyses and thermal imaging of thin film devices optimized for direct figure of merit detection in the cross-plane direction. These devices consist of 25 micron thick samples of InGaAlAs films with embedded ErAs nanoparticles. Using the transient Harman technique, we determine the cross-plane figure of merit and electrical conductivity. Thermal imaging is used to ensure current injection uniformity across the device and to extract the Seebeck coefficient and thermal conductivity of the material. The experimental results and theoretical analysis are given.

  2. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  3. An Efficient Algorithm Embedded in an Ultrasonic Visualization Technique for Damage Inspection Using the AE Sensor Excitation Method

    PubMed Central

    Liu, Yaolu; Goda, Riu; Samata, Kiyoshi; Kanda, Atsushi; Hu, Ning; Zhang, Jianyu; Ning, Huiming; Wu, Liangke

    2014-01-01

    To improve the reliability of a Lamb wave visualization technique and to obtain more information about structural damages (e.g., size and shape), we put forward a new signal processing algorithm to identify damage more clearly in an inspection region. Since the kinetic energy of material particles in a damaged area would suddenly change when ultrasonic waves encounter the damage, the new algorithm embedded in the wave visualization technique is aimed at monitoring the kinetic energy variations of all points in an inspection region to construct a damage diagnostic image. To validate the new algorithm, three kinds of surface damages on the center of aluminum plates, including two non-penetrative slits with different depths and a circular dent, were experimentally inspected. From the experimental results, it can be found that the new algorithm can remarkably enhance the quality of the diagnostic image, especially for some minor defects. PMID:25356647

  4. Characterization of polymer monoliths containing embedded nanoparticles by scanning transmission X-ray microscopy (STXM).

    PubMed

    Arrua, R Dario; Hitchcock, Adam P; Hon, Wei Boon; West, Marcia; Hilder, Emily F

    2014-03-18

    The structural and chemical homogeneity of monolithic columns is a key parameter for high efficiency stationary phases in liquid chromatography. Improved characterization techniques are needed to better understand the polymer morphology and its optimization. Here the analysis of polymer monoliths by scanning transmission X-ray microscopy (STXM) is presented for the first time. Poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) [poly(BuMA-co-EDMA)] monoliths containing encapsulated divinylbenzene (DVB) nanoparticles were characterized by STXM, which gives a comprehensive, quantitative chemical analysis of the monolith at a spatial resolution of 30 nm. The results are compared with other methods commonly used for the characterization of polymer monoliths [scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury porosimetry, and nitrogen adsorption]. The technique permitted chemical identification and mapping of the nanoparticles within the polymeric scaffold. Residual surfactant, which was used during the manufacture of the nanoparticles, was also detected. We show that STXM can give more in-depth chemical information for these types of materials and therefore lead to a better understanding of the link between polymer morphology and chromatographic performance.

  5. Characterization of polymer monoliths containing embedded nanoparticles by scanning transmission X-ray microscopy (STXM).

    PubMed

    Arrua, R Dario; Hitchcock, Adam P; Hon, Wei Boon; West, Marcia; Hilder, Emily F

    2014-03-18

    The structural and chemical homogeneity of monolithic columns is a key parameter for high efficiency stationary phases in liquid chromatography. Improved characterization techniques are needed to better understand the polymer morphology and its optimization. Here the analysis of polymer monoliths by scanning transmission X-ray microscopy (STXM) is presented for the first time. Poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) [poly(BuMA-co-EDMA)] monoliths containing encapsulated divinylbenzene (DVB) nanoparticles were characterized by STXM, which gives a comprehensive, quantitative chemical analysis of the monolith at a spatial resolution of 30 nm. The results are compared with other methods commonly used for the characterization of polymer monoliths [scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury porosimetry, and nitrogen adsorption]. The technique permitted chemical identification and mapping of the nanoparticles within the polymeric scaffold. Residual surfactant, which was used during the manufacture of the nanoparticles, was also detected. We show that STXM can give more in-depth chemical information for these types of materials and therefore lead to a better understanding of the link between polymer morphology and chromatographic performance. PMID:24552424

  6. Characterizing ultrasonic transducers using pattern recognition techniques

    SciTech Connect

    Ekis, J.W.

    1992-04-01

    This project's goal was to develop an automated ultrasonic transducer characterization system. A computer-based test system collected the test data for each of the given transducers. This data set was then processed by a number of pattern recognition algorithms. The results from these classifications placed the transducers into groups of similar units. All the transducers in a group will have similar performance characteristics. Each group was isolated from the others. 49 refs.

  7. Laboratory Techniques in Geology: Embedding Analytical Methods into the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Baedke, S. J.; Johnson, E. A.; Kearns, L. E.; Mazza, S. E.; Gazel, E.

    2014-12-01

    Paid summer REU experiences successfully engage undergraduate students in research and encourage them to continue to graduate school and scientific careers. However these programs only accommodate a limited number of students due to funding constraints, faculty time commitments, and limited access to needed instrumentation. At JMU, the Department of Geology and Environmental Science has embedded undergraduate research into the curriculum. Each student fulfilling a BS in Geology or a BA in Earth Science completes 3 credits of research, including a 1-credit course on scientific communication, 2 credits of research or internship, followed by a presentation of that research. Our department has successfully acquired many analytical instruments and now has an XRD, SEM/EDS, FTIR, handheld Raman, AA, ion chromatograph, and an IRMS. To give as many students as possible an overview to the scientific uses and operation methods for these instruments, we revived a laboratory methods course that includes theory and practical use of instrumentation at JMU, plus XRF sample preparation and analysis training at Virginia Tech during a 1-day field trip. In addition to practical training, projects included analytical concepts such as evaluating analytical vs. natural uncertainty, determining error on multiple measurements, signal-to-noise ratio, and evaluating data quality. State funding through the 4-VA program helped pay for analytical supplies and support for students to complete research projects over the summer or during the next academic year using instrumentation from the course. This course exemplifies an alternative path to broadening participation in undergraduate research and creating stronger partnerships between PUI's and research universities.

  8. Comparison of techniques for the successful detection of BRCA1 mutations in fixed paraffin-embedded tissue.

    PubMed

    Bernstein, Jonine L; Thompson, W Douglas; Casey, Graham; DiCioccio, Richard A; Whittemore, Alice S; Diep, Anh T; Thakore, Seema S; Vaziri, Susan; Xue, Shanyan; Haile, Robert W

    2002-09-01

    Genomic DNA isolated from archived paraffin-embedded tissues (PETs) has important applicability in genetic epidemiological studies. To determine the accuracy of the sequence data, using DNA derived from PET among patients with known mutations characterized from blood, we conducted a blinded factorial experiment to simultaneously examine the influence of mutation type, age of the PET, PCR product type, and Taq DNA polymerase on BRCA1 gene mutation detection. The probability of detecting sequencing artifacts was also investigated. We found that: (a) gene detection was most accurate for newer PET; (b) high fidelity Taq with shorter PCR amplicon length yielded the highest mutation detection success rate and lowest artifact rate; and (c) base substitutions were more often correctly identified than frameshift mutations or wild-type sequences. We concluded that DNA derived from PET that archived for less than 18 years can be used successfully for detecting BRCA1 gene mutations if quality control is strictly maintained.

  9. Direct fluorescent antibody technique for the detection of bacterial kidney disease in paraffin-embedded tissues

    USGS Publications Warehouse

    Ochiai, T.; Yasutake, W.T.; Gould, R.W.

    1985-01-01

    The direct fluorescent antibody technique (FAT) was successfully used to detect the causative agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, in Bouin's solution flexed and paraffinembedded egg and tissue sections. This method is superior to gram stain and may be particularly useful in detecting the BKD organism in fish with low-grade infection.

  10. The tissue is the issue: improved methylome analysis from paraffin-embedded tissues by application of the HOPE technique.

    PubMed

    Marwitz, Sebastian; Kolarova, Julia; Reck, Martin; Reinmuth, Niels; Kugler, Christian; Schädlich, Ines; Haake, Andrea; Zabel, Peter; Vollmer, Ekkehard; Siebert, Reiner; Goldmann, Torsten; Ammerpohl, Ole

    2014-08-01

    Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.

  11. Certification Aspects in Critical Embedded Software Development with Model Based Techniques: Detection of Unintended Functions

    NASA Astrophysics Data System (ADS)

    Atencia Yepez, A.; Autrán Cerqueira, J.; Urueña, S.; Jurado, R.

    2012-01-01

    This paper, developed under contract with European Aviation Safety Agency (EASA), analyses in detail which may be the certification implications in the aeronautic industry associated to the application of model-level verification and validation techniques. Particularly, this paper focuses on the problematic of detecting unintended functions by applying Model Coverage Criteria at model level. This point is significantly important for the future extensive use of Model Based approaches in safety critical software, since the uncertainty in the system performance introduced by the unintended functions, which may also lead to unacceptable hazardous or catastrophic events, prevents the system to be compliance with certification requirements. The paper provides a definition and a categorization of unintended functions and gives some relevant examples to assess the efficiency of model- coverage techniques in the detection of UF. The paper explains how this analysis is supported by a methodology based on the study of sources for introducing unintended functions. Finally it is analysed the feasibility of using Model-level verification techniques to support the software certification process.

  12. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    PubMed Central

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956

  13. Discovering and characterizing embedded stellar clusters in the near-infrared

    NASA Astrophysics Data System (ADS)

    Leistra, Andrea Lynn

    I present a near-infrared search for new embedded stellar clusters in the Galaxy, and the results of near-infrared followup observations of a subset of newly discovered stellar clusters. I discuss the initial mass function of these embedded clusters and the implications of the apparent method-dependent systematic error in the IMF. First, I present near-infrared J, H, and K images of six embedded stellar clusters in the Galaxy, and K-band spectroscopy for two. I find a significant fraction of pre-main-sequence stars present in at least two of the clusters. For the clusters dominated by main-sequence stars, we determine the initial mass function (IMF) both by using the K luminosity function and a global extinction correction and by deriving individual extinction corrections for each star based on their placement in the K vs. H - K color-magnitude diagram. Based on our IMFs we find a significant discrepancy between the mean IMF derived via the different methods, suggesting that taking individual extinctions into account is necessary to correctly derive the IMF for an embedded cluster. I find that using the KLF alone to derive an IMF is likely to produce an overly steep slope in stellar clusters subject to variable extinction, and examine literature results to see if the same effect exists in the work of other authors. I conduct a two-phase search of the 2MASS Point Source Catalog to discover previously unknown embedded stellar clusters and construct a more complete sample than has previously been available. Based on comparisons with the sample of known embedded stellar clusters we determine the completeness of the total existing sample to be ˜75% within 2 kpc. I discuss the limitations of previously employed algorithms for stellar cluster detection, and suggest possible alternatives for use in areas of high stellar background density. Finally I present a detailed look at two of the incorrectly identified embedded cluster candidates to better understand the

  14. Characterization of the solid-state: spectroscopic techniques.

    PubMed

    Bugay, D E

    2001-05-16

    The physical characterization of pharmaceutical solids is an integral aspect of the drug development process. This review summarizes the use of solid-state spectroscopy techniques used in the physical characterization of the active pharmaceutical ingredient, excipients, physical mixtures, and the final dosage form. A brief introduction to infrared, Raman, and solid-state NMR experimental techniques are described as well as a more thorough description of qualitative and quantitative applications. The use of solid-state imaging techniques such as IR, Raman, and TOF-SIMS is also introduced to the reader.

  15. Electrical characterization of a Mapham inverter using pulse testing techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Hammoud, A. N.

    1990-01-01

    The use of a multiple pulse testing technique to determine the electrical characteristics of large megawatt-level power systems for aerospace missions is proposed. An innovative test method based on the multiple pulse technique is demonstrated on a 2-kW Mapham inverter. The concept of this technique shows that characterization of large power systems under electrical equilibrium at rated power can be accomplished without large costly power supplies. The heat generation that occurs in systems when tested in a continuous mode is eliminated. The results indicate that there is a good agreement between this testing technique and that of steady state testing.

  16. In-Service Characterization Of Composite Matrices With An Embedded Fluorescence Optrode Sensor

    NASA Astrophysics Data System (ADS)

    Schwab, Scott D.; Levy, Ram L.

    1990-02-01

    The properties and durability of polymeric matrix composites are affected by the fabrication process and by the effects of their service environment. A dual-role, fluorescence based fiber-optic sensor was developed to monitor the composite curing process and subsequently to monitor the sorbed water content of the cured composite. An embedded sensor waveguide generates a signal which follows the chemorheological changes during cure of a carbon-epoxy laminate and can be used to control the proc-ess. The embedded sensor signal declines in proportion to the sorbed water content and increases when water is desorbed. The sensor can also monitor the processing variables of a carbon-PEEK thermoplastic composite. The potential of free-volume dependent fluorescence probes to monitor the physical aging of an epoxy resin was demonstrated pointing to the potential for an additional application for the sensor.

  17. High frequency characterization of conductive inks embedded within a structural composite

    NASA Astrophysics Data System (ADS)

    Pa, Peter; McCauley, Raymond; Larimore, Zachary; Mills, Matthew; Yarlaggada, Shridhar; Mirotznik, Mark S.

    2015-06-01

    Woven fabric composites provide an attractive platform for integrating electromagnetic functionality—such as conformal load-bearing antennas and frequency selective surfaces—into a structural platform. One practical fabrication method for integrating conductive elements within a woven fabric composite system involves using additive manufacturing systems such as screen printing. While screen printing is an inherently scalable, flexible and cost effective method, little is known about the high frequency electrical properties of its conductive inks when they are embedded within the woven fabric composite. Thus, we have completed numerical and experimental studies to determine the electrical conductivity of screen printable conductive inks that are embedded within this composite. We have also performed mechanical studies to evaluate how printing affects the structural performance of the composite.

  18. Synthesis, characterization, UV and dielectric properties of hexagonal disklike ZnO particles embedded in polyimides

    SciTech Connect

    Vural, Sema; Koeytepe, Sueleyman; Seckin, Turgay; Adiguezel, Ibrahim

    2011-10-15

    Graphical abstract: The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. ZnO/polyimide composite films with different ZnO contents was prepared. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology and thermal behavior. Composites with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties. Highlights: {yields} A series of novel ZnO/polyimide composite films with different ZnO contents was prepared. {yields} The ZnO was homogeneously dispersed in the PI matrix. {yields} The composites showed the low dielectric constant of 50 at 10{sup 6} Hz. {yields} Homogenous dispersion and the amount of ZnO particles contributed to the dielectric properties of composites. -- Abstract: A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.

  19. Thermo-optical characterization of cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots embedded in biocompatible materials.

    PubMed

    Pilla, Viviane; Alves, Leandro P; Iwazaki, Adalberto N; Andrade, Acácio A; Antunes, Andrea; Munin, Egberto

    2013-09-01

    Cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell quantum dots (QDs) embedded in biocompatible materials were thermally and optically characterized with a thermal lens (TL) technique. Transient TL measurements were performed with a mode-mismatched, dual-beam (excitation and probe) configuration. A thermo-optical study of the CdSe/ZnS QDs was performed for different core diameters (3.5, 4.0, 5.2, and 6.6 nm) in aqueous solution and synthetic saliva, and three different core diameters (2.4, 2.9, and 4.1 nm) embedded in restorative dental resin (0.025% by mass). The thermal diffusivity results are characteristic of the biocompatible matrices. The radiative quantum efficiencies for aqueous solution and biofluid materials are dependent on the core size of the CdSe/ZnS core-shell QDs. The results obtained from the fluorescence spectral measurements for the biocompatible materials support the TL results.

  20. Statistical techniques for the characterization of partially observed epidemics.

    SciTech Connect

    Safta, Cosmin; Ray, Jaideep; Crary, David; Cheng, Karen

    2010-11-01

    Techniques appear promising to construct and integrate automated detect-and-characterize technique for epidemics - Working off biosurveillance data, and provides information on the particular/ongoing outbreak. Potential use - in crisis management and planning, resource allocation - Parameter estimation capability ideal for providing the input parameters into an agent-based model, Index Cases, Time of Infection, infection rate. Non-communicable diseases are easier than communicable ones - Small anthrax can be characterized well with 7-10 days of data, post-detection; plague takes longer, Large attacks are very easy.

  1. Application of Material Characterization Techniques to Electrical Forensic Analysis

    SciTech Connect

    Mills, T.D.

    2003-03-11

    The application of forensic science techniques to electrical equipment failure investigation has not been widely documented in the engineering world. This paper is intended to share an example of using material characterization techniques to support an initial cause determination of an electrical component failure event. The resulting conclusion supported the initial cause determination and ruled out the possibility of design deficiencies. Thus, the qualification testing of the equipment was allowed to continue to successful completion.

  2. Polarized light scattering technique for morphological characterization of waterborne pathogens

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat V.; Manickavasagam, Sivakumar

    2009-05-01

    We have recently developed an elliptically polarized light scattering (EPLS) technique to characterize the morphology of fine particles suspended in an optically non-absorbing medium such as water. This technique provides the size distribution, shape and agglomeration characteristics of suspended particles. This technique can be used to detect various types of biological pathogens such as bacteria, protozoa and viruses in potable water systems. Here we report results obtained from EPLS measurements on two strains of Bacillus spores suspended in water along with comparison with electron microscopy.

  3. Analysis and characterization of structurally embedded vascular antennas using liquid metals

    NASA Astrophysics Data System (ADS)

    Hartl, Darren J.; Huff, Gregory H.; Pan, Hong; Smith, Lisa; Bradford, Robyn L.; Frank, Geoffrey J.; Baur, Jeffrey W.

    2016-04-01

    Over the past decade, a large body of research associated with the addition of microvascular networks to structural composites has been generated. The engineering goal is most often the extension of structural utility to include extended functionalities such as self-healing or improved thermal management and resilience. More recently, efforts to design reconfigurable embedded electronics via the incorporation of non-toxic liquid metals have been initiated. A wide range of planar antenna configurations are possible, and the trade-offs between structural effects, other system costs, and increased flexibility in transmitting and receiving frequencies are being explored via the structurally embedded vascular antenna (SEVA) concept. This work describes for the first time the design of a bowtie-like tunable liquid metal-based antenna for integration into a structural composite for electromagnetic use. The design of both the solid/fluid feed structure and fluid transmission lines are described and analysis results regarding the RF performance of the antenna are provided. Fabrication methods for the SEVA are explained in detail and as-fabricated components are described. Challenges associated with both fabrication and system implementation and testing are elucidated. Results from preliminary RF testing indicate that in situ response tuning is feasible in these novel multifunctional composites.

  4. Characterization and categorization of higher-dimensional presentation techniques

    NASA Astrophysics Data System (ADS)

    Cluff, Elizabeth; Burton, Robert P.; Barrett, William A.

    1990-09-01

    Existing, documented techniques for the presentation of higher dimensionaL information are characterized. Techniques include: Symbolic Star PLots, Chernoff Faces, Gtyphs, Boxes, Profile PLots, SymboLic Scatter PLots, KLeiner-Hartigan Tree SymboLs, GeneraLized Draftsman DispLays, Andrew's PLots, ParaLLeL Axes Graphics, and Cartesian Hyperspace Graphics. Each technique is evaLuated based on accuracy, simpLicity, clarity, appearance, well-designed structure, information leveL, dimansonaL capacity, flexibility, interpretability, visual impact, mastery time, and computational tractability. Strengths, weaknesses and applicabilities of each technique are determined. Techniques are categorized as symbolic and non-symbolic. Characteristics of each category are identified.

  5. Physical and chemical characterization techniques for metallic powders

    SciTech Connect

    Slotwinski, J. A.; Stutzman, P. E.; Ferraris, C. F.; Watson, S. S.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. An extensive array of characterization techniques were applied to these two powders. The physical techniques included laser-diffraction particle-size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry included X-ray diffraction and energy-dispersive analytical X-ray analysis. The background of these techniques will be summarized and some typical findings comparing different samples of virgin additive manufacturing powders, taken from the same lot, will be given. The techniques were used to confirm that different samples of powder from the same lot were essentially identical, within the uncertainty of the measurements.

  6. Analytical technique characterizes all trace contaminants in water

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Lysyj, I.; Nelson, K. H.

    1967-01-01

    Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.

  7. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  8. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  9. Characterization of microstructure with low frequency electromagnetic techniques

    SciTech Connect

    Cherry, Matthew R.; Sathish, Shamachary; Pilchak, Adam L.; Blodgett, Mark P.; Cherry, Aaron J.

    2014-02-18

    A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.

  10. A new technique for the characterization of chaff elements

    NASA Astrophysics Data System (ADS)

    Scholfield, David; Myat, Maung; Dauby, Jason; Fesler, Jonathon; Bright, Jonathan

    2011-07-01

    A new technique for the experimental characterization of electromagnetic chaff based on Inverse Synthetic Aperture Radar is presented. This technique allows for the characterization of as few as one filament of chaff in a controlled anechoic environment allowing for stability and repeatability of experimental results. This approach allows for a deeper understanding of the fundamental phenomena of electromagnetic scattering from chaff through an incremental analysis approach. Chaff analysis can now begin with a single element and progress through the build-up of particles into pseudo-cloud structures. This controlled incremental approach is supported by an identical incremental modeling and validation process. Additionally, this technique has the potential to produce considerable savings in financial and schedule cost and provides a stable and repeatable experiment to aid model valuation.

  11. A new technique for the characterization of chaff elements.

    PubMed

    Scholfield, David; Myat, Maung; Dauby, Jason; Fesler, Jonathon; Bright, Jonathan

    2011-07-01

    A new technique for the experimental characterization of electromagnetic chaff based on Inverse Synthetic Aperture Radar is presented. This technique allows for the characterization of as few as one filament of chaff in a controlled anechoic environment allowing for stability and repeatability of experimental results. This approach allows for a deeper understanding of the fundamental phenomena of electromagnetic scattering from chaff through an incremental analysis approach. Chaff analysis can now begin with a single element and progress through the build-up of particles into pseudo-cloud structures. This controlled incremental approach is supported by an identical incremental modeling and validation process. Additionally, this technique has the potential to produce considerable savings in financial and schedule cost and provides a stable and repeatable experiment to aid model valuation.

  12. Techniques for nonlinear optical characterization of materials: a review.

    PubMed

    de Araújo, Cid B; Gomes, Anderson S L; Boudebs, Georges

    2016-03-01

    Various techniques to characterize the nonlinear (NL) optical response of centro-symmetric materials are presented and evaluated with emphasis on the relationship between the macroscopic measurable quantities and the microscopic properties of photonic materials. NL refraction and NL absorption of the materials are the phenomena of major interest. The dependence of the NL refraction and NL absorption coefficients on the nature of the materials was studied as well as on the laser excitation characteristics of wavelength, intensity, spatial profile, pulse duration and pulses repetition rate. Selected experimental results are discussed and illustrated. The various techniques currently available were compared and their relative advantages and drawbacks were evaluated. Critical comparisons among established techniques provided elements to evaluate their accuracies and sensitivities with respect to novel methods that present improvements with respect to the conventional techniques.

  13. Techniques for characterizing waveguide gratings and grating-based devices

    NASA Astrophysics Data System (ADS)

    Brinkmeyer, Ernst; Kieckbusch, Sven; Knappe, Frank

    2006-09-01

    Waveguide gratings used in laser technology, optical sensing or optical communications have to serve different specific purposes and, hence, have to have specific optical properties which can be tailored to a large extent. Characterization methods are required not only to measure the actual effect of a Bragg grating or long period grating under consideration but also to unveil the cause, i.e. to determine its spatial structure. This paper reviews the present status of the respective experimental characterization techniques. The methods emphasized rely on phase sensitive reflectometry together with advanced inverse scattering evaluation algorithms.

  14. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.

    PubMed

    Lin, Millicent; Chen, Jie-Fu; Lu, Yi-Tsung; Zhang, Yang; Song, Jinzhao; Hou, Shuang; Ke, Zunfu; Tseng, Hsian-Rong

    2014-10-21

    Circulating tumor cells (CTCs) are cancer cells that break away from either a primary tumor or a metastatic site and circulate in the peripheral blood as the cellular origin of metastasis. With their role as a "tumor liquid biopsy", CTCs provide convenient access to all disease sites, including that of the primary tumor and the site of fatal metastases. It is conceivable that detecting and analyzing CTCs will provide insightful information in assessing the disease status without the flaws and limitations encountered in performing conventional tumor biopsies. However, identifying CTCs in patient blood samples is technically challenging due to the extremely low abundance of CTCs among a large number of hematologic cells. To address this unmet need, there have been significant research endeavors, especially in the fields of chemistry, materials science, and bioengineering, devoted to developing CTC detection, isolation, and characterization technologies. Inspired by the nanoscale interactions observed in the tissue microenvironment, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with high efficiency. The working mechanism of NanoVelcro cell-affinity substrates mimics that of Velcro: when the two fabric strips of a Velcro fastener are pressed together, tangling between the hairy surfaces on two strips leads to strong binding. Through continuous evolution, three generations (gens) of NanoVelcro CTC chips have been established to achieve different clinical utilities. The first-gen NanoVelcro chip, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, was created for CTC enumeration. Side-by-side analytical validation studies using clinical blood samples suggested that the sensitivity of first-gen NanoVelcro chip outperforms that of FDA-approved CellSearch. In conjunction with the use of the

  15. Application of the FICTION technique for the simultaneous detection of immunophenotype and chromosomal abnormalities in routinely fixed, paraffin wax embedded bone marrow trephines.

    PubMed

    Korac, P; Jones, M; Dominis, M; Kusec, R; Mason, D Y; Banham, A H; Ventura, R A

    2005-12-01

    The use of interphase fluorescence in situ hybridisation (FISH) to study cytogenetic abnormalities in routinely fixed paraffin wax embedded tissue has become commonplace over the past decade. However, very few studies have applied FISH to routinely fixed bone marrow trephines (BMTs). This may be because of the acid based decalcification methods that are commonly used during the processing of BMTs, which may adversely affect the suitability of the sample for FISH analysis. For the first time, this report describes the simultaneous application of FISH and immunofluorescent staining (the FICTION technique) to formalin fixed, EDTA decalcified and paraffin wax embedded BMTs. This technique allows the direct correlation of genetic abnormalities to immunophenotype, and therefore will be particularly useful for the identification of genetic abnormalities in specific tumour cells present in BMTs. The application of this to routine clinical practice will assist diagnosis and the detection of minimal residual disease.

  16. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    NASA Astrophysics Data System (ADS)

    Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie

    2015-07-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.

  17. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  18. Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS

    SciTech Connect

    Smith, J.H.; Montague, S.; Sniegowski, J.J.; Murray, J.R.

    1996-10-01

    Recently, a great deal of interest has developed in manufacturing processes that allow the monolithic integration of MicroElectroMechanical Systems (MEMS) with driving, controlling, and signal processing electronics. This integration promises to improve the performance of micromechanical devices as well as lower the cost of manufacturing, packaging, and instrumenting these devices by combining the micromechanical devices with a electronic devices in the same manufacturing and packaging process. In order to maintain modularity and overcome some of the manufacturing challenges of the CMOS-first approach to integration, we have developed a MEMS-first process. This process places the micromechanical devices in a shallow trench, planarizes the wafer, and seals the micromechanical devices in the trench. Then, a high-temperature anneal is performed after the devices are embedded in the trench prior to microelectronics processing. This anneal stress-relieves the micromechanical polysilicon and ensures that the subsequent thermal processing associated with fabrication of the microelectronic processing does not adversely affect the mechanical properties of the polysilicon structures. These wafers with the completed, planarized micromechanical devices are then used as starting material for conventional CMOS processes. The circuit yield for the process has exceeded 98%. A description of the integration technology, the refinements to the technology, and wafer-scale parametric measurements of device characteristics is presented. Additionally, the performance of integrated sensing devices built using this technology is presented.

  19. Characterization of LiF/CuO-Codoped BaTiO3 for Embedded Capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Kyoungho

    2015-03-01

    Sintering additives for BaTiO3 were studied in order to facilitate the use of BaTiO3 as a material for embedded decoupling capacitors in high-density multilayered low-temperature cofired ceramic (LTCC) modules for mobile communication systems and three-dimensional (3D) printing modules. Among the studied additives, the CuO/LiF mixture was the most promising sintering additive for cofiring BaTiO3 with a commercial low-permittivity ( ɛ r) LTCC sheet (MLS-22, NEG Co.). The temperature dependence of the dielectric properties of BaTiO3 was successfully controlled by adjusting the CuO/LiF amount and ratio and the sintering temperature. BaTiO3 codoped with 10 wt.% LiF/CuO (1:1 ratio) and sintered at 860°C for 30 min showed 95% sintering density. The room-temperature permittivity ( ɛ r) of LiF/CuO-codoped BaTiO3 was 1620 at 1 MHz, and the temperature coefficient of capacitance satisfied the X5R specification. After cofiring this LiF/CuO-codoped BaTiO3 ceramic with an MLS-22 sheet at 860°C, there was no crack formation at the layer boundary. Also a chemical compatibility test revealed that there were no severe reactions between the LiF/CuO-codoped BaTiO3 and an Ag electrode.

  20. New microarchitectures of (Er,Yb):Lu2O3 nanocrystals embedded in PMMA: synthesis, structural characterization, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Galceran, Montserrat; Pujol, Maria Cinta; Carvajal, Joan Josep; Mateos, Xavier; Formentín, Pilar; Pallarès, Josep; Marsal, Lluis Francesc; Park, Kyung Ho; Rotermund, Fabian; Kim, Kihong; Aguiló, Magdalena; Díaz, Francesc

    2013-09-01

    We report the formation of two-dimensional disordered arrays of poly(methyl)methacrylate (PMMA) microcolumns with embedded single size distribution of Lu0.990Er0.520Yb0.490 nanocrystals, (Er,Yb):Lu2O3, using a disordered porous silicon template. The cubic (Er,Yb):Lu2O3 nanocrystals, which crystallize into the cubic system with [Equation not available: see fulltext.] space group, were synthesized using the modified Pechini method. Electronic microscopic techniques were used to study the distribution of the nanocrystals in the PMMA columns. Cathodoluminescence was used to observe the visible luminescence of the particles. Red emission attributed to 4 F9/2 → 4I15/2 erbium transition is predominant in these new composites.

  1. Vadose Zone Characterization Techniques Developed by EMSP Research

    SciTech Connect

    Guillen, Donna P.

    2003-02-24

    This paper discusses research contributions made by Environmental Management Science Program (EMSP) research in the area of geophysical characterization of the subsurface. The goal of these EMSP research projects is to develop combined high-resolution measurement and interpretation packages that provide accurate, timely information needed to characterize the vadose zone. Various types of geophysical imaging techniques can be used to characterize the shallow subsurface. Since individual geophysical characterization tools all have specific limitations, many different techniques are being explored to provide more widespread applicability over a range of hydrogeologic settings. A combination of laboratory, field, theoretical, and computational studies are necessary to develop our understanding of how contaminants move through the vadose zone. This entails field tests with field-hardened systems, packaging and calibration of instrumentation, data processing and analysis algorithms, forward and inverse modeling, and so forth. DOE sites are seeking to team with EMSP researchers to leverage the basic science research investment and apply these advances to address subsurface contamination issues that plague many U.S. Department of Energy (DOE) sites.

  2. Characterization of patinas by means of microscopic techniques

    SciTech Connect

    Vazquez-Calvo, C.

    2007-11-15

    Many stone-made historic buildings have a yellowish layer called 'patina' on their external surface. In some cases, it is due to the natural ageing of the stone caused by chemical-physical reactions between the surface of the stone and the environment, and in other cases it is the result of biological activity. The origin of these patinas can be also be due to ancient protective treatments. The use of organic additives, such as protein-based compounds, in lime or gypsum-based patinas is a traditional technique, which has been used in past centuries for the conservation and protection of stone materials. The thinness of the patinas ensures that microscopic techniques are irreplaceable for their analysis. Optical Microscopy, Fluorescence Microscopy, Scanning Electron Microscopy together with an Energy Dispersive X-ray Spectrometer, and Electron Microprobe are the microscopic techniques used for the characterization of these coverings, providing very useful information on their composition, texture and structure.

  3. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  4. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  5. Application of impedance measurement techniques to accelerating cavity mode characterization

    NASA Astrophysics Data System (ADS)

    Hanna, S. M.; Stefan, P. M.

    1993-11-01

    Impedance measurements, using a central wire to simulate the electron beam, were performed on a 52 MHz accelerating cavity at the National Synchrotron Light Source (NSLS). This cavity was recently installed in the X-ray storage ring at the NSLS as a part of an upgrade of the ring. To damp higher-order modes (HOM) in this cavity, damping antennas have been installed. We implemented the impedance measurement technique to characterize the cavity modes up to 1 GHz and confirm the effectiveness of the damping antennas. Scattering parameters were measured using a network analyzer (HP 8510B) with a personal computer as a controller. Analysis based on S and T parameters for the system was used to solve for the cavity impedance, Z( ω), as a function of the measured transmission response, S21( ω). Search techniques were used to find the shunt resistance Rsh, and Q from the calculated Z( ω) for different modes. Our results for {R}/{Q} showed good agreement with URMEL simulations. The values of Q were compared with other independent Q measurement techniques. Our analytical technique offers an alternative approach for cases where full thru-reflection-line (TRL) calibration is not feasible and a more time-effective technique for obtaining {R}/{Q}, compared with the bead-pull method.

  6. New and Evolving Techniques for the Characterization of Peptide Therapeutics.

    PubMed

    D'Addio, Suzanne M; Bothe, Jameson R; Neri, Claudia; Walsh, Paul L; Zhang, Jingtao; Pierson, Elizabeth; Mao, Yun; Gindy, Marian; Leone, Anthony; Templeton, Allen C

    2016-10-01

    Advances in technologies related to the design and manufacture of therapeutic peptides have enabled researchers to overcome the biological and technological challenges that have limited their application in the past. As a result, peptides of increasing complexity have become progressively important against a variety of disease targets. Developing peptide drug products brings with it unique scientific challenges consistent with the unique physicochemical properties of peptide molecules. The identification of the proper characterization tools is required in order to develop peptide formulations with the appropriate stability, manufacturability, and bioperformance characteristics. This knowledge supports the build of critical quality attributes and, ultimately, regulatory specifications. The purpose of this review article is to provide an overview of the techniques that are employed for analytical characterization of peptide drug products. The techniques covered are highlighted in the context of peptide drug product understanding and include chemical and biophysical approaches. Emphasis is placed on summarizing the recent literature experience in the field. Finally, the authors provide regulatory perspective on these characterization approaches and discuss some potential areas for further research in the field.

  7. Overview of multimodal techniques for the characterization of sport programs

    NASA Astrophysics Data System (ADS)

    Adami, Nicola; Leonardi, Riccardo; Migliorati, Pierangelo

    2003-06-01

    The problem of content characterization of sports videos is of great interest because sports video appeals to large audiences and its efficient distribution over various networks should contribute to widespread usage of multimedia services. In this paper we analyze several techniques proposed in literature for content characterization of sports videos. We focus this analysis on the typology of the signal (audio, video, text captions, ...) from which the low-level features are extracted. First we consider the techniques based on visual information, then the methods based on audio information, and finally the algorithms based on audio-visual cues, used in a multi-modal fashion. This analysis shows that each type of signal carries some peculiar information, and the multi-modal approach can fully exploit the multimedia information associated to the sports video. Moreover, we observe that the characterization is performed either considering what happens in a specific time segment, observing therefore the features in a "static" way, or trying to capture their "dynamic" evolution in time. The effectiveness of each approach depends mainly on the kind of sports it relates to, and the type of highlights we are focusing on.

  8. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography.

    PubMed

    Roussel, Manuel; Talbot, Etienne; Gourbilleau, Fabrice; Pareige, Philippe

    2011-02-23

    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C.

  9. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography.

    PubMed

    Roussel, Manuel; Talbot, Etienne; Gourbilleau, Fabrice; Pareige, Philippe

    2011-01-01

    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666

  10. Application of physical and chemical characterization techniques to metallic powders

    SciTech Connect

    Slotwinski, J. A.; Watson, S. S.; Stutzman, P. E.; Ferraris, C. F.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry, including X-ray diffraction and energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, were also employed. Results of these analyses will be used to shed light on the question: how does virgin powder change after being exposed to and recycled from one or more additive manufacturing build cycles? In addition, these findings can give insight into the actual additive manufacturing process.

  11. Characterization of Tibetan Medicine Zuota by Multiple Techniques

    PubMed Central

    Sun, Mei; Wang, Jing-Xia; Xu, Yun-Zhang; Liu, Yuan; Zhang, Zhi-Feng; Lu, Lu-Yang

    2013-01-01

    Zuota is regarded as the king of Tibetan medicine. However, due to the confidentiality of this precious medicine, the scientific characterization of Zuota is very scarce, which limits the pharmacology and biosafety studies of Zuota. Herein, we collected four different Zuota samples from Tibet, Qinghai, Gansu, and Sichuan and characterized them by multiple techniques. Our results showed that Zuota was mainly an inorganic mixture of HgS, sulfur, and graphite. Morphologically, Zuota samples were composed of nanoparticles, which further aggregated into microsized particles. Chemically, the majorities of Zuota were S and Hg (in the forms of HgS and pure sulfur). All samples contained pure sulfur with orthorhombic crystalline. Zuota from Qinghai province had different HgS crystalline, namely, hexagonal crystalline. The others were all face-centered cubic crystalline. Carbon in Zuota NPs was in the form of graphite. The implication to future studies of Zuota was discussed. PMID:24093005

  12. Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Segura, Alejandra; Vidal, Christian; Menendez, Victor; Zapata, Alfredo; Prieto, Manuel

    Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search.

  13. Characterization of Cavities Using the GPR, LIDAR and GNSS Techniques

    NASA Astrophysics Data System (ADS)

    Conejo-Martín, Miguel Angel; Herrero-Tejedor, Tomás Ramón; Lapazaran, Javier; Perez-Martin, Enrique; Otero, Jaime; Prieto, Juan F.; Velasco, Jesús

    2015-11-01

    The study of the many types of natural and manmade cavities in different parts of the world is important to the fields of geology, geophysics, engineering, architectures, agriculture, heritages and landscape. Ground-penetrating radar (GPR) is a noninvasive geodetection and geolocation technique suitable for accurately determining buried structures. This technique requires knowing the propagation velocity of electromagnetic waves (EM velocity) in the medium. We propose a method for calibrating the EM velocity using the integration of laser imaging detection and ranging (LIDAR) and GPR techniques using the Global Navigation Satellite System (GNSS) as support for geolocation. Once the EM velocity is known and the GPR profiles have been properly processed and migrated, they will also show the hidden cavities and the old hidden structures from the cellar. In this article, we present a complete study of the joint use of the GPR, LIDAR and GNSS techniques in the characterization of cavities. We apply this methodology to study underground cavities in a group of wine cellars located in Atauta (Soria, Spain). The results serve to identify construction elements that form the cavity and group of cavities or cellars. The described methodology could be applied to other shallow underground structures with surface connection, where LIDAR and GPR profiles could be joined, as, for example, in archaeological cavities, sewerage systems, drainpipes, etc.

  14. Fluorescence microscopy techniques for characterizing the microscale mechanical response of entangled actin networks

    NASA Astrophysics Data System (ADS)

    Blair, Savanna; Falzone, Tobias; Robertson-Anderson, Rae

    2015-03-01

    Actin filaments are semiflexible polymers that display complex viscoelastic properties when entangled in networks. In order to characterize the molecular-level physical and mechanical properties of entangled actin networks it is important to know the in-network length distribution and the response of entangled filaments to local forcing. Here we describe two single-molecule microscopy protocols developed to investigate these properties. Using confocal fluorescence microscopy and ImageJ image analysis we have developed a protocol to accurately measure the in-network actin length distribution. To characterize the deformation of actin filaments in response to perturbation, we trap micron size beads embedded in the network with optical tweezers and propagate the beads through the entangled filaments while simultaneously recording images of fluorescent-labeled filaments in the network. A sparse number of labeled filaments dispersed throughout the network allow us to visualize the movement of individual filaments during perturbation. Analysis of images taken during forcing is carried out using a combination of vector mapping and skeletonization techniques to directly reveal the deformation and subsequent relaxation modes induced in entangled actin filaments by microscale strains. We also determine the dependence of deformation modes on the relative filament position relative to the strain.

  15. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  16. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  17. Characterization of micro-generators embedded in commercial-off-the-shelf watches for wearable energy harvesting

    NASA Astrophysics Data System (ADS)

    Xue, Tiancheng; Kakkar, Shantnu; Lin, Qianyu; Roundy, Shad

    2016-04-01

    This paper presents the characterization of the micro-generators embedded in Commercial-Off-The-Shelf (COTS) watches based on a generalized rotational energy harvester model which predicts the upper bound on energy generation given certain system constraints and specific inputs. We augment this generalized model to represent the actual micro-generator used in the Seiko Kinetic watch with realistic damping coefficients which allow us to identify optimizations to move the system output towards the upper bound. We have developed a mobile data logging platform which captures 6 DOF inertia data and the voltage output from the micro-generator simultaneously. We have asked 6 subjects to conduct a series of daily activities with the platform worn on different locations of the body. This effort not only serves as the experimental validation of our model but also provides insight into the state of the art in wearable kinetic energy harvesting devices that are commercially available. Finally we identify the opportunity for improvement on energy generation and show that we can increase the power by reducing the mechanical damping in the system, which might require an alternative mechanism with inherent lower friction.

  18. Application of linear graph embedding as a dimensionality reduction technique and sparse representation classifier as a post classifier for the classification of epilepsy risk levels from EEG signals

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sunil Kumar; Rajaguru, Harikumar

    2015-12-01

    The most common and frequently occurring neurological disorder is epilepsy and the main method useful for the diagnosis of epilepsy is electroencephalogram (EEG) signal analysis. Due to the length of EEG recordings, EEG signal analysis method is quite time-consuming when it is processed manually by an expert. This paper proposes the application of Linear Graph Embedding (LGE) concept as a dimensionality reduction technique for processing the epileptic encephalographic signals and then it is classified using Sparse Representation Classifiers (SRC). SRC is used to analyze the classification of epilepsy risk levels from EEG signals and the parameters such as Sensitivity, Specificity, Time Delay, Quality Value, Performance Index and Accuracy are analyzed.

  19. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  20. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  1. Characterization of Sorolla's gouache pigments by means of spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Roldán, Clodoaldo; Juanes, David; Ferrazza, Livio; Carballo, Jorgelina

    2016-02-01

    This paper presents the characterization of the Joaquín Sorolla's gouache sketches for the oil on canvas series "Vision of Spain" commissioned by A. M. Huntington to decorate the library of the Hispanic Society of America in New York. The analyses were focused on the identification of the elemental composition of the gouache pigments by means of portable EDXRF spectrometry in a non-destructive mode. Additionally, SEM-EDX and FTIR analyses of a selected set of micro-samples were carried out to identify completely the pigments, the paint technique and the binding media. The obtained results have confirmed the identification of lead and zinc white, vermillion, earth pigments, ochre, zinc yellow, chrome yellow, ultramarine, Prussian blue, chromium based and copper-arsenic based green pigments, bone black and carbon based black pigments, and the use of gum arabic as binding media in the gouache pigments.

  2. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    NASA Astrophysics Data System (ADS)

    Perton, M.; Lévesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  3. Different techniques for characterizing single-walled carbon nanotube purity

    NASA Astrophysics Data System (ADS)

    Yuca, Neslihan; Camtakan, Zeyneb; Karatepe, Nilgün

    2013-09-01

    Transition-metal catalysts, fullerenes, graphitic carbon, amorphous carbon, and graphite flakes are the main impurities in carbon nanotubes. In this study, we demonstrate an easy and optimum method of cleaning SWCNTs and evaluating their purity. The purification method, which employed oxidative heat treatment followed by 6M HNO3, H2SO4, HNO3:H2SO4 and HCl acid reflux for 6h at 120°C and microwave digestion with 1.5M HNO3 for 0.5h at 210°C which was straightforward, inexpensive, and fairly effective. The purified materials were characterized by thermogravimetric analysis and nuclear techniques such as INAA, XRF and XRD.

  4. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  5. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  6. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    SciTech Connect

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  7. A simple osmium post-fixation paraffin-embedment technique to identify lipid accumulation in fish liver using medaka (Oryziaslatipes) eggs and eleutheroembryos as lipid rich models.

    PubMed

    Mondon, J A; Howitt, J; Tosiano, M; Kwok, K W H; Hinton, D E

    2011-01-01

    Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models.

  8. Characterization of anti-TIMP-1 monoclonal antibodies for immunohistochemical localization in formalin-fixed, paraffin-embedded tissue.

    PubMed

    Sorensen, Irene Vejgaard; Fenger, Claus; Winther, Henrik; Foged, Niels T; Lademann, Ulrik; Brünner, Nils; Usher, Pernille A

    2006-10-01

    The aim of this study was to evaluate seven anti-TIMP-1 (tissue inhibitor of metalloproteinase-1) monoclonal antibodies by immunohistochemical (IHC) staining of formalin-fixed, paraffin-embedded (FFPE) tissue. Detection of the TIMP-1 protein was studied by IHC in FFPE human archival normal and neoplastic samples. Indirect IHC technique was used, and the seven antibodies (clones VT1, VT2, VT4, VT5, VT6, VT7, and VT8) were tested in various concentrations using different pretreatment protocols. All seven VT antibodies specifically immunostained the cytoplasm of islets of Langerhans cells in normal pancreas, epithelial cells of hyperplastic prostate, tumor cells of medullary thyroid carcinoma, and fibroblast-like cells of malignant melanoma. Specificity of the anti-TIMP-1 antibodies was confirmed by several controls, e.g., Western blotting on proteins extracted from FFPE tissue showed that the VT7 antibody reacted specifically with a protein band of approximately 28 kDa, corresponding to the molecular mass of TIMP-1. However, sensitivity varied with the different antibodies. Use of heat-induced epitope retrieval (HIER) and the VT7 clone applied at low concentrations demonstrated more intense immunoreactivity with the TIMP-1-positive cell types compared to the other six clones. Furthermore, when tested on a range of normal and neoplastic endocrine tissues, the VT7 clone demonstrated immunoreactivity with all neuroendocrine cell types. In conclusion, all seven antibodies detected TIMP-1 protein in various normal and neoplastic FFPE tissues, but one clone, VT7, was superior for IHC staining of TIMP-1 in FFPE tissue sections when using HIER.

  9. Linear and Nonlinear Optical Techniques to Characterize Narrow Gap Semiconductors:

    NASA Astrophysics Data System (ADS)

    McClure, Stephen Warren

    Several methods have been developed and used to characterize the narrow gap semiconductors Hg(,1-x)Cd(,x)Te (HgCdTe) (0.20 < x < 0.32) and InSb both in the presence of CO(,2) laser radiation and in the dark. The results have allowed the determination of certain band parameters including the fundamental energy bandgap E(,g) which is directly related to x, the mole fraction of Cd. In the dark, characterization of several different samples of HgCdTe and InSb were carried out by analyzing the temperature dependence of the Hall coefficient and the magnetic field positions of the magnetophonon extrema from which their x-values were determined. The quality of the magnetophonon spectral is also shown to be related to the inhomogeneity (DELTA)x of the HgCdTe samples. One-photon magneto-absorption (OPMA) spectra have been obtained for x (TURN) 0.2 samples of p-HgCdTe thin films and n-HgCdTe bulk samples. Analysis of the OPMA transition energies allows the x-value to be determined to within (DBLTURN)(+OR-)0.001. A method is also discussed which can be used to estimate the sample inhomogeneity (DELTA)x. Nonlinear optical properties of semiconductors are not only scientifically interesting to study, but are also proving to be technologically important as various nonlinear optical devices are being developed. One of the most valuable nonlinear optical characterization method uses two-photon absorption (TPA). Two techniques using TPA processes were developed and used to measure the cut -off wavelength of several different samples of HgCdTe (x (TURN) 0.3) from which x-values were determined to within (DBLTURN)(+OR-)0.0005. Intensity and temperature dependent measurements on impurity and TPA processes have also been carried out and the results are compared with rate equations describing the photo-excited carrier dynamics. These results have yielded important information about the optical and material properties of HgCdTe such as the detection of impurity and trapping levels, TPA

  10. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    NASA Astrophysics Data System (ADS)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  11. Characterization of Lavandula spp. Honey Using Multivariate Techniques

    PubMed Central

    2016-01-01

    Traditionally, melissopalynological and physicochemical analyses have been the most used to determine the botanical origin of honey. However, when performed individually, these analyses may provide less unambiguous results, making it difficult to discriminate between mono and multifloral honeys. In this context, with the aim of better characterizing this beehive product, a selection of 112 Lavandula spp. monofloral honey samples from several regions were evaluated by association of multivariate statistical techniques with physicochemical, melissopalynological and phenolic compounds analysis. All honey samples fulfilled the quality standards recommended by international legislation, except regarding sucrose content and diastase activity. The content of sucrose and the percentage of Lavandula spp. pollen have a strong positive association. In fact, it was found that higher amounts of sucrose in honey are related with highest percentage of pollen of Lavandula spp.. The samples were very similar for most of the physicochemical parameters, except for proline, flavonoids and phenols (bioactive factors). Concerning the pollen spectrum, the variation of Lavandula spp. pollen percentage in honey had little contribution to the formation of samples groups. The formation of two groups regarding the physicochemical parameters suggests that the presence of other pollen types in small percentages influences the factor termed as “bioactive”, which has been linked to diverse beneficial health effects. PMID:27588420

  12. Nanocrystalline materials: recent advances in crystallographic characterization techniques.

    PubMed

    Ringe, Emilie

    2014-11-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask 'how are nanoshapes created?', 'how does the shape relate to the atomic packing and crystallography of the material?', 'how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  13. Characterization of Lavandula spp. Honey Using Multivariate Techniques.

    PubMed

    Estevinho, Leticia M; Chambó, Emerson Dechechi; Pereira, Ana Paula Rodrigues; Carvalho, Carlos Alfredo Lopes de; Toledo, Vagner de Alencar Arnaut de

    2016-01-01

    Traditionally, melissopalynological and physicochemical analyses have been the most used to determine the botanical origin of honey. However, when performed individually, these analyses may provide less unambiguous results, making it difficult to discriminate between mono and multifloral honeys. In this context, with the aim of better characterizing this beehive product, a selection of 112 Lavandula spp. monofloral honey samples from several regions were evaluated by association of multivariate statistical techniques with physicochemical, melissopalynological and phenolic compounds analysis. All honey samples fulfilled the quality standards recommended by international legislation, except regarding sucrose content and diastase activity. The content of sucrose and the percentage of Lavandula spp. pollen have a strong positive association. In fact, it was found that higher amounts of sucrose in honey are related with highest percentage of pollen of Lavandula spp.. The samples were very similar for most of the physicochemical parameters, except for proline, flavonoids and phenols (bioactive factors). Concerning the pollen spectrum, the variation of Lavandula spp. pollen percentage in honey had little contribution to the formation of samples groups. The formation of two groups regarding the physicochemical parameters suggests that the presence of other pollen types in small percentages influences the factor termed as "bioactive", which has been linked to diverse beneficial health effects. PMID:27588420

  14. An ultrasonic array technique for material characterization of plate samples.

    PubMed

    Titov, Sergey; Maev, Roman Gr

    2013-07-01

    An ultrasonic system with a linear array for characterization of a layered specimen placed in immersion liquid parallel to the aperture of the array is considered. To estimate the longitudinal and transverse wave velocities as well as the thickness and density of the specimen, it is proposed to decompose the spatio-temporal data recorded by the array in a spectrum of plane pulse waves. Based on fitting the developed wave model of the system to the experimental data, it is shown that the relative delays and amplitudes of the spectral responses can be used for the estimation of the velocities and thickness of the layer and its density. The distortions of the plane wave spectrum caused by the spatial discretization of the array data are considered. It is proposed to suppress these distortions using individual interpolating processing of the received pulses separated in the spatio-temporal domain. The developed technique is experimentally verified on a fused quartz plate evaluated with a 17-MHz linear array. The relative reproducibility of the estimation is found to be 0.11% in the longitudinal wave velocity and thickness of the plate, and 0.5% and 5% in the transverse wave velocity and the density, respectively.

  15. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    PubMed Central

    Ringe, Emilie

    2014-01-01

    Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

  16. Photogrammetric detection technique for rotor blades structural characterization

    NASA Astrophysics Data System (ADS)

    Enei, C.; Bernardini, G.; Serafini, J.; Mattioni, L.; Ficuciello, C.; Vezzari, V.

    2015-11-01

    This paper describes an innovative use of photogrammetric detection techniques to experimentally estimate structural/inertial properties of helicopter rotor blades. The identification algorithms for the evaluation of mass and flexural stiffness distributions are an extension of the ones proposed by Larsen, whereas the procedure for torsional properties determination (stiffness and shear center position) is based on the Euler-Prandtl beam theory. These algorithms rely on measurements performed through photogrammetric detection, which requires the collection of digital photos allowing the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D pictures. The displacements are evaluated by comparing the positions of markers in loaded and reference configuration. Being the applied loads known, the structural characteristics can be directly obtained from the measured displacements. The accuracy of the proposed identification algorithms has been firstly verified by comparison with numerical and experimental data, and then applied to the structural characterization of two main rotor blades, designed for ultra-light helicopter applications.

  17. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    SciTech Connect

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Ferreira, R.; Freitas, P.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  18. STATE-OF-THE-ART FIELD TECHNIQUES FOR SITE CHARACTERIZATION

    EPA Science Inventory

    Many of the traditional methods for characterizing the hydrogeologic properties and contaminant distribution of subsurface materials were derived from methods developed in the water supply industry. These methods generally result in the characterization of bulk aquifer propert...

  19. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA.

    PubMed

    Li, Dan-Dan; Pan, Jian-Feng; Ji, Qiu-Xia; Yu, Xin-Bo; Liu, Ling-Shuang; Li, Hui; Jiao, Xiao-Ju; Wang, Lei

    2016-08-01

    A novel injectable chitosan thermosensitive hydrogel was designed as a target multi-effect scaffold for endogenous repair of the periodontium. The hydrogel complex was designed by embedding chitosan nanoparticles (CSn) loaded with bone morphogenetic protein-2 plasmid DNA (pDNA-BMP2) into a chitosan (CS)-based hydrogel with α,β-glycerophosphate (α,β-GP), termed CS/CSn(pDNA-BMP2)-GP. Characterization, the in vitro release profile for pDNA-BMP2, and cytocompatibility to human periodontal ligament cells (HPDLCs), were then conducted. The average diameter of the CSn(pDNA-BMP2) was 270.1 nm with a polydispersity index (PDI) of 0.486 and zeta potential of +27.0 mv. A DNase I protection assay showed that CSn could protect the pDNA-BMP2 from nuclease degradation. Encapsulation efficiency and loading capacity of CSn(pDNA-BMP2) were more than 80 and 30 %, respectively. The sol-gel transition time was only 3 min when CSn(pDNA-BMP2) was added into the CS/α,β-GP system. Scanning electron microscopy showed that CSn(pDNA-BMP2) was randomly dispersed in a network with regular holes and a porous structure. Weighting method showed the swelling ratio and degradation was faster in medium of pH 4.0 than pH 6.8. An in vitro pDNA-BMP2 release test showed that the cumulative release rate of pDNA-BMP2 was much slower from CS/CSn-GP than from CSn in identical release media. In release media with different pH, pDNA-BMP2 release was much slower at pH 6.8 than at pH 4.0. Three-dimensional culture with HPDLCs showed good cell proliferation and the Cell-Counting Kit-8 assay indicated improved cell growth with the addition of CSn(pDNA-BMP2) to CS/α,β-GP. In summary, the CS/CSn(pDNA-BMP2)-GP complex system exhibited excellent biological properties and cytocompatibility, indicating great potential as a gene delivery carrier and tissue regeneration scaffold for endogenous repair of the periodontium. PMID:27405491

  20. Data embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.

    1997-08-19

    A method is disclosed for embedding auxiliary information into a set of host data, such as a photograph, television signal, facsimile transmission, or identification card. All such host data contain intrinsic noise, allowing pixels in the host data which are nearly identical and which have values differing by less than the noise value to be manipulated and replaced with auxiliary data. As the embedding method does not change the elemental values of the host data, the auxiliary data do not noticeably affect the appearance or interpretation of the host data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. 19 figs.

  1. Data embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.

    1997-01-01

    A method of embedding auxiliary information into a set of host data, such as a photograph, television signal, facsimile transmission, or identification card. All such host data contain intrinsic noise, allowing pixels in the host data which are nearly identical and which have values differing by less than the noise value to be manipulated and replaced with auxiliary data. As the embedding method does not change the elemental values of the host data, the auxiliary data do not noticeably affect the appearance or interpretation of the host data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user.

  2. The Use of Electrochemical Techniques to Characterize Wet Steam Environments

    SciTech Connect

    Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

    2003-04-30

    The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the

  3. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  4. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  5. Detection and characterization of Newcastle disease virus in formalin-fixed, paraffin-embedded tissues from commercial broilers in Egypt.

    PubMed

    Abdel-Glil, Mostafa Y; Mor, Sunil K; Sharafeldin, Tamer A; Porter, Robert E; Goyal, Sagar M

    2014-03-01

    Newcastle disease (ND) is highly contagious and causes severe economic losses to the poultry industry due to high morbidity and mortality. In this report, we describe the detection of Newcastle disease virus (NDV) in formalin-fixed tissues from an outbreak of ND on broiler farms in Egypt. The affected birds experienced respiratory and/or nervous signs and a 75% mortality rate. Tissue samples were collected and placed in 10% neutral buffered formalin followed by embedding in paraffin. RNA was extracted from 80-microm formalin-fixed paraffin-embedded tissue blocks and recovered in 60 microl of elution buffer. All samples were negative for influenza virus by real-time reverse-transcription (RT)-PCR but positive for NDV. These flocks were known to have been vaccinated with a live NDV vaccine (LaSota strain). The nucleic acid sequences of the virus detected in this study were similar to those of a velogenic virus at its cleavage site 111GRRQKR*F117 and clustered with class II genogroup VII lineage of NDV, with a nucleotide sequence identity of 94%-99%. Although extraction and amplification of NDV from paraffin-embedded tissues from experimentally infected birds has been reported previously, this study reports on the use of RT-PCR on formalin-fixed tissues from actual field samples.

  6. Immunocytochemical detection of androgen receptor in human temporal cortex characterization and application of polyclonal androgen receptor antibodies in frozen and paraffin-embedded tissues.

    PubMed

    Puy, L; MacLusky, N J; Becker, L; Karsan, N; Trachtenberg, J; Brown, T J

    1995-11-01

    Immunocytochemical and biochemical studies have demonstrated the presence of androgen receptor protein in various regions of the rodent and non-human primate cortex. Localization of androgen receptor in the human brain has, however, not been studied as extensively, because of difficulties in obtaining suitable tissue samples. In the present study, we have localized androgen receptors in both frozen and paraffin-embedded temporal cortex from epileptic patients undergoing resection. Polyclonal antibodies were raised against fusion proteins containing fragments of the human androgen receptor protein. The antibodies were affinity-purified against the corresponding fusion protein. Immunoprecipitation and Western blotting using extracts from human cell lines demonstrated the specificity of the antibodies for the human androgen receptor and lack of cross-reactivity with other steroid hormone receptors. Immunocytochemistry was performed on frozen and paraffin sections of human temporal cortex and in paraffin-embedded benign hyperplastic prostates (BPH), as well as prostate and breast carcinomas, by the streptavidin-biotin-peroxidase method. Antigen-retrieval was performed in paraffin-embedded sections using microwave irradiation. Specific nuclear and cytoplasmic immunoreactivity for androgen receptor was detected in neurons, astrocytes, oligodendrocytes, and microglia cells of the temporal cortex. In contrast, only nuclear staining was observed in BPH, prostate and breast carcinomas. Immunoprecipitation of human temporal cortex lysate and subsequent Western blot analysis demonstrated the expression of a 98 kDa immunoreactive protein, slightly smaller than the reported molecular weight of the wild-type androgen receptor. These results provide further evidence for the expression of androgen receptor in the human temporal cortex. The use of these immunocytochemical techniques should enable the retrospective determination of possible changes in androgen receptor expression in

  7. In-die ultrasonic and off-line air-coupled monitoring and characterization techniques for drug tablets

    NASA Astrophysics Data System (ADS)

    Stephens, J. D.; Kowalczyk, B. R.; Hancock, B. C.; Kaul, G.; Akseli, I.; Cetinkaya, C.

    2012-05-01

    Mechanical integrity and properties of drug tablets may adversely affect their therapeutic and structural functions. An embedded ultrasound monitoring system for tablet mechanical property monitoring during compaction and a non-contact/non-destructive off-line air-coupled technique for determining the mechanical properties of coated drug tablets are presented. In the compaction monitoring system, the change of ToF and the reflection coefficient for the upper-punch surface interface as a function of compaction pressure has been studied. In the air-coupled measurement approach, air-coupled excitation and laser interferometric detection are utilized and their effectiveness in characterizing the mechanical properties of a drug tablet by examining its vibrational resonance frequencies is demonstrated. An iterative computational procedure based on the finite element method and Newton's method is developed to extract the mechanical properties of the coated tablet from a subset of its measured resonance frequencies. The mechanical properties characterized by this technique are compared to those obtained by a contact ultrasonic method.

  8. Fricke xylenol gel characterization using a photoacustic technique

    NASA Astrophysics Data System (ADS)

    Caldeira, A. M. F.; de Almeida, A.; Neto, A. M.; Baesso, M. L.; Bento, A. C.; Silva, M. A.

    2007-11-01

    Fricke chemical dosimetry measurements of the absorbed dose of ionizing radiation depend on the quality and characteristics of the system that reads each dosimeter. The final accuracy is significantly dependent on the technique used for measuring the chemical concentration changes in the dosimeters. We have used a photoacoustic technique to detect the Fricke xylenol gel (FXG) optical absorbance. The FXG, a derivation of the aqueous Fricke dosimeter, is made more sensitive and stable with addition of gelatin (300 Bloom) and xylenol orange. The light intensity transmitted through an FXG sample before and after irradiation was measured with an acoustic detector. The incremental optical absorbance is directly proportional to the ionizing radiation absorbed dose. We present the optical absorbance measurements as a function of absorbed dose and of post-irradiation time. We apply our photoacoustic technique to determine absorbed dose profiles. The results show that the photoacoustic technique applied to FXG provides a new dosimetric system, as good as those already established using spectrophotometric techniques.

  9. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  10. Biochemistry and Molecular Biology Techniques for Person Characterization

    ERIC Educational Resources Information Center

    Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen

    2008-01-01

    Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…

  11. Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.

    PubMed

    Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S

    2016-04-01

    Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity. PMID:26995641

  12. Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.

    PubMed

    Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S

    2016-04-01

    Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity.

  13. Application of Acoustic Techniques for Characterization of Biological Samples

    NASA Astrophysics Data System (ADS)

    Tittmann, Bernhard R.; Ebert, Anne

    The atomic force microscope (AFM) is emerging as a powerful tool in cell biology. Originally developed for high-resolution imaging purposes, the AFM also has unique capabilities as a nano-indenter to probe the dynamic viscoelastic material properties of living cells in culture. In particular, AFM elastography combines imaging and indentation modalities to map the spatial distribution of cell mechanical properties, which in turn reflect the structure and function of the underlying cytoskeleton. Such measurements have contributed to our understanding of cell mechanics and cell biology and appear to be sensitive to the presence of disease in individual cells. Examples of applications and considerations on the effective capability of ultrasonic AFM techniques on biological samples (both mammalian and plant) are reported in this chapter. Included in the discussion is scanning near-field ultrasound holography an acoustic technique which has been used to image structure and in particular nanoparticles inside cells. For illustration an example that is discussed in some detail is a technique for rapid in vitro single-cell elastography. The technique is based on atomic force acoustic microscopy (AFAM) but (1) requires only a few minutes of scan time, (2) can be used on live cells briefly removed from most of the nutrient fluid, (3) does negligible harm or damage to the cell, (4) provides semi-quantitative information on the distribution of modulus across the cell, and (5) yields data with 1-10 nm resolution. The technique is shown to enable rapid assessment of physical/biochemical signals on the cell modulus and contributes to current understanding of cell mechanics.

  14. Immunohistochemical identification of Renibacterium salmoninarum by monoclonal antibodies in paraffin-embedded tissues of Atlantic salmon (Salmo salar L.), using paired immunoenzyme and paired immunofluorescence techniques.

    PubMed

    Evensen, O; Dale, O B; Nilsen, A

    1994-01-01

    Renibacterium salmoninarum was identified in situ by immunoenzymatic and immunofluorescence techniques in paraffin-embedded tissue specimens collected during a natural outbreak of bacterial kidney disease (BKD) and from an experimental infection in Atlantic salmon (Salmo salar L.). Monoclonal antibodies (MAbs) 4D3 and 2G5 were used in this study, both specific for the 57-58-kD outer membrane protein (p57) of the bacterium. Both MAbs revealed positive staining in ethanol-fixed tissue specimens, but only the epitope identified by MAb 4D3 was formalin resistant. Pretreatment with trypsin did not reestablish the antigenicity for the epitope identified by Mab 2G5. Paired immunoenzymatic staining for identification of the bacterium in sequential incubation steps on ethanol-fixed tissue specimens using an avidin-biotin-peroxidase system was obtained after serial dilution of the Mab (2G5) or the chromagen, amino ethyl carbazole, in the first sequence. Paired immunofluorescence staining with well-balanced color mixing was easily obtained on ethanol-fixed tissue specimens using sequential incubations. Single exposures gave blue (aminomethyl coumarin acetic acid) and green (fluorescein isothiocyanate) fluorescence for MAbs 2G5 and biotinylated 4D3, respectively. Color mixing was revealed as a turquoise staining. Studies on method sensitivity was performed by incorporating a known amount of a protein preparation of p57 into an inert matrix, creating an artificial test substrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. System and technique for ultrasonic characterization of settling suspensions

    DOEpatents

    Greenwood, Margaret S.; Panetta, Paul D.; Bamberger, Judith A.; Pappas, Richard A.

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  16. Demonstration to characterize watershed runoff potential by microwave techniques

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1977-01-01

    Characteristics such as storage capacity of the soil, volume of storage in vegetative matter, and volume of storage available in local depressions are expressed in empirical watershed runoff equations as one or more coefficients. Conventional techniques for estimating coefficients representing the spatial distribution of these characteristics over a watershed drainage area are subjective and produce significant errors. Characteristics of the wear surface are described as a single coefficient called the curve number.

  17. Characterization of Magnetron Sputtered Coatings by Pulsed Eddy Current Techniques

    SciTech Connect

    Mulligan, Chris; Lee Changqing; Danon, Yaron

    2005-04-09

    A method that uses induced pulsed eddy currents for characterization of thick magnetron sputtered Nb coatings on steel is presented in this paper. The objectives of this work are to develop a system for rapid quantitative nondestructive inspection of coatings as well as to determine the correlation between coating properties, such as density and purity, and eddy current measured resistivity of coatings. A two-probe differential system having higher sensitivity and less noise than a one-probe system with 2-D scanning ability was developed.

  18. Using morphometric and analytical techniques to characterize elephant ivory.

    PubMed

    Singh, Rina Rani; Goyal, Surendra Prakash; Khanna, Param Pal; Mukherjee, Pulok Kumar; Sukumar, Raman

    2006-10-16

    There is a need to characterize Asian elephant ivory and compare with African ivory for controlling illegal trade and implementation of national and international laws. In this paper, we characterize ivory of Asian and African elephants using Schreger angle measurements, elemental analysis {X-ray fluorescence (XRF), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and inductively coupled plasma-mass spectroscopy (ICP-MS)} and isotopic analysis. We recorded Schreger angle characteristics of elephant ivory at three different zones in ivory samples of African (n=12) and Asian (n=28) elephants. The Schreger angle ranged from 32 degrees to 145 degrees and 30 degrees to 153 degrees in Asian and African ivory, respectively. Elemental analysis (for Asian and African ivory) by XRF, ICP-AES and ICP-MS provided preliminary data. We attempted to ascertain source of origin of Asian elephant ivory similarly as in African ivory based on isotopes of carbon, nitrogen and strontium. We determined isotopic ratios of carbon (n=31) and nitrogen (n=31) corresponding to diet and rainfall, respectively. Reference ivory samples from five areas within India were analyzed using collagen and powder sample and the latter was found more suitable for forensic analysis. During our preliminary analysis, the range of delta13C values (-13.6+/-0.15 per thousand and -25.6+/-0.15 per thousand) and delta15N values (10.2+/-0.15 per thousand and 3.5+/-0.15 per thousand) were noted.

  19. Simultaneous electronic and lattice characterization using coupled femtosecond spectroscopic techniques.

    SciTech Connect

    Beechem Iii, Thomas Edwin; Serrano, Justin Raymond; Hopkins, Patrick E

    2009-09-01

    High-power electronics are central in the development of radar, solid-state lighting, and laser systems. Large powers, however, necessitate improved heat dissipation as heightened temperatures deleteriously affect both performance and reliability. Heat dissipation, in turn, is determined by the cascade of energy from the electronic to lattice system. Full characterization of the transport then requires analysis of each. In response, this four-month late start effort has developed a transient thermoreflectance (TTR) capability that probes the thermal response of electronic carriers with 100 fs resolution. Simultaneous characterization of the lattice carriers with this electronic assessment was then investigated by equipping the optical arrangement to acquire a Raman signal from radiation discarded during the TTR experiment. Initial results show only tentative acquisition of a Raman response at these timescales. Using simulations of the response, challenges responsible for these difficulties are then examined and indicate that with outlined refinements simultaneous acquisition of TTR/Raman signals remains attainable in the near term.

  20. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    NASA Astrophysics Data System (ADS)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  1. PIXE as a characterization technique in the cutting tool industry

    NASA Astrophysics Data System (ADS)

    Freemantle, C. S.; Sacks, N.; Topic, M.; Pineda-Vargas, C. A.

    2014-01-01

    Two WC-Co powders have been analyzed using micro-PIXE to identify elemental concentration and distribution. A powder recycled primarily from used mining components and a powder produced exclusively from fresh raw materials was studied. Elemental mapping of major elements as well as impurities, within powder granule cross sections, was performed. Contaminants (e.g. Fe and Ni) from manufacturing processes, as well as trace impurities (e.g. Cr, Cl, Ca and S) from recycling were detected, quantified and compared. The extent of increased concentrations of impurities resulting from recycling were observed, demonstrating the potential for PIXE as a characterization tool for detecting trace elements in cemented carbides, allowing for future improvements in the manufacturing and recycling processes.

  2. Ground Penetrating Radar technique for railway track characterization in Portugal

    NASA Astrophysics Data System (ADS)

    De Chiara, Francesca; Fontul, Simona; Fortunato, Eduardo; D'Andrea, Antonio

    2013-04-01

    Maintenance actions are significant for transport infrastructures but, today, costs have to be necessary limited. A proper quality control since the construction phase is a key factor for a long life cycle and for a good economy policy. For this reason, suitable techniques have to be chosen and non-destructive tests represent an efficient solution, as they allow to evaluate infrastructure characteristics in a continuous or quasi-continuous way, saving time and costs, enabling to make changes if tests results do not comply with the project requirements. Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry and they cannot be detected by the common monitoring procedures, namely the measurements of track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. Therefore, it represents a reliable technique to assess track geometry problems and consequently to improve maintenance planning. In Portugal, rail inspection is performed with Plasser & Theurer EM120 equipment and recently 400 MHz IDS antennas were installed on it. GPR tests were performed on the Portuguese rail network and, as case study in this paper, a renewed track was

  3. Characterization of fiber composite flywheels by ultrasonic imaging techniques

    SciTech Connect

    Tsao, M.C.; Grills, R.H.; Andrew, G.A.; Coppa, A.P.

    1983-01-01

    A set of flywheels of different fiber composites has been investigated ultrasonically by an ULTRA IMAGE III System developed by General Dynamics. The 40 cm (16 in.) in diameter and 4.3 cm (1.7 in.) thick flywheels have been studied in an immersion test with a 2.5 cm (1 in.) diameter, 1.5 MHz, conically focused transducer. By monitoring the amplitude of the back surface signals from the wheels and displaying the amplitude variations with different color bands, the internal structures of the wheels such as the fiber orientations and bonding distributions can be examined in detail. The baseline information concerning the integrity of these prototype flywheels, relative to different manufacturing processes, with and without ring shrink fit, has been recorded. This paper describes a consistent, reliance, and cost-effective nondestructive testing technique for analyzing the internal bonding structures of fiber composites.

  4. Stomatal Characterization of Grass Leaves by Four Preparation Techniques

    NASA Astrophysics Data System (ADS)

    Hardy, Joyce Phillips; Anderson, Val Jo; Gardner, John S.

    1995-06-01

    Four leaf preparation techniques (air drying, tetramethylsilane air drying, critical point drying, and freeze substitution) used in scanning electron microscopy (SEM) were evaluated with respect to the degree of cellular distortion they produce in stomatal guard cells of leaves of Dactylis glomerata and Elymus canadensis. Surface morphological distortion and cuticle disruption in the air-dried and tetramethylsilane air-dried leaves, and cuticle disruption within the critical point-dried tissue made it difficult to obtain measurements.The freeze-substituted tissue experienced little cuticle disturbance, and the cellular morphology appeared normal. The length of the guard cells did not significantly differ between the air-dried, tetramethylsilane air-dried, critical point-dried, or freeze-substituted samples. Widths did significantly vary, with the freeze-substituted tissue having lower values than tissues treated with the other treatments. Freeze substitution methodology produced SEM images that appear to be less distorted and allow easy and precise measurement.

  5. Fluorescent spectroscopy, a technique for characterizing surface films

    USGS Publications Warehouse

    Goldberg, Marvin C.; Devonald, David H.

    1973-01-01

    A relationship is established between fluorescent spectra obtained by using a light path through the liquid solution and the fluorescent spectra obtained by a direct reading of surface reflection (remote sensing). A brief review of quantum fundamentals provides the necessary information to conclude that "see-through" and reflectance spectra are identical in wavelength response. Many floating films contain fluorescent materials; thus fluorescent spectroscopic techniques were used to obtain the fluorescent spectra of lube oil, crude oil, andlignosulfonie acid in an effort to detect, identify, and quantify these representative fluorescent materials in water solutions. For each material tested the emission maximum was established. The emission maximum was then held constant while the absorption spectrum was recorded and the absorption maximum established. The complete spectral curves are presented.

  6. Characterizing a Brazilian sanitary landfill using geophysical seismic techniques.

    PubMed

    Abreu, A E S; Gandolfo, O C B; Vilar, O M

    2016-07-01

    Two different geophysical techniques, namely crosshole and multichannel analysis of surface waves - MASW, were applied to investigate the mechanical response of Municipal Solid Waste buried under humid, subtropical climate. Direct investigations revealed that the buried waste was composed mainly of soil-like material (51%) and plastics (31%) with moisture content average values of 43% near the surface and 53% after around 11m depth. Unit weight varied between 9kN/m(3) and 15kN/m(3). Seismic investigation of the landfill yielded shear wave velocities (VS) estimated from the crosshole tests ranging from 92 to 214m/s, while compression wave velocities (VP) ranged from 197 to 451m/s. Both velocities were influenced by vertical confining stress and thus tended to increase with depth. VS calculated from MASW tests were lower than the ones calculated from the crosshole tests, probably due to the different frequencies used in the tests. The results of both methods tended to configure a lower bound to the values reported in the technical literature in general, as expected for low compaction waste with small amounts of cover soil. Although VS did not show abrupt changes with depth, VP profile distribution combined with direct investigations results, such as temperature, in-place unit weight and moisture content, suggest that the waste body could be divided into two strata. The lower one is poorly drained and shows higher moisture content, as a consequence of the operational techniques used in the first years, while the upper stratum is probably related to a better drained waste stratum, resulting from the improvement of operational standards and increase in drainage facilities throughout the years. PMID:27107707

  7. Characterizing a Brazilian sanitary landfill using geophysical seismic techniques.

    PubMed

    Abreu, A E S; Gandolfo, O C B; Vilar, O M

    2016-07-01

    Two different geophysical techniques, namely crosshole and multichannel analysis of surface waves - MASW, were applied to investigate the mechanical response of Municipal Solid Waste buried under humid, subtropical climate. Direct investigations revealed that the buried waste was composed mainly of soil-like material (51%) and plastics (31%) with moisture content average values of 43% near the surface and 53% after around 11m depth. Unit weight varied between 9kN/m(3) and 15kN/m(3). Seismic investigation of the landfill yielded shear wave velocities (VS) estimated from the crosshole tests ranging from 92 to 214m/s, while compression wave velocities (VP) ranged from 197 to 451m/s. Both velocities were influenced by vertical confining stress and thus tended to increase with depth. VS calculated from MASW tests were lower than the ones calculated from the crosshole tests, probably due to the different frequencies used in the tests. The results of both methods tended to configure a lower bound to the values reported in the technical literature in general, as expected for low compaction waste with small amounts of cover soil. Although VS did not show abrupt changes with depth, VP profile distribution combined with direct investigations results, such as temperature, in-place unit weight and moisture content, suggest that the waste body could be divided into two strata. The lower one is poorly drained and shows higher moisture content, as a consequence of the operational techniques used in the first years, while the upper stratum is probably related to a better drained waste stratum, resulting from the improvement of operational standards and increase in drainage facilities throughout the years.

  8. A New Spitzer IRAC Technique to Characterize Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Krick, Jessica; Ingalls, J.; Carey, S.; von Braun, K.

    2012-05-01

    Spitzer’s extended warm mission gives us the opportunity to contribute to its legacy by performing comparative science on atmospheres of extrasolar planets. Observation of phase curves produce maps of the longitudinal brightness/temperature distributions in the planetary atmospheres, which are then used to calculate energy redistribution efficiencies between the hot dayside and cooler nightside - exoplanetary weather. Recent improvements in the calibration of IRAC make possible a new observing technique which will be much more efficient than standard staring mode observations by using snapshot observations to emulate a full phase curve. The challenge with using snapshot observations is in making sure all observing epochs can be tied together with high enough photometric precision. The dominant source of error in this task is intrapixel gain variations on sub pixel levels. We have effectively removed this source of error by using the Pointing Calibration and Reference Sensor (PCRS) onboard Spitzer for pointing repeatability that is significantly better than random pointing. Because we have achieved this excellent repeatability, we are able to build up a map of the intrapixel gain, which is then used to independently correct IRAC photometry as a function of position on the pixel. We discuss additional sources of noise below the gain variations, at the sub percent level, such as pixel-wise nonlinearities, and our efforts to remove them. We present preliminary 4.5 micron data of HD209458 where we compare staring mode observations to snapshots taken with this new technique, corrected by the gain and residual nonlinearity map, and comment on the scientific implications of the resultant phase curve.

  9. Overview of seismic imagery techniques applied to landslides characterization.

    NASA Astrophysics Data System (ADS)

    Grandjean, Gilles; Romdhane, Anouar; Bitri, Adnand

    2010-05-01

    From numerous studies, geophysical methods based on seismic surveying appear to be well-adapted to investigate the morpho-structure of landslides and to progress in understanding the related mechanisms. Indeed, these methods allow direct and non-intrusive measurements of acoustic (Vp) or shear (Vs) wave velocity, two important physical parameters for estimating mechanical properties of reworked moving materials. Different processing techniques and inversion strategies were applied on the La Valette and Super-Sauze mudslides (French South Alps) as well as on the Ballandaz landslide (Savoie, France) to retrieve these parameters. On each of these sites, measurements were recorded along 2D profiles of several hundred meters length, with sensor spacing from 2 to 5m. (of about few meters). A first approach, based on first breaks acoustic inversion for estimating Vp distribution on the Super-Sauze and La Valette sites was carried out; then, SASW (spectral analysis of surface waves) was performed to image Vs distribution on the same site. In order to produce a more geotechnical diagnosis of these sections, a fuzzy logic fusion was used to assimilate both of these parameters into a highest level of interpretation. This approach has (also) the advantage to take into account the resolution and accuracy of each individual method. Finally, a 2D elastic full-waveform inversion test was carried out on a synthetic seismic data set computed from a conceptual Super-Sauze velocity model. This test highlights the difficulty to manage highly contrasted media in terms of velocity but also of topography. Nevertheless, the integration in the inversion process of the whole seismic signal produce a more coherent model in terms of Vp and Vs distribution compared to above-cited conventional techniques.

  10. Genetic Characterization of Echinococcus granulosus from a Large Number of Formalin-Fixed, Paraffin-Embedded Tissue Samples of Human Isolates in Iran

    PubMed Central

    Rostami, Sima; Torbaghan, Shams Shariat; Dabiri, Shahriar; Babaei, Zahra; Mohammadi, Mohammad Ali; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-01-01

    Cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus, presents an important medical and veterinary problem globally, including that in Iran. Different genotypes of E. granulosus have been reported from human isolates worldwide. This study identifies the genotype of the parasite responsible for human hydatidosis in three provinces of Iran using formalin-fixed paraffin-embedded tissue samples. In this study, 200 formalin-fixed paraffin-embedded tissue samples from human CE cases were collected from Alborz, Tehran, and Kerman provinces. Polymerase chain reaction amplification and sequencing of the partial mitochondrial cytochrome c oxidase subunit 1 gene were performed for genetic characterization of the samples. Phylogenetic analysis of the isolates from this study and reference sequences of different genotypes was done using a maximum likelihood method. In total, 54.4%, 0.8%, 1%, and 40.8% of the samples were identified as the G1, G2, G3, and G6 genotypes, respectively. The findings of the current study confirm the G1 genotype (sheep strain) to be the most prevalent genotype involved in human CE cases in Iran and indicates the high prevalence of the G6 genotype with a high infectivity for humans. Furthermore, this study illustrates the first documented human CE case in Iran infected with the G2 genotype. PMID:25535316

  11. Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory

    PubMed Central

    Selvadurai, Paul A.; Glaser, Steven D.

    2015-01-01

    A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930

  12. Novel monitoring techniques for characterizing frictional interfaces in the laboratory.

    PubMed

    Selvadurai, Paul A; Glaser, Steven D

    2015-01-01

    A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within -7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930

  13. Characterization of pyrocarbon coated materials using laboratory based x-ray phase contrast imaging technique.

    PubMed

    Kashyap, Y S; Roy, Tushar; Sarkar, P S; Yadav, P S; Shukla, Mayank; Sinha, Amar; Dasgupta, K; Sathiyamoorthy, D

    2007-08-01

    In-line x-ray phase contrast is an emerging x-ray imaging technique that promises to improve the contrast in x-ray imaging process. This technique is most suited for x-ray imaging of soft materials, low atomic number elements such as carbon composite fibers, very thin coatings, etc. We have used this new emerging technique for visualization and characterization of the pyrocarbon coated materials using a combination of microfocus x-ray source and x-ray charge coupled device detector. These studies are important for characterization of coating and optimization of various process parameters during deposition. These experiments will help us to exploit the potential of this technique for studies in other areas of material science such as characterization of carbon fibered structures and detection of cracks and flaws in materials. The characterization of the imaging system and optimization of some process parameters for carbon deposition are also described in detail. PMID:17764325

  14. Characterization of the active site of chloroperoxidase using physical techniques

    SciTech Connect

    Hall, K.S.

    1986-01-01

    Chloroperoxidase (CPO) and Cytochrome P-450, two very different hemeproteins, have been shown to have similar active sites by several techniques. Recent work has demonstrated thiolate ligation from a cysteine residue to the iron in P-450. A major portion of this research has been devoted to obtaining direct evidence that CPO also has a thiolate 5th ligand from a cysteine residue. This information will provide the framework for a detailed analysis of the structure-function relationships between peroxidases, catalase and cytochrome P-450 hemeproteins. To determine whether the 5th ligand is a cysteine, methionine or a unique amino acid, specific isotope enrichment experiments were used. Preliminary /sup 1/H-NMR studies show that the carbon monoxide-CPO complex has a peak in the upfield region corresponding to alpha-protons of a thiolate amino acid. C. fumago was grown on 95% D/sub 2/O media with a small amount of /sup 1/H-cysteine added. Under these conditions C. fumago slows down the biosynthesis of cysteine by at least 50% and utilizes the exogenous cysteine in the media. GC-MS was able to show that the methylene protons next to the sulfur atom in cysteine are 80-90% protonated while these positions in methionine are approximately 73% deuterated. Comparison of the /sup 1/H-NMR spectra of CO-CPO and CO-CPO indicate the presence of a cysteine ligand in chloroperoxidase.

  15. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  16. Diagnosis of industrial catalyst deactivation by surface characterization techniques

    SciTech Connect

    Menon, P.G. . Lab. voor Petrochemische Techniek Chalmers Univ. of Technology, Goeteborg . Dept. of Engineering Chemistry)

    1994-06-01

    The exact nature of the catalyst surface and the various ways of catalyst deactivation are subjects of great scientific interest and enormous economic importance. A brief review like the present one has to be very selective, giving only the underlying principles and representative examples. The focus of this review is on industrial catalysts, in particular, on the most commonly used supported metal and mixed-oxide type catalysts. Here again, only typical examples are chosen and cited to illustrate the specific types of problems involved in catalyst deactivation and how these problems wee diagnosed by a judicious application of the experimental techniques available today. Of the types of catalyst deactivation caused by coking, poisoning, and solid-state transformations, the emphasis in this review is on the last type. Changes in the chemical composition of the catalyst surface, restructuring or reconstruction of the surface, phase transformations, gradual enrichment/depletion of a particular catalyst component on/from the catalyst surface, these are the topics of prominence in this review. Even here, emphasis is on normally unexpected or unsuspected types of deactivation and the catalyst metamorphosis produced by the catalytic reaction itself, as distinct from the purely thermal effects at the reaction temperature. This review is aimed to provide some essential background information and possibly to serve as a reference guide for trouble-shooting when a catalyst is deactivated for rather mysterious reasons. 147 refs.

  17. Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury.

    PubMed

    Nivethaa, E A K; Narayanan, V; Stephen, A

    2015-05-15

    Polymer matrix type chitosan-silver nanocomposite containing different weight percentage of silver was synthesized by the chemical method. HRTEM images confirm the embedment of silver in the chitosan matrix. The binding of silver to the NH2 and OH groups of chitosan is evident from XPS and FTIR studies. An increase in the absorbance observed from UV-Vis analysis on raising the weight percentage of silver showed the increase in the amount of silver in the nanocomposite. The face centered cubic structure of silver and the semi-crystalline nature of chitosan are evident from the XRD studies. On interaction with mercury the UV-Vis spectra of the composite showed a decrease in intensity and a blue shift confirming the use of the composite as a colorimetric sensor for the detection of mercury. The limit of detection was found to be about 7.2×10(-8)M. High specificity and the sensitivity of the environmental friendly and non-toxic nanocomposite to detect very low concentrations of mercury make the system a perspective one.

  18. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    PubMed Central

    Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634

  19. Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury

    NASA Astrophysics Data System (ADS)

    Nivethaa, E. A. K.; Narayanan, V.; Stephen, A.

    2015-05-01

    Polymer matrix type chitosan-silver nanocomposite containing different weight percentage of silver was synthesized by the chemical method. HRTEM images confirm the embedment of silver in the chitosan matrix. The binding of silver to the NH2 and OH groups of chitosan is evident from XPS and FTIR studies. An increase in the absorbance observed from UV-Vis analysis on raising the weight percentage of silver showed the increase in the amount of silver in the nanocomposite. The face centered cubic structure of silver and the semi-crystalline nature of chitosan are evident from the XRD studies. On interaction with mercury the UV-Vis spectra of the composite showed a decrease in intensity and a blue shift confirming the use of the composite as a colorimetric sensor for the detection of mercury. The limit of detection was found to be about 7.2 × 10-8 M. High specificity and the sensitivity of the environmental friendly and non-toxic nanocomposite to detect very low concentrations of mercury make the system a perspective one.

  20. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  1. Mechanism for single-event burnout of power MOSFETs and its characterization technique

    NASA Astrophysics Data System (ADS)

    Kuboyama, S.; Matsuda, S.; Kanno, T.; Ishii, T.

    1992-12-01

    A novel characterization technique for single event burnout (SEB) of power MOSFETs was developed. The technique is based on a pulse-height analyzer system for charge collection measurement with a modified charge-sensitive amplifier which has a very wide dynamic range. The data obtained by this technique give detailed information about the SEB mechanism of power MOSFETs. The experimental data suggested a position-independent charge collection mechanism along an ion track, and a new parameter for SEB hardness was proposed.

  2. Improved technique for fluorescence in situ hybridisation analysis of isolated nuclei from archival, B5 or formalin fixed, paraffin wax embedded tissue.

    PubMed

    Schurter, M J; LeBrun, D P; Harrison, K J

    2002-04-01

    Fluorescence in situ hybridisation (FISH) is an effective method to detect chromosomal alterations in a variety of tissue types, including archived paraffin wax embedded specimens fixed in B5 or formalin. However, precipitating fixatives such as B5 have been known to produce unsatisfactory results in comparison with formalin when used for FISH. This study describes an effective nuclear isolation and FISH procedure for B5 and formalin fixed tissue, optimising the nuclear isolation step and nuclei pretreatments using tonsil and mantle cell lymphoma specimens. The protocol presented can be used to isolate nuclei and perform FISH on B5 or formalin fixed, paraffin wax embedded samples from a variety of tissue types.

  3. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  4. Depth profile characterization technique for electron density in GaN films by infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamijoh, Takaaki; Ma, Bei; Morita, Ken; Ishitani, Yoshihiro

    2016-05-01

    Infrared reflectance spectroscopy is a noncontact measurement method for carrier density and mobility. In this article, the model determination procedure of layer-type nonuniform electron distribution is investigated, since the spectrum fitting hitherto has been conducted on the basis of a multilayer model defined in advance. A simplified case of a high-electron-density GaN layer embedded in a GaN matrix is mainly studied. The following procedure is found to be applicable. The first step is the determination of the high-density layer position in the vicinity of the surface, in the middle region, or in the vicinity of the interface. This is followed by the specification of the sheet electron density and the layer thickness of the high-density region. It is found that this procedure is also applicable to the characterization of two-dimensional electron gases in the vicinity of AlGaN/GaN heterointerfaces.

  5. Characterization of nanocrystalline gold/DLC composite films synthesized by plasma CVD technique

    NASA Astrophysics Data System (ADS)

    Paul, R.; Hussain, S.; Pal, A. K.

    2009-06-01

    Composite films containing gold nanoparticles embedded in diamond-like carbon (Au-DLC) matrix were deposited on glass and Si (1 0 0) substrates by using capacitatively coupled plasma (CCP) chemical vapour deposition technique (CVD). Particle size and metal volume fraction were tailored by varying the relative amount of argon in the methane + argon gas mixture in the plasma. Optical constants of the films were evaluated. Bonding environment in these films were obtained from Raman and Fourier transformed infrared spectra (FTIR) studies. Blue-shift of the surface plasmon resonance peak in the optical absorbance spectra of the films could be associated with the reduction of the particle size while red shift was observed with the increase in volume fraction of metal particles in the DLC films. Absorption spectra recorded in the reflection mode indicated dichromatism in these films.

  6. TOPICAL REVIEW Organic photovoltaics: principles and techniques for nanometre scale characterization

    NASA Astrophysics Data System (ADS)

    Nicholson, Patrick G.; Castro, Fernando A.

    2010-12-01

    The photoconversion efficiency of state-of-the-art organic solar cells has experienced a remarkable increase in the last few years, with reported certified efficiency values of up to 8.3%. This increase has been due to an improved understanding of the underlying physics, synthetic discovery and the realization of the pivotal role that morphological optimization plays. Advances in nanometre scale characterization have underpinned all three factors. Here we give an overview of the current understanding of the fundamental processes in organic photovoltaic devices, on optimization considerations and on recent developments in nanometre scale measuring techniques. Finally, recommendations for future developments from the perspective of characterization techniques are set forth.

  7. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  8. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery.

    PubMed

    Coviello, T; Trotta, A M; Marianecci, C; Carafa, M; Di Marzio, L; Rinaldi, F; Di Meo, C; Alhaique, F; Matricardi, P

    2015-01-01

    In the present paper physical gels, prepared with two polysaccharides, Xanthan and Locust Bean Gum, and loaded with non-ionic surfactant vesicles, are described. The vesicles, composed by Tween20 and cholesterol or by Tween85 and Span20, were loaded with Monoammonium glycyrrhizinate for release experiments. Size and zeta (ζ)-potential of the vesicles were evaluated and the new systems were characterized by rheological and dynamo-mechanical measurements. For an appropriate comparison, a Carbopol gel and a commercial gel for topical applications were also tested. The new formulations showed mechanical properties comparable with those of the commercial product indicating their suitability for topical applications. In vitro release experiments showed that the polysaccharide network protects the integrity of the vesicles and leads to their slow release without disruption of the aggregated structures. Furthermore, being the vesicles composed of molecules possessing enhancing properties, the permeation of the loaded drugs topically delivered can be improved. Thus, the new systems combine the advantages of matrices for a modified release (polymeric component) and those of an easier permeability across the skin (vesicle components). Finally, shelf live experiments indicated that the tested gel/vesicle formulations were stable over 1 year with no need of preservatives. PMID:25524220

  9. Template Synthesis Of Copper Nanowires Via Electrodeposition Technique And Their Characterization

    SciTech Connect

    Kumar, Narinder; Kumar, Rajesh; Kumar, Sushil; Chakarvarti, S. K.

    2011-12-12

    Copper nanowires have been synthesized successfully using template assisted electrodeposition technique. Commercial polycarbonate membrane (Whatman, Japan) having pore diameter 100 nm, thickness 10 {mu}m and pore density 10{sup 7} pores/cm{sup 2} was used as template. Scanning electron microscopy and X-ray diffraction techniques were used to characterize the synthesized copper nanowires. XRD and SEM results reveal that polycrystalline copper nanowires were obtained with fcc lattice structure having diameter equal to the diameter of the template used.

  10. Technical textiles with embedded fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Bilro, L.; Cunha, H.; Pinto, J. L.; Nogueira, R. N.

    2009-10-01

    The characterization of fiber Bragg grating (FBG) sensors integrated on 2D and 3D mesh structures is presented. Several materials and configurations were tested, namely cork, foams, PVC, hexagonal 3D. Sensors were embedded between two substrates using textile lamination technique. Every sample was subjected to temperature variations and mechanical deformations. Through Bragg wavelength monitoring, thermal, deformation and pressure performance were evaluated. These results provide significant information to the conception of smart textiles.

  11. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review.

    PubMed

    Mura, Paola

    2015-09-10

    Cyclodextrins are cyclic oligosaccharides able to form inclusion complexes with a variety of hydrophobic guest molecules, positively modifying their physicochemical properties. A thorough analytical characterization of cyclodextrin complexes is of fundamental importance to provide an adequate support in selection of the most suitable cyclodextrin for each guest molecule, and also in view of possible future patenting and marketing of drug-cyclodextrin formulations. The demonstration of the actual formation of a drug-cyclodextrin inclusion complex in solution does not guarantee its existence also in the solid state. Moreover, the technique used to prepare the solid complex can strongly influence the properties of the final product. Therefore, an appropriate characterization of the drug-cyclodextrin solid systems obtained has also a key role in driving in the choice of the most effective preparation method, able to maximize host-guest interactions. The analytical characterization of drug-cyclodextrin solid systems and the assessment of the actual inclusion complex formation is not a simple task and involves the combined use of several analytical techniques, whose results have to be evaluated together. The objective of the present review is to present a general prospect of the principal analytical techniques which can be employed for a suitable characterization of drug-cyclodextrin systems in the solid state, evidencing their respective potential advantages and limits. The applications of each examined technique are described and discussed by pertinent examples from literature.

  12. A Systematic Characterization of Cognitive Techniques for Learning from Textual and Pictorial Representations

    ERIC Educational Resources Information Center

    Ploetzner, Rolf; Lowe, Richard; Schlag, Sabine

    2013-01-01

    Pictorial representations can play a pivotal role in both printed and digital learning material. Although there has been extensive research on cognitive techniques and strategies for learning from text, the same cannot be said for static and dynamic pictorial representations. In this paper we propose a systematic characterization of cognitive…

  13. The maturing of high contrast imaging and starlight suppression techniques for future NASA exoplanet characterization missions

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Gallagher, David B.; Siegler, Nicholas; Shaklan, Stuart; Stapelfeldt, Karl; Traub, Wesley A.

    2016-07-01

    Over 3000 exoplanets and hundreds of exoplanetary systems have been detected to date and we are now rapidly moving toward an era where the focus is shifting from detection to direct imaging and spectroscopic characterization of these new worlds and their atmospheres. NASA is currently studying several exoplanet characterization mission concepts for the 2020 Decadal Survey ranging from probe class to flagships. Detailed and comprehensive exoplanet characterization, particularly of exo-Earths, leading to assessment of habitability, or indeed detection of life, will require significant advances beyond the current state-of-the-art in high contrast imaging and starlight suppression techniques which utilize specially shaped precision optical elements to block the light from the parent star while controlling scattering and diffraction thus revealing and enabling spectroscopic study of the orbiting exoplanets in reflected light. In this paper we describe the two primary high contrast starlight suppression techniques currently being pursued by NASA: 1) coronagraphs (including several design variations) and 2) free-flying starshades. These techniques are rapidly moving from the technology development phase to the design and engineering phase and we discuss the prospects and projected performance for future exoplanet characterization missions utilizing these techniques coupled with large aperture telescopes in space.

  14. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    SciTech Connect

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  15. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    NASA Astrophysics Data System (ADS)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  16. Basalt characterization by means of nuclear and electrical well logging techniques. Case study from Southern Syria.

    PubMed

    Asfahani, Jamal

    2011-03-01

    Nuclear well logging, including natural gamma ray, density, and neutron-porosity techniques are used with electrical well logging of long and short normal techniques to characterize the basaltic areas largely extended in Southern Syria. Statistical analysis approach with the threshold concept has been adapted for such characterization, where four kinds of basalt have been identified: very hard basalt, hard basalt, fractured basalt, and basalt alteration products. The spectrometric gamma technique has also been applied on the retrieved rock samples in order to determine the radioactive content (eU, eTh, and K%) of the basaltic section in the study area. No radioactive anomalies have been detected, the radioactive values are normal and in the expected range.

  17. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  18. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  19. Characterization techniques to validate models of density variations in pressed powder compacts

    SciTech Connect

    Garino, T.; Mahoney, M.; Readey, M.; Ewsuk, K.; Gieske, J.; Stoker, G.; Min, S.

    1995-07-01

    Techniques for characterizing density gradients generated during typical powder compaction processes are reviewed and several are evaluated. The techniques reviewed are ultrasonic velocity measurements, laser ultrasonic velocity measurements, x-ray radiography, autoradiography, computer tomography (CT), magnetic resonance imaging (MRI), and simple image analysis of polished cross-sections. Experimental results are reported for all of these techniques except autoradiography, CT and MRI. The test specimens examined were right circular cylinders of a high length/diameter ratio (to ensure significant density variation) pressed from commercial spray-dried alumina powders. Although the density gradients could be detected with all four techniques, ultrasonic velocity measurements gave the best contour map of gradients and is therefore most suitable for model validation. On the other hand, it was concluded that x-ray radiography is preferable in situations where cost and/or number of samples are more important that high resolution.

  20. In situ attosecond pulse characterization techniques to measure the electromagnetic phase

    NASA Astrophysics Data System (ADS)

    Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.

    2016-08-01

    A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.

  1. Development and application of techniques for the microstructural characterization of hydrogen permeability in zirconium oxides

    NASA Astrophysics Data System (ADS)

    Glavicic, Michael G.

    Equipment and techniques have been developed for the microstructural characterization of Zirconium Oxide films grown on Zr-2.5%Nb pressure tubes. A thin film texture apparatus was constructed and used to measure the texture and stress present in thin zirconium oxide films. The general techniques developed employ a grazing incidence geometry which allows the texture and stress present in thin films (<1mum) of any type to be examined. In addition, a technique for the quantitative phase analysis of textured ZrO2 films grown on zirconium alloys using pole figure data has also been developed. Moreover, equipment was constructed to determine the relative porosity of oxide films grown on a metal substrate using an electrochemical method that measures the effective non-porous oxide thickness. The described equipment and techniques were then used to characterize a test matrix of specimens whose relative hydrogen pick-up was measured by Differential Scanning Calorimetry. The application of beat treatments to the substrates prior to oxide growth was found to have a pronounced effect upon the sharpness of the oxide texture. A correlation between the degree of sharpness of the oxide texture and hydrogen pick-up and corrosion rate of the substrate was also determined. In addition, based upon the new techniques developed it was determined that the tetragonal phase of the oxide is stress stabilized in a region close to the metal/oxide interface.

  2. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  3. Characterization of third-degree burned skin by nonlinear microscopy technique

    NASA Astrophysics Data System (ADS)

    dos Santos, Moisés O.; Pelegati, Vitor B.; Cesar, Carlos L.; Correa, Paulo R.; Zorn, Telma Maria T.; Zezell, Denise M.

    2011-03-01

    Nonlinear microscopy imaging technique enable take both images of collagen fibers in dermis through second harmonic generation (SHG) signal and elastic fibers by two-photon emission fluorescence microscopy (TPEFM). These techniques are the most commonly used technique for turbid and thick tissue imaging and also to image biological samples which presents highly ordered structural proteins without any exogenous label. The objective of this study is characterizing dermis of third-degree burned skin by TPEFM and SHG technique. The modelocked laser (Spectra Physics) source used in this study with pulse width of approximately 100 fs at 80 MHz was directed into a multiphoton microscope using a laser scanning unit (Olympus Fluoview 300), mounted on an inverted confocal system microscope (Olympus IX81), with focusing objective (40x, NA = 1.30). The samples were obtained from Wistar rats, male, adult. One dorsum area was submitted to burn caused by vapour exposure. The biopsies obtained were cryosectioned in slices of 20 μm width. Selected area of interface between the injured and healthy subdermal burned skin were imaged by TPEFM and SHG technique. Two different autofluorescence signals are observed as a function of excitation wavelength. The autofluorescence observed at 760 nm and 690 nm suggest components of extracellular matrix at differents depths. In SHG images, collagen fibers are visible. According to the images obtained, these methodologies can be used to characterize dermis of burned tissue as its healing process with reduced out-of-plane photobleaching and phototoxicity.

  4. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  5. SELEX Modifications and Bioanalytical Techniques for Aptamer-Target Binding Characterization.

    PubMed

    Tan, Sze Y; Acquah, Caleb; Sidhu, Amandeep; Ongkudon, Clarence M; Yon, L S; Danquah, Michael K

    2016-11-01

    The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.

  6. Optical techniques for remote and in-situ characterization of particles pertinent to GEOTRACES

    NASA Astrophysics Data System (ADS)

    Boss, Emmanuel; Guidi, Lionel; Richardson, Mary Jo; Stemmann, Lars; Gardner, Wilford; Bishop, James K. B.; Anderson, Robert F.; Sherrell, Robert M.

    2015-04-01

    Field and laboratory characterization of marine particles is laborious and expensive. Proxies of particle properties have been developed that allow researchers to obtain high frequency distributions of such properties in space or time. We focus on optical techniques used to characterize marine particles in-situ, with a focus on GEOTRACES-relevant properties, such as bulk properties including particle mass, cross-sectional area, particle size distribution, particle shape information, and also single particle optical properties, such as individual particle type and size. We also address the use of optical properties of particles to infer particulate organic or inorganic carbon. In addition to optical sensors we review advances in imaging technology and its use to study marine particles in situ. This review addresses commercially available technology and techniques that can be used as a proxy for particle properties and the associated uncertainties with particular focus to open ocean environments, the focus of GEOTRACES.

  7. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  8. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization

    NASA Astrophysics Data System (ADS)

    Rudolf, Chris; Boesl, Benjamin; Agarwal, Arvind

    2016-01-01

    In situ mechanical property testing has the ability to enhance quantitative characterization of materials by revealing the occurring deformation behavior in real time. This article will summarize select recent testing performed inside a scanning electron microscope on various materials including metals, ceramics, composites, coatings, and 3-Dimensional graphene foam. Tensile and indentation testing methods are outlined with case studies and preliminary data. The benefits of performing a novel double-torsion testing technique in situ are also proposed.

  9. Thermal characterization and tomography of carbon fiber reinforced plastics using individual identification technique

    SciTech Connect

    Vavilov, V.P.; Grinzato, E.; Bison, P.G.; Marinetti, S.; Bressan, C.

    1996-05-01

    A method for thermal characterization of defect depth and thickness using individual inversion functions is described. Experimental results are obtained with standard carbon fiber reinforced plastic specimens which contained Teflon inserts and impact damage. Accuracy in determining defect dimensions was about 10 percent for defect depth and 33 percent for defect thickness. A technique to synthesize images of defect parameters is proposed. Thermal tomography advantages in analyzing defect in-depth propagation are illustrated.

  10. Ultrasonic wave techniques and characterization of filled elastomers and biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Wu, Hsueh-Chang

    Ultrasonic wave technique is an excellent method for non-destructive testing and for the monitoring of polymer curing, fatigue damage and polymer transition. It is also a potentially effective tool to be applied in the characterization of high frequency viscoelastic properties of polymers. This research represents the effort to improve and further develop ultrasonic wave techniques and extend its applications to new material evaluation areas. The work is presented as followings: In chapter 1, the fundamental wave propagation theories and characterization of the viscoelastic properties of materials by acoustic parameters were briefly reviewed. In chapter 2, the effects of carbon black filler on the elastomers were studied by the longitudinal wave pulse-echo technique. It is found that the enhanced pulse-echo technique is able to characterize the effects of polymer base, filler loading level, type as well as temperature, on the acoustic properties of filled elastomers. In chapter 3, the application of longitudinal wave pulse-echo technique was extended to the monitoring of the degradation process of biodegradable polymers: poly (glycolic acid)(PGA), poly (lactic acid) (PLA) and their copolymer-poly(d,l-lactide-co-glycolide) (PDLLG). It shows that the pulse-echo technique is able to differentiate the effects of polymer structure and preparation method on the degradation behavior of biopolymers. In chapter 4, the Young's modulus, shear modulus, bulk modulus and Poisson ratio of carbon black filled elastomers were determined by the longitudinal wave pulse-echo method and the shear wave through-transmission method. The effects of polymer base, filler loading and dispersion on the elastomers were also studied by the calculated elastic constants. In chapter 5, the effects of carbon black filler on the elastomers were studied by an innovative calibrated longitudinal and shear wave surface impedance technique. The results show that the effects of polymer base, filler loading

  11. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  12. Spatio-temporal characterization techniques of high-power femtosecond laser chains

    NASA Astrophysics Data System (ADS)

    Gallet, Valentin; Pariente, Gustave; Kahaly, Subhendu; Gobert, Olivier; Quéré, Fabien

    2014-03-01

    In this letter, we propose two techniques capable of spatio-temporally characterizing high-power femtosecond laser chains. We demonstrate a new implementation of SEA TADPOLE. To avoid the problems induced by the the significant spatial jittering of the focal spot on high-power laser chains, our setup is adapted to collimated beams. In addition, a fibered light source is also used to correct the phase fluctuations. This experimental setup allows identifying any spatiotemporal distortions such as the pulse front tilt for instance. In this paper, to the best of our knowledge, we present the very first spatio-temporal characterization done on a TW laser. However, a SEA TADPOLE measurement is not immediate since it requires scanning the beam over the two transverse dimensions which prevent us from studying the shot-to-shot laser fluctuations. This is why, we developed MUFFIN, a single-shot technique capable of spatio-temporally characterizing a laser pulse along its two transverse dimensions. First experimental results obtained with this technique are presented here.

  13. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P. M.; Kannan, A. M.

    2012-09-01

    The gas diffusion layer (GDL) in a proton exchange membrane fuel cell (PEMFC) is one of the functional components that provide a support structure for gas and water transport. The GDL plays a crucial role when the oxidant is air, especially when the fuel cell operates in the higher current density region. There has been an exponential growth in research and development because the PEMFC has the potential to become the future energy source for automotive applications. In order to serve in this capacity, the GDL requires due innovative analysis and characterization toward performance and durability. It is possible to achieve the optimum fuel cell performance only by understanding the characteristics of GDLs such as structure, pore size, porosity, gas permeability, wettability, thermal and electrical conductivities, surface morphology and water management. This review attempts to bring together the characterization techniques for the essential properties of the GDLs as handy tools for R&D institutions. Topics are categorized based on the ex-situ and in-situ characterization techniques of GDLs along with related modeling and simulation. Recently reported techniques used for accelerated durability evaluation of the GDLs are also consolidated within the ex-situ and in-situ methods.

  14. Site and Event Characterization Using the CTBT On-Site Inspection Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Labak, P.; Gaya Pique, L. R.; Rowlands, A. P.; Arndt, R. H.

    2013-12-01

    One of the four elements of the CTBT verification regime is On-Site Inspection (OSI). The sole purpose of an OSI is to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been conducted in violation of the CTBT. An OSI would be conducted within an area no bigger than 1000 km2 and by no more than 40 inspectors at any one time, applying search logic and inspection techniques with the aim of collecting relevant information that will be the basis for the inspection report. During the course of an OSI less intrusive techniques applied over broad areas (usually with lower spatial resolution) are supplemented with more intrusive techniques applied to more targeted areas (usually at a higher spatial resolution). Environmental setting and the evolution of OSI-relevant observables over time will influence the application of OSI techniques. In the course of the development of OSI methodology and relevant techniques, field tests and exercises have been conducted. While earlier activities mainly focused on progress of individual techniques (such as visual observation, passive seismological monitoring for aftershocks and measurements of radioactivity), recent work covered both technique development (such as multi-spectral imaging including infrared measurements, and environmental sampling and analysis of solids, liquids and gases) as well as the integration of techniques, search logic and data flow. We will highlight examples of application of OSI technologies for site and event characterization from recently conducted field tests and exercises and demonstrate the synthesis of techniques and data necessary for the conduct of an OSI.

  15. Isolation, Identification, and Characterization of One Degradation Product in Ambroxol by HPLC-Hyphenated Techniques

    PubMed Central

    Thummala, Veera Raghava Raju; Ivaturi, Mrutyunjaya Rao; Nittala, Someswara Rao

    2014-01-01

    This study details the isolation, identification, and characterization of ambroxol’s unknown impurity. One unknown impurity of ambroxol was formed in the formulated drug under stress conditions [40°C /75% relative humidity (RH) for 6 months] with the relative retention time (RRT) 0.68 in RP-HPLC. The impurity was enriched by exposing it to heat and it was isolated by using preparative HPLC. The enriched impurity was purified and characterized using the following sophisticated techniques: 2D NMR (gDQ-COSY, gHSQC, and gHMBC), FTIR, and LC-MS/MS. On the basis of the spectral data, the impurity was characterized as trans-4-(6,8-dibromoquinazolin-3(4H)-yl)cyclohexanol. PMID:24959402

  16. Clinical decision support systems for brain tumor characterization using advanced magnetic resonance imaging techniques.

    PubMed

    Tsolaki, Evangelia; Kousi, Evanthia; Svolos, Patricia; Kapsalaki, Efthychia; Theodorou, Kyriaki; Kappas, Constastine; Tsougos, Ioannis

    2014-04-28

    In recent years, advanced magnetic resonance imaging (MRI) techniques, such as magnetic resonance spectroscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic problems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical decision support systems (CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually increased. Hence, the purpose of the current review article is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be introduced into intelligent systems to significantly improve their diagnostic specificity and clinical application.

  17. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    PubMed

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics.

  18. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  19. A new technique of characterization of intrapixel response dedicated to astronomical detectors

    NASA Astrophysics Data System (ADS)

    Ketchazo, C.; Viale, T.; Boulade, O.; Druart, G.; Moreau, V.; Mugnier, L.; Dubrueil, D.; Derelle, S.; Ronayette, S.; Guérineau, N.; Berthé, M.

    2015-07-01

    This paper is devoted to the presentation of a new technique of characterization of the intra-pixel sensitivity variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the pixel response function (PRF). In the case of under-sampled instruments for high quality imaging and accurate photometry, IPSV can contribute to the instrument global error and it should be considered carefully. Our measurement technique is based in the Fourier transform (FT) approach. It consists into the sampling of the pixel transfer function (PTF) by projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a continuously self imaging grating (CSIG) illuminated by a plane wave. The PRF is determined by computing the inverse FT. Our measurement technique permits to determine the PRF with a resolution of pixel/10 (10 times Nyquist frequency).

  20. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations.

  1. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NASA Astrophysics Data System (ADS)

    Taha, T. J.; Thakur, D. B.; Van der Meer, T. H.

    2012-11-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nano structures is achieved using thermal catalytic chemical vapor deposition process (TCCVD) on a 50 μm pure nickel (Ni270) wire. The micro wire samples covered with CNF layers were subjected to a uniform flow from a nozzle. Heat transfer measurement was achieved by a controlled heat dissipation through the micro wire to attain a constant temperature during the flow. This measurement technique is adopted from hot wire anemometry calibration method. Synthesis of carbon nano structures, heat transfer surface characterization and measurement technique are evaluated. Preliminary results indicate that an average enhancement in Nusselt Number of 17% is achieved.

  2. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. PMID:26944850

  3. A novel optical technique to characterize fiberization of textured vegetable proteins under high-moisture extrusion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Liu, Keshun; Hsieh, Fu-Hung

    2004-11-01

    There have been great interests in using twin-screw extruders under high moisture conditions to produce textured vegetable proteins. Unlike the low moisture extrusion counterpart, a product extruded under high moisture can have well-defined fiber orientation and bears a strong resemblance to muscle meat. The textural properties of such extruded products are important for consumer acceptance. In this study, we developed a novel fluorescence polarization based technique that measures the fiber formation of extruded protein products. The experimental results using our new technique showed good agreements with results obtained from visual inspection and digital imaging of the dissected samples. The new technique provides an in vivo and noninvasive approach to characterize the fiber formation of textured vegetable proteins under high moisture extrusion. It has a potential to be used as a real time monitoring tool in food extrusion studies.

  4. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  5. Lossless generalized-lSB data embedding.

    PubMed

    Celik, Mehmet Utku; Sharma, Gaurav; Tekalp, Ahmet Murat; Saber, Eli

    2005-02-01

    We present a novel lossless (reversible) data-embedding technique, which enables the exact recovery of the original host signal upon extraction of the embedded information. A generalization of the well-known least significant bit (LSB) modification is proposed as the data-embedding method, which introduces additional operating points on the capacity-distortion curve. Lossless recovery of the original is achieved by compressing portions of the signal that are susceptible to embedding distortion and transmitting these compressed descriptions as a part of the embedded payload. A prediction-based conditional entropy coder which utilizes unaltered portions of the host signal as side-information improves the compression efficiency and, thus, the lossless data-embedding capacity.

  6. X-ray Scattering Techniques for Characterization of Nanosystems in Lifescience

    SciTech Connect

    Saw, C K

    2005-04-11

    The intent of this chapter is to provide the basics of using x-ray diffraction techniques in order to obtain information on the structure and morphology of the nanosystems, and also to point out some of its strengths and weaknesses when compare to other characterization techniques. X-ray scattering examines over a wide range of density domains from a tenth to a thousandth angstrom. Essentially, this covers a whole range of condensed matter, including the structure and morphology of nanosystems, particularly useful for examining nanostructures in lifescience. This range of domain size requires both the wide-angle x-ray scattering (WAXS) and small-angle (SAXS) x-ray scattering techniques. Roughly WAXS covers from 2 nm down, and SAXS covers from .5 nm to 100 nm and possibly 1,000 nm for a finely tuned instrument. Brief theoretical description of both WAXS and SAXS will be given in this chapter. WAXS, by itself is a powerful technique in providing information on the crystallographic structure or lack of structure, atomic positions and sizes in a unit cell, to some extend, chemical compositions and as well as chemical stoichiometry. Examples of such experiments will also be given. In order to be able to describe the technique of x-ray scattering, some historical and theoretical background will be given in the hope of making this subject interesting and simple.

  7. A Study of undulator magnets characterization using the Vibrating Wire technique

    SciTech Connect

    Temnykh, Alexander; Levashov, Yurii; Wolf, Zachary; /SLAC

    2011-02-07

    The vibrating wire (VW) technique employs a stretched wire as a magnetic field sensor. Because of the wire's small diameter ({approx}0.1mm or smaller) and because the wire can be supported from outside the magnet, this technique is very appealing for field measurements in small gap/bore undulators with small good field regions and with limited access to the tested field. In addition, in the case of elliptical undulators in which Hall probe (HP) measurements can be affected by the planar Hall effect, VW technique can be used as an independent method to verify and supplement HP measurements. In this article we studied the potential of the VW technique for measurement of magnetic field errors and for prediction of beam trajectories in undulator magnets using a 3.8m long LCLS undulator as a test bench. Introducing calibrated magnetic field distortion at various locations, we measured the sensitivity and spatial resolution of the method. The method demonstrated 0.9mm spatial resolution at a distance up to a few meters and 0.37Gcm sensitivity to the field integral. To compare Hall probe and Vibrating wire measurements side-by-side, we measured field errors in an LCLS undulator previously characterized by Hall probe measurements. The field errors found with the Vibrating Wire technique appeared to be in good agreement with errors measured with the Hall probe. Beam trajectory distortions calculated from both data sets are also in a good agreement.

  8. Experimental techniques for characterizing the thermo-electro-mechanical shakedown response of SMA wires and tubes

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher B.

    Shape Memory Alloys (SMAs) are a unique and valuable group of active materials. NiTi, the most popular SMA, has a power density orders of magnitude greater than any other known material, making it valuable in the medical and transportation industries where weight and space are at a premium. In the nearly half-century since its discovery, the adoption of NiTi has been slowed primarily by the engineering difficulties associated with its use: strong thermal coupling, material level instabilities, and rapid shakedown of material properties during cycling. Material properties change drastically with minute changes in alloy composition, so it is common to require a variety of experiments to fully characterize a new SMA material, all of which must be performed and interpreted with specialized techniques. This thesis collects many of these techniques into a series of characterization experiments, documenting several new phenomena in the process. First, three different alloys of NiTi wire are characterized through differential scanning calorimetry, isothermal tension, and constant load thermal cycling experiments. New techniques are presented for ER measurement and temperature control of SMA wires and temperature measurement of SMA tubes. It is shown that the shakedown of material properties with thermal cycling is not only dependent on the applied load and number of cycles, but has a large association with the direction of phase transformation. Several of these techniques are then applied to a systematic characterization of NiTi tubes in tension, compression, and bending. Particular attention is given to the nucleation and propagation of transformation fronts in tensile specimens. Compression experiments show dramatic asymmetry in the uniaxial response, with compression characterized by a lower transformation strain, higher transformation stress, and uniform transformations (no fronts). A very simple SMA actuator model is introduced. After identifying the relevant non

  9. Characterizing surface features on conducting specimens through an insulation layer using the capacitive imaging technique

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yin, Xiaokang; Yan, An; Li, Wei; Chen, Guoming

    2016-02-01

    Capacitive imaging (CI) technique is a novel electromagnetic NDE technique. It uses a carefully designed probe with a pair of metal electrodes. Interaction between the Quasi-static electromagnetic field from the electrode pair and the testing material causes changes in signal when the electrical properties of the sample themselves change, leading to the possibility of imaging. Due to its capacitive nature, the CI technique requires single side non-contact access to the testing material and little sample surface preparation. In addition, it provides a very clear and simple defect indication. Previous work [1] has demonstrated the feasibility of the CI technique to the detection of surface features on conducting specimens. It is found that the CI technique is useful to confirm the presence of a defect but cannot further characterize it due to the "blurring effect". The problem caused by the blurring effect is more significant, when trying to image smaller feature though a thicker insulation layer (comparing to the dimensions of the CI probe). This paper aims to tackle this problem using a two dimensional deconvolution method based on the analysis of the measurement sensitivity distribution. In this paper, the trade-offs between penetration depth, signal strength and imaging resolution of the CI technique are discussed. The blurring effect due to the CI probe geometry is explained. The proposed method to retrieve the real shape of the feature is then described in details, and its feasibility is also demonstrated. The results indicated that the CI technique could be useful to detect Corrosion Under Insulation (CUI).

  10. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations.

    PubMed

    Bai, Song; Jiang, Jun; Zhang, Qun; Xiong, Yujie

    2015-05-21

    Charge kinetics is highly critical in determining the quantum efficiency of solar-to-chemical conversion in photocatalysis, and this includes, but is not limited to, the separation of photoexcited electron-hole pairs, utilization of plasmonic hot carriers and delivery of photo-induced charges to reaction sites, as well as activation of reactants by energized charges. In this review, we highlight the recent progress on probing and steering charge kinetics toward designing highly efficient photocatalysts and elucidate the fundamentals behind the combinative use of controlled synthesis, characterization techniques (with a focus on spectroscopic characterizations) and theoretical simulations in photocatalysis studies. We first introduce the principles of various processes associated with charge kinetics that account for or may affect photocatalysis, from which a set of parameters that are critical to photocatalyst design can be summarized. We then outline the design rules for photocatalyst structures and their corresponding synthetic approaches. The implementation of characterization techniques and theoretical simulations in different steps of photocatalysis, together with the associated fundamentals and working mechanisms, are also presented. Finally, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  11. A review of the different techniques for solid surface acid-base characterization.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-09-18

    In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).

  12. Spectroscopic techniques applied to the characterization of decorated potteries from Caltagirone (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barilaro, D.; Barone, G.; Crupi, V.; Donato, M. G.; Majolino, D.; Messina, G.; Ponterio, R.

    2005-06-01

    The aim of the present work is the characterization of decorated pottery samples from Caltagirone (Sicily, Italy), a renowned production centre of this kind of artwork. These fragments were found during archaeological excavations and were attributed to historical periods extremely far in time from each other (from XVIII century b.C. to XVI a.C.). Therefore, we expect that the manufacture techniques result rather different over so long time. The measurements, performed by Fourier Transform-InfraRed (FT-IR) absorbance and micro-Raman scattering, allowed us a non-destructive study of so precious artefacts. Some pigments were identified, various elements of ceramic paste and glazed layer were characterized.

  13. Secondary side photographic techniques used in characterization of Surry steam generator

    SciTech Connect

    Sinclair, R.B.

    1984-10-01

    Characterization of the generator's secondary side prior to destructive removal of tubing presents a significant challenge. Information must be obtained in a radioactive field (up to 15 R/h) throughout the tightly spaced bundle of steam generator tubes. This report discusses the various techniques employed, along with their respective advantages and disadvantages. The most successful approach to nondestructive secondary side characterization and documentation was through use of in-house developed pinhole cameras. These devices provided accurate photographic documentation of generator condition. They could be fabricated in geometries allowing access to all parts of the generator. Semi-remote operation coupled with large area coverage per investigation and short at-location times resulted in significant personnel exposure advantages. The fabrication and use of pinhole cameras for remote inspection is discussed in detail.

  14. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques

    PubMed Central

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent. PMID:25525356

  15. NanoXCT—A High-Resolution Technique For TSV Characterization

    NASA Astrophysics Data System (ADS)

    Niese, Sven; Krueger, Peter; Zschech, Ehrenfried

    2011-09-01

    Lab-based Transmission X-ray Microscopy and X-ray Computed Tomography (TXM/XCT) with sub-100 nm resolution are evaluated for their application in process and quality control in microelectronics, particularly for TSV characterization. These are the techniques of choice to localize defects in copper TSVs for 3D IC integration. In contrast to other techniques like Focused Ion Beam cross-sectioning and subsequent Scanning Electron Microscopy imaging, the region of interest, i.e. the TSV, is imaged nondestructively and three dimensionally. For flat samples like thinned wafers, the tilted rotational axis tomography is proposed instead of the limited angle tomography since the better in-plane resolution increases the quality of the resulting tomogram. Yield- and reliability-limiting processes in 3D TSV technology like voids and incomplete filled vias can be made visible for an array of adjacent TSVs during one measurement without affecting the TSV.

  16. NanoXCT - A High-Resolution Technique For TSV Characterization

    SciTech Connect

    Niese, Sven; Krueger, Peter; Zschech, Ehrenfried

    2011-09-12

    Lab-based Transmission X-ray Microscopy and X-ray Computed Tomography (TXM/XCT) with sub-100 nm resolution are evaluated for their application in process and quality control in microelectronics, particularly for TSV characterization. These are the techniques of choice to localize defects in copper TSVs for 3D IC integration. In contrast to other techniques like Focused Ion Beam cross-sectioning and subsequent Scanning Electron Microscopy imaging, the region of interest, i.e. the TSV, is imaged nondestructively and three dimensionally. For flat samples like thinned wafers, the tilted rotational axis tomography is proposed instead of the limited angle tomography since the better in-plane resolution increases the quality of the resulting tomogram. Yield- and reliability-limiting processes in 3D TSV technology like voids and incomplete filled vias can be made visible for an array of adjacent TSVs during one measurement without affecting the TSV.

  17. PDMS droplet formation and characterization by hydrodynamic flow focusing technique in a PDMS square microchannel

    NASA Astrophysics Data System (ADS)

    Carneiro, J.; Doutel, E.; Campos, J. B. L. M.; Miranda, J. M.

    2016-10-01

    This study reports the generation of polydimethylsiloxane (PDMS) droplets by hydrodynamic flow focusing technique in a PDMS square microchannel. The droplet generation was characterized and a flow regime map addressed by the capillary numbers of each phase was assembled. Different flow regimes were found—dripping, jetting, threading and viscous displacement and the respective boundaries were sketched. Droplet size, breakup distance and formation frequency were analysed and quantified for the jetting and dripping regimes. The dripping regime showed better results for droplet formation, leading to the highest throughput of monodisperse droplets: formation frequency of  ≈12 Hz and droplets almost uniform in size (2.8% the coefficient of variance). The qualitative analysis and quantitative measurement of the different variables and their correlation within a capillary dependent regime map proved to be an invaluable tool to study droplet formation by hydrodynamic flow focusing technique in a PDMS square microchannel.

  18. X-ray characterization of bulk AIN single crystals grown by the sublimation technique

    NASA Astrophysics Data System (ADS)

    Raghothamachar, B.; Dudley, M.; Rojo, J. C.; Morgan, K.; Schowalter, L. J.

    2003-03-01

    Bulk AlN single crystal boules have been grown using the sublimation technique and several substrates have been prepared from them. Microstructural characterization of these substrates has been performed using synchrotron white beam X-ray topography (SWBXT) and high-resolution triple axis X-ray diffraction. Our study has revealed that AlN single crystal boules grown by the sublimation technique can possess a high structural quality with dislocation densities of 800-1000/cm 2 and rocking curves with a full-width at half-maximum of less than 10 arcsec. The distribution of dislocations is inhomogeneous with large areas of the wafer free from dislocations. Inclusions are also observed (density of the order of 10 5/cm 3) and their distribution is also inhomogeneous.

  19. A comparison of conventional and advanced ultrasonic inspection techniques in the characterization of TMC materials

    NASA Technical Reports Server (NTRS)

    Holland, Mark R.; Handley, Scott M.; Miller, James G.; Reighard, Mark K.

    1992-01-01

    Results obtained with a conventional ultrasonic inspection technique as well as those obtained with more advanced ultrasonic NDE methods in the characterization of an 8-ply quasi-isotropic titanium matrix composite (TMC) specimen are presented. Images obtained from a conventional ultrasonic inspection of TMC material are compared with those obtained using more sophisticated ultrasonic inspection methods. It is suggested that the latter techniques are able to provide quantitative images of TMC material. They are able to reveal the same potential defect indications while simultaneously providing more quantitative information concerning the material's inherent properties. Band-limited signal loss and slope-of-attenuation images provide quantitative data on the inherent material characteristics and defects in TMC.

  20. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    SciTech Connect

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  1. Design and optimization of stepped austempered ductile iron using characterization techniques

    SciTech Connect

    Hernández-Rivera, J.L.; Garay-Reyes, C.G.; Campos-Cambranis, R.E.; Cruz-Rivera, J.J.

    2013-09-15

    Conventional characterization techniques such as dilatometry, X-ray diffraction and metallography were used to select and optimize temperatures and times for conventional and stepped austempering. Austenitization and conventional austempering time was selected when the dilatometry graphs showed a constant expansion value. A special heat color-etching technique was applied to distinguish between the untransformed austenite and high carbon stabilized austenite which had formed during the treatments. Finally, it was found that carbide precipitation was absent during the stepped austempering in contrast to conventional austempering, on which carbide evidence was found. - Highlights: • Dilatometry helped to establish austenitization and austempering parameters. • Untransformed austenite was present even for longer processing times. • Ausferrite formed during stepped austempering caused important reinforcement effect. • Carbide precipitation was absent during stepped treatment.

  2. Characterization of the silicon+6LiF thermal neutron detection technique

    NASA Astrophysics Data System (ADS)

    Pappalardo, A.; Barbagallo, M.; Cosentino, L.; Marchetta, C.; Musumarra, A.; Scirè, C.; Scirè, S.; Vecchio, G.; Finocchiaro, P.

    2016-02-01

    The worldwide need to replace 3He for neutron detection has triggered research and development on new technologies and methods. A promising one is based on commercial solid state silicon detectors coupled with thin neutron converter layers containing 6Li. After proving the feasibility of this technique, we characterized the behavior of such a detector with different converter layer thicknesses. In this paper we also disentangle other contributions to the overall spectrum shape observed with this kind of detector, proving that its detection efficiency can be made reasonably high and that the gamma/neutron discrimination capability is comparable to that of 3He tubes.

  3. A preliminary evaluation of certain NDA techniques for RH-TRU characterization

    SciTech Connect

    Hartwell, J.K.; Yoon, W.Y.; Peterson, H.K.

    1997-11-01

    This report presents the results of modeling efforts to evaluate selected NDA assay methods for RH-TRU waste characterization. The target waste stream was Content Code 104/107 113-liter waste drums that comprise the majority of the INEL`s RH-TRU waste inventory. Two NDA techniques are treated in detail. One primary NDA technique examined is gamma-ray spectrometry to determine the drum fission and activation product content, and fuel sample inventory calculations using the ORIGEN code to predict the total drum inventory. A heavily shielded and strongly collimated HPGe spectrometer system was designed using MCNP modeling. Detection limits and expected precision of this approach were estimated by a combination of Monte Carlo modeling and synthetic gamma-ray spectrum generation. This technique may allow the radionuclide content of these wastes to be determined with relative standard deviations of 20 to 50% depending on the drum matrix and radionuclide. The INEL Passive/Active Neutron (PAN) assay system is the second primary technique considered. A shielded overpack for the 113-liter CC104/107 RH-TRU drums was designed to shield the PAN detectors from excessive gamma radiation. MCNP modeling suggests PAN detection limits of about 0.06 g {sup 235}U and 0.04 g {sup 239}Pu during active assays. 12 refs., 2 figs., 6 tabs.

  4. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

  5. Technique for needle-free drop deposition: Pathway for precise characterization of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Waghmare, Prashant R.; Das, Siddhartha; Mitra, Sushanta K.

    2013-11-01

    The most important step for characterizing the wettability of a surface is to deposit a water drop on the surface and measure the contact angle made by the drop on the surface. This innocuously simple process relies on bringing a needle holding the water drop in close proximity to the surface, with a ``desire'' that the drop would spontaneously detach from the needle and get deposited on the surface. Problem occurs when the surface is superhydrophobic, expressing an ``unwillingness'' to ``see'' the water drop in preference to a much more ``water-loving'' needle surface. There exists no solution to this problem, and surfaces are invariably characterized where the drop-needle assembly contacts the superhydrophobic surface. Such a configuration will always lead to an incorrect estimation of the contact angle, as there is no certainty of the existence of the drop-surface contact. Here we shall discuss our recently invented technique, where we solve this long-standing problem-we indeed ensure a needle-free drop in contact with the superhydrophobic surface, thereby ascertaining precise determination of the contact angle. The successful application of the technique will address a major headache of the big research community interested in science and technology of superhydrophobic surfaces.

  6. Identification and characterization of related substances in pomalidomide by hyphenated LC-MS techniques.

    PubMed

    Lu, Ping; Wang, Lei; Song, Min; Hang, Tai-Jun

    2015-10-10

    The current study dealt with the separation, identification and characterization of related substances in pomalidomide by hyphenated techniques. Complete separation was obtained with an Inertsil ODS-SP column (250 mm × 4.6 mm, 5 μm) by linear gradient elution using a mobile phase consisting of 0.1% formic acid solution and acetonitrile. They were characterized by hyphenated chromatographic techniques with the accurate mass determination using high resolution LC-TOF-MS methods as well as the product MS spectra determination and elucidation. The degradation behaviors of pomalidomide under ICH prescribed stress conditions were also conducted. Pomalidomide was found to be labile to degrade under acid, alkaline, oxidative and thermal stress conditions, while it was relatively stable to photolytic stress. 13 related substances were detected and identified to be 10 degradation products and three process related substances. The hyphenated LC-MS method with high resolution accurate mass determination facilitated the qualitative analysis of the unknown compounds than that of the conventional HPLC-UV. The related compounds identified are valuable for pomalidomide manufacturing process optimization and quality control.

  7. Identifying reaction intermediates and catalytic active sites through in situ characterization techniques

    SciTech Connect

    Foster, Andrew J.; Lobo, Raul F

    2010-01-01

    This tutorial review centers on recent advances and applications of experimental techniques that help characterize surface species and catalyst structures under in situ conditions. We start by reviewing recent applications of IR spectroscopy of working catalysis, emphasizing newer approaches such as Sum Frequency Generation and Polarization Modulation-infrared reflection absorption spectroscopy. This is followed by a section on solid-state NMR spectroscopy for the detection of surface species and reaction intermediates. These two techniques provide information mainly about the concentration and identity of the prevalent surface species. The following sections center on methods that provide structural and chemical information about the catalyst surface. The increasingly important role of high-pressure X-ray photoelectron spectroscopy in catalyst characterization is evident from the new and interesting information obtained on supported catalysts as presented in recent reports. X-Ray absorption spectroscopy (XANES and EXAFS) is used increasingly under reaction conditions to great advantage, although is inherently limited to systems where the bulk of the species in the sample are surface species. However, the ability of X-rays to penetrate the sample has been used cleverly by a number of groups to understand how changing reaction conditions change the structure and composition of surface atoms on supported catalyst.

  8. Characterization of volatile corrosion inhibitors using the quartz crystal microbalance and supporting techniques

    SciTech Connect

    Jaeger, P.F.

    1997-08-01

    Corrosion inhibitors such as Volatile Corrosion Inhibitors (VCI`s) and Contact Corrosion Inhibitors have become loosely ambiguous and differentiating between the two can become a gray area. For example, and the most common mistake is, classifying a material as a VCI when it is a contact inhibitor. Analytical techniques to qualify a material as a VCI have been investigated in order to clarify this ambiguity and to qualify the techniques and equipment for use in the determination of a VCI. The Quartz Crystal Microbalance (QCM) and an atmospheric corrosion monitor were used to characterize adsorption effects and corrosion monitoring of two commercially known inhibitors, sodium nitrite and dicyclohexylammonium nitrite on evaporated iron during atmospheric conditions. Two devices will be used for in situ measurements of adsorption, the QCM and an atmospheric corrosion monitor. During the adsorption process the QCM measures a frequency change that can be associated to a mass change due to adsorption of the inhibitor it is also capable of in situ monitoring corrosion rates of the substrate in a corrosive atmosphere. From experience and in theory the corrosion rate is expected to decrease due to the adsorption of the VCI. Which has been observed from in situ measurements using the QCM. The atmospheric corrosion monitor measures the resistance of oxides of a substrate due to corrosion in reference to a non-corrosive element. It is tested here to measure its sensitivity in comparison to the QCM and to characterize its response during the adsorption of a VCI.

  9. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  10. A multi-technique chemical characterization of a Stradivari decorated violin top plate

    NASA Astrophysics Data System (ADS)

    Malagodi, M.; Canevari, C.; Bonizzoni, L.; Galli, A.; Maspero, F.; Martini, M.

    2013-08-01

    This paper focuses on the characterization of the materials of a violin top plate made by Antonio Stradivari (17th century), with different diagnostic techniques and with an integrated and non-destructive analytical methodology to study surface coatings and decorations. The UV-induced visible fluorescence, optical digital microscopy, ED-XRF associated with micro-FTIR spectroscopy analysis, and dendrochronology were performed. The investigations were aimed to identify the presence of original varnish layers and to characterize the composition of the decorations, either the inlaid purflings or the composite false-inlay strip between them. Several results were achieved: (i) evidence of the absence of varnish layers on the surface as a result of extended and inappropriate restoring; (ii) identification of the dye used for the black layers of the purflings; (iii) characterization of the black matrix and the white elements of the decoration. Furthermore, a dendrochronological dating was performed. A copy of the top plate was realized with materials similar to those identified on the Stradivari original; the same analyses performed on the original model were carried out on the same areas of the copy.

  11. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review.

    PubMed

    Mura, Paola

    2014-12-01

    Cyclodextrins are cyclic oligosaccharides endowed with a hydrophilic outer surface and a hydrophobic inner cavity, able to form inclusion complexes with a wide variety of guest molecules, positively affecting their physicochemical properties. In particular, in the pharmaceutical field, cyclodextrin complexation is mainly used to increase the aqueous solubility and dissolution rate of poorly soluble drugs, and to enhance their bioavailability and stability. Analytical characterization of host-guest interactions is of fundamental importance for fully exploiting the potential benefits of complexation, helping in selection of the most appropriate cyclodextrin. The assessment of the actual formation of a drug-cyclodextrin inclusion complex and its full characterization is not a simple task and often requires the use of different analytical methods, whose results have to be combined and examined together. The purpose of the present review is to give, as much as possible, a general overview of the main analytical tools which can be employed for the characterization of drug-cyclodextrin inclusion complexes in solution, with emphasis on their respective potential merits, disadvantages and limits. Further, the applicability of each examined technique is illustrated and discussed by specific examples from literature.

  12. Isolation and characterization of related substances in alogliptin benzoate by LC-QTOF mass spectrometric techniques.

    PubMed

    Lu, Yuting; Yang, Danyi; Li, Zhiyu; Hang, Taijun; Song, Min

    2016-09-01

    A highly specific and efficient LC-QTOF mass spectrometric method was developed for the separation and characterization of process related substances and the major degradation products in alogliptin benzoate and its tablets. The separation was performed on Phenomenex Gemini-NX C18 column (250mm×4.6mm, 5μm) using 0.2% formic acid-0.2% ammonium acetate in water as mobile phase A, acetonitrile and methanol (60:40, v/v) as mobile phase B in linear gradient elution mode. Forced degradation studies were also conducted under ICH prescribed stress conditions. Alogliptin benzoate and its tablets were tending to degrade under acid, alkaline, oxidative and thermal stresses, while relatively stable to photolytic stress. A total of seven related substances were detected and characterized through liquid chromatography-high resolution QTOF mass spectrometry techniques, including process related substances and degradation products, and two of them were further synthesized and characterized by NMR spectroscopy. Based on the related substances elucidation and the plausible formation mechanisms, efficient approaches were proposed to reduce or eliminate related substances, and in consequence the quality of alogliptin benzoate and its tablets have been promoted obviously. Therefore, the impurity profiles obtained are critical to the quality control and manufacturing processes optimization and monitoring of alogliptin benzoate and its tablets. PMID:27281581

  13. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment. PMID:23485423

  14. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials.

    PubMed

    Mochalov, Konstantin E; Efimov, Anton E; Bobrovsky, Alexey; Agapov, Igor I; Chistyakov, Anton A; Oleinikov, Vladimir; Sukhanova, Alyona; Nabiev, Igor

    2013-10-22

    Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products.

  15. Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials.

    PubMed

    Mochalov, Konstantin E; Efimov, Anton E; Bobrovsky, Alexey; Agapov, Igor I; Chistyakov, Anton A; Oleinikov, Vladimir; Sukhanova, Alyona; Nabiev, Igor

    2013-10-22

    Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a "slice-and-view" combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy-nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products. PMID:23991901

  16. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques.

    PubMed

    Wang, Zhendi; Li, K; Fingas, M; Sigouin, L; Ménard, L

    2002-09-20

    This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected in a bedrock aquifer exploited for drinking water purposes. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS) and capillary GC with flame-ionization detection, solid-phase microextraction and headspace GC-MS techniques. Chemical characterization results revealed the following: (1) The hydrocarbons in sample A (near-surface groundwater, 0-5 m) were clearly of two types, one being gasoline and the other a heavy petroleum product. The significant distribution of five target petroleum-characteristic alkylkated polycyclic aromatic hydrocarbon homologues and biomarkers confirmed the presence of another heavy petroleum product. The concentrations of the TPHs (total petroleum hydrocarbons) and BTEX (collective name of benzene, toluene, ethylbenzene, and p-, m-, and o-xylenes) were determined to be 1070 and 155 microg/kg of water for sample A, respectively. (2) The deepest groundwater (sample B, collected at a depth ranging between 15 and 60 m) was also contaminated, but to a much lesser degree. The concentrations of the TPH and BTEX were determined to be only 130 and 2.6 microg/kg of water for sample B, respectively. (3) The presence of a variety of volatile chlorinated compounds to the groundwater was also clearly identified. PMID:12350112

  17. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques.

    PubMed

    Wang, Zhendi; Li, K; Fingas, M; Sigouin, L; Ménard, L

    2002-09-20

    This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected in a bedrock aquifer exploited for drinking water purposes. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS) and capillary GC with flame-ionization detection, solid-phase microextraction and headspace GC-MS techniques. Chemical characterization results revealed the following: (1) The hydrocarbons in sample A (near-surface groundwater, 0-5 m) were clearly of two types, one being gasoline and the other a heavy petroleum product. The significant distribution of five target petroleum-characteristic alkylkated polycyclic aromatic hydrocarbon homologues and biomarkers confirmed the presence of another heavy petroleum product. The concentrations of the TPHs (total petroleum hydrocarbons) and BTEX (collective name of benzene, toluene, ethylbenzene, and p-, m-, and o-xylenes) were determined to be 1070 and 155 microg/kg of water for sample A, respectively. (2) The deepest groundwater (sample B, collected at a depth ranging between 15 and 60 m) was also contaminated, but to a much lesser degree. The concentrations of the TPH and BTEX were determined to be only 130 and 2.6 microg/kg of water for sample B, respectively. (3) The presence of a variety of volatile chlorinated compounds to the groundwater was also clearly identified.

  18. Evaluation of Characterization Techniques for Iron Pipe Corrosion Products and Iron Oxide Thin Films

    SciTech Connect

    Borch, Thomas; Camper, Anne K.; Biederman, Joel A.; Butterfield, Phillip; Gerlach, Robin; Amonette, James E.

    2008-10-01

    A common problem faced by drinking water studies is that of properly characterizing the corrosion products (CP) in iron pipescor synthetic Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. The present work compares the relative applicability of a suite of imaging and analytical techniques for the characterization of CPs and synthetic Fe oxide thin films and provide an overview of the type of data that each instrument can provide as well as their limitations to help researchers and consultants choose the best technique for a given task. Crushed CP from a water distribution system and synthetic Fe oxide thin films formed on glass surfaces were chosen as test samples for this evaluation. The CP and synthetic Fe oxide thin films were analyzed by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray powder diffractometry (XRD), grazing incident diffractometry (GID), transmission electron microscopy (TEM), selected area electron diffraction, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared, Mössbauer spectroscopy, Brunauer-Emmett-Teller N2 adsorption and Fe concentration was determined by the ferrozine method. XRD and GID were found to be the most suitable techniques for identification of the mineralogical composition of CP and synthetic Fe oxide thin films, respectively. AFM and a combined ToF-SIMS-AFM approach proved excellent for roughness and depth profiling analysis of synthetic Fe oxide thin films, respectively. Corrosion products were difficult to study by AFM due to their surface roughness, while synthetic Fe oxide thin films resisted most spectroscopic methods due to their limited thickness (118 nm). XPS analysis is not recommended for mixtures of Fe (hydr)oxides due to their spectral similarities. SEM and TEM provided great detail on mineralogical morphology.

  19. Analysis and evaluation of interwell seismic logging techniques for hydrocarbon reservoir characterization. Final report

    SciTech Connect

    Parra, J.O.; Zook, B.J.; Sturdivant, V.R.

    1994-06-01

    The work reported herein represents the third year work in evaluating high-resolution interwell seismic logging techniques for hydrocarbon reservoir characterization. The objective of this project is to investigate interwell seismic logging techniques for indirectly interpreting oil and gas reservoir geology and rock physical properties. The work involves a balanced study of theoretical and numerical modeling of seismic waves transmitted between pairs of wells combined with experimental data acquisition and processing at controlled field conditions. The field applications of this reservoir probing concept are aimed at demonstrating high resolution measurements and detailed interpretation of heterogeneous hydrocarbon-bearing formations. The first part of this third year project efforts was devoted to thoroughly evaluating interwell seismic logging and reverse VSP in a hydrocarbon-bearing formation at the Buckhorn test site in Illinois. Specifically, the data from the experiments conducted in the second year of this project were analyzed to delineate geological structures and to extract rock physical parameters. The second part of this project is devoted to the evaluation of continuity logging techniques for hydrocarbon reservoir continuity. Specifically, this part of the project includes the evaluation of methods of measurements, modeling and data processing to delineate the reservoir architecture and relate dispersion and attenuation measurements to rock physical properties.

  20. New Generation of High Resolution Ultrasonic Imaging Technique for Advanced Material Characterization: Review

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.

    The role of non-destructive material characterization and NDT is changing at a rapid rate, continuing to evolve alongside the dramatic development of novel techniques based on the principles of high-resolution imaging. The modern use of advanced optical, thermal, ultrasonic, laser-ultrasound, acoustic emission, vibration, electro-magnetic, and X-ray techniques, etc., as well as refined measurement and signal/data processing devices, allows for continuous generation of on-line information. As a result real-time process monitoring can be achieved, leading to the more effective and efficient control of numerous processes, greatly improving manufacturing as a whole. Indeed, concurrent quality inspection has become an attainable reality. With the advent of new materials for use in various structures, joints, and parts, however, innovative applications of modern NDT imaging techniques are necessary to monitor as many stages of manufacturing as possible. Simply put, intelligent advance manufacturing is impossible without actively integrating modern non-destructive evaluation into the production system.

  1. Thermal characterization of a liquid resin for 3D printing using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, José L.; Pincel, Pavel Vieyra; Cruz-Orea, Alfredo; Correa-Pacheco, Zormy N.

    2016-05-01

    Thermal properties of a liquid resin were studied by thermal lens spectrometry (TLS) and open photoacoustic cell (OPC), respectively. In the case of the TLS technique, the two mismatched mode experimental configuration was used with a He-Ne laser, as a probe beam and an Argon laser was used as the excitation source. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity ( α) of the resin. On the other hand, the sample thermal effusivity ( e) was obtained by using the OPC technique. In this technique, an Argon laser was used as the excitation source and was operated at 514 nm with an output power of 30 mW. From the obtained thermal diffusivity ( α) and thermal effusivity ( e) values, the thermal conductivity ( k) and specific heat capacity per unit volume ( ρc) of resin were calculated through the relationships k = e( α)1/2 and ρc = e/( α)1/2. The obtained thermal parameters were compared with the thermal parameters of the literature. To our knowledge, the thermal characterization of resin has not been reported until now. The present study has applications in laser stereo-lithography to manufacture 3D printing pieces.

  2. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    NASA Astrophysics Data System (ADS)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  3. Characterization of Defects on MOCVD Grown Gallium Nitride Using Transient Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Kasani, Sujan Phani Kumar

    Since the invention of the first visible spectrum (red) LED by Holonyak in 1962, there has been a need for more efficient, more reliable and less expensive LEDs. The III-nitrides revolutionized semiconductor technology with their applications in the blue LED's. However the internal quantum efficiency of LED's are limited by the deep level traps in GaN substrate. Traps are defects in the crystal lattice, which depends on growth parameters. These traps act as non-radiative centers where non-radiative recombination occurs without conversion of available energy into light. Characterization of these traps in a material is necessary for better understanding of the material growth quality and resulting device performance. In this work Capacitance-Voltage (C-V) and Deep Level Transient Spectroscopy (DLTS) are conducted which provide electronic properties of trap centers like activation energy, doping concentration and capture cross-section. In n-GaN grown by Metalorganic Chemical Vapor Deposition (MOCVD) on Sapphire two defects types are detected and are characterized by Capacitance-Voltage and Deep Level Transient Spectroscopy. Two deep levels E1 and E2 are typically observed in n-GaN with the activation energies of 0.21eV and 0.53eV at 125°K and 325°K, respectively. The deep level E1 is caused by linear line defects along dislocation cores while deep level E2 is related to point defects. The characterization techniques, experimental systems and preliminary characterization results are discussed in detail.

  4. Thermal-lens study of semiconductor nanoparticles embedded in restorative dental resin

    NASA Astrophysics Data System (ADS)

    Alves, Leandro P.; Pilla, Viviane; Iwazaki, Adalberto N.; Barja, Paulo R.; Munin, Egberto

    2013-02-01

    Thermal Lens (TL) and spectroscopic characterizations were performed in CdSe/ZnS core-shell quantum dots (QDs) embedded into two commercial dental resin composites. The thermal-optical studies were performed in CdSe/ZnS QDs (core size Φ= 4.1 nm) and PMMA-encapsulated CdSe/ZnS (Φ= 3.7 nm) embedded in restorative dental resins at concentration of 0.025 and 0.42 % in mass, respectively. The thermal diffusivity (D) results are characteristics of the dental resin composites studied. Photoacoustic (PA) technique results for the dental resin composites support the TL results.

  5. Development of high sensitivity techniques for characterizing outgassing of polymeric construction materials for microenvironments

    SciTech Connect

    McIntyre, D.C.; Thornberg, S.M.; Liang, A.Y.; Bender, S.F.A.; Lujan, R.D.

    1994-05-01

    Further reductions in particulate contamination in semiconductor device manufacturing environments will be required to meet the future challenges of producing devices with decreased dimensions. Using pods (microenvironments) to provide very clean environments on a local (wafer level) scale is an alternative that may reduce the technological demands and cost of providing comparable contamination levels in an entire clean-room manufacturing facility. It has been demonstrated that pods can provide wafer environments that have lower and less variable levels of particulate contamination than conventional clean-room manufacturing environments. However, there have also been indications that outgassed constituents from polymeric pod materials can condense on wafers during storage. A standard technique to evaluate outgassing of polymers is needed so that: (1) manufacturers can make reliable comparisons of the outgassing potential of materials being considered for use and (2) microenvironment users can make judgments on the relative outgassing threats from different manufacturers` products. The goal of the work that is summarized below has been to develop standard high sensitivity (10--100 ppb) testing techniques for evaluation of outgassing from polymeric pod materials in a temperature range from 30 C--75 C. This paper will briefly review outgassing data from polycarbonate materials that was obtained using thermal desorption combined with detection using gas chromatography/mass spectroscopy wit volatile pre-concentration or using a flame ionization detector (FID). Although the focus of this program has been on developing techniques to evaluate pod materials of construction, the techniques that have been evaluated may be useful for characterizing outgassing from other polymeric materials found in cleanrooms.

  6. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  7. Joint application of non-invasive techniques to characterize the dynamic behaviuor of engineering structures

    NASA Astrophysics Data System (ADS)

    Gallipoli, M. R.; Perrone, A.; Stabile, T. A.; Ponzo, F. C.; Ditommaso, R.

    2012-04-01

    The systematic monitoring of strategic civil infrastructures such as bridges, large dams or high-rise buildings in order to ensure their structural stability is a strategic issue particularly in earthquake-prone regions. Nevertheless, in areas less exposed to seismic hazard, the monitoring is also an important tool for civil engineers, for instance if they have to deal with structures exposed to heavy operational demands for extended periods of time and whose structural integrity might be in question or at risk. A continuous monitoring of such structures allows the identification of their fundamental response characteristics and the changes of these over time, the latter representing indicators for potential structural degradation. The aim of this paper is the estimation of fundamental dynamic parameters of some civil infrastructures by the joint application of fast executable, non-invasive techniques such as the Ambient Noise Standard Spectral Ratio, and Ground-Based microwave Radar Interferometer techniques. The joint approach combine conventional, non-conventional and innovative techniques in order to set up a non destructive evaluation procedure allowing for a multi-sensing monitoring at a multi-scale and multi-depth levels (i.e. with different degrees of spatial resolution and different subsurface depths). In particular, techniques based on ambient vibration recordings have become a popular tool for characterizing the seismic response and state-of-health of strategic civil infrastructure. The primary advantage of these approaches lies in the fact that no transient earthquake signals or even active excitation of the structure under investigation are required. The microwave interferometry radar technology, it has proven to be a powerful remote sensing tool for vibration measurement of structures, such as bridge, heritage architectural structures, vibrating stay cables, and engineering structures. The main advantage of this radar technique is the possibility to

  8. Allowance for thermodynamic nonideality in the characterization of protein interactions by spectral techniques.

    PubMed

    Wills, Peter R; Winzor, Donald J

    2011-09-01

    Theory is developed for the characterization of protein interactions by spectral techniques, where the constraints of constant temperature and pressure demand that thermodynamic activity be defined on the molal concentration scale. The customary practice of defining the equilibrium constant (K) on a molar basis is accommodated by developing expressions to convert those experimental values (K(molar)) to their thermodynamically more rigorous counterparts (K(molal)). Such procedures are illustrated by reanalysis of published results for the effects of molecular crowding agents on the isomerisation of α-chymotrypsin and reversible complex formation between catalase and superoxide dismutase. Although those reanalyses have led to only minor refinements of the quantitative interpretation, it is clearly preferable to adopt thermodynamic rigor throughout future spectral studies by employing the molal concentration scale from the outset. PMID:21550711

  9. Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques

    DOE PAGES

    Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; Bacic, Antony

    2015-08-28

    The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD,more » and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.« less

  10. Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques

    SciTech Connect

    Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; Bacic, Antony

    2015-08-28

    The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD, and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.

  11. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications.

  12. A study of the stress wave factor technique for the characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Henneke, E. G., II; Duke, J. C., Jr.; Stinchcomb, W. W.; Govada, A.; Lemascon, A.

    1983-01-01

    A testing program was undertaken to provide an independent investigation and evaluation of the stress wave factor for characterizing the mechanical behavior of composite laminates. Some of the data which was obtained after performing a very large number of tests to determine the reproducibility of the SWF measurement is presented. It was determined that, with some optimizing of experimental parameters, the SWF value can be reproduced to within + or - 10%. Results are also given which show that, after careful calibration procedures, the lowest SWF value along the length of a specimen will correlate very closely to the site of final failure when the specimen is loaded in tension. Finally, using a moire interferometry technique, it was found that local regions having the highest in plane strains under tensile loading also had the lowest SWF values.

  13. A first look at roadheader construction and estimating techniques for site characterization at Yucca Mountain, Nevada

    SciTech Connect

    Neil, D.M.; Taylor, D.L.

    1991-12-31

    The Yucca Mountain site characterization program will be based on mechanical excavation techniques for the mined repository construction and development. Tunnel Boring Machines (TBM`s), Mobile Miners (MM), Raiseborers (RB), Blind Hole Shaft Boring Machines (BHSB), and Roadheaders (RH) have been selected as the mechanical excavation machines most suited to mine the densely welded and non-welded tuffs of the Topopah Springs and Calico Hills members. Heavy duty RH in the 70 to 100 ton class with 300 Kw cutter motors have been evaluated and formulas developed to predict machine performance based on the rock physical properties and the results of Linear Cutting Machine (LCM) tests done at the Colorado School of Mines (CSM) for Sandia National Labs. (SNL).

  14. Forward-Inverse Adaptive Techniques for Reservoir Characterization and Simulation: Theory and Applications

    SciTech Connect

    Doss, S D; Ezzedine, S; Gelinas, R; Chawathe, A

    2001-06-11

    A novel approach called Forward-Inverse Adaptive Techniques (FIAT) for reservoir characterization is developed and applied to three representative exploration cases. Inverse modeling refers to the determination of the entire reservoir permeability under steady state single-phase flow regime, given only field permeability, pressure and production well measurements. FIAT solves the forward and inverse partial differential equations (PDEs) simultaneously by adding a regularization term and filtering pressure gradients. An implicit adaptive-grid, Galerkin, numerical scheme is used to numerically solve the set of PDEs subject to pressure and permeability boundary conditions. Three examples are presented. Results from all three cases demonstrate attainable and reasonably accurate solutions and, more importantly, provide insights into the consequences of data undersampling.

  15. Characterization of a one dimensional focusing compound refractive lens using the rotating shearing interferometer technique

    SciTech Connect

    Wang Hongchang; Berujon, Sebastien; Sawhney, Kawal

    2012-07-31

    A one dimensional (1D) compound refractive lens (CRL) has been characterized using the grating based rotating shearing interferometer technique. The method is based on the calculation of moire fringes orientation to sense wavefront information. The phase shift and the optical aberration introduced by the 1D CRL on an X-ray beam were retrieved from a single moire fringe image. The radius of curvature of the lens at the apex was derived. This physical radius of the CRL, which is also closely related to the focal length of the 1D CRL, was shown to vary with the incident angle of the incoming X-ray beam onto the CRL. The experimental measurement agreed very well with the theoretical expectations.

  16. Characterization of PE-g-HEMA films prepared by gamma irradiation through nuclear microprobe techniques

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Leal, J. P.; Rodrigues, P. A.; Alves, L. C.; Falcão, A. N.; Gil, M. H.

    2012-09-01

    PE-g-HEMA films with different grafting yields prepared by mutual gamma irradiation method at a 60Co source were characterized with ion beam analytical techniques using a nuclear microprobe. Qualitative analysis showed a random and heterogeneous distribution of contaminant elements, independent of the grafting degree, suggesting the existence of several sources of contamination at different stages of their preparation. Results also suggest that this "phased" contamination occurs simultaneously with mechanisms of agglomeration/entrapment of impurities during the gamma induced copolymerization reaction. Moreover, quantitative data showed that all contaminants found in the copolymeric films are natural contaminants of their reagents of preparation, although at concentrations without toxicological hazard, which points to a low cytotoxic potential.

  17. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    SciTech Connect

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

  18. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization.

    PubMed

    Sarika, P R; Anil Kumar, P R; Raj, Deepa K; James, Nirmala Rachel

    2015-03-30

    Nanogels were developed from alginic aldehyde and gelatin by an inverse miniemulsion technique. Stable inverse miniemulsions were prepared by sonication of noncontinuous aqueous phase (mixture of alginic aldehyde and gelatin) in a continuous organic phase (Span 20 dissolved in cyclohexane). Cross-linking occurred between alginic aldehyde (AA) and gelatin (gel) in the presence of borax by Schiff's base reaction during the formation of inverse miniemulsion. The effects of surfactant (Span 20) concentration, volume of the aqueous phase and AA/gel weight ratio on the size of the alginic aldehyde-gelatin (AA-gel) nanoparticles were studied. Nanogels were characterized by DLS, FT-IR spectroscopy, TGA, SEM and TEM. DLS, TEM and SEM studies demonstrated nanosize and spherical morphology of the nanogels. Hemocompatibility and in vitro cytocompatibility analyses of the nanogels proved their nontoxicity. The results indicated the potential of the present nanogel system as a candidate for drug- and gene-delivery applications. PMID:25563951

  19. Diffusion and ideal MRI techniques to characterize limb-girdle muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Hernández-Salazar, G.; Hidalgo-Tobon, S.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodríguez, A. O.; Delgado-Hernández, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. In the thigh, muscles at the back are affected, with a tendency to preserve the tibialis anterior and gastrocnemius. The aim of this study was to compare quantitative MRI measurements from IDEAL-based imaging and DW imaging in the thigh muscles of adults with LGMDs and healthy volunteers(HC). Six women (three patients and three healthy volunteers) were examined. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee). T1 IDEAL 2D images and diffusion images were acquired. Results demonstrated that the use of noninvasive MRI techniques may provide the means to characterize the muscle through quantitative methods to determine the percentage of fat and ADC values.

  20. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    SciTech Connect

    Vahtrus, Mikk; Šutka, Andris; Vlassov, Sergei; Šutka, Anna; Polyakov, Boris; Saar, Rando; Dorogin, Leonid; Lõhmus, Rünno

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. • Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.

  1. Optimization of site characterization and remediation methods using 3-D geoscience modeling and visualization techniques

    SciTech Connect

    Hedegaard, R.F.; Ho, J.; Eisert, J.

    1996-12-31

    Three-dimensional (3-D) geoscience volume modeling can be used to improve the efficiency of the environmental investigation and remediation process. At several unsaturated zone spill sites at two Superfund (CERCLA) sites (Military Installations) in California, all aspects of subsurface contamination have been characterized using an integrated computerized approach. With the aide of software such as LYNX GMS{trademark}, Wavefront`s Data Visualizer{trademark} and Gstools (public domain), the authors have created a central platform from which to map a contaminant plume, visualize the same plume three-dimensionally, and calculate volumes of contaminated soil or groundwater above important health risk thresholds. The developed methodology allows rapid data inspection for decisions such that the characterization process and remedial action design are optimized. By using the 3-D geoscience modeling and visualization techniques, the technical staff are able to evaluate the completeness and spatial variability of the data and conduct 3-D geostatistical predictions of contaminant and lithologic distributions. The geometry of each plume is estimated using 3-D variography on raw analyte values and indicator thresholds for the kriged model. Three-dimensional lithologic interpretation is based on either {open_quote}linked{close_quote} parallel cross sections or on kriged grid estimations derived from borehole data coded with permeability indicator thresholds. Investigative borings, as well as soil vapor extraction/injection wells, are sighted and excavation costs are estimated using these results. The principal advantages of the technique are the efficiency and rapidity with which meaningful results are obtained and the enhanced visualization capability which is a desirable medium to communicate with both the technical staff as well as nontechnical audiences.

  2. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk.

    PubMed

    Kesmen, Zülal; Yarimcam, Burcu; Aslan, Hakiye; Ozbekar, Esra; Yetim, Hasan

    2014-02-01

    This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level.

  3. Mathematical techniques to characterize nitrogen isotherms from eroded sediments under conventional tillage and no tillage

    NASA Astrophysics Data System (ADS)

    Marinho, M. D.; Paz-Ferreiro, J.

    2011-12-01

    Soil specific surface area (SSA) is one of the most important soil properties as it affects chemical reactivity, cation exchange capacity and, in general, nutrient holding capacity. The SSA of a soil mainly depends on texture, clay type and organic matter content, which in turn are factors affecting the erosion potential. An important consideration in the link between soil erosion and nutrient transfer to waters is the well-documented relation between SSA (or particle size distribution) and nutrient losses. Because, sediment erosion and transport processes are particle size dependent, they influence also SSA. Characterization of both, soil nitrogen adsorption and desorption isotherms by monofractal and multifractal analysis has been demonstrated to be an useful tool, which allows a better understanding of the organization of the soil colloidal complex. Here, we report measures of nitrogen isotherm in sediments produced under three different management histories and we characterize them by various mathematical techniques including fractal and multifractal analysis. Soil and water losses from an Oxisol were evaluated under natural rain, at the experimental station of UNICAMP/ FEAGRI, Campinas, SP, Brazil. Experimental plots were 20 m x 30 m (i.e. 600 m2) and the management systems compared were no-tillage and two different conventional tillage techniques. Specific surface area determined by the classical BET method was significantly lower in sediments eroded from the no-tilled than from the tilled plots. The scaling properties of both nitrogen adsorption and desorption isotherms from all the studied sediment samples could be fitted reasonably well with multifractal models. Various fractal and multifractal parameters obtained from the adsorption and desorption characteristics also were useful to differentiate the impact of tillage treatment on the adsorption and desorption characteristics of the eroded sediments. Reasons for such differences have been already explored.

  4. Two-port transmission line technique for dielectric property characterization of polymer electrolyte membranes.

    PubMed

    Lu, Zijie; Lanagan, Michael; Manias, Evangelos; Macdonald, Digby D

    2009-10-15

    Performance improvements of perfluorosulfonic acid membranes, such as Nafion and Flemion, underline a need for dielectric characterization of these materials toward a quantitative understanding of the dynamics of water molecules and protons within the membranes. In this Article, a two-port transmission line technique for measuring the complex permittivity spectra of polymeric electrolytes in the microwave region is described, and the algorithms for permittivity determination are presented. The technique is experimentally validated with liquid water and polytertrafluoroethylene film, whose dielectric properties are well-known. Further, the permittivity spectra of dry and hydrated Flemion SH150 membranes are measured and compared to those of Nafion 117. Two water relaxation modes are observed in the microwave region (0.045-26 GHz) at 25 degrees C. The higher-frequency process observed is identified as the cooperative relaxation of bulk-like water, whose amount was found to increase linearly with water content in the polymer. The lower-frequency process, characterized by longer relaxation times in the range of 20-70 ps, is attributed to water molecules that are loosely bound to sulfonate groups. The loosely bound water amount was found to increase with hydration level at low water content and levels off at higher water contents. Flemion SH150, which has an equivalent weight of 909 g/equiv, displays higher dielectric strengths for both of these water modes as compared to Nafion 117 (equivalent weight of 1100 g/equiv), which probably reflects the effect of equivalent weight on the polymers' hydrated structure, and in particular its effect on the extended ionic cluster domains.

  5. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk.

    PubMed

    Kesmen, Zülal; Yarimcam, Burcu; Aslan, Hakiye; Ozbekar, Esra; Yetim, Hasan

    2014-02-01

    This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level. PMID:24410408

  6. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  7. Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach

    SciTech Connect

    Waligora, J.; Bulteel, D.; Degrugilliers, P.; Damidot, D.; Potdevin, J.L.; Measson, M.

    2010-01-15

    The use of LD converter steel slags (coming from Linz-Donawitz steelmaking process) as aggregates in road construction can in certain cases lead to dimensional damage due to a macroscopic swelling that is the consequence of chemical reactions. The aim of this study was to couple several analytical techniques in order to carefully undertake chemical and mineralogical characterizations of LD steel slags and identify the phases that are expected to be responsible for their instability. Optical microscopy, scanning electron microscopy and electron probe microanalyses revealed that LD steel slags mainly contain calcium silicates, dicalcium ferrites, iron oxides and lime. However, as a calcium silicate phase is heterogeneous, Raman microspectrometry and transmitted electron microscopy had to be used to characterize it more precisely. Results showed that lime is present under two forms in slag grains: some nodules observed in the matrix whose size ranges from 20 to 100 {mu}m and some micro-inclusions, enclosed in the heterogeneous calcium silicate phase whose size ranges from 1 to 3 {mu}m. It was also established that without the presence of magnesia, lime is expected to be the only phase responsible for LD steel slags instability. Nevertheless, the distribution of lime between nodules and micro-inclusions may play a major role and could explain that similar amounts of lime can induce different instabilities. Thus, it appears that lime content of LD steel slags is not the only parameter to explain their instability.

  8. Material characterization in cemented radioactive waste with the associated particle technique

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Perot, B.; Mariani, A.; El Kanawati, W.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2010-07-01

    The elemental characterization of materials constituting radioactive waste is of great importance for the management of storage and repository facilities. To complement the information brought by gamma or X-ray imaging, the performance of a fast neutron interrogation system based on the associated particle technique (APT) has been investigated by using MCNP simulations and by performing proof-of-principle experiments. APT provides a 3D localisation of the emission of fast neutron induced gamma rays, whose spectroscopic analysis allows to identify the elements present in specific volumes of interest in the waste package. Monte Carlo calculations show that it is possible to identify materials enclosed behind the thick outer envelop of a ≈1 m 3 cemented waste drum, provided the excited nuclei emit gamma rays with a sufficient energy to limit photon attenuation. Neutron attenuation and scattering are also predominant effects that reduce the sensitivity and spatial selectivity of APT, but it is still possible to localise items in the waste by neutron time-of-flight and gamma-ray spectroscopy. Experimental tests confirm that the elemental characterization is possible across thick mortar slabs.

  9. Characterization of itraconazole semisolid dosage forms prepared by hot melt technique.

    PubMed

    Shim, Sang-Young; Ji, Chang-Won; Sah, Hongkee; Park, Eun-Seok; Lee, Beom-Jin

    2006-11-01

    The objective of this study was to formulate itraconazole semisolid dosage forms and characterize their physicochemical properties. Itraconazole and excipients such as polysorbate 80, fatty acids, fatty alcohols, oils and organic acids were melted at 160 degrees C. The fused solution was then cooled immediately at -10 degrees C to make wax-like semisolid preparations. Their physicochemical attributes were first characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectrometry. The solubility of itraconazole in semisolid preparations and their dispersability in the simulated gastric fluid were also determined. Our semisolid preparations did not show any distinct endothermic peak of a crystalline form of itraconazole around 160-163 degrees C. This suggested that it was changed into amorphous one, when it was formulated into semisolid preparations. In addition, the distinctive functional peaks and chemical shifts of itraconazole were well retained after processing into semisolid preparations. It could be inferred from the data that itraconazole was stable during incorporation into semisolid preparations by the hot melt technique. In particular, itraconazole semisolid preparations composed of polysorbate 80, fatty acids and organic acids showed good solubility and dissolution when dispersed in an aqueous medium. It was anticipated that the semisolid dosage forms would be industrially applicable to improving the bioavailability of poorly water-soluble drugs. PMID:17146976

  10. Characterization of itraconazole semisolid dosage forms prepared by hot melt technique.

    PubMed

    Shim, Sang-Young; Ji, Chang-Won; Sah, Hongkee; Park, Eun-Seok; Lee, Beom-Jin

    2006-11-01

    The objective of this study was to formulate itraconazole semisolid dosage forms and characterize their physicochemical properties. Itraconazole and excipients such as polysorbate 80, fatty acids, fatty alcohols, oils and organic acids were melted at 160 degrees C. The fused solution was then cooled immediately at -10 degrees C to make wax-like semisolid preparations. Their physicochemical attributes were first characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectrometry. The solubility of itraconazole in semisolid preparations and their dispersability in the simulated gastric fluid were also determined. Our semisolid preparations did not show any distinct endothermic peak of a crystalline form of itraconazole around 160-163 degrees C. This suggested that it was changed into amorphous one, when it was formulated into semisolid preparations. In addition, the distinctive functional peaks and chemical shifts of itraconazole were well retained after processing into semisolid preparations. It could be inferred from the data that itraconazole was stable during incorporation into semisolid preparations by the hot melt technique. In particular, itraconazole semisolid preparations composed of polysorbate 80, fatty acids and organic acids showed good solubility and dissolution when dispersed in an aqueous medium. It was anticipated that the semisolid dosage forms would be industrially applicable to improving the bioavailability of poorly water-soluble drugs.

  11. Characterization of natural resin materials using water adsorption and various advanced techniques

    NASA Astrophysics Data System (ADS)

    Favvas, Evangelos P.; Kouvelos, Evangelos P.; Papageorgiou, Sergios K.; Tsanaktsidis, Constantinos G.; Mitropoulos, Athanasios Ch.

    2015-05-01

    A physicochemical characterization of natural raw resin material was evaluated and reported. The studied material is a natural resin, a natural product from pinus halepensis trees which is collected from the forests of Chalkidiki region of North Greece. The plurality of this product combined with its special property of removing water from commercial liquid fuels commands the detailed physicochemical characterization of this material. In particular, various techniques, such as water adsorption at 22 °C, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction, were used in order to evaluate the structural and surface properties of the material. The water adsorption isotherm was also measured and fitted using the Guggenheim, Anderson and De Boer model in order to correlate the water activity characteristics. In addition, the kinetics of the adsorption was also fitted with good accuracy using the exponential Chapman model. Furthermore, as the results show, the natural resin presents good thermal characteristics. Finally, the studied material presents efficient water adsorption properties, up to 246.8 mmol/g, and it can be proposed as a promising dehydration material.

  12. Laser ultrasound technique applied in material characterization of thermally sprayed nickel aluminum coatings

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Yang, C. H.; Hsiao, W. T.; Su, C.-Y.

    2012-05-01

    Thermal spraying processing usually uses a nickel-aluminum alloy system as the major powder due to its strong adhesion to substrates. The contents of powder material and the processing parameters used in the spraying process cause material properties of coatings exhibiting a wide variation. This research aims at nondestructive characterization of thermal spraying coatings. A laser-generation/laser-detection laser ultrasound technique (LUT) is used for the measurements of dispersion spectra of surface waves propagating along the coated surfaces. Theoretical model for surface waves propagating along a multi-layered structure with coating and substrate is used to model the sprayed coatings. An inversion algorithm based on Shuffled Complex Evolution (SCE-UA) is used to extract mechanical properties from the measured dispersion spectra cooperating with theoretical model. Three coatings with different sprayed powders and powder processing are investigated. Results indicate that substantial linear scatterings are observed for the inverted properties due to the measured dispersion spectra with limited bandwidth inherited from the relatively high attenuations. The slope of linear scattering can be used to distinguish the coating properties. The ANiBNb sample with ball-milled coating has the best properties based on its highest velocity and least attenuation. This method is potentially useful to characterize the mechanical properties of thermally spraying coating in a nondestructive way.

  13. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    SciTech Connect

    Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar; Singh, V.N.

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  14. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.

    PubMed

    Yang, Ying; Bagnaninchi, Pierre O; Ahearne, Mark; Wang, Ruikang K; Liu, Kuo-Kang

    2007-12-22

    Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels under a spherical indenter at constant force. The Hertz contact theory has been applied for quantitatively correlating the indentation force and the deformation with the mechanical properties of the materials. Young's moduli of hydrogels estimated by the new method are comparable with those measured by conventional depth-sensing micro-indentation. The advantages of this new method include its capability to characterize mechanical properties of bulk soft materials and amenability to perform creeping tests. More importantly, the measurement can be performed under sterile conditions allowing non-destructive, in situ and real-time investigations on the changes in mechanical properties of soft materials (e.g. hydrogel). This unique character can be applied for various biomechanical investigations such as monitoring reconstruction of engineered tissues.

  15. In vitro characterization of the technique of portal vein embolization by injection of a surgical glue

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sandulache, Mihai-Cristinel; Lancon, Oceane; El Kadri Benkara, Khadija

    2012-11-01

    Partial embolization of the portal trunk by glue injection is a minimally invasive technique used in the case of malignant liver tumors. It is conducted few weeks prior to partial liver ablation, when the volume of the remnant liver section is too small to allow hepatectomy. The limitation of glue embolotherapy is that its clinical practice is based on empirical knowledge. The present objective is to study glue injection in a confined blood flow and investigate how the injection dynamics is coupled with glue polymerization. We first characterize polymerization under static conditions for various glue concentrations and then consider the influence of injection. An experimental setup reproduces the co-flow of two immiscible fluids. The glue mixture is injected through a capillary tube into a saline solution with the same ionic concentration, pH and viscosity as blood, flowing steadily in a straight cylindrical tube. The injected phase is visualized with a high-speed imaging system and results are compared with those obtained for non-reacting fluids. These experiments have enabled us to characterize the characteristic times of polymerization of the glue mixtures under static and dynamic conditions and understand how they affect the flow topology of the glue once injected. Biomechanics and Bioengineering Laboratory (UMR CNRS 7338).

  16. Dimensional characterization of a quasispherical resonator by microwave and coordinate measurement techniques

    NASA Astrophysics Data System (ADS)

    Underwood, R.; Flack, D.; Morantz, P.; Sutton, G.; Shore, P.; de Podesta, M.

    2011-02-01

    We describe the dimensional characterization of copper quasisphere NPL-Cranfield 2. The quasisphere is assembled from two hemispheres such that the internal shape is a triaxial ellipsoid, the major axes of which have nominal radii 62.000 mm, 62.031 mm and 62.062 mm. The artefact has been manufactured using diamond-turning technology and shows a deviation from design form of less than ±1 µm over most of its surface. Our characterization involves both coordinate measuring machine (CMM) experiments and microwave resonance spectroscopy. We have sought to reduce the dimensional uncertainty below the maximum permissible error of the CMM by comparative measurements with silicon and Zerodur spheres of known volume. Using this technique we determined the equivalent radius with an uncertainty of u(k = 1) = 114 nm, a fractional uncertainty of 1.8 parts in 106. Due to anisotropy of the probe response, we could only determine the eccentricities of the quasihemispheres with a fractional uncertainty of approximately 2%. Our microwave characterization uses the TM11 to TM18 resonances. We find the equivalent radius inferred from analysis of these modes to be consistent within ±4 nm with an overall uncertainty u(k = 1) = 11 nm. We discuss corrections for surface conductivity, waveguide perturbations and dielectric surface layers. We find that the CMM radius estimates derived from each hemisphere cannot be used to accurately predict the equivalent radius of the assembled resonator for two reasons. Firstly, the equatorial flanges are flat only to within ±1 µm, leading to an equatorial 'gap' whose dimension cannot be reliably estimated. Secondly, the resonator undergoes significant elastic distortion when the bolts connecting the hemispheres are tightened. We provide CMM and microwave measurements to support these conclusions in addition to finite-element modelling. Finally, we consider the implications of this work on a forthcoming experiment to determine the Boltzmann constant

  17. Comparative analysis of different measurement techniques for characterizing soil surface roughness in agricultural soils

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Alex; Álvarez-Mozos, Jesús; Valle, José Manuel; Rodríguez, Álvaro; Giménez, Rafael

    2016-04-01

    analysis was threefold: (1) comparison of raw data (point clouds), (2) comparison of interpolated DEMs considering different resolutions (2.5mm, 5mm and 10mm) and (3) comparison of roughness parameters. In all cases the profilometer was used as a reference because of its vertical accuracy and nadiral viewing geometry. Thus point clouds and interpolated DEMs were compared to the height profiles. The results showed that in most cases surface height discrepancies were below 10 mm for raw data and increased slightly when increasing the pixel size of DEMs. Finally, a thorough analysis of different roughness parameters proposed in the literature was carried out to find the most appropriate technique and parameter for the characterization of roughness in each case. Although still preliminary, results offer practical recommendations on the usefulness of each technique.

  18. Fundamental characterization of shrink techniques on negative tone development based dense contact holes

    NASA Astrophysics Data System (ADS)

    Jain, Kaveri; Light, Scott L.

    2016-03-01

    Enormous advances have been made in recent years to design sub 40nm dense contact hole pattern with local CD uniformity (CDU) that the process can tolerate. Negative tone development process (NTD) on 193nm photoresists has achieved this to a large extent without the requirement of additional processing steps on the patterned layer. With further shrinking of size of the subsequent nodes, the demand to produce smaller patterns with wider process window, low defectivity, and improved CDU is increasing, and reaching beyond what can be achieved through NTD alone. A number of techniques are in practice today to achieve this, most notably, implementation of a collar of Atomic Layer Deposited SiO2 (ALD) on photoresist or substrate. However, in recent years, various material suppliers have also proposed shrink chemistries to achieve this. In this paper, we have provided fundamental characterization of shrink via application of spin-on agents (organic as well as aqueous) on the post-imaged pattern. We have also compared them for their shrink capacity, defect tendency, dry etch capability and ease of implementation in the process flow. In addition, we have provided recommendations on which technique is suitable for a given set of process prerequisites.

  19. An Application Specific Memory Characterization Technique for Co-processor Accelerators

    SciTech Connect

    Alam, Sadaf R; Smith, Melissa C; Vetter, Jeffrey S

    2007-01-01

    Commodity accelerator technologies including reconfigurable devices and graphical processing units (GPUs) provide an order of magnitude performance improvement compared to mainstream microprocessor systems. A number of compute-intensive, scientific applications, therefore, can potentially benefit from commodity computing devices available in the form of co-processor accelerators. However, there has been little progress in accelerating production-level scientific applications using these technologies due to several programming and performance challenges. One of the key performance challenges is performance sustainability. While computation is often accelerated substantially by accelerator devices, the achievable performance is significantly lower once the data transfer costs and overheads are incorporated. We present an application-specific memory characterization technique for an FPGA-accelerated system that enabled us to reduce data transfer overhead for a scientific application by a factor of 5. We classify large data structures in the application according to their read and write characteristics and access patterns. This classification in turn enabled us to sustain a speedup of over three for a full-scale scientific application. Our proposed technique extends to applications that exhibit similar memory behavior and to co-processor accelerator systems that support data streaming and pipelining, and allow overlapped execution between the host and the accelerator device.

  20. Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Cheruvalathu, Ajina; Reshmi, R.; Devasia, Sebin; Anila, E. I.

    2016-05-01

    In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and -C-H groups. The synthesized sample has good crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.

  1. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  2. Operando characterization of nanocatalysts via spectroscopy, scattering and imaging techniques in the same micro-reactor

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Frenkel, Anatoly; Baumann, Philipp; Tappero, Ryan; Zakharov, Dmitri; Stach, Eric; Elsen, Annika; Jung, Ulrich; Nuzzo, Ralph

    2014-03-01

    The increasing demand to rationally design new catalysts for energy generation/conversion calls for improvements in research methodology which enables multi-technique investigations of working catalysts in reaction conditions. Using the operando approach is necessary to establish structure activity/selectivity relationship. However, this approach is hindered by many challenges, e.g., the incompatibility of different characterization methods with respect to the sample concentration and environment, and, hence, the need to use multiple in situ reactor designs. We report on the development and tests of the single, portable reactor compatible with most useful techniques for operando studies of nanocatalysts: X-ray absorption, transmission electron microscopy, infrared and Raman spectroscopies. The test system was Pt/SiO2 nanocatalyst and the reaction was the ethylene hydrogenation. The reactor was a closed cell with SiN windows enabled catalytic reactions under atmospheric pressure. Both XAFS and TEM experiments were conducted in identical conditions, while monitoring the product formation using mass spectrometry. Comparison of TEM and XAFS results provided new information on the structure-activity relationship of these catalysts.

  3. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    SciTech Connect

    Garfinkel, S.; Thompson, J.A.; Cohen, R.B.; Brendler, T.; Safer, B.

    1987-05-01

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific TSP-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect.

  4. Optical fiber sensors embedded in flexible polymer foils

    NASA Astrophysics Data System (ADS)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  5. Threading Dislocation Characterization and Stress Mapping Depth Profiling via Ray Tracing Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Tianyi

    Zinc oxide (ZnO) has been well known as a transparent, dielectric, piezoelectric and wide band gap material. The potential capabilities have been demonstrated for a wide range of applications such as piezoelectric transducer, gas sensor, optical waveguides and transparent electrode. It could also be applied as a substrate material for GaN-based devices. However, while some applications have already been realized, issues relating to crystalline defects remain a barrier to the successful realization of several others. In this thesis, the central focus of Chapter II is to characterize threading dislocations in hydrothermal grown ZnO substrates through simulation work as well as other techniques. The goal of this study is to find the origin of threading dislocations and design strategies to mitigate their negative effects by either reducing their densities or completely eliminating them. In Chapter III, the technique of SMART (stress mapping analysis via ray tracing) is discussed in detail to measure residue stress in packaged silicon circuits. Residual stress plays an important role in the performance and lifetime of single crystal device material. There are mainly two advantages of SMART compared with other techniques: (a) all six components of the stress tensor could be evaluated; (b) it is non-destructive and no damaging trace will be left on the sample. In this study, our goal is to build a relationship between stress distribution and depth. The concept of penetration depth is critically important in this study and its value may cause great changes for real space stress distribution. A new function is applied to get better fitting curves. Data in this study is obtained from various penetration depth, which represents exponentially decaying weighted average of actual stress value or in other words this stress profile is Laplace transform of real stress profile. Mathematical procedure is described to determine real stress profile from Laplace profile. Experiment

  6. Applied Protein and Molecular Techniques for Characterization of B Cell Neoplasms in Horses

    PubMed Central

    Badial, Peres R.; Tallmadge, Rebecca L.; Miller, Steven; Stokol, Tracy; Richards, Kristy; Borges, Alexandre S.

    2015-01-01

    Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease. PMID:26311245

  7. Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique.

    PubMed

    de Boer, A H; Gjaltema, D; Hagedoorn, P; Frijlink, H W

    2002-12-01

    Cascade impactor analysis is the standard technique for in vitro characterization of aerosol clouds generated by medical aerosol generators. One important reason for using this inertial separation principle is that drug fractions are classified into aerodynamic size ranges that are relevant to the deposition in the respiratory tract. Measurement of these fractions with chemical detection methods enables establishment of the particle size distribution of the drug in the presence of excipients. However, the technique is laborious and time consuming and most of the devices used for inhaler evaluation lack sufficient possibilities for automation. In addition to that, impactors often have to be operated under conditions for which they were not designed and calibrated. Particularly, flow rates through impactors are increased to values at which the flow through the nozzles is highly turbulent. This has an uncontrolled influence on the collection efficiencies and cut-off curves of these nozzles. Moreover, the cut-off value varies with the flow rate through an impactor nozzle. On the other hand, the high air flow resistances of most impactors are rather restricting to the attainable (fixed) inspiratory flow curves through these devices. Especially for breath actuated dry powder inhalers, higher flow rates and flow increase rates may be desirable than can be achieved in combination with a particular type of impactor. In this paper, the applicability of laser diffraction technology is evaluated as a very fast and highly reliable alternative for cascade impactor analysis. With this technique, aerodynamic diameters cannot be measured, but for comparative evaluation and development, comprising most in vitro applications, this is not necessary. Laser diffraction has excellent possibilities for automated recording of data and testing conditions, and the size classes are independent of the flow rate. Practical limitations can be overcome by using a special inhaler adapter which

  8. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.

    PubMed

    Lo, Yi-Kai; Chang, Chih-Wei; Liu, Wentai

    2014-01-01

    Knowledge of the bio-impedance and its equivalent circuit model at the electrode-electrolyte/tissue interface is important in the application of functional electrical stimulation. Impedance can be used as a merit to evaluate the proximity between electrodes and targeted tissues. Understanding the equivalent circuit parameters of the electrode can further be leveraged to set a safe boundary for stimulus parameters in order not to exceed the water window of electrodes. In this paper, we present an impedance characterization technique and implement a proof-of-concept system using an implantable neural stimulator and an off-the-shelf microcontroller. The proposed technique yields the parameters of the equivalent circuit of an electrode through large signal analysis by injecting a single low-intensity biphasic current stimulus with deliberately inserted inter-pulse delay and by acquiring the transient electrode voltage at three well-specified timings. Using low-intensity stimulus allows the derivation of electrode double layer capacitance since capacitive charge-injection dominates when electrode overpotential is small. Insertion of the inter-pulse delay creates a controlled discharge time to estimate the Faradic resistance. The proposed method has been validated by measuring the impedance of a) an emulated Randles cells made of discrete circuit components and b) a custom-made platinum electrode array in-vitro, and comparing estimated parameters with the results derived from an impedance analyzer. The proposed technique can be integrated into implantable or commercial neural stimulator system at low extra power consumption, low extra-hardware cost, and light computation.

  9. Use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants.

    PubMed

    Van Oossterwyck, H; Duyck, J; Vander Sloten, J; Van der Perre, G; Jansen, J; Wevers, M; Naert, I

    2000-01-01

    Qualitative and quantitative analysis of peri-implant tissues around retrieved oral implants is typically done by means of light microscopy on thin histological sections containing the metal surface and the undecalcified bone. It remains, however, a labor-intensive and thus time-consuming job. Moreover, it is a destructive technique that allows tissue quantification in only a limited number of two-dimensional sections. As an alternative, we evaluated the bone structure around screw-shaped titanium implants by means of microfocus computerized tomography (micro-CT) because it presents a number of advantages compared to conventional sectioning techniques: micro-CT is nondestructive, fast, and allows a fully three-dimensional characterization of the bone structure around the implant. Images can be reconstructed in an arbitrary plane, and three-dimensional reconstructions are also possible. Because of its high resolution, individual trabeculae can be visualized. The accuracy of micro-CT was qualitatively evaluated by comparing histological sections with the corresponding CT slices for the same specimen. The overall trabecular structure is very similar according to both techniques. Even very close to the interface, the titanium implant does not seem to produce significant artifacts. Furthermore, because the complete digital data on the trabecular bone structure around the implant is available, it is possible to create finite-element models of the bone-implant system that model the trabeculae in detail so that mechanical stress transfer at the interface can be studied at the level of individual trabeculae. Therefore, micro-CT seems to be very promising for the in vitro assessment of the three-dimensional bone structure around oral implants. Further research will be needed to evaluate its accuracy in a more quantitative way. PMID:11831302

  10. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Schmauch, Preston

    2011-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the

  11. Laboratory instrumentation and techniques for characterizing multi-junction solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1995-01-01

    Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell

  12. The data embedding method

    SciTech Connect

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    1996-06-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  13. Meso-scale characterization of lithium distribution in lithium-ion batteries using ion beam analysis techniques

    NASA Astrophysics Data System (ADS)

    Gonzalez-Arrabal, R.; Panizo-Laiz, M.; Fujita, K.; Mima, K.; Yamazaki, A.; Kamiya, T.; Orikasa, Y.; Uchimoto, Y.; Sawada, H.; Okuda, C.; Kato, Y.; Perlado, J. M.

    2015-12-01

    The performance of a Li-ion battery (LIB) is mainly governed by the diffusion capabilities of lithium in the electrodes. Thus, for LIB improvement it is essential to characterize the lithium distribution. Most of the traditionally used techniques for lithium characterization give information about the local scale or in the macroscopic scale. However, the lithium behavior at the local scale is not mirrored at the macroscopic scale. Therefore, the lithium characterization in the mesoscopic scale would be of help to understand and to connect the mechanisms taking place in the two spatial scales. In this paper, we show a general description of the capabilities and limitations of ion beam analysis techniques to study the distributions of lithium and other elements present in the electrodes in the mesoscopic scale. The potential of the 7Li(p,α0)4He nuclear reaction to non-invasively examine the lithium distribution as a function of depth is illustrated. The lithium spatial distribution is characterized using particle induced γ-ray (μ-PIGE) spectroscopy. This technique allows estimating the density of the active particles in the electrode effectively contributing to the Li intercalation and/or de-intercalation. The advantages of the use of ion beam analysis techniques in comparison to more traditional techniques for electrode characterization are discussed.

  14. Embedded gage impact study

    NASA Technical Reports Server (NTRS)

    Schramm, S. W.; Daniel, I. M.

    1984-01-01

    Impact damage in graphite/epoxy laminates was characterized and transient strain history during impact was correlated. The material investigated was AS-4/3501-6 graphite/epoxy. Eight-ply and sixteen-ply quasi-isotropic laminates of 45/0/-45/90 sub s and 45/0/-45/90 sub 2s layups were fabricated with strain gages embedded between plies during the strain gages and leads from the highly conductive graphite fibers. The specimens were circular plates 12.7 cm (5 in.) in diameter and clamped along their circumference. The specimens were impacted with a 185 gm impactor, dropped from heights of 1.20 m and 1.65 m. An accelerometer was attached to the back surface of the specimen opposite the impact point and was used to trigger the recording instrumentation. The transient strain data were recorded with an eight channel waveform digitizer capable of sampling data at 0.5 microsec intervals. The data were stored, processed, and plotted by means of a microcomputer. Transient strain data were correlated with results from ultrasonic inspection of the specimens.

  15. Characterization of uniaxial stiffness of extracellular matrix embedded with magnetic beads via bio-conjugation and under the influence of an external magnetic field.

    PubMed

    Herath, Sahan C B; Du, Yue; Wang, Dong-an; Liao, Kin; Wang, Qingguo; Asada, Harry; Chen, Peter C Y

    2014-02-01

    In this paper, we study the deformation, and experimentally quantify the change in stiffness, of an extracellular matrix (ECM) embedded with magnetic beads that are bio-conjugated with the collagen fibers and under the influence of an external magnetic field. We develop an analytical model of the viscoelastic behavior of this modified ECM, and design and implement a stretch test to quantify (based on statistically meaningful experiment data) the resulting changes in its stiffness induced by the external magnetic field. The analytical results are in close agreement with that obtained from the experiments. We discuss the implication of these results that point to the possibility of creating desired stiffness gradients in an ECM in vitro to influence cell behavior.

  16. Hydrogeologic facies characterization of an alluvial fan near Fresno, California, using geophysical techniques

    USGS Publications Warehouse

    Burow, Karen R.; Weissmann, G.S.; Miller, R.D.; Placzek, Gary

    1997-01-01

    DBCP (1,2-dibromo-3-chloropropane) contamination in the sole source aquifer near Fresno, California, has significantly affected drinking-water supplies. Borehole and surface geophysical data were integrated with borehole textural data to characterize the Kings River alluvial fan sediments and to provide a framework for computer modeling of pesticide transport in ground water. Primary hydrogeologic facies units, such as gravel, coarse sand or gravel, fine sand, and silt and clay, were identified in cores collected from three borings located on a 4.6-kilometer transect of multilevel monitoring wells. Borehole geophysical logs collected from seven wells and surface geophysical surveys were used to extrapolate hydrogeologic facies to depths of about 82meters and to correlate the facies units with neighboring drilling sites. Thickness ranged from 0.3to 13 meters for sand and gravel units, and from 0.3 to 17 meters for silt and clay. The lateral extent of distinct silt and clay layers was mapped using shallow seismic reflection and ground-penetrating radar techniques. About 3.6 kilometers of seismic reflection data were collected; at least three distinct fine-grained layers were mapped. The depth of investigation of the seismic survey ranged from 34 to 107 meters below land surface, and vertical resolution was about 3.5 meters. The ground-penetrating radar survey covered 3.6kilometers and imaged a 1.5-meters thick, continuous fine-grained layer located at a depth of about 8 meters. Integrated results from the borehole sediment descriptions and geophysical surveys provided a detailed characterization over a larger areal extent than traditional hydrogeologic methods alone.

  17. Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys

    SciTech Connect

    Ruiz-Vargas, J.; Siredey-Schwaller, N.; Noyrez, P.; Mathieu, S.; Bocher, P.; and others

    2014-08-15

    Brazed Ni-based superalloys containing complex phases of different Boron contents remain difficult to characterize at the micrometer scale. Indeed Boron is a light element difficult to measure precisely. The state-of-the-art microanalysis systems have been tested on a single crystal MC2 based metal brazed with BNi-2 alloy to identify boride precipitates. Effort has been made to evaluate the accuracy in Boron quantitation. Energy-dispersive and wavelength-dispersive X-ray spectroscopy attached to a Scanning Electron Microscope have first been used to determine the elemental composition of Boron-free phases, and then applied to various types of borides. Results have been compared to the ones obtained using a dedicated electron probe microanalysis, considered here as the reference technique. The most accurate method to quantify Boron using EDS is definitely by composition difference. A precision of 5 at.% could be achieved with optimized data acquisition and post-processing schemes. Attempts that aimed at directly quantifying Boron with various standards using EDS or coupled EDS/WDS gave less accurate results. Ultimately, Electron Backscatter Diffraction combined with localized EDS analysis has proved invaluable in conclusively identifying micrometer sized boride precipitates; thus further improving the characterization of brazed Ni-based superalloys. - Highlights: • We attempt to accurately identify Boron-rich phases in Ni-based superalloys. • EDS, WDS, EBSD systems are tested for accurate identification of these borides. • Results are compared with those obtained by electron probe microanalysis. • Boron was measured with EDS by composition difference with a precision of 5 at. %. • Additional EBSD in phase identification mode conclusively identifies the borides.

  18. Influence of nanostructure composition on its morphometric characterization by different techniques.

    PubMed

    Carvalho Silva, Renata; Alexandre Muehlmann, Luis; Rodrigues Da Silva, Jaqueline; de Bentes Azevedo, Ricardo; Madeira Lucci, Carolina

    2014-09-01

    Morphometric characterization of nanoparticles is crucial to determine their biological effects and to obtain a formulation pattern. Determining the best technique requires knowledge of the particles being analyzed, the intended application of the particles, and the limitations of the techniques being considered. The aim of this article was to present transmission (TEM) and scanning (SEM) electron microscopy protocols for the analysis of two different nanostructures, namely polymeric nanoemulsion and poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and to compare these results with conventional dynamic light scattering (DLS) measurements. The mean hydrodynamic diameter, the polydispersity index, and zeta potential of the nanostructures of polymeric nanoemulsion were 370.5 ± 0.8 nm, 0.133 ± 0.01, and -36.1 ± 0.15 mV, respectively, and for PLGA nanoparticles were 246.79 ± 5.03 nm, 0.096 ± 0.025, and -4.94 ± 0.86 mV, respectively. TEM analysis of polymeric nanoemulsion revealed a mean diameter of 374 ± 117 nm. SEM analysis showed a mean diameter of 368 ± 69 nm prior to gold coating and 448 ± 70 nm after gold coating. PLGA nanoparticles had a diameter of 131 ± 41.18 nm in TEM and 193 ± 101 nm in SEM. Morphologically, in TEM analysis, the polymeric nanoemulsions were spherical, with variable electron density, very few showing an electron-dense core and others an electron-dense surface. PLGA nanoparticles were round, with an electron-lucent core and electron-dense surface. In SEM, polymeric nanoemulsions were also spherical with a rough surface, and PLGA nanoparticles were round with a smooth surface. The results show that the "gold standards" for morphometric characterization of polymeric nanoemulsion and PLGA nanoparticles were, respectively, SEM without gold coating and TEM with negative staining.

  19. Characterization of 6111-like aluminum alloys using electrochemical techniques and electron microscopy

    NASA Astrophysics Data System (ADS)

    Shi, Alan

    2003-10-01

    Aluminum and aluminum alloys are susceptible to localized corrosion in corrosive environments, particularly in halide-containing solutions. However, the mechanism(s) through which corrosion occurs on Al-Mg-Si alloys with or without Cu addition remained unclear. This dissertation reports on the investigation of pitting and IGC susceptibilities of three 6111-like aluminum alloys with 0%, 0.68%, and 1.47%Cu. The electrochemical behavior of the alloys was evaluated using open circuit exposure, conventional polarization techniques, and electrochemical noise technique. Scanning electron microscopy (SEM) was used to characterize the corrosion morphologies of the alloys. Transmission electron microscopy (TEM) was employed to characterize the alloys' microstructures. Scanning transmission electron microscopy (STEM) and EDS nano-profiling were used to study the grain boundary characteristics of the three alloys. All three alloys are susceptible to pitting and IGC attack in chloride-containing electrolytes. Electrochemical noise measurements revealed that the induction time for localized corrosion to initiate was often on the order of hours if not less, even in solution containing merely 5 mM NaCl. Regardless the heat treatment conditions and degree of polarization, the 6111-like alloy with 0%Cu exhibited crystallographic tunneling morphology. Over-aging treatment transformed the nature of intragranular attack on the Cu-containing 6111-like alloys from the hemispherical micropitting to a mixture of hemispherical micropitting and crystallographic tunneling. STEM/X-ray microanalysis yielded some significant findings on the three as-received alloys, which were never reported before. 30˜70 run wide Mg and Si depleted regions and 10˜40 nm wide Cu-depleted regions along some high angle grain boundaries (GB) have been detected in the Cu-free and Cu-containing 6111-like alloys, respectively. The presence of an Al-Cu-Mg-Si phase at some high angle GBs of the Cu-containing alloys has

  20. Dynamic tensile characterization of a 4330-V steel with kolsky bar techniques.

    SciTech Connect

    Song, Bo; Antoun, Bonnie R.; Connelly, Kevin

    2010-09-01

    There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical

  1. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    NASA Astrophysics Data System (ADS)

    Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.

    2011-07-01

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT

  2. Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis Techniques

    SciTech Connect

    Contescu, Cristian I; Burchell, Timothy D

    2009-09-01

    This document reports on initial activities at ORNL aimed at quantitative characterization of porosity development in oxidized graphite specimens using automated image analysis (AIA) techniques. A series of cylindrical shape specimens were machined from nuclear-grade graphite (type PCEA, from GrafTech International). The specimens were oxidized in air to various levels of weight loss (between 5 and 20 %) and at three oxidation temperatures (between 600 and 750 oC). The procedure used for specimen preparation and oxidation was based on ASTM D-7542-09. Oxidized specimens were sectioned, resin-mounted and polished for optical microscopy examination. Mosaic pictures of rectangular stripes (25 mm x 0.4 mm) along a diameter of sectioned specimens were recorded. A commercial software (ImagePro) was evaluated for automated analysis of images. Because oxidized zones in graphite are less reflective in visible light than the pristine, unoxidized material, the microstructural changes induced by oxidation can easily be identified and analyzed. Oxidation at low temperatures contributes to development of numerous fine pores (< 100 m2) distributed more or less uniformly over a certain depth (5-6 mm) from the surface of graphite specimens, while causing no apparent external damage to the specimens. In contrast, oxidation at high temperatures causes dimensional changes and substantial surface damage within a narrow band (< 1 mm) near the exposed graphite surface, but leaves the interior of specimens with little or no changes in the pore structure. Based on these results it appears that weakening and degradation of mechanical properties of graphite materials produced by uniform oxidation at low temperatures is related to the massive development of fine pores in the oxidized zone. It was demonstrated that optical microscopy enhanced by AIA techniques allows accurate determination of oxidant penetration depth and of distribution of porosity in oxidized graphite materials.

  3. Routine characterization of 3-D profiles of SRF cavity defects using replica techniques

    SciTech Connect

    Ge, M.; Wu, G.; Burk, D.; Ozelis, J.; Harms, E.; Sergatskov, D.; Hicks, D.; Cooley, L.D.; /Fermilab

    2010-09-01

    Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this article we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3-D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometer-scale information, and we describe various curious features, such as small peaks at the bottom of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing dose not adversely affect the cavity RF performance.

  4. Novel Techniques for Optical Characterization of Single-Walled Carbon Nanotube Samples

    NASA Astrophysics Data System (ADS)

    Streit, Jason K.

    Photoluminescence spectroscopy has emerged as a powerful tool for characterizing the structure and optical properties of single-walled carbon nanotube (SWCNT) samples. This thesis will discuss the development and application of new fluorescence-based methods designed to fully characterize bulk SWCNT suspensions by length and structural composition. An efficient new method is demonstrated to measure length distributions of aqueous SWCNT samples by analyzing the diffusional motions of many individual nanotubes captured in sequences of short-wave infrared (SWIR) fluorescence images. This method, termed length analysis by nanotube diffusion (LAND), provides distributions in very good agreement with those obtained by conventional atomic force microscopy analysis. A novel microscopy technique is described to measure the peak emission wavelengths of many individual nanotubes without the use of a spectrometer. We exploit the chromatic aberration of an objective lens to deduce emission wavelength from focal depth. Spectral measurements successfully reproduce bulk emission spectra and also provide relative abundances of specific SWCNT structures. A new approach is applied to find nanotube concentrations by directly counting SWCNTs in SWIR fluorescence images. Concentrations are used to rigorously determine absolute absorption cross sections for the E11 and E22 electronic transitions of the (6,5), (7,5), (7,6), (8,6), (8,7) and (9,7) SWCNT species. It is found that the absorption cross section per carbon atom decreases with increasing nanotube diameter. Finally, the spectral analysis of fluorescence fluctuations (SAFF) method is developed and used to characterize SWCNT samples by structural composition, sample quality, and aggregation state. Fluorescence spectra are sequentially measured from small volumes of slowly flowing dilute samples and the intensity fluctuations resulting from small statistical variations in nanotube concentration are analyzed. The ratio of the squared

  5. Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Nathan, Brian Joseph

    Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon

  6. Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork.

    PubMed

    Romani, Aldo; Clementi, Catia; Miliani, Costanza; Favaro, Gianna

    2010-06-15

    After electronic excitation by ultraviolet or visible radiation, atoms and molecules can undergo thermal or radiative deactivation processes before relaxing to the ground state. They can emit photons with longer wavelengths than the incoming exciting radiation, that is, they can fluoresce in the UV-vis-near-infrared (NIR) range. The study of fluorescence relaxation processes is one of the experimental bases on which modern theories of atomic and molecular structure are founded. Over the past few decades, technological improvements in both optics and electronics have greatly expanded fluorimetric applications, particularly in analytical fields, because of the high sensitivity and specificity afforded by the methods. Using fluorimetry in the study and conservation of cultural heritage is a recent innovation. In this Account, we briefly summarize the use of fluorescence-based techniques in examining the constituent materials of a work of art in a noninvasive manner. Many chemical components in artwork, especially those of an organic nature, are fluorescent materials, which can be reliably used for both diagnostic and conservative purposes. We begin by examining fluorimetry in the laboratory setting, considering the organic dyes and inorganic pigments that are commonly studied. For a number of reasons, works of art often cannot be moved into laboratories, so we continue with a discussion of portable instruments and a variety of successful "field applications" of fluorimetry to works of cultural heritage. These examples include studies of mural paintings, canvas paintings, tapestries, and parchments. We conclude by examining recent advances in treating the data that are generated in fluorescence studies. These new perspectives are focused on the spectral shape and lifetime of the emitted radiation. Recent developments have provided the opportunity to use various spectroscopic techniques on an increasing number of objects, as well as the ability to fully characterize

  7. Phase topography-based characterization of thermal effects on materials and joining techniques.

    PubMed

    Lorenz, Hagen; Beckert, Erik; Schödel, René

    2015-03-10

    There are growing demands to characterize the stability of assemblies of optical components for ultrahigh-precision instruments. In this paper we demonstrate how absolute length measurements by interferometry can be applied to measure the thermal and dimensional stability of connections. In order to enable investigation of common joining techniques, including wringing, screwing, and gluing, as well as specialized, inorganic joining techniques such as silicatic bonding, thin-film soldering, and solderjet bumping, representative connections were fabricated. By using gage blocks or prismatic bodies as joining parts, parallelism and flatness were provided which are needed for precision interferometric length measurements. The stability of connection elements used in ultrahigh-precision instruments was investigated longitudinally and laterally to the connection interface, and also mutual tilting of the parts was detected by analysis of the phase topographies. The measurements have an accuracy level of about 1 nm, and the traditional wringing method was also considered as a reference joining technique. The long-term behavior was studied within a period of about 1 year under constant temperature. Further, the thermal dilatation and the reaction of connections to thermal stress were measured. Results show that screwed connections do not exhibit a significant drift of length or orientation. They also did not show response to temperature variations of ±10°C. This is different for adhesive connections, where dimensional changes of up to 100 nm were observed. The specimens produced by using thin-film soldering as well as silicatic bonding revealed stability of length better than 5 nm per year and angular stability within ±0.1   arcsec. Furthermore, these specimens were shown to be insensitive to a temporary temperature variation in a range from 10°C to 40°C. This situation is slightly different for the sample connections produced by solderjet bumping, which show a

  8. Characterization of Air Plane Soot Surrogates using Raman spectroscopy and laser ablation techniques

    NASA Astrophysics Data System (ADS)

    Chazallon, Bertrand; Ortega, Ismael Kenneth; Ikhenazene, Raouf; Pirim, Claire; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier

    2016-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. Aircraft exhaust plumes contain species (gases and soot particles) produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Soot particles emitted by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied for many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. The reasons behind these discrepancies reside in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g., with respect to fuel or combustion techniques. In this work, we use Raman microscopy (514 and 785 nm excitation wavelengths) and ablation techniques (Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particle surrogates produced from a CAST generator (propane fuel, four different global equivalence ratios). They are produced as analogues of air-plane soot collected at different engine regimes (PowerJet SaM-146 turbofan) simulating a landing and take-off (LTO) cycle (MERMOSE project (http://mermose.onera.fr/)) [6]. The spectral parameters of the first-order Raman bands of these soot samples are analyzed using a de-convolution approach described by Sadezky et al. (2005) [5]. A systematic Raman analysis is carried out to select a number of parameters (laser wavelength, irradiance at sample, exposure time) that will alter the sample and the

  9. Production of luster glaze on opal tableware using zarinfam technique and characterization of its structure and color

    NASA Astrophysics Data System (ADS)

    Razavi, Fahime; Rashidi Huyeh, Majid; Ghahari, Mahdi

    2016-05-01

    Lusters are potters that have attracted much attention due to their specific optical features, one of the most important of which is their sparkle that appears in various colors at different angles. This effect linked to the multilayer structure of luster and the presence of metallic nanoparticles in enamel layer. In this research, luster glaze was produced on Opal tableware, manufactured in Mahfam Jam Co., using Zarinfam technique. SEM micrograph image of the samples indicated that the glaze forms a multilayer structure, on the Opal tableware surface, consisting of a glassy superficial layer of some tens of nanometers and a composite layer of some hundreds of nanometers. The enamel composite layer contains silver nanoparticles embedded in a silica medium. Employing a multilayer model, we studied the influence of different parameters such as luster enamel thickness, nanoparticles volume fraction in enamel, nanoparticle size, observe angle, and glass layer thickness on luster color.

  10. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  11. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes.

    PubMed

    Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S

    2013-01-01

    The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.

  12. Physical characterization of deep bulk levels by the MOS conductance technique

    NASA Astrophysics Data System (ADS)

    Conti, M.; Fischetti, M. V.; Gastaldi, R.

    1982-01-01

    The a.c. response of SRH centers in the bulk silicon of an MOS capacitor is reconsidered in the case of traps far from midgap for which the dominant dissipative process is the a.c. delay in capture and emission of majority carriers. Following the Nicollian and Goetzberger's scheme the MOS admittance is calculated in the whole range of biases starting from a model equivalent circuit in which minority carriers are supposed to be disconnected from the bulk. Henceforth the conductance technique can be employed to characterize the deep bulk levels not only in strong inversion, as previously done by others Authors, but also in the depletion-weak inversion mode. This extension is accomplished without the need of extensive numerical computation and makes it possible to obtain from measurements performed at room temperature the physical parameters of the SRH centers, including their energy level and, in principle, their degeneracy factor. Results of measurements performed on <1, 0, 0>-oriented, CZ and FZ grown wafers are presented. Good correlation is obtained between theory and experiment for the trap conductance as a function of frequency at different values of the surface potential. The deduced density of SRH centers and energy level are also confirmed by DLTS and transient current measurements. Finally, evidence is reported for the existence of a two level trap, probably related to oxygen, in commercial CZ wafers.

  13. Generalized 1D photopyroelectric technique for optical and thermal characterization of liquids

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.

    2012-06-01

    The analytical solution for the one-dimensional heat diffusion problem for a three-layer system, in the Beer-Lambert model for light absorption, is used for the implementation of a photopyroelectric (PPE) methodology for thermal and optical characterization of pigments in liquid solution, even for those ones potentially harmful to the pyroelectric sensor, taking the liquid sample's thickness as the only variable. Exponential decay of the PPE amplitude followed by a constant PPE phase for solutions at low pigment concentration, and exponential decay of the PPE amplitude but a linear decrease of the PPE phase for the concentrated ones are theoretically shown, allowing measurements of the optical absorption coefficient (at the wavelength used for the analysis) and the thermal diffusivity for the liquid sample, respectively. This PPE methodology was tested by measuring the thermal diffusivity of a concentrated solution of methylene blue in distilled water and the optical absorption coefficient, at two wavelengths (658 and 785 nm), of water solutions of copper sulfate at various concentrations. These optical parameters were used for measuring the molar absorption coefficient of this last pigment in water solution at these two wavelengths. This last optical property was also measured using a commercial spectrometer, finding very good agreement with the corresponding ones using this PPE technique.

  14. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    NASA Astrophysics Data System (ADS)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  15. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  16. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Bekdash, O.; Norcross, J.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, and dizziness. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device, would not impede suit ventilation delivery, and is placed directly in the breathing path of the user.

  17. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  18. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    SciTech Connect

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  19. Multi-technique characterization of poly-L-lysine dendrigrafts-Cu(II) complexes for biocatalysis.

    PubMed

    Rossi, Jean-Christophe; Maret, Barbara; Vidot, Kevin; Francoia, Jean-Patrick; Cangiotti, Michela; Lucchi, Susanna; Coppola, Concetta; Ottaviani, Maria Francesca

    2015-02-01

    Poly-L-lysine is a biocompatible polymer used for drug or gene delivery, for transport through cellular membranes, and as nanosized magnetic resonance imaging contrast agents. Cu(II)-poly-L-lysine complexes are of particular interest for their role in biocatalysis. In this study, poly-L-lysine dendrigrafts (DGLs) at different generations (G2, G3, and G4) are synthesized and characterized in absence and presence of Cu(II) by means of electron paramagnetic resonance (EPR), UV-Vis, potentiometric titration and circular dichroism (CD). The analysis is performed as a function of the [Cu(II)]/[Lys] (=R) molar ratio, pH and generation by identifying differently flexible complexes in different dendrimer regions. The amine sites in the lateral chains become increasingly involved with the increase of pH. The good agreement and complementarity of the results from the different techniques provide an integrate view of the structural and dynamic properties of Cu(II)-DGL complexes implementing their use as biocatalysts.

  20. Structural and Physicochemical Characterization of Spirulina (Arthrospira maxima) Nanoparticles by High-Resolution Electron Microscopic Techniques.

    PubMed

    Neri-Torres, Elier Ekberg; Chanona-Pérez, Jorge J; Calderón, Hector A; Torres-Figueredo, Neil; Chamorro-Cevallos, German; Calderón-Domínguez, Georgina; Velasco-Bedrán, Hugo

    2016-08-01

    The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.6±3.6 nm, with 95% of the particles being smaller than 100 nm. High-resolution transmission electron microscopy showed lattice spacing of ~0.27±0.015 nm for SNPs. The corresponding chemical composition was obtained by energy-dispersive X-ray spectroscopy, and showed the presence of Ca, Fe, K, Mg, Na, and Zn. The powder flow properties showed that the powder density was higher when the average nanoparticle size is smaller. They showed free flowability and an increase in their specific surface area (6.89±0.23 m2/g) up to 12-14 times larger than the original material (0.45±0.02 m2/g). Fourier transform infrared spectroscopy suggested that chemical damage related to the milling is not significant.

  1. Evaluation of sampling techniques to characterize topographically-dependent variability for soil moisture downscaling

    NASA Astrophysics Data System (ADS)

    Werbylo, Kevin L.; Niemann, Jeffrey D.

    2014-08-01

    Downscaling methods have been proposed to estimate catchment-scale soil moisture patterns from coarser resolution patterns. These methods usually infer the fine-scale variability in soil moisture using variations in ancillary variables like topographic attributes that have relationships to soil moisture. Previously, such relationships have been observed in catchments using soil moisture observations taken on uniform grids at hundreds of locations on multiple dates, but collecting data in this manner limits the applicability of this approach. The objective of this paper is to evaluate the effectiveness of two strategic sampling techniques for characterizing the relationships between topographic attributes and soil moisture for the purpose of constraining downscaling methods. The strategic sampling methods are conditioned Latin hypercube sampling (cLHS) and stratified random sampling (SRS). Each sampling method is used to select a limited number of locations or dates for soil moisture monitoring at three catchments with detailed soil moisture datasets. These samples are then used to calibrate two available downscaling methods, and the effectiveness of the sampling methods is evaluated by the ability of the downscaling methods to reproduce the known soil moisture patterns. cLHS outperforms random sampling in almost every case considered. SRS usually performs better than cLHS when very few locations are sampled, but it can perform worse than random sampling for intermediate and large numbers of locations.

  2. Structural and Physicochemical Characterization of Spirulina (Arthrospira maxima) Nanoparticles by High-Resolution Electron Microscopic Techniques.

    PubMed

    Neri-Torres, Elier Ekberg; Chanona-Pérez, Jorge J; Calderón, Hector A; Torres-Figueredo, Neil; Chamorro-Cevallos, German; Calderón-Domínguez, Georgina; Velasco-Bedrán, Hugo

    2016-08-01

    The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.6±3.6 nm, with 95% of the particles being smaller than 100 nm. High-resolution transmission electron microscopy showed lattice spacing of ~0.27±0.015 nm for SNPs. The corresponding chemical composition was obtained by energy-dispersive X-ray spectroscopy, and showed the presence of Ca, Fe, K, Mg, Na, and Zn. The powder flow properties showed that the powder density was higher when the average nanoparticle size is smaller. They showed free flowability and an increase in their specific surface area (6.89±0.23 m2/g) up to 12-14 times larger than the original material (0.45±0.02 m2/g). Fourier transform infrared spectroscopy suggested that chemical damage related to the milling is not significant. PMID:27515227

  3. Characterization techniques for the high-brightness particle beams of the Advanced Photon Source (APS)

    SciTech Connect

    Lumpkin, A.H.

    1993-08-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation (SR) user facility in the hard x-ray regime (10--100 keV). The design objectives for the 7-GeV storage ring include a positron beam natural emittance of 8 {times} 10{sup {minus}9} m-rad at an average current of 100 mA. Proposed methods for measuring the transverse and longitudinal profiles will be described. Additionally, a research and development effort using an rf gun as a low-emittance source of electrons for injection into the 200- to 650-MeV linac subsystem is underway. This latter system is projected to produce electron beams with a normalized, rms emittance of {approximately}2 {pi} mm-mrad at peak currents of near one hundred amps. This interesting characterization problem will also be briefly discussed. The combination of both source types within one laboratory facility will stimulate the development of diagnostic techniques in these parameter spaces.

  4. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    NASA Astrophysics Data System (ADS)

    Nicolas, G.; Mateo, M. P.; Yañez, A.

    2007-12-01

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  5. Experimental characterization of the ISIS technique for volume selected NMR spectroscopy.

    PubMed

    Keevil, S F; Porter, D A; Smith, M A

    1992-01-01

    As clinical applications of MRS grow in number and complexity, there is a need for standardized methods for characterizing the performance of volume selection techniques. The results are presented of a thorough evaluation of a particular implementation of ISIS performed using a procedure which forms the basis of the method adopted by the European Community Concerted Action on MRS and MRI. We have found that ISIS localization is optimal when the volume of interest is slightly smaller than the region we wish to study. Contamination with extraneous signal has little T1 dependence so long as TR greater than T1 and the detection pulse angle is 90 degrees. However, a poorly optimized detection pulse results in T1-weighted contamination unless TR greater than 3T1. In the clinical context, this corresponds to a different degree of contamination for each peak in the spectrum. Adiabatic detection pulses were used in an attempt to overcome this problem without resorting to unacceptable TR values, but these were found to function less well than properly optimized rectangular pulses, even if the power was increased above the level determined by the system for B1 insensitivity. These detailed results pertain only to our system, but illustrate the importance of performing similar measurements as part of clinical spectroscopy programmes at other centres. PMID:1449956

  6. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  7. Development of ICP-MS based nanometrology techniques for characterization of silver nanoparticles in environmental systems

    NASA Astrophysics Data System (ADS)

    Mitrano, Denise Marie

    The ubiquitous use of goods containing nanoparticles (NPs) will lead inevitably to environmental release and interaction with biota. Methods to detect, quantify, and characterize NPs in environmental matrices are highlighted as one of the areas of highest priority research in understanding potential environmental and health risks. Specifically, techniques are needed to determine the size and concentration of NPs in complex matrices. Particular analytical challenges include distinguishing NPs from other constituents of the matrix (i.e. natural particles, humic substances, and debris), method detection limits are often higher than exposure concentrations, and differentiating dissolved metal and NPs. This work focuses on the development and optimization of two methods that address a number of challenges for nanometrology: single particle (sp)ICP-MS and asymmetrical flow field flow fractionation (AF4)-ICP-MS. Advancements in the spICP-MS method included systematic studies on distinction between ionic and NP fractions, resolution of polydisperse NP samples, and defining the techniques' dynamic range (in terms of both particle size and concentration). Upon application of the technique, silver (Ag) NPs were discovered in raw wastewater treatment plant influent and effluent. Furthermore, methodical Ag NP stability studies determined the influence of particle capping agents and water chemistry parameters in a variety of synthetic, natural and processed waters. Method development for AF4-ICP-MS revolved around optimizing run conditions (i.e. operational flows, carrier fluid, membrane choice) to study detection limits, sample recovery, and resolution of polydisperse samples. Practical studies included sizing Ag NP in a sediment-dwelling, freshwater oligochaete (Lumbriculus variegatus) and the kinetics of accumulation of protein bound Ag+. In direct comparison, spICP-MS was found to be more versatile with less sample preparation and lower total analyte detection limit (ng/L vs

  8. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers

    PubMed Central

    Iwamoto, Ryo; Takagi, Mika; Akatsuka, Jun-ichi; Ono, Ken-ichiro; Kishi, Yoshiro

    2016-01-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that bind to and activate the EGF receptor (EGFR/ErbB1) and ErbB4. HB-EGF plays pivotal roles in pathophysiological processes, including cancer. Thus, monoclonal antibodies (mAbs) for HB-EGF detection could be an important tool in the therapeutic diagnosis of HB-EGF-related cancers and other diseases. However, few mAbs, especially those applicable for immunohistochemistry (IHC), have been established to date. In this study, we generated a clone of hybridoma-derived mAb 2-108 by immunizing mice with recombinant human HB-EGF protein expressed by human cells. The mAb 2-108 specifically bound to human HB-EGF but not to mouse HB-EGF and was successful in immunoblotting, even under reducing conditions, immunoprecipitation, and immunofluorescence for unfixed as well as paraformaldehyde-fixed cells. Notably, this mAb was effective in IHC of paraffin-embedded tumor specimens. Epitope mapping analysis showed that mAb 2-108 recognized the N-terminal prodomain in HB-EGF. These results indicate that this new anti-HB-EGF mAb 2-108 would be useful in the diagnosis of HB-EGF-related cancers and would be a strong tool in both basic and clinical research on HB-EGF. PMID:26974561

  9. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

    PubMed Central

    2015-01-01

    Summary The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during

  10. Characterization of Mineral Assemblages in Ancient Roman Maritime Concrete with Synchrotron X-ray Techniques

    NASA Astrophysics Data System (ADS)

    Meral, C.; Jackson, M. D.; Monteiro, P. J.; Wenk, H.

    2012-12-01

    Romans used lime and aluminosilicate-rich volcanic ash to bind tuff aggregates in concrete structures that have remained durable for 2000 years. A major accomplishment of Roman engineers was to construct enduring coastal underwater structures in seawater, which were important to long-distance trade and military endeavors. Two millennia later, the reasons for the extraordinary durability of the maritime structures remain enigmatic. The concretes are highly complex composites composed of relict lime, tuff and pumice clasts and pozzolanic reaction products. Calcium-chloroaluminates and sulfoaluminates occur in certain relict voids. Further understanding of their mineralogical components would provide guidelines in designing future structures. Here, we use synchroton radiation applications to characterize certain phases within a Roman maritime mortar specimen from a breakwater in Pozzuoli Bay, Baianus Sinus, near Naples. We performed X-ray computed micro-tomography (μ-XCT) at beamline 8.3.2 of the Advanced Light Source (ALS) at Lawrence Berkeley Laboratories to segment the complex composite without damaging the specimen. We isolated certain relict sub-spherical voids and illustrated crystal morphologies with 3-D reconstructions. We then used beamline 12.3.2 at the ALS to provide highly accurate identifications of diverse crystal phases in various mortar components - relict lime clasts, tuff or pumice clasts, cementitious matrix and relict voids - in sites previously identified and characterized with petrogaphic techniques. X-ray micro-fluorescence (μ-XRF) mapping provided calcium and iron maps of the sites, which were useful in selecting fine-scale areas for scanning transmission X-ray micro-diffraction (μ-XRD) mapping at high spatial resolution, about 1 micron. The μ-XRD analyses utilized both monochromatic and polychromatic light measurements. Polychromatic light was more appropriate for phases with grain sizes larger than the doubly focused X-ray beam, about 1 x

  11. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  12. A new technique of characterization of the intrapixel response of astronomical detectors

    NASA Astrophysics Data System (ADS)

    Ketchazo, C.; Viale, T.; Boulade, O.; Druart, G.; Moreau, V.; Mugnier, L.; Dubreuil, D.; Derelle, S.; Ronayette, S.; Guérineau, N.; Berthe, M.

    2014-07-01

    This paper is devoted to the presentation of a new technique of characterization of the Intra-Pixel Sensitivity Variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the sensitivity within a pixel and it was demonstrated that this variation can contribute to the instrument global error. Then IPSV has not to be neglected especially in the case of under-sampled instruments for high quality imaging and accurate photometry. The common approaches to measure the IPSV consist in determining the pixel response function (PRF) by scanning an optical probe through the detector. These approaches require high-aperture optics, high precision mechanical devices and are time consuming. The original approach we will present in this paper consists in projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a Continuously Self Imaging Grating (CSIG) illuminated by a plane wave. This paper describes the test bench and its design rules. The methodology of the measurement is also presented. Two measurement procedures are available: global and local. In the global procedure, the mean PRF corresponding to the whole Focal Plane Array (FPA) or a sub-area of the FPA is evaluated. The results obtained applying this procedure on e2v CCD 204 are presented and discussed in detail. In the local procedure, a CSIG is moved in front of each pixel and a pixel PRF is reconstructed by resolving the inverse problem. The local procedure is presented and validated by simulations.

  13. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO–NDs nanocomposites have been investigated. The ZnO–NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  14. Surface acoustic wave technique for the characterization of porous properties of microporous silicate thin films

    NASA Astrophysics Data System (ADS)

    Hietala, Susan Leslie

    1997-12-01

    Features of gas adsorption onto sol-gel derived microporous silicate thin films, for characterization of porous properties, are detailed using a surface acoustic wave (SAW) technique. Mass uptake and film effective modulus changes calculated from the SAW data are investigated in detail. The effects of stress and surface tension on the SAW sensor are calculated and found to be negligible in these experiments. Transient behavior recorded during nitrogen adsorption at 77 K is discussed in the context of mass uptake and effective modulus contributions. The time constant associated with the effective modulus calculation is consistent with that of diffusivity of nitrogen into a 5A zeolite. Further calculations indicate that the transient behavior is not due to thermal effects. A unique dual sensor SAW experiment to decouple the mass and effective modulus contributions to the frequency response was performed in conjunction with a Silicon beam-bending experiment. The beam-bending experiment results in a calculation of stress induced during adsorption of methanol on a microporous silicate thin film. The decoupled mass and effective modulus calculated from the SAW data have similar shaped isotherms, and are quite different from that of the stress developed in the Silicon beam. The total effective modulus change calculated from the SAW data is consistent with that calculated using Gassmann's equation. The SAW system developed for this work included unique electronics and customized hardware which is suitable for work under vacuum and at temperatures from 77K to 473K. This unique setup is suitable for running thin film samples on a Micromeritics ASAP 2000 Gas Adsorption unit in automatic mode. This setup is also general enough to be compatible with a custom gas adsorption unit and the beam bending apparatus, both using standard vacuum assemblies.

  15. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows

  16. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results

    NASA Astrophysics Data System (ADS)

    Mukhtar, Husneni; Montgomery, Paul; Gianto; Susanto, K.

    2016-01-01

    In order to develop image processing that is widely used in geo-processing and analysis, we introduce an alternative technique for the characterization of rock samples. The technique that we have used for characterizing inhomogeneous surfaces is based on Coherence Scanning Interferometry (CSI). An optical probe is first used to scan over the depth of the surface roughness of the sample. Then, to analyse the measured fringe data, we use the Five Sample Adaptive method to obtain quantitative results of the surface shape. To analyse the surface roughness parameters, Hmm and Rq, a new window resizing analysis technique is employed. The results of the morphology and surface roughness analysis show micron and nano-scale information which is characteristic of each rock type and its history. These could be used for mineral identification and studies in rock movement on different surfaces. Image processing is thus used to define the physical parameters of the rock surface.

  17. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.

    PubMed

    Safinia, Laleh; Mantalaris, Athanasios; Bismarck, Alexander

    2006-03-28

    Polymer scaffolds tailored for tissue engineering applications possessing the desired pore structure require reproducible fabrication techniques. Nondestructive, quantitative methods for pore characterization are required to determine the pore size and its distribution. In this study, a promising alternative to traditional pore size characterization techniques is presented. We introduce a quantitative, nondestructive and inexpensive method to determine the pore size distribution of large soft porous solids based on the on the displacement of a liquid, that spreads without limits though a porous medium, by nitrogen. The capillary pressure is measured and related to the pore sizes as well as the pore size distribution of the narrowest bottlenecks of the largest interconnected pores in a porous medium. The measured pore diameters correspond to the narrowest bottleneck of the largest pores connecting the bottom with the top surface of a given porous solid. The applicability and reproducibility of the breakthrough technique is demonstrated on two polyurethane foams, manufactured using the thermally induced phase separation (TIPS) process, with almost identical overall porosity (60-70%) but very different pore morphology. By selecting different quenching temperatures to induce polymer phase separation, the pore structure could be regulated while maintaining the overall porosity. Depending on the quenching temperature, the foams exhibited either longitudinally oriented tubular macropores interconnected with micropores or independent macropores connected to adjacent pores via openings in the pore walls. The pore size and its distribution obtained by the breakthrough test were in excellent agreement to conventional characterization techniques, such as scanning electron microscopy combined with image analysis, BET technique, and mercury intrusion porosimetry. This technique is suitable for the characterization of the micro- and macropore structure of soft porous solids

  18. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2014-08-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  19. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kumari, Saroj; Dhakate, Sanjay R.

    2015-06-01

    To improve electromagnetic shielding effectiveness of light weight carbon foam (CF), magnetic nanoparticles were embedded in it during processing. The CF was developed from the coal tar pitch and mixture of coal tar pitch-Nickel (Ni) nanoparticles by sacrificial template technique and heat treated to up 1,000 °C. To ascertain the effect of Ni nanoparticles embedded in CF, it was characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, vector network analyzer and vibration sample magnetometer. It is observed that Ni nanoparticles embedded in the carbon material play an important role for improving the structure and electrical conductivity of CF-Ni by catalytic carbonization. The structural investigation suggests that the Ni nanoparticles embedded in the carbon material in bulk as well on the surface of CF. The CF demonstrates excellent shielding response in the frequency range 8.2-12.4 GHz in which total shielding effectiveness (SE) dominated by absorption losses. The total SE is -25 and -61 dB of CF and CF-Ni, it is governed by absorption losses -48.5 dB in CF-Ni. This increase is due to the increase in dielectric and magnetic losses of ferromagnetic Ni nanoparticles with high surface area. Thus, light weight CF embedded with small amount of magnetic nanoparticles can be useful material for stealth technology.

  20. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Norcross, J.; Bekdash, O.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, dizziness, and in severe cases can lead to unconsciousness and death. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Prior work conducted by the EPL examined several different wearable, respirator style, masks that could be used to sample air from the vicinity surround the nose and mouth of a suited test subject. Previously published studies utilized these masks, some being commercial products and some novel designs, to monitor CO2 under various exercise and flow conditions with mixed results for repeatability and/or consistency between subjects. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device that is placed directly in the flow path of the user as they breathe. A nasal cannula was used to sample air inhaled by the test subjects during both rest and exercise conditions. Eight subjects were tasked with walking on a treadmill or operating an arm ergometer to reach target metabolic rates of 1000, 2000, and 3000 BTU/hr. Suit pressure was maintained at 4.3 psid for all tests, with supply flow rates of 6, 4, and 2 actual cubic feet per minute depending on the test condition. Each test configuration was conducted twice with subjects breathing

  1. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, I; Norcross, J.; Bekdash, O.

    2016-01-01

    It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification

  2. Common Practice Lightning Strike Protection Characterization Technique to Quantify Damage Mechanisms on Composite Substrates

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.

    2013-01-01

    heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.

  3. Development of nanoindentation techniques for characterizing local mechanical properties of soft materials

    NASA Astrophysics Data System (ADS)

    Wood, Charles David

    Indentation has become a popular mechanical characterization technique due to the promise of high-resolution maps of material stiffness. Due to the far-reaching nature of the testing framework, indentation tests can occur on nearly any material type and on any length scale. In this dissertation, we will look at three different materials systems and demonstrate new and unique uses for the indentation framework. These results will provide information not available by other methodologies, thereby proving its universal value. Two different indentation schemes are employed, either probing the top surface of cross-section samples or by probing into the thickness of a thin film. The differences between each of the studies highlight the importance of sample geometry/orientation, contact conditions, material response, etc. First, we will use indentation to probe local regions near carbon nanotube/glass fiber hybrid composites in an epoxy matrix. Indentations were performed to determine the radial gradient of modulus enhancements from the glass fiber surface. The results from indentation demonstrated that spatial reinforcement due to the presence of nanotubes was tied to fiber morphology and not the local morphology of carbon nanotubes. Secondly, we look at rubber and filler interaction on two different levels; macroscale and nanoscale. On the nanoscale, we show that interactions at the filler/polymer interface create regions of altered polymer mobility. These regions are influenced by geometric and chemical confinement, which increase the stiffness of these small regions (< 200nm). We employ two different indentation methods to highlight how contact orientation determines the nature of our results. Ultra-soft materials, such as hydrogels and tissues, pose rather unique challenges when they are tested mechanically. However, with tissues and gels, the sensitivity of the machines is challenged and therefore protocols must be developed to produce accurate results. We validate

  4. Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniques.

    PubMed

    Al-Qararah, Ahmad M; Ekman, Axel; Hjelt, Tuomo; Kiiskinen, Harri; Timonen, Jussi; Ketoja, Jukka A

    2016-10-01

    Recent developments in making fibre materials using the foam-forming technology have raised a need to characterize the porous structure at low material density. In order to find an effective choice among all structure-characterization methods, both two-dimensional and three-dimensional techniques were used to explore the porous structure of foam-formed samples made with two different types of cellulose fibre. These techniques included X-ray microtomography, scanning electron microscopy, light microscopy, direct surface imaging using a CCD camera and mercury intrusion porosimetry. The mean pore radius for a varying type of fibre and for varying foam properties was described similarly by all imaging methods. X-ray microtomography provided the most extensive information about the sheet structure, and showed more pronounced effects of varying foam properties than the two-dimensional imaging techniques. The two-dimensional methods slightly underestimated the mean pore size of samples containing stiff CTMP fibres with void radii exceeding 100 μm, and overestimated the pore size for the samples containing flexible kraft fibres with all void radii below 100 μm. The direct rapid surface imaging with a CCD camera showed surprisingly strong agreement with the other imaging techniques. Mercury intrusion porosimetry was able to characterize pore sizes also in the submicron region and led to an increased relative volume of the pores in the range of the mean bubble size of the foam. This may be related to the penetration channels created by the foam-fibre interaction.

  5. Spatially embedded random networks.

    PubMed

    Barnett, L; Di Paolo, E; Bullock, S

    2007-11-01

    Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to network structure disregarded. In this paper we introduce a model framework to analyze the mediation of network structure by spatial embedding; specifically, we model connectivity as dependent on the distance between network nodes. Our spatially embedded random networks construction is not primarily intended as an accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale free degree distributions and the existence of small-world spatial networks. We also derive some standard structural statistics for spatially embedded networks and illustrate the application of our model framework with concrete examples. PMID:18233726

  6. Spatially embedded random networks

    NASA Astrophysics Data System (ADS)

    Barnett, L.; di Paolo, E.; Bullock, S.

    2007-11-01

    Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to network structure disregarded. In this paper we introduce a model framework to analyze the mediation of network structure by spatial embedding; specifically, we model connectivity as dependent on the distance between network nodes. Our spatially embedded random networks construction is not primarily intended as an accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale free degree distributions and the existence of small-world spatial networks. We also derive some standard structural statistics for spatially embedded networks and illustrate the application of our model framework with concrete examples.

  7. Structural Embeddings: Mechanization with Method

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Rushby, John

    1999-01-01

    The most powerful tools for analysis of formal specifications are general-purpose theorem provers and model checkers, but these tools provide scant methodological support. Conversely, those approaches that do provide a well-developed method generally have less powerful automation. It is natural, therefore, to try to combine the better-developed methods with the more powerful general-purpose tools. An obstacle is that the methods and the tools often employ very different logics. We argue that methods are separable from their logics and are largely concerned with the structure and organization of specifications. We, propose a technique called structural embedding that allows the structural elements of a method to be supported by a general-purpose tool, while substituting the logic of the tool for that of the method. We have found this technique quite effective and we provide some examples of its application. We also suggest how general-purpose systems could be restructured to support this activity better.

  8. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    SciTech Connect

    Uhlig, W. Casey; Heine, Andreas

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  9. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    NASA Astrophysics Data System (ADS)

    Uhlig, W. Casey; Heine, Andreas

    2015-11-01

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  10. Fabrication of 20 nm embedded longitudinal nanochannels transferred from metal nanowire patterns

    NASA Technical Reports Server (NTRS)

    Choi, D.; Yang, E. H.

    2003-01-01

    bstract we describe a technique for fabricating nanometer-scale channels embedded by dielectric materials. Longitudinal 'embedded ' nanochannels with an opening size 20 nm x 80 nm have been successfully fabricated on silicon wafer by transferring sacrificial nanowire structures.

  11. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  12. Embedded solution for a microwave moisture meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  13. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Li, Zhi; Zhu, Hongping

    2016-07-01

    In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.

  14. Coal liquefaction process streams characterization and evaluation. Novel analytical techniques for coal liquefaction: Fluorescence microscopy

    SciTech Connect

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-10-01

    This study demonstrated the feasibility of using fluorescence and reflectance microscopy techniques for the examination of distillation resid materials derived from direct coal liquefaction. Resid, as defined here, is the 850{degrees}F{sup +} portion of the process stream, and includes soluble organics, insoluble organics and ash. The technique can be used to determine the degree of hydrogenation and the presence of multiple phases occurring within a resid sample. It can also be used to infer resid reactivity. The technique is rapid, requiring less than one hour for sample preparation and examination, and thus has apparent usefulness for process monitoring. Additionally, the technique can distinguish differences in samples produced under various process conditions. It can, therefore, be considered a potentially useful technique for the process developer. Further development and application of this analytical method as a process development tool is justified based on these results.

  15. Characterization of Apollo Regolith by X-Ray and Electron Microbeam Techniques: An Analog for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2015-01-01

    The Apollo missions collected 382 kg of rock and regolith from the Moon; approximately 1/3 of the sample mass collected was regolith. Lunar regolith consists of well mixed rocks, minerals, and glasses less than 1-centimeter n size. The majority of most surface regolith samples were sieved into less than 1, 1-2, 2-4, and 4-10- millimiter size fractions; a portion of most samples was re-served unsieved. The initial characterization and classification of most Apollo regolith particles was done primarily by binocular microscopy. Optical classification of regolith is difficult because (1) the finest fraction of the regolith coats and obscures the textures of the larger particles, and (b) not all lithologies or minerals are uniquely identifiable optically. In recent years, we have begun to use more modern x-ray beam techniques [1-3], coupled with high resolution 3D optical imaging techniques [4] to characterize Apollo and meteorite samples as part of the curation process. These techniques, particularly in concert with SEM imaging of less than 1-millimeter regolith grain mounts, allow for the rapid characterization of the components within a regolith.

  16. The cavity-embedded-cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Chen, Fei

    Nearly eight decades after Erwin Schrodinger proposed his famous cat paradox, the boundary between classical and quantum physics is becoming accessible to experimental study in condensed matter systems, in which macroscopic and microscopic degrees of freedom interact with each other. The cavity-embedded-Cooper pair transistor (cCPT) is an ideal candidate for such a study in that it is not only strongly and intrinsically nonlinear but also fully quantum mechanical. A novel technique, based on the circuit quantum electrodynamics architecture, is first introduced for applying a dc bias to a high-Q superconducting microwave cavity. The development and investigation of the cCPT system, in which a Cooper pair transistor acting as a single artificial atom is directly coupled to an on-chip dc-biased high-Q resonator, is then presented. Self-oscillations in the cCPT, internally driven by the ac Josephson effect, demonstrate the strong and phase coherent coupling between matter and light in the cCPT. Meanwhile, photons continually produced by the system are collected and characterized by quantum state tomography, which indicates the non-classical nature of the emitted light and the nonlinear quantum dynamics of the cCPT system.

  17. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  18. Nondestructive Characterization by Advanced Synchrotron Light Techniques: Spectromicroscopy and Coherent Radiology

    PubMed Central

    Margaritondo, Giorgio; Hwu, Yeukuang; Je, Jung Ho

    2008-01-01

    The advanced characteristics of synchrotron light has led in recent years to the development of a series of new experimental techniques to investigate chemical and physical properties on a microscopic scale. Although originally developed for materials science and biomedical research, such techniques find increasing applications in other domains – and could be quite useful for the study and conservation of cultural heritage. Specifically, they can nondestructively provide detailed chemical composition information that can be useful for the identification of specimens, for the discovery of historical links based on the sources of chemical raw materials and on chemical processes, for the analysis of damage, their causes and remedies and for many other issues. Likewise, morphological and structural information on a microscopic scale is useful for the identification, study and preservation of many different cultural and historical specimens. We concentrate here on two classes of techniques: in the first case, photoemission spectromicroscopy. This is the result of the advanced evolution of photoemission techniques like ESCA (Electron Microscopy for Chemical Analysis). By combining high lateral resolution to spectroscopy, photoemission spectromicroscopy can deliver fine chemical information on a microscopic scale in a nondestructive fashion. The second class of techniques exploits the high lateral coherence of modern synchrotron sources, a byproduct of the quest for high brightness or brilliance. We will see that such techniques now push radiology into the submicron scale and the submillisecond time domain. Furthermore, they can be implemented in a tomographic mode, increasing the information and becoming potentially quite useful for the analysis of cultural heritage specimens.

  19. Modified Embedded Atom Method

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  20. Embedded-monolith armor

    DOEpatents

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  1. Flexible embedding of networks

    NASA Astrophysics Data System (ADS)

    Fernandez-Gracia, Juan; Buckee, Caroline; Onnela, Jukka-Pekka

    We introduce a model for embedding one network into another, focusing on the case where network A is much bigger than network B. Nodes from network A are assigned to the nodes in network B using an algorithm where we control the extent of localization of node placement in network B using a single parameter. Starting from an unassigned node in network A, called the source node, we first map this node to a randomly chosen node in network B, called the target node. We then assign the neighbors of the source node to the neighborhood of the target node using a random walk based approach. To assign each neighbor of the source node to one of the nodes in network B, we perform a random walk starting from the target node with stopping probability α. We repeat this process until all nodes in network A have been mapped to the nodes of network B. The simplicity of the model allows us to calculate key quantities of interest in closed form. By varying the parameter α, we are able to produce embeddings from very local (α = 1) to very global (α --> 0). We show how our calculations fit the simulated results, and we apply the model to study how social networks are embedded in geography and how the neurons of C. Elegans are embedded in the surrounding volume.

  2. Twin kernel embedding.

    PubMed

    Guo, Yi; Gao, Junbin; Kwan, Paul W

    2008-08-01

    In most existing dimensionality reduction algorithms, the main objective is to preserve relational structure among objects of the input space in a low dimensional embedding space. This is achieved by minimizing the inconsistency between two similarity/dissimilarity measures, one for the input data and the other for the embedded data, via a separate matching objective function. Based on this idea, a new dimensionality reduction method called Twin Kernel Embedding (TKE) is proposed. TKE addresses the problem of visualizing non-vectorial data that is difficult for conventional methods in practice due to the lack of efficient vectorial representation. TKE solves this problem by minimizing the inconsistency between the similarity measures captured respectively by their kernel Gram matrices in the two spaces. In the implementation, by optimizing a nonlinear objective function using the gradient descent algorithm, a local minimum can be reached. The results obtained include both the optimal similarity preserving embedding and the appropriate values for the hyperparameters of the kernel. Experimental evaluation on real non-vectorial datasets confirmed the effectiveness of TKE. TKE can be applied to other types of data beyond those mentioned in this paper whenever suitable measures of similarity/dissimilarity can be defined on the input data. PMID:18566501

  3. Media Embedded Interactions.

    ERIC Educational Resources Information Center

    Johnson, J. David

    A review of literature and two surveys, one of college students and one of a random sample of adults, were used to examine four aspects of media embedded interactions (social behavior in front of a TV or radio): their functions, their environment, their effects, and the reactions of the interactants to them. Television is seen as performing a…

  4. Global string embeddings for the nilpotent Goldstino

    NASA Astrophysics Data System (ADS)

    García-Etxebarria, Iñaki; Quevedo, Fernando; Valandro, Roberto

    2016-02-01

    We discuss techniques for embedding a nilpotent Goldstino sector both in weakly coupled type IIB compactifications and F-theory models at arbitrary coupling, providing examples of both scenarios in semi-realistic compactifications. We start by showing how to construct a local embedding for the nilpotent Goldstino in terms of an anti D3-brane in a local conifold throat, and then discuss how to engineer the required local structure in globally consistent compact models. We present two explicit examples, the last one supporting also chiral matter and Kähler moduli stabilisation.

  5. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  6. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  7. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity.

    PubMed

    Allen, Kenneth W; Scott, Mark M; Reid, David R; Bean, Jeffrey A; Ellis, Jeremy D; Morris, Andrew P; Marsh, Jeramy M

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10(-3) for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands. PMID:27250447

  8. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  9. Statistical factor analysis technique for characterizing basalt through interpreting nuclear and electrical well logging data (case study from Southern Syria).

    PubMed

    Asfahani, Jamal

    2014-02-01

    Factor analysis technique is proposed in this research for interpreting the combination of nuclear well logging, including natural gamma ray, density and neutron-porosity, and the electrical well logging of long and short normal, in order to characterize the large extended basaltic areas in southern Syria. Kodana well logging data are used for testing and applying the proposed technique. The four resulting score logs enable to establish the lithological score cross-section of the studied well. The established cross-section clearly shows the distribution and the identification of four kinds of basalt which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The factor analysis technique is successfully applied on the Kodana well logging data in southern Syria, and can be used efficiently when several wells and huge well logging data with high number of variables are required to be interpreted.

  10. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. PMID:25311770

  11. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  12. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  13. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques

    PubMed Central

    Lai, Xin-He; Zhao, Long-Fei; Chen, Xiao-Ming; Ren, Yi

    2016-01-01

    Francisella tularensis is the causative pathogen of tularemia and a Tier 1 bioterror agent on the CDC list. Considering the fact that some subpopulation of the F. tularensis strains is more virulent, more significantly associated with mortality, and therefore poses more threat to humans, rapid identification and characterization of this subpopulation strains is of invaluable importance. This review summarizes the up-to-date developments of assays for mainly detecting and characterizing F. tularensis and a touch of caveats of some of the assays. PMID:27335619

  14. Optical speckles of blood proteins embedded in porous glassy substrate

    NASA Astrophysics Data System (ADS)

    Holden, T.; Dehipawala, S.; Kokkinos, D.; Berisha, A.; Cheung, E.; Nguyen, A.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2012-03-01

    Blood protein molecules could be embedded in porous glassy substrate with 10-nm pores. The embedding principle is based on blood cell dehydration with the destruction of the cell membrane, and reconstitution and centrifuge could yield a suitable solution for doping into a porous glassy medium. The doped glassy substrate speckle pattern under laser illumination could be used to characterize the protein size distribution. Calibration with known protein embedded samples would result in an optical procedure for the characterization of a blood sample. Samples embedded with larger kilo-Dalton protein molecule show more variation in the speckle patterns, consistent with protein folding interaction inside a pore cavity. A regression model has been used to correlate the protein molecule sizes with speckle sizes. The use of diffusion mean free path information to study protein folding in the embedding process is briefly discussed.

  15. Testing framework for embedded languages

    NASA Astrophysics Data System (ADS)

    Leskó, Dániel; Tejfel, Máté

    2012-09-01

    Embedding a new programming language into an existing one is a widely used technique, because it fastens the development process and gives a part of a language infrastructure for free (e.g. lexical, syntactical analyzers). In this paper we are presenting a new advantage of this development approach regarding to adding testing support for these new languages. Tool support for testing is a crucial point for a newly designed programming language. It could be done in the hard way by creating a testing tool from scratch, or we could try to reuse existing testing tools by extending them with an interface to our new language. The second approach requires less work, and also it fits very well for the embedded approach. The problem is that the creation of such interfaces is not straightforward at all, because the existing testing tools were mostly not designed to be extendable and to be able to deal with new languages. This paper presents an extendable and modular model of a testing framework, in which the most basic design decision was to keep the - previously mentioned - interface creation simple and straightforward. Other important aspects of our model are the test data generation, the oracle problem and the customizability of the whole testing phase.

  16. Thermal characterization of starch-water system by photopyroelectric technique and adiabatic scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Bentefour, E. H.; Jamée, P.; Chirtoc, M.; Glorieux, C.; Pitsi, G.; Thoen, J.

    2003-01-01

    Starch is one of the most important carbohydrate sources in human nutrition. For the thermal analysis of starch, techniques such as differential scanning calorimetry have been extensively used. As an alternative, we have applied a photopyroelectric (PPE) configuration and adiabatic scanning calorimetry (ASC) to study the thermal properties of starch-water systems. For this study we used nixtamalized corn flour and potato starch with different quantities of distilled water, in order to obtain samples with different moisture content. By using PPE and ASC methods we have measured, for each technique separately, the heat capacity by unit volume (ρcp) at room temperature for a corn flour sample at 90% moisture. The obtained values agree within experimental uncertainty. By using these techniques we also studied the thermal behavior of potato starch, at 80% moisture, in the temperature range where phase transitions occur. In this case the PPE signal phase could be used as a sensitive and versatile monitor for phase transitions.

  17. Geostatistical characterization of the soil of Aguascalientes, México, by using spatial estimation techniques.

    PubMed

    Magdaleno-Márquez, Ricardo; de la Luz Pérez-Rea, María; Castaño, Víctor M

    2016-01-01

    Four spatial estimation techniques available in commercial computational packages are evaluated and compared, namely: regularized splines interpolation, tension splines interpolation, inverse distance weighted interpolation, and ordinary Kriging estimation, in order to establish the best representation for the shallow stratigraphic configuration in the city of Aguascalientes, in Central Mexico. Data from 478 sample points along with the software ArcGIS (Environmental Systems Research Institute, Inc. (ESRI), ArcGIS, ver. 9.3, Redlands, California 2008) to calculate the spatial estimates. Each technique was evaluated based on the root mean square error, calculated from a validation between the generated estimates and measured data from 64 sample points which were not used in the spatial estimation process. The present study shows that, for the estimation of the hard-soil layer, ordinary Kriging offered the best performance among the evaluated techniques.

  18. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  19. Optoelectronic technique for the characterization of high concentration gas-solid suspension.

    PubMed

    Cutolo, A; Rendina, I; Arena, U; Marzocchella, A; Massimilla, L

    1990-03-20

    We describe a simple technique for measuring high (up to 0.16) time-averaged solids volumetric concentration in a two-phase flow. The technique is based on a properly modified version of the forward scattering of laser light. It is useful in a variety of practical configurations, and, in particular, it is instrumental in the diagnostics of particle flow in the free board of bubbling fluidized beds and in the circulating fluidized beds. A fallout of this work is the measurement of the extinction coefficient of the solid material tested.

  20. Characterization of nanostructured HfO2 films using Perturbed Angular Correlation (PAC) technique

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. H. M.; Gomes, M. R.; Carbonari, A. W.; Pereira, L. F. D.; Rossetto, D. A.; Costa, M. S.; Redondo, L. M.; Mestnik-Filho, J.; Saxena, R. N.; Soares, J. C.

    2010-06-01

    The hyperfine field at 181Ta lattice sites in nanostructured HfO2 thin films was studied by the Perturbed Angular Correlation (PAC) technique. Thin oxide films were deposited by Electron Beam Evaporation on a silicon substrate. The thickness of the films was ~100 nm and ~250 nm. Radioactive 181Hf nuclei were produced by neutron activation of the film samples in the Brazilian Research Reactor (IPEN IEA-R1) by the reaction 180Hf(n, γ)181Hf. PAC measurements were carried out after annealing at 1473 K. The PAC technique allows the determination of the electric field gradient (EFG) at the probe sites.

  1. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    SciTech Connect

    Agrawal, Ashish Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  2. CHARACTERIZATION OF FUNGI FROM HYPERSALINE ENVIRONMENTS OF SOLAR SALTERNS USING MORPHOLOGICAL AND MOLECULAR TECHNIQUES

    EPA Science Inventory

    The Cabo Rojo Solar Salterns located on the southwest coast of Puerto Rico are composed of two main ecosystems (i.e., salt ponds and microbial mats). Even though these locations are characterized by high solar radiation (mean light intensity of 39 mol photons m-2d-1) they harbor ...

  3. Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniques.

    PubMed

    Al-Qararah, Ahmad M; Ekman, Axel; Hjelt, Tuomo; Kiiskinen, Harri; Timonen, Jussi; Ketoja, Jukka A

    2016-10-01

    Recent developments in making fibre materials using the foam-forming technology have raised a need to characterize the porous structure at low material density. In order to find an effective choice among all structure-characterization methods, both two-dimensional and three-dimensional techniques were used to explore the porous structure of foam-formed samples made with two different types of cellulose fibre. These techniques included X-ray microtomography, scanning electron microscopy, light microscopy, direct surface imaging using a CCD camera and mercury intrusion porosimetry. The mean pore radius for a varying type of fibre and for varying foam properties was described similarly by all imaging methods. X-ray microtomography provided the most extensive information about the sheet structure, and showed more pronounced effects of varying foam properties than the two-dimensional imaging techniques. The two-dimensional methods slightly underestimated the mean pore size of samples containing stiff CTMP fibres with void radii exceeding 100 μm, and overestimated the pore size for the samples containing flexible kraft fibres with all void radii below 100 μm. The direct rapid surface imaging with a CCD camera showed surprisingly strong agreement with the other imaging techniques. Mercury intrusion porosimetry was able to characterize pore sizes also in the submicron region and led to an increased relative volume of the pores in the range of the mean bubble size of the foam. This may be related to the penetration channels created by the foam-fibre interaction. PMID:27159162

  4. Site characterization techniques used at a low-level waste shallow land burial field demonstration facility

    SciTech Connect

    Davis, E.C.; Boegly, W.J. Jr.; Rothschild, E.R.; Spalding, B.P.; Vaughan, N.D.; Haase, C.S.; Huff, D.D.; Lee, S.Y.; Walls, E.C.; Newbold, J.D.

    1984-07-01

    The Environmental Sciences Division of the Oak Ridge National Laboratory has been investigating improved shallow land burial technology for application in the humd eastern United States. As part of this effort, a field demonstration facility (Engineered Test Facility, or ETF) has been established in Solid Waste Storage Area 6 for purposes of investigatig the ability of two trench treatments (waste grouting prior to cover emplacement and waste isolation with trench liners) to prevent water-waste contact and thus minimize waste leaching. As part of the experimental plan, the ETF site has been characterized for purposes of constructing a hydrologic model. Site characterization is an extremely important component of the waste disposal site selection process; during these activities, potential problems, which might obviate the site from further consideration, may be found. This report describes the ETF site characterization program and identifies and, where appropriate, evaluates those tests that are of most value in model development. Specific areas covered include site geology, soils, and hydrology. Each of these areas is further divided into numerous subsections, making it easy for the reader to examine a single area of interest. Site characterization is a multidiscipliary endeavor with voluminous data, only portions of which are presented and analyzed here. The information in this report is similar to that which will be required of a low-level waste site developer in preparing a license application for a potential site in the humid East, (a discussion of licensing requirements is beyond its scope). Only data relevant to hydrologic model development are included, anticipating that many of these same characterization methods will be used at future disposal sites with similar water-related problems.

  5. Biometric data reduction for embedding in small images

    NASA Astrophysics Data System (ADS)

    Ishaq Qazi, Naseem

    2003-06-01

    Biometric authentication systems require a fast and accurate method of matching biometric data for identification purposes. This paper introduces a data reduction technique based on image processing to better embed biometric data in small images. For the most part, biometric data cannot be directly embedded in small images, because of limited embedding capacities and a large amount of data in biometric images. An image processing technique to extract features from biometric data, like fingerprints and retinal scans, has been developed and tested. This new technique developed to extract features is based on the Hough transform and has been tested on a large volume of real image data. The data reduction technique was applied to these images and the data reduced to size, which could be easily embedded in small pictures, like those on identity cards. Existing embedding algorithms were utilized.

  6. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  7. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  8. Characterization and performance of carbon films deposited by plasma and ion beam based techniques

    SciTech Connect

    Walter, K.C.; Kung, H.; Levine, T.

    1994-12-31

    Plasma and ion beam based techniques have been used to deposit carbon-based films. The ion beam based method, a cathodic arc process, used a magnetically mass analyzed beam and is inherently a line-of-sight process. Two hydrocarbon plasma-based, non-line-of-sight techniques were also used and have the advantage of being capable of coating complicated geometries. The self-bias technique can produce hard carbon films, but is dependent on rf power and the surface area of the target. The pulsed-bias technique can also produce hard carbon films but has the additional advantage of being independent of rf power and target surface area. Tribological results indicated the coefficient of friction is nearly the same for carbon films from each deposition process, but the wear rate of the cathodic arc film was five times less than for the self-bias or pulsed-bias films. Although the cathodic arc film was the hardest, contained the highest fraction of sp{sup 3} bonds and exhibited the lowest wear rate, the cathodic arc film also produced the highest wear on the 440C stainless steel counterface during tribological testing. Thus, for tribological applications requiring low wear rates for both counterfaces, coating one surface with a very hard, wear resistant film may detrimentally affect the tribological behavior of the counterface.

  9. Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques.

    PubMed

    Naiyer, Abdullah; Hassan, Md Imtaiyaz; Islam, Asimul; Sundd, Monica; Ahmad, Faizan

    2015-01-01

    Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR. PMID:25586676

  10. ARCnet for embedded control

    SciTech Connect

    McEntee, M.

    1996-11-01

    ARCnet began life in the late 1970s as a distributed data processing network. When demand for office networks shifted to Ethernet in the late 80s, the token-passing protocol found a new home in real-time, embedded control applications. It has proven its reliability in the seven million nodes currently installed worldwide. ARCnet is used in hundreds of embedded applications that affect everyday lives. ARCnet is used in planes, trains, boats, and cars. It`s used in elevators, fast-food restaurants, stores, buildings` climate control and security systems, and even bank ATMs. ARCnet also has become an important part of factory automation systems. The protocol`s advantages in real-time control systems include determinism, reliable message delivery, peer-to-peer communication, automatic reconfiguration, high node count, long distance, variable baud rates, and variable message sizes. 2 figs.

  11. Characterization of silicon-germanium epitaxial layer by photoluminescence intensity and reflectance measurement techniques.

    PubMed

    Back, Dohyun; Lee, Jaehyeong

    2014-12-01

    Si(1-x)Ge(x) epitaxial layers with various Ge fractions sample were characterized by photoluminescence intensity method at room temperature. Photoluminescence intensity was affected by minority carrier lifetime, defect density, and surface condition. PL intensity profile showed misfit dislocation on epitaxial layer for 15%, 21%, 24%, and 26%, since dislocations were one of minority carrier lifetime degradation parameters. It clearly showed misfit dislocation profiles, cross-hatch, and PL intensity was low at dislocation region.

  12. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  13. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2002-10-08

    During this reporting period, research was continued on characterizing and modeling the behavior of naturally fractured reservoir systems. This report proposed a model to relate the seismic response to production data to determine crack spacing and aperture, provided details of tests of proposed models to obtain fracture properties from conventional well logs with actual field data, and verification of the naturally fractured reservoir simulator developed in this project.

  14. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (< 300 m), including the ability to map inaccessible rock exposures and hazard reduction related to both traffic and rockfall along investigated outcrops. In addition, several authors have demonstrated their potential to provide adequate quantification of discontinuity parameters. Consequently, their incorporation into rock slope stability investigations and design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias

  15. Characterizing Si:P quantum dot qubits with spin resonance techniques.

    PubMed

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y; Rahman, Rajib

    2016-01-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction.

  16. An Approximate Numerical Technique for Characterizing Optical Pulse Propagation in Inhomogeneous Biological Tissue

    PubMed Central

    Handapangoda, Chintha C.; Premaratne, Malin

    2008-01-01

    An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm. PMID:18317526

  17. Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors

    SciTech Connect

    Ahrenkiel, R. K.; Johnston, S. W.; Kuciauskas, D.; Tynan, Jerry

    2014-12-07

    This work addresses the frequent discrepancy between transient photoconductive (PC) decay and transient photoluminescence (PL) decay. With this dual- sensor technique, one measures the transient PC and PL decay simultaneously with the same incident light pulse, removing injection-level uncertainty. Photoconductive decay measures the transient photoconductivity, Δσ(t). PCD senses carriers released from shallow traps as well as the photo-generated electron-hole pairs. In addition, variations in carrier mobility with injection level (and time) contribute to the decay time. PL decay senses only electron-hole recombination via photon emission. Theory and experiment will show that the time dependence of the two techniques can be quite different at high injection.

  18. Characterizing Si:P quantum dot qubits with spin resonance techniques

    PubMed Central

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y.; Rahman, Rajib

    2016-01-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction. PMID:27550779

  19. Characterizing Si:P quantum dot qubits with spin resonance techniques.

    PubMed

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y; Rahman, Rajib

    2016-01-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction. PMID:27550779

  20. Characterizing Si:P quantum dot qubits with spin resonance techniques

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y.; Rahman, Rajib

    2016-08-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction.

  1. Fresnel zone and reflectarray antennas for space missions: Concepts, computational techniques and characterizations

    NASA Astrophysics Data System (ADS)

    Khayatian, Behrouz

    Reflector antennas generally employ parabolic shaped main reflectors and have found a wide range of applications for both earth stations and satellite systems. Increasingly, one may find many advantages in minimizing antenna shaping requirement and weight as well as more compact designs by employing flat reflectors (either on the main reflector or on the subreflector) which can achieve a desired set of criteria for antenna performance. Two electrically large antennas which use flat min reflectors are Fresnel Zone (FZ) and reflectarray antennas which are being addressed in this dissertation. Analytical techniques are proposed, implemented, and verified to analyze these reflector geometries. A two dimensional (2-D) multi-scatterer analysis is formulated and implemented using various electromagnetic scattering techniques such as Physical Optics (PO), Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD). The capability of the 2-D technique is further extended for dual reflector analysis with flat subreflector panels as well as design and analysis of FZ antennas with a proposed space missions application in solar sailing. FZ antenna design is based on establishing regions of quasi-uniform phases according to the PO current on the reflector face. The concepts extracted from the 2-D analysis of FZ reflectors is carried to the three dimensional (3-D) cases and incorporated into a multi reflector code, which has been widely used in variety of reflector applications. Like FZ antennas, reflectarrays work according to a similar set of principals by achieving a uniform phase current on the flat reflectarray surface. Accordingly, an analytical methodology is proposed and implemented within the structure of the multi-reflector code to analyze and give design criteria for both single and dual reflectarray configurations. This technique is compared to measured results published for single reflectarrays and is investigated for near-field Gregorian reflectarrays with

  2. Growth and characterization of 4-chloro-3-nitrobenzophenone single crystals using vertical Bridgman technique

    SciTech Connect

    Aravinth, K. Babu, G. Anandha Ramasamy, P.

    2014-04-24

    4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.

  3. Characterization of carbon fiber reinforced resin composites by the nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Sun, Yuli; Zuo, Dunwen; Cao, Lianjing; Lu, Wenzhuang; Zhu, Yongwei; Li, Jun

    2013-08-01

    The mechanical properties of carbon fiber reinforced resin composites (CFRP) including the epoxy matrix, the carbon fiber and the interface of the carbon fiber/epoxy composites were investigated by means of nanoindentation technique. The hardness, Young's modulus of the components in CFRP were obtained. The results show that the hardness and Young's modulus have a gradient variation from the epoxy matrix to carbon fiber.

  4. Mass Spectrometry as a Powerful Analytical Technique for the Structural Characterization of Synthesized and Natural Products

    NASA Astrophysics Data System (ADS)

    Es-Safi, Nour-Eddine; Essassi, El Mokhtar; Massoui, Mohamed; Banoub, Joseph

    Mass spectrometry is an important tool for the identification and structural elucidation of natural and synthesized compounds. Its high sensitivity and the possibility of coupling liquid chromatography with mass spectrometry detection make it a technique of choice for the investigation of complex mixtures like raw natural extracts. The mass spectrometer is a universal detector that can achieve very high sensitivity and provide information on the molecular mass. More detailed information can be subsequently obtained by resorting to collision-induced dissociation tandem mass spectrometry (CID-MS/MS). In this review, the application of mass spectrometric techniques for the identification of natural and synthetic compounds is presented. The gas-phase fragmentation patterns of a series of four natural flavonoid glycosides, three synthesized benzodiazepines and two synthesized quinoxalinone derivatives were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry techniques. Exact accurate masses were measured using a modorate resolution quadrupole orthogonal time-of-flight QqTOF-MS/MS hybrid mass spectrometer instrument. Confirmation of the molecular masses and the chemical structures of the studied compounds were achieved by exploring the gas-phase breakdown routes of the ionized molecules. This was rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole hexapole-quadrupole (QhQ) tandem mass spectrometer.

  5. Characterization of Ni-Cr alloys using different casting techniques and molds.

    PubMed

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. PMID:24411373

  6. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  7. Characterization of fresh and aged natural ingredients used in historical ointments by molecular spectroscopic techniques: IR, Raman and fluorescence.

    PubMed

    Brambilla, L; Riedo, C; Baraldi, C; Nevin, A; Gamberini, M C; D'Andrea, C; Chiantore, O; Goidanich, S; Toniolo, L

    2011-10-01

    Natural organic materials used to prepare pharmaceutical mixtures including ointments and balsams have been characterized by a combined non-destructive spectroscopic analytical approach. Three classes of materials which include vegetable oils (olive, almond and palm tree), gums (Arabic and Tragacanth) and beeswax are considered in this study according to their widespread use reported in ancient recipes. Micro-FTIR, micro-Raman and fluorescence spectroscopies have been applied to fresh and mildly thermally aged samples. Vibrational characterization of these organic compounds is reported together with tabulated frequencies, highlighting all spectral features and changes in spectra which occur following artificial aging. Synchronous fluorescence spectroscopy has been shown to be particularly useful for the assessment of changes in oils after aging; spectral difference between Tragacanth and Arabic gum could be due to variations in origin and processing of raw materials. Analysis of these materials using non-destructive spectroscopic techniques provided important analytical information which could be used to guide further study.

  8. Dielectrically embedded flat mesh lens for millimeter waves applications.

    PubMed

    Pisano, Giampaolo; Ng, Ming Wah; Ozturk, Fahri; Maffei, Bruno; Haynes, Vic

    2013-04-10

    A flat lens based on subwavelength periodic metal meshes has been developed using photolithographic techniques. These mesh grids are stacked at specific distances and embedded in polypropylene. A code was developed to optimize more than 1000 transmission line circuits required to vary the device phase shift across the lens flat surface, mimicking the behavior of a classical lens. A W-band mesh-lens prototype was successfully manufactured and its RF performance characterized using a vector network analyzer coupled to corrugated horn antennas. Co-polarization far-field beam patterns were measured and compared with finite-element method models. The excellent agreement between data and simulations validated our designing tools and manufacturing procedures. This mesh lens is a low-loss, robust, light, and compact device that has many potential applications including millimeter wave quasi-optical systems for future cosmic microwave background polarization instruments.

  9. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    SciTech Connect

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties of the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.

  10. Split-Bolus Multidetector-Row Computed Tomography Technique for Characterization of Focal Liver Lesions in Oncologic Patients

    PubMed Central

    Scialpi, Michele; Pierotti, Luisa; Gravante, Sabrina; Rebonato, Alberto; Piscioli, Irene; D’Andrea, Alfredo; Schiavone, Raffaele; Palumbo, Barbara

    2016-01-01

    Background In oncologic patients, the liver is the most common target for metastases. An accurate detection and characterization of focal liver lesions in patients with known primary extrahepatic malignancy are essential to define management and prognosis. Objectives To assess the diagnostic accuracy of the split-bolus multidetector-row computed tomography (MDCT) protocol in the characterization of focal liver lesions in oncologic patients. Patients and Methods We retrospectively analyzed the follow-up split-bolus 64-detector row CT protocol in 36 oncologic patients to characterize focal liver lesions. The split-bolus MDCT protocol by intravenous injection of two boluses of contrast medium combines the hepatic arterial phase (HAP) and hepatic enhancement during the portal venous phase (PVP) in a single-pass. Results The split-bolus MDCT protocol detected 208 lesions and characterized 186 (89.4%) of them: typical hemangiomas (n = 9), atypical hemangiomas (n = 3), cysts (n = 78), hypovascular (n = 93) and hypervascular (n = 3) metastases. Twenty two (10.6%) hypodense lesions were categorized as indeterminate (≤5 mm). The mean radiation dose was 24.5±6.5 millisieverts (mSv). Conclusion The designed split-bolus MDCT technique can be proposed alternatively to triphasic MDCT and in a single-pass to PVP in the initial staging and in the follow-up respectively in oncologic patients.

  11. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    SciTech Connect

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  12. Validation of technique to hyperspectrally characterize the lower atmosphere with limited surface observations

    NASA Astrophysics Data System (ADS)

    Randall, Robb M.; Fiorino, Steven T.; Via, Michelle F.; Downs, Adam D.

    2011-06-01

    This paper demonstrates the capability of AFIT/CDE's Laser Environmental Effects Definition and Reference (LEEDR) model to accurately characterize the meteorological parameters and radiative transfer effects of the atmospheric boundary layer with only surface observations of temperature, pressure, and humidity. The LEEDR model is a fastcalculating, first principles, worldwide surface to 100 km, atmospheric propagation and characterization package. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, atmospheric particulates and hydrometeors as they relate to line-by-line layer transmission, path and background radiance at wavelengths from the ultraviolet to radio frequencies. Physics-based cloud and precipitation characterizations are coupled with a probability of cloud free line of sight (CFLOS) algorithm for air-to-air, air-to-surface, and surface-to-air (or space) look angles. In general, LEEDR defines the well-mixed atmospheric boundary layer with a worldwide, probabilistic surface climatology based on season and time of day, and then computes the radiative transfer and propagation effects from the vertical profile of meteorological variables. However, the LEEDR user can also directly input surface observations. This research compares the LEEDR vertical profiles created from input surface observations to actual observations from balloon launches. Results are then compared to the LEEDR ExPERT climatological sounding for the same time of day and season. RMSE are calculated and it was found that closer for those profiles made from surface observations than those made from climatological data for the same season and time. Impacts of those differences are shown with a relevant tactical scenario in AFIT/CDE HELEEOS program.

  13. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect

    Pauls, R. E.

    2011-05-01

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  14. Comparative Analysis of Different Measurement Techniques for MLC Characterization: Preliminary Results

    SciTech Connect

    Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.

  15. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques.

    PubMed

    Zhang, Xunli; Yin, Huabing; Cooper, Jon M; Haswell, Stephen J

    2008-02-01

    The integration of a range of technologies including microfluidics, surface-enhanced Raman scattering and confocal microspectroscopy has been successfully used to characterize in situ single living CHO (Chinese hamster ovary) cells with a high degree of spatial (in three dimensions) and temporal (1 s per spectrum) resolution. Following the introduction of a continuous flow of ionomycin, the real time spectral response from the cell was monitored during the agonist-evoked Ca(2+) flux process. The methodology described has the potential to be used for the study of the cellular dynamics of a range of signalling processes.

  16. Synthesis of Carbon Nanotubes by CVD and Spray Pyrolysis and Their Characterization by Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Bahadur, J.; Prakash, J.; Sen, D.; Mazumder, S.; Sathiyamoorthy, D.

    2011-07-01

    Carbon nanotubes have been synthesized by catalytic chemical vapor deposition and spray pyrolysis methods. Synthesized nanotubes were characterized by Small-angle neutron scattering, X-ray diffraction and Raman spectroscopy. Scattering data reveals the aggregated nature of nanotubes, the average diameter and average length have also been estimated. It has been observed that the nanotubes, synthesized by spray pyrolysis methods, possess fewer defects in their graphitic nature of wall. The X-ray diffraction data reveals that the nanotubes possess metal oxide impurities.

  17. Deposition And Characterization of (Ti,Zr)N Thin Films Grown Through PAPVD By The Pulsed Arc Technique

    SciTech Connect

    Marulanda, D. M.; Trujillo, O.; Devia, A.

    2006-12-04

    The Plasma Assisted Physic Vapor Deposition (PAPVD) by the pulsed arc technique has been used for deposition of Titanium Zirconium Nitride (Ti,Zr)N coatings, using a segmented target of TiZr. The deposition was performed in a vacuum chamber with two faced electrodes (target and substrate) using nitrogen as working gas, and a power-controlled source used to produce the arc discharges. Films were deposited on stainless steel 304, and they were characterized using the X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Scanning Probe Microscopy (SPM) techniques. The XRD patterns show different planes in which the film grows. Through SPM, using Atomic Force Microscopy (AFM) and Lateral Force Microscopy (LFM) modes, a nanotribologic study of the thin film was made, determining hardness and friction coefficient.

  18. Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings

    NASA Astrophysics Data System (ADS)

    Tortora, Mariagrazia; Sfarra, Stefano; Chiarini, Marco; Daniele, Valeria; Taglieri, Giuliana; Cerichelli, Giorgio

    2016-11-01

    In this paper, chemical and structural studies of medieval wall paintings in Ocre (L'Aquila, Italy) are presented. During the latest restoration campaign, non-destructive (Near-Infrared Reflectography and Infrared Thermography) and micro-invasive (Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, μ-Raman, Scanning Electron Microscopy with X-ray Microanalysis, X-Ray Diffraction, X-Ray Fluorescence, Optical Microscopy, Mass Spectrometry, Thermogravimetry) analyses were performed in order to determine the detachments of wall surfaces and the characterization of original and restoration materials. Data integration allowed to reconstruct the conservative history, the execution techniques and the conservation problems of the artefact, as well as to assess the effectiveness of restoration activities adopted. The combined use of physical and micro-chemical techniques proved to be effective for an in-depth study of materials stratification of paintings.

  19. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    NASA Astrophysics Data System (ADS)

    Mujaini, M.; Chankow, N.; Yusoff, M. Z.; Hamid, N. A.

    2016-01-01

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from 238U daughters such as 214Bi, 214Pb and 226Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from 235U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from 235U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a 57Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.

  20. Characterization of laser-fired contacts in PERC solar cells: SIMS and TEM analysis applying advanced preparation techniques

    NASA Astrophysics Data System (ADS)

    Zastrow, U.; Houben, L.; Meertens, D.; Grohe, A.; Brammer, T.; Schneiderlöchner, E.

    2006-07-01

    In this study we apply ion-beam supported preparation techniques for both mesa formation by trench sputtering and FIB 'lift-out' lamella cutting for dynamic SIMS and TEM analysis of laser-fired Al point contacts on Si, respectively. Detailed compositional and structural informations about the metallurgical contact formation process are obtained combining both characterization techniques. While TEM micrographs and microdiffraction patterns reveal a mixture of Al- and Si-crystals within the ˜1 μm thick Al rich re-solidified surface layer according to the Al-Si phase diagram, spatially resolved SIMS depth profiling indicates ppm-range Al-diffusion a few hundred nm into the buried, substantially undisturbed Si-lattice.

  1. High resolution characterization of uranium in sediments by DGT and DET techniques ACA-S-12-2197.

    PubMed

    Gregusova, Michaela; Docekal, Bohumil

    2013-02-01

    Diffusive equilibrium (DET) and diffusive gradient in thin film (DGT) techniques with an inductively coupled plasma mass spectrometry detection of elements were applied to characterize uranium, manganese, iron and (238)U/(235)U isotopic ratio depth profiles in sediment pore water at high spatial resolution and to monitor uranium uptake/remobilization processes in uranium spiked sediment core samples under laboratory, well controlled conditions. Modified constrained sediment DGT probes, packed with Spheron-Oxin(®) resin gel, were employed for selective uranium measurements. Spatially resolved DET and DGT responses were indicative of local redistribution of uranium in naturally uranium poor and rich sediments. PMID:23340286

  2. Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique.

    PubMed

    Dupuis, Alexandre; Mazhorova, Anna; Désévédavy, Frédéric; Rozé, Mathieu; Skorobogatiy, Maksim

    2010-06-21

    We report two novel fabrication techniques, as well as THz spectral transmission and propagation loss measurements of subwavelength plastic wires with highly porous (up to 86%) and non-porous transverse geometries. The two fabrication techniques we describe are based on the microstructured molding approach. In one technique the mold is made completely from silica by stacking and fusing silica capillaries to the bottom of a silica ampoule. The melted material is then poured into the silica mold to cast the microstructured preform. Another approach uses a microstructured mold made of a sacrificial plastic which is co-drawn with a cast preform. Material from the sacrificial mold is then dissolved after fi ber drawing. We also describe a novel THz-TDS setup with an easily adjustable optical path length, designed to perform cutback measurements using THz fibers of up to 50 cm in length. We fi nd that while both porous and non-porous subwavelength fibers of the same outside diameter have low propagation losses (alpha

  3. Kinetics and characterization of conducting and insulating polymers by in situ and ex situ techniques

    SciTech Connect

    Fong, Y.K.

    1993-01-01

    The kinetics of polypyrrole, polyaniline, polystyrene and polyurethane syntheses were examined using in-situ techniques. The resulting polymers were analyzed by ex-situ analytical techniques. Comparison of results obtained by different techniques was made. Polypyrrole was synthesized by the chemical oxidative route. The polymerization using polymerization using potassium ferricyanide was monitored by Raman spectroscopy, potentiometry and microelectrode analysis. The kinetics were found to resemble exponential decay. The stoichiometry of the polymerization remained constant throughout the experimental period. The polymerization of aniline by ammonium peroxysulfate was monitored by Raman, potentiometry, calorimetry, quartz crystal microbalance (QCM), conductance measurements, viscometry and visible absorption spectroscopy. QCM and visible absorption spectroscopy were used to probe the nucleation stage. The results showed polymerization occurred following an induction period. The induction period of aniline-peroxysulfate system can be reduced by using mixed oxidizers. Cerium(IV) was used as co-oxidant with peroxysulfate. A significant decrease in the induction period was observed with 0.01% of cerium(IV). This effect can also be achieved by adding polyaniline to provide reaction sites for the monomers. The kinetics of styrene polymerization were monitored by Raman. The decrease in the 1630 cm[sup [minus]1] aliphatic C[double bond]C stretching was interpreted as percent styrene conversion. The 1600 cm[sup [minus]1] aromatic C[double bond]C stretching was used as a standard. UV absorption spectroscopy was used to quantify the amount of styrene in the polymerizing mixture. IR spectroscopy and Raman were used to monitor the reaction of modified diphenylmethane-4-4[prime]-diisocyanate (MDI) and polyether polyol (polyol). In the Raman experiment, the decrease in the 1060 cm[sup [minus]1] peak and the increase in the 1140 cm[sup [minus]1] peak were analyzed.

  4. Micro-spectroscopic techniques applied to characterization of varnished archeological findings

    NASA Astrophysics Data System (ADS)

    Barone, G.; Ioppolo, S.; Majolino, D.; Migliardo, P.; Ponterio, R.

    2000-04-01

    This work reports an analysis on terracotta varnished finding recovered in east Sicily area (Messina). We have performed FTIR micro-spectroscopy and electronic microscopy (SEM)measurements in order to recognize the elemental constituents of the varnished surfaces. Furthermore, for all the samples, a study on the bulk has been performed by Fourier Transform Infrared Absorption. The analyzed samples consist of a number of pottery fragments belonging to archaic and classical ages, varnished in black and red colors. The obtained data furnished useful information about composition of decorated surfaces and bulk matrixes, about baking temperature, manufacture techniques and alteration mechanisms of findings due to the long burial.

  5. Effect of processing variables on characterization of ofloxacin loaded lipospheres prepared by melt dispersion technique.

    PubMed

    Natarajan, Satheesh Babu; Lakshmanan, Prabakaran

    2013-10-01

    A melt dispersion technique was employed to prepare ofloxacin lipospheres, by using cetyl alcohol (polar lipid). Effects of various process parameters such as selection of surfactants (gelatin, Tween 40 and poly vinyl alcohol) and selection of stirring speed were studied. Lipospheres were evaluated for morphology, drug entrapment and in vitro drug release profiles. The optimized liposphere batch was selected and formulated as tablets and evaluated the in vitro drug release profile. These studies showed that ofloxacin loaded lipospheres were able to control the drug release for a period of 16h.

  6. Processing and characterization of natural fiber reinforced thermoplastic composites using micro-braiding technique

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Ogihara, Shinji

    In the present study, we investigate fatigue properties of green composites. A hemp fiber yarn reinforced poly(lactic acid) composite was selected as a green composite. Unidirectional (UD) and textile (Textile) composites were fabricated using micro-braiding technique. Fatigue tests results indicated that fatigue damages in UD composites was splitting which occurred just before the final fracture, while matrix crack and debonding between matrix and fiber yarn occurred and accumulated stably in Textile composites. These results were consistent with modulus reduction and acoustic emission measurement during fatigue tests.

  7. A multi-technique approach for the characterization of Roman mural paintings

    NASA Astrophysics Data System (ADS)

    Toschi, Francesco; Paladini, Alessandra; Colosi, Francesca; Cafarelli, Patrizia; Valentini, Veronica; Falconieri, Mauro; Gagliardi, Serena; Santoro, Paola

    2013-11-01

    In the frame of an ongoing archeological study on the Sabina area, a countryside close to Rome, white and red samples of roman wall paintings have been investigated by combining X-ray diffraction and different spectroscopic methodologies, namely laser induced breakdown spectroscopy, μ-Raman and Fourier transform infrared attenuated total reflectance spectroscopy. The used multi-technique approach has allowed the unambiguous identification of the red pigment as red ochre and has provided insight on the provenance of both the pigment and the material used for the realization of the wall paintings. The experimental results have confirmed some assumptions on the use of local materials in roman rural architecture.

  8. Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Lopes, Fernando Carlos; Pereira, Alcides José; Mantas, Vasco Manuel; Mpengo, Horácio Kativa

    2016-05-01

    Recognition of the main morphostructural features of the western edge of the Huila Plateau (SW Angola) can be done by using remote sensing techniques associated with field work. A digital elevation model (DEM) of the area was built for this purpose. This model is based on altimeter data acquired from the Aster sensor, on which image processing techniques such as enhancement techniques, contrast change and filtering were applied. Other techniques, such as RGB colour composition, were also tested. The processed satellite images were interpreted by visual process and the results were then compared with available geological maps (scale 1: 1 000 000). To facilitate both analysis and interpretation, the edge of the plateau was divided into three sectors: northern (or Chongoroi Edge), central (or Humpata Edge) and southern (or Oncocua Edge). For each sector, the main morphological aspects and main lineament systems were identified and characterized. In the specific case of the central sector, these parameters were also confirmed by field work. This study shows that the morphology of the western edge of the plateau is dominated by N50°W-N60°W, N60°E and N-S trending main tectonic systems. These results have important implications in terms of geological mapping and regional tectonics as well as in land-use planning and other areas, such as hydrogeology or geotechnics.

  9. Structural Characterization of Humic Materials Using ^13C NMR Techniques: A Comparison of Solution- and Solid-State Methods

    NASA Astrophysics Data System (ADS)

    Clewett, Catherine; Alam, Todd; Osantowski, Eric; Pullin, Michael

    2011-10-01

    The analysis of the carbon type distribution and chemical structure of natural organic matter (NOM) by ^13C NMR spectroscopy is an important technique for understanding its origins and reactivity. While prior work has used solution-state NMR techniques, solid-state NMR has the potential to provide this information using less instrument time and sample manipulation, while providing an array of advanced filtering techniques. Analyses of four isolated humic materials with ^13C solid-state magic angle spinning (MAS) NMR techniques are described, including three commercially available samples and one fulvic acid sample isolated from the Rio Grande in New Mexico. This study demonstrates the utility of solid-state ^13C NMR for aquatic NOM structural characterization, comparing these results to the existing solution-state determinations. The solid-state ^13C MAS NMR results are used to determine % carbon distribution, estimates of elemental composition (%C, %H, %(O+N)), aromatic fraction (fa), nonprotonated aromatic fraction (faN), an estimate of aromatic cluster size, and ratio of sp^2 to sp^3 carbons. A Gaussian deconvolution method is introduced that allows for a detailed analysis of carbon type.

  10. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.

    PubMed

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Mizuno, Katsunori; Sato, Toru

    2015-04-01

    The received signal in through-transmission ultrasound measurements of cancellous bone consists of two longitudinal waves, called the fast and slow waves. Analysis of these fast and slow waves may reveal characteristics of the cancellous bone that would be good indicators of osteoporosis. Because the two waves often overlap, decomposition of the received signal is an important problem in the characterization of bone quality. This study proposes a fast and accurate decomposition method based on the frequency domain interferometry imaging method with a modified wave transfer function that uses a phase rotation parameter. The proposed method accurately characterized the fast and slow waves in the experimental study, and the residual intensity, which was normalized with respect to the received signal intensity, was less than -20 dB over the bone specimen thickness range from 6 to 15 mm. In the simulation study, the residual intensity was less than -20 dB over the specimen thickness range from 3 to 8 mm. Decomposition of a single received signal takes only 5 s using a laptop personal computer with a single central processing unit. The proposed method has great potential to provide accurate and rapid measurements of indicators of osteoporosis in cancellous bone.

  11. Estimation of aerosol type from airborne hyperspectral data: a new technique designed for industrial plume characterization

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; Marion, R.; Foucher, P.-Y.; Briottet, X.

    2012-11-01

    The determination of the aerosol type in a plume from remotely sensed data without any a priori knowledge is a challenging task. If several methods have already been developed to characterize the aerosols from multi or hyperspectral data, they are not suited for industrial particles, which have specific physical and optical properties, changing quickly and in a complex way with the distance from the source emission. From radiative transfer equations, we have developed an algorithm, based on a Look-Up Table approach, enabling the determination of the type of this kind of particles from hyperspectral data. It consists in the selection of pixels pairs, located at the transitions between two kinds of grounds (or between an illuminated and a shadow area), then in the comparison between normalized estimated Aerosol Optical Thicknesses (AOTs) and pre-calculated AOTs. The application of this algorithm to simulated data leads to encouraging results: the selection of only six pixels pairs allows the algorithm to differentiate aerosols emitted by a metallurgical plant from biomass burning particles, urban aerosols and particles from an oil depot explosion, regardless the size and the aerosol concentration. The algorithm performances are better for a relatively high AOT but the single scattering approximation does not enable the characterization of thick plumes (AOT above 2.0). However, the choice of transitions (type of grounds) does not seem to significantly affect the results.

  12. Nanoscale Characterization of Organometal Trihalide Perovskite using Photothermal Induced Resonance (PTIR) Technique

    NASA Astrophysics Data System (ADS)

    Chae, Jungseok; Centrone, Andrea; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    Further improvement of the performance of organometal trihalide perovskites (OTP) solar cells can be aided by nanoscale characterization. Photothermal induced resonance (PTIR), is a novel scanning probe method that enable measuring vibrational and electronic absorption maps and spectra with a resolution as high as 20 nm. In this presentation, the chemical composition and bandgap of OTP thin films was characterized with PTIR: 1) to identify the origin of the switchable photovoltaic effect and 2) to quantify the local chloride content in mixed-halide perovskites. PTIR vibrational maps recorded in correspondence of methyl ammonium ions (MA +) for a as prepared lateral structure solar cell were uniform but displayed stronger intensity in proximity of the cathode after electric poling. Those measurements provide the first direct proof of ion electron migration in OTP devices. Because chloride incorporation modifies the bandgap in MAPbI3-xClx perovskites, PTIR electronic maps and spectra were used to extract the local chloride content as a function of annealing. Results show that the as-prepared sample consist of a mixture of Cl-rich and Cl-poor phases that evolves into a homogenous Cl-poorer phase upon annealing. This measurement suggests that Cl- is progressively expelled from the film.

  13. Measuring the food environment: a systematic technique for characterizing food stores using display counts.

    PubMed

    Miller, Cassandra; Bodor, J Nicholas; Rose, Donald

    2012-01-01

    Marketing research has documented the influence of in-store characteristics-such as the number and placement of display stands-on consumer purchases of a product. However, little information exists on this topic for key foods of interest to those studying the influence of environmental changes on dietary behavior. This study demonstrates a method for characterizing the food environment by measuring the number of separate displays of fruits, vegetables, and energy-dense snack foods (including chips, candies, and sodas) and their proximity to cash registers in different store types. Observations in New Orleans stores (N = 172) in 2007 and 2008 revealed significantly more displays of energy-dense snacks than of fruits and vegetables within all store types, especially supermarkets. Moreover, supermarkets had an average of 20 displays of energy-dense snacks within 1 meter of their cash registers, yet none of them had even a single display of fruits or vegetables near their cash registers. Measures of the number of separate display stands of key foods and their proximity to a cash register can be used by researchers to better characterize food stores and by policymakers to address improvements to the food environment.

  14. Preparation and characterization WDM technique for linear disturbance localization in fibre optical sensor

    NASA Astrophysics Data System (ADS)

    Życzkowski, M.; Ciurapinski, W.; Szustakowski, M.

    2007-10-01

    Ordinary perimeter security systems consist of many individual sensors with detection range 200-300 meters. These limitations are connected with physical phenomena that are used in microwave and infrared barriers as well as in ground and fence cable sensors. On the contrary, fiber optic perimeter sensors can be applied in the range of many kilometers and zone length 200-300 meters is degradation of their possibilities. This paper presents investigation results of a new generation of the fiber optic perimeter sensor using WDM technique. These systems can detect a potential intruder and determine its position along a protected zone. The work presents a method of linear localization of disturbance point in the two-interferometer and modalmertic fiber optic sensors in one optical fiber. These sensors are in one fiber optic cable with two- interferometers (Sagnac) and in transmissive configuration. Using WDM technique makes it possible to obtain new technical properties that can broaden effectiveness and scope of application. Arrangement of a laboratory model of the sensors and its signal processing scheme is presented. During research of a laboratory model, it was possible to detect the position of the disturbance in one optical fiber with resolution of about 50m along a 10-km long sensor.

  15. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Turbine Bladed Disks

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.

  16. Evaluation of a potential borehole televiewer technique for characterizing lost circulation zones

    SciTech Connect

    Glowka, D.A.; Loeppke, G.E.; Lysne, P.C. ); Wright, E.K. )

    1990-01-01

    An experimental study is described that evaluates the potential for using an acoustic borehole television technique to measure fracture dimensions in lost circulation zones encountered in geothermal drilling. A simulated wellbore was constructed of sandstone blocks with adjustable, inclined fractures, stacked in a barrel filled with water. A slim-hole televiewer was used to log the wellbore, and a computer was used to digitize and analyze the data. Televiewer signal perturbations caused by the fractures were studied to evaluate the effects of fracture thickness and signal amplification on the width of the signal perturbation in the digital record. It was found that the signal amplification is applied. Two techniques for determining the correct amplification are described. With the televiewer used in the present study, fractures thicker than 0.15 inch in a 5.1-inch wellbore can be measured to within an accuracy of 5--15%. Fractures as small as 0.031 inch can be detected but cannot be accurately and reliably measured. 1 ref., 15 figs.

  17. Complementary techniques for the characterization of thin film Ti/Nb multilayers.

    PubMed

    Genç, Arda; Banerjee, Rajarshi; Thompson, Gregory B; Maher, Dennis M; Johnson, Andrew W; Fraser, Hamish L

    2009-09-01

    An aberration corrector on the probe-forming lens of a scanning TEM (STEM) equipped with an electron energy-loss spectrometer (EELS) and X-ray energy-dispersive spectrometer (XEDS) has been employed to investigate the compositional variations as a function of length scale in nanoscale Ti/Nb metallic multilayers. The composition profiles of EELS and XEDS were compared with the profiles obtained from the complementary technique of 3D atom probe tomography. At large layer widths (h > or = 7 nm, where h is the layer width) of Ti and Nb, XEDS composition profiles of Ti/Nb metallic multilayers are in good agreement with the EELS results. However, at reduced layer widths (h approximately 2 nm), profiles of EELS and atom probe exhibited similar compositional variations, whereas XEDS results have shown a marked difference. This difference in the composition profiling of the layers has been addressed with reference to the effects of beam broadening and the origin of the signals collected in these techniques. The advantage of using EELS over XEDS for these nanoscaled multilayered materials is demonstrated. PMID:19553019

  18. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors.

    PubMed

    Lai, Rebecca Y; Walker, Bryce; Stormberg, Kent; Zaitouna, Anita J; Yang, Weiwei

    2013-12-15

    Here we present a summary of the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors when interrogated using alternating current voltammetry (ACV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Specifically, we identified one critical parameter for each voltammetric technique that can be adjusted for optimal sensor performance. Overall, the SLP sensor displayed good sensor performance (i.e., 60+% signal attenuation in the presence of the target) over a wider range of experimental conditions when compared to the LP sensor. When used with ACV, the optimal frequency range was found to be between 5 and 5000 Hz, larger than the 5-100 Hz range observed with the LP sensor. A similar trend was observed for the two sensors in CV; the LP sensor was operational only at scan rates between 30 and 100 V/s, whereas the SLP sensor performed well at scan rates between 1 and 1000 V/s. Unlike ACV and CV, DPV has demonstrated to be a more versatile sensor interrogation technique for this class of sensors. Despite the minor differences in total signal attenuation upon hybridization to the target DNA, both SLP and LP sensors performed optimally under most pulse widths used in this study. More importantly, when used with longer pulse widths, both sensors showed "signal-on" behavior, which is generally more desirable for sensor applications.

  19. Characterization of Some Iraqi Archaeological Samples Using IBA, Analytical X-ray and Other Complementary Techniques

    NASA Astrophysics Data System (ADS)

    Shihab Al-Sarraj, Ziyad; Roumie, Mohamad; Damboos, Hassan I.

    2012-07-01

    The present work aimed at investigating the compositions and microstructures of some archaeological samples which dated back to various periods of the ancient Iraqi civilizations using PIXE, XRF, XRD, and SEM techniques. The models selected for the study (ceramics, glaze, etc.) were diverse in size and nature, therefore a limited number of samples were then butted from them by a small diamond wheel. Conventional powder metallurgy method was then used to prepare the samples. Dried samples were then coated with a thin layer of carbon, and analyzed using the ion beam accelerator of the LAEC. Three other groups of samples were also prepared for the purpose of analysis by X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscope (SEM). Analysis results of the chemical composition showed good agreement between the various techniques as well as for phases, while the fine structure analysis obtained by optical and scanning microscopy exhibited features of a structure where it got an intensified densification in the final stage of sintering and accompanied by quasi-homogeneous distribution of the closed pores. This will lead to the conclusion that the temperature used for sintering by ancient Iraqi was sufficient and it may fall in the range between 950-1200°C, also the mixes and the forming methods used by them, were both suitable to obtain good sintered bodies with even distribution of pores. A ring-shaped trace noticed in SEM micrographs need more work and study to explain what it is?

  20. Coastal typology: An integrative "neutral" technique for coastal zone characterization and analysis

    USGS Publications Warehouse

    Buddemeier, R.W.; Smith, S.V.; Swaney, D.P.; Crossland, C.J.; Maxwell, B.A.

    2008-01-01

    Typology, the 'study or systematic classification of types that have characteristics or traits in common', has become a commonly used term and technique in coastal zone studies over the past two decades. At least part of this is due to adoption by the first Land-Ocean Interactions in the Coastal Zone (LOICZ) project of a typological approach as a way to understand and organize the daunting diversity of natural and human systems comprising the world coastal zone, and to the concurrent development of tools and databases to support systematic applications. This paper reviews some of the history of the term 'typology' and the concepts and techniques that it subsumes, and discusses its adoption and adaptation in coastal studies. It also addresses the continued and increasing relevance of typology to the continuation of the LOICZ project and its objectives, and outlines the opportunities and challenges involved in realizing the potentials of the approach - both within LOICZ and for the scientific and coastal zone communities in general. ?? 2007 Elsevier Ltd. All rights reserved.

  1. The Use of Thermal Techniques for the Characterization and Selection of Natural Biomaterials

    PubMed Central

    Samouillan, Valérie; Delaunay, Florian; Dandurand, Jany; Merbahi, Nofel; Gardou, Jean-Pierre; Yousfi, Mohammed; Gandaglia, Alessandro; Spina, Michel; Lacabanne, Colette

    2011-01-01

    In this paper we explore the ability of thermal analysis to check elastin and collagen integrity in different biomaterial applications. Differential Scanning Calorimetry (DSC) has been used to analyze the first and second order transitions of the biological macromolecules in the hydrated and dehydrated state. First, we report the characterization of control cardiovascular tissues such as pericardium, aortic wall and valvular leaflet. Their thermal properties are compared to pure elastin and pure collagen. Second, we present results obtained on two collagen rich tissues: pericardia with different chemical treatments and collagen with physical treatments. Finally, more complex cardiovascular tissues composed of elastin and collagen are analyzed and the effect of detergent treatment on the physical structure of collagen and elastin is brought to the fore. PMID:24956305

  2. Deposition and characterization of strontium hexa ferrite (SrFe12O19) by PLD technique

    NASA Astrophysics Data System (ADS)

    Khaleeq-ur-Rahman, M.; Bhatti, K. A.; Rafique, M. S.; Latif, A.; fou-uz-Zia, Sultana

    2013-04-01

    KrF* excimer laser (248 nm wavelength) is tightly focused on strontium hexa ferrite (SrFe12O19) to deposit its thin films on glass. Thin films were deposited at room temperature (25 °C) and at 350 °C in the absence and presence of the externally applied (0.5 T) magnetic field in transverse direction. The experiments were performed under vacuum ˜10-6 Torr. All deposited films were characterized for crystallographic structure, surface morphology, magnetic properties, and optical properties using X-Ray Diffractometer (XRD), Scanning electron microscopy (SEM), Vibrating sample magnetometer (VSM) and Spectroscopic ellipsometry (SE). The results thus obtained show that magneto-optical properties of deposited thin films have been enhanced in the presence of magnetic field.

  3. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W.

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  4. Review of thermoelectric characterization techniques suitable for SiGe multilayer structures

    NASA Astrophysics Data System (ADS)

    Cecchi, Stefano; Ferre Llin, Lourdes; Etzelstorfer, Tanja; Samarelli, Antonio

    2015-03-01

    Thermoelectric materials have great potential for a range of energy harvesting applications, while the thin film approach is promising for the realization of integrated thermoelectric micro-devices. Silicon-germanium heterostructures are interesting candidates for on-chip cooling or energy harvesting, guaranteeing reliable manufacturing and integrability with silicon technology. Material research is nowadays focused on the engineering of nanostructured materials with improved thermoelectric performances. Therefore, the development of efficient methods for the characterizazion of the thermoelectric properties at the micro- and nano-scale is fundamental. We report here microfabrication based methods for the in-plane and cross-plane thermoelectric characterization of silicon-germanium multilayer heterostructures monolithically integrated on silicon. Contribution to the Topical Issue "Silicon and Silicon-related Materials for Thermoelectricity", edited by Dario Narducci.

  5. Characterization of microenvironment polarity and solvent accessibility of polysilsesquioxane xerogels by the fluorescent probe technique

    SciTech Connect

    Shea, K.J.; Zhu, H.D.; Loy, D.A.

    1995-05-01

    Poly (1, 4 bis(triethoxysilyl)benzene) (PTESB), a representative of a new type of organic-inorganic hybrid polysilsesquioxane material, was characterized by fluorescence spectroscopy for both microenvironmental polarity and solvent accessibility. A dansyl fluorescent molecule was incorporated into the bulk as well as onto the surface of both PTESB and silica materials. Information about the microenvironment polarity and accessibility of PTESB to various organic solvents was determined and compared to that of silica gel. This study found that both the bulk and surface of PTESB are less polar than that of the silica material. The silica material is accessible to polar solvents and water, while YMB is accessible to polar solvents but not to water. The hydrophobicity of PTESB differentiates these new materials from silica gel.

  6. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel. [PWR

    SciTech Connect

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed.

  7. Preparation, characterization, and in vivo evaluation of valsartan porous matrices using emulsion solvent evaporation technique

    PubMed Central

    Babu, Govada Kishore; Babu, Puttagunta Srinivasa; Khagga, Mukkanti

    2016-01-01

    Introduction: Valsartan is a type II Biopharmaceutics Classification System (BCS) classified drug. The poor aqueous solubility restricts its use in developing sustained or controlled release systems for the treatment of chronic hypertensive conditions. The present investigation was conducted with an objective to formulate porous matrices (PMs) of valsartan in order to enhance aqueous solubility. Materials and Methods: Polyvinylpyrrolidone (PVP) K30 and poloxamer 407 were used as hydrophilic carriers; hexane was used as a pore-forming agent, ethanol was used as a solvent, and tween 20 was used as an emulgent. The prepared porous matrices were characterized and based on the maximum slope obtained from the Washburn method and other characterization results; the drug PVP K30 (1:1.5) was selected and further evaluated in vivo by the rat gut method. Results: The prepared porous matrices are white, free-flowing powders. Among prepared formulations drug PVP K30 (1:1.5) showed maximum Washburn slope of 0.0103. The mean particle size was found to be 0.82 μ and D50 (median) value was found to be 0.55 μ. The scanning of particles at various magnifications by scanning electron microscopy (SEM) analysis revealed that the method had effectively induced porosity. The Q value of valsartan from porous matrices was observed at 20 min with a first order regression value of 0.917. The calculated difference factor (F1) when compared with pure valsartan was observed to be 63.32%. From the values obtained, it was evident that the method amplifies the percentage of drug dissolution between sixfold and eightfold when compared to pure drug. From the absorption studies by the rat gut method, the absorption of porous matrices increased threefold. Conclusion: Porous matrices of valsartan: PVP K30 (1:1.5 ratio) hold promise for the enhancement of solubility and consecutive formulation of controlled release systems even with poorly soluble drugs.

  8. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.

    PubMed

    Harb, M S; Yuan, F G

    2016-01-01

    A fully non-contact single-sided air-coupled and laser ultrasonic non-destructive system based on the generation and detection of Lamb waves is implemented for the characterization of A0 Lamb wave mode dispersion in a composite plate. An air-coupled transducer (ACT) radiates acoustic pressure on the surface of the composite and generates Lamb waves within the structure. The out-of-plane velocity of the propagating wave is measured using a laser Doppler vibrometer (LDV). In this study, the non-contact automated system focuses on measuring A0 mode frequency-wavenumber, phase velocity dispersion curves using Snell's law and group velocity dispersion curves using Morlet wavelet transform (MWT) based on time-of-flight along different wave propagation directions. It is theoretically demonstrated that Snell's law represents a direct link between the phase velocity of the generated Lamb wave mode and the coincidence angle of the ACT. Using Snell's law and MWT, the former three dispersion curves of the A0 mode are easily and promptly generated from a set of measurements obtained from a rapid ACT angle scan experiment. In addition, the phase velocity and group velocity polar characteristic wave curves are also computed to analyze experimentally the angular dependency of Lamb wave propagation. In comparison with the results from the theory, it is confirmed that using the ACT/LDV system and implementing simple Snell's law method is highly sensitive and effective in characterizing the dispersion curves of Lamb waves in composite structures as well as its angular dependency.

  9. Combining Infrasound and Imaging Techniques to Characterize and Quantify Eruptive Activity at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Fee, D.; Lopez, T. M.; Rowell, C.; Matoza, R. S.; Szuberla, C.; Prata, F.; Firstov, P.; Makhmudov, E.

    2012-12-01

    Changes in atmospheric pressure at volcanic vents caused by the rapid release and expansion of volcanic material (e.g., gas, ash, lava) produce low frequency sound waves known as infrasound. Because of the direct link between the infrasound source and the eruption and emission of volcanic material, complementary direct and remote observations of gas, ash, and other eruptive phenomena can be combined with infrasound measurements to characterize and quantify volcanic activity. Here we present coincident measurements collected over two 10-day periods at Karymsky Volcano in August 2011 and July 2012 of infrasound, SO2, thermal radiation, ash (2011 only), and visual imagery. Infrasound and audible (up to 250 Hz) acoustic data were recorded using arrays of portable digital microphones. SO2 emissions were measured using both a scanning FLYSPEC ultraviolet spectrometer system as well as a CyClops infrared camera equipped with broadband, 8.6, 10, and 11 micron filters permitting detection and quantification of both SO2 and ash. A FLIR infrared camera was utilized to record high temporal resolution thermal observations of the volcanic emissions and hot eruption deposits. Lastly, visual imagery was taken with an HD camcorder. Correlations between this multiparameter dataset allow a better understanding of both the infrasound data and eruptive activity. Karymsky Volcano is one of the most active and dynamic volcanoes in Kamchatka, Russia, with activity during our experiments consisting of vigorous degassing, frequent ash explosions, apparent vent sealing, and intermittent explosive magmatic eruptions. This varied activity produced diverse acoustic and emissions signals. Large explosive eruptions in 2011 are preceded by vent sealing and produce high-amplitude infrasound with occasional visible shock waves. Vigorous gas jetting is also observed and accompanied by elevated SO2 emissions and low infrasound levels. The gas jetting produced clear audible sound (~20-100 Hz) that

  10. Preparation, characterization, and in vivo evaluation of valsartan porous matrices using emulsion solvent evaporation technique

    PubMed Central

    Babu, Govada Kishore; Babu, Puttagunta Srinivasa; Khagga, Mukkanti

    2016-01-01

    Introduction: Valsartan is a type II Biopharmaceutics Classification System (BCS) classified drug. The poor aqueous solubility restricts its use in developing sustained or controlled release systems for the treatment of chronic hypertensive conditions. The present investigation was conducted with an objective to formulate porous matrices (PMs) of valsartan in order to enhance aqueous solubility. Materials and Methods: Polyvinylpyrrolidone (PVP) K30 and poloxamer 407 were used as hydrophilic carriers; hexane was used as a pore-forming agent, ethanol was used as a solvent, and tween 20 was used as an emulgent. The prepared porous matrices were characterized and based on the maximum slope obtained from the Washburn method and other characterization results; the drug PVP K30 (1:1.5) was selected and further evaluated in vivo by the rat gut method. Results: The prepared porous matrices are white, free-flowing powders. Among prepared formulations drug PVP K30 (1:1.5) showed maximum Washburn slope of 0.0103. The mean particle size was found to be 0.82 μ and D50 (median) value was found to be 0.55 μ. The scanning of particles at various magnifications by scanning electron microscopy (SEM) analysis revealed that the method had effectively induced porosity. The Q value of valsartan from porous matrices was observed at 20 min with a first order regression value of 0.917. The calculated difference factor (F1) when compared with pure valsartan was observed to be 63.32%. From the values obtained, it was evident that the method amplifies the percentage of drug dissolution between sixfold and eightfold when compared to pure drug. From the absorption studies by the rat gut method, the absorption of porous matrices increased threefold. Conclusion: Porous matrices of valsartan: PVP K30 (1:1.5 ratio) hold promise for the enhancement of solubility and consecutive formulation of controlled release systems even with poorly soluble drugs. PMID:27606260

  11. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique

    PubMed Central

    Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida

    2016-01-01

    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as “flavonosome”. Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA–phosphatidylcholine) through four different methods of synthesis – bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug–carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA–phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of −39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a

  12. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique.

    PubMed

    Karthivashan, Govindarajan; Masarudin, Mas Jaffri; Kura, Aminu Umar; Abas, Faridah; Fakurazi, Sharida

    2016-01-01

    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising

  13. Characterization of Inx Ga1-x As-GaAs heterostructures via electron beam techniques

    NASA Astrophysics Data System (ADS)

    Gomez-Barojas, Estela; Silva-Gonzalez, Rutilo; Serrano-Rojas, Rosa Maria; Vidal-Borbolla, Miguel Angel

    2005-03-01

    In the case of strained superlattices abrupt heterointerfaces are required because compositional fluctuations at heterointerfaces results in uncertainty in both composition and lattice constant. The aim of this work is to study exsitu the surface morphology, the periodicity and elemental composition of a set of 3 InGaAs-GaAs heterostructures grown on GaAs (100) substrates by a molecular beam epitaxy system. The heterostructures are formed by 10 periods of InGaAs-GaAs epitaxially grown on GaAs substrates with nominal thickness of 500 and 1000 å, respectively. The techniques used for this purpose are the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). The In content in the heterostructures is determined from corresponding Auger depth profiles. This work has been supported by VIEP-BUAP, Project No. II53G02.

  14. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  15. Growth and characterization of organic material 3-hydroxybenzaldehyde single crystal by modified vertical Bridgman technique.

    PubMed

    Suthan, T; Dhanaraj, P V; Rajesh, N P

    2012-02-15

    Novel organic nonlinear optical (NLO) material 3-hydroxybenzaldehyde (3HBA) single crystals have been grown by modified vertical Bridgman technique using the single and double wall ampoules with nano translation. Single crystal X-ray diffraction analysis reveals that 3HBA crystallizes in orthorhombic system and the powder X-ray diffraction (XRD) pattern was indexed. Fourier transform infrared studies confirm the functional groups of the crystal. The optical property of the grown crystal was analyzed by UV-vis-NIR and photoluminescence (PL) spectral measurements. The thermal property of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). The dielectric measurements were carried out with four different frequencies at various temperatures ranging from 308 to 373K and the results indicate an increase in dielectric parameters with the increase of temperature at all frequencies. The NLO property of 3HBA was analyzed by second harmonic generation (SHG) studies.

  16. Preparation and characterization of indium zinc oxide thin films by electron beam evaporation technique

    SciTech Connect

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Fallah, Hamid Reza; Dastjerdi, Mohammad Javad Vahid; Modayemzadeh, Hamed Reza

    2011-04-15

    In this work, the preparation of In{sub 2}O{sub 3}-ZnO thin films by electron beam evaporation technique on glass substrates is reported. Optical and electrical properties of these films were investigated. The effect of dopant amount and annealing temperature on the optical and electrical properties of In{sub 2}O{sub 3}-ZnO thin films was also studied. Different amount of ZnO was used as dopant and the films were annealed at different temperature. The results showed that the most crystalline, transparent and uniform films with lowest resistivity were obtained using 25 wt% of ZnO annealed at 500 {sup o}C.

  17. A study of the stress wave factor technique for the characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Govada, A. K.; Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1985-01-01

    This study has investigated the potential of the Stress Wave Factor as an NDT technique for thin composite laminates. The conventional SWF and an alternate method for quantifying the SWF were investigated. Agreement between the initial SWF number, ultrasonic C-scan, inplane displacements as obtained by full field moire interferometry, and the failure location have been observed. The SWF number was observed to be the highest when measured along the fiber direction and the lowest when measured across the fibers. The alternate method for quantifying the SWF used square root of the zeroth moment (square root of M sub o) of the frequency spectrum of the received signal as a quantitative parameter. From this study it therefore appears that the stress wave factor has an excellent potential to monitor damage development in thin composite laminates.

  18. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  19. Video Skimming and Characterization through the Combination of Image and Language Understanding Techniques

    NASA Technical Reports Server (NTRS)

    Smith, Michael A.; Kanade, Takeo

    1997-01-01

    Digital video is rapidly becoming important for education, entertainment, and a host of multimedia applications. With the size of the video collections growing to thousands of hours, technology is needed to effectively browse segments in a short time without losing the content of the video. We propose a method to extract the significant audio and video information and create a "skim" video which represents a very short synopsis of the original. The goal of this work is to show the utility of integrating language and image understanding techniques for video skimming by extraction of significant information, such as specific objects, audio keywords and relevant video structure. The resulting skim video is much shorter, where compaction is as high as 20:1, and yet retains the essential content of the original segment.

  20. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  1. Surface energy control techniques for photomask fabrication and their characterizations with scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Kurihara, Masaaki; Hatakeyama, Sho; Yoshida, Kouji; Abe, Makoto; Totsukawa, Daisuke; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya

    2008-05-01

    Most of photomask issues such as pattern collapse, HAZE, and cleaning damage relate to behavior of mask surfaces. Therefore it is coming to be important to control surface energy in photomask processes. Especially adhesion analysis in micro region is strongly desired to optimize material and process designs in photomask fabrication. Quantitative measurements of adhesive forces of resists on photomask blanks were realized with scanning probe microscopy (SPM) techniques. Then surface energy on photomask blanks was able to be controlled by modification with some silanization reagents. In addition, adhesive forces of resists on surfaces modified with some silanes were able to be also controlled. The SPM method is proved to be effective for measuring adhesive energy of micro patterns on photomask blanks.

  2. Characterization of CuInTe2 thin films deposited by electrochemical technique

    NASA Astrophysics Data System (ADS)

    Patil, Neelima A.; Lakhe, Manorama; Chaure, N. B.

    2012-06-01

    Copper Indium ditelluride (CuInTe2) thin films were deposited onto fluorine doped tin oxide (FTO) coated glass substrates by electrodeposition technique. Cyclic voltammetry analysis was used to optimize suitable deposition parameters. Micro structural properties were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDAX) for as-deposited and annealed films at 400 °C. After annealing the prominent (112), (220/204), (312/116) peaks of CuInTe2 (CIT) were observed indicate tetragonal structure which is most common structure of I-III-VI2 semiconductors, suitable for high efficiency photovoltaic devices. The band gap of the CIT film was determined around 1.01 eV. Elemental composition analysis was performed using energy dispersive X-ray analysis (EDAX).

  3. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  4. Isothermal transient ionic current as a characterization technique for ion transport in Ta2O5

    NASA Astrophysics Data System (ADS)

    Mattsson, M. Strømme; Niklasson, G. A.

    1999-06-01

    The Isothermal Transient Ionic Current (ITIC) technique was applied to β-Ta2O5 samples made by chemical vapor deposition. The mobility, conductivity, and number of protons in the material could be extracted from the measurements. Li ions were intercalated electrochemically into the β-Ta2O5 and it was found that the ITIC method could separate the contribution from proton and Li ion conduction in such a way that the mobilities of both species could be extracted. Furthermore, the lattice-gas model [A. J. Berlinsky, W. G. Unruh, W. R. McKinnon, and R. R. Haering, Solid State Commun. 31, 135 (1979)] was employed to describe the Li interaction process. This model showed that the Li ions tended to distribute uniformly, rather then to attract each other and form clusters in the material.

  5. Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry.

    PubMed

    Koch, Frieder J; Detlefs, Carsten; Schröter, Tobias J; Kunka, Danays; Last, Arndt; Mohr, Jürgen

    2016-05-01

    Refractive X-ray lenses are in use at a large number of synchrotron experiments. Several materials and fabrication techniques are available for their production, each having their own strengths and drawbacks. We present a grating interferometer for the quantitative analysis of single refractive X-ray lenses and employ it for the study of a beryllium point focus lens and a polymer line focus lens, highlighting the differences in the outcome of the fabrication methods. The residuals of a line fit to the phase gradient are used to quantify local lens defects, while shape aberrations are quantified by the decomposition of the retrieved wavefront phase profile into either Zernike or Legendre polynomials, depending on the focus and aperture shape. While the polymer lens shows better material homogeneity, the beryllium lens shows higher shape accuracy. PMID:27137533

  6. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  7. Characterization of CdTe Nanoparticles Fabricated by Pulsed Electron Deposition Technique at Different Ablation Parameters

    SciTech Connect

    Jackson, E.; Aga, R. Jr.; Steigerwald, A.; Ueda, A.; Pan, Z.; Collins, W. E.; Mu, R.

    2008-03-13

    Telluride (CdTe) is a front-runner photovoltaic (PV) material because it has already attained efficiencies above 16%. The fabrication of CdTe nanoparticles has aroused considerable interest because of their potential application as active layer in organic/inorganic hybrid solar cells. They can also be used for sensitisation of wide band gap semiconductors. In this work, we explore pulsed electron beam deposition (PED) technique to fabricate CdTe nanoparticles. Two ablation parameters, namely background gas pressure and electron energy were varied to investigate their effects on the nanoparticle formation. AFM and optical transmission measurements indicate that we have fabricated CdTe nanocrystalline films exhibiting quantum confinement effect. These films contain scattered nanoparticles with diameters varying from 40 nm to 500 nm, which contribute to the optical absorption near the bulk bandgap energy. However, increasing the background pressure to 19 mTorr improves the nanocrystalline film uniformity.

  8. Aluminum diffusion in Al-implanted AISI 321 stainless steel using accelerator-based characterization techniques

    NASA Astrophysics Data System (ADS)

    Noli, F.; Misaelides, P.; Bethge, K.

    1998-04-01

    The aluminum diffusion in near-surface layers of Al-implanted AISI 321 austenitic stainless steel (Fe/Cr18/Ni8/Ti) was studied using ion beam analysis techniques. The implanted samples were investigated at temperatures between 450°C and 650°C (treatment times up to 144 h in vacuum and in air). The Al-profiles were determined by the 992 keV resonance of the 27Al(p,γ) 28Si nuclear reaction as well as by 4He +-Rutherford Backscattering Spectrometry (RBS). The experimental diffusion coefficients, obtained during this study using Fick's second law, were compared with corresponding literature concerning the aluminum diffusion in other relevant metallic materials. The determination of the depth profiles contributes to the interpretation of the high temperature oxidation behavior of Al-implanted stainless steel surfaces.

  9. A Coupled Meshless Technique/Molecular Dynamics Approach for Deformation Characterization of Mono-crystalline Metal

    SciTech Connect

    Gu, Y. T.; Yarlagadda, Prasad K. D. V.

    2010-05-21

    This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M{sup 2}) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M{sup 2}, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic potentials and Cauchy-Born rule. The key parameters used in M{sup 2} are firstly investigated using a benchmark problem. Then, M{sup 2} is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

  10. Characterization of in-cylinder techniques for thermal management of diesel aftertreatment

    SciTech Connect

    Parks, II, James E; Huff, Shean P; Kass, Michael D; Storey, John Morse

    2007-01-01

    One challenge in meeting emission regulations with catalytic aftertreatment systems is maintaining the proper catalyst temperatures that enable the catalytic devices to perform the emissions reduction. In this study, in-cylinder techniques are used to actively control the temperature of a catalyzed diesel particulate filter (DPF) in order to raise the DPF temperature to induce particulate oxidation. The performance of four strategies is compared for two different starting DPF temperatures (150 C and 300 C) on a 4-cylinder, 1.7-liter diesel engine. The four strategies include: (1) addition of extra fuel injection early in the combustion cycle for all four cylinders, (2) addition of extra fuel injection late in the combustion cycle for all four cylinders, (3) operating one-cylinder with extra fuel injection early in the combustion cycle, and (4) operating one-cylinder with extra fuel injection late in the combustion cycle. In cases (3) and (4), the cylinder operating with extra fuel injection is changed frequently to avoid oil dilution complications. In addition to the in-cylinder strategies, an in-pipe fuel addition technique for thermal management was studied for comparison. Results show that at starting temperatures above 300 C, late cycle injection strategies that cause temperature rise from exotherms created by unburned fuel components result in higher temperature rise for a given fuel penalty. At the low temperature of 150 C, early injection strategies that create temperature rise from both combustion and light reductant exotherms are preferred due to the inability of the catalyst to oxidize unburned fuel from late injection strategies.

  11. Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Atkinson, Brain M.

    The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.

  12. Constraint Embedding for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  13. Residual Stress Relaxation and Stiffness-Confinement Effects in Polymer Films: Characterization by Non-Contact Ellipsometry and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Torkelson, John

    2015-03-01

    The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.

  14. Applications of Ensemble-based Data Assimilation Techniques for Aquifer Characterization using Tracer Data at Hanford 300 Area

    SciTech Connect

    Chen, Xingyuan; Hammond, Glenn E.; Murray, Christopher J.; Rockhold, Mark L.; Vermeul, Vincent R.; Zachara, John M.

    2013-10-31

    Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble-based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing number of applications of ensemble-based methods in assimilating flow and transport related data for subsurface aquifer charaterization, most are limited to either synthetic studies or two-dimensional problems. In this study, we applied ensemble-based techniques for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively-parallel three-dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble-based methods. This study demonstrates the effectiveness of ensemble-based methods for characterizing a heterogeneous aquifer by sequentially assimilating multiple types of data. The necessity of employing high performance computing is shown to enable increasingly mechanistic non-linear forward simulations to be performed within the data assimilation framework for a complex system with reasonable turnaround time.

  15. Shutters with embedded microprocessors

    NASA Astrophysics Data System (ADS)

    Stephenson, S.

    2015-06-01

    Shutters are used to periodically provide a non-uniformity correction (NUC) calibration surface to micro bolometers. Many bolometer applications, such as TWS and DVE, require compact, power efficient actuators. Actuators in these applications, such as bistable solenoids and stepper motors, benefit from complex drive schemes. Consumer electronics products have generated compact, low-cost drive components that can be used to embed complex drives into these shutters. Shutter drives using these components maintain compactness and power efficiency while simplifying interfaces at minimal cost. Recently, several commercially available shutter systems have been created that incorporate embedded microprocessors into shutters usable for NUC correction of micro bolometers.

  16. Embeddings of Causal Sets

    SciTech Connect

    Reid, David D.

    2009-07-06

    A key postulate of the causal set program is that this discrete partial order offers a sufficiently rich structure to make it a viable model of spacetime for quantum gravity. If the deep structure of spacetime is that of a causal set, then the correspondence principle (with the spacetimes of general relativity) must be obeyed. Therefore, one of the requirements of this program is to establish that the causal set structure is in fact, not just in principle, fully consistent with our macroscopic notion of spacetime as a Lorentzian manifold. An important component of any such 'manifold test' is the ability to find embeddings of causal sets into Lorentzian manifolds.

  17. A novel micro-Raman technique to detect and characterize 4H-SiC stacking faults

    SciTech Connect

    Piluso, N. Camarda, M.; La Via, F.

    2014-10-28

    A novel Micro-Raman technique was designed and used to detect extended defects in 4H-SiC homoepitaxy. The technique uses above band-gap high-power laser densities to induce a local increase of free carriers in undoped epitaxies (n < 10{sup 16} at/cm{sup −3}), creating an electronic plasma that couples with the longitudinal optical (LO) Raman mode. The Raman shift of the LO phonon-plasmon-coupled mode (LOPC) increases as the free carrier density increases. Crystallographic defects lead to scattering or recombination of the free carriers which results in a loss of coupling with the LOPC, and in a reduction of the Raman shift. Given that the LO phonon-plasmon coupling is obtained thanks to the free carriers generated by the high injection level induced by the laser, we named this technique induced-LOPC (i-LOPC). This technique allows the simultaneous determination of both the carrier lifetime and carrier mobility. Taking advantage of the modifications on the carrier lifetime induced by extended defects, we were able to determine the spatial morphology of stacking faults; the obtained morphologies were found to be in excellent agreement with those provided by standard photoluminescence techniques. The results show that the detection of defects via i-LOPC spectroscopy is totally independent from the stacking fault photoluminescence signals that cover a large energy range up to 0.7 eV, thus allowing for a single-scan simultaneous determination of any kind of stacking fault. Combining the i-LOPC method with the analysis of the transverse optical mode, the micro-Raman characterization can determine the most important properties of unintentionally doped film, including the stress status of the wafer, lattice impurities (point defects, polytype inclusions) and a detailed analysis of crystallographic defects, with a high spectral and spatial resolution.

  18. Experimental characterization of cement-bentonite interaction using core infiltration techniques and 4D computed tomography

    NASA Astrophysics Data System (ADS)

    Dolder, F.; Mäder, U.; Jenni, A.; Schwendener, N.

    Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans. Mineral precipitation is observed in the inflow filter. Mineral alteration in the first millimeters of the bentonite sample is clearly detected and the reaction front is presently progressing with an average linear velocity that is 8 times slower than that for anions. The reaction zone is characterized by a higher X-ray attenuation compared to the signal of the pre-existing mineralogy. Chemical analysis of the outflow fluid showed initially elevated anion and cation concentrations compared to the infiltration fluid due to anion exclusion effects related to compaction of

  19. Advanced InSAR techniques for the management and characterization of geothermal resources

    NASA Astrophysics Data System (ADS)

    Bellotti, F.; Falorni, G.; Morgan, J.; Rucci, A.; Ferretti, A.

    2012-04-01

    InSAR is a remote sensing tool that has applications in both geothermal exploitation and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in different stages of development. SqueeSAR™, which represents the latest breakthrough in InSAR technology, provides a significant increase in the spatial density of measurement points by exploiting signal returns from both point-like and distributed scatterers. Furthermore, recent satellite radar sensors have a higher spatial resolution (down to 1 m), as well as a higher temporal frequency of image acquisitions (down to a few days). The coupling of the new algorithm with this new generation of satellites provides a valuable tool for monitoring the different phases of geothermal production and in support of the decision making process. Some examples from the US are presented here: the first case study involves the use of InSAR within a suite of tools for exploration of the San Emidio geothermal field in Nevada. This project aimed to develop geophysical techniques to identify and map large aperture fractures for the placement of new production/exploration wells. The second and third examples examine two zones in California: the Salton Sea area, where multi-interferogram InSAR provided an overview of surface deformation at a producing geothermal reservoir. Surface deformation in this area was complex, and the added detail provided insight into the interplay of tectonics and production activities. Additional InSAR studies have also been carried out at the Geysers field in order to evaluate the behavior of an Enhanced Geothermal System (EGS) in

  20. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.