A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor
NASA Astrophysics Data System (ADS)
Gaches, Brandt A. L.; Offner, Stella S. R.
2018-02-01
We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.
Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti
2015-12-15
We assess the consequences of the interface model-embedded-cluster or periodic-slab model-on the ability of DFT calculations to describe charge transfer (CT) in a particularly challenging case where periodic-slab calculations indicate a delocalized charge-transfer state. Our example is Cu atom adsorption on ZnO(10(1)0), and in fact the periodic slab calculations indicate three types of CT depending on the adsorption site: full CT, partial CT, and no CT. Interestingly, when full CT occurs in the periodic calculations, the calculated Cu atom adsorption energy depends on the underlying ZnO substrate supercell size, since when the electron enters the ZnO it delocalizes over as many atoms as possible. In the embedded-cluster calculations, the electron transferred to the ZnO delocalizes over the entire cluster region, and as a result the calculated Cu atom adsorption energy does not agree with the value obtained using a large periodic supercell, but instead to the adsorption energy obtained for a periodic supercell of roughly the same size as the embedded cluster. Different density functionals (of GGA and hybrid types) and basis sets (local atom-centered and plane-waves) were assessed, and we show that embedded clusters can be used to model Cu adsorption on ZnO(10(1)0), as long as care is taken to account for the effects of CT. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristensen, Lars E.; Bergin, Edwin A., E-mail: lkristensen@cfa.harvard.edu
2015-07-10
Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose using molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J = 7{sub 0}–6{sub 0} A{sup +}) in low-mass clusters illustrate that this transition is an excellent probe ofmore » the low-mass population. We present here a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.« less
Gas expulsion in highly substructured embedded star clusters
NASA Astrophysics Data System (ADS)
Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.
2018-06-01
We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govind, Niranjan; Sushko, Petr V.; Hess, Wayne P.
2009-03-05
We present a study of the electronic excitations in insulating materials using an embedded- cluster method. The excited states of the embedded cluster are studied systematically using time-dependent density functional theory (TDDFT) and high-level equation-of-motion coupled cluster (EOMCC) methods. In particular, we have used EOMCC models with singles and doubles (EOMCCSD) and two approaches which account for the e®ect of triply excited con¯gurations in non-iterative and iterative fashions. We present calculations of the lowest surface excitations of the well-studied potassium bromide (KBr) system and compare our results with experiment. The bulk-surface exciton shift is also calculated at the TDDFT levelmore » and compared with experiment.« less
Medium-induced change of the optical response of metal clusters in rare-gas matrices
NASA Astrophysics Data System (ADS)
Xuan, Fengyuan; Guet, Claude
2017-10-01
Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.
a Probabilistic Embedding Clustering Method for Urban Structure Detection
NASA Astrophysics Data System (ADS)
Lin, X.; Li, H.; Zhang, Y.; Gao, L.; Zhao, L.; Deng, M.
2017-09-01
Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by "learning" via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.
NASA Technical Reports Server (NTRS)
Wilking, Bruce A.; Lada, Charles J.; Young, Eric T.
1989-01-01
High-sensitivity IRAS coadded survey data, coupled with new high-sensitivity near-IR observations, are used to investigate the nature of embedded objects over an 4.3-sq-pc area comprising the central star-forming cloud of the Ophiuchi molecular complex; the area encompasses the central cloud of the Rho Ophiuchi complex and includes the core region. Seventy-eight members of the embedded cluster were identified; spectral energy distributions were constructed for 53 objects and were compared with theoretical models to gain insight into their evolutionary status. Bolometric luminosities could be estimated for nearly all of the association members, leading to a revised luminosity function for this dust-embedded cluster.
The nature, origin and evolution of embedded star clusters
NASA Technical Reports Server (NTRS)
Lada, Charles J.; Lada, Elizabeth A.
1991-01-01
The recent development of imaging infrared array cameras has enabled the first systematic studies of embedded protoclusters in the galaxy. Initial investigations suggest that rich embedded clusters are quite numerous and that a significant fraction of all stars formed in the galaxy may begin their lives in such stellar systems. These clusters contain extremely young stellar objects and are important laboratories for star formation research. However, observational and theoretical considerations suggest that most embedded clusters do not survive emergence from molecular clouds as bound clusters. Understanding the origin, nature, and evolution of embedded clusters requires understanding the intimate physical relation between embedded clusters and the dense molecular cloud cores from which they form.
Embedded cluster metal-polymeric micro interface and process for producing the same
Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.
2002-01-29
A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.
Unlearning of Mixed States in the Hopfield Model —Extensive Loading Case—
NASA Astrophysics Data System (ADS)
Hayashi, Kao; Hashimoto, Chinami; Kimoto, Tomoyuki; Uezu, Tatsuya
2018-05-01
We study the unlearning of mixed states in the Hopfield model for the extensive loading case. Firstly, we focus on case I, where several embedded patterns are correlated with each other, whereas the rest are uncorrelated. Secondly, we study case II, where patterns are divided into clusters in such a way that patterns in any cluster are correlated but those in two different clusters are not correlated. By using the replica method, we derive the saddle point equations for order parameters under the ansatz of replica symmetry. The same equations are also derived by self-consistent signal-to-noise analysis in case I. In both cases I and II, we find that when the correlation between patterns is large, the network loses its ability to retrieve the embedded patterns and, depending on the parameters, a confused memory, which is a mixed state and/or spin glass state, emerges. By unlearning the mixed state, the network acquires the ability to retrieve the embedded patterns again in some parameter regions. We find that to delete the mixed state and to retrieve the embedded patterns, the coefficient of unlearning should be chosen appropriately. We perform Markov chain Monte Carlo simulations and find that the simulation and theoretical results agree reasonably well, except for the spin glass solution in a parameter region due to the replica symmetry breaking. Furthermore, we find that the existence of many correlated clusters reduces the stabilities of both embedded patterns and mixed states.
Kee, Kerk F; Sparks, Lisa; Struppa, Daniele C; Mannucci, Mirco A; Damiano, Alberto
2016-01-01
By integrating the simplicial model of social aggregation with existing research on opinion leadership and diffusion networks, this article introduces the constructs of simplicial diffusers (mathematically defined as nodes embedded in simplexes; a simplex is a socially bonded cluster) and simplicial diffusing sets (mathematically defined as minimal covers of a simplicial complex; a simplicial complex is a social aggregation in which socially bonded clusters are embedded) to propose a strategic approach for information diffusion of cancer screenings as a health intervention on Facebook for community cancer prevention and control. This approach is novel in its incorporation of interpersonally bonded clusters, culturally distinct subgroups, and different united social entities that coexist within a larger community into a computational simulation to select sets of simplicial diffusers with the highest degree of information diffusion for health intervention dissemination. The unique contributions of the article also include seven propositions and five algorithmic steps for computationally modeling the simplicial model with Facebook data.
Dynamical evolution of stars and gas of young embedded stellar sub-clusters
NASA Astrophysics Data System (ADS)
Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah
2018-06-01
We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution that can include a filamentary structure in addition to gas surrounding the stellar sub-clusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young protostar clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.
EMBEDDED CLUSTERS IN THE LARGE MAGELLANIC CLOUD USING THE VISTA MAGELLANIC CLOUDS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romita, Krista; Lada, Elizabeth; Cioni, Maria-Rosa, E-mail: k.a.romita@ufl.edu, E-mail: elada@ufl.edu, E-mail: mcioni@aip.de
We present initial results of the first large-scale survey of embedded star clusters in molecular clouds in the Large Magellanic Cloud (LMC) using near-infrared imaging from the Visible and Infrared Survey Telescope for Astronomy Magellanic Clouds Survey. We explored a ∼1.65 deg{sup 2} area of the LMC, which contains the well-known star-forming region 30 Doradus as well as ∼14% of the galaxy’s CO clouds, and identified 67 embedded cluster candidates, 45 of which are newly discovered as clusters. We have determined the sizes, luminosities, and masses for these embedded clusters, examined the star formation rates (SFRs) of their corresponding molecularmore » clouds, and made a comparison between the LMC and the Milky Way. Our preliminary results indicate that embedded clusters in the LMC are generally larger, more luminous, and more massive than those in the local Milky Way. We also find that the surface densities of both embedded clusters and molecular clouds is ∼3 times higher than in our local environment, the embedded cluster mass surface density is ∼40 times higher, the SFR is ∼20 times higher, and the star formation efficiency is ∼10 times higher. Despite these differences, the SFRs of the LMC molecular clouds are consistent with the SFR scaling law presented in Lada et al. This consistency indicates that while the conditions of embedded cluster formation may vary between environments, the overall process within molecular clouds may be universal.« less
Bahlmann, Claus; Burkhardt, Hans
2004-03-01
In this paper, we give a comprehensive description of our writer-independent online handwriting recognition system frog on hand. The focus of this work concerns the presentation of the classification/training approach, which we call cluster generative statistical dynamic time warping (CSDTW). CSDTW is a general, scalable, HMM-based method for variable-sized, sequential data that holistically combines cluster analysis and statistical sequence modeling. It can handle general classification problems that rely on this sequential type of data, e.g., speech recognition, genome processing, robotics, etc. Contrary to previous attempts, clustering and statistical sequence modeling are embedded in a single feature space and use a closely related distance measure. We show character recognition experiments of frog on hand using CSDTW on the UNIPEN online handwriting database. The recognition accuracy is significantly higher than reported results of other handwriting recognition systems. Finally, we describe the real-time implementation of frog on hand on a Linux Compaq iPAQ embedded device.
Ayral, Thomas; Vučičević, Jaksa; Parcollet, Olivier
2017-10-20
We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed self-energies are, by construction, continuous functions of momentum. We show that, in three interaction and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control parameter. By contrast, the GW+extended dynamical mean field theory approximation with four cluster sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling. Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.
Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele
2016-12-28
Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kuang; Libisch, Florian; Carter, Emily A., E-mail: eac@princeton.edu
We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to ourmore » previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors.« less
Prediction of tautomer ratios by embedded-cluster integral equation theory
NASA Astrophysics Data System (ADS)
Kast, Stefan M.; Heil, Jochen; Güssregen, Stefan; Schmidt, K. Friedemann
2010-04-01
The "embedded cluster reference interaction site model" (EC-RISM) approach combines statistical-mechanical integral equation theory and quantum-chemical calculations for predicting thermodynamic data for chemical reactions in solution. The electronic structure of the solute is determined self-consistently with the structure of the solvent that is described by 3D RISM integral equation theory. The continuous solvent-site distribution is mapped onto a set of discrete background charges ("embedded cluster") that represent an additional contribution to the molecular Hamiltonian. The EC-RISM analysis of the SAMPL2 challenge set of tautomers proceeds in three stages. Firstly, the group of compounds for which quantitative experimental free energy data was provided was taken to determine appropriate levels of quantum-chemical theory for geometry optimization and free energy prediction. Secondly, the resulting workflow was applied to the full set, allowing for chemical interpretations of the results. Thirdly, disclosure of experimental data for parts of the compounds facilitated a detailed analysis of methodical issues and suggestions for future improvements of the model. Without specifically adjusting parameters, the EC-RISM model yields the smallest value of the root mean square error for the first set (0.6 kcal mol-1) as well as for the full set of quantitative reaction data (2.0 kcal mol-1) among the SAMPL2 participants.
Acidity in DMSO from the embedded cluster integral equation quantum solvation model.
Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M
2014-04-01
The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.
NASA Astrophysics Data System (ADS)
Ascenso, Joana
The past decade has seen an increase of star formation studies made at the molecular cloud scale, motivated mostly by the deployment of a wealth of sensitive infrared telescopes and instruments. Embedded clusters, long recognised as the basic units of coherent star formation in molecular clouds, are now seen to inhabit preferentially cluster complexes tens of parsecs across. This chapter gives an overview of some important properties of the embedded clusters in these complexes and of the complexes themselves, along with the implications of viewing star formation as a molecular-cloud scale process rather than an isolated process at the scale of clusters.
Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A
2008-04-01
In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.
Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.
LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M
2016-05-20
We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.
NASA Astrophysics Data System (ADS)
Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang
2018-04-01
A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical ejections of massive stars in the currently forming population is also discussed.
Cluster Computing for Embedded/Real-Time Systems
NASA Technical Reports Server (NTRS)
Katz, D.; Kepner, J.
1999-01-01
Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Garnet Kin-Lic
2017-04-30
This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical clustermore » analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).« less
A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111)
NASA Astrophysics Data System (ADS)
Lahav, D.; Klüner, T.
2007-06-01
We derive a variant of a density based embedded cluster approach as an improvement to a recently proposed embedding theory for metallic substrates (Govind et al 1999 J. Chem. Phys. 110 7677; Klüner et al 2001 Phys. Rev. Lett. 86 5954). In this scheme, a local region in space is represented by a small cluster which is treated by accurate quantum chemical methodology. The interaction of the cluster with the infinite solid is taken into account by an effective one-electron embedding operator representing the surrounding region. We propose a self-consistent embedding scheme which resolves intrinsic problems of the former theory, in particular a violation of strict density conservation. The proposed scheme is applied to the well-known benchmark system CO/Pd(111).
Impact of a star formation efficiency profile on the evolution of open clusters
NASA Astrophysics Data System (ADS)
Shukirgaliyev, B.; Parmentier, G.; Berczik, P.; Just, A.
2017-09-01
Aims: We study the effect of the instantaneous expulsion of residual star-forming gas on star clusters in which the residual gas has a density profile that is shallower than that of the embedded cluster. This configuration is expected if star formation proceeds with a given star-formation efficiency per free-fall time in a centrally concentrated molecular gas clump. Methods: We performed direct N-body simulations whose initial conditions were generated by the program "mkhalo" from the package "falcON", adapted for our models. Our model clusters initially had a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution was computed based on a local-density driven clustered star formation model. Our simulations included mass loss by stellar evolution and the tidal field of a host galaxy. Results: We find that a star cluster with a minimum global star formation efficiency (SFE) of 15 percent is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation, the bound fractions of the surviving clusters with the same global SFEs are similar, regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. Conclusions: We therefore conclude that the critical SFE needed to produce a bound cluster is 15 percent, which is roughly half the earlier estimates of 33 percent. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Young clusters can now survive instantaneous gas expulsion with a global SFEs as low as the SFEs observed for embedded clusters in the solar neighborhood (15-30 percent). The reason is that the star cluster density profile is steeper than that of the residual gas. However, in terms of the effective SFE, measured by the virial ratio of the cluster at gas expulsion, our results are in agreement with previous studies.
A model for the infrared emission from an OB star cluster environment
NASA Technical Reports Server (NTRS)
Leisawitz, D.
1991-01-01
A model for the infrared emission from the neighborhood of an OB star cluster is described. The distribution of gas and dust around the stars, properties of the dust, and the cluster and interstellar radiation fields are variable. The model can be applied to regions around clusters embedded to various degrees in their parental molecular clouds (i.e., compact H II regions, blister-type H II regions, and the tenuous H II regions ionized by naked O stars). The model is used to simulate IRAS observations of a typical blister H II region. Infrared surface brightness and spectral energy distributions are predicted and the impact of limited spatial resolution is illustrated. The model results are shown to be consistent with observations of the exemplary outer Galaxy OB cluster NGC 7380. It is planned to use the model as a diagnostic tool to probe the physical conditions and dust properties in star-formation regions and, ultimately, in an interpretation of the spectral energy distributions of spiral galaxies.
Communication: Biological applications of coupled-cluster frozen-density embedding
NASA Astrophysics Data System (ADS)
Heuser, Johannes; Höfener, Sebastian
2018-04-01
We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.
NASA Astrophysics Data System (ADS)
Covey, Kevin R.; Cottaar, M.; Foster, J. B.; Nidever, D. L.; Meyer, M.; Tan, J.; Da Rio, N.; Flaherty, K. M.; Stassun, K.; Frinchaboy, P. M.; Majewski, S.; APOGEE IN-SYNC Team
2014-01-01
Demographic studies of stellar clusters indicate that relatively few persist as bound structures for 100 Myrs or longer. If cluster dispersal is a 'violent' process, it could strongly influence the formation and early evolution of stellar binaries and planetary systems. Unfortunately, measuring the dynamical state of 'typical' (i.e., ~300-1000 member) young star clusters has been difficult, particularly for clusters still embedded within their parental molecular cloud. The near-infrared spectrograph for the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which can measure precise radial velocities for 230 cluster stars simultaneously, is uniquely suited to diagnosing the dynamics of Galactic star formation regions. We give an overview of the INfrared Survey of Young Nebulous Clusters (IN-SYNC), an APOGEE ancillary science program that is carrying out a comparative study of young clusters in the Perseus molecular cloud: NGC 1333, a heavily embedded cluster, and IC 348, which has begun to disperse its surrounding molecular gas. These observations appear to rule out a significantly super-virial velocity dispersion in IC 348, contrary to predictions of models where a cluster's dynamics is strongly influenced by the dispersal of its primordial gas. We also summarize the properties of two newly identified spectroscopic binaries; binary systems such as these play a key role in the dynamical evolution of young clusters, and introduce velocity offsets that must be accounted for in measuring cluster velocity dispersions.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O
2017-12-12
Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.
Leverentz, Hannah R; Truhlar, Donald G
2009-06-09
This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.
A channel differential EZW coding scheme for EEG data compression.
Dehkordi, Vahid R; Daou, Hoda; Labeau, Fabrice
2011-11-01
In this paper, a method is proposed to compress multichannel electroencephalographic (EEG) signals in a scalable fashion. Correlation between EEG channels is exploited through clustering using a k-means method. Representative channels for each of the clusters are encoded individually while other channels are encoded differentially, i.e., with respect to their respective cluster representatives. The compression is performed using the embedded zero-tree wavelet encoding adapted to 1-D signals. Simulations show that the scalable features of the scheme lead to a flexible quality/rate tradeoff, without requiring detailed EEG signal modeling.
Near-infrared study of new embedded clusters in the Carina complex
NASA Astrophysics Data System (ADS)
Oliveira, R. A. P.; Bica, E.; Bonatto, C.
2018-05-01
We analyse the nature of a sample of stellar overdensities that we found projected on the Carina complex. This study is based on the Two Micron All Sky Survey photometry and involves the photometry decontamination of field stars, elaboration of intrinsic colour-magnitude diagrams [CMDs; J × (J - Ks)], colour-colour diagrams (J - H) × (H - Ks), and radial density profiles, in order to determine the structure and the main astrophysical parameters of the best candidates. The verification of an overdensity as an embedded cluster requires a CMD consistent with a PMS content and MS stars, if any. From these results, we are able to verify if they are, in fact, embedded clusters. The results were, in general, rewarding: in a sample of 101 overdensities, the analysis provided 15 candidates, of which three were previously catalogued as clusters (CCCP-Cl 16, Treasure Chest, and FSR 1555), and the 12 remaining are discoveries that provided significant results, with ages not above 4.5 Myr and distances compatible with the studied complex. The resulting values for the differential reddening of most candidates were relatively high, confirming that these clusters are still (partially or fully) embedded in the surrounding gas and dust, as a rule within a shell. Histograms with the distribution of the masses, ages, and distances were also produced, to give an overview of the results. We conclude that all the 12 newly found embedded clusters are related to the Carina complex.
X-Ray Gas Temperatures in the Arc Clusters MS0440+204 and MS0302+1658
NASA Technical Reports Server (NTRS)
Gioia, Isabella M.; White, Nicholas
1997-01-01
The cluster of galaxies MS0440+02, originally discovered through its X-ray emission, was part of an optical observational program to search for arcs and arclets in a complete sample of X-ray luminous, medium-distant clusters of galaxies. Mauna Kea CCD images of MS0440+02 showed a remarkable optical morphology. The core of the cluster contains 6 bright galaxies and numerous fainter ones embedded in a low surface brightness halo. Besides, MS0440+02 is the most spectacular example that we have found of an arc system in a compact condensed cluster, with arcs symmetrically distributed to draw almost perfect circles around the cluster center. Giant arcs are magnified images of distant galaxies, gravitationally distorted by massive foreground clusters. It is of great importance to compare the results of the lensing studies with those derived from X-ray observations, as the two are independent methods of studying the mass distribution. Thus MS0440+02 was the ideal target to obtain temperature measurement with ASCA and good spatial resolution X-ray observations with ROSAT. The X-ray data have been used in conjunction with Hubble Space Telescope observations to put more stringent constrains on the mass estimates. Most of the different wavelength datasets have been reduced and analyzed. Mass determinations have been separately obtained from galaxy virial motions and X-ray profile fitting using the cluster gas temperature as measured by the ASCA satellite. Assuming that the hot gas is in hydrostatic equilibrium and in a spherical potential, we find from the X-ray data a mass distribution profile that is well described by a Beta model. From the multiple images formed by gravitational lensing (HST data) using the modelling of the gravitational lensed arcs, we have derived Beta model. To reconcile the mass estimates we have explored the possibility of having a supercluster surrounding the MOS0440 cluster, that is a model with two isothermal spheres, one embedded inside the other. These results have been published or are in press.
Diverse Power Iteration Embeddings and Its Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang H.; Yoo S.; Yu, D.
2014-12-14
Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detectionmore » and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Mi; Jung, Min-Sang; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr, E-mail: mcjung@oist.jp
2015-08-15
Using scanning electron microscopy (SEM) and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiO{sub x}-capped Si, and SiO{sub 2}-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.
Functionalizing graphene by embedded boron clusters
NASA Astrophysics Data System (ADS)
Quandt, Alexander; Kunstmann, Jens; Ozdogan, Cem; Fehske, Holger
2010-03-01
We present results from an ab initio study of B7 clusters implanted into graphene [1,2]. Our model system consists of an alternating chain of quasiplanar B7 clusters. We show that graphene easily accepts these alternating B7-C6 chains and that the implanted boron components may dramatically modify the electronic properties. This suggests that our model system might serve as a blueprint for the controlled layout of graphene based nanodevices, where the semiconducting properties are supplemented by parts of the graphene matrix itself, and the basic metallic wiring is provided by alternating chains of implanted boron clusters. [1] A. Quandt, C. "Ozdogan, J. Kunstmann, and H. Fehske, Nanotechnology 19, 335707 (2008). [2] A. Quandt, C. "Ozdogan, J. Kunstmann, and H. Fehske, phys. stat. solidi (b) 245, 2077 (2008).
Functionalizing graphene by embedded boron clusters
NASA Astrophysics Data System (ADS)
Quandt, Alexander; Özdoğan, Cem; Kunstmann, Jens; Fehske, Holger
2008-08-01
We present a model system that might serve as a blueprint for the controlled layout of graphene based nanodevices. The systems consists of chains of B7 clusters implanted in a graphene matrix, where the boron clusters are not directly connected. We show that the graphene matrix easily accepts these alternating B7-C6 chains and that the implanted boron components may dramatically modify the electronic properties of graphene based nanomaterials. This suggests a functionalization of graphene nanomaterials, where the semiconducting properties might be supplemented by parts of the graphene matrix itself, but the basic wiring will be provided by alternating chains of implanted boron clusters that connect these areas.
Identifying synonymy between relational phrases using word embeddings.
Nguyen, Nhung T H; Miwa, Makoto; Tsuruoka, Yoshimasa; Tojo, Satoshi
2015-08-01
Many text mining applications in the biomedical domain benefit from automatic clustering of relational phrases into synonymous groups, since it alleviates the problem of spurious mismatches caused by the diversity of natural language expressions. Most of the previous work that has addressed this task of synonymy resolution uses similarity metrics between relational phrases based on textual strings or dependency paths, which, for the most part, ignore the context around the relations. To overcome this shortcoming, we employ a word embedding technique to encode relational phrases. We then apply the k-means algorithm on top of the distributional representations to cluster the phrases. Our experimental results show that this approach outperforms state-of-the-art statistical models including latent Dirichlet allocation and Markov logic networks. Copyright © 2015 Elsevier Inc. All rights reserved.
A Simple ab initio Model for the Hydrated Electron that Matches Experiment
Kumar, Anil; Walker, Jonathan A.; Bartels, David M.; Sevilla, Michael D.
2015-01-01
Since its discovery over 50 years ago, the “structure” and properties of the hydrated electron has been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy zero “Kelvin” structure found for any 4-water (or larger) anion cluster, at any post-Hartree-Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (UMJ: Uhlig, Marsalek, and Jungwirth, Journal of Physical Chemistry Letters 2012, 3, 3071-5), with four OH bonds oriented toward the maximum charge density in a small central “void”. The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
Consequences of realistic embedding for the L 2,3 edge XAS of α-Fe 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagus, Paul S.; Nelin, Connie J.; Sassi, Michel
Cluster models of condensed systems are often used to simulate the core-level spectra obtained with X-ray Photoelectron Spectroscopy, XPS, or with X-ray Absorption Spectroscopy, XAS, especially for near edge features.
Solvatochromic shifts from coupled-cluster theory embedded in density functional theory
NASA Astrophysics Data System (ADS)
Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas
2013-09-01
Building on the framework recently reported for determining general response properties for frozen-density embedding [S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012)], 10.1063/1.3675845, in this work we report a first implementation of an embedded coupled-cluster in density-functional theory (CC-in-DFT) scheme for electronic excitations, where only the response of the active subsystem is taken into account. The formalism is applied to the calculation of coupled-cluster excitation energies of water and uracil in aqueous solution. We find that the CC-in-DFT results are in good agreement with reference calculations and experimental results. The accuracy of calculations is mainly sensitive to factors influencing the correlation treatment (basis set quality, truncation of the cluster operator) and to the embedding treatment of the ground-state (choice of density functionals). This allows for efficient approximations at the excited state calculation step without compromising the accuracy. This approximate scheme makes it possible to use a first principles approach to investigate environment effects with specific interactions at coupled-cluster level of theory at a cost comparable to that of calculations of the individual subsystems in vacuum.
Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition.
Bianne-Bernard, Anne-Laure; Menasri, Farès; Al-Hajj Mohamad, Rami; Mokbel, Chafic; Kermorvant, Christopher; Likforman-Sulem, Laurence
2011-10-01
This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.
Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.
Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra
2006-01-14
We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.
Fundamental Theory of Crystal Decomposition
1991-05-01
rather than combine them as is often the case in a computation based on the density functional method.4 In the Case of a cluster embedded in a...classical lattice, special care needs to be taken to ensure that mathematical consistency is achieved between the cluster and the embedding lattice. This has...localizing potential or KKLP. Simulation of a large crystallite or an infinite lattice containing a point defect represented by a cluster and a
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele
2013-11-14
We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.
The Formation and Early Evolution of Embedded Massive Star Clusters
NASA Astrophysics Data System (ADS)
Barnes, Peter
We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A measurement of the local star formation rate per gas mass surface density in the Milky Way, as well as examining arm versus interarm dependencies. Methods and Techniques: We will primarily use archival cryogenic-Spitzer, WISE, and Herschel data, and support this with existing data from ground- and space-based facilities, to conduct a comprehensive assay of critical metrics (as above) and provide observational calibration of theoretical models over the entire massive star formation process. The mm-wave molecular maps of 303 dense gas clumps in multiple species, comprising all the gas above a column density limit of 100 Msun/pc^2, are already inhand. We have also surveyed the embedded stellar content of these clumps, down to subsolar masses, in the near-infrared J, H, and K bands and with deep Warm Spitzer data. Relevance to NASA programs: Analysis to date of the space- and ground-based data has yielded several new insights into evolutionary timescales and the chemical & energy evolution of clumps during the cluster formation process. Investigations as described in this proposal will yield new demographic insights on how the properties and evolution of molecular clouds relate to the properties of massive stars and clusters that form within them, and significantly enhance the science return from these spacecraft missions. The large number of resulting data products are already being made publicly available to the astronomical community, providing crucial information for future NASA science targets. This research will be performed within the framework of a broad international collaboration spanning four continents. This ambitious but practical program will therefore maximise the science payoff from these archival data sets, provide enhanced legacy data for more advanced studies with the next generation of ground- and space-based instruments such as JWST, and open up several new windows into the discovery space of Galactic star formation & interstellar medium studies.
Réal, Florent; Ordejón, Belén; Vallet, Valérie; Flament, Jean-Pierre; Schamps, Joël
2009-11-21
New ab initio embedded-cluster calculations devoted to simulating the electronic spectroscopy of Bi(3+) impurities in Y(2)O(3) sesquioxide for substitutions in either S(6) or C(2) cationic sites have been carried out taking special care of the quality of the environment. A considerable quantitative improvement with respect to previous studies [F. Real et al. J. Chem. Phys. 125, 174709 (2006); F. Real et al. J. Chem. Phys. 127, 104705 (2007)] is brought by using environments of the impurities obtained via supercell techniques that allow the whole (pseudo) crystal to relax (WCR geometries) instead of environments obtained from local relaxation of the first coordination shell only (FSR geometries) within the embedded cluster approach, as was done previously. In particular the uniform 0.4 eV discrepancy of absorption energies found previously with FSR environments disappears completely when the new WCR environments of the impurities are employed. Moreover emission energies and hence Stokes shifts are in much better agreement with experiment. These decisive improvements are mainly due to a lowering of the local point-group symmetry (S(6)-->C(3) and C(2)-->C(1)) when relaxing the geometry of the emitting (lowest) triplet state. This symmetry lowering was not observed in FSR embedded cluster relaxations because the crystal field of the embedding frozen at the genuine pure crystal positions seems to be a more important driving force than the interactions within the cluster, thus constraining the overall symmetry of the system. Variations of the doping rate are found to have negligible influence on the spectra. In conclusion, the use of WCR environments may be crucial to render the structural distortions occurring in a doped crystal and it may help to significantly improve the embedded-cluster methodology to reach the quantitative accuracy necessary to interpret and predict luminescence properties of doped materials of this type.
Development of a Mandarin-English Bilingual Speech Recognition System for Real World Music Retrieval
NASA Astrophysics Data System (ADS)
Zhang, Qingqing; Pan, Jielin; Lin, Yang; Shao, Jian; Yan, Yonghong
In recent decades, there has been a great deal of research into the problem of bilingual speech recognition-to develop a recognizer that can handle inter- and intra-sentential language switching between two languages. This paper presents our recent work on the development of a grammar-constrained, Mandarin-English bilingual Speech Recognition System (MESRS) for real world music retrieval. Two of the main difficult issues in handling the bilingual speech recognition systems for real world applications are tackled in this paper. One is to balance the performance and the complexity of the bilingual speech recognition system; the other is to effectively deal with the matrix language accents in embedded language**. In order to process the intra-sentential language switching and reduce the amount of data required to robustly estimate statistical models, a compact single set of bilingual acoustic models derived by phone set merging and clustering is developed instead of using two separate monolingual models for each language. In our study, a novel Two-pass phone clustering method based on Confusion Matrix (TCM) is presented and compared with the log-likelihood measure method. Experiments testify that TCM can achieve better performance. Since potential system users' native language is Mandarin which is regarded as a matrix language in our application, their pronunciations of English as the embedded language usually contain Mandarin accents. In order to deal with the matrix language accents in embedded language, different non-native adaptation approaches are investigated. Experiments show that model retraining method outperforms the other common adaptation methods such as Maximum A Posteriori (MAP). With the effective incorporation of approaches on phone clustering and non-native adaptation, the Phrase Error Rate (PER) of MESRS for English utterances was reduced by 24.47% relatively compared to the baseline monolingual English system while the PER on Mandarin utterances was comparable to that of the baseline monolingual Mandarin system. The performance for bilingual utterances achieved 22.37% relative PER reduction.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
Li, Meina; Kwak, Keun-Chang; Kim, Youn Tae
2016-01-01
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model. PMID:27669249
Molecular dynamics study of the melting of a supported 887-atom Pd decahedron.
Schebarchov, D; Hendy, S C; Polak, W
2009-04-08
We employ classical molecular dynamics simulations to investigate the melting behaviour of a decahedral Pd(887) cluster on a single layer of graphite (graphene). The interaction between Pd atoms is modelled with an embedded-atom potential, while the adhesion of Pd atoms to the substrate is approximated with a Lennard-Jones potential. We find that the decahedral structure persists at temperatures close to the melting point, but that just below the melting transition, the cluster accommodates to the substrate by means of complete melting and then recrystallization into an fcc structure. These structural changes are in qualitative agreement with recently proposed models, and they verify the existence of an energy barrier preventing softly deposited clusters from 'wetting' the substrate at temperatures below the melting point.
Self-energy behavior away from the Fermi surface in doped Mott insulators.
Merino, J; Gunnarsson, O; Kotliar, G
2016-02-03
We analyze self-energies of electrons away from the Fermi surface in doped Mott insulators using the dynamical cluster approximation to the Hubbard model. For large onsite repulsion, U, and hole doping, the magnitude of the self-energy for imaginary frequencies at the top of the band ([Formula: see text]) is enhanced with respect to the self-energy magnitude at the bottom of the band ([Formula: see text]). The self-energy behavior at these two [Formula: see text]-points is switched for electron doping. Although the hybridization is much larger for (0, 0) than for [Formula: see text], we demonstrate that this is not the origin of this difference. Isolated clusters under a downward shift of the chemical potential, [Formula: see text], at half-filling reproduce the overall self-energy behavior at (0, 0) and [Formula: see text] found in low hole doped embedded clusters. This happens although there is no change in the electronic structure of the isolated clusters. Our analysis shows that a downward shift of the chemical potential which weakly hole dopes the Mott insulator can lead to a large enhancement of the [Formula: see text] self-energy for imaginary frequencies which is not associated with electronic correlation effects, even in embedded clusters. Interpretations of the strength of electronic correlations based on self-energies for imaginary frequencies are, in general, misleading for states away from the Fermi surface.
Interpreting semantic clustering effects in free recall.
Manning, Jeremy R; Kahana, Michael J
2012-07-01
The order in which participants choose to recall words from a studied list of randomly selected words provides insights into how memories of the words are represented, organised, and retrieved. One pervasive finding is that when a pair of semantically related words (e.g., "cat" and "dog") is embedded in the studied list, the related words are often recalled successively. This tendency to successively recall semantically related words is termed semantic clustering (Bousfield, 1953; Bousfield & Sedgewick, 1944; Cofer, Bruce, & Reicher, 1966). Measuring semantic clustering effects requires making assumptions about which words participants consider to be similar in meaning. However, it is often difficult to gain insights into individual participants' internal semantic models, and for this reason researchers typically rely on standardised semantic similarity metrics. Here we use simulations to gain insights into the expected magnitudes of semantic clustering effects given systematic differences between participants' internal similarity models and the similarity metric used to quantify the degree of semantic clustering. Our results provide a number of useful insights into the interpretation of semantic clustering effects in free recall.
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Kroupa, Pavel; Rocha-Pinto, Helio J.; Giersz, Mirek
2018-03-01
In order to allow a better understanding of the origin of Galactic field populations, dynamical equivalence of stellar-dynamical systems has been postulated by Kroupa and Belloni et al. to allow mapping of solutions of the initial conditions of embedded clusters such that they yield, after a period of dynamical processing, the Galactic field population. Dynamically equivalent systems are defined to initially and finally have the same distribution functions of periods, mass ratios and eccentricities of binary stars. Here, we search for dynamically equivalent clusters using the MOCCA code. The simulations confirm that dynamically equivalent solutions indeed exist. The result is that the solution space is next to identical to the radius-mass relation of Marks & Kroupa, ( r_h/pc )= 0.1^{+0.07}_{-0.04} ( M_ecl/M_{⊙} )^{0.13± 0.04}. This relation is in good agreement with the oIMF. This is achieved by applying a similar procedurebserved density of molecular cloud clumps. According to the solutions, the time-scale to reach dynamical equivalence is about 0.5 Myr which is, interestingly, consistent with the lifetime of ultra-compact H II regions and the time-scale needed for gas expulsion to be active in observed very young clusters as based on their dynamical modelling.
HIGH-ENERGY NEUTRINOS FROM SOURCES IN CLUSTERS OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ke; Olinto, Angela V.
2016-09-01
High-energy cosmic rays can be accelerated in clusters of galaxies, by mega-parsec scale shocks induced by the accretion of gas during the formation of large-scale structures, or by powerful sources harbored in clusters. Once accelerated, the highest energy particles leave the cluster via almost rectilinear trajectories, while lower energy ones can be confined by the cluster magnetic field up to cosmological time and interact with the intracluster gas. Using a realistic model of the baryon distribution and the turbulent magnetic field in clusters, we studied the propagation and hadronic interaction of high-energy protons in the intracluster medium. We report themore » cumulative cosmic-ray and neutrino spectra generated by galaxy clusters, including embedded sources, and demonstrate that clusters can contribute a significant fraction of the observed IceCube neutrinos above 30 TeV while remaining undetected in high-energy cosmic rays and γ rays for reasonable choices of parameters and source scenarios.« less
A WISE Survey of New Star Clusters in the Central Plane Region of the Milky Way
NASA Astrophysics Data System (ADS)
Ryu, Jinhyuk; Lee, Myung Gyoon
2018-04-01
We present the discovery of new star clusters in the central plane region (| l| < 30^\\circ and | b| < 6^\\circ ) of the Milky Way. In order to overcome the extinction problem and the spatial limit of previous surveys, we use the Wide-field Infrared Survey Explorer (WISE) data to find clusters. We also use other infrared survey data in the archive for additional analysis. We find 923 new clusters, of which 202 clusters are embedded clusters. These clusters are concentrated toward the Galactic plane and show a symmetric distribution with respect to the Galactic latitude. The embedded clusters show a stronger concentration to the Galactic plane than the nonembedded clusters. The new clusters are found more in the first Galactic quadrant, while previously known clusters are found more in the fourth Galactic quadrant. The spatial distribution of the combined sample of known clusters and new clusters is approximately symmetric with respect to the Galactic longitude. We estimate reddenings, distances, and relative ages of the 15 class A clusters using theoretical isochrones. Ten of them are relatively old (age >800 Myr) and five are young (age ≈4 Myr).
NASA Astrophysics Data System (ADS)
Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.
2008-02-01
Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.
NASA Astrophysics Data System (ADS)
Weitzner, Stephen E.; Dabo, Ismaila
2017-11-01
The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.
Physical conditions in star-forming regions around S235
NASA Astrophysics Data System (ADS)
Kirsanova, M. S.; Wiebe, D. S.; Sobolev, A. M.; Henkel, C.; Tsivilev, A. P.
2014-01-01
Gas density and temperature in star-forming regions around Sh2-235 are derived from ammonia line observations. This information is used to evaluate formation scenarios and to determine evolutionary stages of the young embedded clusters S235 East 1, S235 East 2 and S235 Central. We also estimate the gas mass in the embedded clusters and its ratio to the stellar mass. S235 East 1 appears to be less evolved than S235 East 2 and S235 Central. In S235 East 1 the molecular gas mass exceeds that in the other clusters. Also, this cluster is more embedded in the parent gas cloud than the other two. Comparison with a theoretical model shows that the formation of these three clusters could have been stimulated by the expansion of the Sh2-235 H II region (hereafter S235) via a collect-and-collapse process, provided the density in the surrounding gas exceeds 3 × 103 cm-3, or via collapse of pre-existing clumps. The expansion of S235 cannot be responsible for star formation in the southern S235 A-B region. However, formation of the massive stars in this region might have been triggered by a large-scale supernova shock. Thus, triggered star formation in the studied region may come in three varieties, namely collect-and-collapse and collapse of pre-existing clumps, both initiated by expansion of the local H II regions, and triggered by an external large-scale shock. We argue that the S235 A H II region expands into a highly non-uniform medium with increasing density. It is too young to trigger star formation in its vicinity by a collect-and-collapse process. There is an age spread inside the S235 A-B region. Massive stars in the S235 A-B region are considerably younger than lower mass stars in the same area. This follows from the estimates of their ages and the ages of associated H II regions.
Planet population synthesis driven by pebble accretion in cluster environments
NASA Astrophysics Data System (ADS)
Ndugu, N.; Bitsch, B.; Jurua, E.
2018-02-01
The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp < 0.1 au) preferably form in the inner disc. We find that the formation of gas giants via pebble accretion is in agreement with the metallicity correlation, meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.
Nonlinear dimensionality reduction of data lying on the multicluster manifold.
Meng, Deyu; Leung, Yee; Fung, Tung; Xu, Zongben
2008-08-01
A new method, which is called decomposition-composition (D-C) method, is proposed for the nonlinear dimensionality reduction (NLDR) of data lying on the multicluster manifold. The main idea is first to decompose a given data set into clusters and independently calculate the low-dimensional embeddings of each cluster by the decomposition procedure. Based on the intercluster connections, the embeddings of all clusters are then composed into their proper positions and orientations by the composition procedure. Different from other NLDR methods for multicluster data, which consider associatively the intracluster and intercluster information, the D-C method capitalizes on the separate employment of the intracluster neighborhood structures and the intercluster topologies for effective dimensionality reduction. This, on one hand, isometrically preserves the rigid-body shapes of the clusters in the embedding process and, on the other hand, guarantees the proper locations and orientations of all clusters. The theoretical arguments are supported by a series of experiments performed on the synthetic and real-life data sets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically analyzed and experimentally demonstrated. Related strategies for automatic parameter selection are also examined.
II Zw 40 - 30 Doradus on Steroids
NASA Astrophysics Data System (ADS)
Leitherer, Claus; Lee, Janice C.; Levesque, Emily M.
2017-11-01
We obtained HST COS G140L spectra of the enigmatic nearby blue compact dwarf galaxy II Zw 40. The galaxy hosts a nuclear super star cluster embedded in a radio-bright nebula, similar to those observed in the related blue compact dwarfs NGC 5253 and Henize 2-10. The ultraviolet spectrum of II Zw 40 is exceptional in terms of the strength of He II 1640, O III] 1666 and C III] 1909. We determined reddening, age, and the cluster mass from the ultraviolet data. The super nebula and the ionizing cluster exceed the ionizing luminosity and stellar mass of the local benchmark 30 Doradus by an order of magnitude. Comparison with stellar evolution models accounting for rotation reveals serious short-comings: these models do not account for the presence of Wolf-Rayet-like stars at young ages observed in II Zw 40. Photoionization modeling is used to probe the origin of the nebular lines and determine gas phase abundances. C/O is solar, in agreement with the result of the stellar-wind modeling.
Electrostatically Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model Systems.
Kurbanov, Elbek K; Leverentz, Hannah R; Truhlar, Donald G; Amin, Elizabeth A
2012-01-10
The electrostatically embedded many-body (EE-MB) method has proven accurate for calculating cohesive and conformational energies in clusters, and it has recently been extended to obtain bond dissociation energies for metal-ligand bonds in positively charged inorganic coordination complexes. In the present paper, we present four key guidelines that maximize the accuracy and efficiency of EE-MB calculations for metal centers. Then, following these guidelines, we show that the EE-MB method can also perform well for bond dissociation energies in a variety of neutral and negatively charged inorganic coordination systems representing metalloenzyme active sites, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor, a popular target for drug development. In particular, we find that the electrostatically embedded three-body (EE-3B) method is able to reproduce conventionally calculated bond-breaking energies in a series of pentacoordinate and hexacoordinate zinc-containing systems with an average absolute error (averaged over 25 cases) of only 0.98 kcal/mol.
NASA Astrophysics Data System (ADS)
Neichel, B.; Samal, M. R.; Plana, H.; Zavagno, A.; Bernard, A.; Fusco, T.
2015-04-01
Aims: We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 H ii region. As a complementary goal, we aim to demonstrate the gain provided by wide-field adaptive optics (WFAO) instruments to study young clusters. Methods: We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is a WFAO instrument that delivers almost diffraction-limited images over a field of ~2' across. The exquisite angular resolution allows us to reach a limiting magnitude of J ~ 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select young stellar object (YSO) candidates. The JHKs photometry is also used in conjunction with pre-main sequence evolutionary models to infer masses and ages. The K-band luminosity function is derived, and then used to build the initial mass function (IMF) of the cluster. Results: We detect the presence of 80 YSO candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. More precisely, we find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are ≤3 Myr. When looking at the spatial distribution of these two populations, we find evidence of a potential age gradient across the field that suggests sequential star formation. We construct the IMF and show that we can sample the mass distribution well into the brown dwarf regime (down to ~0.01 M⊙). The logarithmic mass function rises to peak at ~0.3 M⊙, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 ± 18 M⊙, while the ratio derived of brown dwarfs to star is 18 ± 5%. When comparing it with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348, or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus. These results suggest that the medium-to-low mass end of the IMF possibly depends on environment.
NASA Astrophysics Data System (ADS)
Piazzoni, C.; Blomqvist, M.; Podestà, A.; Bardizza, G.; Bonati, M.; Piseri, P.; Milani, P.; Davies, C.; Hatto, P.; Ducati, C.; Sedláčková, K.; Radnóczi, G.
2008-01-01
We report the production and characterization of nanocomposite thin films consisting of a titanium nitride matrix with embedded molybdenum disulphide fullerene-like nanoparticles. This was achieved by combining a cluster source generating a pulsed supersonic beam of MoS2 clusters with an industrial cathodic arc reactive evaporation apparatus used for TiN deposition. Cluster-assembled films show the presence of MoS2 nanocages and nanostructures and the survival of such structures dispersed in the TiN matrix in the co-deposited samples. Nanotribological characterization by atomic force microscopy shows that the presence of MoS2 nanoparticles even in very low concentration modifies the behaviour of the TiN matrix.
Optimal control of the strong-field ionization of silver clusters in helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, N. X.; Goede, S.; Przystawik, A.
Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less
Rotation in young massive star clusters
NASA Astrophysics Data System (ADS)
Mapelli, Michela
2017-05-01
Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.
Extending density functional embedding theory for covalently bonded systems.
Yu, Kuang; Carter, Emily A
2017-12-19
Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.
Regulation of star formation in giant galaxies by precipitation, feedback and conduction.
Voit, G M; Donahue, M; Bryan, G L; McDonald, M
2015-03-12
The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
NASA Astrophysics Data System (ADS)
Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xufen; Wang, Yougang; Feix, Martin
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borghi, F.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it
We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Young's modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio ofmore » metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.« less
Thomas D. Rojas
2007-01-01
National forest lands encompass numerous rural and urban communities. Some national-forest-based communities lie embedded within national forests, and others reside just outside the official boundaries of national forests. The urban and rural communities within or near national forest lands include a wide variety of historical traditions and cultural values that affect...
Formation of Very Young Massive Clusters and Implications for Globular Clusters
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel
How Very Young Massive star Clusters (VYMCs; also known as "starburst" clusters), which typically are of ≳ 104 M ⊙ and are a few Myr old, form out of Giant Molecular Clouds is still largely an open question. Increasingly detailed observations of young star clusters and star-forming molecular clouds and computational studies provide clues about their formation scenarios and the underlying physical processes involved. This chapter is focused on reviewing the decade-long studies that attempt to computationally reproduce the well-observed nearby VYMCs, such as the Orion Nebula Cluster, R136 and NGC 3603 young cluster, thereby shedding light on birth conditions of massive star clusters, in general. On this regard, focus is given on direct N-body modelling of real-sized massive star clusters, with a monolithic structure and undergoing residual gas expulsion, which have consistently reproduced the observed characteristics of several VYMCs and also of young star clusters, in general. The connection of these relatively simplified model calculations with the structural richness of dense molecular clouds and the complexity of hydrodynamic calculations of star cluster formation is presented in detail. Furthermore, the connections of such VYMCs with globular clusters, which are nearly as old as our Universe, is discussed. The chapter is concluded by addressing long-term deeply gas-embedded (at least apparently) and substructured systems like W3 Main. While most of the results are quoted from existing and up-to-date literature, in an integrated fashion, several new insights and discussions are provided.
Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.
Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji
2017-10-30
We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.
A self-contamination model for the formation of globular star clusters
NASA Astrophysics Data System (ADS)
Brown, James Howard
Described here is a model of globular cluster formation which allows the self contamination of the cluster by an earlier generation of massive stars. It is first shown that such self-contamination naturally produces an Fe/H in the range from -2.5 to -1.0, precisely the same range observed in the metal poor (halo) globular clusters; this also seems to require that the disk clusters started with a substantial initial metallicity. To minimize the problem of creating homogeneous globular clusters, the second (currently observed) generation of stars is assumed to form in the expanding supershell around the first generation stars. Both numerical and analytic models are used to address this problem. The most important result of this investigation was that the late evolution of the supershell is the most important, and that this phase of the evolution is dominated by the external medium in which the cloud is embedded. This result and the requirement that only the most tightly bound systems may become globular clusters lead to the conclusion that a globular cluster with the mass and binding energy typically observed can be formed at star formation efficiences as low as 10-20 percent. Furthermore, self contamination requires that the typical Fe/H of a bound system be about -1.6, independent of the free parameters of the model, allowing the clusters and field stars to form with different metallicity distributions in spite of their forming at the same time. Since the formation of globular clusters in this model is tied to the external pressure, the halo globular cluster masses and distribution can be used as probes of the early galactic structure. In particular, this model requires an increase in the typical globular cluster mass as one moves out from the galactic center; the masses of the halo clusters are examined, and they show considerable evidence for such a gradient. Based on a pressure distribution derived from this data, the effect of the galactic tidal field on the model is also investigated using an N-body simulation.
A clustering package for nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model.
Bruneau, Marine; Mottet, Thierry; Moulin, Serge; Kerbiriou, Maël; Chouly, Franz; Chretien, Stéphane; Guyeux, Christophe
2018-02-01
In this article, a new Python package for nucleotide sequences clustering is proposed. This package, freely available on-line, implements a Laplacian eigenmap embedding and a Gaussian Mixture Model for DNA clustering. It takes nucleotide sequences as input, and produces the optimal number of clusters along with a relevant visualization. Despite the fact that we did not optimise the computational speed, our method still performs reasonably well in practice. Our focus was mainly on data analytics and accuracy and as a result, our approach outperforms the state of the art, even in the case of divergent sequences. Furthermore, an a priori knowledge on the number of clusters is not required here. For the sake of illustration, this method is applied on a set of 100 DNA sequences taken from the mitochondrially encoded NADH dehydrogenase 3 (ND3) gene, extracted from a collection of Platyhelminthes and Nematoda species. The resulting clusters are tightly consistent with the phylogenetic tree computed using a maximum likelihood approach on gene alignment. They are coherent too with the NCBI taxonomy. Further test results based on synthesized data are then provided, showing that the proposed approach is better able to recover the clusters than the most widely used software, namely Cd-hit-est and BLASTClust. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yin, Zhong; Zhang, Jianhua
2014-07-01
Identifying the abnormal changes of mental workload (MWL) over time is quite crucial for preventing the accidents due to cognitive overload and inattention of human operators in safety-critical human-machine systems. It is known that various neuroimaging technologies can be used to identify the MWL variations. In order to classify MWL into a few discrete levels using representative MWL indicators and small-sized training samples, a novel EEG-based approach by combining locally linear embedding (LLE), support vector clustering (SVC) and support vector data description (SVDD) techniques is proposed and evaluated by using the experimentally measured data. The MWL indicators from different cortical regions are first elicited by using the LLE technique. Then, the SVC approach is used to find the clusters of these MWL indicators and thereby to detect MWL variations. It is shown that the clusters can be interpreted as the binary class MWL. Furthermore, a trained binary SVDD classifier is shown to be capable of detecting slight variations of those indicators. By combining the two schemes, a SVC-SVDD framework is proposed, where the clear-cut (smaller) cluster is detected by SVC first and then a subsequent SVDD model is utilized to divide the overlapped (larger) cluster into two classes. Finally, three-class MWL levels (low, normal and high) can be identified automatically. The experimental data analysis results are compared with those of several existing methods. It has been demonstrated that the proposed framework can lead to acceptable computational accuracy and has the advantages of both unsupervised and supervised training strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Charge-controlled switchable CO adsorption on FeN4 cluster embedded in graphene
NASA Astrophysics Data System (ADS)
Omidvar, Akbar
2018-02-01
Electrical charging of an FeN4 cluster embedded in graphene (FeN4G) is proposed as an approach for electrocatalytically switchable carbon monoxide (CO) adsorption. Using density functional theory (DFT), we found that the CO molecule is strongly adsorbed on the uncharged FeN4G cluster. Our results show that the adsorption energy of a CO molecule on the FeN4G cluster is dramatically decreased by introducing extra electrons into the cluster. Once the charges are removed, the CO molecule is spontaneously adsorbed on the FeN4G absorbent. In the framework of frontier molecular orbital (FMO) analysis, the enhanced sensitivity and reactivity of the FeN4G cluster towards the CO molecule can be interpreted in terms of interaction between the HOMO of CO molecule and the LUMO of FeN4G cluster. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Our study indicates that the FeN4G nanomaterial is an excellent absorbent for controllable and reversible capture and release of the CO.
NASA Astrophysics Data System (ADS)
Parmentier, Geneviève; Baumgardt, Holger
2012-12-01
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently during violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio of the dynamical mass to luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields of view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.
Roncero, Octavio; Aguado, Alfredo; Batista-Romero, Fidel A; Bernal-Uruchurtu, Margarita I; Hernández-Lamoneda, Ramón
2015-03-10
A variant of the density difference driven optimized embedding potential (DDD-OEP) method, proposed by Roncero et al. (J. Chem. Phys. 2009, 131, 234110), has been applied to the calculation of excited states of Br2 within small water clusters. It is found that the strong interaction of Br2 with the lone electronic pair of the water molecules makes necessary to optimize specific embedding potentials for ground and excited electronic states, separately and using the corresponding densities. Diagnosis and convergence studies are presented with the aim of providing methods to be applied for the study of chromophores in solution. Also, some preliminary results obtained for the study of electronic states of Br2 in clathrate cages are presented.
Exploring multicollinearity using a random matrix theory approach.
Feher, Kristen; Whelan, James; Müller, Samuel
2012-01-01
Clustering of gene expression data is often done with the latent aim of dimension reduction, by finding groups of genes that have a common response to potentially unknown stimuli. However, what is poorly understood to date is the behaviour of a low dimensional signal embedded in high dimensions. This paper introduces a multicollinear model which is based on random matrix theory results, and shows potential for the characterisation of a gene cluster's correlation matrix. This model projects a one dimensional signal into many dimensions and is based on the spiked covariance model, but rather characterises the behaviour of the corresponding correlation matrix. The eigenspectrum of the correlation matrix is empirically examined by simulation, under the addition of noise to the original signal. The simulation results are then used to propose a dimension estimation procedure of clusters from data. Moreover, the simulation results warn against considering pairwise correlations in isolation, as the model provides a mechanism whereby a pair of genes with `low' correlation may simply be due to the interaction of high dimension and noise. Instead, collective information about all the variables is given by the eigenspectrum.
Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick
2016-04-01
We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.
Wiggler magnetic field assisted third harmonic generation in expanding clusters
NASA Astrophysics Data System (ADS)
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.
Krause, Katharina; Klopper, Wim
2016-01-28
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
Communication: A simplified coupled-cluster Lagrangian for polarizable embedding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu
A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.
2014-01-01
Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlyingmore » reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.« less
Theoretical research program to study transition metal trimers and embedded clusters
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1987-01-01
The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.
Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO
NASA Astrophysics Data System (ADS)
Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.
2001-09-01
Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.
Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets
NASA Astrophysics Data System (ADS)
Kuhn, Martin; Raggl, Stefan; Martini, Paul; Gitzl, Norbert; Darian, Masoomeh Mahmoodi; Goulart, Marcelo; Postler, Johannes; Feketeová, Linda; Scheier, Paul
2018-02-01
Electron-induced chemistry in imidazole (IMI) clusters embedded in helium nanodroplets (with an average size of 2 × 105 He atoms) has been investigated with high-resolution time-of-flight mass spectrometry. The formation of both, negative and positive, ions was monitored as a function of the cluster size n. In both ion spectra a clear series of peaks with IMI cluster sizes up to at least 25 are observed. While the anions are formed by collisions of IMI n with He*-, the cations are formed through ionization of IMI n by He+ as the measured onset for the cation formation is observed at 24.6 eV (ionization energy of He). The most abundant series of anions are dehydrogenated anions IMI n-1(IMI-H)-, while other anion series are IMI clusters involving CN and C2H4 moieties. The formation of cations is dominated by the protonated cluster ions IMI n H+, while the intensity of parent cluster cations IMI n + is also observed preferentially for the small cluster size n. The observation of series of cluster cations [IMI n CH3]+ suggests either CH3+ cation to be solvated by n neutral IMI molecules, or the electron-induced chemistry has led to the formation of protonated methyl-imidazole solvated by ( n - 1) neutral IMI molecules.
Steganalysis feature improvement using expectation maximization
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M.; Peterson, Gilbert L.; Agaian, Sos S.
2007-04-01
Images and data files provide an excellent opportunity for concealing illegal or clandestine material. Currently, there are over 250 different tools which embed data into an image without causing noticeable changes to the image. From a forensics perspective, when a system is confiscated or an image of a system is generated the investigator needs a tool that can scan and accurately identify files suspected of containing malicious information. The identification process is termed the steganalysis problem which focuses on both blind identification, in which only normal images are available for training, and multi-class identification, in which both the clean and stego images at several embedding rates are available for training. In this paper an investigation of a clustering and classification technique (Expectation Maximization with mixture models) is used to determine if a digital image contains hidden information. The steganalysis problem is for both anomaly detection and multi-class detection. The various clusters represent clean images and stego images with between 1% and 10% embedding percentage. Based on the results it is concluded that the EM classification technique is highly suitable for both blind detection and the multi-class problem.
Mwangi, Benson; Soares, Jair C; Hasan, Khader M
2014-10-30
Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data. We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm. t-SNE was evaluated against classical principal component analysis. Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stoeger, W. R.; Pacholczyk, A. G.; Stepinski, T. F.
1992-01-01
The extent to which individual holes in a cluster of black holes with a mass spectrum can liberate and accrete the resulting material by tidally disrupting stars they encounter, or by capturing stars as binary companions is studied. It is found that the smaller black holes in 'the halo' of such clusters can adequately supply themselves to the level M-dot sub h or greater than 0.0001(M-dot sub h) sub crit, and up to 0.05(M-dot sub h)sub crit for the smallest holes, by tidal disruption, as long as the cluster is embedded in a distribution of stars of relatively high density (not less than 0.1M sub cl/cu pc), and as long as the entire cluster of stars is not too compact (not less than 0.5 pc). Consideration is given to modifications this 'internal' mode of supply introduces in the spectrum emitted by such black hole clusters, and to the current status of their viability as models for AGN and QSOs in light of dynamical studies by Quinlan and Shapiro (1987, 1989).
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Beam power-dependent laser-induced fluorescence radiation quenching of silver-ion-exchanged glasses
NASA Astrophysics Data System (ADS)
Nahal, Arashmid; Khalesifard, Hamid Reza M.
2007-04-01
In this article, results of an investigation about the modification of silver ions embedded in a glass matrix under the action of a CW high-power Ar + laser beam, by means of laser-induced fluorescence, is reported. It is known [A. Nahal, H.R.M. Khalesifard, J. Mostafavi-Amjad, Appl. Phys. B 79 (2004) 513-518] that, as a result of the interaction of the laser beam with the sample, the embedded silver ions reduce to neutral ones and silver clusters are formed. We observed that the fluorescence radiation of the central part of the interaction area, on the sample, diminishes simultaneously with the formation of the neutral clusters. Further increase in the exposure time or the power of the beam results in reappearance of the fluorescence radiation, in the central part of the interaction area. We found that, during and after the interaction the spectrum of the fluorescence radiation changes. This makes it possible to study the laser-induced changes in the embedded silver ions and clusters, in real-time.
Nikfarjam, Azadeh; Sarker, Abeed; O'Connor, Karen; Ginn, Rachel; Gonzalez, Graciela
2015-05-01
Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the language in social media is highly informal, and user-expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug reactions (ADRs) from highly informal text in social media. We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words' semantic similarities. The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors (embeddings) generated from unlabeled user posts in social media using a deep learning technique. ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance. It is possible to extract complex medical concepts, with relatively high performance, from informal, user-generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes of unlabeled data, thus diminishing the need for large, annotated training data sets. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Star formation towards the southern cometary H II region IRAS 17256-3631
NASA Astrophysics Data System (ADS)
Veena, V. S.; Vig, S.; Tej, A.; Varricatt, W. P.; Ghosh, S. K.; Chandrasekhar, T.; Ashok, N. M.
2016-03-01
IRAS 17256-3631 is a southern Galactic massive star-forming region located at a distance of 2 kpc. In this paper, we present a multiwavelength investigation of the embedded cluster, the H II region, as well as the parent cloud. Radio images at 325, 610 and 1372 MHz were obtained using Giant Metrewave Radio Telescope, India while the near-infrared imaging and spectroscopy were carried out using United Kingdom Infrared Telescope and Mt. Abu Infrared Telescope, India. The near-infrared K-band image reveals the presence of a partially embedded infrared cluster. The spectral features of the brightest star in the cluster, IRS-1, spectroscopically agree with a late O or early B star and could be the driving source of this region. Filamentary H2 emission detected towards the outer envelope indicates the presence of highly excited gas. The parent cloud is investigated at far-infrared to millimetre wavelengths and 18 dust clumps have been identified. The spectral energy distributions of these clumps have been fitted as modified blackbodies and the best-fitting peak temperatures are found to range from 14 to 33 K, while the column densities vary from 0.7 to 8.5 × 1022 cm-2. The radio maps show a cometary morphology for the distribution of ionized gas that is density bounded towards the north-west and ionization bounded towards the south-east. This morphology is better explained with the champagne flow model as compared to the bow-shock model. Using observations at near-, mid- and far-infrared, submillimetre and radio wavelengths, we examine the evolutionary stages of various clumps.
NASA Astrophysics Data System (ADS)
Bica, E.; Bonatto, C.
2008-03-01
We study the nature of the globular cluster (GC) candidates FSR 1603 and FSR1755 selected from the catalogue of Froebrich, Scholz & Raftery. Their properties are investigated with Two-Micron All-Sky Survey field-star decontaminated photometry, which is used to build colour-magnitude diagrams (CMDs) and stellar radial density profiles. FSR1603 has the open cluster Ruprecht 101 as optical counterpart, and we show it to be a massive intermediate-age cluster. Relevant parameters of FSR1603 are the age ~1Gyr, distance from the Sun dsolar ~ 2.7kpc, Galactocentric distance RGC ~ 6.4kpc, core radius RC ~ 1.1pc, mass function slope χ ~ 1.8, observed stellar mass (for stars with mass in the range 1.27 <= m <= 2.03Msolar) Mobs ~ 500Msolar and a total (extrapolated to m = 0.08Msolar) stellar mass Mtot ~ 2300Msolar. FSR1755, on the other hand, is not a populous cluster. It may be a sparse young cluster embedded in the HII region Sh2-3, subject to an absorption AV ~ 4.1, located at dsolar ~ 1.3kpc. Important field-star contamination, spatially variable heavy dust obscuration, even in Ks, and gas emission characterize its field. A nearly vertical, sparse blue stellar sequence shows up in the CMDs.
AGES OF STAR CLUSTERS IN THE TIDAL TAILS OF MERGING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulia, A. J.; Chandar, R.; Whitmore, B. C.
We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find amore » lack of very young clusters (≤10 Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single power-law, dN/dL ∝ L{sup α}, with −2.6 < α < −2.0. We find a stellar age gradient across some of the tidal tails, which we interpret as a superposition of (1) newly formed stars and clusters along the dense center of the tail and (2) a sea of broadly distributed, older stellar material ejected from the progenitor galaxies.« less
Electron-induced hydrogen loss in uracil in a water cluster environment
NASA Astrophysics Data System (ADS)
Smyth, M.; Kohanoff, J.; Fabrikant, I. I.
2014-05-01
Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.
The STREGA survey - II. Globular cluster Palomar 12
NASA Astrophysics Data System (ADS)
Musella, I.; Di Criscienzo, M.; Marconi, M.; Raimondo, G.; Ripepi, V.; Cignoni, M.; Bono, G.; Brocato, E.; Dall'Ora, M.; Ferraro, I.; Grado, A.; Iannicola, G.; Limatola, L.; Molinaro, R.; Moretti, M. I.; Stetson, P. B.; Capaccioli, M.; Cioni, M.-R. L.; Getman, F.; Schipani, P.
2018-01-01
In the framework of the STREGA (STRucture and Evolution of the GAlaxy) survey, two fields around the globular cluster Pal 12 were observed with the aim of detecting the possible presence of streams and/or an extended halo. The adopted stellar tracers are the main sequence, turn-off and red giant branch stars. We discuss the luminosity function and the star counts in the observed region covering about 2 tidal radii, confirming that Pal 12 appears to be embedded in the Sagittarius Stream. Adopting an original approach to separate cluster and field stars, we do not find any evidence of significant extra-tidal Pal 12 stellar populations. The presence of the Sagittarius stream seems to have mimicked a larger tidal radius in previous studies. Indeed, adopting a King model, a redetermination of this value gives rT = 0.22 ± 0.1 deg.
NASA Astrophysics Data System (ADS)
Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola
2016-01-01
We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K
2013-03-01
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.
Designing flexible engineering systems utilizing embedded architecture options
NASA Astrophysics Data System (ADS)
Pierce, Jeff G.
This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates were compiled for the Tactical Imaging Constellation Architecture Study and leveraged to complete a realistic proof-of-concept.
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Dynamics of Fractal Cluster Gels with Embedded Active Colloids
NASA Astrophysics Data System (ADS)
Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.
2017-08-01
We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.
Formation of large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund
1989-01-01
Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.
An Introverted Starburst: Gas and SSC Formation in NGC 5253
NASA Astrophysics Data System (ADS)
Turner, J. L.; Beck, S. C.
2004-06-01
High resolution Brackett line spectroscopy with the Keck Telescope reveals relatively narrow recombination lines toward the embedded young super star cluster nebula in NGC 5253. The gas within this nebula is almost certainly gravitationally bound by the massive and compact young star cluster.
Ferreira da Silva, F; Ptasińska, S; Denifl, S; Gschliesser, D; Postler, J; Matias, C; Märk, T D; Limão-Vieira, P; Scheier, P
2011-11-07
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).
Application of dynamic topic models to toxicogenomics data.
Lee, Mikyung; Liu, Zhichao; Huang, Ruili; Tong, Weida
2016-10-06
All biological processes are inherently dynamic. Biological systems evolve transiently or sustainably according to sequential time points after perturbation by environment insults, drugs and chemicals. Investigating the temporal behavior of molecular events has been an important subject to understand the underlying mechanisms governing the biological system in response to, such as, drug treatment. The intrinsic complexity of time series data requires appropriate computational algorithms for data interpretation. In this study, we propose, for the first time, the application of dynamic topic models (DTM) for analyzing time-series gene expression data. A large time-series toxicogenomics dataset was studied. It contains over 3144 microarrays of gene expression data corresponding to rat livers treated with 131 compounds (most are drugs) at two doses (control and high dose) in a repeated schedule containing four separate time points (4-, 8-, 15- and 29-day). We analyzed, with DTM, the topics (consisting of a set of genes) and their biological interpretations over these four time points. We identified hidden patterns embedded in this time-series gene expression profiles. From the topic distribution for compound-time condition, a number of drugs were successfully clustered by their shared mode-of-action such as PPARɑ agonists and COX inhibitors. The biological meaning underlying each topic was interpreted using diverse sources of information such as functional analysis of the pathways and therapeutic uses of the drugs. Additionally, we found that sample clusters produced by DTM are much more coherent in terms of functional categories when compared to traditional clustering algorithms. We demonstrated that DTM, a text mining technique, can be a powerful computational approach for clustering time-series gene expression profiles with the probabilistic representation of their dynamic features along sequential time frames. The method offers an alternative way for uncovering hidden patterns embedded in time series gene expression profiles to gain enhanced understanding of dynamic behavior of gene regulation in the biological system.
Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts.
Li, Shu-Long; Yin, Hui; Kan, Xiang; Gan, Li-Yong; Schwingenschlögl, Udo; Zhao, Yong
2017-11-15
We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C 3 N 4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C 3 N 4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C 3 N 4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C 3 N 4 gives rise to promising single-atom catalysts at low temperature.
Star formation activity in the southern Galactic H II region G351.63-1.25
NASA Astrophysics Data System (ADS)
Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.; Tamura, M.
2014-06-01
The southern Galactic high-mass star-forming region, G351.63-1.25, is an H II region-molecular cloud complex with a luminosity of ˜2.0 × 105 L⊙, located at a distance of 2.4 kpc from the Sun. In this paper, we focus on the investigation of the associated H II region, embedded cluster and the interstellar medium in the vicinity of G351.63-1.25. We address the identification of exciting source(s) as well as the census of the stellar populations, in an attempt to unfold star formation activity in this region. The ionized gas distribution has been mapped using the Giant Metrewave Radio Telescope, India, at three frequencies: 1280, 610 and 325 MHz. The H II region shows an elongated morphology and the 1280 MHz map comprises six resolved high-density regions encompassed by diffuse emission spanning 1.4 × 1.0 pc2. Based on the measurements of flux densities at multiple radio frequencies, the brightest ultracompact core has electron temperature Te˜7647 {±} 153 K and emission measure, EM˜2.0 {±} 0.8×107 cm-6 pc. The zero-age main-sequence spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS camera on the 1.4 m Infrared Survey Facility telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be ˜0.27 ± 0.03, and the fraction of the near-infrared excess stars is estimated to be 43 per cent. These indicate that the age of the cluster is consistent with ˜1 Myr. Other available data of this region show that the warm (mid-infrared) and cold (millimetre) dust emission peak at different locations indicating progressive stages of star formation process. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.
Radiation-induced microcrystal shape change as a mechanism of wasteform degradation
NASA Astrophysics Data System (ADS)
Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.
2018-04-01
Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.
CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de
2016-09-01
To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the diskmore » size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.« less
A Deep X-ray Survey of Low-Mass PMS Stars in NGC 2264
NASA Technical Reports Server (NTRS)
Simon, Theodore
2005-01-01
Two X-ray images were obtained with the XMM-Newton spacecraft of more than 300 members of the NGC 2264 Open Cluster and its associated molecular cloud in order to investigate their magnetic activity. The X-ray fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation for the optically revealed T Tauri stars and to place empirical constraints on theoretical models of angular momentum/dynamo evolution. The observations were also used to study the role of magnetic fields in the formation of low mass stars through the observation of very young protostars that are deeply embedded in the molecular cloud located behind the visible open cluster.
Cox, Nicholas; Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A; Boussac, Alain; Lubitz, Wolfgang
2014-08-15
The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor. Copyright © 2014, American Association for the Advancement of Science.
Interlaced coarse-graining for the dynamical cluster approximation
NASA Astrophysics Data System (ADS)
Haehner, Urs; Staar, Peter; Jiang, Mi; Maier, Thomas; Schulthess, Thomas
The negative sign problem remains a challenging limiting factor in quantum Monte Carlo simulations of strongly correlated fermionic many-body systems. The dynamical cluster approximation (DCA) makes this problem less severe by coarse-graining the momentum space to map the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. We show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which with increasing cluster size converge to the results obtained using the standard coarse-graining. In addition, the new coarse-graining reduces the severity of the fermionic sign problem. Therefore, it enables calculations on much larger clusters and can allow the evaluation of the exact infinite cluster size result via finite size scaling. To demonstrate this, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes, for which the results can be fitted with the Kosterlitz-Thouless scaling law. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
The doubling of stellar black hole nuclei
NASA Astrophysics Data System (ADS)
Kazandjian, Mher V.; Touma, J. R.
2013-04-01
It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.
Partially supervised speaker clustering.
Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S
2012-05-01
Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical model-based distance metrics, 2) our advocated use of the cosine distance metric yields consistent increases in the speaker clustering performance as compared to the commonly used euclidean distance metric, 3) our partially supervised speaker clustering concept and strategies significantly improve the speaker clustering performance over the baselines, and 4) our proposed LSDA algorithm further leads to state-of-the-art speaker clustering performance.
Data embedding employing degenerate clusters of data having differences less than noise value
Sanford, II, Maxwell T.; Handel, Theodore G.
1998-01-01
A method of embedding auxiliary information into a set of host data, such as a photograph, television signal, facsimile transmission, or identification card. All such host data contain intrinsic noise, allowing pixels in the host data which are nearly identical and which have values differing by less than the noise value to be manipulated and replaced with auxiliary data. As the embedding method does not change the elemental values of the host data, the auxiliary data do not noticeably affect the appearance or interpretation of the host data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user.
A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu
We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less
NASA Astrophysics Data System (ADS)
Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.
2006-01-01
Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.
Real Time Intelligent Target Detection and Analysis with Machine Vision
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Padgett, Curtis; Brown, Kenneth
2000-01-01
We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.
Wang, Yang; Wu, Lin
2018-07-01
Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.
McGregor, Karla K.; Oleson, Jacob
2017-01-01
Purpose The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. Method One hundred eighty-five students with LD (n = 53) or normal language development (ND, n = 132) named items in the categories animals and food for 1 minute for each category and completed tests of lexical-semantic knowledge and executive control of memory. Groups were compared on total names, mean cluster size, frequency of embedded clusters, frequency of cluster switches, and change in fluency over time. Secondary analyses of variability within the LD group were also conducted. Results The LD group was less fluent than the ND group. Within the LD group, lexical-semantic knowledge predicted semantic fluency and cluster size; executive control of memory predicted semantic fluency and cluster switches. The LD group produced smaller clusters and fewer embedded clusters than the ND group. Groups did not differ in switching or change over time. Conclusions Deficits in the lexical-semantic system associated with LD may persist into young adulthood, even among those who have managed their disability well enough to attend college. Lexical-semantic deficits are associated with compromised semantic fluency, and the two problems are more likely among students with more severe disabilities. PMID:28267833
Hall, Jessica; McGregor, Karla K; Oleson, Jacob
2017-03-01
The purpose of this study is to determine whether deficits in executive function and lexical-semantic memory compromise the linguistic performance of young adults with specific learning disabilities (LD) enrolled in postsecondary studies. One hundred eighty-five students with LD (n = 53) or normal language development (ND, n = 132) named items in the categories animals and food for 1 minute for each category and completed tests of lexical-semantic knowledge and executive control of memory. Groups were compared on total names, mean cluster size, frequency of embedded clusters, frequency of cluster switches, and change in fluency over time. Secondary analyses of variability within the LD group were also conducted. The LD group was less fluent than the ND group. Within the LD group, lexical-semantic knowledge predicted semantic fluency and cluster size; executive control of memory predicted semantic fluency and cluster switches. The LD group produced smaller clusters and fewer embedded clusters than the ND group. Groups did not differ in switching or change over time. Deficits in the lexical-semantic system associated with LD may persist into young adulthood, even among those who have managed their disability well enough to attend college. Lexical-semantic deficits are associated with compromised semantic fluency, and the two problems are more likely among students with more severe disabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen
2015-09-14
We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J.
Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescencemore » spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, D.E.; Gubanov, V.A.; Rosen, A.
The electronic structure of actinide monoxides AcO and dioxides AcO/sub 2/, where Ac = Th, U, Np, Pu, Am, Cm and Bk has been studied by molecular cluster methods based on the first-principles one-electron local density theory. Molecular orbitals for nearest neighbor clusters AcO/sup 10 -//sub 6/ and AcO/sup 12 -//sub 8/ representative of monoxide and dioxide lattices were obtained using non-relativistic spin-restricted and spin-polarized Hartree-Fock-Slater models for the entire series. Fully relativistic Dirac-Slater calculations were performed for ThO, UO and NpO in order to explore magnitude of spin-orbit splittings and level shifts in valence structure. Self-consistent iterations were carriedmore » out for NpO, in which the NpO/sub 6/ cluster was embedded in the molecular field of the solid. Finally, a ''moment polarized'' model which combines both spin-polarization and relativistic effects in a consistent fashion was applied to the NpO system. Covalent mixing of oxygen 2p and Ac 5f orbitals was found to increase rapidly across the actinide series; metal s,p,d covalency was found to be nearly constant. Mulliken atomic population analysis of cluster eigenvectors shows that free-ion crystal field models are unreliable, except for the light actinides. X-ray photoelectron line shapes have been calculated and are found to compare rather well with experimental data on the dioxides.« less
Nuclear Rings in the IR: Hidden Super Star Clusters
NASA Astrophysics Data System (ADS)
Maoz, Dan
1997-07-01
We propose NICMOS broad-band {F160W, F187W} and Paschen Alpha {F187N} imaging of nuclear starburst rings in two nearby galaxies. We already have UV {F220W} FOC data, and are scheduled to obtain WFPC2 images in U, V, I, and Halpha+[NII] of these rings. The rings contain large populations of super star clusters similar to those recently discovered in other types of starburst systems. Nuclear rings contain large numbers of these clusters in relatively unobscured starburst environments. Measurement of the age, size, and stellar contents of the clusters can test the hypothesis that super star clusters are young globular clusters. Together with our UV and optical data, NICMOS images will provide the SED of numerous super star clusters over a decade in wavelength. Our already-approved observations will allow us to estimate, by comparison with evolutionary synthesis models, the masses and ages of the clusters. The proposed IR data will be sensitive to the number of supergiants {1.6 micron} and O-stars {Paschen Alpha} in each of the clusters. The observations will provide an independent determination of the reddening, mass, and age of each cluster. We expect to see in the IR numerous clusters that are obscured in the UV and optical. These clusters may be the younger ones, which are still embedded in their molecular clouds. By measuring the mass, age, and size of a large number of clusters, we can actually obtain an evolutionary picture of these objects at different stages in their lives.
Bader, Markus
2018-01-01
This paper presents three acceptability experiments investigating German verb-final clauses in order to explore possible sources of sentence complexity during human parsing. The point of departure was De Vries et al.'s (2011) generalization that sentences with three or more crossed or nested dependencies are too complex for being processed by the human parsing mechanism without difficulties. This generalization is partially based on findings from Bach et al. (1986) concerning the acceptability of complex verb clusters in German and Dutch. The first experiment tests this generalization by comparing two sentence types: (i) sentences with three nested dependencies within a single clause that contains three verbs in a complex verb cluster; (ii) sentences with four nested dependencies distributed across two embedded clauses, one center-embedded within the other, each containing a two-verb cluster. The results show that sentences with four nested dependencies are judged as acceptable as control sentences with only two nested dependencies, whereas sentences with three nested dependencies are judged as only marginally acceptable. This argues against De Vries et al.'s (2011) claim that the human parser can process no more than two nested dependencies. The results are used to refine the Verb-Cluster Complexity Hypothesis of Bader and Schmid (2009a). The second and the third experiment investigate sentences with four nested dependencies in more detail in order to explore alternative sources of sentence complexity: the number of predicted heads to be held in working memory (storage cost in terms of the Dependency Locality Theory [DLT], Gibson, 2000) and the length of the involved dependencies (integration cost in terms of the DLT). Experiment 2 investigates sentences for which storage cost and integration cost make conflicting predictions. The results show that storage cost outweighs integration cost. Experiment 3 shows that increasing integration cost in sentences with two degrees of center embedding leads to decreased acceptability. Taken together, the results argue in favor of a multifactorial account of the limitations on center embedding in natural languages. PMID:29410633
Bader, Markus
2017-01-01
This paper presents three acceptability experiments investigating German verb-final clauses in order to explore possible sources of sentence complexity during human parsing. The point of departure was De Vries et al.'s (2011) generalization that sentences with three or more crossed or nested dependencies are too complex for being processed by the human parsing mechanism without difficulties. This generalization is partially based on findings from Bach et al. (1986) concerning the acceptability of complex verb clusters in German and Dutch. The first experiment tests this generalization by comparing two sentence types: (i) sentences with three nested dependencies within a single clause that contains three verbs in a complex verb cluster; (ii) sentences with four nested dependencies distributed across two embedded clauses, one center-embedded within the other, each containing a two-verb cluster. The results show that sentences with four nested dependencies are judged as acceptable as control sentences with only two nested dependencies, whereas sentences with three nested dependencies are judged as only marginally acceptable. This argues against De Vries et al.'s (2011) claim that the human parser can process no more than two nested dependencies. The results are used to refine the Verb-Cluster Complexity Hypothesis of Bader and Schmid (2009a). The second and the third experiment investigate sentences with four nested dependencies in more detail in order to explore alternative sources of sentence complexity: the number of predicted heads to be held in working memory (storage cost in terms of the Dependency Locality Theory [DLT], Gibson, 2000) and the length of the involved dependencies (integration cost in terms of the DLT). Experiment 2 investigates sentences for which storage cost and integration cost make conflicting predictions. The results show that storage cost outweighs integration cost. Experiment 3 shows that increasing integration cost in sentences with two degrees of center embedding leads to decreased acceptability. Taken together, the results argue in favor of a multifactorial account of the limitations on center embedding in natural languages.
Cross-entropy clustering framework for catchment classification
NASA Astrophysics Data System (ADS)
Tongal, Hakan; Sivakumar, Bellie
2017-09-01
There is an increasing interest in catchment classification and regionalization in hydrology, as they are useful for identification of appropriate model complexity and transfer of information from gauged catchments to ungauged ones, among others. This study introduces a nonlinear cross-entropy clustering (CEC) method for classification of catchments. The method specifically considers embedding dimension (m), sample entropy (SampEn), and coefficient of variation (CV) to represent dimensionality, complexity, and variability of the time series, respectively. The method is applied to daily streamflow time series from 217 gauging stations across Australia. The results suggest that a combination of linear and nonlinear parameters (i.e. m, SampEn, and CV), representing different aspects of the underlying dynamics of streamflows, could be useful for determining distinct patterns of flow generation mechanisms within a nonlinear clustering framework. For the 217 streamflow time series, nine hydrologically homogeneous clusters that have distinct patterns of flow regime characteristics and specific dominant hydrological attributes with different climatic features are obtained. Comparison of the results with those obtained using the widely employed k-means clustering method (which results in five clusters, with the loss of some information about the features of the clusters) suggests the superiority of the cross-entropy clustering method. The outcomes from this study provide a useful guideline for employing the nonlinear dynamic approaches based on hydrologic signatures and for gaining an improved understanding of streamflow variability at a large scale.
NASA Astrophysics Data System (ADS)
Zhurkin, E. E.; van Hoof, T.; Hou, M.
2007-06-01
Atomic scale modeling methods are used to investigate the relationship between the properties of clusters of nanometer size and the materials that can be synthesized by assembling them. The examples of very different bimetallic systems are used. The first one is the Ni3Al ordered alloy and the second is the AgCo core-shell system. While the Ni3Al cluster assembled materials modeling is already reported in our previous work, here we focus on the prediction of new materials synthesized by low energy deposition and accumulation of AgCo clusters. It is found that the core-shell structure is preserved by deposition with energies typical of low energy cluster beam deposition, although deposition may induce substantial cluster deformation. In contrast with Ni3Al deposited cluster assemblies, no grain boundary between clusters survives deposition and the silver shells merge into a noncrystalline system with a layered structure, in which the fcc Co grains are embedded. To our knowledge, such a material has not yet been synthesized experimentally. Mechanical properties are discussed by confronting the behaviors of Ni3Al and AgCo under the effect of a uniaxial load. To this end, a molecular dynamics scheme is established in view of circumventing rate effects inherent to short term modeling and thereby allowing to examine large plastic deformation mechanisms. Although the mechanisms are different, large plastic deformations are found to improve the elastic properties of both the Ni3Al and AgCo systems by stabilizing their nanostructure. Beyond this improvement, when the load is further increased, the Ni3Al system displays reduced ductility while the AgCo system is superplastic. The superplasticity is explained by the fact that the layered structure of the Ag system is not modified by the deformation. Some coalescence of the Co grains is identified as a geometrical effect and is suggested to be a limiting factor to superplasticity.
Rigidity of transmembrane proteins determines their cluster shape
NASA Astrophysics Data System (ADS)
Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas
2016-01-01
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field
NASA Astrophysics Data System (ADS)
Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.
2007-12-01
We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.
Dark energy domination in the Virgocentric flow
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2010-09-01
Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.
Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas
2012-01-28
In this article, we present a consistent derivation of a density functional theory (DFT) based embedding method which encompasses wave-function theory-in-DFT (WFT-in-DFT) and the DFT-based subsystem formulation of response theory (DFT-in-DFT) by Neugebauer [J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)] as special cases. This formulation, which is based on the time-averaged quasi-energy formalism, makes use of the variation Lagrangian techniques to allow the use of non-variational (in particular: coupled cluster) wave-function-based methods. We show how, in the time-independent limit, we naturally obtain expressions for the ground-state DFT-in-DFT and WFT-in-DFT embedding via a local potential. We furthermore provide working equations for the special case in which coupled cluster theory is used to obtain the density and excitation energies of the active subsystem. A sample application is given to demonstrate the method. © 2012 American Institute of Physics
On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model
NASA Astrophysics Data System (ADS)
Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin
2018-01-01
We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.
Diverse power iteration embeddings: Theory and practice
Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...
2015-11-09
Manifold learning, especially spectral embedding, is known as one of the most effective learning approaches on high dimensional data, but for real-world applications it raises a serious computational burden in constructing spectral embeddings for large datasets. To overcome this computational complexity, we propose a novel efficient embedding construction, Diverse Power Iteration Embedding (DPIE). DPIE shows almost the same effectiveness of spectral embeddings and yet is three order of magnitude faster than spectral embeddings computed from eigen-decomposition. Our DPIE is unique in that (1) it finds linearly independent embeddings and thus shows diverse aspects of dataset; (2) the proposed regularized DPIEmore » is effective if we need many embeddings; (3) we show how to efficiently orthogonalize DPIE if one needs; and (4) Diverse Power Iteration Value (DPIV) provides the importance of each DPIE like an eigen value. As a result, such various aspects of DPIE and DPIV ensure that our algorithm is easy to apply to various applications, and we also show the effectiveness and efficiency of DPIE on clustering, anomaly detection, and feature selection as our case studies.« less
Subsystem real-time time dependent density functional theory.
Krishtal, Alisa; Ceresoli, Davide; Pavanello, Michele
2015-04-21
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na4 cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.
Data embedding employing degenerate clusters of data having differences less than noise value
Sanford, M.T. II; Handel, T.G.
1998-10-06
A method of embedding auxiliary information into a set of host data, such as a photograph, television signal, facsimile transmission, or identification card. All such host data contain intrinsic noise, allowing pixels in the host data which are nearly identical and which have values differing by less than the noise value to be manipulated and replaced with auxiliary data. As the embedding method does not change the elemental values of the host data, the auxiliary data do not noticeably affect the appearance or interpretation of the host data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. 35 figs.
Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1988-01-01
These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.
2017-01-30
dynamic structural time- history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC...research (Ebeling et al. 2012) has developed simplified analysis procedures for flexible approach wall systems founded on clustered groups of vertical...history response analysis of flexible approach walls founded on clustered pile groups using Impact_Deck. In Preparation, ERDC/ITL TR-16-X. Vicksburg, MS
Formation and Assembly of Massive Star Clusters
NASA Astrophysics Data System (ADS)
McMillan, Stephen
The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.
NASA Astrophysics Data System (ADS)
Tielker, Nicolas; Tomazic, Daniel; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K. Friedemann; Kast, Stefan M.
2016-11-01
We predict cyclohexane-water distribution coefficients (log D 7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (p K a) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the "Minnesota Solvation Database" (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol-1 for water and 0.8-0.9 kcal mol-1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical p K a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2-3 for each solvent and two for the p K a) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0-2.1 for the RMSE with the first and 2.2-2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.
Tielker, Nicolas; Tomazic, Daniel; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K Friedemann; Kast, Stefan M
2016-11-01
We predict cyclohexane-water distribution coefficients (log D 7.4 ) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pK a ) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the "Minnesota Solvation Database" (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol -1 for water and 0.8-0.9 kcal mol -1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pK a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2-3 for each solvent and two for the pK a ) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0-2.1 for the RMSE with the first and 2.2-2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.
What drives the formation of massive stars and clusters?
NASA Astrophysics Data System (ADS)
Ochsendorf, Bram; Meixner, Margaret; Roman-Duval, Julia; Evans, Neal J., II; Rahman, Mubdi; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Jones, Olivia C.; Indebetouw, Remy
2018-01-01
Galaxy-wide surveys allow to study star formation in unprecedented ways. In this talk, I will discuss our analysis of the Large Magellanic Cloud (LMC) and the Milky Way, and illustrate how studying both the large and small scale structure of galaxies are critical in addressing the question: what drives the formation of massive stars and clusters?I will show that ‘turbulence-regulated’ star formation models do not reproduce massive star formation properties of GMCs in the LMC and Milky Way: this suggests that theory currently does not capture the full complexity of star formation on small scales. I will also report on the discovery of a massive star forming complex in the LMC, which in many ways manifests itself as an embedded twin of 30 Doradus: this may shed light on the formation of R136 and 'Super Star Clusters' in general. Finally, I will highlight what we can expect in the next years in the field of star formation with large-scale sky surveys, ALMA, and our JWST-GTO program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.
2015-10-15
We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days.more » Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.« less
Quasi-dynamic earthquake fault systems with rheological heterogeneity
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.
2009-12-01
Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.
An object-based approach for detecting small brain lesions: application to Virchow-Robin spaces.
Descombes, Xavier; Kruggel, Frithjof; Wollny, Gert; Gertz, Hermann Josef
2004-02-01
This paper is concerned with the detection of multiple small brain lesions from magnetic resonance imaging (MRI) data. A model based on the marked point process framework is designed to detect Virchow-Robin spaces (VRSs). These tubular shaped spaces are due to retraction of the brain parenchyma from its supplying arteries. VRS are described by simple geometrical objects that are introduced as small tubular structures. Their radiometric properties are embedded in a data term. A prior model includes interactions describing the clustering property of VRS. A Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC) optimizes the proposed model, obtained by multiplying the prior and the data model. Example results are shown on T1-weighted MRI datasets of elderly subjects.
Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Jason Wright
Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less
STAR FORMATION ACROSS THE W3 COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio
We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less
Feature-based component model for design of embedded systems
NASA Astrophysics Data System (ADS)
Zha, Xuan Fang; Sriram, Ram D.
2004-11-01
An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.
The galaxy cluster outskirts probed by Chandra
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming; Forman, William; Jones, Christine
2015-08-01
Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056
Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.
Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H
2011-01-28
Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.
ΛGR Centennial: Cosmic Web in Dark Energy Background
NASA Astrophysics Data System (ADS)
Chernin, A. D.
The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.
Dark Energy and Key Physical Parameters of Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.
We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.
Brief Report: Clustered Forward Chaining with Embedded Mastery Probes to Teach Recipe Following
ERIC Educational Resources Information Center
Chazin, Kate T.; Bartelmay, Danielle N.; Lambert, Joseph M.; Houchins-Juárez, Nealetta J.
2017-01-01
This study evaluated the effectiveness of a clustered forward chaining (CFC) procedure to teach a 23-year-old male with autism to follow written recipes. CFC incorporates elements of forward chaining (FC) and total task chaining (TTC) by teaching a small number of steps (i.e., units) using TTC, introducing new units sequentially (akin to FC), and…
Liao, Fuyuan; Jan, Yih-Kuen
2012-06-01
This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.
NASA Astrophysics Data System (ADS)
Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.
2017-09-01
The process of radiative feedback in giant molecular clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects early (≲5 Myr) cluster formation in GMCs having masses that range from 104 to 106 M⊙ using the flash code. The inclusion of radiative feedback lowers the efficiency of cluster formation by 20-50 per cent relative to hydrodynamic simulations. Two models in particular - 5 × 104 and 105 M⊙ - show the largest suppression of the cluster formation efficiency, corresponding to a factor of ˜2. For these clouds only, the internal energy, a measure of the energy injected by radiative feedback, exceeds the gravitational potential for a significant amount of time. We find a clear relation between the maximum cluster mass, Mc,max, formed in a GMC and the mass of the GMC itself, MGMC: Mc,max ∝ M_{GMC}^{0.81}. This scaling result suggests that young globular clusters at the necessary scale of 106 M⊙ form within host GMCs of masses near ˜5 × 107 M⊙. We compare simulated cluster mass distributions to the observed embedded cluster mass function [d log (N)/dlog (M) ∝ Mβ where β = -1] and find good agreement (β = -0.99 ± 0.14) only for simulations including radiative feedback, indicating this process is important in controlling the growth of young clusters. However, the high star formation efficiencies, which range from 16 to 21 per cent, and high star formation rates compared to locally observed regions suggest other feedback mechanisms are also important during the formation and growth of stellar clusters.
Ding, Jiarui; Condon, Anne; Shah, Sohrab P
2018-05-21
Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; ...
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less
NASA Astrophysics Data System (ADS)
Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis
1996-10-01
An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.
Boolean network representation of contagion dynamics during a financial crisis
NASA Astrophysics Data System (ADS)
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-01-01
This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.
Electron correlation contribution to the physisorption of CO on MgF2(110).
Hammerschmidt, Lukas; Müller, Carsten; Paulus, Beate
2012-03-28
We have performed CCSD(T), MP2, and DF-LMP2 calculations of the interaction energy of CO on the MgF(2)(110) surface by applying the method of increments and an embedded cluster model. In addition, we performed periodic HF, B3LYP, and DF-LMP2 calculations and compare them to the cluster results. The incremental CCSD(T) calculations predict an interaction energy of E(int) = -0.37 eV with a C-down orientation of CO above a Mg(2+) ion at the surface with a basis set of VTZ quality. We find that electron correlation constitutes about 50% of the binding energy and a detailed evaluation of the increments shows that the largest contribution to the correlation energy originates from the CO interaction with the closest F ions on the second layer.
XMM-Newton Observations of the Toothbrush and Sausage Clusters
NASA Astrophysics Data System (ADS)
Kara, S.; Mernier, F.; Ezer, C.; Akamatsu, H.; Ercan, E.
2017-10-01
Galaxy clusters are the largest gravitationally-bound objects in the universe. The member galaxies are embedded in a hot X-ray emitting Intra Cluster Medium (ICM) that has been enriched with metals produced by supernovae over the last billion years. Here we report new results from XMM-Newton archival observations of the merging clusters 1RXSJ0603.3+4213 and CIZA J2242.8+5301. These two clusters, also known as the Toothbrush and Sausage clusters, respectively, show a large radio relic associated with a merger shock North of their respective core. We show the distribution of the metal abundances with respect to the merger structures in these two clusters. The results are derived from spatially resolved X-ray spectra from the EPIC instrument on board XMM-Newton.
Topological analysis of group fragmentation in multiagent systems
NASA Astrophysics Data System (ADS)
DeLellis, Pietro; Porfiri, Maurizio; Bollt, Erik M.
2013-02-01
In social animals, the presence of conflicts of interest or multiple leaders can promote the emergence of two or more subgroups. Such subgroups are easily recognizable by human observers, yet a quantitative and objective measure of group fragmentation is currently lacking. In this paper, we explore the feasibility of detecting group fragmentation by embedding the raw data from the individuals' motions on a low-dimensional manifold and analyzing the topological features of this manifold. To perform the embedding, we employ the isomap algorithm, which is a data-driven machine learning tool extensively used in computer vision. We implement this procedure on a data set generated by a modified à la Vicsek model, where agents are partitioned into two or more subsets and an independent leader is assigned to each subset. The dimensionality of the embedding manifold is shown to be a measure of the number of emerging subgroups in the selected observation window and a cluster analysis is proposed to aid the interpretation of these findings. To explore the feasibility of using this approach to characterize group fragmentation in real time and thus reduce the computational cost in data processing and storage, we propose an interpolation method based on an inverse mapping from the embedding space to the original space. The effectiveness of the interpolation technique is illustrated on a test-bed example with potential impact on the regulation of collective behavior of animal groups using robotic stimuli.
NASA Astrophysics Data System (ADS)
Rodrigo Carrasco Damele, Eleazar; Verdugo, Tomas
2018-01-01
The galaxy cluster Abell 3827 is one of the most massive clusters know at z ≦ 0.1 (Richness class 2, BM typeI, X-ray LX = 2.4 x 1044 erg s-1). The Brightest Cluster Galaxy (BCG) in Abell 3827 is perhaps the most extreme example of ongoing galaxy cannibalism. The multi-component BCG hosts the stellar remnants nuclei of at least four bright elliptical galaxies embedded in a common assymetric halo extended up to 15 kpc. The most notorious characteristic of the BCG is the existence of a unique strong gravitational lens system located within the inner 15 kpc region. A mass estimation of the galaxy based on strong lensing model was presented in Carrasco et al (2010, ApJL, 715, 160). Moreover, the exceptional strong lensing lens system in Abell 3827 and the location of the four bright galaxies has been used to measure for the first time small physical separations between dark and ordinary matter (Williams et al. 2011, MNRAS, 415, 448, Massey et al. 2015, MNRAS, 449, 3393). In this contribution, we present a detailed strong lensing and dynamical analysis of the cluster Abell 3827 based on spectroscopic redshift of the lensed features and from ~70 spectroscopically confirmed member galaxies inside 0.5 x 0.5 Mpc from the cluster center.
NASA Astrophysics Data System (ADS)
Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.
2012-07-01
Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.
Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059
NASA Technical Reports Server (NTRS)
Taylor, Gregory B.; Barton, Elizabeth J.; Ge, Jingping
1994-01-01
We have performed sensitive polarimetric radio observations with the Very Large Array (VLA) of three galaxies: PKS 0745-191, PKS 1508+059, and PKS 2354-350, embedded in x-ray cooling flow clusters. High sensitivity, multifrequency maps of all three, along with spectral index and Faraday rotation measure (RM) maps of PKS 1508+059 and PKS 2354-350 are presented. For PKS 1508+059 and PKS 2354-350 models of the electron density of the intracluster medium (ICM) have been used to set lower limits of 0.1 and 2.7 microG, respectively, on the magnetic field in the ICM based on the observed RMs. In an x-ray selected sample of cooling flow clusters with an associated radio source, 57% (8/14) are found to have absolute RMs in excess of 800 radians/sq m. This sample includes the three sources of this study and all the other high RM sources found to date at zeta less than 0.4. These facts are consistent with the high RM phenomenon being produced by magnetic fields associated with the relatively dense, hot x-ray gas in cooling flow clusters.
The outskirts of galaxy clusters: astrophysics and cosmology
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming
2017-08-01
Exploring the virialization region of galaxy clusters has recently raised the attention of the scientific community, offering a direct view of structure formation. In this talk, I will present recent results on the physical properties of the intracluster medium in the outer volumes of a sample of 320 clusters (0.056
Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.
Myhre, Rolf H; Coriani, Sonia; Koch, Henrik
2016-06-14
Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.
Mapping Dark Matter in Simulated Galaxy Clusters
NASA Astrophysics Data System (ADS)
Bowyer, Rachel
2018-01-01
Galaxy clusters are the most massive bound objects in the Universe with most of their mass being dark matter. Cosmological simulations of structure formation show that clusters are embedded in a cosmic web of dark matter filaments and large scale structure. It is thought that these filaments are found preferentially close to the long axes of clusters. We extract galaxy clusters from the simulations "cosmo-OWLS" in order to study their properties directly and also to infer their properties from weak gravitational lensing signatures. We investigate various stacking procedures to enhance the signal of the filaments and large scale structure surrounding the clusters to better understand how the filaments of the cosmic web connect with galaxy clusters. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
Cohesive Energies of Some Transition Metal Compounds Using Embedded Clusters
NASA Astrophysics Data System (ADS)
Press, Mehernosh Rustom
The molecular-clusters approach to electronic structure calculation is especially well-suited to the study of properties that depend primarily on the local environment of a system, especially those with no translational symmetry, e.g. systems with defects and structural deformations. The presence of the rest of the crystal environment can be accounted for approximately by embedding the cluster in a self-consistent crystal potential. This thesis makes a contribution in the area of investigating the capability of embedded molecular-clusters to yield reliable bulk structural properties. To this end, an algorithm for calculating the cohesive energies of clusters within the discrete-variational X(,(alpha)) LCAO-MO formulation is set up and verified on simple solids: Li, Na, Cu and LiF. We then use this formulation to study transition metal compounds, for which the interesting physics lies in local lattice defects, foreign impurities and structural deformations. In a self -consistent calculation of the lattice energies and stability of defect clusters in wustite, Fe(,1-x)O, corner-sharing aggregates of the 4:1 defect are identified as the most stable defect configurations due to efficient compensation of the cluster charge. The intercalation properties of layered-transition-metal-dichalcogenides continues to be a fertile experimental working area, backed by comparatively little theoretical study. We find that intercalation of ZrS(,2) with Na perturbs the valence energy level structure sufficiently to induce a more ionic Zr-S bond, a narrowing of the optical gap and filling of the lowest unoccupied host lattice orbitals with the electron donated by Na. Fe - intercalation in ZrS(,2) is accommodated via a strong Fe-S bond, impurity-like band levels in the optical gap of the host and hybridization-driven compression and lowering of the conduction band energy levels. The piezoelectric cuprous halides, CuCl and CuBr, exhibit a host of intriguing properties due to a filled and very active d('10) shell at the Fermi energy. A self-consistent calculation via energy minimization of the internal strain in these compounds shows both Cu-halide bonds to be very rigid with little charge delocalization under strain. Piezoelectric response is calculated in terms of effective charges and quadrupolar moments, e(,T) and (DELTA)Q.
HST-WFPC2 Observations of the Star Clusters in the Giant H II Regions of M33
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Park, Hong Soo; Kim, Sang Chul; Waller, William H.; Parker, Joel Wm.; Malumuth, Eliot M.; Hodge, Paul W.
We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = -0.5 to -2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.
Probabilistic Analysis of Hierarchical Cluster Protocols for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kaj, Ingemar
Wireless sensor networks are designed to extract data from the deployment environment and combine sensing, data processing and wireless communication to provide useful information for the network users. Hundreds or thousands of small embedded units, which operate under low-energy supply and with limited access to central network control, rely on interconnecting protocols to coordinate data aggregation and transmission. Energy efficiency is crucial and it has been proposed that cluster based and distributed architectures such as LEACH are particularly suitable. We analyse the random cluster hierarchy in this protocol and provide a solution for low-energy and limited-loss optimization. Moreover, we extend these results to a multi-level version of LEACH, where clusters of nodes again self-organize to form clusters of clusters, and so on.
A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.
Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong
2017-07-01
Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.
NASA Astrophysics Data System (ADS)
Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon
2016-11-01
The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.
NASA Astrophysics Data System (ADS)
Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M.
2013-02-01
Motivated by recent experimental data on thin film superconductors and oxide interfaces, we propose a random-resistor network apt to describe the occurrence of a metal-superconductor transition in a two-dimensional electron system with disorder on the mesoscopic scale. We consider low-dimensional (e.g. filamentary) structures of a superconducting cluster embedded in the two-dimensional network and we explore the separate effects and the interplay of the superconducting structure and of the statistical distribution of local critical temperatures. The thermal evolution of the resistivity is determined by a numerical calculation of the random-resistor network and, for comparison, a mean-field approach called effective medium theory (EMT). Our calculations reveal the relevance of the distribution of critical temperatures for clusters with low connectivity. In addition, we show that the presence of spatial correlations requires a modification of standard EMT to give qualitative agreement with the numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide interface, we find that the measured resistivity curves are compatible with a network of spatially dense but loosely connected superconducting islands.
Theoretical research program to study transition metal trimers and embedded clusters
NASA Technical Reports Server (NTRS)
Walch, S. P.
1984-01-01
Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.
Gravitational Lensing Corrections in Flat ΛCDM Cosmology
NASA Astrophysics Data System (ADS)
Kantowski, Ronald; Chen, Bin; Dai, Xinyu
2010-08-01
We compute the deflection angle to order (m/r 0)2 and m/r 0 × Λr 2 0 for a light ray traveling in a flat ΛCDM cosmology that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model predicts a decrease in the deflection angle of ~2% for weakly lensed galaxies behind the rich cluster A1689 and that the reduction can be as large as ~5% for similar rich clusters at z ≈ 1. Weak-lensing deflection angles caused by galaxies can likewise be reduced by as much as ~4%. We show that the lowest order correction in which Λ appears is proportional to m/r_0× √{Λ r_0^2}}} and could cause as much as a ~0.02% increase in the deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is proportional to m/r_0× √{m/r_0} and can increase the deflection angle by ~0.005% for weak lensing by galaxies.
Hubble Space Telescope Fine Guidance Sensor interferometric observations of the core of 30 doradus
NASA Technical Reports Server (NTRS)
Lattanzi, M. G.; Hershey, J. L.; Burg, R.; Taff, L. G.; Holfeltz, S. T.; Bucciarelli, B.; Evans, I. N.; Gilmozzi, R.; Pringle, J.; Walborn, N. R.
1994-01-01
We present the results of the first high angular resolution observations taken with a Fine Guidance Sensor (FGS) aboard the Hubble Space Telescope (HST) of a star cluster embedded in very bright background. The strong and complex background around the R136 cluster in the 30 Dor nebula does not prevent the FGS from achieving performance close to its angular resolution limit of approximately 0.015 sec per axis with reliable photometry. These FGS observations establish that the central object in R136a is a triple star with the third component delta V = 1.1 mag fainter than the primary star al approximately 0.08 sec way. We estimate from the grid of models of Maeder (1990) that the present mass of al is between 30 and 80 solar masses, with the main-sequence progenitor between 60 and 120 solar masses.
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A.; Heine, Nadja; Gewinner, Sandy; Schöllkopf, Wieland; Esser, Tim K.; Fagiani, Matias R.; Knorke, Harald; Asmis, Knut R.
2014-01-01
Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O+ and Cs+ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm−1 range. The magic H3O+(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface. PMID:25489068
Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells
Song, Jiwon; Millman, Jeffrey R.
2016-01-01
Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies. PMID:27906687
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; ...
2014-12-08
Here, theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H 3O + and Cs +more » ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm -1 range. The magic H 3O +(H 2O) 20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.« less
Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions.
de Meyer, Frédérick J-M; Rodgers, Jocelyn M; Willems, Thomas F; Smit, Berend
2010-12-01
Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells.
Song, Jiwon; Millman, Jeffrey R
2016-12-01
Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.
Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures
NASA Astrophysics Data System (ADS)
Fang, Ke; Murase, Kohta
2018-04-01
The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma1. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV γ-rays are comparable, which hints at a grand unified picture2. Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and γ-rays; the highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi γ-ray background, assuming a reasonable energy output from black hole jets in clusters.
Catalytic Effect of Pd Clusters in the Poly( N-vinyl-2-pyrrolidone) Combustion
NASA Astrophysics Data System (ADS)
Schiavo, L.; De Nicola, S.; Carotenuto, G.
2018-01-01
Pd(0) is able to catalyze oxygen-involving reactions because of its capability to convert molecular oxygen to the very reactive atomic form. Consequently, the embedding of a little amount of Pd(0) clusters in polymeric phases can be technologically exploited to enhance the incineration kinetic of these polymers. The effect of nanostructuration on the Pd(0) catalytic activity in the polymer incineration reaction has been studied using poly( N-vinyl-2-pyrrolidone) ( \\overline{Mw} = 10,000 gmol-1) as polymeric model system. A change in the PVP incineration kinetic mechanism with significant increase in the reaction rate was experimentally found. The kinetic of the Pd(0)-catalyzed combustion has been studied by isothermal thermogravimetric analysis. After a short induction time, the combustion in presence of Pd(0) clusters shifted to a zero-order kinetic from a second-order kinetic control, which is operative in pure PVP combustion reaction. In addition, the activation energy resulted much lowered compared to the pure PVP incineration case (from 300 to 260 kJ/mol).
Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth
2015-02-10
Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.
New detections of embedded clusters in the Galactic halo
NASA Astrophysics Data System (ADS)
Camargo, D.; Bica, E.; Bonatto, C.
2016-09-01
Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant mortality, stars may be raining from the halo into the disc, and/or the halo may be harbouring generations of stars formed in clusters like those detected in our survey.
Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods
NASA Astrophysics Data System (ADS)
Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.
2018-02-01
In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.
NASA Astrophysics Data System (ADS)
Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban
2018-01-01
From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of clustered regions of star formation with JWST and other high resolution facilities.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Kecskes, Laszlo J.; Zhu, Kaigui; Wei, Qiuming
2016-12-01
Uniaxial tensile properties of monocrystalline tungsten (MC-W) and nanocrystalline tungsten (NC-W) with embedded hydrogen and helium atoms have been investigated using molecular dynamics (MD) simulations in the context of radiation damage evolution. Different strain rates have been imposed to investigate the strain rate sensitivity (SRS) of the samples. Results show that the plastic deformation processes of MC-W and NC-W are dominated by different mechanisms, namely dislocation-based for MC-W and grain boundary-based activities for NC-W, respectively. For MC-W, the SRS increases and a transition appears in the deformation mechanism with increasing embedded atom concentration. However, no obvious embedded atom concentration dependence of the SRS has been observed for NC-W. Instead, in the latter case, the embedded atoms facilitate GB sliding and intergranular fracture. Additionally, a strong strain enhanced He cluster growth has been observed. The corresponding underlying mechanisms are discussed.
Joint spatial-spectral hyperspectral image clustering using block-diagonal amplified affinity matrix
NASA Astrophysics Data System (ADS)
Fan, Lei; Messinger, David W.
2018-03-01
The large number of spectral channels in a hyperspectral image (HSI) produces a fine spectral resolution to differentiate between materials in a scene. However, difficult classes that have similar spectral signatures are often confused while merely exploiting information in the spectral domain. Therefore, in addition to spectral characteristics, the spatial relationships inherent in HSIs should also be considered for incorporation into classifiers. The growing availability of high spectral and spatial resolution of remote sensors provides rich information for image clustering. Besides the discriminating power in the rich spectrum, contextual information can be extracted from the spatial domain, such as the size and the shape of the structure to which one pixel belongs. In recent years, spectral clustering has gained popularity compared to other clustering methods due to the difficulty of accurate statistical modeling of data in high dimensional space. The joint spatial-spectral information could be effectively incorporated into the proximity graph for spectral clustering approach, which provides a better data representation by discovering the inherent lower dimensionality from the input space. We embedded both spectral and spatial information into our proposed local density adaptive affinity matrix, which is able to handle multiscale data by automatically selecting the scale of analysis for every pixel according to its neighborhood of the correlated pixels. Furthermore, we explored the "conductivity method," which aims at amplifying the block diagonal structure of the affinity matrix to further improve the performance of spectral clustering on HSI datasets.
Confronting models of star formation quenching in galaxy clusters with archival Spitzer data
NASA Astrophysics Data System (ADS)
Rudnick, Gregory
Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine the evolution in cluster galaxy SFRs over 6 billion years making minimal assumptions about the infalling galaxy population. 3. Provide a rigorous test of the quenching processes embedded in the theoretical models. We will create observed realizations of the theoretical models by subjecting them to our observational selection. This will enable a fair comparison between the models and the data, which will provide a valuable test of current theoretical implementations of quenching processes. We will also modify the quenching prescriptions in the models to determine the parameters required to reproduce the observations. The proposed research is novel for several reasons. 1) We have wide-field Spitzer/MIPS data that allows us to robustly measure SFRs in our distant cluster galaxies. WISE data on local clusters will provide us with analogous measurements in the nearby Universe. 2) Our significant investment in ancillary spectroscopy allows us to identify infalling galaxies that will eventually join the central regions of the cluster z=0. 3) Our intermediate redshift cluster sample was chosen to have characteristics expected for the progenitors of a large fraction of the known clusters at z=0. 4) We will take advantage of our own cosmological simulations of structure growth to interpret our data. 5) We have optical photometry over the full infall region, allowing us to control for stellar masses and to distinguish passive from dusty star-forming galaxies. We will learn which, if any, of the quenching prescriptions currently employed in semi-analytic models correctly reproduces the observed characteristics of the galaxies that will become cluster galaxies at z=0. We will pinpoint the cluster-centric radii over which quenching takes place between. We will determine the timescale (as a function of stellar mass) over which it must take place. This program will cement the legacy of Spitzer and WISE as tools for studying galaxy formation in clusters.
Merging black holes in non-spherical nuclear star clusters
NASA Astrophysics Data System (ADS)
Petrovich, Cristobal
2018-04-01
The Milky Way and a significant fraction of galaxies are observed to host a central Massive Black Hole (MBH) embedded in a non-spherical nuclear star cluster. I will discuss the orbital evolution of stellar binaries in these environments and argue that their merger rates are expected to be greatly enhanced when the effect from cluster potential is taken into account in the binary-MBH triple system. I will apply our results to compact-object binary mergers mediated by gravitational wave radiation and show that this merger channel can contribute significantly to the LIGO/Virgo detections.
The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters
NASA Astrophysics Data System (ADS)
Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.
2015-12-01
We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.
A new route to gold nanoflowers
NASA Astrophysics Data System (ADS)
Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim
2018-05-01
Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.
Functional feature embedded space mapping of fMRI data.
Hu, Jin; Tian, Jie; Yang, Lei
2006-01-01
We have proposed a new method for fMRI data analysis which is called Functional Feature Embedded Space Mapping (FFESM). Our work mainly focuses on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the frequency domain. A nonlinear dimension reduction technique Isomap is applied to the high dimensional features obtained from frequency domain of the fMRI data for the first time. Finally, the presence of activated time series is identified by the clustering method in which the information theoretic criterion of minimum description length (MDL) is used to estimate the number of clusters. The feasibility of our algorithm is demonstrated by real human experiments. Although we focus on analyzing periodic fMRI data, the approach can be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the Fourier analysis with a wavelet analysis.
Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M
2008-07-25
Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.
EMBEDDED LENSING TIME DELAYS, THE FERMAT POTENTIAL, AND THE INTEGRATED SACHS–WOLFE EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu, E-mail: bchen3@fsu.edu
2015-05-01
We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman–Lemaître–Robertson–Walker cosmology and use it to investigate the late-time integrated Sachs–Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use andmore » makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed.« less
Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks
NASA Astrophysics Data System (ADS)
Khoo, Tommy; Fu, Feng; Pauls, Scott
2016-11-01
In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.
Dissecting psychiatric spectrum disorders by generative embedding☆☆☆
Brodersen, Kay H.; Deserno, Lorenz; Schlagenhauf, Florian; Lin, Zhihao; Penny, Will D.; Buhmann, Joachim M.; Stephan, Klaas E.
2013-01-01
This proof-of-concept study examines the feasibility of defining subgroups in psychiatric spectrum disorders by generative embedding, using dynamical system models which infer neuronal circuit mechanisms from neuroimaging data. To this end, we re-analysed an fMRI dataset of 41 patients diagnosed with schizophrenia and 42 healthy controls performing a numerical n-back working-memory task. In our generative-embedding approach, we used parameter estimates from a dynamic causal model (DCM) of a visual–parietal–prefrontal network to define a model-based feature space for the subsequent application of supervised and unsupervised learning techniques. First, using a linear support vector machine for classification, we were able to predict individual diagnostic labels significantly more accurately (78%) from DCM-based effective connectivity estimates than from functional connectivity between (62%) or local activity within the same regions (55%). Second, an unsupervised approach based on variational Bayesian Gaussian mixture modelling provided evidence for two clusters which mapped onto patients and controls with nearly the same accuracy (71%) as the supervised approach. Finally, when restricting the analysis only to the patients, Gaussian mixture modelling suggested the existence of three patient subgroups, each of which was characterised by a different architecture of the visual–parietal–prefrontal working-memory network. Critically, even though this analysis did not have access to information about the patients' clinical symptoms, the three neurophysiologically defined subgroups mapped onto three clinically distinct subgroups, distinguished by significant differences in negative symptom severity, as assessed on the Positive and Negative Syndrome Scale (PANSS). In summary, this study provides a concrete example of how psychiatric spectrum diseases may be split into subgroups that are defined in terms of neurophysiological mechanisms specified by a generative model of network dynamics such as DCM. The results corroborate our previous findings in stroke patients that generative embedding, compared to analyses of more conventional measures such as functional connectivity or regional activity, can significantly enhance both the interpretability and performance of computational approaches to clinical classification. PMID:24363992
NASA Astrophysics Data System (ADS)
Walborn, N. R.; Barbá, R. H.
A groundbased, blue-violet spectral classification study of the 30 Doradus stellar content has revealed five spatially and/or temporally distinct components: (1) the central ionizing cluster including R136 (corresponding to the Carina phase of OB cluster evolution with an age of 2-3 Myr); (2) a younger generation in or near the bright nebular filaments west and northeast of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central cluster (Orion phase, <1 Myr); (3) an older population of late-O and early-B supergiants throughout the central field whose structural relationship, if any, to the younger groups is unclear (Scorpius OB1 phase, 4-6 Myr); (4) a previously known, older still compact cluster 3' northwest of R136, containing A and M supergiants and evidently affecting the nebular dynamics substantially (h and chi Persei phase, 10 Myr); and (5) a newly recognized Sco OB1-phase association surrounding the recently discovered Luminous Blue Variable R143 in the southern part of the Nebula. Evidently, star formation has occurred in discrete events at different epochs in 30 Dor, and there are clear implications for the interpretation of more distant starbursts. This presentation emphasizes the second component above, a new stellar generation currently being formed in 30 Doradus. Groundbased IR images by Rubio et al. and H2 observations by Probst and Rubio show many sources, with detailed relationships to the embedded optical O stars as well as to the nebular microstructures visible in HST/WFPC2 images. Recent observations of these fields with HST/NICMOS reveal an even greater wealth of structural detail, including compact IR multiple systems and clusters, and probable jets associated with two of the embedded early-O systems; one of the latter may also be related to an H2O maser source. These and future IR data will provide new insights into the evolution of starbursts on the scale of 30 Doradus, as well as the early evolution of individual massive stars and compact groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less
Rasschaert, Perrine; Dambrine, Ginette; Rasschaert, Denis; Laurent, Sylvie
2016-01-01
ABSTRACT Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model — the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron — to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3′ splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5′-tailed mirtron. We have thus identified the first 5′-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway. PMID:27715458
The embedded population around Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Testi, L.; Stanga, R. M.; Natta, A.; Palla, F.; Prusti, T.; Baffa, C.; Hunt, L. K.; Lisi, F.
Herbig Ae/Be stars are intermediate mass young stars in the pre-main sequence phase of evolution. There are only few stars of this type known so far, and all of them seem to be relatively isolated, in contrast to their low mass counterparts, the T Tauri stars. A possible explanation of this fact is that other young stars formed near the known YSO are deeply embedded in the molecular cloud environment and are not detectable at optical wavelengths. We used the new ARcetri Near Infrared CAmera (ARNICA) to survey in the J, H and K bands the regions of sky around Herbig stars. The aim of this work is to identify embedded YSO and investigate the clustering properties of these young stars.
NASA Astrophysics Data System (ADS)
Zeller, R.; Braspenning, P. J.
1982-06-01
The charge density and the local density of states for a vacancy in Cu and for the first shell of Cu neighbours are calculated by the KKR-Green's function technique. The muffin-tin potentials for the vacancy and the neighbour shell atoms are determined self-consistently in the local density approximation of density functional theory. By the use of the proper host Green's function the embedding of this cluster of 13 perturbed muffin-tins into the infinite array of bulk Cu muffin-tin potentials is described rigorously, thus representing a solution of the embedding problem. The calculations demonstrate a rather large charge transfer of 1.1 electrons from the first neighbour shell to the vacancy.
The star-forming complex LMC-N79 as a future rival to 30 Doradus
NASA Astrophysics Data System (ADS)
Ochsendorf, Bram B.; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Meixner, Margaret; Jones, Olivia C.; Indebetouw, Remy; Rahman, Mubdi
2017-11-01
Within the early Universe, `extreme' star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z ≳ 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past 0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.
A new method to unveil embedded stellar clusters
NASA Astrophysics Data System (ADS)
Lombardi, Marco; Lada, Charles J.; Alves, João
2017-11-01
In this paper we present a novel method to identify and characterize stellar clusters deeply embedded in a dark molecular cloud. The method is based on measuring stellar surface density in wide-field infrared images using star counting techniques. It takes advantage of the differing H-band luminosity functions (HLFs) of field stars and young stellar populations and is able to statistically associate each star in an image as a member of either the background stellar population or a young stellar population projected on or near the cloud. Moreover, the technique corrects for the effects of differential extinction toward each individual star. We have tested this method against simulations as well as observations. In particular, we have applied the method to 2MASS point sources observed in the Orion A and B complexes, and the results obtained compare very well with those obtained from deep Spitzer and Chandra observations where presence of infrared excess or X-ray emission directly determines membership status for every star. Additionally, our method also identifies unobscured clusters and a low resolution version of the Orion stellar surface density map shows clearly the relatively unobscured and diffuse OB 1a and 1b sub-groups and provides useful insights on their spatial distribution.
Miao, Ping; Lin, Xiaohuan; Koda, Akihiro; Lee, Sanghyun; Ishikawa, Yoshihisa; Torii, Shuki; Yonemura, Masao; Mochiku, Takashi; Sagayama, Hajime; Itoh, Shinichi; Ikeda, Kazutaka; Otomo, Toshiya; Wang, Yinxia; Kadono, Ryosuke; Kamiyama, Takashi
2017-07-01
Materials that show negative thermal expansion (NTE) have significant industrial merit because they can be used to fabricate composites whose dimensions remain invariant upon heating. In some materials, NTE is concomitant with the spontaneous magnetization due to the magnetovolume effect (MVE). Here the authors report a new class of MVE material; namely, a layered perovskite PrBaCo 2 O 5.5+ x (0 ≤ x ≤ 0.41), in which strong NTE [β ≈ -3.6 × 10 -5 K -1 (90-110 K) at x = 0.24] is triggered by embedding ferromagnetic (F) clusters into the antiferromagnetic (AF) matrix. The strongest MVE is found near the boundary between F and AF phases in the phase diagram, indicating the essential role of competition between the F-clusters and the AF-matrix. Furthermore, the MVE is not limited to the PrBaCo 2 O 5.5+ x but is also observed in the NdBaCo 2 O 5.5+ x . The present study provides a new approach to obtaining MVE and offers a path to the design of NTE materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations.
Riniker, Sereina; van Gunsteren, Wilfred F
2011-02-28
The development of coarse-grained (CG) models that correctly represent the important features of compounds is essential to overcome the limitations in time scale and system size currently encountered in atomistic molecular dynamics simulations. Most approaches reported in the literature model one or several molecules into a single uncharged CG bead. For water, this implicit treatment of the electrostatic interactions, however, fails to mimic important properties, e.g., the dielectric screening. Therefore, a coarse-grained model for water is proposed which treats the electrostatic interactions between clusters of water molecules explicitly. Five water molecules are embedded in a spherical CG bead consisting of two oppositely charged particles which represent a dipole. The bond connecting the two particles in a bead is unconstrained, which makes the model polarizable. Experimental and all-atom simulated data of liquid water at room temperature are used for parametrization of the model. The experimental density and the relative static dielectric permittivity were chosen as primary target properties. The model properties are compared with those obtained from experiment, from clusters of simple-point-charge water molecules of appropriate size in the liquid phase, and for other CG water models if available. The comparison shows that not all atomistic properties can be reproduced by a CG model, so properties of key importance have to be selected when coarse graining is applied. Yet, the CG model reproduces the key characteristics of liquid water while being computationally 1-2 orders of magnitude more efficient than standard fine-grained atomistic water models.
NASA Astrophysics Data System (ADS)
Mulchaey, John
Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy evolution.
3D Observation of GEMS by Electron Tomography
NASA Technical Reports Server (NTRS)
Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott
2014-01-01
Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by sample thickness ) approx. or greater than 50 nm). Three cluster IDPs (L2036AA5 cluster4, L2009L8 cluster 13 and W726A2) were used for the observations. ID W726A2 was collected without silicon oil, which is ordinary used to collect IDPs, so this sample has no possibility of contaminations caused by silicon oil or solvent to rinse it [6]. The samples were embedded in epoxy risin and sliced into ultrathin sections (50-300 nm) using an ultramicotome. The sections were observed by BF-TEM and HAADF-STEM (high angle annular dark field-scanning TEM) modes. Images were obtained by rotating the sample tilt angle over a range of +/- 65 deg in 1 deg steps. The obtained images were reconstructed to slice images. Mineral phases in the slice images were estimated by comparing with a 2D elemental map obtained by an EDS (energy dispersive X-ray spectroscopy) system equipped in the TEM/STEM. Careful examination of the slice images confirmed that iron grains are embedded in the amorphous silicate matrix of the GEMS grains, but sulfide grains were mainly present on the surface of the amorphous silicate. These results are consistent with the model that GEMS grains formed as condensates [3,5], although more data are needed to conclude the origin of GEMS grains. The present study is the first successful example adapting the electron tomography to the IDPs. This type of analysis will be important for planetary material sciences in the future.
Wilhelm, Jan; Walz, Michael; Stendel, Melanie; Bagrets, Alexei; Evers, Ferdinand
2013-05-14
We present a modification of the standard electron transport methodology based on the (non-equilibrium) Green's function formalism to efficiently simulate STM-images. The novel feature of this method is that it employs an effective embedding technique that allows us to extrapolate properties of metal substrates with adsorbed molecules from quantum-chemical cluster calculations. To illustrate the potential of this approach, we present an application to STM-images of C58-dimers immobilized on Au(111)-surfaces that is motivated by recent experiments.
Fermat's least-time principle and the embedded transparent lens
NASA Astrophysics Data System (ADS)
Kantowski, R.; Chen, B.; Dai, X.
2013-10-01
We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.
From molecules to young stellar clusters: the star formation cycle across the disk of M 33
NASA Astrophysics Data System (ADS)
Corbelli, Edvige; Braine, Jonathan; Bandiera, Rino; Brouillet, Nathalie; Combes, Françoise; Druard, Clément; Gratier, Pierre; Mata, Jimmy; Schuster, Karl; Xilouris, Manolis; Palla, Francesco
2017-05-01
Aims: We study the association between giant molecular clouds (GMCs) and young stellar cluster candidates (YSCCs) to shed light on the time evolution of local star formation episodes in the nearby galaxy M 33. Methods: The CO (J = 2-1) IRAM all-disk survey was used to identify and classify 566 GMCs with masses between 2 × 104 and 2 × 106M⊙ across the whole star-forming disk of M 33. In the same area, there are 630 YSCCs that we identified using Spitzer-24 μm data. Some YSCCs are embedded star-forming sites, while the majority have GALEX-UV and Hα counterparts with estimated cluster masses and ages. Results: The GMC classes correspond to different cloud evolutionary stages: inactive clouds are 32% of the total and classified clouds with embedded and exposed star formation are 16% and 52% of the total, respectively. Across the regular southern spiral arm, inactive clouds are preferentially located in the inner part of the arm, possibly suggesting a triggering of star formation as the cloud crosses the arm. The spatial correlation between YSCCs and GMCs is extremely strong, with a typical separation of 17 pc. This is less than half the CO (2-1) beam size and illustrates the remarkable physical link between the two populations. GMCs and YSCCs follow the HI filaments, except in the outermost regions, where the survey finds fewer GMCs than YSCCs, which is most likely due to undetected clouds with low CO luminosity. The distribution of the non-embedded YSCC ages peaks around 5 Myr, with only a few being as old as 8-10 Myr. These age estimates together with the number of GMCs in the various evolutionary stages lead us to conclude that 14 Myr is the typical lifetime of a GMC in M 33 prior to cloud dispersal. The inactive and embedded phases are short, lasting about 4 and 2 Myr, respectively. This underlines that embedded YSCCs rapidly break out from the clouds and become partially visible in Hα or UV long before cloud dispersal. Full Tables 5 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A146
Unsupervised Structure Detection in Biomedical Data.
Vogt, Julia E
2015-01-01
A major challenge in computational biology is to find simple representations of high-dimensional data that best reveal the underlying structure. In this work, we present an intuitive and easy-to-implement method based on ranked neighborhood comparisons that detects structure in unsupervised data. The method is based on ordering objects in terms of similarity and on the mutual overlap of nearest neighbors. This basic framework was originally introduced in the field of social network analysis to detect actor communities. We demonstrate that the same ideas can successfully be applied to biomedical data sets in order to reveal complex underlying structure. The algorithm is very efficient and works on distance data directly without requiring a vectorial embedding of data. Comprehensive experiments demonstrate the validity of this approach. Comparisons with state-of-the-art clustering methods show that the presented method outperforms hierarchical methods as well as density based clustering methods and model-based clustering. A further advantage of the method is that it simultaneously provides a visualization of the data. Especially in biomedical applications, the visualization of data can be used as a first pre-processing step when analyzing real world data sets to get an intuition of the underlying data structure. We apply this model to synthetic data as well as to various biomedical data sets which demonstrate the high quality and usefulness of the inferred structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantowski, Ronald; Chen Bin; Dai Xinyu, E-mail: kantowski@nhn.ou.ed, E-mail: Bin.Chen-1@ou.ed, E-mail: dai@nhn.ou.ed
We compute the deflection angle to order (m/r {sub 0}){sup 2} and m/r{sub 0} x {Lambda}r {sup 2}{sub 0} for a light ray traveling in a flat {Lambda}CDM cosmology that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model predicts a decrease in the deflection angle of {approx}2% for weakly lensed galaxies behind the rich cluster A1689 and thatmore » the reduction can be as large as {approx}5% for similar rich clusters at z {approx} 1. Weak-lensing deflection angles caused by galaxies can likewise be reduced by as much as {approx}4%. We show that the lowest order correction in which {Lambda} appears is proportional to m/r{sub 0} x {radical}({Lambda}r{sub 0}{sup 2}) and could cause as much as a {approx}0.02% increase in the deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is proportional to m/r{sub 0}x{radical}(m/r{sub 0}) and can increase the deflection angle by {approx}0.005% for weak lensing by galaxies.« less
NASA Astrophysics Data System (ADS)
Mihalyuk, A. N.; Hsing, C. R.; Wei, C. M.; Eremeev, S. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.
2018-01-01
Formation of the highly-ordered \\sqrt7 × \\sqrt7 -periodicity 2D compound has been detected in the (Tl, Au)/Si(1 1 1) system as a result of Au deposition onto the Tl/Si(1 1 1) surface, its composition, structure and electronic properties have been characterized using scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and density-functional-theory calculations. On the basis of these data, the structural model of the Tl-Au compound has been proposed, which adopts 12 Tl atoms and 10 Au atoms (in total, 22 atoms) per \\sqrt7 × \\sqrt7 unit cell, i.e. ˜1.71 ML of Tl and ˜1.43 ML of Au (in total, ˜3.14 ML). Qualitatively, the model can be visualized as consisting of truncated-pyramid-like Au clusters with a Tl atom on top, while the other Tl atoms form a double layer around the Au clusters. The (Tl, Au)/Si(1 1 1)\\sqrt7 × \\sqrt7 compound has been found to exhibit pronounced metallic properties at least down to temperatures as low as ˜25 K, which makes it a promising object for studying electrical transport phenomena in the 2D metallic systems.
Tracing the Arms of our Milky Way Galaxy
2015-06-03
Astronomers using data from NASA's Wide-field Infrared Survey Explorer, or WISE, are helping to trace the shape of our Milky Way galaxy's spiral arms. This illustration shows where WISE data revealed clusters of young stars shrouded in dust, called embedded clusters, which are known to reside in spiral arms. The bars represent uncertainties in the data. The nearly 100 clusters shown here were found in the arms called Perseus, Sagittarius-Carina, and Outer -- three of the galaxy's four proposed primary arms. Our sun resides in a spur to an arm, or a minor arm, called Orion Cygnus. http://photojournal.jpl.nasa.gov/catalog/PIA19341
Melting of Cu nanoclusters by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying
2003-04-01
We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to Tm, N= Tm,Bulk- αN-1/3, dropping from Tm,Bulk=1360 K to Tm,456=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.
MYStIX: Dynamical evolution of young clusters
NASA Astrophysics Data System (ADS)
Kuhn, Michael A.
2014-08-01
The spatial structure of young stellar clusters in Galactic star-forming regions provides insight into these clusters’ dynamical evolution---a topic with implications for open questions in star-formation and cluster survival. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) provides a sample of >30,000 young stars in star-forming regions (d<3.6 kpc) that contain at least one O-type star. We use the finite mixture model analysis to identify subclusters of stars and determine their properties: including subcluster radii, intrinsic numbers of stars, central density, ellipticity, obscuration, and age. In 17 MYStIX regions we find 142 subclusters, with a diverse radii and densities and age spreads of up to ~1 Myr in a region. There is a strong negative correlation between subcluster radius and density, which indicates that embedded subclusters expand but also gain stars as they age. Subcluster expansion is also shown by a positive radius--age correlation, which indicates that subclusters are expanding at <1 km/s. The subcluster ellipticity distribution and number--density relation show signs of a hierarchical merger scenario, whereby young stellar clusters are built up through mergers of smaller clumps, causing evolution from a clumpy spatial distribution of stars (seen in some regions) to a simpler distribution of stars (seen in other regions). Many of the simple young stellar clusters show signs of dynamically relaxation, even though they are not old enough for this to have occurred through two-body interactions. However, this apparent contradiction might be explained if small subcluster, which have shorter dynamical relaxation times, can produce dynamically relaxed clusters through hierarchical mergers.
Dark energy and key physical parameters of clusters of galaxies
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Chernin, A. D.
2012-04-01
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.
Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†
Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.
2016-01-01
The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490
Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O
2016-08-21
The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.
Dynamics of fragment formation in neutron-rich matter
NASA Astrophysics Data System (ADS)
Alcain, P. N.; Dorso, C. O.
2018-01-01
Background: Neutron stars are astronomical systems with nucleons subjected to extreme conditions. Due to the longer range Coulomb repulsion between protons, the system has structural inhomogeneities. Several interactions tailored to reproduce nuclear matter plus a screened Coulomb term reproduce these inhomogeneities known as nuclear pasta. These structural inhomogeneities, located in the crusts of neutron stars, can also arise in expanding systems depending on the thermodynamic conditions (temperature, proton fraction, etc.) and the expansion velocity. Purpose: We aim to find the dynamics of the fragment formation for expanding systems simulated according to the little big bang model. This expansion resembles the evolution of merging neutron stars. Method: We study the dynamics of the nucleons with semiclassical molecular dynamics models. Starting with an equilibrium configuration, we expand the system homogeneously until we arrive at an asymptotic configuration (i.e., very low final densities). We study, with four different cluster recognition algorithms, the fragment distribution throughout this expansion and the dynamics of the cluster formation. Results: Studying the topology of the equilibrium states, before the expansion, we reproduced the known pasta phases plus a novel phase we called pregnocchi, consisting of proton aggregates embedded in a neutron sea. We have identified different fragmentation regimes, depending on the initial temperature and fragment velocity. In particular, for the already mentioned pregnocchi, a neutron cloud surrounds the clusters during the early stages of the expansion, resulting in systems that give rise to configurations compatible with the emergence of the r process. Conclusions: We showed that a proper identification of the cluster distribution is highly dependent on the cluster recognition algorithm chosen, and found that the early cluster recognition algorithm (ECRA) was the most stable one. This approach allowed us to identify the dynamics of the fragment formation. These calculations pave the way to a comparison between Earth experiments and neutron star studies.
Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryltsev, R. E.; Ural Federal University, 19 Mira Str., 620002 Ekaterinburg; L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow
Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{supmore » 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.« less
Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers
Thorbergsson, Palmi Thor; Ekstrand, Joakim; Friberg, Annika; Granmo, Marcus; Pettersson, Lina M. E.; Schouenborg, Jens
2016-01-01
Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved. PMID:27159159
DICON: interactive visual analysis of multidimensional clusters.
Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin
2011-12-01
Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis. © 2011 IEEE
Interaction between adatoms on surfaces: Application to the system H/Ni(111)
NASA Astrophysics Data System (ADS)
Muscat, J. P.; Newns, D. M.
1981-04-01
The interaction of adatoms on a metal surface is looked at from a novel viewpoint, using the techniques of the embedded cluster model of chemisorption. Application is made to the problem of two hydrogen atoms on a free electron surface with simple derivation of the well known R-5 asymptotic behaviour for the interaction, at large inter-adatom distances R, compared to the corresponding R-3 behaviour for two impurities in a bulk free electron gas. Application of the free electron model to the case of H/Ni(111) does not reproduce the experimental observation of formation of a graphitic structure on the surface. Inclusion of the l = 2 nickel muffin tins corrects for this anomaly, and is seen to favour the formation of the above mentioned structure.
Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments
Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu
2017-01-01
High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments. PMID:28835734
Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments.
Wei, Jyh-Da; Cheng, Hui-Jun; Lin, Chun-Yuan; Ye, Jin; Yeh, Kuan-Yu
2017-01-01
High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.
Theoretical study of cathode surfaces and high-temperature superconductors
NASA Technical Reports Server (NTRS)
Mueller, Wolfgang
1995-01-01
Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.
NASA Astrophysics Data System (ADS)
Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina
2017-03-01
The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.
Design for the fabrication of high efficiency solar cells
Simmons, Joseph H.
1998-01-01
A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.
Growth of polymer-metal nanocomposites by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Röder, Johanna; Faupel, Jörg; Krebs, Hans-Ulrich
2008-12-01
Complex polymer-metal nanocomposites have a wide range of applications, e.g. as flexible displays and packaging materials. Pulsed laser deposition was applied to form nanostructured materials consisting of metal clusters (Ag, Au, Pd and Cu) embedded in a polymer (polycarbonate, PC) matrix. The size and amount of the metal clusters are controlled by the number of laser pulses hitting the respective targets. For Cu and Pd, smaller clusters and higher cluster densities are obtained as in the cases of Ag and Au due to a stronger reactivity with the polymers and thus a lower diffusivity. Implantation effects, differences in metal diffusivity and reactivity on the polymer surfaces, and the coalescence properties are discussed with respect to the observed microstructures on PC and compared to the metal growth on poly (methyl methacrylate), PMMA.
New mechanisms of cluster diffusion on metal fcc(100) surfaces
NASA Astrophysics Data System (ADS)
Trushin, Oleg; Salo, Petri; Alatalo, Matti; Ala-Nissila, Tapio
2001-03-01
We have studied atomic mechanisms of the diffusion of small clusters on the fcc(100) metal surfaces using semi-empirical and ab-initio molecular static calculations. Primary goal of these studies was to investigate possible many-body mechanisms of cluster motion which can contribute to low temperature crystal growth. We used embedded atom and Glue potentials in semi-empirical simulations of Cu and Al. Combination of the Nudged Elastic Band and Eigenvector Following methods allowed us to find all the possible transition paths for cluster movements on flat terrace. In case of Cu(001) we have found several new mechanisms for diffusion of clusters, including mechanisms called row-shearing and dimer-rotating in which a whole row inside an island moves according to a concerted jump and a dimer rotates at the periphery of an island, respectively. In some cases these mechanisms yield a lower energy barrier than the standard mechanisms.
Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, G,; Houston, M.; Ng, Y.-R.
2002-01-11
We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications thatmore » use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.« less
The split in the ancient cold front in the Perseus cluster
NASA Astrophysics Data System (ADS)
Walker, Stephen A.; ZuHone, John; Fabian, Andy; Sanders, Jeremy
2018-04-01
Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around 5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.
Bose-Einstein condensate haloes embedded in dark energy
NASA Astrophysics Data System (ADS)
Membrado, M.; Pacheco, A. F.
2018-04-01
Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ < 10-8). However, dark halo masses smaller than 107 M⊙ (ξ > 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark haloes would contain stars up to 8-15 kpc with luminosities 9-4 ×103 L⊙. Then, their observation would be complicated. The comparison of our lower bound for dark halo masses with other bounds based on different arguments, leads us to think that the cosmological constant is actually the responsible of limiting the halo mass.
Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae
NASA Astrophysics Data System (ADS)
Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.
2005-02-01
An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.
2014-01-01
In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105
Artificial neural networks as quantum associative memory
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis
We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n < 1000 qubits. This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant
2008-03-01
Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which corresponding histological ground truth for spatial extent of CaP is known, show a marginally higher sensitivity, specificity, and positive predictive value compared to corresponding CAD results with the individual modalities.
Spatial-temporal clustering of tornadoes
NASA Astrophysics Data System (ADS)
Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.
2016-12-01
The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.
Spatial-Temporal Clustering of Tornadoes
NASA Astrophysics Data System (ADS)
Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.
2017-04-01
The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.
Patel, Vidushi S; Cooper, Steven JB; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer AM
2008-01-01
Background Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages. PMID:18657265
Reaction-diffusion basis of retroviral infectivity
NASA Astrophysics Data System (ADS)
Sadiq, S. Kashif
2016-11-01
Retrovirus particle (virion) infectivity requires diffusion and clustering of multiple transmembrane envelope proteins (Env3) on the virion exterior, yet is triggered by protease-dependent degradation of a partially occluding, membrane-bound Gag polyprotein lattice on the virion interior. The physical mechanism underlying such coupling is unclear and only indirectly accessible via experiment. Modelling stands to provide insight but the required spatio-temporal range far exceeds current accessibility by all-atom or even coarse-grained molecular dynamics simulations. Nor do such approaches account for chemical reactions, while conversely, reaction kinetics approaches handle neither diffusion nor clustering. Here, a recently developed multiscale approach is considered that applies an ultra-coarse-graining scheme to treat entire proteins at near-single particle resolution, but which also couples chemical reactions with diffusion and interactions. A model is developed of Env3 molecules embedded in a truncated Gag lattice composed of membrane-bound matrix proteins linked to capsid subunits, with freely diffusing protease molecules. Simulations suggest that in the presence of Gag but in the absence of lateral lattice-forming interactions, Env3 diffuses comparably to Gag-absent Env3. Initial immobility of Env3 is conferred through lateral caging by matrix trimers vertically coupled to the underlying hexameric capsid layer. Gag cleavage by protease vertically decouples the matrix and capsid layers, induces both matrix and Env3 diffusion, and permits Env3 clustering. Spreading across the entire membrane surface reduces crowding, in turn, enhancing the effect and promoting infectivity. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Coexistence of two electronic phases in LaTiO3+δ (0.01⩽δ⩽0.12) and their evolution with δ
NASA Astrophysics Data System (ADS)
Zhou, H. D.; Goodenough, J. B.
2005-04-01
Although LaTiO3+δ(0.01⩽δ⩽0.12) is single-phase to powder x-ray diffraction, its properties reveal that a hole-poor strongly correlated electronic phase coexists with a hole-rich itinerant-electron phase. With δ⩽0.03 , the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With δ⩾0.08 , isolated hole-poor clusters are embedded in an itinerant-electron matrix. As δ>0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to superparamagnetic strong-correlation fluctuations by δ=0.12 . This behavior is consistent with prediction from the virial theorem of a first-order phase change at the crossover from localized (or strongly correlated) to itinerant electronic behavior, a smaller equilibrium (Ti-O) bond length being in the itinerant-electron phase. Accordingly, the variation of volume with oxidation state does not obey Végard’s law; the itinerant-electron minority phase exerts a compressive force on the hole-poor matrix, and the hole-poor minority phase exerts a tensile stress on the hole-rich matrix.
Federated and Cloud Enabled Resources for Data Management and Utilization
NASA Astrophysics Data System (ADS)
Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.
2011-12-01
The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.
Goyal, Puja; Ghosh, Nilanjan; Phatak, Prasad; Clemens, Maike; Gaus, Michael; Elstner, Marcus; Cui, Qiang
2011-01-01
Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as PRG would require the protein to raise the pKa of a hydronium by almost 11 pKa units, which is difficult considering known cases of pKa shifts in proteins. Our recent QM/MM simulations suggested an alternative “intermolecular proton bond” model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pKa values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting x-ray structure and nuclear quantum effects, the “intermolecular proton bond” model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the “intermolecular proton bond” model is likely applicable to PRG in biomolecular proton pumps in general. PMID:21761868
Social networks and links to isolation and loneliness among elderly HCBS clients.
Medvene, Louis J; Nilsen, Kari M; Smith, Rachel; Ofei-Dodoo, Samuel; DiLollo, Anthony; Webster, Noah; Graham, Annette; Nance, Anita
2016-01-01
The purpose of this study was to explore the network types of HCBS clients based on the structural characteristics of their social networks. We also examined how the network types were associated with social isolation, relationship quality and loneliness. Forty personal interviews were carried out with HCBS clients to assess the structure of their social networks as indicated by frequency of contact with children, friends, family and participation in religious and community organizations. Hierarchical cluster analysis was conducted to identify network types. Four network types were found including: family (n = 16), diverse (n = 8), restricted (n = 8) and religious (n = 7). Family members comprised almost half of participants' social networks, and friends comprised less than one-third. Clients embedded in family, diverse and religious networks had significantly more positive relationships than clients embedded in restricted networks. Clients embedded in restricted networks had significantly higher social isolation scores and were lonelier than clients in diverse and family networks. The findings suggest that HCBS clients' isolation and loneliness are linked to the types of social networks in which they are embedded. The findings also suggest that clients embedded in restricted networks are at high risk for negative outcomes.
NASA Astrophysics Data System (ADS)
Gandomkar, Ziba; Tay, Kevin; Ryder, Will; Brennan, Patrick C.; Mello-Thoms, Claudia
2016-03-01
Radiologists' gaze-related parameters combined with image-based features were utilized to classify suspicious mammographic areas ultimately scored as True Positives (TP) and False Positives (FP). Eight breast radiologists read 120 two-view digital mammograms of which 59 had biopsy proven cancer. Eye tracking data was collected and nearby fixations were clustered together. Suspicious areas on mammograms were independently identified based on thresholding an intensity saliency map followed by automatic segmentation and pruning steps. For each radiologist reported area, radiologist's fixation clusters in the area, as well as neighboring suspicious areas within 2.5° of the center of fixation, were found. A 45-dimensional feature vector containing gaze parameters of the corresponding cluster along with image-based characteristics was constructed. Gaze parameters included total number of fixations in the cluster, dwell time, time to hit the cluster for the first time, maximum number of consecutive fixations, and saccade magnitude of the first fixation in the cluster. Image-based features consisted of intensity, shape, and texture descriptors extracted from the region around the suspicious area, its surrounding tissue, and the entire breast. For each radiologist, a userspecific Support Vector Machine (SVM) model was built to classify the reported areas as TPs or FPs. Leave-one-out cross validation was utilized to avoid over-fitting. A feature selection step was embedded in the SVM training procedure by allowing radial basis function kernels to have 45 scaling factors. The proposed method was compared with the radiologists' performance using the jackknife alternative free-response receiver operating characteristic (JAFROC). The JAFROC figure of merit increased significantly for six radiologists.
Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay
NASA Astrophysics Data System (ADS)
Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun
2015-06-01
In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.
Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang
2015-04-01
The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu 40Zr 51Al 9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at T x ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (T m ~ 900K),more » and the crossover temperature is roughly twice of the glass-transition temperature (T g). Below T x, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below T x and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less
NASA Astrophysics Data System (ADS)
HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Ali, M. O.
2012-09-01
Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims: Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods: Data obtained in 20.2 h of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results: No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions: The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 μG in the inner lobes.
NGC 346: Looking in the Cradle of a Massive Star Cluster
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.; Hony, Sacha
2017-03-01
How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.
Resolving Structural Variability in Network Models and the Brain
Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.
2014-01-01
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546
Low-Mass Star Formation and the Initial Mass Function in Young Clusters
NASA Astrophysics Data System (ADS)
Luhman, Kevin Lee
I have used optical and near-infrared spectroscopy and imaging to measure spectral types and luminosities for young (/tau<10 Myr), embedded (AV=0[-]50), low-mass (0.1-1 Msolar) stars in three nearby (d<300 pc) clusters: L1495E, IC 348, and ρ Ophiuchi. In conjunction with theoretical evolutionary tracks, I have derived the star formation history and initial mass function for each stellar population. A large number of brown dwarf candidates have been identified in the photometry, several of which are confirmed through spectroscopy. Finally, I have measured the frequency and survival times of circumstellar disks and investigated the photometric and spectroscopic properties of protostars. In S 2, I apply observational tests to the available sets of evolutionary models for low-mass stars, concluding that the calculations of D'Antona & Mazzitelli are preferred for the range of masses and ages considered here. In S 3 and S 4, I examine in detail the spectroscopic characteristics and substellar nature of two brown dwarf candidates. The study then expands to include the populations within the clusters L1495E (S 5), IC 348 (S 6), and ρ Ophiuchi (S 7). In S 8, I briefly discuss the past, present, and future of scientific research related to this thesis.
Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE
NASA Astrophysics Data System (ADS)
Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.
2007-09-01
We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.
Endohedral gallide cluster superconductors and superconductivity in ReGa5.
Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph
2015-12-22
We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.
Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.
Itoh, Takayuki; Klein, Karsten
2015-01-01
Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.
Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)
NASA Astrophysics Data System (ADS)
Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.
2018-01-01
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.
Micromagnetics on high-performance workstation and mobile computational platforms
NASA Astrophysics Data System (ADS)
Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.
2015-05-01
The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.
Dong, X; Zeng, S; Chen, J
2012-01-01
Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans
2014-03-11
We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.
Features and heterogeneities in growing network models
NASA Astrophysics Data System (ADS)
Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra
2012-06-01
Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.
NASA Astrophysics Data System (ADS)
Djupvik, A. A.; André, Ph.; Bontemps, S.; Motte, F.; Olofsson, G.; Gålfalk, M.; Florén, H.-G.
2006-11-01
Aims.The aim of this paper is to characterise the star formation activity in the poorly studied embedded cluster Serpens/G3-G6, located ~45 arcmin (3 pc) to the south of the Serpens Cloud Core, and to determine the luminosity and mass functions of its population of Young Stellar Objects (YSOs). Methods: .Multi-wavelength broadband photometry was obtained to sample the near and mid-IR spectral energy distributions to separate YSOs from field stars and classify the YSO evolutionary stage. ISOCAM mapping in the two filters LW2 (5-8.5 μm) and LW3 (12-18 μm) of a 19 arcmin × 16 arcmin field was combined with JHKS data from 2MASS, KS data from Arnica/NOT, and L arcmin data from SIRCA/NOT. Continuum emission at 1.3 mm (IRAM) and 3.6 cm (VLA) was mapped to study the cloud structure and the coldest/youngest sources. Deep narrow band imaging at the 2.12 μm S(1) line of H2 from NOTCam/NOT was obtained to search for signs of bipolar outflows. Results: .We have strong evidence for a stellar population of 31 Class II sources, 5 flat-spectrum sources, 5 Class I sources, and two Class 0 sources. Our method does not sample the Class III sources. The cloud is composed of two main dense clumps aligned along a ridge over ~0.5 pc plus a starless core coinciding with absorption features seen in the ISOCAM maps. We find two S-shaped bipolar collimated flows embedded in the NE clump, and propose the two driving sources to be a Class 0 candidate (MMS3) and a double Class I (MMS2). For the Class II population we find a best age of ~2 Myr and compatibility with recent Initial Mass Functions (IMFs) by comparing the observed Class II luminosity function (LF), which is complete to 0.08 L⊙, to various model LFs with different star formation scenarios and input IMFs.
Demblon, Julie; D'Argembeau, Arnaud
2014-02-01
Recent research suggests that many imagined future events are not represented in isolation, but instead are embedded in broader event sequences-referred to as event clusters. It remains unclear, however, whether the production of event clusters reflects the underlying organizational structure of prospective thinking or whether it is an artifact of the event-cuing task in which participants are explicitly required to provide chains of associated future events. To address this issue, the present study examined whether the occurrence of event clusters in prospective thought is apparent when people are left to think freely about events that might happen in their personal future. The results showed that the succession of events participants spontaneously produced when envisioning their future frequently included event clusters. This finding provides more compelling evidence that prospective thinking involves higher-order autobiographical knowledge structures that organize imagined events in coherent themes and sequences. Copyright © 2014 Elsevier Inc. All rights reserved.
H II REGIONS, EMBEDDED PROTOSTARS, AND STARLESS CORES IN SHARPLESS 2-157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chian-Chou; Williams, Jonathan P.; Pandian, Jagadheep D., E-mail: ccchen@ifa.hawaii.edu, E-mail: jpw@ifa.hawaii.edu, E-mail: jagadheep@iist.ac.in
2012-06-20
We present arcsecond resolution 1.4 mm observations of the high-mass star-forming region, Sharpless 2-157, that reveal the cool dust associated with the first stages of star formation. These data are compared with archival images at optical, infrared, and radio wavelengths, and complemented with new arcsecond resolution mid-infrared data. We identify a dusty young H II region, numerous infrared sources within the cluster envelope, and four starless condensations. Three of the cores lie in a line to the south of the cluster peak, but the most massive one is right at the center and associated with a jumble of bright radiomore » and infrared sources. This presents an interesting juxtaposition of high- and low-mass star formation within the same cluster which we compare with similar observations of other high-mass star-forming regions and discuss in the context of cluster formation theory.« less
Local matrix learning in clustering and applications for manifold visualization.
Arnonkijpanich, Banchar; Hasenfuss, Alexander; Hammer, Barbara
2010-05-01
Electronic data sets are increasing rapidly with respect to both, size of the data sets and data resolution, i.e. dimensionality, such that adequate data inspection and data visualization have become central issues of data mining. In this article, we present an extension of classical clustering schemes by local matrix adaptation, which allows a better representation of data by means of clusters with an arbitrary spherical shape. Unlike previous proposals, the method is derived from a global cost function. The focus of this article is to demonstrate the applicability of this matrix clustering scheme to low-dimensional data embedding for data inspection. The proposed method is based on matrix learning for neural gas and manifold charting. This provides an explicit mapping of a given high-dimensional data space to low dimensionality. We demonstrate the usefulness of this method for data inspection and manifold visualization. 2009 Elsevier Ltd. All rights reserved.
Migration in the shearing sheet and estimates for young open cluster migration
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Nolting, Eric; Minchev, Ivan; De Silva, Gayandhi; Chiappini, Cristina
2018-04-01
Using tracer particles embedded in self-gravitating shearing sheet N-body simulations, we investigate the distance in guiding centre radius that stars or star clusters can migrate in a few orbital periods. The standard deviations of guiding centre distributions and maximum migration distances depend on the Toomre or critical wavelength and the contrast in mass surface density caused by spiral structure. Comparison between our simulations and estimated guiding radii for a few young supersolar metallicity open clusters, including NGC 6583, suggests that the contrast in mass surface density in the solar neighbourhood has standard deviation (in the surface density distribution) divided by mean of about 1/4 and larger than measured using COBE data by Drimmel and Spergel. Our estimate is consistent with a standard deviation of ˜0.07 dex in the metallicities measured from high-quality spectroscopic data for 38 young open clusters (<1 Gyr) with mean galactocentric radius 7-9 kpc.
Clustering Tree-structured Data on Manifold
Lu, Na; Miao, Hongyu
2016-01-01
Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696
NASA Astrophysics Data System (ADS)
Eliyan, Faysal Fayez
2017-09-01
The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.
Identification of the Viridicatumtoxin and Griseofulvin Gene Clusters from Penicillium aethiopicum
Chooi, Yit-Heng; Cacho, Ralph; Tang, Yi
2010-01-01
SUMMARY Penicillium aethiopicum produces two structurally interesting and biologically active polyketides: the tetracycline-like viridicatumtoxin 1 and the classic antifungal agent griseofulvin 2. Here, we report the concurrent discovery of the two corresponding biosynthetic gene clusters (vrt and gsf) by 454 shotgun sequencing. Gene deletions confirmed two nonreducing PKSs (NRPKS), vrtA and gsfA, are required for the biosynthesis of 1 and 2, respectively. Both PKSs share similar domain architectures and lack a C-terminal thioesterase domain. We identified gsfI as the chlorinase involved in the biosynthesis of 2, as deletion of gsfI resulted in the accumulation of decholorogriseofulvin 3. Comparative analysis with the P. chrysogenum genome revealed that both clusters are embedded within conserved syntenic regions of P. aethiopicum chromosomes. Discovery of the vrt and gsf clusters provided the basis for genetic and biochemical studies of the pathways. PMID:20534346
A new ATLAS muon CSC readout system with system on chip technology on ATCA platform
Claus, R.
2015-10-23
The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less
Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes
NASA Astrophysics Data System (ADS)
Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.
2016-06-01
We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.
Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.
Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L
2016-06-24
We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.
A new ATLAS muon CSC readout system with system on chip technology on ATCA platform
NASA Astrophysics Data System (ADS)
Claus, R.; ATLAS Collaboration
2016-07-01
The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.
A new ATLAS muon CSC readout system with system on chip technology on ATCA platform
NASA Astrophysics Data System (ADS)
Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.
2016-01-01
The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.
A new ATLAS muon CSC readout system with system on chip technology on ATCA platform
Bartoldus, R.; Claus, R.; Garelli, N.; ...
2016-01-25
The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less
Rüger, Beate M; Buchacher, Tanja; Giurea, Alexander; Kubista, Bernd; Fischer, Michael B; Breuss, Johannes M
2018-01-01
Introduction: New vessel formation requires a continuous and tightly regulated interplay between endothelial cells with cells of the perivascular microenvironment supported by mechanic-physical and chemical cues from the extracellular matrix. Aim: Here we investigated the potential of small fragments of synovial tissue to form de novo vascular structures in the context of inflammation within three dimensional (3D) fibrin-based matrices in vitro , and assessed the contribution of mesenchymal stromal cell (MSC)-immune cell cross-talk to neovascularization considering paracrine signals in a fibrin-based co-culture model. Material and Methods: Synovial tissue fragments from patients with rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) were cultivated within 3D fibrin matrices for up to 4 weeks. Cellular and structural re-arrangement of the initially acellular matrix were documented by phase contrast microscopy and characterized by confocal laser-scanning microscopy of topographically intact 3D cultures and by immunohistochemistry. MSC-peripheral blood mononuclear cell (PBMC) co-cultures in the 3D fibrin system specifically addressed the influence of perivascular cell interactions to neo-vessel formation in a pro-inflammatory microenvironment. Cytokine levels in the supernatants of cultured explant tissues and co-cultures were evaluated by the Bio-Plex cytokine assay and ELISA. Results: Vascular outgrowth from the embedded tissue into the fibrin matrix was preceded by leukocyte egress from the tissue fragments. Neo-vessels originating from both the embedded sample and from clusters locally formed by emigrated mononuclear cells were consistently associated with CD45 + leukocytes. MSC and PBMC in co-culture formed vasculogenic clusters. Clusters and cells with endothelial phenotype emerging from them, were surrounded by a collagen IV scaffold. No vascular structures were observed in control 3D monocultures of PBMC or MSC. Paracrine signals released by cultured OA tissue fragments corresponded with elevated levels of granulocyte-colony stimulating factor, vascular endothelial growth factor and interleukin-6 secreted by MSC-PBMC co-cultures. Conclusion: Our results show that synovial tissue fragments with immune cell infiltrates have the potential to form new vessels in initially avascular 3D fibrin-based matrices. Cross-talk and cluster formation of MSC with immune cells within the 3D fibrin environment through self-organization and secretion of pro-angiogenic paracrine factors can support neo-vessel growth.
NASA Astrophysics Data System (ADS)
Foster, Jonathan B.; Cottaar, Michiel; Covey, Kevin R.; Arce, Héctor G.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Rebull, Luisa; Frinchaboy, Peter M.; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C.; Zasowski, Gail
2015-02-01
The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s-1 after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s-1. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse.
Send, Robert; Kaila, Ville R. I.; Sundholm, Dage
2011-01-01
We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than 0.1 eV . By using a RVS energy threshold of 50 eV , the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2∕TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics∕molecular mechanics separation schemes. PMID:21663351
Send, Robert; Kaila, Ville R I; Sundholm, Dage
2011-06-07
We investigate how the reduction of the virtual space affects coupled-cluster excitation energies at the approximate singles and doubles coupled-cluster level (CC2). In this reduced-virtual-space (RVS) approach, all virtual orbitals above a certain energy threshold are omitted in the correlation calculation. The effects of the RVS approach are assessed by calculations on the two lowest excitation energies of 11 biochromophores using different sizes of the virtual space. Our set of biochromophores consists of common model systems for the chromophores of the photoactive yellow protein, the green fluorescent protein, and rhodopsin. The RVS calculations show that most of the high-lying virtual orbitals can be neglected without significantly affecting the accuracy of the obtained excitation energies. Omitting all virtual orbitals above 50 eV in the correlation calculation introduces errors in the excitation energies that are smaller than 0.1 eV. By using a RVS energy threshold of 50 eV, the CC2 calculations using triple-ζ basis sets (TZVP) on protonated Schiff base retinal are accelerated by a factor of 6. We demonstrate the applicability of the RVS approach by performing CC2/TZVP calculations on the lowest singlet excitation energy of a rhodopsin model consisting of 165 atoms using RVS thresholds between 20 eV and 120 eV. The calculations on the rhodopsin model show that the RVS errors determined in the gas-phase are a very good approximation to the RVS errors in the protein environment. The RVS approach thus renders purely quantum mechanical treatments of chromophores in protein environments feasible and offers an ab initio alternative to quantum mechanics/molecular mechanics separation schemes. © 2011 American Institute of Physics
From dust to light: a study of star formation in NGC2264
NASA Astrophysics Data System (ADS)
Teixeira, P. S.
2008-10-01
The goal of this dissertation is to characterize the star formation history of the young cluster NGC2264 using the unique observational capabilities of the Spitzer Space Telescope. The motivation to conduct this study stems from the fact that most stars are formed within clusters, so the formation and evolution of the latter will effect the stellar mass distribution in the field. Detailed observational studies of young stellar clusters are therefore crucial to provide necessary constraints for theoretical models of cloud and cluster formation and evolution. This study also addresses the evolution of circumstellar disks in NGC2264; empirical knowledge of protoplanetary disk evolution is required for the understanding of how planetary systems such as our own form. The first result obtained from this study was both completely new and unexpected. A dense region within NGC2264 was found to be teeming with bright 24 μm Class I protostars; these sources are embedded within dense submillimeter cores and are spatially distributed along dense filamentary fingers of gas and dust that radially converge on a B-type binary Class I source. This cluster of protostars was baptized the "Spokes cluster" and its analysis provided further insight into the role of thermal support during core formation, collapse and fragmentation. The nearest neighbor projected separation distribution of these Class I sources shows a characteristic spacing that is similar to the Jeans length for the region, indicating that the dusty filaments may have undergone thermal fragmentation. The submillimeter cores of the Spokes cluster were observed at 230GHz using the SubMillimeter Array (SMA) and the resulting high resolution (~1.3") continuum observations revealed a dense grouping of 7 Class 0 sources embedded within a particular core, D-MM1 (~20"x20"). The compact sources have masses ranging between 0.4M and 1.2M, and radii of ~600AU. The mean separation of the Class 0 sources within D-MM1 is considerably smaller than the characteristic spacing between the Class I sources in the larger Spokes cluster and is consistent with hierarchical thermal fragmentation of the dense molecular gas in this region. The results obtained by the study of the Spokes cluster show that the spatial substructuring of a cluster or subcluster is correlated with age, i.e., groupings of very young protostars have clearly more concentrated and substructured spatial distributions. The Spokes cluster could thus be one of several building blocks of NGC2264, and will likely expand and disperse its members through the surrounding region, adding to the rest of NGC2264's stellar population.To further explore this scenario, I identified Pre-Main Sequence (PMS) disk bearing sources in the whole region of NGC2264, as surveyed by InfraRed Array Camera (IRAC) analyzing both their spatial distributions and ages. Of the 1404 sources detected in all four IRAC bands, 116 sources were found to have anemic IRAC disks and 217 sources were found to have thick IRAC disks; the disk fraction was calculated to be 37.5%±6.3% and found to be a function of spectral type, increasing for later type sources. I identified 4 candidate sources with transition disks (disks with inner holes), as well as 6 sources with anemic inner disks and thick outer disks that could be the immediate precursors of transition disks. This is a relevant result for it suggests planet formation may be occurring in the inner disk at very early ages. I found that the spatial distribution of the disk-bearing sources was a function of both disk type and amount of reddening. This spatial analysis enabled the identification of three groups of sources, namely, (i) embedded (AV> 3 magnitudes) sources with thick disks, (ii) unembedded sources with thick disks, and (iii) sources with anemic disks. The first group was found to have a median age of 1 Myr and its spatial distribution is highly concentrated and substructured. The second group, (ii), has a median age of 2 Myr and its spatial distribution is less concentrated and substructured than group (i), but more than the group of sources with anemic disks - the spatial distribution of this third group (age ~ 2 Myr) is not substructured and is more distributed, showing no particular peak or concentration. The star formation history of NGC2264 appears to be as follows: the northern region appears to have undergone the first epoch or episode of star formation, while the second epoch is currently occurring in the center (Spokes cluster) and south (near Allen's source). Status: RO
Branching points in the low-temperature dipolar hard sphere fluid
NASA Astrophysics Data System (ADS)
Rovigatti, Lorenzo; Kantorovich, Sofia; Ivanov, Alexey O.; Tavares, José Maria; Sciortino, Francesco
2013-10-01
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres.
Attempt to develop taste bud models in three-dimensional culture.
Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro
2011-09-01
Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.
Topological structures in the equities market network
Leibon, Gregory; Pauls, Scott; Rockmore, Daniel; Savell, Robert
2008-01-01
We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on “partition decoupled null models,” a new class of null models that incorporate the interaction of clustered partitions into a random model and generalize the Gaussian ensemble. As an application, we analyze a correlation matrix derived from 4 years of close prices of equities in the New York Stock Exchange (NYSE) and National Association of Securities Dealers Automated Quotation (NASDAQ). In this example, we expose (i) a natural structure composed of 2 interacting partitions of the market that both agrees with and generalizes standard notions of scale (e.g., sector and industry) and (ii) structure in the first partition that is a topological manifestation of a well-known pattern of capital flow called “sector rotation.” Our approach gives rise to a natural form of multiresolution analysis of the underlying time series that naturally decomposes the basic data in terms of the effects of the different scales at which it clusters. We support our conclusions and show the robustness of the technique with a successful analysis on a simulated network with an embedded topological structure. The equities market is a prototypical complex system, and we expect that our approach will be of use in understanding a broad class of complex systems in which correlation structures are resident.
NASA Astrophysics Data System (ADS)
Shoemaker, James Richard
Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.
Status in calculating electronic excited states in transition metal oxides from first principles.
Bendavid, Leah Isseroff; Carter, Emily Ann
2014-01-01
Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.
Ground state structure of random magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastea, S.; Duxbury, P.M.
1998-10-01
Using exact optimization methods, we find all of the ground states of ({plus_minus}h) random-field Ising magnets (RFIM) and of dilute antiferromagnets in a field (DAFF). The degenerate ground states are usually composed of isolated clusters (two-level systems) embedded in a frozen background. We calculate the paramagnetic response (sublattice response) and the ground state entropy for the RFIM (DAFF) due to these clusters. In both two and three dimensions there is a broad regime in which these quantities are strictly positive, even at irrational values of h/J (J is the exchange constant). {copyright} {ital 1998} {ital The American Physical Society}
Brief Report: Clustered Forward Chaining with Embedded Mastery Probes to Teach Recipe Following.
Chazin, Kate T; Bartelmay, Danielle N; Lambert, Joseph M; Houchins-Juárez, Nealetta J
2017-04-01
This study evaluated the effectiveness of a clustered forward chaining (CFC) procedure to teach a 23-year-old male with autism to follow written recipes. CFC incorporates elements of forward chaining (FC) and total task chaining (TTC) by teaching a small number of steps (i.e., units) using TTC, introducing new units sequentially (akin to FC), and prompting through untrained steps. Results indicated that CFC was effective for teaching the participant to follow written recipes. Results maintained with therapist support for 3-5 weeks for all recipes, and maintained when therapist support was removed.
Further Structural Intelligence for Sensors Cluster Technology in Manufacturing
Mekid, Samir
2006-01-01
With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.
Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo
2017-01-01
Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.
Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes.
Calvo, F; Yurtsever, E
2016-08-28
The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C60 (+) and C70 (+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.
Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes
NASA Astrophysics Data System (ADS)
Calvo, F.; Yurtsever, E.
2016-08-01
The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C 60+ and C 70+ are close to 49 and 51, respectively, and agree with mass spectrometry experiments.
Dust and gas environment of the young embedded cluster IRAS 18511+0146
NASA Astrophysics Data System (ADS)
Vig, S.; Testi, L.; Walmsley, C. M.; Cesaroni, R.; Molinari, S.
2017-03-01
Context. Since massive and intermediate mass stars form in clusters, a comparative investigation of the environments of the young embedded cluster members can reveal significant information about the conditions under which stars form and evolve. Aims: IRAS 18511+0146 is a young embedded (proto)cluster located at 3.5 kpc surrounding what appears to be an intermediate mass protostar. Here, we investigate the nature of cluster members (two of which are believed to be the most massive and luminous) using imaging and spectroscopy in the near and mid-infrared. In particular, we examine the three brightest mid-infrared objects, two of which are believed to be the most massive ones driving the luminosity of this region. Methods: Near-infrared spectroscopy of nine objects (bright in K-bands) towards IRAS 18511+0146 has been carried out. Several cluster members have also been investigated in the mid-infrared using spectroscopic and imaging with VISIR on the VLT. Far-infrared images from the Herschel Hi-GAL survey have been used to construct the column density and temperature maps of the region. Results: The brightest point-like object associated with IRAS 18511+0146 is referred to as S7 in the present work (designated UGPS J185337.88+015030.5 in the UKIRT Galactic Plane survey). S7 is likely the most luminous object in the cluster as it is bright at all wavelengths ranging from the near-infrared to millimetre. Seven of the nine objects show rising spectral energy distributions in the near-infrared, with four objects showing Br-γ emission. Three members: S7, S10 (also UGPS J185338.37+015015.3) and S11 (also UGPS J185338.72+015013.5) are bright in mid-infrared with diffuse emission being detected in the vicinity of S11 in PAH bands. Silicate absorption is detected towards these three objects, with an absorption maximum between 9.6 and 9.7 μm, large optical depths (1.8-3.2), and profile widths of 1.6-2.1μm. The silicate profiles of S7 and S10 are similar, in contrast to S11 (which has the largest width and optical depth). The cold dust emission peaks at S7, with temperature at 26 K and column density N(H2) 7 × 1022 cm-2. The bolometric luminosity of IRAS 18511 region is L 1.8 × 104L⊙. S7 is the main contributor to the bolometric luminosity, with L (S7) ≳104L⊙. Conclusions: S7 is a high-mass protostellar object with ionised stellar winds, evident from the correlation between radio and bolometric luminosity, as well as the asymmetric Br-γ profile. The differences in silicate profiles of S7 and S11 could be due to different radiation environments as we believe the former to be more massive and in an earlier phase than the latter.
Harmonic oscillator representation in the theory of scattering and nuclear reactions
NASA Technical Reports Server (NTRS)
Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.
1995-01-01
The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.
2014-06-01
A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud tomore » widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.« less
Röntgen spheres around active stars
NASA Astrophysics Data System (ADS)
Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista
2018-01-01
X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.
Weak lensing study of 16 DAFT/FADA clusters: Substructures and filaments
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Clowe, Douglas; Durret, Florence; Adami, Christophe; Acebrón, Ana; Hernandez-García, Lorena; Márquez, Isabel; Guennou, Loic; Sarron, Florian; Ulmer, Mel
2016-05-01
While our current cosmological model places galaxy clusters at the nodes of a filament network (the cosmic web), we still struggle to detect these filaments at high redshifts. We perform a weak lensing study for a sample of 16 massive, medium-high redshift (0.4
Energy and charge transfer in ionized argon coated water clusters.
Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P
2013-12-07
We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.
Optimization of self-interstitial clusters in 3C-SiC with genetic algorithm
NASA Astrophysics Data System (ADS)
Ko, Hyunseok; Kaczmarowski, Amy; Szlufarska, Izabela; Morgan, Dane
2017-08-01
Under irradiation, SiC develops damage commonly referred to as black spot defects, which are speculated to be self-interstitial atom clusters. To understand the evolution of these defect clusters and their impacts (e.g., through radiation induced swelling) on the performance of SiC in nuclear applications, it is important to identify the cluster composition, structure, and shape. In this work the genetic algorithm code StructOpt was utilized to identify groundstate cluster structures in 3C-SiC. The genetic algorithm was used to explore clusters of up to ∼30 interstitials of C-only, Si-only, and Si-C mixtures embedded in the SiC lattice. We performed the structure search using Hamiltonians from both density functional theory and empirical potentials. The thermodynamic stability of clusters was investigated in terms of their composition (with a focus on Si-only, C-only, and stoichiometric) and shape (spherical vs. planar), as a function of the cluster size (n). Our results suggest that large Si-only clusters are likely unstable, and clusters are predominantly C-only for n ≤ 10 and stoichiometric for n > 10. The results imply that there is an evolution of the shape of the most stable clusters, where small clusters are stable in more spherical geometries while larger clusters are stable in more planar configurations. We also provide an estimated energy vs. size relationship, E(n), for use in future analysis.
Complex networks as an emerging property of hierarchical preferential attachment.
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
Complex networks as an emerging property of hierarchical preferential attachment
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
2012-01-01
Background Dimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding). Intelligent sub-sampling (via mean-shift) and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1) image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2) classification of 4 high-dimensional gene-expression datasets, (3) cancer detection (at a pixel-level) on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range of high-dimensional biomedical data classification and segmentation problems. Our generalizable framework allows for improved representation and classification in the context of both imaging and non-imaging data. The algorithm offers a promising solution to problems that currently plague DR methods, and may allow for extension to other areas of biomedical data analysis. PMID:22316103
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2016-04-01
Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.
Schieschke, Nils; Di Remigio, Roberto; Frediani, Luca; Heuser, Johannes; Höfener, Sebastian
2017-07-15
We present the explicit derivation of an approach to the multiscale description of molecules in complex environments that combines frozen-density embedding (FDE) with continuum solvation models, in particular the conductor-like screening model (COSMO). FDE provides an explicit atomistic description of molecule-environment interactions at reduced computational cost, while the outer continuum layer accounts for the effect of long-range isotropic electrostatic interactions. Our treatment is based on a variational Lagrangian framework, enabling rigorous derivations of ground- and excited-state response properties. As an example of the flexibility of the theoretical framework, we derive and discuss FDE + COSMO analytical molecular gradients for excited states within the Tamm-Dancoff approximation (TDA) and for ground states within second-order Møller-Plesset perturbation theory (MP2) and a second-order approximate coupled cluster with singles and doubles (CC2). It is shown how this method can be used to describe vertical electronic excitation (VEE) energies and Stokes shifts for uracil in water and carbostyril in dimethyl sulfoxide (DMSO), respectively. In addition, VEEs for some simplified protein models are computed, illustrating the performance of this method when applied to larger systems. The interaction terms between the FDE subsystem densities and the continuum can influence excitation energies up to 0.3 eV and, thus, cannot be neglected for general applications. We find that the net influence of the continuum in presence of the first FDE shell on the excitation energy amounts to about 0.05 eV for the cases investigated. The present work is an important step toward rigorously derived ab initio multilayer and multiscale modeling approaches. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Endohedral gallide cluster superconductors and superconductivity in ReGa5
Xie, Weiwei; Luo, Huixia; Phelan, Brendan F.; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph
2015-01-01
We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures. PMID:26644566
Sivaprakasam, Vasanthi; Hart, Matthew B; Jain, Vaibhav; Eversole, Jay D
2014-08-11
Fluorescence spectra from individual aerosol particles that were either coated or embedded with metallic nanoparticles (MNPs) was acquired on-the-fly using 266 nm and 355 nm excitation. Using aqueous suspensions of MNPs with either polystyrene latex (PSL) spheres or dissolved proteins (tryptophan or ovalbumin), we generated PSL spheres coated with MNPs, or protein clusters embedded with MNPs as aerosols. Both enhanced and quenched fluorescence intensities were observed as a function of MNP concentration. Optimizing MNP material, size and spacing should yield enhanced sensitivity for specific aerosol materials that could be exploited to improve detection limits of single-particle, on-the-fly fluorescence or Raman based spectroscopic sensors.
NASA Astrophysics Data System (ADS)
Bekki, Kenji
2017-05-01
Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.
Ionized Gas Motions and the Structure of Feedback near a Forming Globular Cluster in NGC 5253
NASA Astrophysics Data System (ADS)
Cohen, Daniel P.; Turner, Jean L.; Consiglio, S. Michelle; Martin, Emily C.; Beck, Sara C.
2018-06-01
We observed Brackett α 4.05 μm emission toward the supernebula in NGC 5253 with NIRSPEC on Keck II in adaptive optics mode, NIRSPAO, to probe feedback from its exciting embedded super star cluster (SSC). NIRSPEC's Slit-viewing Camera was simultaneously used to image the K-band continuum at ∼0.″1 resolution. We register the IR continuum with HST imaging, and find that the visible clusters are offset from the K-band peak, which coincides with the Brα peak of the supernebula and its associated molecular cloud. The spectra of the supernebula exhibit Brα emission with a strong, narrow core. The linewidths are 65–76 km s‑1, FWHM, comparable to those around individual ultra-compact H II regions within our Galaxy. A weak, broad (FWHM ≃ 150–175 km s‑1) component is detected on the base of the line, which could trace a population of sources with high-velocity winds. The core velocity of Brα emission shifts by +13 km s‑1 from NE to SW across the supernebula, possibly indicating a bipolar outflow from an embedded object or a link to a foreground redshifted gas filament. The results can be explained if the supernebula comprises thousands of ionized wind regions around individual massive stars, stalled in their expansion due to critical radiative cooling and unable to merge to drive a coherent cluster wind. Based on the absence of an outflow with large mass loss, we conclude that feedback is currently ineffective at dispersing gas, and the SSC retains enriched material out of which it may continue to form stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com
2013-05-01
We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less
Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.
2008-12-01
The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.
Hamiltonian vs Lagrangian Embedding of a Massive Spin-One Theory Involving Two-Form Field
NASA Astrophysics Data System (ADS)
Harikumar, E.; Sivakumar, M.
We consider the Hamiltonian and Lagrangian embedding of a first-order, massive spin-one, gauge noninvariant theory involving antisymmetric tensor field. We apply the BFV-BRST generalized canonical approach to convert the model to a first class system and construct nilpotent BFV-BRST charge and a unitarizing Hamiltonian. The canonical analysis of the Stückelberg formulation of this model is presented. We bring out the contrasting feature in the constraint structure, specifically with respect to the reducibility aspect, of the Hamiltonian and the Lagrangian embedded model. We show that to obtain manifestly covariant Stückelberg Lagrangian from the BFV embedded Hamiltonian, phase space has to be further enlarged and show how the reducible gauge structure emerges in the embedded model.
A Spectroscopic Study of Young Stellar Objects in the Serpens Cloud Core and NGC 1333
NASA Astrophysics Data System (ADS)
Winston, E.; Megeath, S. T.; Wolk, S. J.; Hernandez, J.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Covey, K.; Allen, L. E.; Spitzbart, B.; Peterson, D.; Myers, P.; Fazio, G. G.
2009-06-01
We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K bands from SpeX on the IRTF and far-red spectra (6000-9000 Å) from Hectospec on the Multi-Mirror Telescope. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra we search for corroborating evidence for the pre-main-sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. The temperatures implied by the spectral types are combined with luminosities determined from the near-IR photometry to construct Hertzsprung-Russell (H-R) diagrams for the clusters. By comparing the positions of the YSOs in the H-R diagrams with the pre-main-sequence tracks of Baraffe (1998), we determine the ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distributions of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources <3 Myr to be concentrated in the molecular cloud gas, while the older sources are spatially dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages >3 Myr show all the characteristics of YSOs in their spectra, their IR spectral energy distributions, and their X-ray emission; we find no evidence that they are contaminating background giants or foreground dwarfs. However, we find no corresponding decrease in the fraction of sources with infrared excess with isochronal age; this suggests that the older isochronal ages may not measure the true age of the >3 Myr YSOs. Thus, the nature of the apparently older sources and their implications for cluster formation remain unresolved.
Huang, Yingxiang; Lee, Junghye; Wang, Shuang; Sun, Jimeng; Liu, Hongfang; Jiang, Xiaoqian
2018-05-16
Data sharing has been a big challenge in biomedical informatics because of privacy concerns. Contextual embedding models have demonstrated a very strong representative capability to describe medical concepts (and their context), and they have shown promise as an alternative way to support deep-learning applications without the need to disclose original data. However, contextual embedding models acquired from individual hospitals cannot be directly combined because their embedding spaces are different, and naive pooling renders combined embeddings useless. The aim of this study was to present a novel approach to address these issues and to promote sharing representation without sharing data. Without sacrificing privacy, we also aimed to build a global model from representations learned from local private data and synchronize information from multiple sources. We propose a methodology that harmonizes different local contextual embeddings into a global model. We used Word2Vec to generate contextual embeddings from each source and Procrustes to fuse different vector models into one common space by using a list of corresponding pairs as anchor points. We performed prediction analysis with harmonized embeddings. We used sequential medical events extracted from the Medical Information Mart for Intensive Care III database to evaluate the proposed methodology in predicting the next likely diagnosis of a new patient using either structured data or unstructured data. Under different experimental scenarios, we confirmed that the global model built from harmonized local models achieves a more accurate prediction than local models and global models built from naive pooling. Such aggregation of local models using our unique harmonization can serve as the proxy for a global model, combining information from a wide range of institutions and information sources. It allows information unique to a certain hospital to become available to other sites, increasing the fluidity of information flow in health care. ©Yingxiang Huang, Junghye Lee, Shuang Wang, Jimeng Sun, Hongfang Liu, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 16.05.2018.
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Two diverse models of embedding class one
NASA Astrophysics Data System (ADS)
Kuhfittig, Peter K. F.
2018-05-01
Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.
Optical properties of embedded metal nanoparticles at low temperatures
NASA Astrophysics Data System (ADS)
Heilmann, A.; Kreibig, U.
2000-06-01
Metal nanoparticles (gold, silver, copper) that are embedded in an insulating organic host material exhibit optical plasma resonance absorption in the visible and near-infrared region. The spectral position, the half width and the intensity of the plasma resonance absorption all depend on the particle size, the particle shape, and the optical behavior of the cluster and the host material. The optical extinction of various gold, silver or copper particle assemblies embedded in plasma polymer or gelatin was measured at 4.2 K and 1.2 K as well as at room temperature. The packing density of several samples was high enough to resolve a reversible increase of the plasma resonance absorption intensity towards lower temperatures. Additionally, at larger silver particles D_m > 50 nm a significant blue shift of the plasma resonance absorption was measured. Particle size and shape distribution were determined by transmission electron microscopy (TEM). For the first time, simultaneous measurements of the electrical and optical properties at one and the same particle assembly were performed at low temperatures. Contrary to the increasing optical extinction, the d.c. conductivity decreased to two orders of magnitude. At silver particles embedded in a plasma polymer made from thiophene a significant photocurrent was measured.
NASA Astrophysics Data System (ADS)
Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.
2002-08-01
Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.
Multiferroic and magnetoelectric nanocomposites for data processing
NASA Astrophysics Data System (ADS)
Kleemann, Wolfgang
2017-06-01
Recent progress in preparing and understanding composite magnetoelectrics is highlighted. Apart from optimized standard solutions novel methods of switching magnetism with electric fields and vice versa with focus on magnetoelectric (ME) data processing in multiferroic and magnetoelectric nanocomposites deserve particular interest. First, we report on the patented MERAM, which uses the electric field control of exchange bias in a layered composite via an epitaxial magnetoelectric Cr2O3 layer exchange coupled to a Pt/Co/Pt trilayer. It promises to crucially reduce Joule energy losses in RAM devices. Second, magnetic switching of the electric polarization by a transverse magnetic field in a composite of CoFe2O4 nanopillars embedded in a vertically poled BaTiO3 thick film produces a regular surface polarization pattern with rectangular local symmetry. Its possible use for data processing is discussed. Third, in the relaxor ferroelectric single-phase compound (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 polar nanoregions emerging from ferrimagnetic Bi(Fe,Co)O3 regions embedded in a Bi1/2K1/2TiO3 relaxor component transform into ferroelectric clusters and simultaneously enable congruent magnetic clusters. The local polarization and magnetization couple with record-high direct and converse magnetoelectric coupling coefficients, α ≈ 1.0 × 10-5 s m-1. These ‘multiferroic’ clusters are promising for applications in data storage or processing devices.
Improved Cluster Method Applied to the InSAR data of the 2007 Piton de la Fournaise eruption
NASA Astrophysics Data System (ADS)
Cayol, V.; Augier, A.; Froger, J. L.; Menassian, S.
2016-12-01
Interpretation of surface displacement induced by reservoirs, whether magmatic, hydrothermal or gaseous, can be done at reduced numerical cost and with little a priori knowledge using cluster methods, where reservoirs are represented by point sources embedded in an elastic half-space. Most of the time, the solution representing the best trade-off between the data fit and the model smoothness (L-curve criterion) is chosen. This study relies on synthetic tests to improve cluster methods in several ways. Firstly, to solve problems involving steep topographies, we construct unit sources numerically. Secondly, we show that the L-curve criterion leads to several plausible solutions where the most realistic are not necessarily the best fitting. We determine that the cross-validation method, with data geographically grouped, is a more reliable way to determine the solution. Thirdly, we propose a new method, based on source ranking according to their contribution and minimization of the Akaike information criteria, to retrieve reservoirs' geometry more accurately and to better reflect information contained in the data. We show that the solution is robust in the presence of correlated noise and that reservoir complexity that can be retrieved decreases with increasing noise. We also show that it is inappropriate to use cluster methods for pressurized fractures. Finally, the method is applied to the summit deflation recorded by InSAR after the caldera collapse which occurred at Piton de la Fournaise in April 2007. Comparison with other data indicate that the deflation is probably related to poro-elastic compaction and fluid flow subsequent to the crater collapse.
Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism
Sood, Anup; Miller, Alexandra M.; Brogi, Edi; Sui, Yunxia; Armenia, Joshua; McDonough, Elizabeth; Santamaria-Pang, Alberto; Stamper, Aleksandra; Campos, Carl; Pang, Zhengyu; Li, Qing; Port, Elisa; Graeber, Thomas G.; Schultz, Nikolaus; Ginty, Fiona; Larson, Steven M.
2016-01-01
The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes. PMID:27182557
A Deep Near-Infrared Survey of the N 49 Region around the Soft Gamma-Ray Repeater 0526-66
NASA Technical Reports Server (NTRS)
Klose, S.; Henden, A. A.; Geppert, U.; Greiner, J.; Guetter, H. H.; Hartmann, D. H.; Kouveliotou, C.; Luginbuhl, C. B.; Stecklurn, B.; Vrba, F. J.
2004-01-01
We report the results of a deep near-infrared survey of the vicinity of supernova remnant N49 in the Large Magellanic Cloud (LMC), which contains the soft gamma-ray repeater (SGR) 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR0526-66, and find the unexplored young stellar cluster SL 463 at a projected distance of approx. 30 pc from the SGR. This constitutes the third cluster-SGR link, and lends support to scenarios in which SGR progenitors originate in young, embedded clusters. If real, the cluster-SGR association constrains the age and thus the initial mass of these stars. In addition, our high-resolution images of the super- nova remnant N49 reveal an area of excess K-band flux in the southeastern part of the SNR. This feature coincides with the maximum flux area at 8.28 microns as detected by the Midcourse Space Experiment (MSX satellite), which we identify with IRAS 052594607.
Efficient architecture for spike sorting in reconfigurable hardware.
Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying
2013-11-01
This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.
Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.
Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H
2015-03-19
Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.
Active learning for semi-supervised clustering based on locally linear propagation reconstruction.
Chang, Chin-Chun; Lin, Po-Yi
2015-03-01
The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
The outskirts of the Coma cluster
NASA Astrophysics Data System (ADS)
Gavazzi, Giuseppe
Evolved Coma-like clusters of galaxies are constituted of relaxed cores composed of ''old'' early-type galaxies, embedded in large-scale structures, mostly constituted of unevolved (late-type) systems. According to the hierarchical theory of cluster formation the central regions are being fed with unevolved, low-mass systems infalling from the surroundings that are gradually transformed into elliptical/S0 galaxies by tidal galaxy-galaxy and galaxy-cluster interactions, taking place at some boundary distance. The Coma cluster, the most studied of all local clusters, provides us with the ideal test-bed for such an evolutionary study because of the completeness of the photometric and kinematic information already at hands. The field of view of the planned GALEX observations is not big enough to include the boundary interface where most transformations processes are expected to take place, including the truncation of the current star formation. We propose to complete the outskirt of Coma with an additional corona of 11 GALEX imaging fields of 1500 sec exposure each, matching the deepness (UV_{AB}=23.5 mag) of the fields observed in guarantee time. Given the priority of the target, we also propose one optional Central pointing that includes one bright star marginally exceeding the detector brightness limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhman, K. L.; Esplin, T. L.; Loutrel, N. P., E-mail: kluhman@astro.psu.edu
We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K {sub s}< 16.8 at A {submore » J}< 1.5 in IC 348 and for K {sub s}< 16.2 at A {sub J}< 3 in NGC 1333, which correspond to masses of ≳0.01 M {sub ⊙} for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ∼0.005 M {sub ⊙}. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass functions of these clusters differ significantly given their similar stellar densities and formation environments. Instead, it is possible that average extinctions are lower for less massive members of star-forming clusters, in which case extinction-limited samples could be biased in favor of low-mass objects in the more heavily embedded clusters like NGC 1333. In the Hertzsprung–Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy.« less
Field O stars: formed in situ or as runaways?
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.
2012-08-01
A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.
An empirical potential for simulating vacancy clusters in tungsten.
Mason, D R; Nguyen-Manh, D; Becquart, C S
2017-12-20
We present an empirical interatomic potential for tungsten, particularly well suited for simulations of vacancy-type defects. We compare energies and structures of vacancy clusters generated with the empirical potential with an extensive new database of values computed using density functional theory, and show that the new potential predicts low-energy defect structures and formation energies with high accuracy. A significant difference to other popular embedded-atom empirical potentials for tungsten is the correct prediction of surface energies. Interstitial properties and short-range pairwise behaviour remain similar to the Ackford-Thetford potential on which it is based, making this potential well-suited to simulations of microstructural evolution following irradiation damage cascades. Using atomistic kinetic Monte Carlo simulations, we predict vacancy cluster dissociation in the range 1100-1300 K, the temperature range generally associated with stage IV recovery.
Study on the structural transition of CoNi nanoclusters using molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Xia, J. H.; Gao, Xue-Mei
2018-04-01
In this work, the segregation and structural transitions of CoNi clusters, between 1500 and 300 K, have been investigated using molecular dynamics simulations with the embedded atom method potential. The radial distribution function was used to analyze the segregation during the cooling processes. It is found that Co atoms segregate to the inside and Ni atoms preferably to the surface during the cooling processes, the Co147Ni414 cluster becomes a core-shell structure. We discuss the structural transition according to the pair-correction function and pair-analysis technique, and finally the liquid Co147Ni414 crystallizes into the coexistence of hcp and fcc structure at 300 K. At the same time, it is found that the frozen structure of CoNi cluster is strongly related to the Co concentration.
Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles
NASA Astrophysics Data System (ADS)
Benetti, Giulio; Cavaliere, Emanuele; Canteri, Adalberto; Landini, Giulia; Rossolini, Gian Maria; Pallecchi, Lucia; Chiodi, Mirco; Van Bael, Margriet J.; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca
2017-03-01
Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.
High resolution far-infrared observations of the evolved H II region M16
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, B.; Fazio, G.G.; Jaffe, D.T.
1982-03-01
M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emissionmore » has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.« less
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Formation of metallic clusters in oxide insulators by means of ion beam mixing
NASA Astrophysics Data System (ADS)
Talut, G.; Potzger, K.; Mücklich, A.; Zhou, Shengqiang
2008-04-01
The intermixing and near-interface cluster formation of Pt and FePt thin films deposited on different oxide surfaces by means of Pt+ ion irradiation and subsequent annealing was investigated. Irradiated as well as postannealed samples were investigated using high resolution transmission electron microscopy. In MgO and Y :ZrO2 covered with Pt, crystalline clusters with mean sizes of 2 and 3.5nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In MgO samples covered with FePt, clusters with mean sizes of 1 and 2nm were found after the Pt+ irradiations with 8×1015 and 2×1016cm-2 and subsequent annealing, respectively. In Y :ZrO2 samples covered with FePt, clusters up to 5nm in size were found after the Pt+ irradiation with 2×1016cm-2 and subsequent annealing. In LaAlO3 the irradiation was accompanied by a full amorphization of the host matrix and appearance of embedded clusters of different sizes. The determination of the lattice constant and thus the kind of the clusters in samples covered by FePt was hindered due to strong deviation of the electron beam by the ferromagnetic FePt.
Bignell, Dawn R D; Seipke, Ryan F; Huguet-Tapia, José C; Chambers, Alan H; Parry, Ronald J; Loria, Rosemary
2010-02-01
Plant-pathogenic Streptomyces spp. cause scab disease on economically important root and tuber crops, the most important of which is potato. Key virulence determinants produced by these species include the cellulose synthesis inhibitor, thaxtomin A, and the secreted Nec1 protein that is required for colonization of the plant host. Recently, the genome sequence of Streptomyces scabies 87-22 was completed, and a biosynthetic cluster was identified that is predicted to synthesize a novel compound similar to coronafacic acid (CFA), a component of the virulence-associated coronatine phytotoxin produced by the plant-pathogenic bacterium Pseudomonas syringae. Southern analysis indicated that the cfa-like cluster in S. scabies 87-22 is likely conserved in other strains of S. scabies but is absent from two other pathogenic streptomycetes, S. turgidiscabies and S. acidiscabies. Transcriptional analyses demonstrated that the cluster is expressed during plant-microbe interactions and that expression requires a transcriptional regulator embedded in the cluster as well as the bldA tRNA. A knockout strain of the biosynthetic cluster displayed a reduced virulence phenotype on tobacco seedlings compared with the wild-type strain. Thus, the cfa-like biosynthetic cluster is a newly discovered locus in S. scabies that contributes to host-pathogen interactions.
Chaotic Exchange of Solid Material Between Planetary Systems: Implications for Lithopanspermia
Belbruno, Edward; Malhotra, Renu; Savransky, Dmitry
2012-01-01
Abstract We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8–4.0 Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (∼100–500 Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10 kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 1014 to 3·1016, with transfer timescales of tens of millions of years. We estimate that of the order of 3·108·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment. Key Words: Extrasolar planets—Interplanetary dust—Interstellar meteorites—Lithopanspermia. Astrobiology 12, 754–774. PMID:22897115
Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman; Dominique Derome
2016-01-01
This paper examines the accuracy of a recently developed hygrothermal-corrosion model which predictsthe corrosion of fasteners embedded in wood by comparing the results of the model to a one year fieldtest. Steel and galvanized steel fasteners were embedded into untreated and preservative treated woodand exposed outdoors while weather data were collected. Qualitatively...
A three dimensional micropatterned tumor model for breast cancer cell migration studies.
Peela, Nitish; Sam, Feba S; Christenson, Wayne; Truong, Danh; Watson, Adam W; Mouneimne, Ghassan; Ros, Robert; Nikkhah, Mehdi
2016-03-01
Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli, making it difficult to isolate and assess the effects of biochemical or biophysical cues (i.e. tumor architecture, matrix stiffness) on disease progression. In this regard, physiologically relevant tumor models are becoming instrumental to perform studies of cancer cell invasion within well-controlled conditions. Herein, we explored the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique to microengineer a 3D breast tumor model. The microfabrication process enabled precise localization of cell-encapsulated circular constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded separately within the tumor model, all of which maintained high viability throughout the experiments. MDA-MB-231 cells exhibited extensive migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that stayed confined within the circular tumor regions. Additionally, real-time cell tracking indicated that the speed and persistence of MDA-MB-231 cells were substantially higher within the surrounding matrix compared to the circular constructs. Z-stack imaging of F-actin/α-tubulin cytoskeletal organization revealed unique 3D protrusions in MDA-MB-231 cells and an abundance of 3D clusters formed by MCF7 and MCF10A cells. Our results indicate that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in the development of 3D tumor models with well-defined architecture and tunable stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Full-potential KKR calculations for vacancies in Al : Screening effect and many-body interactions
NASA Astrophysics Data System (ADS)
Hoshino, T.; Asato, M.; Zeller, R.; Dederichs, P. H.
2004-09-01
We give ab initio calculations for vacancies in Al . The calculations are based on the generalized-gradient approximation in the density-functional theory and employ the all-electron full-potential Korringa-Kohn-Rostoker Green’s function method for point defects, which guarantees the correct embedding of the cluster of point defects in an otherwise perfect crystal. First, we confirm the recent calculated results of Carling [Phys. Rev. Lett. 85, 3862 (2000)], i.e., repulsion of the first-nearest-neighbor (1NN) divacancy in Al , and elucidate quantitatively the micromechanism of repulsion. Using the calculated results for vacancy formation energies and divacancy binding energies in Na , Mg , Al , and Si of face-centered-cubic, we show that the single vacancy in nearly free-electron systems becomes very stable with increasing free-electron density, due to the screening effect, and that the formation of divacancy destroys the stable electron distribution around the single vacancy, resulting in a repulsion of two vacancies on 1NN sites, so that the 1NN divacancy is unstable. Second, we show that the cluster expansion converges rapidly for the binding energies of vacancy agglomerates in Al . The binding energy of 13 vacancies consisting of a central vacancy and its 12 nearest neighbors, is reproduced within the error of 0.002eV per vacancy, if many-body interaction energies up to the four-body terms are taken into account in the cluster expansion, being compared with the average error (>0.1eV) of the glue models which are very often used to provide interatomic potentials for computer simulations. For the cluster expansion of the binding energies of impurities, we get the same convergence as that obtained for vacancies. Thus, the present cluster-expansion approach for the binding energies of agglomerates of vacancies and impurities in Al may provide accurate data to construct the interaction-parameter model for computer simulations which are strongly requested to study the dynamical process in the initial stage of the formation of the so-called Guinier-Preston zones of low-concentrated Al -based alloys such as Al1-cXc ( X=Cu , Zn ; c<0.05 ).
Experience, Challenges, and Opportunities of Being Fully Embedded in a User Group.
Wu, Lin; Thornton, Joel
2017-01-01
Embedded librarian models can assume different forms and levels, depending on patron needs and a library's choice of delivery services. An academic health sciences library decided to enhance its service delivery model by integrating a librarian into the College of Pharmacy, approximately 250 miles away from the main library. This article describes the embedded librarian's first-year experience, challenges, and opportunities working as a library faculty in the college. The comparison of one-year recorded statistics on preembedded and postembedded activities demonstrated the effectiveness and impact of such an embedded librarian model.
Modelling the growth of plants with a uniform growth logistics.
Kilian, H G; Bartkowiak, D; Kazda, M; Kaufmann, D
2014-05-21
The increment model has previously been used to describe the growth of plants in general. Here, we examine how the same logistics enables the development of different superstructures. Data from the literature are analyzed with the increment model. Increments are growth-invariant molecular clusters, treated as heuristic particles. This approach formulates the law of mass action for multi-component systems, describing the general properties of superstructures which are optimized via relaxation processes. The daily growth patterns of hypocotyls can be reproduced implying predetermined growth invariant model parameters. In various species, the coordinated formation and death of fine roots are modeled successfully. Their biphasic annual growth follows distinct morphological programs but both use the same logistics. In tropical forests, distributions of the diameter in breast height of trees of different species adhere to the same pattern. Beyond structural fluctuations, competition and cooperation within and between the species may drive optimization. All superstructures of plants examined so far could be reproduced with our approach. With genetically encoded growth-invariant model parameters (interaction with the environment included) perfect morphological development runs embedded in the uniform logistics of the increment model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development and application of QM/MM methods to study the solvation effects and surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dibya, Pooja Arora
2010-01-01
Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize themore » computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work. Chapter 2 illustrates the methodology of the interface of the EFP method with the configuration interaction with single excitations (CIS) method to study solvent effects in excited states. Chapter 3 discusses the study of the adiabatic electron affinity of the hydroxyl radical in aqueous solution and in micro-solvated clusters using a QM/EFP method. Chapter 4 describes the study of etching and diffusion of oxygen atom on a reconstructed Si(100)-2 x 1 surface using a hybrid QM/MM embedded cluster model (SIMOMM). Chapter 4 elucidates the application of the EFP method towards the understanding of the aqueous ionization potential of Na atom. Finally, a general conclusion of this dissertation work and prospective future direction are presented in Chapter 6.« less
Characterizing the Protostars in the Herschel Survey of Cygnus-X
NASA Astrophysics Data System (ADS)
Kirk, James; Hora, J. L.; Smith, H. A.; Herschel Cygnus-X Group
2014-01-01
The Cygnus-X complex is an extremely active region of massive star formation at a distance of ~1.4 kpc which can be studied with higher sensitivity and less confusion than more distant regions. The study of this region is important in improving our understanding of the formation processes and protostellar phases of massive stars. A previous Spitzer Legacy survey of Cygnus-X mapped the distributions of Class I and Class II YSOs within the region and studied the interaction between massive young stars and clusters of YSOs. Using data from the recent Herschel survey of the region, taken with the PACS and SPIRE instrument (70-500 microns), we are expanding this study of star formation to the youngest and most deeply embedded objects. Using these data we will expand the sample of massive protostars and YSOs in Cygnus-X, analyze the population of infrared dark clouds and their embedded objects, construct Spectral Energy Distributions (SEDs) using pre-existing Spitzer and near-IR data sets (1-500 microns), and fit these sources with models of protostars to derive luminosities and envelope masses. The derived luminosities and masses will enable us to create evolutionary diagrams and test models of high-mass star formation. We will also investigate what role OB associations, such as Cyg OB2, play in causing subsequent star formation in neighboring clouds, providing us with a comprehensive picture of star formation within this extremely active complex.
The Atlas of Chinese World Wide Web Ecosystem Shaped by the Collective Attention Flows.
Lou, Xiaodan; Li, Yong; Gu, Weiwei; Zhang, Jiang
2016-01-01
The web can be regarded as an ecosystem of digital resources connected and shaped by collective successive behaviors of users. Knowing how people allocate limited attention on different resources is of great importance. To answer this, we embed the most popular Chinese web sites into a high dimensional Euclidean space based on the open flow network model of a large number of Chinese users' collective attention flows, which both considers the connection topology of hyperlinks between the sites and the collective behaviors of the users. With these tools, we rank the web sites and compare their centralities based on flow distances with other metrics. We also study the patterns of attention flow allocation, and find that a large number of web sites concentrate on the central area of the embedding space, and only a small fraction of web sites disperse in the periphery. The entire embedding space can be separated into 3 regions(core, interim, and periphery). The sites in the core (1%) occupy a majority of the attention flows (40%), and the sites (34%) in the interim attract 40%, whereas other sites (65%) only take 20% flows. What's more, we clustered the web sites into 4 groups according to their positions in the space, and found that similar web sites in contents and topics are grouped together. In short, by incorporating the open flow network model, we can clearly see how collective attention allocates and flows on different web sites, and how web sites connected each other.
Dark energy and the structure of the Coma cluster of galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.
2013-05-01
Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.
Time-Centric Models For Designing Embedded Cyber-physical Systems
2009-10-09
Time -centric Models For Designing Embedded Cyber- physical Systems John C. Eidson Edward A. Lee Slobodan Matic Sanjit A. Seshia Jia Zou Electrical... Time -centric Models For Designing Embedded Cyber-physical Systems ∗ John C. Eidson , Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, Jia Zou...implementations, such a uniform notion of time cannot be precisely realized. Time triggered networks [10] and time synchronization [9] can be used to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Fernández-Perea, Ricardo; Madzharova, Fani
2016-06-28
The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet thismore » challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He–Mg pair potentials is also presented, as an improvement of the approximation using isolated He–Mg pairs.« less
NASA Astrophysics Data System (ADS)
de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena
2016-06-01
The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-03-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-06-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
The GALAH survey: chemical tagging of star clusters and new members in the Pleiades
NASA Astrophysics Data System (ADS)
Kos, Janez; Bland-Hawthorn, Joss; Freeman, Ken; Buder, Sven; Traven, Gregor; De Silva, Gayandhi M.; Sharma, Sanjib; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Martell, Sarah; Simpson, Jeffrey D.; Stello, Dennis; Zucker, Daniel B.; Zwitter, Tomaž; Anguiano, Borja; Da Costa, Gary; D'Orazi, Valentina; Horner, Jonathan; Kafle, Prajwal R.; Lewis, Geraint; Munari, Ulisse; Nataf, David M.; Ness, Melissa; Reid, Warren; Schlesinger, Katie; Ting, Yuan-Sen; Wyse, Rosemary
2018-02-01
The technique of chemical tagging uses the elemental abundances of stellar atmospheres to 'reconstruct' chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey - which aims to observe one million stars using the Anglo-Australian Telescope - allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we explore t-distributed stochastic neighbour embedding (t-SNE) - which identifies an optimal mapping of a high-dimensional space into fewer dimensions - whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH survey. We recover seven of the nine observed clusters (six globular and three open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6° - one tidal radius away from the cluster centre.
THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy
We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less
Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles
NASA Astrophysics Data System (ADS)
Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.
2018-02-01
Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.
Unsupervised machine learning account of magnetic transitions in the Hubbard model
NASA Astrophysics Data System (ADS)
Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan
2018-01-01
We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.
Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System
NASA Technical Reports Server (NTRS)
Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.
1998-01-01
H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.
NASA Astrophysics Data System (ADS)
Soldano, Caterina
The investigation of the electronic and magnetotransport properties at low temperature in individual MWNT with embedded clusters are here presented. The majority of studies of transport in MWNT reported in literature has been carried out on arc-discharge grown tubes, generally considered "clean" and defect-free. In this project, individual MWNT grown in alumina template are used; these tubes are highly disordered compared for example to arc-discharge ones, conditions that dramatically will impact the charge transport. As-fabricated devices are in general highly resistive. A large decrease in the value of the device resistance can be achieved through a controlled and fast high-bias sweep method (HBT) across the sample. Scanning electron microscopy analysis shows that this method induces a metal (platinum) decoration of the MWNT surface as a consequence of the large amount of Joule heating developed during the sweep. Temperature dependence study (5
2017-03-20
computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Participación científica del Nodo La Plata en el Proyecto VVV
NASA Astrophysics Data System (ADS)
Baume, G.; Fernández Lajús, E.; Feinstein, C.; Gamen, R.; Fariña, C.
We present here the main research lines related to the survey Vista Variables in the Vía Láctea (VVV) being carried out at "Node La Plata". These lines involve the study of stellar clusters and eclipsing systems. In this frame- work raises the following studies: a) An preliminar analysis of a group of embedded stellar clusters located in the fourth Galactic quadrant by estimat- ing their fundamental parameters using VVV data supplemented with data from other published catalogs. b) The provided methodology for the deter- mination of the eclipsing binary stars parameters for those ones detected in the survey from their light curves, including also extrasolar planets transits. FULL TEXT IN SPANISH
First-principles calculations of Ti and O NMR chemical shift tensors in ferroelectric perovskites
NASA Astrophysics Data System (ADS)
Pechkis, Daniel; Walter, Eric; Krakauer, Henry
2011-03-01
Complementary chemical shift calculations were carried out with embedded clusters, using quantum chemistry methods, and with periodic boundary conditions, using the GIPAW approach within the Quantum Espresso package. Compared to oxygen chemical shifts, δ̂ (O), cluster calculations for δ̂ (Ti) were found to be more sensitive to size effects, termination, and choice of gaussian-type atomic basis set, while GIPAW results were found to be more sensitive to the pseudopotential construction. The two approaches complemented each other in optimizing these factors. We show that the two approaches yield comparable chemical shifts for suitably converged simulations, and results are compared with available experimental measurements. Supported by ONR.
Assessing frequency-dependent site polarisabilities in linear response polarisable embedding
NASA Astrophysics Data System (ADS)
Nørby, Morten S.; Vahtras, Olav; Norman, Patrick; Kongsted, Jacob
2017-01-01
In this paper, we discuss the impact of using a frequency-dependent embedding potential in quantum chemical embedding calculations of response properties. We show that the introduction of a frequency-dependent embedding potential leads to further model complications upon solving the central equations defining specific molecular properties. On the other hand, we also show from a numerical point of view that the consequences of using such a frequency-dependent embedding potential is almost negligible. Thus, for the kind of systems and processes studied in this paper the general recommendation is to use frequency-independent embedding potentials since this leads to less complicated model issues. However, larger effects are expected if the absorption bands of the environment are closer to that of the region treated using quantum mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingchen; Salahub, Dennis R.
There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) studymore » on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.« less
Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A
2013-08-13
The latest crystal structure of photosystem II at 1.9 Å resolution, which resolves the topology of the Mn4CaO5 oxygen evolving complex (OEC) at atomistic detail, enables a better correlation between structural features and spectroscopic properties than ever before. Building on the refined crystallographic model of the OEC and the protein, we present combined quantum mechanical/molecular mechanical (QM/MM) studies of the spectroscopic properties of the natural catalyst embedded in the protein matrix. Focusing on the S2 state of the catalytic cycle, we examine the convergence of not only structural parameters but also of the intracluster magnetic interactions in terms of exchange coupling constants and of experimentally relevant (55)Mn, (17)O, and (14)N hyperfine coupling constants with respect to QM/MM partitioning using five QM regions of increasing size. This enables us to assess the performance of the method and to probe second sphere effects by identifying amino acid residues that principally affect the spectroscopic properties of the OEC. Comparison between QM-only and QM/MM treatments reveals that whereas QM/MM models converge quickly to stable values, the QM cluster models need to incorporate significantly larger parts of the second coordination sphere and surrounding water molecules to achieve convergence for certain properties. This is mainly due to the sensitivity of the QM-only models to fluctuations in the hydrogen bonding network and ligand acidity. Additionally, a hydrogen bond that is typically omitted in QM-only treatments is shown to determine the hyperfine coupling tensor of the unique Mn(III) ion by regulating the rotation plane of the ligated D1-His332 imidazole ring, the only N-donor ligand of the OEC.
Espinal, Allyson C; Wang, Dan; Yan, Li; Liu, Song; Tang, Li; Hu, Qiang; Morrison, Carl D; Ambrosone, Christine B; Higgins, Michael J; Sucheston-Campbell, Lara E
2017-02-28
DNA from archival formalin-fixed and paraffin embedded (FFPE) tissue is an invaluable resource for genome-wide methylation studies although concerns about poor quality may limit its use. In this study, we compared DNA methylation profiles of breast tumors using DNA from fresh-frozen (FF) tissues and three types of matched FFPE samples. For 9/10 patients, correlation and unsupervised clustering analysis revealed that the FF and FFPE samples were consistently correlated with each other and clustered into distinct subgroups. Greater than 84% of the top 100 loci previously shown to differentiate ER+ and ER- tumors in FF tissues were also FFPE DML. Weighted Correlation Gene Network Analyses (WCGNA) grouped the DML loci into 16 modules in FF tissue, with ~85% of the module membership preserved across tissue types. Restored FFPE and matched FF samples were profiled using the Illumina Infinium HumanMethylation450K platform. Methylation levels (β-values) across all loci and the top 100 loci previously shown to differentiate tumors by estrogen receptor status (ER+ or ER-) in a larger FF study, were compared between matched FF and FFPE samples using Pearson's correlation, hierarchical clustering and WCGNA. Positive predictive values and sensitivity levels for detecting differentially methylated loci (DML) in FF samples were calculated in an independent FFPE cohort. FFPE breast tumors samples show lower overall detection of DMLs versus FF, however FFPE and FF DMLs compare favorably. These results support the emerging consensus that the 450K platform can be employed to investigate epigenetics in large sets of archival FFPE tissues.
Delay differential analysis of time series.
Lainscsek, Claudia; Sejnowski, Terrence J
2015-03-01
Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.
Kowalewski, Björn; Poppe, Juliane; Demmer, Ulrike; Warkentin, Eberhard; Dierks, Thomas; Ermler, Ulrich; Schneider, Klaus
2012-06-13
Some N(2)-fixing bacteria prolong the functionality of nitrogenase in molybdenum starvation by a special Mo storage protein (MoSto) that can store more than 100 Mo atoms. The presented 1.6 Å X-ray structure of MoSto from Azotobacter vinelandii reveals various discrete polyoxomolybdate clusters, three covalently and three noncovalently bound Mo(8), three Mo(5-7), and one Mo(3) clusters, and several low occupied, so far undefinable clusters, which are embedded in specific pockets inside a locked cage-shaped (αβ)(3) protein complex. The structurally identical Mo(8) clusters (three layers of two, four, and two MoO(n) octahedra) are distinguishable from the [Mo(8)O(26)](4-) cluster formed in acidic solutions by two displaced MoO(n) octahedra implicating three kinetically labile terminal ligands. Stabilization in the covalent Mo(8) cluster is achieved by Mo bonding to Hisα156-N(ε2) and Gluα129-O(ε1). The absence of covalent protein interactions in the noncovalent Mo(8) cluster is compensated by a more extended hydrogen-bond network involving three pronounced histidines. One displaced MoO(n) octahedron might serve as nucleation site for an inhomogeneous Mo(5-7) cluster largely surrounded by bulk solvent. In the Mo(3) cluster located on the 3-fold axis, the three accurately positioned His140-N(ε2) atoms of the α subunits coordinate to the Mo atoms. The formed polyoxomolybdate clusters of MoSto, not detectable in bulk solvent, are the result of an interplay between self- and protein-driven assembly processes that unite inorganic supramolecular and protein chemistry in a host-guest system. Template, nucleation/protection, and catalyst functions of the polypeptide as well as perspectives for designing new clusters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4; Zhong, Cheng
2015-04-28
We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cumore » and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana
2012-04-10
Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less
Bottom-up strategies for the assembling of magnetic systems using nanoclusters
NASA Astrophysics Data System (ADS)
Dupuis, V.; Hillion, A.; Robert, A.; Loiselet, O.; Khadra, G.; Capiod, P.; Albin, C.; Boisron, O.; Le Roy, D.; Bardotti, L.; Tournus, F.; Tamion, A.
2018-05-01
In the frame of the 20th Anniversary of the Journal of Nanoparticle Research (JNR), our aim is to start from the historical context 20 years ago and to give some recent results and perspectives concerning nanomagnets prepared from clusters preformed in the gas phase using the low-energy cluster beam deposition (LECBD) technique. In this paper, we focus our attention on the typical case of Co clusters embedded in various matrices to study interface magnetic anisotropy and magnetic interactions as a function of volume concentrations, and on still current and perspectives through two examples of binary metallic 3d-5d TM (namely CoPt and FeAu) cluster assemblies to illustrate size-related and nanoalloy phenomena on magnetic properties in well-defined mass-selected clusters. The structural and magnetic properties of these cluster assemblies were investigated using various experimental techniques that include high-resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) magnetometry, and synchrotron techniques such as extended X-ray absorption fine structure (EXAFS) and X-ray magnetic circular dichroism (XMCD). Depending on the chemical nature of both NPs and matrix, we observe different magnetic responses compared to their bulk counterparts. In particular, we show how finite size effects (size reduction) enhance their magnetic moment and how specific relaxation in nanoalloys can impact their magnetic anisotropy.
Logic flowgraph methodology - A tool for modeling embedded systems
NASA Technical Reports Server (NTRS)
Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.
1991-01-01
The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G., E-mail: bge@us.ibm.com
The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scattermore » low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.« less
Efficient design of clinical trials and epidemiological research: is it possible?
Lauer, Michael S; Gordon, David; Wei, Gina; Pearson, Gail
2017-08-01
Randomized clinical trials and large-scale, cohort studies continue to have a critical role in generating evidence in cardiovascular medicine; however, the increasing concern is that ballooning costs threaten the clinical trial enterprise. In this Perspectives article, we discuss the changing landscape of clinical research, and clinical trials in particular, focusing on reasons for the increasing costs and inefficiencies. These reasons include excessively complex design, overly restrictive inclusion and exclusion criteria, burdensome regulations, excessive source-data verification, and concerns about the effect of clinical research conduct on workflow. Thought leaders have called on the clinical research community to consider alternative, transformative business models, including those models that focus on simplicity and leveraging of digital resources. We present some examples of innovative approaches by which some investigators have successfully conducted large-scale, clinical trials at relatively low cost. These examples include randomized registry trials, cluster-randomized trials, adaptive trials, and trials that are fully embedded within digital clinical care or administrative platforms.
NASA Astrophysics Data System (ADS)
Jia, Dongming; Manz, Jörn; Yang, Yonggang
2018-04-01
The planar boron cluster B13+ provides a model to investigate the microscopic origin of the second law of thermodynamics in a small system. It is a molecular rotor with an inner wheel that rotates in an outer bearing. The cyclic reaction path of B13+ passes along thirty equivalent global minimum structures (GMi, i = 1, 2, ..., 30). The GMs are embedded in a cyclic thirty-well potential. They are separated by thirty equivalent transition states with potential barrier Vb. If the boron rotor B13+ is prepared initially in one of the thirty GMs, with energy below Vb, then it tunnels sequentially to its nearest, next-nearest etc. neighbors (520 fs per step) such that all the other GMs get populated. As a consequence, the entropy of occupying the GMs takes about 6 ps to increases from zero to a value close to the maximum value for equi-distribution. Perfect recurrences are practically not observable.
Caprara, Andrea; De Oliveira Lima, José Wellington; Rocha Peixoto, Ana Carolina; Vasconcelos Motta, Cyntia Monteiro; Soares Nobre, Joana Mary; Sommerfeld, Johannes; Kroeger, Axel
2015-01-01
Background This study intended to implement a novel intervention strategy, in Brazil, using an ecohealth approach and analyse its effectiveness and costs in reducing Aedes aegypti vector density as well as its acceptance, feasibility and sustainability. The intervention was conducted from 2012 to 2013 in the municipality of Fortaleza, northeast Brazil. Methodology A cluster randomized controlled trial was designed by comparing ten intervention clusters with ten control clusters where routine vector control activities were conducted. The intervention included: community workshops; community involvement in clean-up campaigns; covering the elevated containers and in-house rubbish disposal without larviciding; mobilization of schoolchildren and senior inhabitants; and distribution of information, education and communication (IEC) materials in the community. Results Differences in terms of social participation, commitment and leadership were present in the clusters. The results showed the effectiveness of the intervention package in comparison with the routine control programme. Differences regarding the costs of the intervention were reasonable and could be adopted by public health services. Conclusions Embedding social participation and environmental management for improved dengue vector control was feasible and significantly reduced vector densities. Such a participatory ecohealth approach offers a promising alternative to routine vector control measures. PMID:25604760
Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.
Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S
2016-08-07
Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.
Cluster Formation of Anchored Proteins Induced by Membrane-Mediated Interaction
Li, Shuangyang; Zhang, Xianren; Wang, Wenchuan
2010-01-01
Abstract Computer simulations were used to study the cluster formation of anchored proteins in a membrane. The rate and extent of clustering was found to be dependent upon the hydrophobic length of the anchored proteins embedded in the membrane. The cluster formation mechanism of anchored proteins in our work was ascribed to the different local perturbations on the upper and lower monolayers of the membrane and the intermonolayer coupling. Simulation results demonstrated that only when the penetration depth of anchored proteins was larger than half the membrane thickness, could the structure of the lower monolayer be significantly deformed. Additionally, studies on the local structures of membranes indicated weak perturbation of bilayer thickness for a shallowly inserted protein, while there was significant perturbation for a more deeply inserted protein. The origin of membrane-mediated protein-protein interaction is therefore due to the local perturbation of the membrane thickness, and the entropy loss—both of which are caused by the conformation restriction on the lipid chains and the enhanced intermonolayer coupling for a deeply inserted protein. Finally, in this study we addressed the difference of cluster formation mechanisms between anchored proteins and transmembrane proteins. PMID:20513399
Fracture Mechanics Method for Word Embedding Generation of Neural Probabilistic Linguistic Model.
Bi, Size; Liang, Xiao; Huang, Ting-Lei
2016-01-01
Word embedding, a lexical vector representation generated via the neural linguistic model (NLM), is empirically demonstrated to be appropriate for improvement of the performance of traditional language model. However, the supreme dimensionality that is inherent in NLM contributes to the problems of hyperparameters and long-time training in modeling. Here, we propose a force-directed method to improve such problems for simplifying the generation of word embedding. In this framework, each word is assumed as a point in the real world; thus it can approximately simulate the physical movement following certain mechanics. To simulate the variation of meaning in phrases, we use the fracture mechanics to do the formation and breakdown of meaning combined by a 2-gram word group. With the experiments on the natural linguistic tasks of part-of-speech tagging, named entity recognition and semantic role labeling, the result demonstrated that the 2-dimensional word embedding can rival the word embeddings generated by classic NLMs, in terms of accuracy, recall, and text visualization.
Embedded-explicit emergent literacy intervention I: Background and description of approach.
Justice, Laura M; Kaderavek, Joan N
2004-07-01
This article, the first of a two-part series, provides background information and a general description of an emergent literacy intervention model for at-risk preschoolers and kindergartners. The embedded-explicit intervention model emphasizes the dual importance of providing young children with socially embedded opportunities for meaningful, naturalistic literacy experiences throughout the day, in addition to regular structured therapeutic interactions that explicitly target critical emergent literacy goals. The role of the speech-language pathologist (SLP) in the embedded-explicit model encompasses both indirect and direct service delivery: The SLP consults and collaborates with teachers and parents to ensure the highest quality and quantity of socially embedded literacy-focused experiences and serves as a direct provider of explicit interventions using structured curricula and/or lesson plans. The goal of this integrated model is to provide comprehensive emergent literacy interventions across a spectrum of early literacy skills to ensure the successful transition of at-risk children from prereaders to readers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.; Allen, S. W.; Bayliss, M.
We present the results of a Chandra X-ray survey of the 8 most massive galaxy clusters at z>1.2 in the South Pole Telescope 2500 deg^2 survey. We combine this sample with previously-published Chandra observations of 49 massive X-ray-selected clusters at 00.2R500 scaling like E(z)^2. In the centers of clusters (r<0.1R500), we find significant deviations from self similarity (n_e ~ E(z)^{0.1+/-0.5}), consistent with no redshift dependence. When we isolate clusters with over-dense cores (i.e., cool cores), we find that the average over-density profile has not evolved with redshift -- that is, cool cores have not changed in size, density, or totalmore » mass over the past ~9-10 Gyr. We show that the evolving "cuspiness" of clusters in the X-ray, reported by several previous studies, can be understood in the context of a cool core with fixed properties embedded in a self similarly-evolving cluster. We find no measurable evolution in the X-ray morphology of massive clusters, seemingly in tension with the rapidly-rising (with redshift) rate of major mergers predicted by cosmological simulations. We show that these two results can be brought into agreement if we assume that the relaxation time after a merger is proportional to the crossing time, since the latter is proportional to H(z)^(-1).« less
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
Hunt, Mary K; Stoddard, Anne M; Kaphingst, Kimberly A; Sorensen, Glorian
2007-01-01
To examine worker characteristics explicated in our social-contextual intervention model that might be associated with participation in a cancer prevention intervention. These characteristics included sociodemographic variables, mediating mechanisms, and modifying conditions. Randomized, controlled study in 24 small multiethnic manufacturing worksites. Analyses were conducted on an embedded cohort of 456 employees in the intervention condition, incorporating the clustering of respondents in worksites using generalized linear mixed modeling methods. The intervention was based on an inclusive, comprehensive social-contextual model targeting fruit, vegetable, and red meat consumption, multivitamin use, and physical activity. Gender (p = .02) and self-efficacy (p < .01) were associated with participation. There were no differences in participation by race/ethnicity or occupational status. We observed no associations between participation of individual workers in intervention activities and health behavior change. The intervention attracted workers across racial/ethnic and occupational groups. The combination of a comprehensive intervention with wide diffusion of program messages may have been more powerful in influencing participation and behavior change than characteristics of individual employees.
Naming games in two-dimensional and small-world-connected random geometric networks.
Lu, Qiming; Korniss, G; Szymanski, B K
2008-01-01
We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, J G
Below is the referee report. It is not as bad as it seems at first. The manuscript has not been rejected. Instead, the referee is 'not recommending publication.' On the APS website, the status is 'with authors,' instead of 'not under consideration.' Thus, this manuscript is still alive, but we will need to work on it. Please take a look at what the referee says below and let me know how you would respond. I will do the same. Hopefully, we will be able to respond well and find a way for this manuscript to get into PRB. According tomore » the introduction of their manuscript, the authors intend to study the electronic structure of clusters of Pu atoms and, among other things, to illustrate how the properties of the cluster's central region approach those of the bulk Pu metal as the cluster size increases. It is then somewhat surprising to find out that all the 'cluster' calculations discussed in the paper are in fact set up in such a way that they model the bulk properties - the clusters are embedded in a kind of mean field that is designed to approximate the rest of an infinite lattice (the authors call it the extended cluster scheme). Consequently, all the observed finite-size effects are essentially artificial since they represent the inaccuracies of the embedding procedure. The results for the finite clusters themselves do not carry a direct physical meaning (which contradicts authors statements from the introduction), only the extrapolation to the infinite cluster would, if done properly. The authors propose that the number of 5f electrons n{_}5f is a linear function of the cubic root of N, where N is the number of atoms in the cluster. This function fits the calculated data well (Fig. 8), but, as the authors indeed note, it cannot hold for very large N where n{_}5f must saturate at a finite value. The calculated data show no sign of such saturation (Fig. 8), which indicates that the considered clusters are too small to draw conclusions about the bulk properties. I find it puzzling that the authors nonetheless claim in their conclusions that 'An evaluation of state occupations supports the proposal that the occupation of the 5f levels in bulk Pu must be near 5'. Apart from the aforementioned conceptual inconsistencies, there are a number of more technical aspects that are not discussed in sufficient detail. Among these are: (1) The authors use LDA to approximate the electron correlations. A lively debate takes place in the literature whether this approximation can adequately describe the electronic structure of Pu metal or not, yet the authors do not discuss the choice of the approximation at all, which they should, in my opinion. They should also specify if their solutions are spin polarized or whether they use spin-restricted LDA. (2) The quality of the employed basis set is not clear. Are the results converged with respect to the basis size? What is the estimated magnitude of the residual errors? (3) There are statements in the manuscript indicating that the cluster calculations depend somehow on the calculations of the diatomic molecule. Namely: 'Underpinning these calculations, there is a geometry optimization of diatomic molecules...' and 'Underlying the Pu cluster simulations is the calculation of the electronic structure of a Pu2 dimer with the bond length 3.28 {angstrom} corresponding to the inter-atomic distances in delta-Pu.' What does this underpinning/underlying mean in more technical terms? What role does the geometry optimization play when the cluster calculations seem to be performed at a fixed geometry corresponding to the delta-Pu? Lastly, the manuscript contains a lot of material that was previously (and often multiple times) published elsewhere, including the Physical Review journals. For instance, the experimental part of Fig. 2 was shown already in Refs. 26, 27 and 28 in essentially the same graphical form; the top part of Fig. 9 appeared in Refs. 19, 4 and in PRL 90, 196404 (2003). I think that reprinting these results is not necessary and just referencing the earlier papers would be sufficient.« less
Embedded Librarians: Just-in-Time or Just-in-Case? A Research Study
ERIC Educational Resources Information Center
Heathcock, Kristin
2015-01-01
Embedded librarians in online courses provide a wealth of service and information to students. Though students indicate that these services are valuable, the librarians providing embedded services frequently note that these projects are very time consuming. This study examines the provision of a less time-intensive model of embedded librarianship…
Nested Interrupt Analysis of Low Cost and High Performance Embedded Systems Using GSPN Framework
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
Interrupt service routines are a key technology for embedded systems. In this paper, we introduce the standard approach for using Generalized Stochastic Petri Nets (GSPNs) as a high-level model for generating CTMC Continuous-Time Markov Chains (CTMCs) and then use Markov Reward Models (MRMs) to compute the performance for embedded systems. This framework is employed to analyze two embedded controllers with low cost and high performance, ARM7 and Cortex-M3. Cortex-M3 is designed with a tail-chaining mechanism to improve the performance of ARM7 when a nested interrupt occurs on an embedded controller. The Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption and interrupt overhead performance. Using numerical results, in spite of the power consumption or interrupt overhead, Cortex-M3 performs better than ARM7.
NASA Astrophysics Data System (ADS)
Tamura, Yoshinobu; Yamada, Shigeru
OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.
NASA Astrophysics Data System (ADS)
Reines, Amy Ellen
2011-01-01
Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.
The Remarkable Similarity of Massive Galaxy Clusters from z ~ 0 to z ~ 1.9
McDonald, M.; Allen, S. W.; Bayliss, M.; ...
2017-06-28
We present the results of a Chandra X-ray survey of the 8 most massive galaxy clusters at z>1.2 in the South Pole Telescope 2500 deg^2 survey. We combine this sample with previously-published Chandra observations of 49 massive X-ray-selected clusters at 00.2R500 scaling like E(z)^2. In the centers of clusters (r<0.1R500), we find significant deviations from self similarity (n_e ~ E(z)^{0.1+/-0.5}), consistent with no redshift dependence. When we isolate clusters with over-dense cores (i.e., cool cores), we find that the average over-density profile has not evolved with redshift -- that is, cool cores have not changed in size, density, or totalmore » mass over the past ~9-10 Gyr. We show that the evolving "cuspiness" of clusters in the X-ray, reported by several previous studies, can be understood in the context of a cool core with fixed properties embedded in a self similarly-evolving cluster. We find no measurable evolution in the X-ray morphology of massive clusters, seemingly in tension with the rapidly-rising (with redshift) rate of major mergers predicted by cosmological simulations. We show that these two results can be brought into agreement if we assume that the relaxation time after a merger is proportional to the crossing time, since the latter is proportional to H(z)^(-1).« less
NASA Astrophysics Data System (ADS)
Figura, Charles C.; Urquhart, James S.; Morgan, Lawrence
2015-01-01
We have conducted a detailed multi-wavelength investigation of a variety of massive star forming regions in order to characterise the impact of the interactions between the substructure of the dense protostellar clumps and their local environment, including feedback from the embedded proto-cluster.A selection of 70 MYSOs and HII regions identified by the RMS survey have been followed up with observations of the ammonia (1,1) and (2,2) inversion transitions made with the KFPA on the GBT. These maps have been combined with archival CO data to investigate the thermal and kinematic structure of the extended envelopes down to the dense clumps. We complement this larger-scale picture with high resolution near- and mid-infrared images to probe the properties of the embedded objects themselves.We present an overview of several sources from this sample that illustrate some of the the interactions that we observe. We find that high molecular column densities and kinetic temperatures are coincident with embedded sources and with shocks and outflows as exhibited in gas kinematics.
Richard, Lauralie; Piper, Donella; Weavell, Wayne; Callander, Rosemary; Iedema, Rick; Furler, John; Pierce, David; Godbee, Kali; Gunn, Jane; Palmer, Victoria J
2017-04-08
Engagement is essential in trials research but is rarely embedded across all stages of the research continuum. The development, use, effectiveness and value of engagement in trials research is poorly researched and understood, and models of engagement are rarely informed by theory. This article describes an innovative methodological approach for the development and application of a relational model of engagement in a stepped wedge designed cluster randomised controlled trial (RCT), the CORE study. The purpose of the model is to embed engagement across the continuum of the trial which will test if an experience-based co-design intervention improves psychosocial recovery for people affected by severe mental illness. The model was developed in three stages and used a structured iterative approach. A context mapping assessment of trial sites was followed by a literature review on recruitment and retention of hard-to-reach groups in complex interventions and RCTs. Relevant theoretical and philosophical underpinnings were identified by an additional review of literature to inform model development and enactment of engagement activities. Policy, organisational and service user data combined with evidence from the literature on barriers to recruitment provided contextual information. Four perspectives support the theoretical framework of the relational model of engagement and this is organised around two facets: the relational and continuous. The relational facet is underpinned by relational ethical theories and participatory action research principles. The continuous facet is supported by systems thinking and translation theories. These combine to enact an ethics of engagement and evoke knowledge mobilisation to reach the higher order goals of the model. Engagement models are invaluable for trials research, but there are opportunities to advance their theoretical development and application, particularly within stepped wedge designed studies where there may be a significant waiting period between enrolment in a study and receipt of an intervention.
NASA Astrophysics Data System (ADS)
Abdulla, Zubair M.
We use Sunyaev Zel'dovich Effect observations at 30 GHz with the Combined Array for Research in Millimeter Astronomy (CARMA) to probe the thermal contents of X-ray cavities in the galaxy cluster MS 0735+741 (MS0735). The hot (3-10 keV), diffuse X-ray emitting atmospheres of galaxy clusters should quickly radiate away its thermal energy via radiative cooling. However, high-resolution X-ray observations from Chandra and XMM have shown that the gas is not cooling to low temperatures at the rates expected, suggesting that the radiative cooling is being balanced by non-gravitational sources of heating. Of primary interest is the energy output from active galactic nuclei (AGN), outbursts from accreting super massive black holes at the center of clusters, which drive radio jets into the atmospheres of clusters and terminate in spectacular radio lobes. High resolution X-ray images have revealed giant cavities produced by the radio lobes displacing the X-ray emitting gas, providing a gauge for the mean mechanical power output of the AGN. These measured powers are enough to offset radiative cooling at the center of relaxed clusters, however, little beyond the energetics of the outbursts is known. The relative balance and efficiency of heating mechanisms for converting the mechanical energy from the AGN into thermal energy in the cluster atmosphere is not well understood, nor are the details of the jets whose contents inflate and support the X-ray cavities. The Sunyaev-Zel'dovich (SZ) effect, which is proportional to the line-of-sight pressure of the electrons of the hot gas in galaxy clusters, can shed light on these outstanding issues by directly constraining the thermal contents of the radio-filled X-ray cavities. In this work, we describe the assembly and commissioning of 1-cm cryogenic receivers for CARMA, which are vital for the high-fidelity SZ observations required for the proposed measurements. CARMA is a 23-element heterogeneous radio interferometer in Cedar Flat, CA. Receivers previously used on the Cosmic Background Imager (CBI) experiment were rebuilt with new low noise amplifiers and updated electronics and installed on the nine 6.1 m telescopes of CARMA, making all 23 CARMA telescopes capable of 1-cm observations. Commissioning observations of the CARMA-23 1-cm instrument took place in February to March of 2013. The upgraded CARMA-23 instrument is used to observe the SZ effect in the direction of the giant X-ray cavities of MS0735, the most energetic AGN outbursts known (˜ 1062 erg). We model the new CARMA data with a simple analytical model for the SZ signal produced by cavities embedded in an otherwise relaxed cluster, and supplement the model with X-ray and radio observations of MS0735 from Chandra and VLA. We find a sharp contrast in the SZ signal highly coincident with the X-ray identified cavities, suggesting a lack of SZ contributing material in the cavities and representing the first ever detection of these phenomena with the SZ effect. Our model strongly disfavors the cavities containing thermal gas of < 150 keV. If the pressure support in the bubbles is thermal, it is likely several hundreds to thousands of keV and very diffuse (<10-4 cm-3 ). Or alternatively, our findings are consistent with bubbles supported non-thermally by relativistic particles or magnetic fields.
Discovery of a Strong Lensing Galaxy Embedded in a Cluster at z = 1.62
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Tran, Kim-Vy H.; Suyu, Sherry H.; Momcheva, Ivelina G.; Brammer, Gabriel B.; Brodwin, Mark; Gonzalez, Anthony H.; Halkola, Aleksi; Kacprzak, Glenn G.; Koekemoer, Anton M.; Papovich, Casey J.; Rudnick, Gregory H.
2014-07-01
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182-05102) that is spectroscopically confirmed to be at z = 1.62, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be z S = 2.26. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is θ _E=0.38+0.02-0.01 arcsec (3.2-0.1+0.2 kpc) and the total enclosed mass is M _tot (< θ _E)=1.8+0.2-0.1× 1011 M⊙ . We estimate that the cluster environment contributes ~10% of this total mass. Assuming a Chabrier initial mass function (IMF), the dark matter fraction within θE is f_DMChab = 0.3-0.3+0.1, while a Salpeter IMF is marginally inconsistent with the enclosed mass (f_DMSalp = -0.3-0.5+0.2). The total magnification of the source is μ _tot=2.1-0.3+0.4. The source has at least one bright compact region offset from the source center. Emission from Lyα and [O III] are likely to probe different regions in the source. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 12590.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey
We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null linesmore » embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission.« less
Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture
Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro
2011-01-01
Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622
Developing a new wireless sensor network platform and its application in precision agriculture.
Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro
2011-01-01
Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.
Collaboration patterns in the German political science co-authorship network.
Leifeld, Philip; Wankmüller, Sandra; Berger, Valentin T Z; Ingold, Karin; Steiner, Christiane
2017-01-01
Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as "invisible colleges" or "groups of collaborators" as well as academic "stars" that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups.
Collaboration patterns in the German political science co-authorship network
Wankmüller, Sandra; Berger, Valentin T. Z.; Ingold, Karin; Steiner, Christiane
2017-01-01
Research on social processes in the production of scientific output suggests that the collective research agenda of a discipline is influenced by its structural features, such as “invisible colleges” or “groups of collaborators” as well as academic “stars” that are embedded in, or connect, these research groups. Based on an encompassing dataset that takes into account multiple publication types including journals and chapters in edited volumes, we analyze the complete co-authorship network of all 1,339 researchers in German political science. Through the use of consensus graph clustering techniques and descriptive centrality measures, we identify the ten largest research clusters, their research topics, and the most central researchers who act as bridges and connect these clusters. We also aggregate the findings at the level of research organizations and consider the inter-university co-authorship network. The findings indicate that German political science is structured by multiple overlapping research clusters with a dominance of the subfields of international relations, comparative politics and political sociology. A small set of well-connected universities takes leading roles in these informal research groups. PMID:28388621
Thermodynamic Behavior of Nano-sized Gold Clusters on the (001) Surface
NASA Technical Reports Server (NTRS)
Paik, Sun M.; Yoo, Sung M.; Namkung, Min; Wincheski, Russell A.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We have studied thermal expansion of the surface layers of the hexagonally reconstructed Au (001) surface using a classical Molecular Dynamics (MD) simulation technique with an Embedded Atomic Method (EAM) type many-body potential. We find that the top-most hexagonal layer contracts as temperature increases, whereas the second layer expands or contracts depending on the system size. The magnitude of expansion coefficient of the top layer is much larger than that of the other layers. The calculated thermal expansion coefficients of the top-most layer are about -4.93 x 10(exp -5)Angstroms/Kelvin for the (262 x 227)Angstrom cluster and -3.05 x 10(exp -5)Angstroms/Kelvin for (101 x 87)Angstrom cluster. The Fast Fourier Transform (FFT) image of the atomic density shows that there exists a rotated domain of the top-most hexagonal cluster with rotation angle close to 1 degree at temperature T less than 1000Kelvin. As the temperature increases this domain undergoes a surface orientational phase transition. These predictions are in good agreement with previous phenomenological theories and experimental studies.
Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
2018-04-16
We present an infrared predissociation (IRPD) study of microsolvated GlyH +(H 2O) n and GlyH +(D 2O) n clusters, formed inside of a cryogenic ion trap via condensation of H 2O or D 2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O–H and O–D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH +(H 2O) n and GlyH +(D 2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyHmore » + ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. Furthermore, the use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.« less
Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Jonathan M.; Fischer, Kaitlyn C.; Garand, Etienne
We present an infrared predissociation (IRPD) study of microsolvated GlyH +(H 2O) n and GlyH +(D 2O) n clusters, formed inside of a cryogenic ion trap via condensation of H 2O or D 2O onto the protonated glycine ions. The resulting IRPD spectra, showing characteristic O–H and O–D stretches, indicate that H/D exchange reactions are quenched when the ion trap is held at 80 K, minimizing the presence of isotopomers. Comparisons of GlyH +(H 2O) n and GlyH +(D 2O) n spectra clearly highlight and distinguish the vibrational signatures of the water solvent molecules from those of the core GlyHmore » + ion, allowing for quick assessment of solvation structures. Without the aid of calculations, we can already infer solvation motifs and the presence of multiple conformations. Furthermore, the use of a cryogenic ion trap to cluster solvent molecules around ions of interest and control H/D exchange reactions is broadly applicable and should be extendable to studies of more complex peptidic ions in large solvated clusters.« less
Loudig, Olivier; Brandwein-Gensler, Margaret; Kim, Ryung S; Lin, Juan; Isayeva, Tatyana; Liu, Christina; Segall, Jeffrey E; Kenny, Paraic A; Prystowsky, Michael B
2011-12-01
High-throughput gene expression profiling from formalin-fixed, paraffin-embedded tissues has become a reality, and several methods are now commercially available. The Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay (Illumina, Inc) is a full-transcriptome version of the original 512-gene complementary DNA-mediated annealing, selection, extension and ligation assay, allowing high-throughput profiling of 24,526 annotated genes from degraded and formalin-fixed, paraffin-embedded RNA. This assay has the potential to allow identification of novel gene signatures associated with clinical outcome using banked archival pathology specimen resources. We tested the reproducibility of the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay and its sensitivity for detecting differentially expressed genes in RNA extracted from matched fresh and formalin-fixed, paraffin-embedded cells, after 1 and 13 months of storage, using the human breast cell lines MCF7 and MCF10A. Then, using tumor worst pattern of invasion as a classifier, 1 component of the "risk model," we selected 12 formalin-fixed, paraffin-embedded oral squamous cell carcinomas for whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay analysis. We profiled 5 tumors with nonaggressive, nondispersed pattern of invasion, and 7 tumors with aggressive dispersed pattern of invasion and satellites scattered at least 1 mm apart. To minimize variability, the formalin-fixed, paraffin-embedded specimens were prepared from snap-frozen tissues, and RNA was obtained within 24 hours of fixation. One hundred four down-regulated genes and 72 up-regulated genes in tumors with aggressive dispersed pattern of invasion were identified. We performed quantitative reverse transcriptase polymerase chain reaction validation of 4 genes using Taqman assays and in situ protein detection of 1 gene by immunohistochemistry. Functional cluster analysis of genes up-regulated in tumors with aggressive pattern of invasion suggests presence of genes involved in cellular cytoarchitecture, some of which already associated with tumor invasion. Identification of these genes provides biologic rationale for our histologic classification, with regard to tumor invasion, and demonstrates that the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay is a powerful assay for profiling degraded RNA from archived specimens when combined with quantitative reverse transcriptase polymerase chain reaction validation. Copyright © 2011 Elsevier Inc. All rights reserved.
An embedded multi-core parallel model for real-time stereo imaging
NASA Astrophysics Data System (ADS)
He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu
2018-04-01
The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.
Sarewicz, Marcin; Dutka, Małgorzata; Pietras, Rafał; Borek, Arkadiusz
2015-01-01
Here, comparative electron spin–lattice relaxation studies of the 2Fe–2S iron–sulphur (Fe–S) cluster embedded in a large membrane protein complex – cytochrome bc1 – are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe–S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe–S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1–1) for the Fe–S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1–1 (T) over the range 5–120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin–orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin–orbit coupling but was also influenced by other factors – possibly the modification of protein rigidity and therefore the vibrational modes around the Fe–S cluster that change upon the movement of the iron–sulphur head domain. PMID:26355649
Soft tissue deformation for surgical simulation: a position-based dynamics approach.
Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip
2016-06-01
To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.
The NGC 281 west cluster. I. Star formation in photoevaporating clumps.
NASA Astrophysics Data System (ADS)
Megeath, S. T.; Wilson, T. L.
1997-09-01
The NGC281 West molecular cloud is an excellent test case for studying star formation in the clumpy interface between a \\hii region and a giant molecular cloud. We present here a study based on new high resolution radio and near-infrared data. Using the IRAM 30-meter telescope, we have mapped the interface in the \\cotwo, \\coone, and \\cs transitions with FWHP beamwidths <= 22''. We have imaged the same region with the VLA in the 20, 6 and 2 cm continuum bands to obtain complementary maps of the ionized gas distribution with angular resolutions <= 13''. In addition, we have obtained near-infrared J and K'-band images to detect young stars in the interface. The 30-meter data shows the molecular gas is concentrated into three clumps with masses of 570, > 210, and 300 \\msun and average volume densities of 1.4, >1, and 2 x 10(4) \\cm. We detect \\cs emission in two of the clumps, indicating peak densities in excess of 5x 10(5) \\cm are attained in the clumps. A comparison of the \\co line data with the 20 cm continuum image suggests that the molecular clumps are being photoevaporated through their direct exposure to the UV radiation from neighboring OB stars. The luminosity and extent of the observed 20 cm emission is in good agreement with theoretical predictions. We use models of photoevaporative flows to estimate the pressure exerted on the clumps by the ionized gas and find that it exceeds the internal, turbulent pressure of the clumps by a factor of a 2.5. Although a pressure equilibrium is not excluded given the uncertainties inherent in determining the pressures of the ionized and molecular gases, our best estimates of the clumps and flow parameters favor the the existence of low velocity shocks (1.5 \\kms) in the clumps. The clumps exhibit broad, non-gaussian lineshapes and complex kinematical structures suggestive of shocks. Further evidence for shocks is found in a comparison of position-velocity diagrams with published numerical simulations of imploding spherical clumps. We discuss the possibility that the knots of \\cs emission may trace gas compressed by converging shock waves. The K'-band observations show a rich cluster of primarily low mass stars in the \\hii/molecular interface, which we argue is divided into two distinct sub-clusters. We associate one sub-cluster with the two clumps nearest the OB stars, and the second sub-cluster with the third clump. The two clumps nearest the OB stars contain an embedded population, suggesting that star formation is ongoing. We discuss the impact photoevaporation is having on star formation in these two clumps. We find that photoevaporation is dispersing the molecular gas from which the cluster is forming and estimate that the molecular gas will be completely evaporated in 5 Myr. Deep K'-band imaging of the two clumps show that the stars are detected primarily on the sides of the clumps facing the OB stars and in the adjoining \\hii region. We examine three explanations for this asymmetry: displacement of the clump centers from the cluster center by the acceleration of the molecular gas through photoevaporation (i.e. the rocket effect), unveiling of young, embedded stars by ionization-shock fronts, and the triggered formation of stars by shocks advancing into the clumps. If shock compression is indeed ongoing in the clumps, then we argue that there is a good case for shock triggered star formation.
Structural and functional properties of spatially embedded scale-free networks.
Emmerich, Thorsten; Bunde, Armin; Havlin, Shlomo
2014-06-01
Scale-free networks have been studied mostly as non-spatially embedded systems. However, in many realistic cases, they are spatially embedded and these constraints should be considered. Here, we study the structural and functional properties of a model of scale-free (SF) spatially embedded networks. In our model, both the degree and the length of links follow power law distributions as found in many real networks. We show that not all SF networks can be embedded in space and that the largest degree of a node in the network is usually smaller than in nonembedded SF networks. Moreover, the spatial constraints (each node has only few neighboring nodes) introduce degree-degree anticorrelations (disassortativity) since two high degree nodes cannot stay close in space. We also find significant effects of space embedding on the hopping distances (chemical distance) and the vulnerability of the networks.
Characterization and application of shape-changing panels with embedded rubber muscle actuators
NASA Astrophysics Data System (ADS)
Peel, Larry D.; Molina, Enrique, Jr.; Baur, Jeffery W.; Justice, Ryan S.
2013-09-01
Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart. Nonlinear ‘laminated plate’ and ‘rod & plate’ finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D ‘Unit Cell’ were created. After subtracting the ‘activation pressure’ needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod & plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod & plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart. Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly at greater than optimal spacing. This multi-faceted work provides useful design, simulation fabrication, and test characteristics for shape-adaptive panels. Bending panels were demonstrated but not modeled. Developers of future shape-adaptive air vehicles have been provided with additional simulation and design tools.
The Atlas of Chinese World Wide Web Ecosystem Shaped by the Collective Attention Flows
Lou, Xiaodan; Li, Yong; Gu, Weiwei; Zhang, Jiang
2016-01-01
The web can be regarded as an ecosystem of digital resources connected and shaped by collective successive behaviors of users. Knowing how people allocate limited attention on different resources is of great importance. To answer this, we embed the most popular Chinese web sites into a high dimensional Euclidean space based on the open flow network model of a large number of Chinese users’ collective attention flows, which both considers the connection topology of hyperlinks between the sites and the collective behaviors of the users. With these tools, we rank the web sites and compare their centralities based on flow distances with other metrics. We also study the patterns of attention flow allocation, and find that a large number of web sites concentrate on the central area of the embedding space, and only a small fraction of web sites disperse in the periphery. The entire embedding space can be separated into 3 regions(core, interim, and periphery). The sites in the core (1%) occupy a majority of the attention flows (40%), and the sites (34%) in the interim attract 40%, whereas other sites (65%) only take 20% flows. What’s more, we clustered the web sites into 4 groups according to their positions in the space, and found that similar web sites in contents and topics are grouped together. In short, by incorporating the open flow network model, we can clearly see how collective attention allocates and flows on different web sites, and how web sites connected each other. PMID:27812133
Hubbard pair cluster in the external fields. Studies of the magnetic properties
NASA Astrophysics Data System (ADS)
Balcerzak, T.; Szałowski, K.
2018-06-01
The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.
Measurement of surface roughness changes of unpolished and polished enamel following erosion
Austin, Rupert S.; Parkinson, Charles R.; Hasan, Adam; Bartlett, David W.
2017-01-01
Objectives To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion. Methods Twenty human enamel sections (4x4 mm) were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles). Median (IQR) surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2) provided the Sa roughness data. Results For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR) Sa roughness of 1.45 (2.58) μm and the four peripheral clusters had a median (IQR) of 1.32 (4.86) μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35) μm and 0.34 (0.49) μm respectively (p<0.0001). Polished enamel had a median (IQR) Sa roughness 0.04 (0.17) μm for the single central cluster and 0.05 (0.15) μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08) μm for both (p<0.0001). Conclusion Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion. PMID:28771562
Sarewicz, Marcin; Dutka, Małgorzata; Pietras, Rafał; Borek, Arkadiusz; Osyczka, Artur
2015-10-14
Here, comparative electron spin-lattice relaxation studies of the 2Fe-2S iron-sulphur (Fe-S) cluster embedded in a large membrane protein complex - cytochrome bc1 - are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe-S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe-S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1(-1)) for the Fe-S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1(-1) (T) over the range 5-120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin-orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin-orbit coupling but was also influenced by other factors - possibly the modification of protein rigidity and therefore the vibrational modes around the Fe-S cluster that change upon the movement of the iron-sulphur head domain.
Small-world network model of propagation of the AIDS epidemic
NASA Astrophysics Data System (ADS)
Shi, Pengliang; Small, Michael
2004-03-01
Sexual contact and intravenus drug-use are the most common modes of transmission of HIV-AIDS. In this paper, homogenerous and heterogeneous models are proposed to model the dynamics in a system contains Small-World clusters. Four high risk groups: intravenus drug-users (D); homosexuals (H); individuals with multiple-sexual partners (M) and prostitutes (P), are classified using two models. Both networks are embedded among a background (low-risk) population using rich-get-richer preferential attachment. When a network is established, an epidemic is simulated in it by seeding randomly. We compare the two epidemic networks in detail and consider the effect of different levels of control policies in both. This study highlights two main conclusions: (i) set high protection coefficient for a massive-linkage-vertex (i.e. protect the highly connected individuals); and, (ii) a quick removal for the infected massive-linkage-veterx from the network is essential (rapidly quarantine infected individuals). While these conclusions may be intuitive, they indicate a necessary change of public policy toward prostitution in some developing countries such as China and India. An active effort to prevent possible infection from super-spreader is recommended.
Hub-filament System in IRAS 05480+2545: Young Stellar Cluster and 6.7 GHz Methanol Maser
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Ojha, D. K.; Baug, T.
2017-07-01
To probe the star formation (SF) process, we present a multi-wavelength study of IRAS 05480+2545 (hereafter I05480+2545). Analysis of Herschel data reveals a massive clump (M clump ˜ 1875 {M}⊙ ; peak N(H2) ˜ 4.8 × 1022 cm-2 A V ˜ 51 mag) containing the 6.7 GHz methanol maser and I05480+2545, which is also depicted in a temperature range of 18-26 K. Several noticeable parsec-scale filaments are detected in the Herschel 250 μm image and seem to be radially directed to the massive clump. It resembles more of a “hub-filament” system. Deeply embedded young stellar objects (YSOs) have been identified using the 1-5 μm photometric data, and a significant fraction of YSOs and their clustering are spatially found toward the massive clump, revealing the intense SF activities. An infrared counterpart (IRc) of the maser is investigated in the Spitzer 3.6-4.5 μm images. The IRc does not appear as a point-like source and is most likely associated with the molecular outflow. Based on the 1.4 GHz and Hα continuum images, the ionized emission is absent toward the IRc, indicating that the massive clump harbors an early phase of a massive protostar before the onset of an ultracompact H II region. Together, the I05480+2545 is embedded in a very similar “hub-filament” system to those seen in the Rosette Molecular Cloud. The outcome of the present work indicates the role of filaments in the formation of the massive star-forming clump and cluster of YSOs, which might help channel material to the central hub configuration and the clump/core.
Yan, Li; Liu, Song; Tang, Li; Hu, Qiang; Morrison, Carl D.; Ambrosone, Christine B.; Higgins, Michael J.; Sucheston-Campbell, Lara E.
2017-01-01
Background DNA from archival formalin-fixed and paraffin embedded (FFPE) tissue is an invaluable resource for genome-wide methylation studies although concerns about poor quality may limit its use. In this study, we compared DNA methylation profiles of breast tumors using DNA from fresh-frozen (FF) tissues and three types of matched FFPE samples. Results For 9/10 patients, correlation and unsupervised clustering analysis revealed that the FF and FFPE samples were consistently correlated with each other and clustered into distinct subgroups. Greater than 84% of the top 100 loci previously shown to differentiate ER+ and ER– tumors in FF tissues were also FFPE DML. Weighted Correlation Gene Network Analyses (WCGNA) grouped the DML loci into 16 modules in FF tissue, with ~85% of the module membership preserved across tissue types. Materials and Methods Restored FFPE and matched FF samples were profiled using the Illumina Infinium HumanMethylation450K platform. Methylation levels (β-values) across all loci and the top 100 loci previously shown to differentiate tumors by estrogen receptor status (ER+ or ER−) in a larger FF study, were compared between matched FF and FFPE samples using Pearson's correlation, hierarchical clustering and WCGNA. Positive predictive values and sensitivity levels for detecting differentially methylated loci (DML) in FF samples were calculated in an independent FFPE cohort. Conclusions FFPE breast tumors samples show lower overall detection of DMLs versus FF, however FFPE and FF DMLs compare favorably. These results support the emerging consensus that the 450K platform can be employed to investigate epigenetics in large sets of archival FFPE tissues. PMID:28118602
Fish Passage in Large Culverts with Low Flows
DOT National Transportation Integrated Search
2014-08-01
A series of physical and numerical modeling runs were completed to support the development of a design procedure for characterizing the variation in velocity within non-embedded and embedded culverts. Physical modeling of symmetrical half-section cir...
Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A
2014-09-01
Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.
SUZAKU OBSERVATIONS OF THE X-RAY BRIGHTEST FOSSIL GROUP ESO 3060170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; White, Raymond E. III; Miller, Eric D., E-mail: ysu@crimson.ua.edu
2013-10-01
'Fossil' galaxy groups, each dominated by a relatively isolated giant elliptical galaxy, have many properties intermediate between groups and clusters of galaxies. We used the Suzaku X-ray observatory to observe the X-ray brightest fossil group, ESO 3060170, out to R{sub 200}, in order to better elucidate the relation between fossil groups, normal groups, and clusters. We determined the intragroup gas temperature, density, and metal abundance distributions and derived the entropy, pressure, and mass profiles for this group. The entropy and pressure profiles in the outer regions are flatter than in simulated clusters, similar to what is seen in observations ofmore » massive clusters. This may indicate that the gas is clumpy and/or the gas has been redistributed. Assuming hydrostatic equilibrium, the total mass is estimated to be ∼1.7 × 10{sup 14} M{sub ☉} within a radius R{sub 200} of ∼1.15 Mpc, with an enclosed baryon mass fraction of 0.13. The integrated iron mass-to-light ratio of this fossil group is larger than in most groups and comparable to those of clusters, indicating that this fossil group has retained the bulk of its metals. A galaxy luminosity density map on a scale of 25 Mpc shows that this fossil group resides in a relatively isolated environment, unlike the filamentary structures in which typical groups and clusters are embedded.« less
Bright Young Star Clusters in NGC5253 with LEGUS
NASA Astrophysics Data System (ADS)
Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica
2016-01-01
Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.
Brandhonneur, N; Hatahet, T; Amela-Cortes, M; Molard, Y; Cordier, S; Dollo, G
2018-04-01
We evaluate poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles embedding inorganic molybdenum octahedral cluster for photodynamic therapy of cancer (PDT). Tetrabutyl ammonium salt of Mo 6 Br 14 cluster unit, (TBA) 2 Mo 6 Br 14 , presents promising photosensitization activity in the destruction of targeted cancer cells. Stable cluster loaded nanoparticles (CNPs) were prepared by solvent displacement method showing spherical shapes, zeta potential values around -30 mV, polydispersity index lower than 0.2 and sizes around 100 nm. FT-IR and DSC analysis revealed the lack of strong chemical interaction between the cluster and the polymer within the nanoparticles. In vitro release study showed that (TBA) 2 Mo 6 Br 14 was totally dissolved in 20 min, while CNPs were able to control the release of encapsulated cluster. In vitro cellular viability studies conducted on A2780 ovarian cancer cell line treated up to 72 h with cluster or CNPs did not show any sign of toxicity in concentrations up to 20 µg/ml. This concentration was selected for photo-activation test on A2780 cells and CNPs were able to generate oxygen singlet resulting in a decrease of the cellular viability up to 50%, respectively compared to non-activated conditions. This work presents (TBA) 2 Mo 6 Br 14 as a novel photosensitizer for PDT and suggests PLGA nanoparticles as an efficient delivery system intended for tumor targeting. Copyright © 2018 Elsevier B.V. All rights reserved.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2012-01-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
Heartbeat-based error diagnosis framework for distributed embedded systems
NASA Astrophysics Data System (ADS)
Mishra, Swagat; Khilar, Pabitra Mohan
2011-12-01
Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.
NASA Astrophysics Data System (ADS)
Darmon, David
2018-03-01
In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.
Modulation of Subseasonal Tropical Cyclone Genesis In The Western North Pacific By Wave Activities
NASA Astrophysics Data System (ADS)
Gao, Jianyun; Cheung, Kevin K. W.
2017-04-01
Tropical cyclone (TC) activity is well known to possess variability on multiple timescales, ranging from inter-decadal to intraseasonal. In this study, the subseasonal variability of TC genesis in the western North Pacific (WNP) is examined during summer (May-October) for the period of 1979-2015. In particular, clustering of TC activity within subseasonal timescale is the focus. First, three phases (active, normal and inactive phases) of TC clustering are defined based on the statistics of genesis frequency. Then the modes of subseasonal modulation of these three phases by intraseasonal (30-60-day) oscillation (ISO), biweekly (10-20-day) oscillation (BWO), and the convectively coupled equatorial waves (CCEW), including Rossby, Kelvin, and mixed Rossby-gravity and tropical depression-type waves are considered. It is found that the embedding large-scale circulation is significantly different between the inactive phase and the other phases. Further, the intensities and propagation phases of the ISO, BWO and CCEW play different roles to modulate TC genesis frequency during the active and normal phase. Considering the lag correlation of these subseasonal modulation modes and TC genesis, it is possible to construct a statistical model for the purpose of extended-range forecasting of subseasonal variability of TC occurrence over the WNP.
Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik
2014-07-07
In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.
Molecular rotation and dynamics in superfluid helium-4 nanodroplets
NASA Astrophysics Data System (ADS)
Callegari, Carlo
2000-11-01
Cavity-enhanced laser radiation, coupled to molecular- beam bolometric detection has been used to study the spectroscopy of acetylenic molecules embedded in helium nanodroplets. The 2ν1 transition (CH stretch overtone) of HCN, DCCH, NCCCH, CH3CCH, CF3CCH, (CH 3)3CCCH, (CH3)3SiCCH, has been investigated in the 1.5 μm spectral region by means of a color center laser coupled to a resonant build-up cavity, which enhances the laser power experienced by the molecules in the beam by up to a factor of 400, thus overcoming the weakness of the (dipole forbidden) transitions. All molecules are observed to rotate freely in the liquid cluster environment, with strongly enhanced moments of inertia, but with negligible matrix induced shifts (less than 1 cm-1). We show that this enhancement is largely accounted for by hydrodynamic effects, which we have modeled and numerically calculated. While in the gas phase the rotational lines have instrument-limited widths (a few MHZ), in the droplets we have observed linewidths ranging from 600 MHz for (CH3)3SiCCH to 2.8GHz for (CH3) 3CCCH. To investigate the nature of the broadening (which was widely believed to be homogeneous), we have performed a series of infrared (IR) saturation experiments on the 2ν1 transition. We have also thoroughly investigated NCCCH by means of microwave (MW) single-resonance experiments (on rotational transitions) and double-resonance (MW-MW and MW-IR) experiments. The results demonstrate that the spectral features of molecules in He droplets are inhomogeneously broadened, and allow an estimate of the importance of the different broadening contributions. In particular, MW-IR measurements show that the size of the cluster greatly affects the way rotational energy is relaxed. Large clusters seem to follow a ``strong collision model'' where memory of the initial rotational state is completely lost after each ``relaxation'' event, while for smaller clusters relaxation rates are probably affected by the lower density of states available for the dissipation of energy.
Molecular rotation and dynamics in superfluid ^4He nanodroplets
NASA Astrophysics Data System (ADS)
Callegari, Carlo
2001-05-01
Cavity-enhanced laser radiation, coupled to molecular-beam bolometric detection has been used to study the spectroscopy of acetylenic molecules embedded in helium nanodroplets. The 2ν1 transition (CH stretch overtone) of HCN, DCCH, NCCCH, CH_3CCH, CF_3CCH, (CH_3)_3CCCH, (CH_3)_3SiCCH, has been investigated in the 1.5 μm spectral region by means of a color center laser coupled to a resonant buildup cavity, which enhances the laser power experienced by the molecules in the beam by up to a factor of 400, thus overcoming the weakness of the (harmonically forbidden) transitions. All molecules are observed to rotate freely in the liquid cluster environment, with strongly enhanced moments of inertia, but with negligible matrix induced shifts (less than 1 cm-1). We show that this enhancement is largely accounted for by hydrodynamic effects, which we have modeled and numerically calculated. While in the gas phase the rotational lines have instrument-limited widths (a few MHz), in the droplets we have observed linewidths ranging from 600 MHz for (CH_3)_3SiCCH to 2.8 GHz for (CH_3)_3CCCH. To investigate the nature of the broadening (which was widely believed to be homogeneous), we have performed a series of infrared (IR) saturation experiments on the 2ν1 transition. We have also thoroughly investigated NCCCH by means of microwave (MW) single-resonance experiments (on rotational transitions) and double-resonance (MW-MW and MW-IR) experiments. The results demonstrate that the spectral features of molecules in He droplets are inhomogeneously broadened, and allow an estimate of the importance of the different broadening contributions. In particular, MW-IR measurements show that the size of the cluster greatly affects the way rotational energy is relaxed. Large clusters seem to follow a ``strong collision model'' where memory of the initial rotational state is completely lost after each ``relaxation'' event, while for smaller clusters relaxation rates are probably affected by the lower density of states available for the dissipation of energy.
Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis
NASA Astrophysics Data System (ADS)
Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.
2018-04-01
Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.
Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt
2016-08-07
Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤more » n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.« less
NASA Astrophysics Data System (ADS)
Nasawasd, T.; Simantathammakul, T.; Herold, C.; Stockmanns, T.; Ritman, J.; Kobdaj, C.
2018-02-01
To classify clusters of hits in the electromagnetic calorimeter (EMC) of bar PANDA (antiProton ANnihilation at DArmstadt), one has to match these EMC clusters with tracks of charged particles reconstructed from hits in the tracking system. Therefore the tracks are propagated to the surface of the EMC and associated with EMC clusters which are nearby and below a cut parameter. In this work, we propose a helix propagator to extrapolate the track from the Straw Tube Tracker (STT) to the inner surface of the EMC instead of the GEANE propagator which is already embedded within the PandaRoot computational framework. The results for both propagation methods show a similar quality, with a 30% gain in CPU time when using the helix propagator. We use Monte-Carlo truth information to compare the particle ID of the EMC clusters with the ID of the extrapolated points, thus deciding upon the correctness of the matches. By varying the cut parameter as a function of transverse momentum and particle type, our simulations show that the purity can be increased by 3-5% compared to the default value which is a constant cut in the bar PANDA simulation framework PandaRoot.
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.
2015-01-01
When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997
The effect of the subprime crisis on the credit risk in global scale
NASA Astrophysics Data System (ADS)
Lee, Sangwook; Kim, Min Jae; Lee, Sun Young; Kim, Soo Yong; Ban, Joon Hwa
2013-05-01
Credit default swap (CDS) has become one of the most actively traded credit derivatives, and its importance in finance markets has increased after the subprime crisis. In this study, we analyzed the correlation structure of credit risks embedded in CDS and the influence of the subprime crisis on this topological space. We found that the correlation was stronger in the cluster constructed according to the location of the CDS reference companies than in the one constructed according to their industries. The correlation both within a given cluster and between different clusters became significantly stronger after the subprime crisis. The causality test shows that the lead lag effect between the portfolios (into which reference companies are grouped by the continent where each of them is located) is reversed in direction because the portion of non-investable and investable reference companies in each portfolio has changed since then. The effect of a single impulse has increased and the response time relaxation has become prolonged after the crisis as well.
NASA Astrophysics Data System (ADS)
Weidner, Carsten; Kroupa, Pavel; Pflamm-Altenburg, Jan
2014-07-01
It has been claimed in the recent literature that a non-trivial relation between the mass of the most-massive star, mmax, in a star cluster and its embedded star cluster mass (the mmax - Mecl relation) is falsified by observations of the most-massive stars and the Hα luminosity of young star clusters in the starburst dwarf galaxy NGC 4214. Here, it is shown by comparing the NGC 4214 results with observations from the Milky Way that NGC 4214 agrees very well with the predictions of the mmax - Mecl relation and with the integrated galactic stellar initial mass function theory. The difference in conclusions is based on a high degree of degeneracy between expectations from random sampling and those from the mmax - Mecl relation, but are also due to interpreting mmax as a truncation mass in a randomly sampled initial mass function. Additional analysis of galaxies with lower SFRs than those currently presented in the literature will be required to break this degeneracy.
A non cool-core 4.6-keV cluster around the bright nearby radio galaxy PKS B1416-493
NASA Astrophysics Data System (ADS)
Worrall, D. M.; Birkinshaw, M.
2017-05-01
We present new X-ray (Chandra) and radio (ATCA) observations of the z = 0.09 radio galaxy PKS B1416-493, a member of the southern equivalent of the 3CRR sample. We find the source to be embedded in a previously unrecognized bright kT = 4.6-keV non cool-core cluster. The discovery of new clusters of such high temperature and luminosity within z = 0.1 is rare. The radio source was chosen for observation based on its intermediate FR I/II morphology. We identify a cavity coincident with the northeast lobe, and excess counts associated with the southwest lobe that we interpret as inverse-Compton X-ray emission. The jet power, at 5.3 × 1044 erg s-1, when weighted by radio source density, supports suggestions that radio sources of intermediate morphology and radio power may dominate radio-galaxy heating in the local Universe.
O-GlcNAc cycling: Emerging Roles in Development and Epigenetics
Love, Dona C.; Krause, Michael W.; Hanover, John A.
2010-01-01
The nutrient-sensing hexosamine signaling pathway modulates the levels of O-linked N-acetylglucosamine (O-GlcNAc) on key targets impacting cellular signaling, protein turnover and gene expression. O-GlcNAc cycling may be deregulated in neurodegenerative disease, cancer, and diabetes. Studies in model organisms demonstrate that the O-GlcNAc transferase (OGT/Sxc) is essential for Polycomb group (PcG) repression of the homeotic genes, clusters of genes responsible for the adult body plan. Surprisingly, from flies to man, the O-GlcNAcase (OGA, MGEA5) gene is embedded within the NK cluster, the most evolutionarily ancient of three homeobox gene clusters regulated by PcG repression. PcG repression also plays a key role in maintaining stem cell identity, recruiting the DNA methyltransferase machinery for imprinting, and in X-chromosome inactivation. Intriguingly, the Ogt gene resides near the Xist locus in vertebrates and is subject to regulation by PcG-dependent X-inactivation. OGT is also an enzymatic component of the human dosage compensation complex. These ‘evo-devo’ relationships linking O-GlcNAc cycling to higher order chromatin structure provide insights into how nutrient availability may influence the epigenetic regulation of gene expression. O-GlcNAc cycling at promoters and PcG repression represent concrete mechanisms by which nutritional information may be transmitted across generations in the intra-uterine environment. Thus, the nutrient-sensing hexosamine signaling pathway may be a key contributor to the metabolic deregulation resulting from prenatal exposure to famine, or the ‘vicious cycle’ observed in children of mothers with type-2 diabetes and metabolic disease. PMID:20488252
Detection of Another Molecular Bubble in the Galactic Center
NASA Astrophysics Data System (ADS)
Tsujimoto, Shiho; Oka, Tomoharu; Takekawa, Shunya; Yamada, Masaya; Tokuyama, Sekito; Iwata, Yuhei; Roll, Justin A.
2018-04-01
The l=-1\\buildrel{\\circ}\\over{.} 2 region in the Galactic center has a high CO J = 3–2/J = 1–0 intensity ratio and extremely broad velocity width. This paper reports the detection of five expanding shells in the l=-1\\buildrel{\\circ}\\over{.} 2 region based on the CO J = 1–0, 13CO J = 1–0, CO J = 3–2, and SiO J = 8–7 line data sets obtained with the Nobeyama Radio Observatory 45 m telescope and James Clerk Maxwell Telescope. The kinetic energy and expansion time of the expanding shells are estimated to be {10}48.3{--50.8} erg and {10}4.7{--5.0} yr, respectively. The origin of these expanding shells is discussed. The total kinetic energy of 1051 erg and the typical expansion time of ∼105 yr correspond to multiple supernova explosions at a rate of 10‑5–10‑4 yr‑1. This indicates that the l=-1\\buildrel{\\circ}\\over{.} 2 region may be a molecular bubble associated with an embedded massive star cluster, although the absence of an infrared counterpart makes this interpretation somewhat controversial. The expansion time of the shells increases as the Galactic longitude decreases, suggesting that the massive star cluster is moving from Galactic west to east with respect to the interacting molecular gas. We propose a model wherein the cluster is moving along the innermost x 1 orbit and the interacting gas collides with it from the Galactic eastern side.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu
We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conductionmore » is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.« less
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Sarazin, Craig
2017-05-01
We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.
NASA Astrophysics Data System (ADS)
Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.
2018-01-01
Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later. Star formation is likely still ongoing in the most embedded regions of the cluster, while the outer regions host a widespread population of more evolved objects; these may be the result of an earlier star formation episode followed by outward migration on timescales of a few Myr. We find a detectable lag between the typical age of disk-bearing objects and that of accreting objects in the inner regions of NGC 2264: the first tend to be older than the second, but younger than disk-free sources at similar locations within the cluster. This supports earlier findings that the characteristic timescales of disk accretion are shorter than those of disk dispersal, and smaller than the average age of NGC 2264 (i.e., ≲3 Myr). At the same time, we note that disks in the north of the cluster tend to be shorter-lived ( 2.5 Myr) than elsewhere; this may reflect the impact of massive stars within the region (notably S Mon), that trigger rapid disk dispersal. Conclusions: Our results, consistent with earlier studies on NGC 2264 and other young clusters, support the idea of a star formation process that takes place sequentially over a prolonged span in a given region. A complete understanding of the dynamics of formation and evolution of star clusters requires accurate astrometric and kinematic characterization of its population; significant advance in this field is foreseen in the upcoming years thanks to the ongoing Gaia mission, coupled with extensive ground-based surveys like GES. Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A10
X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields
NASA Astrophysics Data System (ADS)
Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.
2018-01-01
Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to their location within the cluster). For the majority of the cluster members, the X-ray background field has relatively little impact on the disk chemical structure.
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration
2015-01-01
We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the National Science Foundation. Some of this research was conducted by high-school students working under the auspices of the Science Internship Program at the University of California Santa Cruz.
The rise and fall of star formation in z ~ 0.2 merging galaxy clusters
Stroe, Andra; Sobral, David; Dawson, William; ...
2015-04-20
CIZA J2242.8+5301 (‘Sausage’) and 1RXS J0603.3+4213 (‘Toothbrush’) are two low-redshift (z ~ 0.2), massive (~2 × 10 15 M ⊙), post-core passage merging clusters, which host-shock waves traced by diffuse radio emission. To study their star formation properties, we uniformly survey the ‘Sausage’ and ‘Toothbrush’ clusters in broad- and narrow-band filters and select a sample of 201 and 463 line emitters, down to a rest-frame equivalent width (13 Å). Here, we robustly separate between Hα and higher redshift emitters using a combination of optical multiband (B, g, V, r, i, z) and spectroscopic data. We build Hα luminosity functions formore » the entire cluster region, near the shock fronts, and away from the shock fronts and find striking differences between the two clusters. In the dynamically younger, 1 Gyr old ‘Sausage’ cluster we find numerous (59) Hα emitters above a star formation rate (SFR) of 0.17 M ⊙ yr -1 surprisingly located in close proximity to the shock fronts, embedded in very hot intracluster medium plasma. The SFR density for the cluster population is at least at the level of typical galaxies at z ~ 2. Down to the same SFR, the possibly dynamically more evolved ‘Toothbrush’ cluster has only nine Hα galaxies. The cluster Hα galaxies fall on the SFR–stellar mass relation z ~ 0.2 for the field. However, the ‘Sausage’ cluster has an Hα emitter density >20 times that of blank fields. If the shock passes through gas-rich cluster galaxies, the compressed gas could collapse into dense clouds and excite star formation for a few 100 Myr. Finally, this process ultimately leads to a rapid consumption of the molecular gas, accelerating the transformation of gas-rich field spirals into cluster S0s or ellipticals.« less
Streamflow Prediction based on Chaos Theory
NASA Astrophysics Data System (ADS)
Li, X.; Wang, X.; Babovic, V. M.
2015-12-01
Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.
The I3E Model for Embedding Education for Sustainability within Higher Education Institutions
ERIC Educational Resources Information Center
Cebrián, Gisela
2018-01-01
This paper presents an evidence-based model (the I3E model) for embedding education for sustainability (EfS) within a higher education institution. This model emerged from a doctoral research that examined organisational learning and change processes at the University of Southampton to build EfS into the university curriculum. The researcher aimed…
Dai, Hanjun; Umarov, Ramzan; Kuwahara, Hiroyuki; Li, Yu; Song, Le; Gao, Xin
2017-11-15
An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these hidden Markov models into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA datasets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods. Our program is freely available at https://github.com/ramzan1990/sequence2vec. xin.gao@kaust.edu.sa or lsong@cc.gatech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Patron perception and utilization of an embedded librarian program.
Blake, Lindsay; Ballance, Darra; Davies, Kathy; Gaines, Julie K; Mears, Kim; Shipman, Peter; Connolly-Brown, Maryska; Burchfield, Vicki
2016-07-01
The study measured the perceived value of an academic library's embedded librarian service model. The study took place at the health sciences campuses of a research institution. A web-based survey was distributed that asked respondents a series of questions about their utilization of and satisfaction with embedded librarians and services. Over 58% of respondents reported being aware of their embedded librarians, and 95% of these were satisfied with provided services. The overall satisfaction with services was encouraging, but awareness of the embedded program was low, suggesting an overall need for marketing of services.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris
2014-01-01
Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.
NASA Astrophysics Data System (ADS)
Muscat, J. P.; Newns, D. M.
1980-10-01
We present a muffin tin based calculation on (TM) 3H, (TM) 7H and (TM) 19H clusters embedded at the surface of an effective jellium-like medium whose potential is treated in scattering length approximation. We consider the changes occurring when the d-like perturbation of the TM muffin tins is switched on. The broad chemisorption-induced resonance seen for H on the effective jellium surface is narrowed and shifted down in energy. Furthermore the occupation of this resonance is increased from about 1.1 electrons to about 1.4 (on 3d metals) or 1.8 (on 4d metals), due to d-like states dropping down from the d band to form a relatively welldefined "bonding state". An antibonding state containing about 0.4 electrons is formed at the top of the d band. The results are compared with other calculations and with photoemission data. Implications for the metal-hydrogen distance and (for Ni) the demagnetizing effect of hydrogen chemisorption are discussed. We use the change in total single particle energy when the d-like perturbation is switched on to estimate trends in chemisorption energy along the 3d and 4d series. In the 3d case experimental data is available on the difference in chemisorption energy between Ni and Cu which is in reasonable agreement with our estimate.
Leung, Louis
2008-10-01
To see how the Internet is actually embedded in our lives, this exploratory study examines how Internet users search the Web for important information, especially health or medical information, to make critical decisions, and the perception of how intimately our lives are embedded in the Internet intersects with patterns of health information seeking online and the expected quality of health information websites. Data from a probability sample of 569 Internet users found four types of commonly sought health information clusters online which included information on (a) health improvement, (b) medical treatment, (c) family health, and (d) health issues that are difficult to talk about. Results also show that behavior or behavioral intentions in health information seeking are in fact either a function of value expectancy or the evaluation of health information websites. More importantly, people who often go to the Internet for health information and have high expectations of the value and quality of health information websites (especially in terms of reliability, relevance/context, and interaction) tend to be those who are more likely to perceive the Internet as playing an important role in life decisions or rate the Internet as more embedded in their lives.
Sorting Five Human Tumor Types Reveals Specific Biomarkers and Background Classification Genes.
Roche, Kimberly E; Weinstein, Marvin; Dunwoodie, Leland J; Poehlman, William L; Feltus, Frank A
2018-05-25
We applied two state-of-the-art, knowledge independent data-mining methods - Dynamic Quantum Clustering (DQC) and t-Distributed Stochastic Neighbor Embedding (t-SNE) - to data from The Cancer Genome Atlas (TCGA). We showed that the RNA expression patterns for a mixture of 2,016 samples from five tumor types can sort the tumors into groups enriched for relevant annotations including tumor type, gender, tumor stage, and ethnicity. DQC feature selection analysis discovered 48 core biomarker transcripts that clustered tumors by tumor type. When these transcripts were removed, the geometry of tumor relationships changed, but it was still possible to classify the tumors using the RNA expression profiles of the remaining transcripts. We continued to remove the top biomarkers for several iterations and performed cluster analysis. Even though the most informative transcripts were removed from the cluster analysis, the sorting ability of remaining transcripts remained strong after each iteration. Further, in some iterations we detected a repeating pattern of biological function that wasn't detectable with the core biomarker transcripts present. This suggests the existence of a "background classification" potential in which the pattern of gene expression after continued removal of "biomarker" transcripts could still classify tumors in agreement with the tumor type.
Ultrafast photochemistry of methyl hydroperoxide on ice particles
Kamboures, M. A.; Nizkorodov, S. A.; Gerber, R. B.
2009-01-01
Simulations show that photodissociation of methyl hydroperoxide, CH3OOH, on water clusters produces a surprisingly wide range of products on a subpicosecond time scale, pointing to the possibility of complex photodegradation pathways for organic peroxides on aerosols and water droplets. Dynamics are computed at several excitation energies at 50 K using a semiempirical PM3 potential surface. CH3OOH is found to prefer the exterior of the cluster, with the CH3O group sticking out and the OH group immersed within the cluster. At atmospherically relevant photodissociation wavelengths the OH and CH3O photofragments remain at the surface of the cluster or embedded within it. However, none of the 25 completed trajectories carried out at the atmospherically relevant photodissociation energies led to recombination of OH and CH3O to form CH3OOH. Within the limited statistics of the available trajectories the predicted yield for the recombination is zero. Instead, various reactions involving the initial fragments and water promptly form a wide range of stable molecular products such as CH2O, H2O, H2, CO, CH3OH, and H2O2. PMID:19846778
Hydrogen-vacancy-dislocation interactions in α-Fe
NASA Astrophysics Data System (ADS)
Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.
2017-02-01
Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.
Conceptual Models and Theory-Embedded Principles on Effective Schooling.
ERIC Educational Resources Information Center
Scheerens, Jaap
1997-01-01
Reviews models and theories on effective schooling. Discusses four rationality-based organization theories and a fifth perspective, chaos theory, as applied to organizational functioning. Discusses theory-embedded principles flowing from these theories: proactive structuring, fit, market mechanisms, cybernetics, and self-organization. The…
The W40 region in the gould belt: An embedded cluster and H II region at the junction of filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallick, K. K.; Ojha, D. K.; Kumar, M. S. N.
We present a multiwavelength study of the W40 star-forming region using infrared (IR) observations in the UKIRT JHK bands, Spitzer Infrared Array Camera bands, and Herschel PACS bands, 2.12 μm H{sub 2} narrowband imaging, and radio continuum observations from GMRT (610 and 1280 MHz), in a field of view (FoV) of ∼34' × 40'. Archival Spitzer observations in conjunction with near-IR observations are used to identify 1162 Class II/III and 40 Class I sources in the FoV. The nearest-neighbor stellar surface density analysis shows that the majority of these young stellar objects (YSOs) constitute the embedded cluster centered on themore » high-mass source IRS 1A South. Some YSOs, predominantly the younger population, are distributed along and trace the filamentary structures at lower stellar surface density. The cluster radius is measured to be 0.44 pc—matching well with the extent of radio emission—with a peak density of 650 pc{sup –2}. The JHK data are used to map the extinction in the region, which is subsequently used to compute the cloud mass—126 M {sub ☉} and 71 M {sub ☉} for the central cluster and the northern IRS 5 region, respectively. H{sub 2} narrowband imaging shows significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio continuum analysis shows that this region has a blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission spectral energy distribution analysis is used to obtain physical parameters of the overall photoionized region and the IRS 5 sub-region. This multiwavelength scenario is suggestive of star formation having resulted from the merging of multiple filaments to form a hub. Star formation seems to have taken place in two successive epochs, with the first epoch traced by the central cluster and the high-mass star(s)—followed by a second epoch that is spreading into the filaments as uncovered by the Class I sources and even younger protostellar sources along the filaments. The IRS 5 H II region displays indications of swept-up material that has possibly led to the formation of protostars.« less
Einstein, David J; DeSanto-Madeya, Susan; Gregas, Matthew; Lynch, Jessica; McDermott, David F; Buss, Mary K
2017-09-01
Patients with advanced cancer benefit from early involvement of palliative care. The ideal method of palliative care integration remains to be determined, as does its effectiveness for patients treated with targeted and immune-based therapies. We studied the impact of an embedded palliative care team that saw patients in an academic oncology clinic specializing in targeted and immune-based therapies. Patients seen on a specific day accessed the embedded model, on the basis of automatic criteria; patients seen other days could be referred to a separate palliative care clinic (usual care). We abstracted data from the medical records of 114 patients who died during the 3 years after this model's implementation. Compared with usual care (n = 88), patients with access to the embedded model (n = 26) encountered palliative care as outpatients more often ( P = .003) and earlier (mean, 231 v 109 days before death; P < .001). Hospice enrollment rates were similar ( P = .303), but duration was doubled (mean, 57 v 25 days; P = .006), and enrollment > 7 days before death-a core Quality Oncology Practice Initiative metric-was higher in the embedded model (odds ratio, 5.60; P = .034). Place of death ( P = .505) and end-of-life chemotherapy (odds ratio, 0.361; P = .204) did not differ between the two arms. A model of embedded and automatically triggered palliative care among patients treated exclusively with targeted and immune-based therapies was associated with significant improvements in use and timing of palliative care and hospice, compared with usual practice.
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.
Berger, Daniel; Logsdail, Andrew J; Oberhofer, Harald; Farrow, Matthew R; Catlow, C Richard A; Sherwood, Paul; Sokol, Alexey A; Blum, Volker; Reuter, Karsten
2014-07-14
We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).
Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Daniel, E-mail: daniel.berger@ch.tum.de; Oberhofer, Harald; Reuter, Karsten
2014-07-14
We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capabilitymore » by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO{sub 2}(110)« less
Unveiling Deeply Embedded Sources by Near-Infrared Polarimetric Imaging
NASA Astrophysics Data System (ADS)
Yao, Yongqiang; Ishii, Miki; Nagata, Tetsuya; Nakaya, Hidehiko; Sato, Shuji
2000-10-01
Near-infrared polarimetric images are presented for six molecular outflow sources: IRAS 20050+2720, IRAS 20126+4104, IRAS 20188+3928, S233, AFGL 5180, and AFGL 6366S. All the regions are found to exhibit reflection nebulae and to be associated with massive and clustered star formation. By inspecting polarimetric patterns in the nebulae, we have identified six deeply embedded sources (DESs) which illuminate circumstellar nebulosity but are not detectable in wavelengths shorter than 2 μm. While the DES in IRAS 20050 coincides with an infrared source in a previous, longer wavelength observation and the one in IRAS 20126 with a hot molecular core, the nature of the other newly discovered DESs is not known. From the compilation of the observations of DESs over a large wavelength range, we suspect that the DESs possess characteristics similar to hot molecular cores and are likely to be in the pre-ultracompact H II region phase of massive star formation.
Image method for electrostatic energy of polarizable dipolar spheres
NASA Astrophysics Data System (ADS)
Gustafson, Kyle S.; Xu, Guoxi; Freed, Karl F.; Qin, Jian
2017-08-01
The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density. As an illustration of this formalism, the stability of small particle clusters is analyzed. The theory is developed in a form that can readily be adapted to Monte Carlo and molecular dynamics simulations for polarizable particles and, more generally, to study the interactions among polarizable molecules.
Failure and recovery in dynamical networks.
Böttcher, L; Luković, M; Nagler, J; Havlin, S; Herrmann, H J
2017-02-03
Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network's components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model's control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks.
Modeling the mechanics of axonal fiber tracts using the embedded finite element method.
Garimella, Harsha T; Kraft, Reuben H
2017-05-01
A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Tauber, Jan A.; Tielens, A. G. G. M.; Meixner, Margaret; Foldsmith, Paul F.
1994-01-01
We present observations of the molecular component of the Orion Bar, a prototypical Photodissociation Region (PDR) illuminated by the Trapezium cluster. The high angular resolution (6 sec-10 sec) that we have achieved by combining single-dish and interferometric observations has allowed us to examine in detail the spatial and kinematic morphology of this region and to estimate the physical characteristics of the molecular gas it contains. Our observations indicate that this PDR can be essentially described as a homogeneously distributed slab of moderately dense material (approximately 5 x 10(exp 4)/cu cm), in which are embedded a small number of dense (greater than 10(exp 6)/cu cm) clumps. The latter play little or no role in determining the thickness and kinetic temperature structure of this PDR. This observational picture is largely supported by PDR model calculations for this region, which we describe in detail in this work. We also find our model predictions of the intensities of a variety of atomic and molecular lines to be in good general agreement with a number of previous observations.
Optical and structural characterization of Ge clusters embedded in ZrO2
NASA Astrophysics Data System (ADS)
Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.
2017-11-01
The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.
ERIC Educational Resources Information Center
Burkins, Jan Miller; Ritchie, Scott
2007-01-01
Researchers have argued that "job-embedded" professional learning is the most valuable model for teachers (Joyce & Showers, 2002). But there is little or no corresponding literature regarding job-embedded professional learning for literacy coaches. In this paper, the authors offer an example of one such model, the Coach-to-Coach…
Raman Monte Carlo simulation for light propagation for tissue with embedded objects
NASA Astrophysics Data System (ADS)
Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit
2018-02-01
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
Embedded CLIPS for SDI BM/C3 simulation and analysis
NASA Technical Reports Server (NTRS)
Gossage, Brett; Nanney, Van
1990-01-01
Nichols Research Corporation is developing the BM/C3 Requirements Analysis Tool (BRAT) for the U.S. Army Strategic Defense Command. BRAT uses embedded CLIPS/Ada to model the decision making processes used by the human commander of a defense system. Embedding CLlPS/Ada in BRAT allows the user to explore the role of the human in Command and Control (C2) and the use of expert systems for automated C2. BRAT models assert facts about the current state of the system, the simulated scenario, and threat information into CLIPS/Ada. A user-defined rule set describes the decision criteria for the commander. We have extended CLIPS/Ada with user-defined functions that allow the firing of a rule to invoke a system action such as weapons release or a change in strategy. The use of embedded CLIPS/Ada will provide a powerful modeling tool for our customer at minimal cost.
NASA Astrophysics Data System (ADS)
Zhang, D. P.; Lei, Y.; Shen, Z. B.
2017-12-01
The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.
Syndrome Surveillance Using Parametric Space-Time Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOCH, MARK W.; MCKENNA, SEAN A.; BILISOLY, ROGER L.
2002-11-01
As demonstrated by the anthrax attack through the United States mail, people infected by the biological agent itself will give the first indication of a bioterror attack. Thus, a distributed information system that can rapidly and efficiently gather and analyze public health data would aid epidemiologists in detecting and characterizing emerging diseases, including bioterror attacks. We propose using clusters of adverse health events in space and time to detect possible bioterror attacks. Space-time clusters can indicate exposure to infectious diseases or localized exposure to toxins. Most space-time clustering approaches require individual patient data. To protect the patient's privacy, we havemore » extended these approaches to aggregated data and have embedded this extension in a sequential probability ratio test (SPRT) framework. The real-time and sequential nature of health data makes the SPRT an ideal candidate. The result of space-time clustering gives the statistical significance of a cluster at every location in the surveillance area and can be thought of as a ''health-index'' of the people living in this area. As a surrogate to bioterrorism data, we have experimented with two flu data sets. For both databases, we show that space-time clustering can detect a flu epidemic up to 21 to 28 days earlier than a conventional periodic regression technique. We have also tested using simulated anthrax attack data on top of a respiratory illness diagnostic category. Results show we do very well at detecting an attack as early as the second or third day after infected people start becoming severely symptomatic.« less
Self-assembling of impurity clusters in AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb)
NASA Astrophysics Data System (ADS)
Elyukhin, V. A.
2015-11-01
The self-assembling conditions of arrays of tetrahedral impurity clusters of two types in zinc blende AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb) are represented. Doping with one cation and two anion isoelectronic impurities transforms AlN into AlN-rich GaxAl1-xBVyCVzN1-y-z alloy of GaBV, GaCV, GaN, AlBV, AlCV and AlN. The cause of self-assembling is the preference of GaBV, GaCV and AlN bonding over that of GaN, AlBV, AlCV. The conditions are considered from 0 °C to 1000 °C in the dilute and ultra dilute limits for the cation and anion impurities, correspondingly. The temperature ranges between the cluster occurrence and self-assembling completion when the same anion impurities are in clusters are very small. 1P4Ga and 1As4Ga cluster occurrence temperatures are equal, correspondingly, to 797 °C and 736 °C at Ga content 2% and P and As contents 0.01%. 1P4Ga and 1Sb4Ga cluster occurrence temperatures are equal, correspondingly, to 976 °C and 736 °C at the same impurity contents. The cluster densities in AlN:(Ga, As, Sb) are close to those in AlN:(Ga, P, Sb). The results demonstrate that studied semiconductors are promising materials to produce arrays of identical ∼1 nm low band gap objects of two types embedded in the wide band gap matrix.
Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745
van Weeren, R. J.; Ogrean, G. A.; Jones, C.; ...
2017-01-31
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ~0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. Here, we detect a density discontinuity north-northeast of this core, which we speculatemore » is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less
Community involvement in dengue vector control: cluster randomised trial.
Vanlerberghe, V; Toledo, M E; Rodríguez, M; Gómez, D; Baly, A; Benítez, J R; Van der Stuyft, P
2010-01-01
To assess the effectiveness of an integrated community based environmental management strategy to control Aedes aegypti, the vector of dengue, compared with a routine strategy. Design Cluster randomised trial. Setting Guantanamo, Cuba. Participants 32 circumscriptions (around 2000 inhabitants each). Interventions The circumscriptions were randomly allocated to control clusters (n=16) comprising routine Aedes control programme (entomological surveillance, source reduction, selective adulticiding, and health education) and to intervention clusters (n=16) comprising the routine Aedes control programme combined with a community based environmental management approach. The primary outcome was levels of Aedes infestation: house index (number of houses positive for at least one container with immature stages of Ae aegypti per 100 inspected houses), Breteau index (number of containers positive for immature stages of Ae aegypti per 100 inspected houses), and the pupae per inhabitant statistic (number of Ae aegypti pupae per inhabitant). All clusters were subjected to the intended intervention; all completed the study protocol up to February 2006 and all were included in the analysis. At baseline the Aedes infestation levels were comparable between intervention and control clusters: house index 0.25% v 0.20%, pupae per inhabitant 0.44 x 10(-3) v 0.29 x 10(-3). At the end of the intervention these indices were significantly lower in the intervention clusters: rate ratio for house indices 0.49 (95% confidence interval 0.27 to 0.88) and rate ratio for pupae per inhabitant 0.27 (0.09 to 0.76). A community based environmental management embedded in a routine control programme was effective at reducing levels of Aedes infestation. Trial Registration Current Controlled Trials ISRCTN88405796.
Community involvement in dengue vector control: cluster randomised trial.
Vanlerberghe, V; Toledo, M E; Rodríguez, M; Gomez, D; Baly, A; Benitez, J R; Van der Stuyft, P
2009-06-09
To assess the effectiveness of an integrated community based environmental management strategy to control Aedes aegypti, the vector of dengue, compared with a routine strategy. Cluster randomised trial. Guantanamo, Cuba. 32 circumscriptions (around 2000 inhabitants each). The circumscriptions were randomly allocated to control clusters (n=16) comprising routine Aedes control programme (entomological surveillance, source reduction, selective adulticiding, and health education) and to intervention clusters (n=16) comprising the routine Aedes control programme combined with a community based environmental management approach. The primary outcome was levels of Aedes infestation: house index (number of houses positive for at least one container with immature stages of Ae aegypti per 100 inspected houses), Breteau index (number of containers positive for immature stages of Ae aegypti per 100 inspected houses), and the pupae per inhabitant statistic (number of Ae aegypti pupae per inhabitant). All clusters were subjected to the intended intervention; all completed the study protocol up to February 2006 and all were included in the analysis. At baseline the Aedes infestation levels were comparable between intervention and control clusters: house index 0.25% v 0.20%, pupae per inhabitant 0.44x10(-3) v 0.29x10(-3). At the end of the intervention these indices were significantly lower in the intervention clusters: rate ratio for house indices 0.49 (95% confidence interval 0.27 to 0.88) and rate ratio for pupae per inhabitant 0.27 (0.09 to 0.76). A community based environmental management embedded in a routine control programme was effective at reducing levels of Aedes infestation. Current Controlled Trials ISRCTN88405796.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, Morgan; Ramirez-Ruiz, Enrico; Trenti, Michele
When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 10{sup 5} or 2 × 10{sup 5} stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6–10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has amore » companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ∼10{sup 7} years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.« less
Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745
NASA Astrophysics Data System (ADS)
van Weeren, R. J.; Ogrean, G. A.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; David, L.; Dawson, W. A.; Donahue, M.; Goulding, A.; Kraft, R. P.; Mason, B.; Merten, J.; Mroczkowski, T.; Nulsen, P. E. J.; Rosati, P.; Roediger, E.; Randall, S. W.; Sayers, J.; Umetsu, K.; Vikhlinin, A.; Zitrin, A.
2017-02-01
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ˜0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100-300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.
Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weeren, R. J.; Jones, C.; Forman, W. R.
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate ismore » associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less
Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Weeren, R. J.; Ogrean, G. A.; Jones, C.
To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ~0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. Here, we detect a density discontinuity north-northeast of this core, which we speculatemore » is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less
The Close Stellar Companions to Intermediate-mass Black Holes
NASA Astrophysics Data System (ADS)
MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico
2016-03-01
When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.
Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements.
Camomilla, V; Bonci, T; Cappozzo, A
2017-09-06
The position, in a pelvis-embedded anatomical coordinate system, of skin points located over the following anatomical landmarks (AL) was determined while the hip assumed different spatial postures: right and left anterior superior and posterior superior iliac spines, and the sacrum. Postures were selected as occurring during walking and during a flexion-extension and circumduction movement, as used to determine the hip joint centre position (star-arc movement). Five volunteers, characterised by a wide range of body mass indices (22-37), were investigated. Subject-specific MRI pelvis digital bone models were obtained. For each posture, the pose of the pelvis-embedded anatomical coordinate system was determined by registering this bone model with points digitised over bony prominences of the pelvis, using a wand carrying a marker-cluster and stereophotogrammetry. The knowledge of how the position of the skin points varies as a function of the hip posture provided information regarding the soft tissue artefact (STA) that would affect skin markers located over those points during stereophotogrammetric movement analysis. The STA was described in terms of amplitude (relative to the position of the AL during an orthostatic posture), diameter (distance between the positions of the AL which were farthest away from each other), and pelvis orientation. The STA amplitude, exhibited, over all postures, a median [inter-quartile] value of 9[6] and 16[11]mm, for normal and overweight volunteers, respectively. STA diameters were larger for the star-arc than for the walking postures, and the direction was predominantly upwards. Consequent errors in pelvic orientation were in the range 1-9 and 4-11 degrees, for the two groups respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Mark A.
In this Article, we review the role of gas-phase, size-selected protonated water clusters, H+(H2O)n, in the analysis of the microscopic mechanics responsible for the behavior of the excess proton in bulk water. We extend upon previous studies of the smaller, two-dimensional sheet-like structures to larger (n≥10) assemblies with three-dimensional cage morphologies which better mimic the bulk environment. Indeed, clusters in which a complete second solvation shell forms around a surface-embedded hydronium ion yield vibrational spectra where the signatures of the proton defect display strikingly similar positions and breadth to those observed in dilute acids. We investigate effects of the localmore » structure and intermolecular interactions on the large red shifts observed in the proton vibrational signature upon cluster growth using various theoretical methods. We show that, in addition to sizeable anharmonic couplings, the position of the excess proton vibration can be traced to large increases in the electric field exerted on the embedded hydronium ion upon formation of the first and second solvation shells. MAJ acknowledges support from the U.S. Department of Energy under Grant No. DE-FG02- 06ER15800 as well as the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center, and by the National Science Foundation under Grant No. CNS 08-21132 that partially funded acquisition of the facilities. SMK and SSX acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.« less
Hierarchical modeling of cluster size in wildlife surveys
Royle, J. Andrew
2008-01-01
Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).
Reaction and Aggregation Dynamics of Cell Surface Receptors
NASA Astrophysics Data System (ADS)
Wang, Michelle Dong
This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.; Allen, S. W.; Bayliss, M.
Here, we present the results of a Chandra X-ray survey of the eight most massive galaxy clusters at z > 1.2 in the South Pole Telescope 2500 deg2 survey. We combine this sample with previously published Chandra observations of 49 massive X-ray-selected clusters at 0 < z < 0.1 and 90 Sunyaev–Zel'dovich–selected clusters at 0.25 < z < 1.2 to constrain the evolution of the intracluster medium (ICM) over the past ~10 Gyr. We find that the bulk of the ICM has evolved self-similarly over the full redshift range probed here, with the ICM density atmore » $$r\\gt 0.2{R}_{500}$$ scaling like $$E{(z)}^{2}$$. In the centers of clusters ($$r\\lesssim 0.01{R}_{500}$$), we find significant deviations from self-similarity ($${n}_{e}\\propto E{(z)}^{0.2\\pm 0.5}$$), consistent with no redshift dependence. When we isolate clusters with overdense cores (i.e., cool cores), we find that the average overdensity profile has not evolved with redshift—that is, cool cores have not changed in size, density, or total mass over the past ~9–10 Gyr. We show that the evolving "cuspiness" of clusters in the X-ray, reported by several previous studies, can be understood in the context of a cool core with fixed properties embedded in a self-similarly evolving cluster. We find no measurable evolution in the X-ray morphology of massive clusters, seemingly in tension with the rapidly rising (with redshift) rate of major mergers predicted by cosmological simulations. We show that these two results can be brought into agreement if we assume that the relaxation time after a merger is proportional to the crossing time, since the latter is proportional to $$H{(z)}^{-1}$$.« less