Science.gov

Sample records for embedded ffpe tissue

  1. Exome enrichment and SOLiD sequencing of formalin fixed paraffin embedded (FFPE) prostate cancer tissue.

    PubMed

    Menon, Roopika; Deng, Mario; Boehm, Diana; Braun, Martin; Fend, Falko; Boehm, Detlef; Biskup, Saskia; Perner, Sven

    2012-01-01

    Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising technology generating billions of 50 bp sequencing reads. This robust technique, successfully applied in gene identification, might be helpful in detecting novel genes associated with cancer initiation and progression using formalin fixed paraffin embedded (FFPE) tissue. This study's aim was to compare the validity of whole exome sequencing of fresh-frozen vs. FFPE tumor tissue by normalization to normal prostatic FFPE tissue, obtained from the same patient. One primary fresh-frozen sample, corresponding FFPE prostate cancer sample and matched adjacent normal prostatic tissue was subjected to exome sequencing. The sequenced reads were mapped and compared. Our study was the first to show comparable exome sequencing results between FFPE and corresponding fresh-frozen cancer tissues using SOLiD sequencing. A prior study has been conducted comparing the validity of sequencing of FFPE vs. fresh frozen samples using other NGS platforms. Our validation further proves that FFPE material is a reliable source of material for whole exome sequencing.

  2. Exome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue

    PubMed Central

    Menon, Roopika; Deng, Mario; Boehm, Diana; Braun, Martin; Fend, Falko; Boehm, Detlef; Biskup, Saskia; Perner, Sven

    2012-01-01

    Next generation sequencing (NGS) technologies have revolutionized cancer research allowing the comprehensive study of cancer using high throughput deep sequencing methodologies. These methods detect genomic alterations, nucleotide substitutions, insertions, deletions and copy number alterations. SOLiD (Sequencing by Oligonucleotide Ligation and Detection, Life Technologies) is a promising technology generating billions of 50 bp sequencing reads. This robust technique, successfully applied in gene identification, might be helpful in detecting novel genes associated with cancer initiation and progression using formalin fixed paraffin embedded (FFPE) tissue. This study’s aim was to compare the validity of whole exome sequencing of fresh-frozen vs. FFPE tumor tissue by normalization to normal prostatic FFPE tissue, obtained from the same patient. One primary fresh-frozen sample, corresponding FFPE prostate cancer sample and matched adjacent normal prostatic tissue was subjected to exome sequencing. The sequenced reads were mapped and compared. Our study was the first to show comparable exome sequencing results between FFPE and corresponding fresh-frozen cancer tissues using SOLiD sequencing. A prior study has been conducted comparing the validity of sequencing of FFPE vs. fresh frozen samples using other NGS platforms. Our validation further proves that FFPE material is a reliable source of material for whole exome sequencing. PMID:22942743

  3. Detection of alpha human papillomaviruses in archival formalin-fixed, paraffin-embedded (FFPE) tissue specimens.

    PubMed

    Kocjan, Boštjan J; Hošnjak, Lea; Poljak, Mario

    2016-03-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue specimens stored in pathology departments worldwide are an invaluable source for diagnostic purposes when fresh clinical material is unavailable as well as for retrospective molecular and epidemiological studies, especially when dealing with rare clinical conditions for which prospective collection is not feasible. Accurate detection of HPV infection in these specimens is particularly challenging because nucleic acids are often degraded and therefore, not suitable for amplification of larger fragments of the viral genome or viral gene transcripts. This review provides a brief summary of molecular methods for detecting alpha-HPV DNA/RNA in FFPE tissue specimens. We specifically address the key procedural and environmental factors that have the greatest impact on the quality of nucleic acids extracted from FFPE tissue specimens, and describe some solutions that can be used to increase their integrity and/or amplifiability. Moreover, commonly used methods for HPV DNA/RNA detection in FFPE tissue specimens are presented and discussed, focusing on studies using polymerase chain reaction as an HPV detection method and published after 1999. Finally, we briefly summarize our 22 years of experience with HPV detection in FFPE tissue specimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Formalin-fixed, paraffin-embedded (FFPE) tissue epigenomics using Infinium HumanMethylation450 BeadChip assays.

    PubMed

    de Ruijter, Tim C; de Hoon, Joep P J; Slaats, Jeroen; de Vries, Bart; Janssen, Marjolein J F W; van Wezel, Tom; Aarts, Maureen J B; van Engeland, Manon; Tjan-Heijnen, Vivianne C G; Van Neste, Leander; Veeck, Jürgen

    2015-07-01

    Current genome-wide methods to detect DNA-methylation in healthy and diseased tissue require high-quality DNA from fresh-frozen (FF) samples. However, well-annotated clinical samples are mostly available as formalin-fixed, paraffin-embedded (FFPE) tissues containing poor-quality DNA. To overcome this limitation, we here aimed to evaluate a DNA restoration protocol for usage with the genome-wide Infinium HumanMethylation450 BeadChip assay (HM-450K). Sixty-six DNA samples from normal colon (n=9) and breast cancer (n=11) were interrogated separately using HM-450K. Analyses included matched FF/FFPE samples and technical duplicates. FFPE DNA was processed with (FFPEr) or without a DNA restoration protocol (Illumina). Differentially methylated genes were finally validated in 24 additional FFPE tissues using nested methylation-specific PCR (MSP). In summary, β-values correlation between FFPEr duplicates was high (ρ=0.9927 (s.d. ±0.0015)). Matched FF/FFPEr correlation was also high (ρ=0.9590 (s.d. ±0.0184)) compared with matched FF/FFPE (ρ=0.8051 (s.d. ±0.1028). Probe detection rate in FFPEr samples (98.37%, s.d. ±0.66) was comparable to FF samples (99.98%, s.d. ±0.019) and substantially lower in FFPE samples (82.31%, s.d. ±18.65). Assay robustness was not decreased by sample archival age up to 10 years. We could also demonstrate no decrease in assay robustness when using 100 ng of DNA input only. Four out of the five selected differentially methylated genes could be validated by MSP. The gene failing validation by PCR showed high variation of CpG β-values in primer-binding sites. In conclusion, by using the FFPE DNA restoration protocol, HM-450K assays provide robust, accurate and reproducible results with FFPE tissue-derived DNA, which are comparable to those obtained with FF tissue. Most importantly, differentially methylated genes can be validated using more sensitive techniques, such as nested MSP, altogether providing an epigenomics platform for

  5. Mining the archives: a cross-platform analysis of gene expression profiles in archival formalin-fixed paraffin-embedded (FFPE) tissue.

    EPA Science Inventory

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for genomic research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation...

  6. Mining the archives: a cross-platform analysis of gene expression profiles in archival formalin-fixed paraffin-embedded (FFPE) tissue.

    EPA Science Inventory

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for genomic research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation...

  7. Commercially available kits for manual and automatic extraction of nucleic acids from formalin-fixed, paraffin-embedded (FFPE) tissues.

    PubMed

    Kocjan, Boštjan J; Hošnjak, Lea; Poljak, Mario

    2015-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues represent an invaluable source for diagnostic purposes when fresh clinical material is unavailable, and also for molecular and epidemiological studies. The recovery of nucleic acids from FFPE tissues is particularly challenging, and several in-house methods have been developed for this purpose over the last three decades. Recently, several commercial kits specifically developed for DNA and/or RNA extraction from FFPE tissues have been introduced to the market, but their inventory is not available in peer-reviewed literature. This article provides the first comprehensive inventory of commercial FFPE DNA/RNA extraction kits currently available on the market and describes their basic characteristics and features. A total of 69 commercial kits from 43 companies were identified. Thirty-five kits were developed specifically for DNA extraction, 22 for RNA extraction, and 12 for both DNA and RNA extraction. Only two commercial kits allow full automation of the entire nucleic acid extraction procedure. The tissue deparaffinization step is omitted in many protocols by melting paraffin directly in a tissue lysis buffer. Purification of the released nucleic acids is mainly based on silica or resin adsorption technology. A formalin reverse cross-linking step to increase the quality of extracted DNA and RNA is an intrinsic part of over half of the kits identified. It is hope that this comprehensive list of available commercial kits for extracting nucleic acids from FFPE will encourage researchers to strongly consider using them in diagnostic and research settings instead of old-fashioned, crude, and probably less effective in-house methods.

  8. KRAS Mutation Detection in Paired Frozen and Formalin-Fixed Paraffin-Embedded (FFPE) Colorectal Cancer Tissues

    PubMed Central

    Solassol, Jérome; Ramos, Jeanne; Crapez, Evelyne; Saifi, Majda; Mangé, Alain; Vianès, Evelyne; Lamy, Pierre-Jean; Costes, Valérie; Maudelonde, Thierry

    2011-01-01

    KRAS mutation has been unambiguously identified as a marker of resistance to cetuximab-based treatment in metastatic colorectal cancer (mCRC) patients. However, most studies of KRAS mutation analysis have been performed using homogenously archived CRC specimens, and studies that compare freshly frozen specimens and formalin-fixed paraffin-embedded (FFPE) specimens of CRC are lacking. The aim of the present study was to evaluate the impact of tissue preservation on the determination of KRAS mutational status. A series of 131 mCRC fresh-frozen tissues were first analyzed using both high-resolution melting (HRM) and direct sequencing. KRAS mutations were found in 47/131 (35.8%) using both approaches. Out of the 47 samples that were positive for KRAS mutations, 33 had available matched FFPE specimens. Using HRM, 2/33 (6%) demonstrated suboptimal template amplification, and 2/33 (6%) expressed an erroneous wild-type KRAS profile. Using direct sequencing, 6/33 (18.1%) displayed a wild-type KRAS status, and 3/33 (9.1%) showed discordant mutations. Finally, the detection of KRAS mutations was lower among the FFPE samples compared with the freshly frozen samples, demonstrating that tissue processing clearly impacts the accuracy of KRAS genotyping. PMID:21686179

  9. Evaluation of five DNA extraction methods for detection of H. pylori in formalin-fixed paraffin-embedded (FFPE) liver tissue from patients with hepatocellular carcinoma.

    PubMed

    Rabelo-Gonçalves, Elizabeth; Roesler, Bruna; Guardia, Ana Carolina; Milan, Arlete; Hara, Natalicia; Escanhoela, Cecília; Almeida, Jazon; Boin, Ilka; Zeitune, José Murilo

    2014-03-01

    Since Helicobacter spp. DNA was identified in liver tissue resected from patients with hepatocelullar carcinoma (HCC), researchers have suggested a role of this bacterium in hepatic carcinogenesis. Archives of formalin-fixed, paraffin-embedded (FFPE) tissues represent an extraordinary source for clinical studies providing many advantages. However, DNA extraction from FFPE tissues is laborious, time-consuming and still remains a challenge. The aim of this study was to evaluate five protocols for DNA extraction from FFPE liver obtained from patients with HCC in order to detect Helicobacter pylori DNA. These methods were: (1) QIAamp FFPE Tissue Kit, (2) QIAamp DNA Mini Kit, (3) Wizard SV Genomic DNA Purification System, (4) RealiaPrep FFPE gDNA Miniprep System and (5) phenol-chloroform. H. pylori detection was performed using 16S rRNA gene amplification by PCR. The highest total amount of DNA was obtained using the phenol-chloroform method. Analyses of 16S rRNA gene amplification did not show statistically significant differences among the methods (p=0.466), although the highest percentage of positive cases (70%) was found in samples extracted with phenol-chloroform. We suggest that of the five methods evaluated, phenol/chloroform is the most suitable for detection of H. pylori in FFPE liver from patients with HCC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. STR typing of formalin-fixed paraffin embedded (FFPE) aborted foetal tissue in criminal paternity cases.

    PubMed

    Reshef, Ayeleth; Barash, Mark; Voskoboinik, Lev; Brauner, Paul; Gafny, Roni

    2011-03-01

    Sexual assault or rape cases occasionally result in unwanted pregnancies. In almost all such cases the foetus is aborted. A forensic laboratory may receive the foetus, the placenta, or paraffin embedded abortion material for paternity testing. Obtaining a foetal profile DNA from a foetus or placenta may not be successful due to the age or condition of the tissue. Moreover, maternal contamination of placental material will invariably result in a mixed DNA profile. However, the use of properly screened abortion material from paraffin blocks will almost always result in obtaining a foetal DNA profile. Furthermore, foetal tissue fixed in paraffin blocks does not require special conditions for submission and storage as required to preserve fresh foetal or placental tissue. As hospitals routinely prepare foetal tissue in paraffin blocks, which should be readily obtainable by forensic laboratories, these samples would appear to be the preferred choice for paternity testing.

  11. Molecular identification of a causative parasite species using formalin-fixed paraffin embedded (FFPE) tissues of a complicated human pulmonary sparganosis case without decisive clinical diagnosis.

    PubMed

    Koonmee, Supinda; Intapan, Pewpan M; Yamasaki, Hiroshi; Sugiyama, Hiromu; Muto, Maki; Kuramochi, Toshiaki; Kularbkeaw, Jurairat; Kanpittaya, Jaturat; Maleewong, Wanchai; Nawa, Yukifumi

    2011-12-01

    PCR-based molecular diagnosis was made for the identification of causative agents of the clinically suspected pulmonary proliferative sparganosis case found in Thailand using formalin-fixed paraffin-embedded (FFPE) biopsy specimens. As a reference, FFPE biopsy specimen from a typical cutaneous sparganosis case was examined together. DNA samples were extracted from tissues and two partial fragments of cytochrome c oxidase subunit 1 (cox1) gene were amplified for the detection of Spirometra DNA. Two cox1 fragments were amplified successfully for both specimens. After alignment of nucleotide sequences of the PCR-amplicons, the causative agents of both cases were identified as Spirometra erinaceieuropaei.

  12. Tissue lithography: Microscale dewaxing to enable retrospective studies on formalin-fixed paraffin-embedded (FFPE) tissue sections.

    PubMed

    Cors, Julien F; Kashyap, Aditya; Fomitcheva Khartchenko, Anna; Schraml, Peter; Kaigala, Govind V

    2017-01-01

    We present a new concept, termed tissue lithography (TL), and its implementation which enables retrospective studies on formalin-fixed paraffin-embedded tissue sections. Tissue lithography uses a microfluidic probe to remove microscale areas of the paraffin layer on formalin-fixed paraffin-embedded biopsy samples. Current practices in sample utilization for research and diagnostics require complete deparaffinization of the sample prior to molecular testing. This imposes strong limitations in terms of the number of tests as well as the time when they can be performed on a single sample. Microscale dewaxing lifts these constraints by permitting deprotection of a fraction of a tissue for testing while keeping the remaining of the sample intact for future analysis. After testing, the sample can be sent back to storage instead of being discarded, as is done in standard workflows. We achieve this microscale dewaxing by hydrodynamically confining nanoliter volumes of xylene on top of the sample with a probe head. We demonstrate micrometer-scale, chromogenic and fluorescence-based immunohistochemistry against multiple biomarkers (p53, CD45, HER2 and β-actin) on tonsil and breast tissue sections and microarrays. We achieve stain patterns as small as 100 μm × 50 μm as well as multiplexed immunostaining within a single tissue microarray core with a 20-fold time reduction for local dewaxing as compared to standard protocols. We also demonstrate a 10-fold reduction in the rehydration time, leading to lower processing times between different stains. We further show the potential of TL for retrospective studies by sequentially dewaxing and staining four individual cores within the same tissue microarray over four consecutive days. By combining tissue lithography with the concept of micro-immunohistochemistry, we implement each step of the IHC protocol-dewaxing, rehydration and staining-with the same microfluidic probe head. Tissue lithography brings a new level of versatility

  13. Nucleic acids extraction from laser microdissected FFPE tissue sections.

    PubMed

    Burgemeister, Renate

    2011-01-01

    Tissue heterogeneity is a common source of unsuccessful experiments. Laser capture microdissection is a tool to prepare homogeneous tissue and cell areas as starting material for reliable and reproducible results as it allows the defined investigation of spatially different tissue areas.Nearly all samples allow the extraction of DNA. Fresh or fresh frozen samples are an ideal source for getting access to high-quality RNA. But also the large archives of formalin-fixed, paraffin-embedded (FFPE) tissue specimens are a valuable source of sample material for RNA extraction. Optimized protocols may help to make the RNA from FFPE material suitable for expression studies.

  14. Quantification of HER2 by Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded (FFPE) Breast Cancer Tissues.

    PubMed

    Steiner, Carine; Tille, Jean-Christophe; Lamerz, Jens; Kux van Geijtenbeek, Sabine; McKee, Thomas A; Venturi, Miro; Rubbia-Brandt, Laura; Hochstrasser, Denis; Cutler, Paul; Lescuyer, Pierre; Ducret, Axel

    2015-10-01

    The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R(2): 0.99-1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performance and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry

  15. Quantification of HER2 by Targeted Mass Spectrometry in Formalin-Fixed Paraffin-Embedded (FFPE) Breast Cancer Tissues*

    PubMed Central

    Steiner, Carine; Tille, Jean-Christophe; Lamerz, Jens; Kux van Geijtenbeek, Sabine; McKee, Thomas A.; Venturi, Miro; Rubbia-Brandt, Laura; Hochstrasser, Denis; Cutler, Paul; Lescuyer, Pierre; Ducret, Axel

    2015-01-01

    The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines. A multiplexed assay was developed for the six best candidate peptides and evaluated for linearity, precision and lower limit of quantification. Results showed a linear response over a calibration range of 0.012 to 100 fmol on column (R2: 0.99–1.00).The lower limit of quantification was 0.155 fmol on column for all peptides evaluated. The six HER2 peptides were quantified by selected reaction monitoring in a cohort of 40 archival formalin-fixed paraffin-embedded tumor tissues from women with invasive breast carcinomas, which showed different levels of HER2 gene amplification as assessed by standard methods used in clinical pathology. The amounts of the six HER2 peptides were highly and significantly correlated with each other, indicating that peptide levels can be used as surrogates of protein amounts in formalin-fixed paraffin-embedded tissues. After normalization for sample size, selected reaction monitoring peptide measurements were able to correctly predict 90% of cases based on HER2 amplification as defined by the American Society of Clinical Oncology and College of American Pathologists. In conclusion, the developed assay showed good analytical performance and a high agreement with immunohistochemistry and fluorescence in situ hybridization data. This study demonstrated that selected reaction monitoring allows to accurately quantify protein expression in formalin-fixed paraffin-embedded tissues and represents therefore a powerful approach for biomarker discovery studies. The untargeted mass spectrometry

  16. Molecular identification of Coccidioides immitis in formalin-fixed, paraffin-embedded (FFPE) tissues from a Colombian patient.

    PubMed

    Canteros, Cristina E; Vélez H, Alejandro; Toranzo, Adriana I; Suárez-Alvarez, Roberto; Tobón O, Ángela; Jimenez A, María del Pilar; Restrepo M, Ángela

    2015-06-01

    Coccidioides immitis and C. posadasii are the etiologic agents of coccidioidomycosis, an endemic fungal disease of the Americas. In Colombia, this mycosis is uncommon, and only five cases, two of them imported, have been documented.By means of DNA sequencing, C. immitis was identified in formalin-fixed, paraffin-embedded archival tissues samples from the 5th Colombian patient diagnosed in 1997. The patient was born in Pinto, Department of Magdalena, and had never visited other geographic regions, a reason to consider that the mycosis had been acquired locally.This species is primarily found in California although it has been occasionally reported in other geographic areas such as Mexico and Brazil. This is the first indigenous report of C. immitis-associated coccidioidomycosis in a Colombian patient.

  17. Genotyping Concordance in DNA Extracted from Formalin-Fixed Paraffin Embedded (FFPE) Breast Tumor and Whole Blood for Pharmacogenetic Analyses

    PubMed Central

    Hertz, Daniel L; Kidwell, Kelley M; Thibert, Jacklyn N; Gersch, Christina; Regan, Meredith M; Skaar, Todd C; Henry, N. Lynn; Hayes, Daniel F; Van Poznak, Catherine H; Rae, James M

    2015-01-01

    Background Cancer pharmacogenetic studies have used archival tumor samples as a DNA source when germline DNA was unavailable. Genotyping DNA extracted from formalin-fixed paraffin embedded tumors (FFPE-T) may be inaccurate compared to that from normal leukocytes due to FFPE storage, tumor genetic aberrations, and/or insufficient DNA extraction. Our objective was to assess the extent and source of genotyping inaccuracy from FFPE-T DNA and demonstrate analytical validity of FFPE-T genotyping of candidate single nucleotide polymorphisms (SNPs) for pharmacogenetic analyses. Methods SNPs relevant to cancer pharmacogenetics were genotyped by Sequenom MassARRAYs in DNA harvested from matched FFPE-T, FFPE non-cancerous lymph node (FFPE-LN), and whole blood leukocyte samples obtained from early stage breast cancer patients. No-call and discordant call rates were calculated for each tissue type (FFPE-T, FFPE-LN, blood) and each SNP. Analytical validity was defined as all SNPs with <5% discordance between FFPE-T and blood or <10% discordance plus no-calls. Results Matched samples from 114 patients were genotyped for 247 SNPs. No-call rate in FFPE-T was greater than FFPE-LN and blood (4.3% vs. 3.0% vs. 0.5%, all p<0.001). The overall rate of genotype discordance between FFPE-T and leukocytes was very low, but greater than the discordance between FFPE-LN and leukocytes (1.1% vs. 0.3%, p<0.001). Samples with heterozygous genotypes were more likely to be no- or discordantly-called in FFPE-T and FFPE-LN (p<0.001). Analytical validity of FFPE-T genotyping was demonstrated for 218 (88%) SNPs. Conclusions No- and discordant-call rates were below concerning thresholds, confirming that most SNPs can be accurately genotyped from FFPE-T on the Sequenom platform. FFPE-T is a viable DNA source for prospective-retrospective pharmacogenetic analyses of clinical trial cohorts when germline DNA is not available. PMID:26276228

  18. Expanding epigenomics to archived FFPE tissues: An evaluation of DNA repair methodologies

    PubMed Central

    Siegel, Erin M; Berglund, Anders E.; Riggs, Bridget M; Eschrich, Steven A.; Putney, Ryan M.; Ajidahun, Abidemi O.; Coppola, Domenico; Shibata, David

    2014-01-01

    Background Epigenome-wide association studies are emerging in the field of cancer epidemiology with the rapid development of large-scale methylation array platforms. Until recently, these methods were only valid for DNA from fresh frozen (FF) tissues. Novel techniques for repairing DNA from formalin-fixed paraffin-embedded (FFPE) have emerged; however, a direct comparison of FFPE DNA repair methods prior to analysis on genome-wide methylation array to matched FF tissues has not been conducted. Methods We conducted a systematic performance comparison of two DNA repair methods (REPLI-g Ligase vs. Infinium HD Restore Kit) on FFPE-DNA compared to matched FF tissues on the Infinium 450K array. A threshold of discordant methylation between FF-FFPE pairs was set at Δβ>0.3. The correlations of β-values from FF-FFPE pairs were compared across methods and experimental conditions. Results The Illumina Restore kit outperformed the REPLI-g ligation method with respect to reproducibility of replicates(R2>0.970), highly correlated β-values between FF-FFPE(R2>0.888), and fewest discordant loci between FF-FFPE(≤0.61%). The performance of the Restore kit was validated in an independent set of 121 FFPE tissues. Conclusions The Restore kit outperformed RELPI-g ligation in restoring FFPE-derived DNA prior to analysis on the Infinium 450K methylation array. Our findings provide critical guidance that may significantly enhance the breadth of diseases that can be studied by methylomic profiling. Impact Epigenomic studies using FFPE tissues should now be considered among cancers that have not been fully characterized from an epigenomic standpoint. These findings promote novel epigenome-wide studies focused on cancer etiology, identification of novel biomarkers, and developing targeted therapies. PMID:25472669

  19. Optimal Fixation Conditions and DNA Extraction Methods for MLPA Analysis on FFPE Tissue-Derived DNA.

    PubMed

    Atanesyan, Lilit; Steenkamer, Maryvonne J; Horstman, Anja; Moelans, Cathy B; Schouten, Jan P; Savola, Suvi P

    2017-01-01

    Molecular genetic analysis of formalin-fixed, paraffin-embedded (FFPE) tissues is of great importance both for research and diagnostics. Multiplex ligation-dependent probe amplification (MLPA) is a widely used technique for gene copy number determination, and it has been successfully used for FFPE tissue-extracted DNA analysis. However, there have been no studies addressing the effect of tissue fixation procedures and DNA extraction methods on MLPA. This study therefore focuses on selecting optimal preanalytic conditions such as FFPE tissue preparation conditions and DNA extraction methods. Healthy tissues were fixed in buffered or nonbuffered formalin for 1 hour, 12 to 24 hours, or 48 to 60 hours at 4 °C or at room temperature. DNA extracted from differently fixed and subsequently paraffin-embedded tissues was used for MLPA. Four commercial DNA extraction kits and one in-house method were compared. Tissues fixed for 12 to 24 hours in buffered formalin at room temperature produced DNA with the most optimal quality for MLPA. The in-house FFPE DNA extraction method was shown to perform as efficient as or even superior to other methods in terms of suitability for MLPA, time and cost-efficiency, and ease of performance. FFPE-extracted DNA is well suitable for MLPA analysis, given that optimal tissue fixation and DNA extraction methods are chosen.

  20. Single-strand DNA library preparation improves sequencing of formalin-fixed and paraffin-embedded (FFPE) cancer DNA

    PubMed Central

    Stiller, Mathias; Sucker, Antje; Griewank, Klaus; Aust, Daniela; Baretton, Gustavo Bruno; Schadendorf, Dirk; Horn, Susanne

    2016-01-01

    DNA derived from formalin-fixed and paraffin-embedded (FFPE) tissue has been a challenge to large-scale genomic sequencing, due to its low quality and quantities. Improved techniques enabling the genome-wide analysis of FFPE material would be of great value, both from a research and clinical perspective. Comparing a single-strand DNA library preparation method originally developed for ancient DNA to conventional protocols using double-stranded DNA derived from FFPE material we obtain on average 900-fold more library molecules and improved sequence complexity from as little as 5 ng input DNA. FFPE DNA is highly fragmented, usually below 100bp, and up to 60% of reads start after or end prior to adenine residues, suggesting that crosslinks predominate at adenine residues. Similar to ancient DNA, C > T substitutions are slightly increased with maximum rates up to 3% at the ends of molecules. In whole exome sequencing of single-strand libraries from lung, breast, colorectal, prostate and skin cancers we identify known cancer mutations. In summary, we show that single-strand library preparation enables genomic sequencing, even from low amounts of degraded FFPE DNA. This method provides a clear advantage both in research and clinical settings, where FFPE material (e.g. from biopsies) often is the only source of DNA available. Improving the genetic characterization that can be performed on conventional archived FFPE tissue, the single-strand library preparation allows scarce samples to be used in personalized medicine and enables larger sample sizes in future sequencing studies. PMID:27463017

  1. Expression of proliferation genes in formalin-fixed paraffin-embedded (FFPE) tissue from breast carcinomas. Feasibility and relevance for a routine histopathology laboratory.

    PubMed

    Thomas, Carla; Robinson, Cleo; Dessauvagie, Ben; Wood, Benjamin; Sterrett, Greg; Harvey, Jennet; Amanuel, Benhur

    2017-01-01

    Breast carcinoma proliferative activity, histological grade and commercial molecular tests are all important in prognostication and treatment. There is a particular need for improved, standardised techniques for subclassification of grade 2 breast cancers into low-risk and high-risk prognostic groups. In this study we investigated whether gene expression profiling of five proliferation genes was feasible using breast cancer tissue in a clinical setting and whether these profiles could enhance pathological assessment. Expression of five proliferation gene mRNAs; Ki-67, STK 15, CCNB1, CCND1 and MYBL2, was quantified in 27 breast carcinomas and compared with Ki-67 proliferation index (PI) and Nottingham mitotic score. Expression of Ki-67, STK15 and MYBL2 mRNA showed moderate Spearman's correlation with Ki-67 PI (p<0.01), but CCND1 and CCNB1 showed weak, non-significant correlation. Individual gene expression did not associate with mitotic score but combined mRNA expression correlated with both Ki-67 PI (p=0.018) and mitotic score (p=0.03; 0.007). This study confirms mRNA analysis in breast carcinoma formalin-fixed, paraffin-embedded samples is feasible and suggests gene expression profiling, using a small set of five proliferation genes, has potential in aiding histological grading or assessment of proliferative activity of breast cancers. To fully evaluate the clinical applicability of this approach, a larger cohort study with long-term follow-up data is required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. MicroRNA Stability in FFPE Tissue Samples: Dependence on GC Content

    PubMed Central

    Kakimoto, Yu; Tanaka, Masayuki; Kamiguchi, Hiroshi; Ochiai, Eriko; Osawa, Motoki

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs responsible for fine-tuning of gene expression at post-transcriptional level. The alterations in miRNA expression levels profoundly affect human health and often lead to the development of severe diseases. Currently, high throughput analyses, such as microarray and deep sequencing, are performed in order to identify miRNA biomarkers, using archival patient tissue samples. MiRNAs are more robust than longer RNAs, and resistant to extreme temperatures, pH, and formalin-fixed paraffin-embedding (FFPE) process. Here, we have compared the stability of miRNAs in FFPE cardiac tissues using next-generation sequencing. The mode read length in FFPE samples was 11 nucleotides (nt), while that in the matched frozen samples was 22 nt. Although the read counts were increased 1.7-fold in FFPE samples, compared with those in the frozen samples, the average miRNA mapping rate decreased from 32.0% to 9.4%. These results indicate that, in addition to the fragmentation of longer RNAs, miRNAs are to some extent degraded in FFPE tissues as well. The expression profiles of total miRNAs in two groups were highly correlated (0.88 FFPE cardiac tissues instead of miR-1, which was predominant before fixation. Subsequent quantitative PCR (qPCR) analyses revealed that miRNAs with GC content of less than 40% are more degraded than GC-rich miRNAs (p<0.0001). We showed that deep sequencing data obtained using FFPE samples cannot be directly compared with that of fresh frozen samples. The combination of miRNA deep sequencing and other quantitative analyses, such as qPCR, may improve the utility of archival FFPE tissue samples. PMID:27649415

  3. Reliability and performance of commercial RNA and DNA extraction kits for FFPE tissue cores

    PubMed Central

    Guérard, Karl-Philippe; Bartlett, John M. S.; Lapointe, Jacques; Berman, David M.; Park, Paul C.

    2017-01-01

    Cancer biomarker studies often require nucleic acid extraction from limited amounts of formalin-fixed, paraffin-embedded (FFPE) tissues, such as histologic sections or needle cores. A major challenge is low quantity and quality of extracted nucleic acids, which can limit our ability to perform genetic analyses, and have a significant influence on overall study design. This study was aimed at identifying the most reliable and reproducible method of obtaining sufficient high-quality nucleic acids from FFPE tissues. We compared the yield and quality of nucleic acids from 0.6-mm FFPE prostate tissue cores across 16 DNA and RNA extraction protocols, using 14 commercially available kits. Nucleic acid yield was determined by fluorometry, and quality was determined by spectrophotometry. All protocols yielded nucleic acids in quantities that are compatible with downstream molecular applications. However, the protocols varied widely in the quality of the extracted RNA and DNA. Four RNA and five DNA extraction protocols, including protocols from two kits for dual-extraction of RNA and DNA from the same tissue source, were prioritized for further quality assessment based on the yield and purity of their products. Specifically, their compatibility with downstream reactions was assessed using both NanoString nCounter gene expression assays and reverse-transcriptase real-time PCR for RNA, and methylation-specific PCR assays for DNA. The kit deemed most suitable for FFPE tissue was the AllPrep kit by Qiagen because of its yield, quality, and ability to purify both RNA and DNA from the same sample, which would be advantageous in biomarker studies. PMID:28640876

  4. Reliability and performance of commercial RNA and DNA extraction kits for FFPE tissue cores.

    PubMed

    Patel, Palak G; Selvarajah, Shamini; Guérard, Karl-Philippe; Bartlett, John M S; Lapointe, Jacques; Berman, David M; Okello, John B A; Park, Paul C

    2017-01-01

    Cancer biomarker studies often require nucleic acid extraction from limited amounts of formalin-fixed, paraffin-embedded (FFPE) tissues, such as histologic sections or needle cores. A major challenge is low quantity and quality of extracted nucleic acids, which can limit our ability to perform genetic analyses, and have a significant influence on overall study design. This study was aimed at identifying the most reliable and reproducible method of obtaining sufficient high-quality nucleic acids from FFPE tissues. We compared the yield and quality of nucleic acids from 0.6-mm FFPE prostate tissue cores across 16 DNA and RNA extraction protocols, using 14 commercially available kits. Nucleic acid yield was determined by fluorometry, and quality was determined by spectrophotometry. All protocols yielded nucleic acids in quantities that are compatible with downstream molecular applications. However, the protocols varied widely in the quality of the extracted RNA and DNA. Four RNA and five DNA extraction protocols, including protocols from two kits for dual-extraction of RNA and DNA from the same tissue source, were prioritized for further quality assessment based on the yield and purity of their products. Specifically, their compatibility with downstream reactions was assessed using both NanoString nCounter gene expression assays and reverse-transcriptase real-time PCR for RNA, and methylation-specific PCR assays for DNA. The kit deemed most suitable for FFPE tissue was the AllPrep kit by Qiagen because of its yield, quality, and ability to purify both RNA and DNA from the same sample, which would be advantageous in biomarker studies.

  5. A laser microdissection-based workflow for FFPE tissue microproteomics: Important considerations for small sample processing.

    PubMed

    Longuespée, Rémi; Alberts, Deborah; Pottier, Charles; Smargiasso, Nicolas; Mazzucchelli, Gabriel; Baiwir, Dominique; Kriegsmann, Mark; Herfs, Michael; Kriegsmann, Jörg; Delvenne, Philippe; De Pauw, Edwin

    2016-07-15

    Proteomic methods are today widely applied to formalin-fixed paraffin-embedded (FFPE) tissue samples for several applications in research, especially in molecular pathology. To date, there is an unmet need for the analysis of small tissue samples, such as for early cancerous lesions. Indeed, no method has yet been proposed for the reproducible processing of small FFPE tissue samples to allow biomarker discovery. In this work, we tested several procedures to process laser microdissected tissue pieces bearing less than 3000 cells. Combined with appropriate settings for liquid chromatography mass spectrometry-mass spectrometry (LC-MS/MS) analysis, a citric acid antigen retrieval (CAAR)-based procedure was established, allowing to identify more than 1400 proteins from a single microdissected breast cancer tissue biopsy. This work demonstrates important considerations concerning the handling and processing of laser microdissected tissue samples of extremely limited size, in the process opening new perspectives in molecular pathology. A proof of the proposed method for biomarker discovery, with respect to these specific handling considerations, is illustrated using the differential proteomic analysis of invasive breast carcinoma of no special type and invasive lobular triple-negative breast cancer tissues. This work will be of utmost importance for early biomarker discovery or in support of matrix-assisted laser desorption/ionization (MALDI) imaging for microproteomics from small regions of interest. Copyright © 2016. Published by Elsevier Inc.

  6. Dose-Response Analysis of RNA-Seq Profiles in Archival Formalin-fixed paraffin-embedded (FFPE) Samples

    EPA Science Inventory

    Formalin-fixed paraffin-embedded (FFPE) samples provide a vast untapped resource for chemical safety and translational science. To date, genomic profiling of FFPE samples has been limited by poor RNA quality and inconsistent results with limited utility in dose-response assessmen...

  7. Dose-Response Analysis of RNA-Seq Profiles in Archival Formalin-fixed paraffin-embedded (FFPE) Samples

    EPA Science Inventory

    Formalin-fixed paraffin-embedded (FFPE) samples provide a vast untapped resource for chemical safety and translational science. To date, genomic profiling of FFPE samples has been limited by poor RNA quality and inconsistent results with limited utility in dose-response assessmen...

  8. Improved RNA quality and TaqMan® Pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials

    PubMed Central

    Li, Jinghuan; Smyth, Paul; Cahill, Susanne; Denning, Karen; Flavin, Richard; Aherne, Sinead; Pirotta, Marco; Guenther, Simone M; O'Leary, John J; Sheils, Orla

    2008-01-01

    Background Archival formalin-fixed paraffin-embedded (FFPE) tissues represent an abundant source of clinical specimens; however their use is limited in applications involving analysis of gene expression due to RNA degradation and modification during fixation and processing. This study improved the quality of RNA extracted from FFPE by introducing a heating step into the selected extraction protocols. Further, it evaluated a novel pre-amplification system (PreAmp) designed to enhance expression analysis from tissue samples using assays with a range of amplicon size (62–164 bp). Results Results from the Bioanalyzer and TaqMan® data showed improvement of RNA quality extracted using the modified protocols from FFPE. Incubation at 70°C for 20 minutes was determined to be the best condition of those tested to disrupt cross-links while not compromising RNA integrity. TaqMan® detection was influenced by master mix, amplicon size and the incorporation of a pre-amplification step. TaqMan® PreAmp consistently achieved decreased CT values in both snap frozen and FFPE aliquots compared with no pre-amplification. Conclusion Modification to extraction protocols has facilitated procurement of RNA that may be successfully amplified using QRT-PCR. TaqMan® PreAmp system is a robust and practical solution to limited quantities of RNA from FFPE extracts. PMID:18254955

  9. MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue.

    PubMed

    Sapino, Anna; Roepman, Paul; Linn, Sabine C; Snel, Mireille H J; Delahaye, Leonie J M J; van den Akker, Jeroen; Glas, Annuska M; Simon, Iris M; Barth, Neil; de Snoo, Femke A; van 't Veer, Laura J; Molinaro, Luca; Berns, Els M J J; Wesseling, Jelle; Riley, Lee B; Anderson, David; Nguyen, Bichlien; Cox, Charles E

    2014-03-01

    MammaPrint, a prognostic 70-gene profile for early-stage breast cancer, has been available for fresh tissue. Improvements in RNA processing have enabled microarray diagnostics for formalin-fixed, paraffin-embedded (FFPE) tissue. Here, we describe method optimization, validation, and performance of MammaPrint using analyte from FFPE tissue. Laboratory procedures for enabling the assay to be run on FFPE tissue were determined using 157 samples, and the assay was established using 125 matched FFPE and fresh tissues. Validation of MammaPrint-FFPE, compared with MammaPrint-fresh, was performed on an independent series of matched tissue from five hospitals (n = 211). Reproducibility, repeatability, and precision of the FFPE assay (n = 87) was established for duplicate analysis of the same tumor, interlaboratory performance, 20-day repeat experiments, and repeated analyses over 12 months. FFPE sample processing had a success rate of 97%. The MammaPrint assay using FFPE analyte demonstrated an overall equivalence of 91.5% (95% confidence interval, 86.9% to 94.5%) between the 211 independent matched FFPE and fresh tumor samples. Precision was 97.3%, and repeatability was 97.8%, with highly reproducible results between replicate samples of the same tumor and between two laboratories (concordance, 96%). Thus, with 580 tumor samples, MammaPrint was successfully translated to FFPE tissue. The assay has high precision and reproducibility, and FFPE results are substantially equivalent to results derived from fresh tissue.

  10. From RNA isolation to microarray analysis: Comparison of methods in FFPE tissues.

    PubMed

    Belder, Nevin; Coskun, Öznur; Doganay Erdogan, Beyza; Ilk, Ozlem; Savas, Berna; Ensari, Arzu; Özdağ, Hilal

    2016-08-01

    Genome-wide gene expression profiling analysis of FFPE tissue samples is indispensable for cancer research and provides the opportunity to evaluate links between molecular and clinical information, however, working with FFPE samples is challenging due to extensive cross-linking, fragmentation and limited quantities of nucleic acid. Thus, processing of FFPE tissue samples from RNA extraction to microarray analysis still needs optimization. In this study, a modified deparaffinization protocol was conducted prior to RNA isolation. Trizol, Qiagen RNeasy FFPE and Arcturus PicoPure RNA Isolation kits were used in parallel to compare their impact on RNA isolation. We also evaluated the effect of two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) on the percentage of present calls. Our optimization study shows that the Qiagen RNeasy FFPE kit with modified deparaffinization step gives better results (RNA quantity and quality) than the other two isolation kits. The Ribo-SPIA protocol gave a significantly higher percentage of present calls than the 3' IVT cDNA amplification and labeling system. However, no significant differences were found between the two array platforms. Our study paves the way for future high-throughput transcriptional analysis by optimizing FFPE tissue sample processing from RNA isolation to microarray analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies.

    PubMed

    Shi, Shan-Rong; Taylor, Clive R; Fowler, Carol B; Mason, Jeffrey T

    2013-04-01

    Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues.

  12. Complete Solubilization of Formalin-Fixed, Paraffin-Embedded Tissue May Improve Proteomic Studies

    PubMed Central

    Shi, Shan-Rong; Taylor, Clive R; Fowler, Carol B; Mason, Jeffrey T

    2013-01-01

    Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval (AR) principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays (RPPA), which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues. PMID:23339100

  13. Dose-Response Analysis of RNA-Seq Profiles in Archival Formalin-Fixed Paraffin-Embedded (FFPE) Samples.

    EPA Science Inventory

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses us...

  14. Dose-Response Analysis of RNA-Seq Profiles in Archival Formalin-Fixed Paraffin-Embedded (FFPE) Samples.

    EPA Science Inventory

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses us...

  15. Evaluation of Human Epidermal Growth Factor Receptor 2 (HER2) Gene Status in Human Breast Cancer Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Specimens by Fluorescence In Situ Hybridization (FISH).

    PubMed

    Hwang, Harry C; Gown, Allen M

    2016-01-01

    Current standard of care requires that HER2 gene testing be performed on all newly diagnosed invasive breast cancers in order to determine eligibility for anti-HER2 antibody therapy and should be performed in accordance with current ASCO-CAP guidelines (Hammond et al., J Clin Oncol 29(15):e458, 2011; Wolff et al., J Clin Oncol 31(31):3997-4013, 2013). Here we describe a HER2 FISH methodology to evaluate HER2 gene status in FFPE breast tumor specimens.

  16. Enhancement of Pathologist's Routine Practice: Reuse of DNA Extracted from Immunostained Formalin-fixed Paraffin-embedded (FFPE) Slides in Downstream Molecular Analysis of Cancer

    PubMed Central

    AL-ATTAS*, ASMAA; ASSIDI*, MOURAD; AL-MAGHRABI, JAUDAH; DALLOL, ASHRAF; SCHULTEN, HANS-JUERGEN; ABU-ELMAGD, MUHAMMAD; CHAUDHARY, ADEEL; ABUZENADAH, ADEL; BUDOWLE, BRUCE; BUHMEIDA, ABDELBASET; AL-QAHTANI, MOHAMMED

    2016-01-01

    Background/Aim: To date, the conventional formalin-fixed, paraffin-embedded (FFPE) technique is the gold-standard for preserving histomorphology. Once FFPE tissues are stained, slides are routinely archived along with their blocks at biobanks/hospitals. However, the reuse of fixed and stained biospecimens as DNA source is not a common routine practice worldwide and, thus, indicates the need of studies to investigate the feasibility of extracting DNA from already immunohistochemistry (IHC) FFPE-stained slides and its possible reuse in subsequent downstream molecular analyses. Materials and Methods: FFPE IHC slides from colorectal cancer (CRC) patients were prepared and stored in the CEGMR Biobank. The workflow consists of digitalization of IHC stained slide’s image, removing the slide cover-slip, crude dissection and DNA extraction. Following DNA quality assessment, mutation analysis of CTNNB1 and methylation profile of CDH1 were performed. Results: High-quality DNA was obtained allowing 60% concordance between CDH1 methylation and membranous E-cadherin expression pattern. Clean CTNNB1 DNA chromatograms with evenly-spaced peaks were observed. Conclusion: This study is a proof of concept to recycle and reuse DNA from IHC stained slides with suitable concentration and integrity for further downstream molecular applications. These findings will enhance the pathologists’ knowledge, attitudes and practices (KAP) towards the use of these biospecimens and support the implementation of this approach in clinical pathology practice. Therefore, the scientific community will benefit from the largest comprehensive database of human fully annotated FFPE biospecimens already available at their disposal in order to demystify the complexity and the heterogeneity of many challenging diseases and foster the transition towards precision medicine. *These Authors contributed equally to this manuscript. PMID:27566658

  17. Enhancement of Pathologist's Routine Practice: Reuse of DNA Extracted from Immunostained Formalin-fixed Paraffin-embedded (FFPE) Slides in Downstream Molecular Analysis of Cancer.

    PubMed

    Al-Attas, Asmaa; Assidi, Mourad; Al-Maghrabi, Jaudah; Dallol, Ashraf; Schulten, Hans-Juergen; Abu-Elmagd, Muhammad; Chaudhary, Adeel; Abuzenadah, Adel; Budowle, Bruce; Buhmeida, Abdelbaset; Al-Qahtani, Mohammed

    To date, the conventional formalin-fixed, paraffin-embedded (FFPE) technique is the gold-standard for preserving histomorphology. Once FFPE tissues are stained, slides are routinely archived along with their blocks at biobanks/hospitals. However, the reuse of fixed and stained biospecimens as DNA source is not a common routine practice worldwide and, thus, indicates the need of studies to investigate the feasibility of extracting DNA from already immunohistochemistry (IHC) FFPE-stained slides and its possible reuse in subsequent downstream molecular analyses. FFPE IHC slides from colorectal cancer (CRC) patients were prepared and stored in the CEGMR Biobank. The workflow consists of digitalization of IHC stained slide's image, removing the slide cover-slip, crude dissection and DNA extraction. Following DNA quality assessment, mutation analysis of CTNNB1 and methylation profile of CDH1 were performed. High-quality DNA was obtained allowing 60% concordance between CDH1 methylation and membranous E-cadherin expression pattern. Clean CTNNB1 DNA chromatograms with evenly-spaced peaks were observed. This study is a proof of concept to recycle and reuse DNA from IHC stained slides with suitable concentration and integrity for further downstream molecular applications. These findings will enhance the pathologists' knowledge, attitudes and practices (KAP) towards the use of these biospecimens and support the implementation of this approach in clinical pathology practice. Therefore, the scientific community will benefit from the largest comprehensive database of human fully annotated FFPE biospecimens already available at their disposal in order to demystify the complexity and the heterogeneity of many challenging diseases and foster the transition towards precision medicine. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  18. Comparison of Nanostring nCounter® Data on FFPE Colon Cancer Samples and Affymetrix Microarray Data on Matched Frozen Tissues.

    PubMed

    Chen, Xi; Deane, Natasha G; Lewis, Keeli B; Li, Jiang; Zhu, Jing; Washington, M Kay; Beauchamp, R Daniel

    2016-01-01

    The prognosis of colorectal cancer (CRC) stage II and III patients remains a challenge due to the difficulties of finding robust biomarkers suitable for testing clinical samples. The majority of published gene signatures of CRC have been generated on fresh frozen colorectal tissues. Because collection of frozen tissue is not practical for routine surgical pathology practice, a clinical test that improves prognostic capabilities beyond standard pathological staging of colon cancer will need to be designed for formalin-fixed paraffin-embedded (FFPE) tissues. The NanoString nCounter® platform is a gene expression analysis tool developed for use with FFPE-derived samples. We designed a custom nCounter® codeset based on elements from multiple published fresh frozen tissue microarray-based prognostic gene signatures for colon cancer, and we used this platform to systematically compare gene expression data from FFPE with matched microarray array data from frozen tissues. Our results show moderate correlation of gene expression between two platforms and discovery of a small subset of genes as candidate biomarkers for colon cancer prognosis that are detectable and quantifiable in FFPE tissue sections.

  19. Precision of Multiple Reaction Monitoring Mass Spectrometry Analysis of Formalin-Fixed, Paraffin-Embedded Tissue

    PubMed Central

    2012-01-01

    We compared the reproducibility of multiple reaction monitoring (MRM) mass spectrometry-based peptide quantitation in tryptic digests from formalin-fixed, paraffin-embedded (FFPE) and frozen clear cell renal cell carcinoma tissues. The analyses targeted a candidate set of 114 peptides previously identified in shotgun proteomic analyses, of which 104 were detectable in FFPE and frozen tissue. Although signal intensities for MRM of peptides from FFPE tissue were on average 66% of those in frozen tissue, median coefficients of variation (CV) for measurements in FFPE and frozen tissues were nearly identical (18–20%). Measurements of lysine C-terminal peptides and arginine C-terminal peptides from FFPE tissue were similarly reproducible (19.5% and 18.3% median CV, respectively). We further evaluated the precision of MRM-based quantitation by analysis of peptides from the Her2 receptor in FFPE and frozen tissues from a Her2 overexpressing mouse xenograft model of breast cancer and in human FFPE breast cancer specimens. We obtained equivalent MRM measurements of HER2 receptor levels in FFPE and frozen mouse xenografts derived from HER2-overexpressing BT474 cells and HER2-negative Sum159 cells. MRM analyses of 5 HER2-positive and 5 HER-negative human FFPE breast tumors confirmed the results of immunohistochemical analyses, thus demonstrating the feasibility of HER2 protein quantification in FFPE tissue specimens. The data demonstrate that MRM analyses can be performed with equal precision on FFPE and frozen tissues and that lysine-containing peptides can be selected for quantitative comparisons, despite the greater impact of formalin fixation on lysine residues. The data further illustrate the feasibility of applying MRM to quantify clinically important tissue biomarkers in FFPE specimens. PMID:22530795

  20. Systematic comparison of two whole-genome amplification methods for targeted next-generation sequencing using frozen and FFPE normal and cancer tissues.

    PubMed

    Mendez, Pedro; Fang, Li Tai; Jablons, David M; Kim, Il-Jin

    2017-06-22

    Sequencing key cancer-driver genes using formalin-fixed, paraffin-embedded (FFPE) cancer tissues is becoming the standard for identifying the best treatment regimen. However, about 25% of all samples are rejected for genetic analyses for reasons that include too little tissue to extract enough high quality DNA. One way to overcome this is to do whole-genome amplification (WGA) in clinical samples, but only limited studies have tested different WGA methods in FFPE cancer specimens using targeted next-generation sequencing (NGS). We therefore tested the two most commonly used WGA methods, multiple displacement amplification (MDA-Qiagen REPLI-g kit) and the hybrid or modified PCR-based method (Sigma/Rubicon Genomics Inc. GenomePlex kit) in FFPE normal and tumor tissue specimens. For the normalized copy number analysis, the FFPE process caused none or very minimal bias. Variations in copy number were minimal in samples amplified using the GenomePlex kit, but they were statistically significantly higher in samples amplified using the REPLI-g kit. The pattern was similar for variant allele frequencies across the samples, which was minimal for the GenomePlex kit but highly variable for the REPLI-g kit. These findings suggest that each WGA method should be tested thoroughly before using it for clinical cancer samples.

  1. miRNA expression profiling of formalin-fixed paraffin-embedded (FFPE) hereditary breast tumors

    PubMed Central

    Tanić, Miljana; Yanowski, Kira; Andrés, Eduardo; Gómez-López, Gonzalo; Socorro, María Rodríguez-Pinilla; Pisano, David G.; Martinez-Delgado, Beatriz; Benítez, Javier

    2014-01-01

    Hereditary breast cancer constitutes only 5–10% of all breast cancer cases and is characterized by strong family history of breast and/or other associated cancer types. Only ~ 25% of hereditary breast cancer cases carry a mutation in BRCA1 or BRCA2 gene, while mutations in other rare high and moderate-risk genes and common low penetrance variants may account for additional 20% of the cases. Thus the majority of cases are still unaccounted for and designated as BRCAX tumors. MicroRNAs are small non-coding RNAs that play important roles as regulators of gene expression and are deregulated in cancer. To characterize hereditary breast tumors based on their miRNA expression profiles we performed global microarray miRNA expression profiling on a retrospective cohort of 80 FFPE breast tissues, including 66 hereditary breast tumors (13 BRCA1, 10 BRCA2 and 43 BRCAX), 10 sporadic breast carcinomas and 4 normal breast tissues, using Exiqon miRCURY LNA™ microRNA Array v.11.0. Here we describe in detail the miRNA microarray expression data and tumor samples used for the study of BRCAX tumor heterogeneity (Tanic et al., 2013) and biomarkers associated with positive BRCA1/2 mutation status (Tanic et al., 2014). Additionally, we provide the R code for data preprocessing and quality control. PMID:26484152

  2. Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry.

    PubMed

    Shi, Shan-Rong; Liu, Cheng; Balgley, Brian M; Lee, Cheng; Taylor, Clive R

    2006-06-01

    A satisfactory protocol of protein extraction has been established based on the heat-induced antigen retrieval (AR) technique widely applied in immunohistochemistry for archival formalin-fixed, paraffin-embedded (FFPE) tissue sections. Based on AR, an initial serial experiment to identify an optimal protocol of heat-induced protein extraction was carried out using FFPE mouse tissues. The optimal protocol for extraction of proteins was then performed on an archival FFPE tissue of human renal carcinoma. FFPE sections were boiled in a retrieval solution of Tris-HCl containing 2% SDS, followed by incubation. Fresh tissue taken from the same case of renal carcinoma was processed for extraction of proteins by a conventional method using radioimmunoprecipitation assay solution, to compare the efficiency of protein extraction from FFPE tissue sections with extraction from fresh tissue. As a control, further sections of the same FFPE sample were processed by the same procedure without heating treatment. Evaluation of the quality of protein extracted from FFPE tissue was done using gel electrophoresis and mass spectrometry, showing most identified proteins extracted from FFPE tissue sections were overlapped with those extracted from fresh tissue.

  3. Proteomic analysis of formalin-fixed paraffin embedded tissue by MALDI imaging mass spectrometry

    PubMed Central

    Casadonte, Rita; Caprioli, Richard M

    2012-01-01

    Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE -TMAs using matrix-assisted laser desorption/ionization (MAL DI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE -TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis. PMID:22011652

  4. Archived formalin-fixed paraffin-embedded (FFPE) blocks: A valuable underexploited resource for extraction of DNA, RNA, and protein.

    PubMed

    Kokkat, Theresa J; Patel, Miral S; McGarvey, Diane; LiVolsi, Virginia A; Baloch, Zubair W

    2013-04-01

    Formalin-fixed paraffin-embedded (FFPE) material presents a readily available resource in the study of various biomarkers. There has been interest in whether the storage period has significant effect on the extracted macromolecules. Thus, in this study, we investigated if the storage period had an effect on the quantity/quality of the extracted nucleic acids and proteins. We systematically examined the quality/quantity of genomic DNA, total RNA, and total protein in the FFPE blocks of malignant tumors of lung, thyroid, and salivary gland that had been stored over several years. We show that there is no significant difference between macromolecules extracted from blocks stored over 11-12 years, 5-7 years, or 1-2 years in comparison to the current year blocks.

  5. Archived Formalin-Fixed Paraffin-Embedded (FFPE) Blocks: A Valuable Underexploited Resource for Extraction of DNA, RNA, and Protein

    PubMed Central

    Patel, Miral S.; McGarvey, Diane; LiVolsi, Virginia A.; Baloch, Zubair W.

    2013-01-01

    Formalin-fixed paraffin-embedded (FFPE) material presents a readily available resource in the study of various biomarkers. There has been interest in whether the storage period has significant effect on the extracted macromolecules. Thus, in this study, we investigated if the storage period had an effect on the quantity/quality of the extracted nucleic acids and proteins. We systematically examined the quality/quantity of genomic DNA, total RNA, and total protein in the FFPE blocks of malignant tumors of lung, thyroid, and salivary gland that had been stored over several years. We show that there is no significant difference between macromolecules extracted from blocks stored over 11–12 years, 5–7 years, or 1–2 years in comparison to the current year blocks. PMID:24845430

  6. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    PubMed

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  7. Next-Generation Sequencing of RNA and DNA Isolated from Paired Fresh-Frozen and Formalin-Fixed Paraffin-Embedded Samples of Human Cancer and Normal Tissue

    PubMed Central

    Hedegaard, Jakob; Thorsen, Kasper; Lund, Mette Katrine; Hein, Anne-Mette K.; Hamilton-Dutoit, Stephen Jacques; Vang, Søren; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Kruhøffer, Mogens; Hager, Henrik; Knudsen, Bjarne; Andersen, Claus Lindbjerg; Sørensen, Karina Dalsgaard; Pedersen, Jakob Skou; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2014-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for clinical research. However, nucleic acids extracted from FFPE tissues are fragmented and chemically modified making them challenging to use in molecular studies. We analysed 23 fresh-frozen (FF), 35 FFPE and 38 paired FF/FFPE specimens, representing six different human tissue types (bladder, prostate and colon carcinoma; liver and colon normal tissue; reactive tonsil) in order to examine the potential use of FFPE samples in next-generation sequencing (NGS) based retrospective and prospective clinical studies. Two methods for DNA and three methods for RNA extraction from FFPE tissues were compared and were found to affect nucleic acid quantity and quality. DNA and RNA from selected FFPE and paired FF/FFPE specimens were used for exome and transcriptome analysis. Preparations of DNA Exome-Seq libraries was more challenging (29.5% success) than that of RNA-Seq libraries, presumably because of modifications to FFPE tissue-derived DNA. Libraries could still be prepared from RNA isolated from two-decade old FFPE tissues. Data were analysed using the CLC Bio Genomics Workbench and revealed systematic differences between FF and FFPE tissue-derived nucleic acid libraries. In spite of this, pairwise analysis of DNA Exome-Seq data showed concordance for 70–80% of variants in FF and FFPE samples stored for fewer than three years. RNA-Seq data showed high correlation of expression profiles in FF/FFPE pairs (Pearson Correlations of 0.90 +/- 0.05), irrespective of storage time (up to 244 months) and tissue type. A common set of 1,494 genes was identified with expression profiles that were significantly different between paired FF and FFPE samples irrespective of tissue type. Our results are promising and suggest that NGS can be used to study FFPE specimens in both prospective and retrospective archive-based studies in which FF specimens are not available. PMID:24878701

  8. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue.

    PubMed

    Hedegaard, Jakob; Thorsen, Kasper; Lund, Mette Katrine; Hein, Anne-Mette K; Hamilton-Dutoit, Stephen Jacques; Vang, Søren; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Kruhøffer, Mogens; Hager, Henrik; Knudsen, Bjarne; Andersen, Claus Lindbjerg; Sørensen, Karina Dalsgaard; Pedersen, Jakob Skou; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2014-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable resource for clinical research. However, nucleic acids extracted from FFPE tissues are fragmented and chemically modified making them challenging to use in molecular studies. We analysed 23 fresh-frozen (FF), 35 FFPE and 38 paired FF/FFPE specimens, representing six different human tissue types (bladder, prostate and colon carcinoma; liver and colon normal tissue; reactive tonsil) in order to examine the potential use of FFPE samples in next-generation sequencing (NGS) based retrospective and prospective clinical studies. Two methods for DNA and three methods for RNA extraction from FFPE tissues were compared and were found to affect nucleic acid quantity and quality. DNA and RNA from selected FFPE and paired FF/FFPE specimens were used for exome and transcriptome analysis. Preparations of DNA Exome-Seq libraries was more challenging (29.5% success) than that of RNA-Seq libraries, presumably because of modifications to FFPE tissue-derived DNA. Libraries could still be prepared from RNA isolated from two-decade old FFPE tissues. Data were analysed using the CLC Bio Genomics Workbench and revealed systematic differences between FF and FFPE tissue-derived nucleic acid libraries. In spite of this, pairwise analysis of DNA Exome-Seq data showed concordance for 70-80% of variants in FF and FFPE samples stored for fewer than three years. RNA-Seq data showed high correlation of expression profiles in FF/FFPE pairs (Pearson Correlations of 0.90 +/- 0.05), irrespective of storage time (up to 244 months) and tissue type. A common set of 1,494 genes was identified with expression profiles that were significantly different between paired FF and FFPE samples irrespective of tissue type. Our results are promising and suggest that NGS can be used to study FFPE specimens in both prospective and retrospective archive-based studies in which FF specimens are not available.

  9. Fluorescence in situ hybridization analysis of formalin fixed paraffin embedded tissues, including tissue microarrays.

    PubMed

    Summersgill, Brenda M; Shipley, Janet M

    2010-01-01

    Formalin fixed paraffin embedded (FFPE) material is frequently the most convenient readily available source of diseased tissue, including tumors. Multiple cores of FFPE material are being used increasingly to construct tissue microarrays (TMAs) that enable simultaneous analyses of many archival samples. Fluorescence in situ hybridization (FISH) is an important approach to analyze FFPE material for specific genetic aberrations that may be associated with tumor types or subtypes, cellular morphology, and disease prognosis. Annealing, or hybridization of labeled nucleic acid sequences, or probes, to detect and locate one or more complementary nucleic acid sequences within fixed tissue sections allows the detection of structural (translocation/inversion) and numerical (deletion/gain) aberrations and their localization within tissues. The robust protocols described include probe preparation, hybridization, and detection and take 2-3 days to complete. A protocol is also described for the stripping of probes for repeat FISH in order to maximize the use of scarce tissue resources.

  10. The effects of age-in-block on RNA-seq analysis of archival formalin-fixed paraffin-embedded (FFPE) samples

    EPA Science Inventory

    Archival samples represent a vast resource for identification of chemical and pharmaceutical targets. Previous use of formalin-fixed paraffin-embedded (FFPE) samples has been limited due to changes in RNA introduced by fixation and embedding procedures. Recent advances in RNA-seq...

  11. The effects of age-in-block on RNA-seq analysis of archival formalin-fixed paraffin-embedded (FFPE) samples

    EPA Science Inventory

    Archival samples represent a vast resource for identification of chemical and pharmaceutical targets. Previous use of formalin-fixed paraffin-embedded (FFPE) samples has been limited due to changes in RNA introduced by fixation and embedding procedures. Recent advances in RNA-seq...

  12. Performance Evaluation of Kits for Bisulfite-Conversion of DNA from Tissues, Cell Lines, FFPE Tissues, Aspirates, Lavages, Effusions, Plasma, Serum, and Urine

    PubMed Central

    Meller, Sebastian; Leisse, Annette; Sailer, Verena; Zech, Julie; Mengdehl, Martina; Garbe, Leif-Alexander; Uhl, Barbara; Dietrich, Dimo

    2014-01-01

    DNA methylation analyses usually require a preceding bisulfite conversion of the DNA. The choice of an appropriate kit for a specific application should be based on the specific performance requirements with regard to the respective sample material. In this study, the performance of nine kits was evaluated: EpiTect Fast FFPE Bisulfite Kit, EpiTect Bisulfite Kit, EpiTect Fast DNA Bisulfite Kit (Qiagen), EZ DNA Methylation-Gold Kit, EZ DNA Methylation-Direct Kit, EZ DNA Methylation-Lightning Kit (Zymo Research), innuCONVERT Bisulfite All-In-One Kit, innuCONVERT Bisulfite Basic Kit, innuCONVERT Bisulfite Body Fluids Kit (Analytik Jena). The kit performance was compared with regard to DNA yield, DNA degradation, DNA purity, conversion efficiency, stability and handling using qPCR, UV, clone sequencing, HPLC, and agarose gel electrophoresis. All kits yielded highly pure DNA suitable for PCR analyses without PCR inhibition. Significantly higher yields were obtained when using the EZ DNA Methylation-Gold Kit and the innuCONVERT Bisulfite kits. Conversion efficiency ranged from 98.7% (EpiTect Bisulfite Kit) to 99.9% (EZ DNA Methylation-Direct Kit). The inappropriate conversion of methylated cytosines to thymines varied between 0.9% (innuCONVERT Bisulfite kits) and 2.7% (EZ DNA Methylation-Direct Kit). Time-to-result ranged from 131 min (innuCONVERT kits) to 402 min (EpiTect Bisulfite Kit). Hands-on-time was between 66 min (EZ DNA Methylation-Lightning Kit) and 104 min (EpiTect Fast FFPE and Fast DNA Bisulfite kits). Highest yields from formalin-fixed and paraffin-embedded (FFPE) tissue sections without prior extraction were obtained using the innuCONVERT Bisulfite All-In-One Kit while the EZ DNA Methylation-Direct Kit yielded DNA with only low PCR-amplifiability. The innuCONVERT Bisulfite All-In-One Kit exhibited the highest versatility regarding different input sample materials (extracted DNA, tissue, FFPE tissue, cell lines, urine sediment, and cellular fractions of

  13. Multiple immunofluorescence labeling of formalin-fixed paraffin-embedded tissue.

    PubMed

    Robertson, David; Isacke, Clare M

    2011-01-01

    Multiple immunofluorescent labeling of formalin-fixed paraffin-embedded (FFPE) tissue is not a routinely used method. At least in part, this is due to the perception that the innate autofluorescence of the FFPE material forbids the use of immunofluorescent labeling. As a result, immunohistochemical (immunoperoxidase) staining of FFPE material or cryosectioning methods is used instead. In this chapter, we describe a robust optimized method for high-resolution immunofluorescence labeling of FFPE tissue that involves the combination of antigen retrieval, indirect immunofluorescence, and confocal laser scanning microscopy. Once such samples have been prepared and imaged by confocal microscopy, they can be stored at -20°C for extensive periods (>250 days) and reexamined with minimal loss of quality. As a consequence, this method has the potential to open up the large archival sample collections to multiple immunofluorescent investigations.

  14. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue.

    PubMed

    Mittempergher, Lorenza; de Ronde, Jorma J; Nieuwland, Marja; Kerkhoven, Ron M; Simon, Iris; Rutgers, Emiel J Th; Wessels, Lodewyk F A; Van't Veer, Laura J

    2011-02-11

    Formalin Fixed Paraffin Embedded (FFPE) samples represent a valuable resource for cancer research. However, the discovery and development of new cancer biomarkers often requires fresh frozen (FF) samples. Recently, the Whole Genome (WG) DASL (cDNA-mediated Annealing, Selection, extension and Ligation) assay was specifically developed to profile FFPE tissue. However, a thorough comparison of data generated from FFPE RNA and Fresh Frozen (FF) RNA using this platform is lacking. To this end we profiled, in duplicate, 20 FFPE tissues and 20 matched FF tissues and evaluated the concordance of the DASL results from FFPE and matched FF material. We show that after proper normalization, all FFPE and FF pairs exhibit a high level of similarity (Pearson correlation >0.7), significantly larger than the similarity between non-paired samples. Interestingly, the probes showing the highest correlation had a higher percentage G/C content and were enriched for cell cycle genes. Predictions of gene expression signatures developed on frozen material (Intrinsic subtype, Genomic Grade Index, 70 gene signature) showed a high level of concordance between FFPE and FF matched pairs. Interestingly, predictions based on a 60 gene DASL list (best match with the 70 gene signature) showed very high concordance with the MammaPrint® results. We demonstrate that data generated from FFPE material with the DASL assay, if properly processed, are comparable to data extracted from the FF counterpart. Specifically, gene expression profiles for a known set of prognostic genes for a specific disease are highly comparable between two conditions. This opens up the possibility of using both FFPE and FF material in gene expressions analyses, leading to a vast increase in the potential resources available for cancer research.

  15. Early experience with formalin-fixed paraffin-embedded (FFPE) based commercial clinical genomic profiling of gliomas-robust and informative with caveats.

    PubMed

    Movassaghi, Masoud; Shabihkhani, Maryam; Hojat, Seyed A; Williams, Ryan R; Chung, Lawrance K; Im, Kyuseok; Lucey, Gregory M; Wei, Bowen; Mareninov, Sergey; Wang, Michael W; Ng, Denise W; Tashjian, Randy S; Magaki, Shino; Perez-Rosendahl, Mari; Yang, Isaac; Khanlou, Negar; Vinters, Harry V; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Cloughesy, Timothy F; Yong, William H

    2017-08-01

    Commercial targeted genomic profiling with next generation sequencing using formalin-fixed paraffin embedded (FFPE) tissue has recently entered into clinical use for diagnosis and for the guiding of therapy. However, there is limited independent data regarding the accuracy or robustness of commercial genomic profiling in gliomas. As part of patient care, FFPE samples of gliomas from 71 patients were submitted for targeted genomic profiling to one commonly used commercial vendor, Foundation Medicine. Genomic alterations were determined for the following grades or groups of gliomas; Grade I/II, Grade III, primary glioblastomas (GBMs), recurrent primary GBMs, and secondary GBMs. In addition, FFPE samples from the same patients were independently assessed with conventional methods such as immunohistochemistry (IHC), Quantitative real-time PCR (qRT-PCR), or Fluorescence in situ hybridization (FISH) for three genetic alterations: IDH1 mutations, EGFR amplification, and EGFRvIII expression. A total of 100 altered genes were detected by the aforementioned targeted genomic profiling assay. The number of different genomic alterations was significantly different between the five groups of gliomas and consistent with the literature. CDKN2A/B, TP53, and TERT were the most common genomic alterations seen in primary GBMs, whereas IDH1, TP53, and PIK3CA were the most common in secondary GBMs. Targeted genomic profiling demonstrated 92.3%-100% concordance with conventional methods. The targeted genomic profiling report provided an average of 5.5 drugs, and listed an average of 8.4 clinical trials for the 71 glioma patients studied but only a third of the trials were appropriate for glioma patients. In this limited comparison study, this commercial next generation sequencing based-targeted genomic profiling showed a high concordance rate with conventional methods for the 3 genetic alterations and identified mutations expected for the type of glioma. While it may not be feasible to

  16. Use of formalin-fixed, paraffin-embedded tissue for proteomic biomarker discovery.

    PubMed

    Krizman, David B; Burrows, Jon

    2013-01-01

    Application of mass spectrometry to proteomic analysis of tissue is a highly desirable approach to discovery of disease biomarkers due to a direct correlation of findings to tissue/disease histology and in many respects obviating the need for model systems of disease. Both frozen and formalin-fixed, paraffin-embedded (FFPE) tissue can be interrogated; however, worldwide access to vastly larger numbers of highly characterized FFPE tissue collections derived from both human and model organisms makes this form of tissue more advantageous. Here, an approach to large-scale, global proteomic analysis of FFPE tissue is described that can be employed to discover differentially expressed proteins between different histological tissue types and thus discover novel protein biomarkers of disease.

  17. Rates of MAGE-A3 and PRAME expressing tumors in FFPE tissue specimens from bladder cancer patients: potential targets for antigen-specific cancer immunotherapeutics

    PubMed Central

    Lerut, Evelyne; Van Poppel, Hendrik; Joniau, Steven; Gruselle, Olivier; Coche, Thierry; Therasse, Patrick

    2015-01-01

    Introduction: Antigen-specific active immunotherapy is an investigational therapeutic approach of potential interest for bladder cancer regardless of disease stage. Clinical development of antigen-specific immunotherapeutics against bladder cancer must be preceded by assessment of the expression of relevant genes in bladder tumors. The objectives of this study (NCT01706185) were to assess the rate of expression of the MAGE-A3 and PRAME genes in bladder tumors and to investigate the feasibility of using formalin-fixed paraffin-embedded (FFPE) tumor tissues for testing. Materials and methods: Archived FFPE bladder tumor specimens (any stage) were tested for mRNA expression of MAGE-A3 and PRAME using antigen-specific quantitative reverse transcription polymerase chain reaction assays. Data on patients and tumor characteristics were obtained from hospital records to investigate these characteristics’ possible association with the antigen expression. Results: Over 92% of the 156 tumors examined gave valid antigen test results. Of the tumors with a valid test, 46.5% were MAGE-A3-positive, 32.2% were PRAME-positive and 59.7% positive for at least one of them. Exploratory analyses of possible associations between antigen expression and patient or tumor characteristics did not identify clear associations between antigen expression and any of the variables investigated. Conclusions: Assessment of tumor antigen mRNA expression by using FFPE bladder tissues was feasible. The rates of MAGE-A3-positive and PRAME-positive tumors indicate that both antigens may be interesting targets for immunotherapeutics against bladder cancer. PMID:26464715

  18. Quantitative assessment of short amplicons in FFPE-derived long-chain RNA

    PubMed Central

    Kong, Hui; Zhu, Mengou; Cui, Fengyun; Wang, Shuyang; Gao, Xue; Lu, Shaohua; Wu, Ying; Zhu, Hongguang

    2014-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissues are important resources for molecular medical research. However, long-chain RNA analysis is restricted in FFPE tissues due to high levels of degradation. To explore the possibility of long RNA quantification in FFPE tissues, we selected 14 target RNAs (8 mRNAs and 6 long noncoding RNAs) from literatures, and designed short (~60 bp) and long (~200 bp) amplicons for each of them. Colorectal carcinomas with adjacent normal tissues were subjected to quantitative reverse-transcription PCR (quantitative RT-PCR) in 3 cohorts, including 18 snap-frozen and 83 FFPE tissues. We found that short amplicons were amplified more efficiently than long amplicons both in snap-frozen (P = 0.0006) and FFPE (P = 0.0152) tissues. Nonetheless, comparison of colorectal carcinomas with their adjacent normal tissues demonstrated that the consistency of fold-change trends in a single short amplicon between snap-frozen and FFPE tissues was only 36%. Therefore, we innovatively performed quantitative RT-PCR with 3 non-overlapping short amplicons for 14 target RNAs in FFPE tissues. All target RNAs showed a concordance of 100% of fold-change trends in at least two short amplicons, which offers sufficient information for accurate quantification of target RNAs. Our findings demonstrated the possibility of long-chain RNA analysis with 3 non-overlapping short amplicons in standardized-preserved FFPE tissues. PMID:25430878

  19. High miR-21 expression from FFPE tissues is associated with poor survival and response to adjuvant chemotherapy in colon cancer.

    PubMed

    Oue, Naohide; Anami, Katsuhiro; Schetter, Aaron J; Moehler, Markus; Okayama, Hirokazu; Khan, Mohammed A; Bowman, Elise D; Mueller, Annett; Schad, Arno; Shimomura, Manabu; Hinoi, Takao; Aoyagi, Kazuhiko; Sasaki, Hiroki; Okajima, Masazumi; Ohdan, Hideki; Galle, Peter R; Yasui, Wataru; Harris, Curtis C

    2014-04-15

    Colon cancer (CC) is a leading cause of cancer mortality. Novel biomarkers are needed to identify CC patients at high risk of recurrence and those who may benefit from therapeutic intervention. The aim of this study is to investigate if miR-21 expression from RNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue sections is associated with prognosis and therapeutic outcome for patients with CC. The expression of miR-21 was measured by quantitative reverse transcriptase-polymerase chain reaction in a Japanese cohort (stage I-IV, n = 156) and a German cohort (stage II, n = 145). High miR-21 expression in tumors was associated with poor survival in both the stage II/III Japanese (p = 0.0008) and stage II German (p = 0.047) cohorts. These associations were independent of other clinical covariates in multivariable models. Receipt of adjuvant chemotherapy was not beneficial in patients with high miR-21 in either cohort. In the Japanese cohort, high miR-21 expression was significantly associated with poor therapeutic outcome (p = 0.0001) and adjuvant therapy was associated with improved survival in patients with low miR-21 (p = 0.001). These results suggest that miR-21 is a promising biomarker to identify patients with poor prognosis and can be accurately measured in FFPE tissues. The expression of miR-21 may also identify patients who will benefit from adjuvant chemotherapy.

  20. Quantification of DNA Extracted from Formalin Fixed Paraffin-Embeded Tissue Comparison of Three Techniques: Effect on PCR Efficiency

    PubMed Central

    Panigrahi, Manoj Kumar; Suryavanshi, Moushumi; Mehta, Anurag; Saikia, Kandarpa Kumar

    2016-01-01

    Introduction Mutation detection from Formalin Fixed Paraffin-Embedding (FFPE) tissue in molecular lab became a necessary tool for defining potential targeted drug. Accurate quantification of DNA extracted from FFPE tissue is necessary for downstream applications like Polymerase Chain Reaction (PCR), sequencing etc. Aim To check and define which method for FFPE DNA quantification is suitable for downstream processes. Materials and Methods In this experimental experience study Biorad Smartspec Plus spectrophotomery, Qubit Fluorometer, and Qiagen Rotorgene qPCR was used to compare 20 FFPE DNA quantification in Rajiv Gandhi Cancer Institute and Research Centre, in 2015 and quantified amount of DNA used for PCR reaction. Results The average concentration of DNA extracted from FFPE tissue measured using the spectrophotometer was much higher than the concentration measured using the Qubit Fluorometer and qPCR. Conclusion Results varied depending upon the technique used. A fluorometric analysis may be more suitable for quantification of DNA samples extracted from FFPE tissue compared with spectrophotometric analysis. But qPCR is the best technique because it details DNA quantity along with quality of amplifiable DNA from FFPE tissue. PMID:27790419

  1. Determining protein biomarkers for DLBCL using FFPE tissues from HIV negative and HIV positive patients.

    PubMed

    Magangane, Pumza; Sookhayi, Raveendra; Govender, Dhirendra; Naidoo, Richard

    2016-12-01

    DLBCL is the most common lymphoma subtype occurring in older populations as well as in younger HIV infected patients. The current treatment options for DLBCL are effective for most patients yet the relapse rate is high. While many biomarkers for DLBCL exist, they are not in clinical use due to low sensitivity and specificity. In addition, these biomarkers have not been studied in the HIV context. Therefore, the identification of new biomarkers for HIV negative and HIV positive DLBCL, may lead to a better understanding of the disease pathology and better therapeutic design. Protein biomarkers for DLBCL were determined using MALDI imaging mass spectrometry (IMS) and characterised using LC-MS. The expression of one of the biomarkers, heat shock protein (Hsp) 70, was confirmed on a separate cohort of samples using immunohistochemistry. The biomarkers identified in the study consisted of four protein clusters including glycolytic enzymes, ribosomal proteins, histones and collagen. These proteins could differentiate between control and tumour tissue, and the DLBCL immunohistochemical subtypes in both cohorts. The majority (41/52) of samples in the confirmation cohort were negative for Hsp70 expression. The HIV positive DLBCL cases had a higher percentage of cases expressing Hsp70 than their HIV negative counterparts. The non-GC subtype also frequently overexpressed Hsp70, confirming MALDI IMS data. The expression of Hsp70 did not correlate with survival in both the HIV negative and HIV positive cohort. This study identified potential biomarkers for HIV negative and HIV positive DLBCL from FFPE tissue sections. These may be used as diagnostic and prognostic markers complementary to current clinical management programmes for DLBCL.

  2. Comparison of Accuracy of Whole-Exome Sequencing with Formalin-Fixed Paraffin-Embedded and Fresh Frozen Tissue Samples

    PubMed Central

    Kwon, Mi Jeong; Kim, Ryong Nam; Kim, Yu Jin; Song, Ji-Young; Jung, Kyung Soo; Shin, Young Kee

    2015-01-01

    Formalin fixing with paraffin embedding (FFPE) has been a standard sample preparation method for decades, and archival FFPE samples are still very useful resources. Nonetheless, the use of FFPE samples in cancer genome analysis using next-generation sequencing, which is a powerful technique for the identification of genomic alterations at the nucleotide level, has been challenging due to poor DNA quality and artificial sequence alterations. In this study, we performed whole-exome sequencing of matched frozen samples and FFPE samples of tissues from 4 cancer patients and compared the next-generation sequencing data obtained from these samples. The major differences between data obtained from the 2 types of sample were the shorter insert size and artificial base alterations in the FFPE samples. A high proportion of short inserts in the FFPE samples resulted in overlapping paired reads, which could lead to overestimation of certain variants; >20% of the inserts in the FFPE samples were double sequenced. A large number of soft clipped reads was found in the sequencing data of the FFPE samples, and about 30% of total bases were soft clipped. The artificial base alterations, C>T and G>A, were observed in FFPE samples only, and the alteration rate ranged from 200 to 1,200 per 1M bases when sequencing errors were removed. Although high-confidence mutation calls in the FFPE samples were compatible to that in the frozen samples, caution should be exercised in terms of the artifacts, especially for low-confidence calls. Despite the clearly observed artifacts, archival FFPE samples can be a good resource for discovery or validation of biomarkers in cancer research based on whole-exome sequencing. PMID:26641479

  3. Virus characterization and discovery in formalin-fixed paraffin-embedded tissues.

    PubMed

    Bodewes, Rogier; van Run, Peter R W A; Schürch, Anita C; Koopmans, Marion P G; Osterhaus, Albert D M E; Baumgärtner, Wolfgang; Kuiken, Thijs; Smits, Saskia L

    2015-03-01

    Detection and characterization of novel viruses is hampered frequently by the lack of properly stored materials. Especially for the retrospective identification of viruses responsible for past disease outbreaks, often only formalin-fixed paraffin-embedded (FFPE) tissue samples are available. Although FFPE tissues can be used to detect known viral sequences, the application of FFPE tissues for detection of novel viruses is currently unclear. In the present study it was shown that sequence-independent amplification in combination with next-generation sequencing can be used to detect sequences of known and unknown viruses, although with relatively low sensitivity. These findings indicate that this technique could be useful for detecting novel viral sequences in FFPE tissues collected from humans and animals with disease of unknown origin, when other samples are not available. In addition, application of this method to FFPE tissues allows to correlate with the presence of histopathological changes in the corresponding tissue sections. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue.

    PubMed

    Ly, Alice; Buck, Achim; Balluff, Benjamin; Sun, Na; Gorzolka, Karin; Feuchtinger, Annette; Janssen, Klaus-Peter; Kuppen, Peter J K; van de Velde, Cornelis J H; Weirich, Gregor; Erlmeier, Franziska; Langer, Rupert; Aubele, Michaela; Zitzelsberger, Horst; McDonnell, Liam; Aichler, Michaela; Walch, Axel

    2016-08-01

    Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.

  5. The paraffin-embedded RNA metric (PERM) for RNA isolated from formalin-fixed, paraffin-embedded tissue.

    PubMed

    Chung, Joon-Yong; Cho, Hanbyoul; Hewitt, Stephen M

    2016-01-01

    RNA isolated from formalin-fixed, paraffin-embedded (FFPE) tissue is commonly evaluated in both investigative and diagnostic pathology. However, the quality of the data is directly impacted by RNA quality. The RNA integrity number (RIN), an algorithm based on a combination of electrophoretic features, is widely applied to RNA isolated from paraffin-embedded tissue, but it is a poor indicator of the quality of that RNA. Here we describe the novel paraffin-embedded RNA metric (PERM) for quantifying the quality of RNA from FFPE tissue. The PERM is based on a formula that approximates a weighted area-under-the-curve analysis of an electropherogram of the extracted RNA. Using biochemically degraded RNAs prepared from experimentally fixed mouse kidney specimens, we demonstrate that PERM values correlate with mRNA transcript measurements determined using the QuantiGene system. Furthermore, PERM values correlate with real-time PCR data. Our results demonstrate that the PERM can be used to qualify RNA for different end-point studies and may be a valuable tool for molecular studies using RNA extracted from FFPE tissue.

  6. Comparison of eight commercially available kits for DNA extraction from formalin-fixed paraffin-embedded tissues.

    PubMed

    Janecka, Anna; Adamczyk, Agnieszka; Gasińska, Anna

    2015-05-01

    A proper extraction method from formalin-fixed paraffin-embedded (FFPE) blocks is essential to obtain DNA of satisfactory quality/quantity. We compared the effectiveness of eight commercially available kits for DNA extraction based on 10 FFPE tissues. Kits differed significantly in terms of DNA yield, purity, and quality. Using the QIAamp DNA FFPE Tissue Kit (Qiagen) and the ReliaPrep FFPE gDNA Miniprep System (Promega), we obtained DNA of the highest quality and acceptable quantity. We also demonstrated that overnight digestion of samples usually improved DNA yield and/or purity. For precious or limited material, double elution is recommended for obtaining up to 42% higher amount of DNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. High-resolution copy number profiling by array CGH using DNA isolated from formalin-fixed, paraffin-embedded tissues.

    PubMed

    van Essen, Hendrik F; Ylstra, Bauke

    2012-01-01

    We describe protocols to acquire high-quality DNA from formalin-fixed, paraffin-embedded (FFPE) tissues for the use in array comparative genome hybridization (CGH). Formalin fixation combined with paraffin embedding is routine procedure for solid malignancies in the diagnostic practice of the pathologist. As a consequence, large archives of FFPE tissues are available in pathology institutes across the globe. This archival material is for many research questions an invaluable resource, with long-term clinical follow-up and survival data available. FFPE is, thus, highly attractive for large genomics studies, including experiments requiring samples for test/learning and validation. Most larger array CGH studies have, therefore, made use of FFPE material and show that CNAs have tumor- and tissue-specific traits (Chin et al. Cancer Cell 10: 529-541, 2006; Fridlyand et al. BMC Cancer 6: 96, 2006; Weiss et al. Oncogene 22: 1872-1879, 2003; Jong et al. Oncogene 26: 1499-1506, 2007). The protocols described are tailored to array CGH of FFPE solid malignancies: from sectioning FFPE blocks to specific cynosures for pathological revisions of sections, DNA isolation, quality testing, and amplification. The protocols are technical in character and elaborate up to the labeling of isolated DNA while further processes and interpretation and data analysis are beyond the scope.

  8. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    SciTech Connect

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  9. Optimization of gene expression microarray protocol for formalin-fixed paraffin-embedded tissues

    PubMed Central

    Belder, Nevin; Coşkun, Öznur; Erdoğan, Beyza Doğanay; Savaş, Berna; Ensari, Arzu; Özdağ, Hilal

    2016-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is a widely available clinical specimen for retrospective studies. The possibility of long-term clinical follow-up of FFPE samples makes them a valuable source to evaluate links between molecular and clinical information. Working with FFPE samples in the molecular research area, especially using high-throughput molecular techniques such as microarray gene expression profiling, has come into prominence. Because of the harmful effects of formalin fixation process such as degradation of nucleic acids, cross-linking with proteins, and chemical modifications on DNA and RNA, there are some limitations in gene expression profiling studies using FFPE samples. To date many studies have been conducted to evaluate gene expression profiling using microarrays (Thomas et al., Thomas et al. (2013) [1]; Scicchitano et al., Scicchitano et al. (2006) [2]; Frank et al., Frank et al. (2007) [3]; Fedorowicz et al., Fedorowicz et al. (2009) [4]). However, there is still no generally accepted, efficient and standardized procedure for microarray analysis of FFPE samples. This paper describes the microarray data presented in our recently accepted to be published article showing a standard protocol from deparaffinization of FFPE tissue sections and RNA extraction to microarray gene expression analysis. Here we represent our data in detail, deposited in the gene expression omnibus (GEO) database with the accession number GSE73883. Four combinations of two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) were evaluated to determine which combination gives the best percentage of present call. The study presents a dataset for comparative analysis which has a potential in terms of providing a robust protocol for gene expression profiling with FFPE tissue samples. PMID:26981433

  10. Optimization of gene expression microarray protocol for formalin-fixed paraffin-embedded tissues.

    PubMed

    Belder, Nevin; Coşkun, Öznur; Erdoğan, Beyza Doğanay; Savaş, Berna; Ensari, Arzu; Özdağ, Hilal

    2016-03-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is a widely available clinical specimen for retrospective studies. The possibility of long-term clinical follow-up of FFPE samples makes them a valuable source to evaluate links between molecular and clinical information. Working with FFPE samples in the molecular research area, especially using high-throughput molecular techniques such as microarray gene expression profiling, has come into prominence. Because of the harmful effects of formalin fixation process such as degradation of nucleic acids, cross-linking with proteins, and chemical modifications on DNA and RNA, there are some limitations in gene expression profiling studies using FFPE samples. To date many studies have been conducted to evaluate gene expression profiling using microarrays (Thomas et al., Thomas et al. (2013) [1]; Scicchitano et al., Scicchitano et al. (2006) [2]; Frank et al., Frank et al. (2007) [3]; Fedorowicz et al., Fedorowicz et al. (2009) [4]). However, there is still no generally accepted, efficient and standardized procedure for microarray analysis of FFPE samples. This paper describes the microarray data presented in our recently accepted to be published article showing a standard protocol from deparaffinization of FFPE tissue sections and RNA extraction to microarray gene expression analysis. Here we represent our data in detail, deposited in the gene expression omnibus (GEO) database with the accession number GSE73883. Four combinations of two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) were evaluated to determine which combination gives the best percentage of present call. The study presents a dataset for comparative analysis which has a potential in terms of providing a robust protocol for gene expression profiling with FFPE tissue samples.

  11. Applying a Real-Time PCR Assay for Histoplasma capsulatum to Clinically Relevant Formalin-Fixed Paraffin-Embedded Human Tissue

    PubMed Central

    Koepsell, Scott A.; Hinrichs, Steven H.

    2012-01-01

    A real-time PCR assay to detect Histoplasma capsulatum in formalin-fixed, paraffin-embedded (FFPE) tissue is described. The assay had an analytical sensitivity of 6 pg/μl of fungal DNA, analytical specificity of 100%, and clinical sensitivity of 88.9%. This proof-of-concept study may aid in the diagnosis of histoplasmosis from FFPE tissue. PMID:22855519

  12. Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain tissue.

    PubMed

    Drummond, Eleanor S; Nayak, Shruti; Ueberheide, Beatrix; Wisniewski, Thomas

    2015-10-21

    The vast majority of human tissue specimens are formalin-fixed, paraffin embedded (FFPE) archival samples, making this type of tissue a potential gold mine for medical research. It is now accepted that proteomics can be done using FFPE tissue and can generate similar results as snap-frozen tissue. However, the current methodology requires a large amount of starting protein, limiting the questions that can be answered in these types of proteomics studies and making cell-type specific proteomics studies difficult. Cell-type specific proteomics has the potential to greatly enhance understanding of cell functioning in both normal and disease states. Therefore, here we describe a new method that allows localized proteomics on individual cell populations isolated from FFPE tissue sections using laser capture microdissection. To demonstrate this technique we microdissected neurons from archived tissue blocks of the temporal cortex from patients with Alzheimer's disease. Using this method we identified over 400 proteins in microdissected neurons; on average 78% that were neuronal and 50% that were associated with Alzheimer's disease. Therefore, this technique is able to provide accurate and meaningful data and has great potential for any future study that wishes to perform localized proteomics using very small amounts of archived FFPE tissue.

  13. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples

    PubMed Central

    Esteve-Codina, Anna; Arpi, Oriol; Martinez-García, Maria; Pineda, Estela; Mallo, Mar; Gut, Marta; Carrato, Cristina; Rovira, Anna; Lopez, Raquel; Tortosa, Avelina; Dabad, Marc; Del Barco, Sonia; Heath, Simon; Bagué, Silvia; Ribalta, Teresa; Alameda, Francesc; de la Iglesia, Nuria

    2017-01-01

    The molecular classification of glioblastoma (GBM) based on gene expression might better explain outcome and response to treatment than clinical factors. Whole transcriptome sequencing using next-generation sequencing platforms is rapidly becoming accepted as a tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tissue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from FFPE tissues is usually degraded, which could hamper gene expression analysis. We compared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several quality-control measurements showed that RNA from FFPE samples was highly degraded but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding mutation analysis and subtype prediction were detected. Nevertheless, our results suggest that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be used in molecular studies of GBM if the RNA is sufficiently preserved. PMID:28122052

  14. Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues.

    PubMed

    Broeckx, Valérie; Boonen, Kurt; Pringels, Lentel; Sagaert, Xavier; Prenen, Hans; Landuyt, Bart; Schoofs, Liliane; Maes, Evelyne

    2016-02-01

    Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a potential valuable source of samples for clinical research. Since these specimens are banked in hospital archives, large cohorts of samples can be collected in short periods of time which can all be linked with a patients' clinical history. Therefore, the use of FFPE tissue in protein biomarker discovery studies gains interest. However, despite the growing number of FFPE proteome studies in the literature, there is a lack of a FFPE proteomics standard operating procedure (SOP). One of the challenging steps in the development of such a SOP is the ability to obtain an efficient and repeatable extraction of full length FFPE proteins. In this study, the protein extraction efficiency of eight protein extraction buffers is critically compared with GeLC-MS/MS (1D gel electrophoresis followed by in-gel digestion and LC-MS/MS). The data variation caused by using these extraction buffers was investigated since the variation is a very important aspect when using FFPE tissue as a source for biomarker detection. In addition, a qualitative comparison was made between the protein extraction efficiency and repeatability for FFPE tissue and fresh frozen tissue.

  15. DNA extraction from fresh-frozen and formalin-fixed, paraffin-embedded human brain tissue.

    PubMed

    Wang, Jian-Hua; Gouda-Vossos, Amany; Dzamko, Nicolas; Halliday, Glenda; Huang, Yue

    2013-10-01

    Both fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) human brain tissues are invaluable resources for molecular genetic studies of central nervous system diseases, especially neurodegenerative disorders. To identify the optimal method for DNA extraction from human brain tissue, we compared methods on differently-processed tissues. Fragments of LRRK2 and MAPT (257 bp and 483 bp/245 bp) were amplified for evaluation. We found that for FFPE samples, the success rate of DNA extraction was greater when using a commercial kit than a laboratory-based method (successful DNA extraction from 76% versus 33% of samples). PCR amplicon size and storage period were key factors influencing the success rate of DNA extraction from FFPE samples. In the fresh-frozen samples, the DNA extraction success rate was 100% using either a commercial kit (QIAamp DNA Micro) or a laboratory-based method (sample boiling in 0.1 mol/L NaOH, followed by proteinase K digestion, and then DNA extraction using Chelex-100) regardless of PCR amplicon length or tissue storage time. Although the present results demonstrate that PCR-amplifiable genomic DNA can be extracted from both fresh-frozen and FFPE samples, fresh brain tissue is recommended for DNA extraction in future neuropathological studies.

  16. Absolute Quantitation of Met Using Mass Spectrometry for Clinical Application: Assay Precision, Stability, and Correlation with MET Gene Amplification in FFPE Tumor Tissue

    PubMed Central

    Catenacci, Daniel V. T.; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B.; Cecchi, Fabiola; Bottaro, Donald P.; Karrison, Theodore; Veenstra, Timothy D.; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET

  17. Absolute quantitation of Met using mass spectrometry for clinical application: assay precision, stability, and correlation with MET gene amplification in FFPE tumor tissue.

    PubMed

    Catenacci, Daniel V T; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B; Cecchi, Fabiola; Bottaro, Donald P; Karrison, Theodore; Veenstra, Timothy D; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for 'high Met' expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69-1) and 100% specific (95% CI 0.92-1) for MET amplification. The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET tumors. These results demonstrate a novel clinical

  18. mTRAQ-based quantification of potential endometrial carcinoma biomarkers from archived formalin-fixed paraffin-embedded tissues.

    PubMed

    DeSouza, Leroi V; Krakovska, Olga; Darfler, Marlene M; Krizman, David B; Romaschin, Alexander D; Colgan, Terence J; Siu, K W Michael

    2010-09-01

    Formalin-fixed paraffin-embedded (FFPE) tissues are the primary and preferred medium for archiving patients' samples. Here we demonstrate relative quantifications of protein biomarkers in extracts of laser microdissected epithelial cells from FFPE endometrial carcinoma tissues versus those from normal proliferative endometria by means of targeted proteomic analyses using LC-multiple reaction monitoring (MRM) MS with MRM Tags for Relative and Absolute Quantitation (mTRAQ) labeling. Comparable results of differential expressions for pyruvate kinase isoform M2 (PK-M2) and polymeric Ig receptor were observed between analyses on laser microdissected epithelial cells from FFPE tissues and corresponding homogenates from frozen tissues of the same individuals that had previously been analyzed and reported. We also identified PK-M2 in the normal proliferative phase of the endometrium. Other biomarkers in addition to PK-M2 and polymeric Ig receptor were also observed but not consistently and/or were at levels below the threshold for quantification.

  19. Deparaffinization of formalin-fixed paraffin-embedded tissue blocks using hot water instead of xylene.

    PubMed

    Kalantari, Narges; Bayani, Masomeh; Ghaffari, Taraneh

    2016-08-15

    This study aimed to deparaffinize formalin-fixed paraffin-embedded (FFPE) tissues using hot water instead of xylene and measuring the quantity and quality of the extracted DNA from the respective tissues. To deparaffinize the tissue sections with hot water, small sections were exposed to 90 °C distilled sterile water. After 25 FFPE tissue samples were deparaffinized with the hot water method, DNA was then extracted. The mean of optical density and the ratio of absorbance of the DNA solution were 220.01 ± 36.1 ng/μl and 1.65 ± 0.1, respectively. Polymerase chain reaction (PCR) analysis of the toll-like receptor 4(TLR4) gene showed that the method can be used as a tool for different applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Integrated and convenient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for LC-MS/MS analysis.

    PubMed

    Lai, Xianyin; Schneider, Bryan P

    2014-11-01

    Because fresh-frozen tissue samples associated with long-term clinical data and of rare diseases are often unobtainable at the present time, formalin-fixed paraffin-embedded (FFPE) tissue samples are considered a highly valuable resource for researchers. However, protein extraction from FFPE tissues faces challenges of deparaffinization and cross-link reversion. Current procedures for protein extraction from FFPE tissue require separate steps and toxic solvents, resulting in inconvenience in protein extraction. To overcome these limitations, an integrated method was developed using nontoxic solvents in four types of FFPE tissues. The average amount of proteins from three replicates of bladder, kidney, liver, and lung FFPE tissues were 442.6, 728.9, 736.4, and 694.7 μg with CVs of 7.5, 5.8, 2.4, and 4.5%, respectively. Proteomic analysis showed that 348, 417, 607, and 304 unique proteins were identified and quantified without specification of isoform by a least two peptides from bladder, kidney, liver, and lung FFPE tissue samples, respectively. The analysis of individual protein CV demonstrated that 97-99% of the proteins were quantified with a CV ≤ 30%, verifying the reproducibility of the integrated protein extraction method. In summary, the developed method is high-yield, reproducible, convenient, simple, low cost, nonvolatile, nonflammable, and nontoxic.

  1. Identification of mRNAs and lincRNAs associated with lung cancer progression using next-generation RNA sequencing from laser micro-dissected archival FFPE tissue specimens.

    PubMed

    Morton, Matthew L; Bai, Xiaodong; Merry, Callie R; Linden, Philip A; Khalil, Ahmad M; Leidner, Rom S; Thompson, Cheryl L

    2014-07-01

    Adenocarcinoma in situ (AIS) is an intermediate step in the progression of normal lung tissue to invasive adenocarcinoma. However, molecular mechanisms underlying this progression remain to be fully elucidated due to challenges in obtaining fresh clinical samples for downstream analyses. Formalin fixation and paraffin embedding (FFPE) is a tissue preservation system widely used for long-term storage. Until recently, challenges in working with FFPE precluded using new RNA sequencing technologies (RNA-seq), which would help clarify key pathways in cancer progression. Also, isolation techniques including laser-capture micro-dissection provide the ability to select histopathologically distinct tissues, allowing researchers to study transcriptional variations between tightly juxtaposed cell and tissue types. Utilizing these technologies and new alignment tools we examined differential expression of long intergenic non-coding RNAs (lincRNAs) and mRNAs across normal, AIS and invasive adenocarcinoma samples from six patients to identify possible markers of lung cancer progression. RNA extracted and sequenced from these 18 samples generated an average of 198 million reads per sample. After alignment and filtering, uniquely aligned reads represented an average 35% of the total reads. We detected differential expression of a number of lincRNAs and mRNAs when comparing normal to AIS, or AIS to invasive adenocarcinoma. Of these, 5 lincRNAs and 31 mRNAs were consistently up- or down-regulated from normal to AIS and more so to invasive carcinoma. We validated the up-regulation of two mRNAs and one lincRNA by RT-qPCR as proof of principle. Our findings indicate a potential role of not only mRNAs, but also lincRNAs in the progression to invasive adenocarcinoma. We anticipate that these findings will lay the groundwork for future experimental studies of candidate RNAs from FFPE to identify their functional roles in lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights

  2. A Reliable Method for the Selection of Exploitable Melanoma Archival Paraffin Embedded Tissues for Transcript Biomarker Profiling

    PubMed Central

    Basset-Seguin, Nicole; Podgorniak, Marie Pierre; Menashi, Suzanne; Janin, Anne; Mourah, Samia

    2012-01-01

    The source tissue for biomarkers mRNA expression profiling of tumors has traditionally been fresh-frozen tissue. The adaptation of formalin-fixed, paraffin-embedded (FFPE) tissues for routine mRNA profiling would however be invaluable in view of their abundance and the clinical information related to them. However, their use in the clinic remains a challenge due to the poor quality of RNA extracted from such tissues. Here, we developed a method for the selection of melanoma archival paraffin-embedded tissues that can be reliably used for transcript biomarker profiling. For that, we used qRT-PCR to conduct a comparative study in matched pairs of frozen and FFPE melanoma tissues of the expression of 25 genes involved in angiogenesis/tumor invasion and 15 housekeeping genes. A classification method was developed that can select the samples with a good frozen/FFPE correlation and identify those that should be discarded on the basis of paraffin data for four reference genes only. We propose therefore a simple and inexpensive assay which improves reliability of mRNA profiling in FFPE samples by allowing the identification and analysis of “good” samples only. This assay which can be extended to other genes would however need validation at the clinical level and on independent tumor series. PMID:22272228

  3. Elevated Pressure Improves the Extraction and Identification of Proteins Recovered from Formalin-Fixed, Paraffin-Embedded Tissue Surrogates

    PubMed Central

    Fowler, Carol B.; Chesnick, Ingrid E.; Moore, Cedric D.; O'Leary, Timothy J.; Mason, Jeffrey T.

    2010-01-01

    Background Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing. Principal Findings In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates. Conclusions These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form

  4. Use of polymerase chain reaction in detection of Marek’s disease and reticuloendotheliosis viruses in formalin-fixed, paraffin-embedded tumorous tissues

    USDA-ARS?s Scientific Manuscript database

    A simple polymerase chain reaction (PCR) method was developed for the diagnosis of Marek’s disease (MD) and reticuloendotheliosis (RE) in formalin-fixed paraffin-embedded (FFPE) tissues; and for the diagnosis of MD in tissues only preserved in 10% neutral buffered formalin. MD virus (MDV) and RE vi...

  5. Use of Polymerase chain reaction (PCR) in diagnosis of Marek’s disease and reticuloendotheliosis in formalin-fixed, paraffin-embedded tumorous tissues

    USDA-ARS?s Scientific Manuscript database

    PCR was used in diagnosis of Marek’s disease (MD) and reticuloendotheliosis (RE) in formalin-fixed, paraffin-embedded (FFPE) tumorous tissues that have been stored for periods varied from 5-244 months. In another experiment, PCR was also used in diagnosis of MD in tumorous tissues that have been onl...

  6. Reliable quantification of mRNA in archived formalin-fixed tissue with or without paraffin embedding.

    PubMed

    Wang, Zhibin; Lebron, Jose A; Wolf, Jayanthi J

    2015-01-01

    Formalin fixation and paraffin embedding (FFPE) is a standard method for tissue sample storage and preservation in pathology archives. The Reverse Transcriptase Quantitative Polymerase Chain Reaction (RT-qPCR) is a useful method for gene expression analysis, but its sensitivity is significantly decreased in FFPE tissue due to the fixation process. This process results in chemical modifications of RNA, cross-links proteins to RNA, and degrades RNA in these archived samples, hindering the reverse transcription step of the conventional RT-pPCR method and preventing generation of a cDNA that is long enough for the subsequent quantitative PCR step. In this study, we used a multi-species RT-qPCR method originally developed to detect mRNA in tissue homogenate samples (Wang et al., 2011) and applied it to effectively detect a specific mRNA in formalin-fixed tissues with or without paraffin-embedding by targeting mRNA sequences as short as 24 nucleotides. Target sizes ranging from 24 to 91 nucleotides were evaluated using this multi-species RT-qPCR assay. Data generated with FFPE tissues demonstrated that use of short target sequences relieved the dependence on RNA quality and could reliably quantify mRNA. This method was highly sensitive, reproducible, and had a dynamic range of five orders of magnitude. Importantly, this method could quantify mRNA in prolonged formalin-fixed and FFPE tissue, where conventional RT-qPCR assays failed. Moreover, a similar result for small interfering RNA (siRNA)-mediated Apob mRNA knockdown was obtained from tissues fixed in formalin solution for 3months to 4years, and was found to be comparable to results obtained with frozen liver tissues. Therefore, the method presented here allows for preclinical and clinical retrospective and prospective studies on mRNA derived from archived FFPE and prolonged formalin-fixed tissue. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. High Efficiency Genotype Analysis from Formalin-Fixed, Paraffin-Embedded Tumor Tissues

    PubMed Central

    Sikora, Matthew J.; Thibert, Jacklyn N.; Salter, Janine; Dowsett, Mitch; Johnson, Michael D.; Rae, James M.

    2010-01-01

    Single nucleotide polymorphisms (SNPs) can be assayed using DNA isolated from archival formalin-fixed paraffin-embedded (FFPE) samples, making retrospective pharmacogenetic studies possible. Here we describe methods that significantly increase the number of SNP determinations possible using FFPE samples. Quantifying the amount of DNA amenable to PCR (amplification-quality DNA, AQ-DNA) allows a significant reduction in the amount of sample required for Taqman-based SNP assays. Optimizing AQ-DNA input increases PCR amplification efficiency and SNP determination accuracy. DNA was extracted from thirty-nine FFPE tumor sections and matched tumor and stromal cores, of the type used to generate tissue microarrays. Sections and tumor cores yielded sufficient AQ-DNA for over 1,000 SNP determinations. Seven SNPs were assessed, following individual assay optimization for minimal AQ-DNA. Genotypes from tumor cores for single SNPs were 92.3-100% concordant with those obtained from sections. Using these methods, the number of SNP genotypes that can be determined from single FFPE samples is greatly increased expanding the genetic association studies possible from limited archival specimens. The use of tumor cores is of particular importance since the harvesting of tumor cores has minimal impact on the utility of the donor blocks for other purposes. PMID:20548328

  8. Use of polymerase chain reaction in detection of Marek's disease and reticuloendotheliosis viruses in formalin-fixed, paraffin-embedded tumorous tissues.

    PubMed

    Cao, Weisheng; Mays, Jody; Dunn, John; Fulton, Richard; Silva, Robert; Fadly, Aly

    2013-12-01

    A simple PCR method was developed for the detection of Marek's disease (MD) and reticuloendotheliosis (RE) in formalin-fixed paraffin-embedded (FFPE) tissues, and for the detection of MD in tissues only preserved in 10% neutral buffered formalin. MD virus (MDV) and RE virus proviral DNA were detected in FFPE tissues stored for over 20 yr. MDV was also detected in tissues only preserved in formalin for up to 6 mo. The data indicate that PCR of formalin-fixed and FFPE tissues is a simple and valuable tool that can be used to identify MD and RE infection. The method described in this paper is a good alternative to any biologic or immunohistochemical assay to confirm the detection of MD and RE, as it does not require shipping frozen tissues to the diagnostic laboratory.

  9. Detection and identification of aquatic mycobacteria in formalin-fixed, paraffin-embedded fish tissues.

    PubMed

    Pourahmad, F; Thompson, K D; Adams, A; Richards, R H

    2009-05-01

    The isolation of mycobacteria from field samples is problematic, and isolation of the bacterium is sometimes not even attempted. The detection of mycobacteria through traditional histology using formalin-fixed, paraffin-embedded (FFPE) tissues is neither sensitive nor specific. However, detection of mycobacterial DNA from FFPE specimens, suspected of being infected with mammalian mycobacteriosis, is a routine clinical procedure. In the present study, a polymerase chain reaction (PCR)-based method was used to detect and identify mycobacteria in FFPE specimens sampled from fish suspected of being infected with fish mycobacteriosis. A total of 45 fish tissue samples, comprising of 12 tissue samples obtained from experimentally infected fish and the remainder from fish naturally infected with mycobacteria, were analysed using a PCR protocol which amplifies a fragment of the mycobacterial 65 kDa heat-shock protein (hsp65) gene. PCR-restriction enzyme analysis and/or sequencing were employed to further analyse the PCR amplicons. The PCR results were compared with those obtained by histology and culture. Mycobacterial DNA was detected in 34 of the 45 samples examined, of which 16 samples (47%) showed granulomatous reactions on histological examination. Using histology as the gold standard, no false-negative PCR results were obtained. Also, considering the presence or absence of granulomas as a diagnostic criterion, the sensitivity and specificity of PCR in 42 of the FFPE tissues were 16/16 (100%) and 8/26 (approximately 30.8%), respectively. Corresponding microbiological cultures were available for 15 cases, of which 13 were pure Mycobacterium cultures. Of these, 13 were PCR positive (100% sensitivity and 50% specificity). The PCR-based methods used here proved sensitive, specific and rapid for the detection of mycobacteria in routinely processed paraffin wax-embedded and formalin-fixed histological samples, and the results of the study suggest that this method has

  10. Initial Development and Validation of a Novel Extraction Method for Quantitative Mining of the Formalin-Fixed, Paraffin-Embedded Tissue Proteome for Biomarker Investigations

    PubMed Central

    2010-01-01

    Annotated formalin-fixed, paraffin-embedded (FFPE) tissue archives constitute a valuable resource for retrospective biomarker discovery. However, proteomic exploration of archival tissue is impeded by extensive formalin-induced covalent cross-linking. Robust methodology enabling proteomic profiling of archival resources is urgently needed. Recent work is beginning to support the feasibility of biomarker discovery in archival tissues, but further developments in extraction methods which are compatible with quantitative approaches are urgently needed. We report a cost-effective extraction methodology permitting quantitative proteomic analyses of small amounts of FFPE tissue for biomarker investigation. This surfactant/heat-based approach results in effective and reproducible protein extraction in FFPE tissue blocks. In combination with a liquid chromatography−mass spectrometry-based label-free quantitative proteomics methodology, the protocol enables the robust representative and quantitative analyses of the archival proteome. Preliminary validation studies in renal cancer tissues have identified typically 250−300 proteins per 500 ng of tissue with 1D LC−MS/MS with comparable extraction in FFPE and fresh frozen tissue blocks and preservation of tumor/normal differential expression patterns (205 proteins, r = 0.682; p < 10−15). The initial methodology presented here provides a quantitative approach for assessing the potential suitability of the vast FFPE tissue archives as an alternate resource for biomarker discovery and will allow exploration of methods to increase depth of coverage and investigate the impact of preanalytical factors. PMID:21117664

  11. Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS.

    PubMed

    Pietrowska, Monika; Gawin, Marta; Polańska, Joanna; Widłak, Piotr

    2016-06-01

    Type and quality of sample preparation have significant impact on imaging mass spectrometry results. Though imaging of fresh-frozen tissues is considered to give the best results, they are incompatible with clinical practice, since routine diagnostics is most frequently performed using formalin-fixed tissues, and formalin-fixed paraffin-embedded material is a gold standard in histopathology. We aimed to assess utility of formalin-fixed tissue specimen processed without paraffin embedding (i.e., deep-frozen and cryo-sectioned) for MALDI imaging of both peptides and lipids. Peptide and lipid imaging was performed in fresh-frozen, FFPE and formalin-fixed/frozen samples of a mouse kidney, then composition of the resulting spectra was compared. We demonstrated similarity of spectra registered during peptide imaging in FFPE and formalin-fixed/frozen tissues, and similarity of spectra registered during lipid imaging in fresh-frozen and formalin-fixed/frozen material. Furthermore, molecular images of formalin-fixed/frozen tissue resembled the features of both fresh-frozen and FFPE tissue in the case of peptide imaging, and the features of fresh-frozen tissue in the case of lipid imaging. We conclude that tissue preserved by formalin fixation and processed without paraffin embedding can be considered as an alternative to both fresh-frozen and FFPE material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multiplexed color-coded probe-based gene expression assessment for clinical molecular diagnostics in formalin-fixed paraffin-embedded human renal allograft tissue.

    PubMed

    Adam, Benjamin; Afzali, Bahman; Dominy, Katherine M; Chapman, Erin; Gill, Reeda; Hidalgo, Luis G; Roufosse, Candice; Sis, Banu; Mengel, Michael

    2016-03-01

    Histopathologic diagnoses in transplantation can be improved with molecular testing. Preferably, molecular diagnostics should fit into standard-of-care workflows for transplant biopsies, that is, formalin-fixed paraffin-embedded (FFPE) processing. The NanoString(®) gene expression platform has recently been shown to work with FFPE samples. We aimed to evaluate its methodological robustness and feasibility for gene expression studies in human FFPE renal allograft samples. A literature-derived antibody-mediated rejection (ABMR) 34-gene set, comprised of endothelial, NK cell, and inflammation transcripts, was analyzed in different retrospective biopsy cohorts and showed potential to molecularly discriminate ABMR cases, including FFPE samples. NanoString(®) results were reproducible across a range of RNA input quantities (r = 0.998), with different operators (r = 0.998), and between different reagent lots (r = 0.983). There was moderate correlation between NanoString(®) with FFPE tissue and quantitative reverse transcription polymerase chain reaction (qRT-PCR) with corresponding dedicated fresh-stabilized tissue (r = 0.487). Better overall correlation with histology was observed with NanoString(®) (r = 0.354) than with qRT-PCR (r = 0.146). Our results demonstrate the feasibility of multiplexed gene expression quantification from FFPE renal allograft tissue. This represents a method for prospective and retrospective validation of molecular diagnostics and its adoption in clinical transplantation pathology.

  13. Assessing quality and functionality of DNA isolated from FFPE tissues through external quality assessment in tissue banks.

    PubMed

    Ahmad-Nejad, Parviz; Duda, Angelika; Sucker, Antje; Werner, Martin; Bronsert, Peter; Stickeler, Elmar; Reifenberger, Guido; Malzkorn, Bastian; Oberländer, Martina; Habermann, Jens K; Bruch, Hans-Peter; Linnebacher, Michael; Schadendorf, Dirk; Neumaier, Michael

    2015-11-01

    Biobanks are becoming increasingly important for assessment of disease risk as well as identification and validation of new diagnostic biomarkers and druggable targets. The validity of data obtained from biobanks is critically limited by the biomaterial quality of the biological samples. External quality assessment (EQA) programs suitable to comprehensively measure the biomaterial quality in archived materials are currently lacking. We report on quantitative assay designs for the analysis of both structural and functional integrity of DNAs that were applied in a first pilot EQA within the priority program on tumor tissue biobanking funded by the German Cancer Aid. Participating biobanks isolated DNAs from a standardized set of 10 samples comprising sections of four different formalin-fixed paraffin-embedded tissues using their standard operating procedures. Isolated DNAs and analytical results were returned and analyzed centrally for nucleic acids yield, purity, fragmentation and amplificability at a quantitative level using dedicated assay designs. The amount of extracted DNA varied in isolates ranging between 1.5 μg and 25.8 μg. Quantification of DNA fragmentation and amplificability allowed to highlight considerable discrepancies in DNA quality. Amplicons yielded from the isolates of these identical EQA samples ranged from 105 to 411 bp suggesting differences between residual inhibitors of downstream enzymatic reactions. The quality of extraction of bioanalytes from biomaterial archives is heterogeneous even for stable biomolecules like DNA isolated with highly standardized methods. EQAs are appropriate tools to uncover strengths and weaknesses in biobanks in a systematic fashion. Biomaterial integrity is insufficiently reflected by standard methods, but needs to be assessed to improve biobank interoperability. Finally, our results also point towards the problem of measuring the quality of more delicate biomolecules like proteins or metabolites.

  14. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples.

    PubMed

    Buck, Achim; Ly, Alice; Balluff, Benjamin; Sun, Na; Gorzolka, Karin; Feuchtinger, Annette; Janssen, Klaus-Peter; Kuppen, Peter J K; van de Velde, Cornelis J H; Weirich, Gregor; Erlmeier, Franziska; Langer, Rupert; Aubele, Michaela; Zitzelsberger, Horst; Aichler, Michaela; Walch, Axel

    2015-09-01

    We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.

  15. An Optimized Method of Metabolite Extraction from Formalin-Fixed Paraffin-Embedded Tissue for GC/MS Analysis.

    PubMed

    Wojakowska, Anna; Marczak, Łukasz; Jelonek, Karol; Polanski, Krzysztof; Widlak, Piotr; Pietrowska, Monika

    2015-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissue specimens constitute a highly valuable source of clinical material for retrospective molecular studies. However, metabolomic assessment of such archival material remains still in its infancy. Hence, there is an urgent need for efficient methods enabling extraction and profiling of metabolites present in FFPE tissue specimens. Here we demonstrate the methodology for isolation of primary metabolites from archival tissues; either fresh-frozen, formalin-fixed or formalin-fixed and paraffin-embedded specimens of mouse kidney were analysed and compared in this work. We used gas chromatography followed by mass spectrometry (GC/MS approach) to identify about 80 metabolites (including amino acids, saccharides, carboxylic acids, fatty acids) present in such archive material. Importantly, about 75% of identified compounds were detected in all three types of specimens. Moreover, we observed that fixation with formalin itself (and their duration) did not affect markedly the presence of particular metabolites in tissue-extracted material, yet fixation for 24h could be recommended as a practical standard. Paraffin embedding influenced efficiency of extraction, which resulted in reduced quantities of several compounds. Nevertheless, we proved applicability of FFPE specimens for non-targeted GS/MS-based profiling of tissue metabolome, which is of great importance for feasibility of metabolomics studies using retrospective clinical material.

  16. An Optimized Method of Metabolite Extraction from Formalin-Fixed Paraffin-Embedded Tissue for GC/MS Analysis

    PubMed Central

    Wojakowska, Anna; Marczak, Łukasz; Jelonek, Karol; Polanski, Krzysztof; Widlak, Piotr; Pietrowska, Monika

    2015-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissue specimens constitute a highly valuable source of clinical material for retrospective molecular studies. However, metabolomic assessment of such archival material remains still in its infancy. Hence, there is an urgent need for efficient methods enabling extraction and profiling of metabolites present in FFPE tissue specimens. Here we demonstrate the methodology for isolation of primary metabolites from archival tissues; either fresh-frozen, formalin-fixed or formalin-fixed and paraffin-embedded specimens of mouse kidney were analysed and compared in this work. We used gas chromatography followed by mass spectrometry (GC/MS approach) to identify about 80 metabolites (including amino acids, saccharides, carboxylic acids, fatty acids) present in such archive material. Importantly, about 75% of identified compounds were detected in all three types of specimens. Moreover, we observed that fixation with formalin itself (and their duration) did not affect markedly the presence of particular metabolites in tissue-extracted material, yet fixation for 24h could be recommended as a practical standard. Paraffin embedding influenced efficiency of extraction, which resulted in reduced quantities of several compounds. Nevertheless, we proved applicability of FFPE specimens for non-targeted GS/MS-based profiling of tissue metabolome, which is of great importance for feasibility of metabolomics studies using retrospective clinical material. PMID:26348873

  17. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections

    PubMed Central

    Kishen, Ria E. B.; Kluth, David C.; Bellamy, Christopher O. C.

    2016-01-01

    The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367

  18. Multiplexed miRNA Fluorescence In Situ Hybridization for Formalin-Fixed Paraffin-Embedded Tissues

    PubMed Central

    Renwick, Neil; Cekan, Pavol; Bognanni, Claudia; Tuschl, Thomas

    2015-01-01

    Multiplexed miRNA fluorescence in situ hybridization (miRNA FISH) is an advanced method for visualizing differentially expressed miRNAs, together with other reference RNAs, in archival tissues. Some miRNAs are excellent disease biomarkers due to their abundance and cell-type specificity. However, these short RNA molecules are difficult to visualize due to loss by diffusion, probe mishybridization, and signal detection and signal amplification issues. Here, we describe a reliable and adjustable method for visualizing and normalizing miRNA signals in formalin-fixed paraffin-embedded (FFPE) tissue sections. PMID:25218385

  19. Multiplexed miRNA fluorescence in situ hybridization for formalin-fixed paraffin-embedded tissues.

    PubMed

    Renwick, Neil; Cekan, Pavol; Bognanni, Claudia; Tuschl, Thomas

    2014-01-01

    Multiplexed miRNA fluorescence in situ hybridization (miRNA FISH) is an advanced method for visualizing differentially expressed miRNAs, together with other reference RNAs, in archival tissues. Some miRNAs are excellent disease biomarkers due to their abundance and cell-type specificity. However, these short RNA molecules are difficult to visualize due to loss by diffusion, probe mishybridization, and signal detection and signal amplification issues. Here, we describe a reliable and adjustable method for visualizing and normalizing miRNA signals in formalin-fixed paraffin-embedded (FFPE) tissue sections.

  20. Detection of Viral RNA From Paraffin-Embedded Tissues After Prolonged Formalin Fixation

    DTIC Science & Technology

    2009-01-01

    fixed, paraffin-embedded (FFPE) liver tissues fromcynomolgusmacaques (Macaca fascicularis) experimentally infected with Ebola virus, Zaire . Sample Day...K t r e t D O s c s 5 f b a The viral titer was expressed as Ebola Zaire virus log10 PFU/g. b CT value≥45 is negative. c Not applicable. nly one...to extract ampli- fiable RNA and detect West Nile virus (WNV), Marburg virus (MARV), and Ebola virus (EBOV)-infected tissues using TaqMan® assays

  1. A pressure cooking-based DNA extraction from archival formalin fixed, paraffin embedded tissue

    PubMed Central

    Chung, Joon-Yong; Yi, Joo Mi; Xie, Ran; Brown, Victoria; Lee, Olivia; Ahuja, Nita; Braunschweig, Till; Hewitt, Stephen M.

    2012-01-01

    As emerging novel DNA-based methodologies are adopted, nucleic acid-based assays depend critically on the quality and quantity of extracted DNA. Formalin fixed, paraffin embedded (FFPE) tissue samples provide an invaluable resource for subsequent molecular studies of clinical phenotypes, but high quality DNA extraction from archival FFPE tissue specimen remains complex and time consuming. To address this challenge, we have developed a reliable rapid DNA extraction method for FFPE tissue specimens. It is based on deparaffinization at high temperature coupled with relieving crosslink in a pressure cooker. The DNA yield by this rapid method resulted in an average 1.8-fold increase in comparison with the commercial kit; O.D 260/280 ratios between 1.87 and 1.95. The DNA obtained by the rapid method was suitable for methylation analyses in colon cancer patients. These data suggest that this new DNA extraction method coupled with MSP can be used for epigenetic studies with the advantages of rapidity and high quality, and may contribute to the development of biomarkers in clinical studies. PMID:22449494

  2. Human formalin-fixed paraffin-embedded tissues: an untapped specimen for biomonitoring of carcinogen DNA adducts by mass spectrometry.

    PubMed

    Yun, Byeong Hwa; Rosenquist, Thomas A; Nikolić, Jovan; Dragičević, Dejan; Tomić, Karla; Jelaković, Bojan; Dickman, Kathleen G; Grollman, Arthur P; Turesky, Robert J

    2013-05-07

    DNA adducts represent internal dosimeters to measure exposure to environmental and endogenous genotoxicants. Unfortunately, in molecular epidemiologic studies, measurements of DNA adducts often are precluded by the unavailability of fresh tissue. In contrast, formalin-fixed paraffin embedded (FFPE) tissues frequently are accessible for biomarker discovery. We report here that DNA adducts of aristolochic acids (AAs) can be measured in FFPE tissues at a level of sensitivity comparable to freshly frozen tissue. AAs are nephrotoxic and carcinogenic compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs are implicated in the etiology of aristolochic acid nephropathy and upper urinary tract carcinoma. 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxole-5-carboxylic acid (AA-I) is a component of Aristolochia herbs and a potent human urothelial carcinogen. AA-I reacts with DNA to form the aristolactam (AL-I)-DNA adduct 7-(deoxyadenosin-N(6)-yl) aristolactam I (dA-AL-I). We established a method to quantitatively retrieve dA-AL-I from FFPE tissue. Adducts were measured, using ultraperformance liquid chromatography/mass spectrometry, in liver and kidney tissues of mice exposed to AA-I, at doses ranging from 0.001 to 1 mg/kg body weight. dA-AL-I was then measured in 10-μm thick tissue-sections of FFPE kidney from patients with upper urinary tract cancers; the values were comparable to those observed in fresh frozen samples. The limit of quantification of dA-AL-I was 3 adducts per 10(9) DNA bases per 2.5 μg of DNA. The ability to retrospectively analyze FFPE tissues for DNA adducts may provide clues to the origin of human cancers for which an environmental cause is suspected.

  3. An optimized xylene-free protein extraction method adapted to formalin-fixed paraffin embedded tissue sections for western blot analysis.

    PubMed

    Mansour, Anthony G; Khalil, Pamela Abou; Bejjani, Noha; Chatila, Rajaa; Dagher-Hamalian, Carole; Faour, Wissam H

    2017-03-01

    Deparaffinization of formalin-fixed paraffin embedded (FFPE) tissues with xylene currently remains a major challenge to the biomedical community. We developed an efficient xylene-free protocol to isolate proteins from archived FFPE human tissue sections. A total of 79 different types of FFPE tissue sections of 8 µm thickness were obtained from various archived FFPE specimens. Deparaffinization was conducted by gently washing each section with around 1 ml of hot distilled water (≈80°C). The deparaffinized tissues were homogenized in lysis buffer, and the isolated proteins were quantified and efficiently resolved using western blot analysis for the presence of Protein kinase B (PKB/AKT) and β-actin. Moreover, a significant amount of proteins was successfully isolated with an average of 2.31 µg/µl. The migration pattern of AKT and β-actin obtained from the specimens was similar to the positive control obtained from protein lysates prepared from in vitro cultured MDA231 cancer cell lines. AKT was successfully identified in all specimens, and β-actin protein was resolved with an efficiency higher than 80%. The entire extraction procedure requires only 20 minutes. This newly developed technique is an efficient, safe, cost-effective, and rapid method to isolate proteins from FFPE tissue sections adequate for molecular analysis.

  4. Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost.

    PubMed

    Luebker, Stephen A; Wojtkiewicz, Melinda; Koepsell, Scott A

    2015-11-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.

  5. Proteomic analysis of formalin-fixed paraffin-embedded pancreatic tissue using liquid chromatography tandem mass spectrometry (LC-MS/MS)

    PubMed Central

    Paulo, Joao A.; Lee, Linda S.; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Objectives Formalin-fixed paraffin-embedded (FFPE) tissue is a standard method of specimen preservation for hospital pathology departments. FFPE tissue banks are a resource of histologically-characterized specimens for retrospective biomarker investigation. We aim to establish liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of FFPE pancreatic tissue as a suitable strategy for the study of the pancreas proteome. Methods We investigated the proteomic profile of FFPE pancreatic tissue specimens, using LC-MS/MS, from 9 archived specimens that were histologically-classified as: normal (n=3), chronic pancreatitis (n=3), and pancreatic cancer (n=3). Results We identified 525 non-redundant proteins from 9 specimens. Implementing our filtering criteria, 78, 15, and 21 proteins were identified exclusively in normal, chronic pancreatitis, and pancreatic cancer specimens, respectively. Several proteins were identified exclusively in specimens with no pancreatic disease: spink1, retinol dehydrogenase, and common pancreatic enzymes. Similarly, proteins were identified exclusively in chronic pancreatitis specimens: collagen α1(XIV), filamin A, collagen α3(VI), and SNC73. Proteins identified exclusively in pancreatic cancer included: annexin 4A and fibronectin. Conclusions We report that differentially-expressed proteins can be identified among FFPE tissues specimens originating from individuals with different pancreatic histologies. The mass spectrometry-based methodology used herein has the potential to enhance biomarker discovery and chronic pancreatitis research. PMID:22015969

  6. Comparison of Different Buffers for Protein Extraction from Formalin-Fixed and Paraffin-Embedded Tissue Specimens

    PubMed Central

    Shen, Kaini; Sun, Jian; Cao, Xinxin; Zhou, Daobin; Li, Jian

    2015-01-01

    We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3–16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3–16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis. PMID:26580073

  7. Comparison of Different Buffers for Protein Extraction from Formalin-Fixed and Paraffin-Embedded Tissue Specimens.

    PubMed

    Shen, Kaini; Sun, Jian; Cao, Xinxin; Zhou, Daobin; Li, Jian

    2015-01-01

    We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3-16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3-16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis.

  8. Comparison of Five Commercial Nucleic Acid Extraction Kits for the PCR-based Detection of Burkholderia Pseudomallei DNA in Formalin-Fixed, Paraffin-Embedded Tissues.

    PubMed

    Obersteller, Sonja; Neubauer, Heinrich; Hagen, Ralf Matthias; Frickmann, Hagen

    2016-09-29

    The extraction and further processing of nucleic acids (NA) from formalin-fixed paraffin-embedded (FFPE) tissues for microbiological diagnostic polymerase chain reaction (PCR) approaches is challenging. Here, we assessed the effects of five different commercially available nucleic acid extraction kits on the results of real-time PCR. FFPE samples from organs of Burkholderia pseudomallei-infected Swiss mice were subjected to processing with five different extraction kits from QIAGEN (FFPE DNA Tissue Kit, EZ1 DNA Tissue Kit, DNA Mini Kit, DNA Blood Mini Kit, and FlexiGene DNA Kit) in combination with three different real-time PCRs targeting B. pseudomallei-specific sequences of varying length after 16 years of storage. The EZ1 DNA Tissue Kit and the DNA Mini Kit scored best regarding the numbers of successful PCR reactions. In case of positive PCR, differences regarding the cycle-threshold (Ct) values were marginal. The impact of the applied extraction kits on the reliability of PCR from FFPE material seems to be low. Interfering factors like the quality of the dewaxing procedure or the sample age appear more important than the selection of specialized FFPE kits.

  9. Improved PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by overcoming PCR inhibition.

    PubMed

    Dietrich, Dimo; Uhl, Barbara; Sailer, Verena; Holmes, Emily Eva; Jung, Maria; Meller, Sebastian; Kristiansen, Glen

    2013-01-01

    Formalin-fixed and paraffin-embedded (FFPE) tissues represent a valuable source for biomarker studies and clinical routine diagnostics. However, they suffer from degradation of nucleic acids due to the fixation process. Since genetic and epigenetic studies usually require PCR amplification, this degradation hampers its use significantly, impairing PCR robustness or necessitating short amplicons. In routine laboratory medicine a highly robust PCR performance is mandatory for the clinical utility of genetic and epigenetic biomarkers. Therefore, methods to improve PCR performance using DNA from FFPE tissue are highly desired and of wider interest. The effect of template DNA derived from FFPE tissues on PCR performance was investigated by means of qPCR and conventional PCR using PCR fragments of different sizes. DNA fragmentation was analyzed via agarose gel electrophoresis. This study showed that poor PCR amplification was partly caused by inhibition of the DNA polymerase by fragmented DNA from FFPE tissue and not only due to the absence of intact template molecules of sufficient integrity. This PCR inhibition was successfully minimized by increasing the polymerase concentration, dNTP concentration and PCR elongation time thereby allowing for the robust amplification of larger amplicons. This was shown for genomic template DNA as well as for bisulfite-converted template DNA required for DNA methylation analyses. In conclusion, PCR using DNA from FFPE tissue suffers from inhibition which can be alleviated by adaptation of the PCR conditions, therefore allowing for a significant improvement of PCR performance with regard to variability and the generation of larger amplicons. The presented solutions to overcome this PCR inhibition are of tremendous value for clinical chemistry and laboratory medicine.

  10. Evaluation of archival time on shotgun proteomics of formalin-fixed and paraffin-embedded tissues.

    PubMed

    Balgley, Brian M; Guo, Tong; Zhao, Kejia; Fang, Xueping; Tavassoli, Fattaneh A; Lee, Cheng S

    2009-02-01

    There is increasing acceptance of the critical importance of correlating the morphologic features of tissue with the data obtained from various molecular analytic techniques. Access to archived formalin-fixed and paraffin-embedded (FFPE) tissue specimens via shotgun-based proteomic analyses may, therefore, open new avenues for both prospective and retrospective translational research. However, one of the remaining issues in performing comparative proteomic measurements among FFPE tissues relates to potential variability in protein composition and retrieval based on length of storage periods. Optimized protein extraction and digestion procedures for handling FFPE tissues are coupled with the capillary isotachophoresis-based proteome technology to evaluate the effects of length of storage period on archival tissue proteome analysis across 10 archived uterine mesenchymal tumor tissue blocks, including 9 uterine leiomyomas dating from 1990 to 2002 and a single case of alveolar soft part sarcoma (ASPS) from 1980. Several statistical measures, including the Pearson correlation coefficient, coefficient of variance, k-means clustering, and ANOVA, are employed to evaluate the possibility of an archival effect on individual proteins or groups of proteins within nine leiomyomas. Low abundance proteins may be more susceptible to the long-term storage as these proteins are more difficult to be retrieved and extracted as the tissue block ages in paraffin. Despite using tissue blocks stored for as many as 28 years, high confidence and comparative proteome analysis between the leiomyomas and the sarcoma is achieved. Though sharing over 1800 common proteins in a core set, a total of 80 proteins unique to the sarcoma are identified distinguishing the ASPS from the leiomyomas. Vacuolar proton translocating ATPase 116 kDa subunit isoform a3, one of the unique proteins expressed in the ASPS, is further validated by immunohistochemistry (IHC). Although IHC is highly sensitive and

  11. Impact of pre-analytical factors on the proteomic analysis of formalin-fixed paraffin-embedded tissue.

    PubMed

    Thompson, Seonaid M; Craven, Rachel A; Nirmalan, Niroshini J; Harnden, Patricia; Selby, Peter J; Banks, Rosamonde E

    2013-04-01

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a tremendous potential resource for biomarker discovery, with large numbers of samples in hospital pathology departments and links to clinical information. However, the cross-linking of proteins and nucleic acids by formalin fixation has hampered analysis and proteomic studies have been restricted to using frozen tissue, which is more limited in availability as it needs to be collected specifically for research. This means that rare disease subtypes cannot be studied easily. Recently, improved extraction techniques have enabled analysis of FFPE tissue by a number of proteomic techniques. As with all clinical samples, pre-analytical factors are likely to impact on the results obtained, although overlooked in many studies. The aim of this review is to discuss the various pre-analytical factors, which include warm and cold ischaemic time, size of sample, fixation duration and temperature, tissue processing conditions, length of storage of archival tissue and storage conditions, and to review the studies that have considered these factors in more detail. In those areas where investigations are few or non-existent, illustrative examples of the possible importance of specific factors have been drawn from studies using frozen tissue or from immunohistochemical studies of FFPE tissue.

  12. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue.

    PubMed

    Neumeister, Veronique M; Parisi, Fabio; England, Allison M; Siddiqui, Summar; Anagnostou, Valsamo; Zarrella, Elizabeth; Vassilakopolou, Maria; Bai, Yalai; Saylor, Sasha; Sapino, Anna; Kluger, Yuval; Hicks, David G; Bussolati, Gianni; Kwei, Stephanie; Rimm, David L

    2014-04-01

    While efforts are made to improve tissue quality and control preanalytical variables, pathologists are often confronted with the challenge of molecular analysis of patient samples of unknown quality. Here we describe a first attempt to construct a tissue quality index (TQI) or an intrinsic control that would allow a global assessment of protein status based on quantitative measurement of a small number of selected, informative epitopes. Quantitative immunofluorescence (QIF) of a number of proteins was performed on a series of 93 breast cancer cases where levels of expression were assessed as a function of delayed time to formalin fixation. A TQI was constructed based on the combination of proteins that most accurately reflect increased and decreased levels of expression in proportion to delay time. The TQI, defined by combinations of measurements of cytokeratin, ERK1/2 and pHSP-27 and their relationship to cold ischemic time were validated on a second build of the training series and on two independent breast tissue cohorts with recorded time to formalin fixation. We show an association of negative TQI values (an indicator for loss of tissue quality) with increasing cold ischemic time on both validation cohorts and an association with loss of ER expression levels on all three breast cohorts. Using expression levels of three epitopes, we can begin to assess the likelihood of delayed time to fixation or decreased tissue quality. This TQI represents a proof of concept for the use of epitope expression to provide a mechanism for monitoring tissue quality.

  13. A Tissue Quality Index – an Intrinsic Control for Measurement of Effects of Pre-analytical Variables on FFPE Tissue

    PubMed Central

    Neumeister, Veronique M.; Parisi, Fabio; England, Allison M.; Siddiqui, Summar; Anagnostou, Valsamo; Zarrella, Elizabeth; Vassilakopolou, Maria; Bai, Yalai; Saylor, Sasha; Sapino, Anna; Kluger, Yuval; Hicks, David G.; Bussolati, Gianni; Kwei, Stephanie; Rimm, David L.

    2014-01-01

    While efforts are made to improve tissue quality and control pre-analytical variables, pathologists are often confronted with the challenge of molecular analysis of patient samples of unknown quality. Here we describe a first attempt to construct a Tissue Quality Index (TQI) or an intrinsic control that would allow a global assessment of protein status based on quantitative measurement of a small number of selected, informative epitopes. Quantitative Immunofluorescence (QIF) of a number of proteins was performed on a series of 93 breast cancer cases where levels of expression were assessed as a function of delayed time to formalin fixation. A TQI was constructed based on the combination of proteins that most accurately reflect increased and decreased levels of expression in proportion to delay time. The TQI, defined by combinations of measurements of cytokeratin, pERK1/2 and pHSP-27 and their relationship to cold ischemic time were validated on a second build of the training series and on 2 independent breast tissue cohorts with recorded time to formalin fixation. We show an association of negative TQI values (an indicator for loss of tissue quality) with increasing cold ischemic time on both validation cohorts, as well as an association with loss of ER expression levels on all 3 breast cohorts. Using expression levels of 3 epitopes, we can begin to assess the likelihood of delayed time to fixation or decreased tissue quality. This TQI represents a proof of concept for the use of epitope expression to provide a mechanism for monitoring tissue quality. PMID:24535259

  14. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues.

    PubMed

    Zhang, Shenli; Tan, Iain B; Sapari, Nur S; Grabsch, Heike I; Okines, Alicia; Smyth, Elizabeth C; Aoyama, Toru; Hewitt, Lindsay C; Inam, Imran; Bottomley, Dan; Nankivell, Matthew; Stenning, Sally P; Cunningham, David; Wotherspoon, Andrew; Tsuburaya, Akira; Yoshikawa, Takaki; Soong, Richie; Tan, Patrick

    2015-05-01

    DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investigated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1 (rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel electrophoresis, we also examined TYMS 5' untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and TYMS 5' untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%-47.5%; exact binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%-14.3%) of cases, respectively, whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution. Independent repeated assays should be performed on all cases to assess potential discrepancies.

  15. Technical Reproducibility of Single-Nucleotide and Size-Based DNA Biomarker Assessment Using DNA Extracted from Formalin-Fixed, Paraffin-Embedded Tissues

    PubMed Central

    Zhang, Shenli; Tan, Iain B.; Sapari, Nur S.; Grabsch, Heike I.; Okines, Alicia; Smyth, Elizabeth C.; Aoyama, Toru; Hewitt, Lindsay C.; Inam, Imran; Bottomley, Dan; Nankivell, Matthew; Stenning, Sally P.; Cunningham, David; Wotherspoon, Andrew; Tsuburaya, Akira; Yoshikawa, Takaki; Soong, Richie; Tan, Patrick

    2015-01-01

    DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investigated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1 (rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel electrophoresis, we also examined TYMS 5′ untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and TYMS 5′ untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%–47.5%; exact binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%–14.3%) of cases, respectively, whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution. Independent repeated assays should be performed on all cases to assess potential discrepancies. PMID:25746798

  16. Mining the Archives: A Cross-Platform Analysis of Gene Expression Profiles in Archival Formalin-Fixed Paraffin-Embedded Tissues

    PubMed Central

    Webster, A. Francina; Zumbo, Paul; Fostel, Jennifer; Gandara, Jorge; Hester, Susan D.; Recio, Leslie; Williams, Andrew; Wood, Charles E.; Yauk, Carole L.; Mason, Christopher E.

    2015-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for transcriptomic research. However, use of FFPE samples in genomic studies has been limited by technical challenges resulting from nucleic acid degradation. Here we evaluated gene expression profiles derived from fresh-frozen (FRO) and FFPE mouse liver tissues preserved in formalin for different amounts of time using 2 DNA microarray protocols and 2 whole-transcriptome sequencing (RNA-seq) library preparation methodologies. The ribo-depletion protocol outperformed the other methods by having the highest correlations of differentially expressed genes (DEGs), and best overlap of pathways, between FRO and FFPE groups. The effect of sample time in formalin (18 h or 3 weeks) on gene expression profiles indicated that test article treatment, not preservation method, was the main driver of gene expression profiles. Meta- and pathway analyses indicated that biological responses were generally consistent for 18 h and 3 week FFPE samples compared with FRO samples. However, clear erosion of signal intensity with time in formalin was evident, and DEG numbers differed by platform and preservation method. Lastly, we investigated the effect of time in paraffin on genomic profiles. Ribo-depletion RNA-seq analysis of 8-, 19-, and 26-year-old control blocks resulted in comparable quality metrics, including expected distributions of mapped reads to exonic, untranslated region, intronic, and ribosomal fractions of the transcriptome. Overall, our results indicate that FFPE samples are appropriate for use in genomic studies in which frozen samples are not available, and that ribo-depletion RNA-seq is the preferred method for this type of analysis in archival and long-aged FFPE samples. PMID:26361796

  17. Simultaneous Recovery of DNA and RNA from Formalin-Fixed Paraffin-Embedded Tissue and Application in Epidemiologic Studies

    PubMed Central

    Huang, Wen-Yi; Sheehy, Timothy M.; Moore, Lee E.; Hsing, Ann W.; Purdue, Mark P.

    2010-01-01

    Analysis of DNA, RNA, and protein extracted from tissue specimens in epidemiologic studies is useful for assessing etiologic heterogeneity, mechanisms of carcinogenesis and biomarkers for prognosis and prediction of treatment responses. Fresh-frozen tissue samples may provide optimal quality nucleic acids, but pose multiple logistical considerations, including rapid access to tissues prior to histopathologic examination and specialized equipment for freezing, transport and storage; in addition, morphology is often compromised. In contrast, formalin-fixed paraffin-embedded (FFPE) tissue samples, including enormous archives of existing specimens, represent a valuable source of retrospective biological material for epidemiologic research, although presenting different limitations compared to frozen samples. Recent efforts have made progress toward enhancing the utility of FFPE specimens for molecular analyses, including DNA studies, and increasingly for RNA and other macromolecules. Here we report the method that we used to simultaneously recover DNA and RNA from FFPE tissue specimens with appreciable quantity and quality, and discuss briefly the application of tumor markers in epidemiologic studies. PMID:20332269

  18. Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing.

    PubMed

    Paluch, Benjamin E; Glenn, Sean T; Conroy, Jeffrey M; Papanicolau-Sengos, Antonios; Bshara, Wiam; Omilian, Angela R; Brese, Elizabeth; Nesline, Mary; Burgher, Blake; Andreas, Jonathan; Odunsi, Kunle; Eng, Kevin; He, Ji; Qin, Maochun; Gardner, Mark; Galluzzi, Lorenzo; Morrison, Carl D

    2017-01-10

    Current criteria for identifying cancer patients suitable for immunotherapy with immune checkpoint blockers (ICBs) are subjective and prone to misinterpretation, as they mainly rely on the visual assessment of CD274 (best known as PD-L1) expression levels by immunohistochemistry (IHC). To address this issue, we developed a RNA sequencing (RNAseq)-based approach that specifically measures the abundance of immune transcripts in formalin-fixed paraffin embedded (FFPE) specimens. Besides exhibiting superior sensitivity as compared to whole transcriptome RNAseq, our assay requires little starting material, implying that it is compatible with RNA degradation normally caused by formalin. Here, we demonstrate that a targeted RNAseq panel reliably profiles mRNA expression levels in FFPE samples from a cohort of ovarian carcinoma patients. The expression profile of immune transcripts as measured by targeted RNAseq in FFPE versus freshly frozen (FF) samples from the same tumor was highly concordant, in spite of the RNA quality issues associated with formalin fixation. Moreover, the results of targeted RNAseq on FFPE specimens exhibited a robust correlation with mRNA expression levels as measured on the same samples by quantitative RT-PCR, as well as with protein abundance as determined by IHC. These findings demonstrate that RNAseq profiling on archival FFPE tissues can be used reliably in studies assessing the efficacy of cancer immunotherapy.

  19. Improved results of LINE-1 methylation analysis in formalin-fixed, paraffin-embedded tissues with the application of a heating step during the DNA extraction process.

    PubMed

    Wen, Xianyu; Jeong, Seorin; Kim, Younghoon; Bae, Jeong Mo; Cho, Nam Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are important resources for profiling DNA methylation changes and for studying a variety of diseases. However, formalin fixation introduces inter-strand crosslinking, which might cause incomplete bisulfite conversion of unmethylated cytosines, which might lead to falsely elevated measurements of methylation levels in pyrosequencing assays. Long interspersed nucleotide element-1 (LINE-1) is a major constituent of repetitive transposable DNA elements, and its methylation is referred to correlates with global DNA methylation. To identify whether formalin fixation might impact the measured values of methylation in LINE-1 repetitive elements and whether prolonged heat-induced denaturation of DNA might reduce the artificial increases in measured values caused by formalin fixation, we analyzed paired fresh-frozen (FF) and FFPE xenograft tissue samples for their methylation levels in LINE-1 using a pyrosequencing assay. To further confirm the effect of a heating step in the measurement of LINE-1 or single gene methylation levels, we analyzed FFPE tissue samples of gastric cancer and colorectal cancer for their methylation status in LINE-1 and eight single genes, respectively. Formalin fixation led to an increase in the measured values of LINE-1 methylation regardless of the duration of fixation. Prolonged heating of the DNA at 95 °C for 30 min before bisulfite conversion was found (1) to decrease the discrepancy in the measured values between the paired FF and FFPE tissue samples, (2) to decrease the standard deviation of the measured value of LINE-1 methylation levels in FFPE tissue samples of gastric cancer, and (3) to improve the performance in the measurement of single gene methylation levels in FFPE tissue samples of colorectal cancer. Formalin fixation leads to artificial increases in the measured values of LINE-1 methylation, and the application of prolonged heating of DNA samples decreases the discrepancy in the

  20. Formalin-fixed paraffin-embedded tissue as a source for quantitation of carcinogen DNA adducts: aristolochic acid as a prototype carcinogen.

    PubMed

    Yun, Byeong Hwa; Yao, Lihua; Jelaković, Bojan; Nikolić, Jovan; Dickman, Kathleen G; Grollman, Arthur P; Rosenquist, Thomas A; Turesky, Robert J

    2014-09-01

    DNA adducts are a measure of internal exposure to genotoxicants. However, the measurement of DNA adducts in molecular epidemiology studies often is precluded by the lack of fresh tissue. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues frequently are accessible, although technical challenges remain in retrieval of high quality DNA suitable for biomonitoring of adducts. Aristolochic acids (AA) are human carcinogens found in Aristolochia plants, some of which have been used in the preparation of traditional Chinese herbal medicines. We previously established a method to measure DNA adducts of AA in FFPE tissue. In this study, we examine additional features of formalin fixation that could impact the quantity and quality of DNA and report on the recovery of AA-DNA adducts in mice exposed to AA. The yield of DNA isolated from tissues fixed with formalin decreased over 1 week; however, the levels of AA-DNA adducts were similar to those in fresh frozen tissue. Moreover, DNA from FFPE tissue served as a template for PCR amplification, yielding sequence data of comparable quality to DNA obtained from fresh frozen tissue. The estimates of AA-DNA adducts measured in freshly frozen tissue and matching FFPE tissue blocks of human kidney stored for 9 years showed good concordance. Thus, DNA isolated from FFPE tissues may be used to biomonitor DNA adducts and to amplify genes used for mutational analysis, providing clues regarding the origin of human cancers for which an environmental cause is suspected. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    PubMed

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  2. MALDI Imaging Mass Spectrometry Profiling of N-Glycans in Formalin-Fixed Paraffin Embedded Clinical Tissue Blocks and Tissue Microarrays

    PubMed Central

    Powers, Thomas W.; Neely, Benjamin A.; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A.; Mehta, Anand S.; Haab, Brian B.; Drake, Richard R.

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers. PMID:25184632

  3. Application of selected reaction monitoring for multiplex quantification of clinically validated biomarkers in formalin-fixed, paraffin-embedded tumor tissue.

    PubMed

    Hembrough, Todd; Thyparambil, Sheeno; Liao, Wei-Li; Darfler, Marlene M; Abdo, Joseph; Bengali, Kathleen M; Hewitt, Stephen M; Bender, Richard A; Krizman, David B; Burrows, Jon

    2013-07-01

    One of the critical gaps in the clinical diagnostic space is the lack of quantitative proteomic methods for use on formalin-fixed, paraffin-embedded (FFPE) tissue. Herein, we describe the development of a quantitative, multiplexed, mass spectrometry-based selected reaction monitoring (SRM) assay for four therapeutically important targets: epidermal growth factor receptor, human EGF receptor (HER)-2, HER3, and insulin-like growth factor-1 receptor. These assays were developed using the Liquid Tissue-SRM technology platform, in which FFPE tumor tissues were microdissected, completely solubilized, and then subjected to multiplexed quantitation by SRM mass spectrometry. The assays were preclinically validated by comparing Liquid Tissue-SRM quantitation of FFPE cell lines with enzyme-linked immunosorbent assay/electrochemiluminescence quantitation of fresh cells (R(2) > 0.95). Clinical performance was assessed on two cohorts of breast cancer tissue: one cohort of 10 samples with a wide range of HER2 expression and a second cohort of 19 HER2 IHC 3+ tissues. These clinical data demonstrate the feasibility of quantitative, multiplexed clinical analysis of proteomic markers in FFPE tissue. Our findings represent a significant advancement in cancer tissue analysis because multiplexed, quantitative analysis of protein targets in FFPE tumor tissue can be tailored to specific oncological indications to provide the following: i) complementary support for anatomical pathological diagnoses, ii) patient stratification to optimize treatment outcomes and identify drug resistance, and iii) support for the clinical development of novel therapies. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Evaluating the repair of DNA derived from formalin-fixed paraffin-embedded tissues prior to genomic profiling by SNP-CGH analysis.

    PubMed

    Hosein, Abdel Nasser; Song, Sarah; McCart Reed, Amy E; Jayanthan, Janani; Reid, Lynne E; Kutasovic, Jamie R; Cummings, Margaret C; Waddell, Nic; Lakhani, Sunil R; Chenevix-Trench, Georgia; Simpson, Peter T

    2013-06-01

    Pathology archives contain vast resources of clinical material in the form of formalin-fixed paraffin-embedded (FFPE) tissue samples. Owing to the methods of tissue fixation and storage, the integrity of DNA and RNA available from FFPE tissue is compromized, which means obtaining informative data regarding epigenetic, genomic, and expression alterations can be challenging. Here, we have investigated the utility of repairing damaged DNA derived from FFPE tumors prior to single-nucleotide polymorphism (SNP) arrays for whole-genome DNA copy number analysis. DNA was extracted from FFPE samples spanning five decades, involving tumor material obtained from surgical specimens and postmortems. Various aspects of the protocol were assessed, including the method of DNA extraction, the role of Quality Control quantitative PCR (qPCR) in predicting sample success, and the effect of DNA restoration on assay performance, data quality, and the prediction of copy number aberrations (CNAs). DNA that had undergone the repair process yielded higher SNP call rates, reduced log R ratio variance, and improved calling of CNAs compared with matched FFPE DNA not subjected to repair. Reproducible mapping of genomic break points and detection of focal CNAs representing high-level gains and homozygous deletions (HD) were possible, even on autopsy material obtained in 1974. For example, DNA amplifications at the ERBB2 and EGFR gene loci and a HD mapping to 13q14.2 were validated using immunohistochemistry, in situ hybridization, and qPCR. The power of SNP arrays lies in the detection of allele-specific aberrations; however, this aspect of the analysis remains challenging, particularly in the distinction between loss of heterozygosity (LOH) and copy neutral LOH. In summary, attempting to repair DNA that is damaged during fixation and storage may be a useful pretreatment step for genomic studies of large archival FFPE cohorts with long-term follow-up or for understanding rare cancer types, where

  5. Comparative investigations of T cell receptor gamma gene rearrangements in frozen and formalin-fixed paraffin wax-embedded tissues by capillary electrophoresis.

    PubMed

    Christensen, M; Funder, A D; Bendix, K; Soerensen, F B

    2006-06-01

    To compare clonal T cell receptor gamma (TCRgamma) gene rearrangements in frozen and formalin-fixed paraffin wax-embedded (FFPE) tissue, using capillary electrophoresis for use in diagnostics, as T cell lymphomas may be difficult to diagnose by conventional methods. The DNA for PCR was extracted from frozen and FFPE tissue, cell lines and blood. PCR primers Vgamma1-8, Vgamma9, Vgamma10 or Vgamma11 (5' end labelled) combined with a mixture of JgammaP1/JgammaP/JgammaP2/Jgamma2 (unlabelled) were used. Monoclonal cases were sequenced and clonality, reproducibility, sensitivity and specificity analyses were carried out. In all cases the molecular test was found to be in agreement with the histological diagnosis. Discrepancies were found between frozen and FFPE tissue in 18 of 56 (32%) tests. The method was highly reproducible. The sensitivity was found to be 0.5% for cell lines and 1% for patient specimens and the specificity 100%. The junctional region between the Vgamma and Jgamma segments was specific for each patient. Capillary electrophoresis of PCR products from frozen and FFPE tissue is suitable for detecting clonal TCRgamma gene rearrangements. It is important, however, to correlate the results with conventional morphological and immunohistochemical studies.

  6. Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry

    USGS Publications Warehouse

    Sarafanov, A.G.; Todorov, T.I.; Kajdacsy-Balla, A.; Gray, Michael A.; MacIas, V.; Centeno, J.A.

    2008-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable and abundant resource of pathologic material for various biomedical studies. In the present study, we report the application of high-resolution inductively coupled mass-spectrometry (ICP-MS) for quantification of Fe, Zn, Se and Cd in FFPE prostate tissue. These elements have a possible role in the development of prostate diseases: while Zn and Se are needed for a healthy prostate, Cd shows multiple toxic and carcinogenic effects. Excessive accumulation of Fe induces the production of highly reactive hydroxyl radical species, which may play a role in cancer etiopathogenesis. To assess whether the levels of these metals in the FFPE prostate tissue represent their original content, we compared their levels with those in the fresh tissue (on dry weight basis) in samples obtained from 15 patients. We found that in FFPE tissue, the recoveries of Se, Fe, Cd and Zn were progressively decreased, 97??11% (r=0.88), 82??22% (r=0.86), 59??23% (r=0.69) and 24??11% (r=0.38), respectively. Thus, the use of correction factors, determined as k=0.16 for Se, k=0.20 for Fe, k=0.27 for Cd and k=0.67 for Zn, is required to estimate the retrospective levels of these elements in the parental non-processed fresh (wet) prostate tissue. The technique used in this study enables the analysis of archival FFPE prostate tissue for the concentrations of Fe, Zn, Se and Cd to study association between the levels of these metals and prostate disease. ?? 2008.

  7. Genomic DNA extraction methods using formalin-fixed paraffin-embedded tissue.

    PubMed

    Potluri, Keerti; Mahas, Ahmed; Kent, Michael N; Naik, Sameep; Markey, Michael

    2015-10-01

    As new technologies come within reach for the average cytogenetic laboratory, the study of chromosome structure has become increasingly more sophisticated. Resolution has improved from karyotyping (in which whole chromosomes are discernible) to fluorescence in situ hybridization and comparative genomic hybridization (CGH, with which specific megabase regions are visualized), array-based CGH (aCGH, examining hundreds of base pairs), and next-generation sequencing (providing single base pair resolution). Whole genome next-generation sequencing remains a cost-prohibitive method for many investigators. Meanwhile, the cost of aCGH has been reduced during recent years, even as resolution has increased and protocols have simplified. However, aCGH presents its own set of unique challenges. DNA of sufficient quantity and quality to hybridize to arrays and provide meaningful results is required. This is especially difficult for DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Here, we compare three different methods for acquiring DNA of sufficient length, purity, and "amplifiability" for aCGH and other downstream applications. Phenol-chloroform extraction and column-based commercial kits were compared with adaptive focused acoustics (AFA). Of the three extraction methods, AFA samples showed increased amplicon length and decreased polymerase chain reaction (PCR) failure rate. These findings support AFA as an improvement over previous DNA extraction methods for FFPE tissues.

  8. Fluorescence In Situ Hybridization for Diagnosis of Whipple's Disease in Formalin-Fixed Paraffin-Embedded Tissue.

    PubMed

    Braubach, Peter; Lippmann, Torsten; Raoult, Didier; Lagier, Jean-Christophe; Anagnostopoulos, Ioannis; Zender, Steffen; Länger, Florian Peter; Kreipe, Hans-Heinrich; Kühnel, Mark Philipp; Jonigk, Danny

    2017-01-01

    Whipple's disease (WD) is a rare chronic systemic infection with a wide range of clinical symptoms, routinely diagnosed in biopsies from the small intestine and other tissues by periodic acid-Schiff (PAS) diastase staining and immunohistological analysis with specific antibodies. The aim of our study was to improve the pathological diagnosis of WD. Therefore, we analyzed the potential of fluorescence in situ hybridization (FISH) for diagnosing WD, using a Tropheryma (T.) whipplei-specific probe. 19 formalin-fixed paraffin-embedded (FFPE) duodenal biopsy specimens of 12 patients with treated (6/12) and untreated (6/12) WD were retrospectively examined using PAS diastase staining, immunohistochemistry, and FISH. 20 biopsy specimens with normal intestinal mucosa, Helicobacter pylori, or mycobacterial infection, respectively, served as controls. We successfully detected T. whipplei in tissue biopsies with a sensitivity of 83% in untreated (5/6) and 40% in treated (4/10) cases of WD. In our study, we show that FISH-based diagnosis of individual vital T. whipplei in FFPE specimens is feasible and can be considered as ancillary diagnostic tool for the diagnosis of WD in FFPE material. We show that FISH not only detect active WD but also be helpful as an indicator for the efficiency of antibiotic treatment and for detection of recurrence of disease when the signal of PAS diastase and immunohistochemistry lags behind the recurrence of disease, especially if the clinical course of the patient and antimicrobial treatment is considered.

  9. Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study.

    PubMed

    Muciaccia, Barbara; Vico, Carmen; Aromatario, Mariarosaria; Fazi, Francesco; Cecchi, Rossana

    2015-01-01

    For a long time, it has been thought that fresh and frozen tissues are the only possible source of biological material useful to extract nucleic acids suitable for downstream molecular analysis. Recently, for forensic purpose such as personal identification, also fixed tissues have been used to recover DNA molecules, whereas RNA extracted from such material is still considered too degraded for gene expression studies. In the present pilot study, we evaluated the possibility to use forensic formalin-fixed paraffin-embedded (FFPE) samples, collected at autopsy at different postmortem intervals (PMI) from four individuals, to perform advanced molecular analyses. In particular, we performed qualitative and quantitative analyses of total RNAs extracted from different FFPE tissues and put expression profiles in relation with the organ type and the duration of PMI. Different classes of RNA molecular targets were studied by real-time quantitative RT-PCR. We report molecular evidence that small RNAs are the only RNA molecules still detectable in all the FFPE autoptic tissues. In particular, microRNAs (miRNAs) represent a consistent, stable, and well-preserved molecular target detectable even from tissue sources displaying signs of ongoing putrefaction at autopsy. In this pilot study, we show that miRNAs could represent a highly sensitive and potentially useful forensic marker. Amplification of specific miRNAs using paraffin-embedded blocks could facilitate retrospective molecular analysis using specific forensic-archived tissues chosen as most suitable according to PMI, and this approach would address molecular evidence in forensic cases in which fresh or frozen material is no longer available.

  10. Estimation of age-related DNA degradation from formalin-fixed and paraffin-embedded tissue according to the extraction methods

    PubMed Central

    Watanabe, Mototsugu; Hashida, Shinsuke; Yamamoto, Hiromasa; Matsubara, Takehiro; Ohtsuka, Tomoaki; Suzawa, Ken; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Toyooka, Shinichi; Miyoshi, Shinichiro

    2017-01-01

    Techniques for the extraction and use of nucleic acids from formalin-fixed and paraffin-embedded (FFPE) tissues, preserved over long time periods in libraries, have been developed. However, DNA extracted from FFPE tissues is generally damaged, and long-term storage may affect DNA quality. Therefore, it is important to elucidate the effect of long-term storage on FFPE tissues and evaluate the techniques used to extract DNA from them. In the present study, the yield, purity, and integrity of DNA in FFPE tissue samples was evaluated. Two DNA extraction techniques were used: A silica-binding DNA collection method using QIAamp DNA FFPE Tissue kit (QIA) and a total tissue DNA collection method using a WaxFree DNA extraction kit (WAX). A total of 25 FFPE tissues from lung adenocarcinomas were studied, which had been surgically resected and fixed at Okayama University Hospital prior to examination and subsequent storage at room temperature for 0.5, 3, 6, 9 and 12 years. Extracted DNA was quantified using ultraviolet absorbance, fluorescent dye, and quantitative polymerase chain reaction (qPCR). The quality of the DNA was defined by the absorbance ratio of 260 to 280 nm (A260/280) and Q-score, which is the quantitative value of qPCR product size ratio. The results demonstrated that the yield of total DNA extracted using WAX was significantly greater than when QIA was used (P<0.01); however, DNA extracted using WAX included more contaminants and was significantly more fragmented compared with DNA extracted using QIA (P<0.01). Aging had no significant effect on absolute DNA yield or DNA purity, although it did significantly contribute to increased DNA degradation for both QIA and WAX extraction (QIA P=0.02, WAX P=0.03; 0.5 years vs. 3 years, QIA P<0.01, WAX P=0.03; 9 years vs. 12 years). Both extraction methods are viable depending on whether high yield or high quality of extracted DNA is required. However, due to the increased degradation with age, storage time limits the

  11. Estimation of age-related DNA degradation from formalin-fixed and paraffin-embedded tissue according to the extraction methods.

    PubMed

    Watanabe, Mototsugu; Hashida, Shinsuke; Yamamoto, Hiromasa; Matsubara, Takehiro; Ohtsuka, Tomoaki; Suzawa, Ken; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Toyooka, Shinichi; Miyoshi, Shinichiro

    2017-09-01

    Techniques for the extraction and use of nucleic acids from formalin-fixed and paraffin-embedded (FFPE) tissues, preserved over long time periods in libraries, have been developed. However, DNA extracted from FFPE tissues is generally damaged, and long-term storage may affect DNA quality. Therefore, it is important to elucidate the effect of long-term storage on FFPE tissues and evaluate the techniques used to extract DNA from them. In the present study, the yield, purity, and integrity of DNA in FFPE tissue samples was evaluated. Two DNA extraction techniques were used: A silica-binding DNA collection method using QIAamp DNA FFPE Tissue kit (QIA) and a total tissue DNA collection method using a WaxFree DNA extraction kit (WAX). A total of 25 FFPE tissues from lung adenocarcinomas were studied, which had been surgically resected and fixed at Okayama University Hospital prior to examination and subsequent storage at room temperature for 0.5, 3, 6, 9 and 12 years. Extracted DNA was quantified using ultraviolet absorbance, fluorescent dye, and quantitative polymerase chain reaction (qPCR). The quality of the DNA was defined by the absorbance ratio of 260 to 280 nm (A260/280) and Q-score, which is the quantitative value of qPCR product size ratio. The results demonstrated that the yield of total DNA extracted using WAX was significantly greater than when QIA was used (P<0.01); however, DNA extracted using WAX included more contaminants and was significantly more fragmented compared with DNA extracted using QIA (P<0.01). Aging had no significant effect on absolute DNA yield or DNA purity, although it did significantly contribute to increased DNA degradation for both QIA and WAX extraction (QIA P=0.02, WAX P=0.03; 0.5 years vs. 3 years, QIA P<0.01, WAX P=0.03; 9 years vs. 12 years). Both extraction methods are viable depending on whether high yield or high quality of extracted DNA is required. However, due to the increased degradation with age, storage time limits the

  12. Immunocytochemistry performed on the cell-transferred direct smears of the fine-needle aspirates: a comparison study with the corresponding formalin-fixed paraffin-embedded tissue.

    PubMed

    Wu, Howard H; Jones, Kelly J; Cramer, Harvey M

    2013-06-01

    Immunocytochemistry (ICC) performed on the cell-transferred cytologic smears (CTCS) of fine-needle aspiration (FNA) is useful when the cell blocks lack adequate material. The comparison of the ICC results from the CTCS of FNA with the corresponding formalin-fixed paraffin-embedded tissue (FFPE) has not been reported previously. We applied 12 commonly used ICC antibodies on 160 pieces of ethanol-fixed, cell-transferred Papanicolaou-stained smears obtained from 42 FNA specimens and compared the staining results with the corresponding FFPE on which the same panel of immunostains was performed. Of the 160 pieces of transferred materials, only 3 (1.9%) were lost during specimen processing. In total, 153 of 157 (97.5%) showed staining results that agreed with the corresponding FFPE, including 78 of 81 positive staining and 75 of 76 negative staining cases. ICC performed on the cell-transferred FNA smears is reliable and shows staining results highly comparable with the corresponding FFPE tissue.

  13. [Detection of Mycobacterium tuberculosis complex in paraffin-embedded tissues by real-time fluorescent quantitative polymerase chain reaction].

    PubMed

    Ye, Feng; Chen, Yu; He, Du; Jian, Shu-yu; Zheng, Ke; Li, Gan-di; Bu, Hong

    2013-08-01

    To investigate the feasibility of real-time fluorescent quantitative (qPCR) assay in detecting mycobacterium tuberculosis complex (MTB) in paraffin embedded tissues for diagnostic purpose. Using qPCR assay, 1000 consecutive formalin-fixed and paraffin embedded (FFPE) tissues (from 2011 to 2012) suspected of MTB infection were tested by amplifying the MTB specific insertion sequence 6110 (IS6110). The specificity of the PCR product was confirmed by Sanger sequencing as compared with the MTB genomic DNA of the IS6110 sequence. Tissues with Ziehl-Neelsen acid-fast staining were used as control. In the 1000 samples, 513 were positive for mycobacterium by Ziehl-Neelsen acid-fast staining (detection rate 51.3%); whereas 546 were MTB positive by qPCR assay (detection rate 54.6%). Concordance rate for both assays was 73.1%. The diagnosis rate increased by 14.4% by combinination of Ziehl-Neelsen acid-fast staining and qPCR results. More interestingly, by analyzing the Ziehl-Neelsen acid-fast staining and qPCR results three cases of M.leprae infection and four cases of non-tuberculous Mycobacterium (NTM) infection were identified. qPCR detection of MTB in FFPE tissue is more sensitive than Ziehl-Neelsen acid-fast staining assay. Combination of these two assays can increase the detection rate and also identify some rare cases of NTM infection.

  14. Automated high throughput nucleic acid purification from formalin-fixed paraffin-embedded tissue samples for next generation sequence analysis

    PubMed Central

    Haile, Simon; Pandoh, Pawan; McDonald, Helen; Corbett, Richard D.; Tsao, Philip; Kirk, Heather; MacLeod, Tina; Jones, Martin; Bilobram, Steve; Brooks, Denise; Smailus, Duane; Steidl, Christian; Scott, David W.; Bala, Miruna; Hirst, Martin; Miller, Diane; Moore, Richard A.; Mungall, Andrew J.; Coope, Robin J.; Ma, Yussanne; Zhao, Yongjun; Holt, Rob A.; Jones, Steven J.

    2017-01-01

    Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95–100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting. PMID:28570594

  15. Automated high throughput nucleic acid purification from formalin-fixed paraffin-embedded tissue samples for next generation sequence analysis.

    PubMed

    Haile, Simon; Pandoh, Pawan; McDonald, Helen; Corbett, Richard D; Tsao, Philip; Kirk, Heather; MacLeod, Tina; Jones, Martin; Bilobram, Steve; Brooks, Denise; Smailus, Duane; Steidl, Christian; Scott, David W; Bala, Miruna; Hirst, Martin; Miller, Diane; Moore, Richard A; Mungall, Andrew J; Coope, Robin J; Ma, Yussanne; Zhao, Yongjun; Holt, Rob A; Jones, Steven J; Marra, Marco A

    2017-01-01

    Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.

  16. N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues.

    PubMed

    Everest-Dass, Arun V; Briggs, Matthew T; Kaur, Gurjeet; Oehler, Martin K; Hoffmann, Peter; Packer, Nicolle H

    2016-09-01

    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the

  17. PCR for the Diagnosis of Abdominal Angiostrongyliasis in Formalin-Fixed Paraffin-Embedded Human Tissue

    PubMed Central

    Rodriguez, Rubens; da Silva, Ana Cristina Aramburú; Müller, Carla Aristonara; Alves, Silvana Lunardini; Graeff-Teixeira, Carlos; Fornari, Fernando

    2014-01-01

    To date the diagnosis of abdominal angiostrongyliasis (AA) depends on the histological identification of Angiostrongylus costaricensis (AC) in surgical specimens. However, microscopic evaluation is time consuming and often fails in identifying the parasite. We tested whether PCR might help in the diagnosis of AA by identifying parasite DNA in formalin-fixed paraffin-embedded (FFPE) tissue. We used primers based on DNA from Angiostrongilus cantonensis. Four groups of FFPE intestinal tissue were tested: (1) confirmed cases (n = 20), in which AC structures were present in the target tissue; (2) presumptive cases (n = 20), containing changes secondary to AC infection in the absence of AC structures; (3) negative controls (n = 3), consisting of normal colonic tissue; and (4) tissue affected by other parasitoses (n = 7), including strongyloidiasis, ascaridiasis, schistosomiasis, and enterobiasis. Most lesions of confirmed cases were located in small and/or large bowel (90%), as compared with presumptive cases, in which 70% of lesions were in appendix (P = 0.0002). When confronted with cases of other parasitoses, PCR showed sensitivity of 55%, specificity of 100% and positive predictive value of 100%. In presumptive cases PCR was positive in 4 (20%). All specimens from negative controls and other parasitoses were negative. In conclusion, the PCR technique showed intermediate sensitivity and optimal specificity, being clinically relevant when positive for abdominal angiostrongyliasis. It allowed a 20% gain in diagnosis of presumptive cases. PCR might help in the diagnosis of abdominal angiostrongyliasis, particularly when the pathologists are not experienced with such disease. PMID:24705328

  18. Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression.

    PubMed

    Patel, Vyomesh; Hood, Brian L; Molinolo, Alfredo A; Lee, Norman H; Conrads, Thomas P; Braisted, John C; Krizman, David B; Veenstra, Timothy D; Gutkind, J Silvio

    2008-02-15

    Squamous cell carcinoma of the head and neck (HNSCC), the sixth most prevalent cancer among men worldwide, is associated with poor prognosis, which has improved only marginally over the past three decades. A proteomic analysis of HNSCC lesions may help identify novel molecular targets for the early detection, prevention, and treatment of HNSCC. Laser capture microdissection was combined with recently developed techniques for protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues and a novel proteomics platform. Approximately 20,000 cells procured from FFPE tissue sections of normal oral epithelium and well, moderately, and poorly differentiated HNSCC were processed for mass spectrometry and bioinformatic analysis. A large number of proteins expressed in normal oral epithelium and HNSCC, including cytokeratins, intermediate filaments, differentiation markers, and proteins involved in stem cell maintenance, signal transduction, migration, cell cycle regulation, growth and angiogenesis, matrix degradation, and proteins with tumor suppressive and oncogenic potential, were readily detected. Of interest, the relative expression of many of these molecules followed a distinct pattern in normal squamous epithelia and well, moderately, and poorly differentiated HNSCC tumor tissues. Representative proteins were further validated using immunohistochemical studies in HNSCC tissue sections and tissue microarrays. The ability to combine laser capture microdissection and in-depth proteomic analysis of FFPE tissues provided a wealth of information regarding the nature of the proteins expressed in normal squamous epithelium and during HNSCC progression, which may allow the development of novel biomarkers of diagnostic and prognostic value and the identification of novel targets for therapeutic intervention in HNSCC.

  19. A MALDI-Mass Spectrometry Imaging method applicable to different formalin-fixed paraffin-embedded human tissues.

    PubMed

    De Sio, Gabriele; Smith, Andrew James; Galli, Manuel; Garancini, Mattia; Chinello, Clizia; Bono, Francesca; Pagni, Fabio; Magni, Fulvio

    2015-06-01

    Recent advancements in Matrix Assisted Laser Desorption/Ionisation (MALDI) Mass Spectrometry Imaging (MSI) technology have enabled the analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples, unlocking a wealth of new proteomic information and facilitating the possibility of performing studies with higher statistical power as well as multi-centric collaborations within the field of proteomics research. However, current methods used to analyse these specimens are often time-consuming and they need to be modified when applied to human tissues of different origin. Here we present a reproducible and time-effective method that could address these aforementioned issues and widen the applicability of this technology to a number of challenging tissue types. Additionally, tissue molecular images show high spatial resolution and a strong correlation with the morphological features, enabling the identification of tissue morphology using statistically derived visualisation, without any prior knowledge.

  20. DNA extraction from archival formalin-fixed, paraffin-embedded tissues: heat-induced retrieval in alkaline solution.

    PubMed

    Shi, Shan-Rong; Datar, Ram; Liu, Cheng; Wu, Lin; Zhang, Zina; Cote, Richard J; Taylor, Clive R

    2004-09-01

    Based on the antigen retrieval principle, our previous study has demonstrated that heating archival formalin-fixed, paraffin-embedded (FFPE) tissues at a higher temperature and at higher pH value of the retrieval solution may achieve higher efficiency of extracted DNA, when compared to the traditional enzyme digestion method. Along this line of heat-induced retrieval, this further study is focused on development of a simpler and more effective heat-induced DNA retrieval technique by testing various retrieval solutions. Three major experiments using a high temperature heating method to extract DNA from FFPE human lymphoid and other tissue sections were performed to compare: (1) different concentrations of alkaline solution (NaOH or KOH, pH 11.5-12) versus Britton and Robinson type of buffer solution (BR buffer) of pH 12 that was the only retrieval solution tested in our previous study; (2) several chemical solutions (SDS, Tween 20, and GITC of various concentrations) versus BR buffer or alkaline solution; and (3) alkaline solution mixed with chemicals versus BR buffer or single alkaline solution. Efficiency of DNA extraction was evaluated by measuring yields using spectrophotometry, electrophoretic pattern, semiquantitation of tissue dissolution, PCR amplification, and kinetic thermocycling-PCR methods. Results showed that boiling tissue sections in 0.1 M NaOH or KOH or its complex retrieval solutions produced higher yields and better quality of DNA compared to BR buffer or chemical solutions alone. The conclusion was that boiling FFPE tissue sections in 0.1 M alkaline solution is a simpler and more effective heat-induced retrieval protocol for DNA extraction. Combination with some chemicals (detergents) may further significantly improve efficiency of the heat-induced retrieval technique.

  1. Segmental Chromosomal Aberrations in Localized Neuroblastoma Can be Detected in Formalin-Fixed Paraffin-Embedded Tissue Samples and Are Associated With Recurrence

    PubMed Central

    Pinto, Navin; Mayfield, Jodi R.; Raca, Gordana; Applebaum, Mark A.; Chlenski, Alexandre; Sukhanova, Madina; Bagatell, Rochelle; Irwin, Meredith S.; Little, Anthony; Rawwas, Jawhar; Gosiengfiao, Yasmin; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Lapouble, Eve; Schleiermacher, Gudrun; Cohn, Susan L.

    2016-01-01

    Background Array comparative genomic hybridization (CGH) analyses of frozen tumors have shown strong associations between the pattern of chromosomal aberrations and outcome in patients with advanced-stage neuroblastoma. New platforms for analyzing chromosomal aberrations using formalin-fixed paraffin-embedded (FFPE) tissue have recently been developed. We sought to determine whether chromosomal microarray analysis (CMA) using FFPE tumors is feasible and if segmental chromosomal aberrations were prognostic of recurrence in localized neuroblastoma. Methods Patients with MYCN nonamplified International Neuroblastoma Staging System stage 1 and 2 disease who recurred were identified. CMA was performed with diagnostic FFPE samples using OncoScan™ FFPE Express 2.0. The prognostic significance of chromosomal pattern was validated in 105 patients with available CGH results. Results In 26 evaluable patients, 11 recurred locally, nine had metastatic relapse, and six remained progression free >3 years from diagnosis. No chromosomal aberrations were identified in four tumors. Numerical chromosomal aberrations (NCAs) without segmental chromosomal aberration (SCA) were identified in 11 patients: six progressed locally, two had metastatic progression and 3 remained progression-free. Eleven patients had SCAs: four progressed locally, six developed metastatic progression and one remained progression-free. Five or more SCAs were only detected in tumors from patients who developed metastases (P = 0.0004). In the validation cohort, SCAs were associated with inferior event-free survival (EFS) compared to NCA (5-year EFS 68% ± 8.3% vs. 91% ± 3.6%, respectively; P = 0.0083). Conclusions It is feasible to evaluate chromosomal aberrations using FFPE neuroblastoma tissue. SCA is associated with inferior EFS in localized neuroblastoma patients, and multiple SCAs may be predictive of metastatic relapse. PMID:26864375

  2. Bisulfite-Based DNA Methylation Analysis from Recent and Archived Formalin-Fixed, Paraffin Embedded Colorectal Tissue Samples.

    PubMed

    Kalmár, Alexandra; Péterfia, Bálint; Hollósi, Péter; Wichmann, Barnabás; Bodor, András; Patai, Árpád V; Schöller, Andrea; Krenács, Tibor; Tulassay, Zsolt; Molnár, Béla

    2015-09-01

    We aimed to test the applicability of formalin-fixed and paraffin-embedded (FFPE) tissue samples for gene specific DNA methylation analysis after using two commercially available DNA isolation kits. Genomic DNA was isolated from 5 colorectal adenocarcinomas and 5 normal adjacent tissues from "recent", collected within 6 months, and "archived", collected more than 5 years ago, FFPE tissues using either High Pure FFPET DNA Isolation kit or QIAamp DNA FFPE Tissue kit. DNA methylation analysis of MAL, SFRP1 and SFRP2 genes, known to be hypermethylated in CRC, was performed using methylation-sensitive high resolution melting (MS-HRM) analysis and sequencing. QIAamp (Q) method resulted in slightly higher recovery in archived (HP: 1.22 ± 3.18 μg DNA; Q: 3.00 ± 4.04 μg DNA) and significantly (p < 0.05) higher recovery in recent samples compared to High Pure method (HP) (HP: 4.10 ± 2.91 μg DNA; Q: 11.51 ± 7.50 μg DNA). Both OD260/280 and OD260/230 ratios were lower, but still high in the High Pure isolated archived and recent samples compared to those isolated with QIAamp. Identical DNA methylation patterns were detected for all 3 genes tested by MS-HRM with both isolation kits in the recent group. However, despite of higher DNA recovery in QIAamp slightly more reproducible methylation results were obtained from High Pure isolated archived samples. Sequencing confirmed DNA hypermethylation in CRCs. In conclusion, reproducible DNA methylation patterns were obtained from recent samples using both isolation kits. However, long term storage may affect the reliability of the results leading to moderate differences between the efficiency of isolation kits.

  3. Improved PCR amplification for molecular analysis using DNA from long-term preserved formalin-fixed, paraffin-embedded lung cancer tissue specimens.

    PubMed

    Taga, Masataka; Eguchi, Hidetaka; Shinohara, Tomoko; Takahashi, Keiko; Ito, Reiko; Yasui, Wataru; Nakachi, Kei; Kusunoki, Yoichiro; Hamatani, Kiyohiro

    2013-01-01

    Archival tissue specimens are valuable resources of materials for molecular biological analyses in retrospective studies, especially for rare diseases or those associated with exposure to uncommon environmental events. Although successful amplification with PCR is essential for analysis of DNA extracted from archival formalin-fixed, paraffin-embedded (FFPE) tissue specimens, we have often encountered problems with poor PCR amplification of target fragments. To overcome this, we examined whether heat treatment in alkaline solution could efficiently restore the PCR template activity of DNA that had already been extracted from FFPE lung cancer tissue specimens. The effect of the heat treatment was assessed by PCR for the TP53 gene and other lung cancer-related gene loci. The heat treatment of DNA samples in borate buffer resulted in successful PCR amplification of DNA fragments ranging from 91 to 152 bp. This technique for restoration of template activity of DNA for PCR amplification is very simple and economical, and requires no special apparatus, so it may be applicable for molecular analysis of DNA samples from FFPE tissue specimens at various laboratories.

  4. A practical approach to the clinical diagnosis of Ewing's sarcoma/primitive neuroectodermal tumour and other small round cell tumours sharing EWS rearrangement using new fluorescence in situ hybridisation probes for EWSR1 on formalin fixed, paraffin wax embedded tissue.

    PubMed

    Yamaguchi, U; Hasegawa, T; Morimoto, Y; Tateishi, U; Endo, M; Nakatani, F; Kawai, A; Chuman, H; Beppu, Y; Endo, M; Kurotaki, H; Furuta, K

    2005-10-01

    Over 90% of Ewing's sarcoma/primitive neuroectodermal tumour (ES/PNET) cases have the t(11;22) chromosomal rearrangement, which is also found in other small round cell tumours, including desmoplastic small round cell tumour (DSRCT) and clear cell sarcoma (CCS). Although this rearrangement can be analysed by fluorescence in situ hybridisation (FISH) using routinely formalin fixed, paraffin wax embedded (FFPE) tissues when fresh or frozen tissues are not available, a sensitive and convenient detection method is needed for routine clinical diagnosis. To investigate the usefulness of newly developed probes for detecting EWS rearrangement resulting from chromosomal translocations using FISH and FFPE tissue in the clinical diagnosis of ES/PNET, DSRCT, and CCS. Sixteen ES/PNETs, six DSRCTs, and six CCSs were studied. Three poorly differentiated synovial sarcomas, three alveolar rhabdomyosarcomas, and three neuroblastomas served as negative controls. Interphase FISH analysis was performed on FFPE tissue sections with a commercially available EWSR1 (22q12) dual colour, breakapart rearrangement probe. One fused signal and one split signal of orange and green, demonstrating rearrangement of the EWS gene, was detected in 14 of 16 ES/PNETs, all six DRSCTs, and five of six CCSs, but not in the negative controls. Interphase FISH using this newly developed probe is sensitive and specific for detecting the EWS gene on FFPE tissues and is of value in the routine clinical diagnosis of ES/PNET, DSRCT, and CCS.

  5. Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue.

    PubMed

    Kader, Tanjina; Goode, David L; Wong, Stephen Q; Connaughton, Jacquie; Rowley, Simone M; Devereux, Lisa; Byrne, David; Fox, Stephen B; Mir Arnau, Gisela; Tothill, Richard W; Campbell, Ian G; Gorringe, Kylie L

    2016-11-15

    Unlocking clinically translatable genomic information, including copy number alterations (CNA), from formalin-fixed paraffin-embedded (FFPE) tissue is challenging due to low yields and degraded DNA. We describe a robust, cost-effective low-coverage whole genome sequencing (LC WGS) method for CNA detection using 5 ng of FFPE-derived DNA. CN profiles using 100 ng or 5 ng input DNA were highly concordant and comparable with molecular inversion probe (MIP) array profiles. LC WGS improved CN profiles of samples that performed poorly using MIP arrays. Our technique enables identification of driver and prognostic CNAs in archival patient samples previously deemed unsuitable for genomic analysis due to DNA limitations.

  6. Comparison of the QuantiGene 2.0 Assay and Real-Time RT-PCR in the Detection of p53 Isoform mRNA Expression in Formalin-Fixed Paraffin-Embedded Tissues- A Preliminary Study

    PubMed Central

    Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.

    2016-01-01

    p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134

  7. The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies

    PubMed Central

    Zhang, Pan

    2017-01-01

    High throughput genomic assays empower us to study the entire human genome in short time with reasonable cost. Formalin fixed-paraffin-embedded (FFPE) tissue processing remains the most economical approach for longitudinal tissue specimen storage. Therefore, the ability to apply high throughput genomic applications to FFPE specimens can expand clinical assays and discovery. Many studies have measured the accuracy and repeatability of data generated from FFPE specimens using high throughput genomic assays. Together, these studies demonstrate feasibility and provide crucial guidance for future studies using FFPE specimens. Here, we summarize the findings of these studies and discuss the limitations of high throughput data generated from FFPE specimens across several platforms that include microarray, high throughput sequencing, and NanoString. PMID:28246590

  8. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study.

    PubMed

    Iddawela, Mahesh; Rueda, Oscar; Eremin, Jenny; Eremin, Oleg; Cowley, Jed; Earl, Helena M; Caldas, Carlos

    2017-07-11

    An absence of reliable molecular markers has hampered individualised breast cancer treatments, and a major limitation for translational research is the lack of fresh tissue. There are, however, abundant banks of formalin-fixed paraffin-embedded (FFPE) tissue. This study evaluated two platforms available for the analysis of DNA copy number and gene expression using FFPE samples. The cDNA-mediated annealing, selection, extension, and ligation assay (DASL™) has been developed for gene expression analysis and the Molecular Inversion Probes assay (Oncoscan™), were used for copy number analysis using FFPE tissues. Gene expression and copy number were evaluated in core-biopsy samples from patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Forty-three core-biopsies were evaluated and characteristic copy number changes in breast cancers, gains in 1q, 8q, 11q, 17q and 20q and losses in 6q, 8p, 13q and 16q, were confirmed. Regions that frequently exhibited gains in tumours showing a pathological complete response (pCR) to NAC were 1q (55%), 8q (40%) and 17q (40%), whereas 11q11 (37%) gain was the most frequent change in non-pCR tumours. Gains associated with poor survival were 11q13 (62%), 8q24 (54%) and 20q (47%). Gene expression assessed by DASL correlated with immunohistochemistry (IHC) analysis for oestrogen receptor (ER) [area under the curve (AUC) = 0.95], progesterone receptor (PR)(AUC = 0.90) and human epidermal growth factor type-2 receptor (HER-2) (AUC = 0.96). Differential expression analysis between ER+ and ER- cancers identified over-expression of TTF1, LAF-4 and C-MYB (p ≤ 0.05), and between pCR vs non-pCRs, over-expression of CXCL9, AREG, B-MYB and under-expression of ABCG2. This study was an integrative analysis of copy number and gene expression using FFPE core biopsies and showed that molecular marker data from FFPE tissues were consistent with those in previous studies using fresh-frozen samples. FFPE tissue can provide

  9. Generating Exome Enriched Sequencing Libraries from Formalin-Fixed, Paraffin-Embedded Tissue DNA for Next-Generation Sequencing.

    PubMed

    Marosy, Beth A; Craig, Brian D; Hetrick, Kurt N; Witmer, P Dane; Ling, Hua; Griffith, Sean M; Myers, Benjamin; Ostrander, Elaine A; Stanford, Janet L; Brody, Lawrence C; Doheny, Kimberly F

    2017-01-11

    This unit describes a technique for generating exome-enriched sequencing libraries using DNA extracted from formalin-fixed paraffin-embedded (FFPE) samples. Utilizing commercially available kits, we present a low-input FFPE workflow starting with 50 ng of DNA. This procedure includes a repair step to address damage caused by FFPE preservation that improves sequence quality. Subsequently, libraries undergo an in-solution-targeted selection for exons, followed by sequencing using the Illumina next-generation short-read sequencing platform. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  10. Use of Sequenom sample ID Plus® SNP genotyping in identification of FFPE tumor samples.

    PubMed

    Miller, Jessica K; Buchner, Nicholas; Timms, Lee; Tam, Shirley; Luo, Xuemei; Brown, Andrew M K; Pasternack, Danielle; Bristow, Robert G; Fraser, Michael; Boutros, Paul C; McPherson, John D

    2014-01-01

    Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archival formalin-fixed paraffin embedded (FFPE) tissues is that varying levels of DNA degradation can result in failure to correctly identify samples using STR genotyping. PCR amplification of STRs of several hundred base pairs is not always possible when DNA is degraded. The Sample ID Plus® panel from Sequenom allows for human DNA identification and authentication using SNP genotyping. In comparison to lengthy STR amplicons, this multiplexing PCR assay requires amplification of only 76-139 base pairs, and utilizes 47 SNPs to discriminate between individual samples. In this study, we evaluated both STR and SNP genotyping methods of sample identification, with a focus on paired FFPE tumor/normal DNA samples intended for next-generation sequencing (NGS). The ability to successfully validate the identity of FFPE samples can enable cost savings by reducing rework.

  11. In Silico Analysis Validates Proteomic Findings of Formalin-fixed Paraffin Embedded Cutaneous Squamous Cell Carcinoma Tissue

    PubMed Central

    AZIMI, ALI; L. KAUFMAN, KIMBERLEY; ALI, MARINA; KOSSARD, STEVEN; FERNANDEZ-PENAS, PABLO

    2016-01-01

    Background: Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer but there are no comprehensive proteomic studies on this entity. Materials and Methods: We employed liquid chromatography coupled with tandem mass spectrometry (MS/MS) using formalin-fixed paraffin-embedded (FFPE) cSCC material to study the tumor and normal skin tissue proteomes. Ingenuity Pathway Analysis (IPA) was used to interpret the role of altered proteins in cSCC pathophysiology. Results were validated using the Human Protein Atlas and Oncomine database in silico. Results: Of 1,310 unique proteins identified, expression of an average of 144 and 88 proteins were significantly (p<0.05) increased and decreased, respectively, in the tumor samples compared to their normal counterparts. IPA analysis revealed disruptions in proteins associated with cell proliferation, apoptosis, and migration. In silico analysis confirmed that proteins corresponding to 12 antibodies, and genes corresponding to 18 proteins were differentially expressed between the two categories, validating our proteomic measurements. Conclusion: Label-free MS-based proteomics is useful for analyzing FFPE cSCC tissues. PMID:27807068

  12. Expression level of miR-93 in formalin-fixed paraffin-embedded tissues of breast cancer patients.

    PubMed

    Deng, Zhao-qun; Qian, Jun; Liu, Feng-qiong; Lin, Jiang; Shao, Rui; Yin, Jia-yu; Tang, Qin; Zhang, Ming; He, Li

    2014-05-01

    MiR-93 is thought to be an onco-miRNA for its capabilities of enhancing tumor growth. The objective of this study was to evaluate the potential predictive value of miR-93 expression in formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer patients. The expression of miR-93 was examined in 101 breast cancer patients and 40 controls using real-time quantitative PCR. We found that miR-93 was markedly upregulated in breast cancer patients compared with controls (p<0.01). The expression level of miR-93 was significantly correlated with miR-24/378 in breast cancer patients. MiR-93 exhibited great capability of discriminating between cancer patients and cancer-free controls by receiver-operator characteristic (ROC) curve analysis. MiR-93 showed 0.866 AUC (the area under the ROC curve) values. The MiR-93 level was found significantly correlated with breast cancer by univariable logistic regression. These results suggest that overexpression of miR-93 in FFPE tissues may serve as an indispensable source for biomarker discovery and validation in breast cancer patients.

  13. Differential proteomic analysis of late-stage and recurrent breast cancer from formalin-fixed paraffin-embedded tissues.

    PubMed

    Bateman, Nicholas W; Sun, Mai; Bhargava, Rohit; Hood, Brian L; Darfler, Marlene M; Kovatich, Albert J; Hooke, Jeffrey A; Krizman, David B; Conrads, Thomas P

    2011-03-04

    The heterogeneity of breast cancer requires the discovery of more incisive molecular tools that better define disease progression and prognosis. Proteomic analysis of homogeneous tumor cell populations derived by laser microdissection from formalin-fixed, paraffin-embedded (FFPE) tissues has proven to be a robust strategy for conducting retrospective cancer biomarker investigations. We describe an MS-based analysis of laser microdissected cancerous epithelial cells derived from twenty-five breast cancer patients at defined clinical disease stages with the goal of identifying protein abundance characteristics indicative of disease progression and recurrence. Comparative analysis of stage 0 and stage III patients revealed 113 proteins that significantly differentiated these groups and included known factors associated with disease pathogenesis, such as CDH1 and CTNNB1, as well as those previously implicated in breast cancer, such as TSP-1. Similar analyses of patients presenting with stage II disease that did or did not exhibit recurrence two years postdiagnosis revealed 42 proteins that significantly differentiated these subgroups and included IRS-1 and PARK7. These data provide evidence supporting the utility of FFPE tissues for functional proteomic analyses and protein biomarker discovery and yielded protein candidates indicative of disease stage and recurrence in breast cancer that warrant further investigation for diagnostic utility and biological relevance.

  14. Comparison of five protocols to extract DNA from paraffin-embedded tissues for the detection of human papillomavirus.

    PubMed

    Alvarez-Aldana, Adalucy; Martínez, José William; Sepúlveda-Arias, Juan C

    2015-02-01

    Formalin-fixed paraffin-embedded (FFPE) tissues are a valuable source of DNA with which to perform large retrospective studies on the epidemiology of HPV infection. Five different DNA extraction protocols were carried out to evaluate the DNA obtained from FFPE samples with polymerase chain reaction (PCR) using two primer sets to amplify a constitutive human gene, β-globin, and two primer sets to detect the L1 and E6 HPV genes. From the five DNA extraction protocols evaluated, the best results were obtained with protocol A, corresponding to a crude extract from the sample. With the procedures described herein, we were able to amplify DNA extracted from archival paraffin blocks stored for six years. However, the amplification products were more efficiently obtained with primers that amplified shorter fragments. This result indicates that a major factor limiting the extraction process in these samples is DNA fragmentation, a factor that will naturally vary between the different specimens evaluated. Also, depending upon the extraction method, PCR amplification of a human gene does not necessarily guarantee the successful extraction of viral DNA. In conclusion, different DNA and HPV detection methods can significantly influence the results. Therefore, the DNA extraction methods and primers used for DNA amplification in fixed tissues need to be chosen carefully, depending on the specific requirements of the study being carried out.

  15. A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients.

    PubMed

    Chatterjee, Aniruddha; Leichter, Anna L; Fan, Vicky; Tsai, Peter; Purcell, Rachel V; Sullivan, Michael J; Eccles, Michael R

    2015-06-03

    Although formalin fixed paraffin embedded (FFPE) tissue is a major biological source in cancer research, it is challenging to work with due to macromolecular fragmentation and nucleic acid crosslinking. Therefore, it is important to characterise the quality of data that can be obtained from FFPE samples. We have compared three independent platforms (next generation sequencing, microarray and NanoString) for profiling microRNAs (miRNAs) using clinical FFPE samples from hepatoblastoma (HB) patients. The number of detected miRNAs ranged from 228 to 345 (median = 294) using the next generation sequencing platform, whereas 79 to 125 (median = 112) miRNAs were identified using microarrays in three HB samples, including technical replicates. NanoString identified 299 to 372 miRNAs in two samples. Between the platforms, we observed high reproducibility and significant levels of shared detection. However, for commonly detected miRNAs, a strong correlation between platforms was not observed. Analysis of 10 additional HB samples with NanoString identified significantly overlapping miRNA expression profiles, and an alternative pattern was identified in a poorly differentiated HB with an aggressive phenotype. This investigation serves as a roadmap for future studies investigating miRNA expression in clinical FFPE samples, and as a guideline for the selection of an appropriate platform.

  16. A novel reactive resin for embedding biological tissue

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfu; Liu, Xiuli; Gang, Yadong; Lv, Xiaohua; Zeng, Shaoqun

    2017-02-01

    We developed a novel reactive embedding resin that crosslinking with the biological tissue via the reaction of epoxy group and amino group, which improves its compatibility with biological tissue and can be good to preserve endogenous fluorescent protein and dyes.

  17. DNA and RNA isolation from canine oncologic formalin-fixed, paraffin-embedded tissues for downstream "-omic" analyses: possible or not?

    PubMed

    Granato, Anna; Giantin, Mery; Ariani, Pietro; Carminato, Antonio; Baratto, Chiara; Zorzan, Eleonora; Vascellari, Marta; Bozzato, Elisa; Dacasto, Mauro; Mutinelli, Franco

    2014-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues represent a unique source of archived biological material, but obtaining suitable DNA and RNA for retrospective "-omic" investigations is still challenging. In the current study, canine tumor FFPE blocks were used to 1) compare common commercial DNA and RNA extraction kits; 2) compare target gene expression measured in FFPE blocks and biopsies stored in a commercial storage reagent; 3) assess the impact of fixation time; and 4) perform biomolecular investigations on archival samples chosen according to formalin fixation times. Nucleic acids yield and quality were determined by spectrophotometer and capillary electrophoresis, respectively. Quantitative real-time polymerase chain reaction assays for the following genes: BCL-2-associated X protein, B-cell lymphoma extra large, antigen identified by monoclonal antibody Ki-67, proto-oncogene c-KIT (c-kit). Two internal control genes (Golgin A1 and canine transmembrane BAX inhibitor motif containing 4), together with direct sequencing of c-kit exons 8, 9, 11, and 17, were used as end points. Differences in DNA/RNA yield and purity were noticed among the commercial kits. Nucleic acids (particularly RNA) extracted from paraffin blocks were degraded, even at lower fixation times. Compared to samples held in the commercial storage reagent, archived tissues showed a poorer amplification. Therefore, a gold standard protocol for DNA/RNA isolation from canine tumor FFPE blocks for molecular investigations is still troublesome. More standardized storage conditions, including time between sample acquisition and fixation, fixation time, and sample thickness, are needed to guarantee the preservation of nucleic acids and, then, their possible use in retrospective transcriptomic analysis.

  18. Performance characteristics of nested polymerase chain reaction vs real-time polymerase chain reaction methods for detecting Mycobacterium tuberculosis complex in paraffin-embedded human tissues.

    PubMed

    Seo, An Na; Park, Hyo Jin; Lee, Hye Seung; Park, Jung Ok; Chang, Ho Eun; Nam, Kyung Han; Choe, Gheeyoung; Park, Kyoung Un

    2014-09-01

    Nucleic acid amplification tests on formalin-fixed, paraffin-embedded (FFPE) tissue specimens enable Mycobacterium tuberculosis complex (MTB) detection and rapid tuberculosis diagnosis in the absence of microbiologic culture tests. We aimed to evaluate the efficacy of different polymerase chain reaction (PCR) methods for detecting Mycobacterium species in FFPE tissues. We examined 110 FFPE specimens (56 nonmycobacterial cases, 32 MTB, and 22 nontuberculous mycobacteria [NTM] determined by acid-fast bacilli [AFB] culture) to assess five PCR methods: nested PCR (N-PCR) (Seeplex MTB Nested ACE Detection; Seegene, Seoul, South Korea), an in-house real-time PCR (RT-PCR) method, and three commercial RT-PCR methods (AccuPower MTB RT-PCR [Bioneer, Seoul, Korea], artus M tuberculosis TM PCR [Qiagen, Hilden, Germany], and AdvanSure tuberculosis/NTM RT-PCR [LG Life Sciences, Seoul, Korea]). The results of N-PCR, in-house RT-PCR, and AdvanSure RT-PCR correlated well with AFB culture results (concordance rates, 94.3%, 87.5%, and 89.5%, respectively). The sensitivity of N-PCR (87.5%) was higher than that of the RT-PCR methods, although these differences were not statistically significant between N-PCR and the in-house and AdvanSure RT-PCR methods (68.8% and 80.0%, respectively). All the PCR methods had high specificities, ranging from 98.2% to 100%. Only two NTM cases were detected by AdvanSure RT-PCR, implying a very low sensitivity. Well-designed RT-PCR and N-PCR can effectively identify MTB in FFPE specimens. Copyright© by the American Society for Clinical Pathology.

  19. Over-expression of miR-98 in FFPE tissues might serve as a valuable source for biomarker discovery in breast cancer patients.

    PubMed

    Deng, Zhao-Qun; Yin, Jia-Yu; Tang, Qin; Liu, Feng-Qiong; Qian, Jun; Lin, Jiang; Shao, Rui; Zhang, Ming; He, Li

    2014-01-01

    The miR-98 is thought to be associated with various cancers. This study was to evaluate the potential predictive value of miR-98 expression in formalin-fixed paraffin-embedded tissue of breast cancer patients. The expression levels of miR-98 were examined in 98 breast cancer patients and 40 cancer-free controls using real-time quantitative PCR. The comparison of miR-98 expression levels between patient and control was performed using the Mann-Whitney test. The miR-98 showed higher expression levels in breast cancer patients compared with cancer free controls (p<0.01). The expression levels of miR-98 were highly correlated with miR24/93/378 in breast cancer patients. The miR-98 exhibited great capability of discriminating between cancer patients and controls by the Receiver-operator characteristic (ROC) curve analysis. The miR-98 was found highly correlated with breast cancer by Univariable logistic regression analysis. These results suggest that over-expression of miR-98 in formalin-fixed paraffin-embedded tissues might serve as a valuable source for biomarker discovery in breast cancer patients.

  20. Comparison of triple-negative breast cancer molecular subtyping using RNA from matched fresh-frozen versus formalin-fixed paraffin-embedded tissue.

    PubMed

    Jovanović, Bojana; Sheng, Quanhu; Seitz, Robert S; Lawrence, Kasey D; Morris, Stephan W; Thomas, Lance R; Hout, David R; Schweitzer, Brock L; Guo, Yan; Pietenpol, Jennifer A; Lehmann, Brian D

    2017-04-04

    Triple negative breast cancer (TNBC) is a heterogeneous disease that lacks unifying molecular alterations that can guide therapy decisions. We previously identified distinct molecular subtypes of TNBC (TNBCtype) using gene expression data generated on a microarray platform using frozen tumor specimens. Tumors and cell lines representing the identified subtypes have distinct enrichment in biologically relevant transcripts with differing sensitivity to standard chemotherapies and targeted agents. Since our initial discoveries, RNA-sequencing (RNA-seq) has evolved as a sensitive and quantitative tool to measure transcript abundance. To demonstrate that TNBC subtypes were similar between platforms, we compared gene expression from matched specimens profiled by both microarray and RNA-seq from The Cancer Genome Atlas (TCGA). In the clinical care of patients with TNBC, tumor specimens collected for diagnostic purposes are processed by formalin fixation and paraffin-embedding (FFPE). Thus, for TNBCtype to eventually have broad and practical clinical utility we performed RNA-seq gene expression and molecular classification comparison between fresh-frozen (FF) and FFPE tumor specimens. Analysis of TCGA showed consistent subtype calls between 91% of evaluable samples demonstrating conservation of TNBC subtypes across microarray and RNA-seq platforms. We compared RNA-seq performed on 21-paired FF and FFPE TNBC specimens and evaluated genome alignment, transcript coverage, differential transcript enrichment and concordance of TNBC molecular subtype calls. We demonstrate that subtype accuracy between matched FF and FFPE samples increases with sequencing depth and correlation strength to an individual TNBC subtype. TNBC subtypes were reliably identified from FFPE samples, with highest accuracy if the samples were less than 4 years old and reproducible subtyping increased with sequencing depth. To reproducibly subtype tumors using gene expression, it is critical to select genes

  1. [Amyloid typing from formalin-fixed paraffin-embedded tissues using LMD-LC-MS/MS system].

    PubMed

    Tasaki, Masayoshi; Obayashi, Konen; Ueda, Mitsuharu; Ando, Yukio

    2014-03-01

    Amyloidosis is one of the protein conformational disorders in which normally soluble proteins accumulate insoluble amyloid fibrils, leading to severe organ dysfunction. To date, 30 different amyloidogenic proteins have been reported. Immunohistochemistry (IHC) is usually used to identify the amyloid precursor protein, but the results may be inconclusive owing to a loss of epitopes or small amounts of amyloid deposits, comprising unknown amyloidogenic protein. Recently, laser microdissection (LMD)-liquid chromatography tandem mass spectrometry (LC-MS/MS) has been used in a novel method to identify amyloid precursor protein from amyloid-laden formalin-fixed paraffin embedded (FFPE) tissues. We describe the usefulness of the system for amyloid typing in this report.

  2. Cryomold: a device for tissue embedding in Mohs micrographic surgery.

    PubMed

    Leshin, B; Cook, S R; Frye, D W

    1991-03-01

    We describe the use of a cryomold as a technique for tissue embedding in Mohs Micrographic Surgery. This technique regularly affords many advantages over other methods of tissue embedding, such as: 1) regularly and expeditiously yields complete margins for microscopic review; 2) facilitates flattening of large, thick, and irregularly shaped specimens; and 3) avoids crush artifact and tissue distortion that may be seen with forcible compression.

  3. Reliability of differential PCR for the detection of EGFR and MDM2 gene amplification in DNA extracted from FFPE glioma tissue

    SciTech Connect

    Hunter, S.B.; Abbott, K.; Varma, V.A.

    1995-01-01

    A series of 43 human gliomas, consisting of 30 glioblastomas, 7 anaplastic astrocytomas, 3 low grade astrocytomas, 2 ependymomas, and 1 oligodendroglioma, was studied for amplification of the epidermal growth factor receptor (EGFR) and mouse double minute 2 (MDM2) genes. DNA extracted from formalin-fixed, paraffin-embedded tissue sections was analyzed by differential PCR and the results were compared with slot blot examination of DNA extracted from frozen tissue from the same neoplasms. Twelve glioblastomas (40%) showed amplification of the EGFR gene, and overexpression of EGFR was evident in each of these tumors as indicated by the immunoperoxidase technique. Two of the tumors with EGFR gene amplification also revealed amplification of the MDM2 gene, while one additional glioblastoma revealed MDM2 amplification only. A 100% concordance in the detection of amplification was observed between differential PCR and slot blot analysis; consequently these results indicate that differential PCR using DNA extracted front archival tissue sections is a reliable method of demonstrating gene amplifications in glial tumors. 29 refs., 2 figs., 3 tabs.

  4. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples

    PubMed Central

    Kojima, Takahiro; Nishimura, Kouichi; Kandori, Shuya; Kawahara, Takashi; Yoshino, Takayuki; Ueno, Satoshi; Iizumi, Yuichi; Mitsuzuka, Koji; Arai, Yoichi; Tsuruta, Hiroshi; Habuchi, Tomonori; Kobayashi, Takashi; Matsui, Yoshiyuki; Ogawa, Osamu; Sugimoto, Mikio; Kakehi, Yoshiyuki; Nagumo, Yoshiyuki; Tsutsumi, Masakazu; Oikawa, Takehiro; Kikuchi, Koji; Nishiyama, Hiroyuki

    2016-01-01

    Introduction and Objectives Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC). Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization) is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE) human BC samples. Materials and Methods The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections. Results FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3%) of non-muscle-invasive BC (NMIBC) and 2/44 (5%) muscle-invasive BC (MIBC) patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45%) NMIBC and 8/44 (18%) MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive. Conclusions We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors. PMID:27930669

  5. Frequency of Human Papillomavirus (HPV) 16 and 18 Detection in Paraffin- Embedded Laryngeal Carcinoma Tissue

    PubMed

    Hosseini, Seyed Zinab; Makvandi, Manoochehr; Samarbafzade, Alireza; Timori, Ali; Ranjbar, Nastaran; Saki, Nader; Nisi, Nilofar; Shahani, Toran; Varnaseri, Mehran; Angali Ahmadi, Kambiz

    2017-04-01

    Background and Objective: Human papilloma virus (HPV) 16 and HPV18 have been detected in head and neck squamous cell carcinomas (HNSCC) and there is evidence that detection of HPVs would have better prognostic value than patients with HNSCC negative for HPVs. Thus, this study was conducted to evaluate frequency of HPV 16 and HPV 18 genotypes in patients with laryngeal carcinoma. Materials and methods: Fifty formalin-fixed, paraffin-embedded (FFPE) tissue blocks of laryngeal cancers were collected. Sections were prepared at 5 μm and DNA was extracted from each sample and subjected to the polymerase chain reaction (PCR) to detect HPV-16/18 DNA s. Results: All samples were squamous cell carcinomas (SCCs). Overall 14/50 (28%) were positive for HPVs, 8 (18%) with HPV-16 and 6 (12%) with HPV-18. Additionally, 2 (4%) mixed infections of HPV 16 and 18 genotypes were observed among these cases. Conclusions: Overall, 28% of HNSCC samples proved positive for HPV16 and HPV18 genotypes, two high-risk HPV types. It is important to further assess whether such viral infection, could be a risk factor in HNSCC progression. Creative Commons Attribution License

  6. Improved Protein Extractionand Protein Identification from Archival Formalin-fixed Paraffin-embedded Human Aortas

    PubMed Central

    Fu, Zongming; Yan, Kun; Rosenberg, Avraham; Jin, Zhicheng; Crain, Barbara; Athas, Grace; Vander Heide, Richard S; Howard, Timothy; Everett, Allen D.; Herrington, David; Van Eyk, Jennifer E.

    2014-01-01

    Purpose Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formaldehyde-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics. Experiment design Proteins were extracted from fresh frozen aorta at RT. FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure. Protein yields were compared, and digested peptides from the extracts were analyzed with mass spectrometry. Results Combined heat and elevated pressure increased protein yield from human FF or FFPE aorta compared to matched tissues with heat alone (1.5 fold) or at RT (8.3 fold), resulting in more proteins identified and with more sequence coverage. The length of storage did adversely affect the quality of proteins from FF tissue. For long term storage, aorta was preserved better with FFPE than FF alone. Periostin and MGF-E8 were demonstrated suitable for MRM assays from FFPE aorta. Conclusions and clinical relevance Combination of heat and high pressure is an effective method to extract proteins from FFPE aorta for downstream proteomics. This method opens the possibility for use of archival and often rare FFPE aortas and possibly other tissues available to proteomics for biomarker discovery and quantification. PMID:23339088

  7. Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas.

    PubMed

    Fu, Zongming; Yan, Kun; Rosenberg, Avraham; Jin, Zhicheng; Crain, Barbara; Athas, Grace; Heide, Richard S Vander; Howard, Timothy; Everett, Allen D; Herrington, David; Van Eyk, Jennifer E

    2013-04-01

    Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formalin-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics. Proteins were extracted from fresh frozen aorta at room temperature (RT). FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure. Protein yields were compared, and digested peptides from the extracts were analyzed with MS. Combined heat and elevated pressure increased protein yield from human FF or FFPE aorta compared to matched tissues with heat alone (1.5-fold) or at RT (8.3-fold), resulting in more proteins identified and with more sequence coverage. The length of storage did adversely affect the quality of proteins from FF tissue. For long-term storage, aorta was preserved better with FFPE than FF alone. Periostin and MGF-E8 were demonstrated suitable for MRM assays from FFPE aorta. Combination of heat and high pressure is an effective method to extract proteins from FFPE aorta for downstream proteomics. This method opens the possibility for use of archival and often rare FFPE aortas and possibly other tissues available to proteomics for biomarker discovery and quantification. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Revealing the Molecular Portrait of Triple Negative Breast Tumors in an Understudied Population through Omics Analysis of Formalin-Fixed and Paraffin-Embedded Tissues.

    PubMed

    Vaca-Paniagua, Felipe; Alvarez-Gomez, Rosa María; Maldonado-Martínez, Hector Aquiles; Pérez-Plasencia, Carlos; Fragoso-Ontiveros, Veronica; Lasa-Gonsebatt, Federico; Herrera, Luis Alonso; Cantú, David; Bargallo-Rocha, Enrique; Mohar, Alejandro; Durand, Geoffroy; Forey, Nathalie; Voegele, Catherine; Vallée, Maxime; Le Calvez-Kelm, Florence; McKay, James; Ardin, Maude; Villar, Stéphanie; Zavadil, Jiri; Olivier, Magali

    2015-01-01

    Triple negative breast cancer (TNBC), defined by the lack of expression of the estrogen receptor, progesterone receptor and human epidermal receptor 2, is an aggressive form of breast cancer that is more prevalent in certain populations, in particular in low- and middle-income regions. The detailed molecular features of TNBC in these regions remain unexplored as samples are mostly accessible as formalin-fixed paraffin embedded (FFPE) archived tissues, a challenging material for advanced genomic and transcriptomic studies. Using dedicated reagents and analysis pipelines, we performed whole exome sequencing and miRNA and mRNA profiling of 12 FFPE tumor tissues collected from pathological archives in Mexico. Sequencing analyses of the tumor tissues and their blood pairs identified TP53 and RB1 genes as the most frequently mutated genes, with a somatic mutation load of 1.7 mutations/exome Mb on average. Transcriptional analyses revealed an overexpression of growth-promoting signals (EGFR, PDGFR, VEGF, PIK3CA, FOXM1), a repression of cell cycle control pathways (TP53, RB1), a deregulation of DNA-repair pathways, and alterations in epigenetic modifiers through miRNA:mRNA network de-regulation. The molecular programs identified were typical of those described in basal-like tumors in other populations. This work demonstrates the feasibility of using archived clinical samples for advanced integrated genomics analyses. It thus opens up opportunities for investigating molecular features of tumors from regions where only FFPE tissues are available, allowing retrospective studies on the search for treatment strategies or on the exploration of the geographic diversity of breast cancer.

  9. Discrimination of Aspergillosis, Mucormycosis, Fusariosis, and Scedosporiosis in Formalin-Fixed Paraffin-Embedded Tissue Specimens by Use of Multiple Real-Time Quantitative PCR Assays.

    PubMed

    Salehi, Elham; Hedayati, Mohammad T; Zoll, Jan; Rafati, Haleh; Ghasemi, Maryam; Doroudinia, Atosa; Abastabar, Mahdi; Tolooe, Ali; Snelders, Eveline; van der Lee, Henrich A; Rijs, Antonius J M M; Verweij, Paul E; Seyedmousavi, Seyedmojtaba; Melchers, Willem J G

    2016-11-01

    In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus, Fusarium, Scedosporium, and the Mucormycetes The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus niger, Fusarium oxysporum, Fusarium solani, Scedosporium apiospermum, Rhizopus oryzae, Rhizopus microsporus, Mucor spp., and Syncephalastrum Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus, S. apiospermum, and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Revealing the Molecular Portrait of Triple Negative Breast Tumors in an Understudied Population through Omics Analysis of Formalin-Fixed and Paraffin-Embedded Tissues

    PubMed Central

    Vaca-Paniagua, Felipe; Alvarez-Gomez, Rosa María; Maldonado-Martínez, Hector Aquiles; Pérez-Plasencia, Carlos; Fragoso-Ontiveros, Veronica; Lasa-Gonsebatt, Federico; Herrera, Luis Alonso; Cantú, David; Bargallo-Rocha, Enrique; Mohar, Alejandro; Durand, Geoffroy; Forey, Nathalie; Voegele, Catherine; Vallée, Maxime; Le Calvez-Kelm, Florence; McKay, James; Ardin, Maude; Villar, Stéphanie; Zavadil, Jiri; Olivier, Magali

    2015-01-01

    Triple negative breast cancer (TNBC), defined by the lack of expression of the estrogen receptor, progesterone receptor and human epidermal receptor 2, is an aggressive form of breast cancer that is more prevalent in certain populations, in particular in low- and middle-income regions. The detailed molecular features of TNBC in these regions remain unexplored as samples are mostly accessible as formalin-fixed paraffin embedded (FFPE) archived tissues, a challenging material for advanced genomic and transcriptomic studies. Using dedicated reagents and analysis pipelines, we performed whole exome sequencing and miRNA and mRNA profiling of 12 FFPE tumor tissues collected from pathological archives in Mexico. Sequencing analyses of the tumor tissues and their blood pairs identified TP53 and RB1 genes as the most frequently mutated genes, with a somatic mutation load of 1.7 mutations/exome Mb on average. Transcriptional analyses revealed an overexpression of growth-promoting signals (EGFR, PDGFR, VEGF, PIK3CA, FOXM1), a repression of cell cycle control pathways (TP53, RB1), a deregulation of DNA-repair pathways, and alterations in epigenetic modifiers through miRNA:mRNA network de-regulation. The molecular programs identified were typical of those described in basal-like tumors in other populations. This work demonstrates the feasibility of using archived clinical samples for advanced integrated genomics analyses. It thus opens up opportunities for investigating molecular features of tumors from regions where only FFPE tissues are available, allowing retrospective studies on the search for treatment strategies or on the exploration of the geographic diversity of breast cancer. PMID:25961742

  11. N-Glycan matrix-assisted laser desorption/ionization mass spectrometry imaging protocol for formalin-fixed paraffin-embedded tissues.

    PubMed

    Briggs, Matthew T; Ho, Yin Ying; Kaur, Gurjeet; Oehler, Martin K; Everest-Dass, Arun V; Packer, Nicolle H; Hoffmann, Peter

    2017-05-30

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of the proteome of a tissue has been an established technique for the past decade. In the last few years, MALDI-MSI of the N-glycome has emerged as a novel MALDI-MSI technique. To assess the accuracy and clinical significance of the N-linked glycan spatial distribution, we have developed a method that utilises MALDI-MSI followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) in order to assign glycan structures to the differentiating MALDI-MSI glycan masses released from the tissue glycoproteins. Our workflow presents a comprehensive list of instructions on how to (i) apply MALDI-MSI to spatially map the N-glycome across formalin-fixed paraffin-embedded (FFPE) clinical samples, (ii) structurally characterise N-glycans extracted from consecutive FFPE tissue sections by LC/MS/MS, and (iii) match relevant N-glycan masses from MALDI-MSI with confirmed N-glycan structures determined by LC/MS/MS. Our protocol provides groups that are new to this technique with instructions how to establish N-glycan MALDI-MSI in their laboratory. Furthermore, the method assigns N-glycan structural detail to the masses obtained in the MALDI-MS image. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Diagnostic sensitivity and specificity of in situ hybridization and immunohistochemistry for Eastern equine encephalitis virus and West Nile virus in formalin-fixed, paraffin-embedded brain tissue of horses.

    PubMed

    Pennick, Kate E; McKnight, Christy A; Patterson, Jon S; Latimer, Kenneth S; Maes, Roger K; Wise, Annabel G; Kiupel, Matti

    2012-03-01

    Immunohistochemistry (IHC) and in situ hybridization (ISH) can be used either to detect or to differentiate between Eastern equine encephalitis virus (EEEV) and West Nile virus (WNV) within formalin-fixed, paraffin-embedded (FFPE) brain tissue of horses. To compare the diagnostic sensitivity and specificity of ISH and IHC, FFPE brain tissue from 20 EEEV-positive horses and 16 WNV-positive horses were tested with both EEEV and WNV oligoprobes and EEEV- and WNV-specific antibodies. Reverse transcription polymerase chain reaction (RT-PCR) for detection of EEEV and WNV was used as the gold standard to confirm infection. All horses that tested positive for EEEV by RT-PCR also tested positive by IHC and ISH, except for 1 case that was false-negative by ISH. In contrast, all horses that tested positive for WNV by RT-PCR tested negative by IHC and only 2 horses tested positive by ISH. No false-positives were detected with either method for both viruses. Both IHC and ISH are highly specific and sensitive diagnostic methods to detect EEEV in equine FFPE brain tissues, although neither appear effective for the diagnosis of WNV in equine neurologic cases.

  13. Detection and Genotyping of Human Papillomaviruses from Archival Formalin-Fixed Tissue Samples.

    PubMed

    Van Doorslaer, Koenraad; Chen, Zigui; McBride, Alison A

    2016-11-18

    Pathology departments routinely process and store formalin-fixed, paraffin-embedded (FFPE) tissue samples for clinical diagnosis. These collections often contain decades' worth of samples and represent a treasure trove of specimens that can be analyzed for retrospective epidemiological studies, diagnostics, and pathogen discovery. Accurate amplification and sequencing of DNA from these samples is critical for the usability of these FFPE samples. Here we present a collection of protocols that describe extraction of DNA from FFPE tissues, PCR amplification of human papillomavirus DNA, and subsequent genotyping of the infecting virus. © 2016 by John Wiley & Sons, Inc.

  14. High-quality genotyping data from formalin-fixed, paraffin-embedded tissue on the drug metabolizing enzymes and transporters plus array.

    PubMed

    Vos, Hanneke I; van der Straaten, Tahar; Coenen, Marieke J H; Flucke, Uta; te Loo, D Maroeska W M; Guchelaar, Henk-Jan

    2015-01-01

    The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array covers 1936 markers in 231 genes involved in drug metabolism and transport. Blood- and saliva-derived DNA works well on the DMET array, but the utility of DNA from FFPE tissue has not been reported for this array. As the ability to use DNA from FFPE tissue on the array could open the potential for large retrospective sample collections, we examined the performance and reliability of FFPE-derived DNA on the DMET Plus array. Germline DNA isolated from archived normal FFPE tissue blocks stored for 3 to 19 years and matched blood or saliva from 16 patients with osteosarcoma were genotyped on the DMET Plus array. Concordance was assessed by calculating agreement and the κ-statistic. We observed high call rates for both the blood- or saliva-derived DNA samples (99.4%) and the FFPE-derived DNA samples (98.9%). Moreover, the concordance among the 16 blood- or saliva-derived DNA and FFPE DNA pairs was high (97.4%, κ = 0.915). This is the first study showing that DNA from normal FFPE tissue provides accurate and reliable genotypes on the DMET Plus array compared with blood- or saliva-derived DNA. This finding provides an opportunity for pharmacogenetic studies in diseases with high mortality rates and prevents a bias in studies where otherwise only alive patients can be included.

  15. Usefulness and efficiency of formalin-fixed paraffin-embedded specimens from laryngeal squamous cell carcinoma in HPV detection by IHC and PCR/DEIA.

    PubMed

    Morshed, Kamal; Polz-Dacewicz, Małgorzata; Szymański, Marcin; Smoleń, Agata

    2010-09-30

    The use of formalin-fixed paraffin-embedded (FFPE) tissues for HPV DNA detection by PCR from biopsy materials is not entirely clear in retrospective studies. The aim of our study was to evaluate the usefulness and efficiency of FFPE tissues from laryngeal cancer (LSCC) in HPV detection by immunohistochemistry reaction (IHC) and PCR-DNA enzyme immunoassay method (PCR/DEIA) and to compare with HPV detection from DFT. HPV-DNA was amplified from 54 FFPE tissues from LSCC specimens by the short PCR fragment (SPF10) primer set using PCR/DNA method and monoclonal anti Human Papillomavirus antibodies in IHC. In the same patients 54 specimens were collected and immediately deep-frozen and stored at (-70°C) to (-80°C). All the FFPE and deep-frozen tissue (DFT) specimens were positive for β-globin amplification. HPV was detected by two methods (SPF10 PCR/DEIA and IHC) in 14 (25.92%) out of 54 specimens from FFPE. Significant differences were found between the HPV detection using PCR/DEIA method and IHC method in FFPE tissues. The comparative analysis of the 54 samples after assuming PCR method in FFPE tissues showed accuracy of 92.6%, sensitivity of 90.5% and specificity of 93.9%. The FFPE tissues method has high sensitivity, specificity and accuracy when used to detect HPV DNA by PCR reaction and it is comparable to DFT results. DNA quality of FFPE samples is adequate and it can be used in HPV-DNA detection and in retrospective studies on LSCC.

  16. Comparison of Pre-Analytical FFPE Sample Preparation Methods and Their Impact on Massively Parallel Sequencing in Routine Diagnostics

    PubMed Central

    Heydt, Carina; Fassunke, Jana; Künstlinger, Helen; Ihle, Michaela Angelika; König, Katharina; Heukamp, Lukas Carl; Schildhaus, Hans-Ulrich; Odenthal, Margarete; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2014-01-01

    Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3–24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for

  17. The proteomics of formalin-fixed wax-embedded tissue.

    PubMed

    Vincenti, David Cilia; Murray, Graeme I

    2013-04-01

    Proteomics, which is the global analysis of protein expression in cells and tissues, has emerged over the last ten to fifteen years as a key set of technologies to improve our understanding of disease processes and to identify new diagnostic, prognostic and predictive disease biomarkers. Whilst most proteomic studies have been conducted on fresh frozen tissue, the continuous improvements in technical procedures for protein extraction and separation, coupled with increasingly powerful bioinformatics, have provided the opportunity for proteomic analysis to be conducted on formalin-fixed wax-embedded tissue. This potential advance should allow proteomic analysis to be performed on the extensive archives of clinically annotated formalin fixed wax embedded tissue blocks stored in pathology departments worldwide. In this review the main techniques and their limitations involved in proteomic analysis of formalin fixed wax embedded tissue will be outlined and examples of their successful application will be indicated. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Somatostatin receptor staining in FFPE sections using a ligand derivative dye as an alternative to immunostaining

    PubMed Central

    Kudoh, Shinji; Ito, Takaaki

    2017-01-01

    The confirmation of target expression in tissues is a prerequisite for molecular-targeted therapy. However, difficulties are sometimes associated with the production of appropriate antibodies against receptors. We herein developed a ligand derivative dye for the staining of receptors. The somatostatin receptor (sstr) was selected as the target and FITC-octreotate as the detective agent. We performed a blot analysis to detect sstr in the transfer membrane. The sstr2 recombinant protein or cell lysate from a small cell lung carcinoma cell line (H69) was boiled and loaded onto SDS-PAGE, and the proteins were transferred to a membrane. Even after denaturing processes, FITC-octreotate still bound sstr on the membrane. Furthermore, FITC-octreotate depicted the expression of sstr in formalin-fixed and paraffin-embedded (FFPE) sections, a method that we named ligand derivative staining (LDS). The accuracies of immunostaining and LDS were compared at the points of the detection of sstr using FFPE sections of 30 neuroendocrine tumor specimens. The sensitivity of LDS was 81.8%, while those of immunostaining using anti-sstr2 and sstr5 antibodies were 72.7% and 63.6%, respectively. Thus, LDS appears to be superior to immunostaining. A ligand derivative may be used as a substitute for antibodies, and has the potential to support economical, simple, and accurate detection methods. PMID:28182792

  19. Comparison of FFPE histological versus LBP cytological samples for HPV detection and typing in cervical cancer.

    PubMed

    Kim, Geehyuk; Cho, Hyemi; Lee, Dongsup; Park, Sunyoung; Lee, Jiyoung; Wang, Hye-Young; Kim, Sunghyun; Park, Kwang Hwa; Lee, Hyeyoung

    2017-04-01

    Human papillomavirus (HPV) infection is closely associated with cervical cancer. This study analyzed HPV genotype prevalence in 75 cases of formalin-fixed paraffin embedded (FFPE) tissue samples from patients diagnosed with cervical cancer. Genotype prevalence was assessed using Reverse Blot Assay (REBA) and quantitative polymerase chain reaction (qPCR), which target the HPV L1 and HPV E6/E7 genes, respectively. HPV DNA chip tests were also performed using liquid based preparation (LBP) cytological samples from the same patients who provided the FFPE histological samples. We observed a slight difference in HPV genotype distribution as assessed by DNA chip versus REBA. One possible explanation for this difference is that normal regions could be mixed with lesion regions when cytological samples are extracted from each patient with cancer. For the detection of moderate dysplasia, the main target of diagnosis, this difference is anticipated to be greater. We also made several unexpected observations. For example, HPV multi-infection was not detected. Moreover, the rate of HPV positivity varied radically depending on the cancer origin, e.g. squamous cell carcinoma versus adenocarcinoma. Our results imply that it is important to determine whether cytological specimens are suitable for HPV genotyping analysis and cervical cancer diagnosis. Future research on the mechanisms underlying cervical cancer pathogenesis is also necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Somatostatin receptor staining in FFPE sections using a ligand derivative dye as an alternative to immunostaining.

    PubMed

    Hasegawa, Koki; Kudoh, Shinji; Ito, Takaaki

    2017-01-01

    The confirmation of target expression in tissues is a prerequisite for molecular-targeted therapy. However, difficulties are sometimes associated with the production of appropriate antibodies against receptors. We herein developed a ligand derivative dye for the staining of receptors. The somatostatin receptor (sstr) was selected as the target and FITC-octreotate as the detective agent. We performed a blot analysis to detect sstr in the transfer membrane. The sstr2 recombinant protein or cell lysate from a small cell lung carcinoma cell line (H69) was boiled and loaded onto SDS-PAGE, and the proteins were transferred to a membrane. Even after denaturing processes, FITC-octreotate still bound sstr on the membrane. Furthermore, FITC-octreotate depicted the expression of sstr in formalin-fixed and paraffin-embedded (FFPE) sections, a method that we named ligand derivative staining (LDS). The accuracies of immunostaining and LDS were compared at the points of the detection of sstr using FFPE sections of 30 neuroendocrine tumor specimens. The sensitivity of LDS was 81.8%, while those of immunostaining using anti-sstr2 and sstr5 antibodies were 72.7% and 63.6%, respectively. Thus, LDS appears to be superior to immunostaining. A ligand derivative may be used as a substitute for antibodies, and has the potential to support economical, simple, and accurate detection methods.

  1. Variation in pre-PCR processing of FFPE samples leads to discrepancies in BRAF and EGFR mutation detection: a diagnostic RING trial

    PubMed Central

    Kapp, Joshua R; Diss, Tim; Spicer, James; Gandy, Michael; Schrijver, Iris; Jennings, Lawrence J; Li, Marilyn M; Tsongalis, Gregory J; de Castro, David Gonzalez; Bridge, Julia A; Wallace, Andrew; Deignan, Joshua L; Hing, Sandra; Butler, Rachel; Verghese, Eldo; Latham, Gary J; Hamoudi, Rifat A

    2015-01-01

    Aims Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. Methods 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. Results Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p<0.0001), and yield variation from engineered samples was not significant (p=0.3782). Two laboratories failed DNA extraction from samples that may be attributed to operator error. DNA extraction protocols themselves were not found to contribute significant variation. 10/13 labs reported yields averaging 235.8 ng (95% CI 90.7 to 380.9) from cell-negative samples, which was attributed to issues with spectrophotometry. DNA measurements using Qubit Fluorometry demonstrated a median fivefold overestimation of DNA quantity by Nanodrop Spectrophotometry. DNA integrity and PCR inhibition were factors not found to contribute significant variation. Conclusions In this study, we provide evidence demonstrating that variation in pre-PCR steps is prevalent and may detrimentally affect the patient's ability to receive critical therapy. We provide recommendations for preanalytical workflow optimisation that may reduce errors in down-stream sequencing and for next-generation sequencing library generation. PMID:25430497

  2. p53 codon 72 polymorphisms and random amplified polymorphic DNA analysis of non-melanoma skin cancer through archival formalin-fixed paraffin-embedded tissue.

    PubMed

    Yoke-Kqueen, Cheah; Ab Mutalib, Nurul-Syakima; Sidik, Shiran Mohd; Learn-Han, Lee; Geok-Chin, Tan

    2012-03-01

    Non-melanoma skin cancer (NMSC) is classified among the ten most frequent cancers in Malaysia. A common polymorphism at codon 72 of the p53 tumor suppressor gene and its influence on cancer risk has been studied for different types of cancer with mixed and inconsistent results with limited published data on the Malaysian population so far. In the present study, the frequency of p53 codon 72 polymorphism in 60 patients with NMSC was investigated from archival formalin-fixed paraffin-embedded (FFPE) tissue obtained from Hospital Universiti Kebangsaan Malaysia (HUKM). Additionally, random amplified polymorhic DNA -polymorphic chain reaction (RAPD-PCR) was employed for preliminary biomarker development. NMSC FFPE samples (70%) possess Arg/Arg, 20% with Pro/Pro and 10% with Arg/Pro. In total, there was no significant difference in the p53 codon 72 genotypes between histological types of NMSC, gender, race, tumor location and age group. However, there was an apparent age-associated increase in the Arg/Arg genotype but did not reach statistical significance (P=0.235). NMSC types and demographic characteristics did not influence genotype distribution. On the other hand, BCC and SCC distributions are influenced by age group, race and tumor location.

  3. Association between mir-24 and mir-378 in formalin-fixed paraffin-embedded tissues of breast cancer.

    PubMed

    Yin, Jia-Yu; Deng, Zhao-Qun; Liu, Feng-Qiong; Qian, Jun; Lin, Jiang; Tang, Qin; Wen, Xiang-Mei; Zhou, Jing-Dong; Zhang, Ying-Ying; Zhu, Xiao-Wen

    2014-01-01

    MiR-24/378 is thought to be onco-miRNAs for their ability of enhancing tumor growth. The objective of this study was to evaluate the potential predictive value of miR-24/378 expression in formalin-fixed paraffin-embedded tissues of breast cancer patients. The expression of miR-24/378 was examined in 101 breast cancer patients and 40 controls using real-time quantitative PCR. All statistical analyses were performed using SPSS16.0. We found that miR-24 and miR-378 were significantly up-regulated in breast cancer patients compared with controls (all P < 0.01). The expression levels of the two miRNAs were highly correlated with each other in breast cancer patients, with r = 0.778 between miR-24 and miR-378. Moreover, the two miRNAs exhibited great capability of discriminating between cancer patients and controls by ROC analysis. MiR-24 and miR-378 showed 0.79 and 0.807 AUC values respectively. Over-expression of miR-24 and miR-378 in FFPE tissue of breast cancer patients might conduct as an ideal source for biomarker discovery and validation in breast cancer patients.

  4. Immunodetection of NETs in Paraffin-Embedded Tissue

    PubMed Central

    Brinkmann, Volker; Abu Abed, Ulrike; Goosmann, Christian; Zychlinsky, Arturo

    2016-01-01

    The pathogenic potential of neutrophil extracellular traps (NETs) was recently described, and their detection in tissue could serve as a prognostic marker. NETs are delicate and filigree structures; hence good tissue preservation is essential for their detection. Indeed, analysis of paraffin-embedded tissue has proven superior to the study of cryo sections. Though, under favorable conditions, the presence of NETs can be detected in tissue sections stained with histological dyes, definitive identification of NETs needs the colocalization of immunofluorescent signals for both nuclear and granular (or cytoplasmic) NET components. We tested diverse antigen retrieval methods and various combinations of commercially available antibodies and present here staining protocols to detect NETs in human and murine tissue sections. PMID:27920776

  5. iSERS microscopy guided by wide field immunofluorescence: analysis of HER2 expression on normal and breast cancer FFPE tissue sections.

    PubMed

    Wang, Xin-Ping; Zhang, Yuying; König, Matthias; Papadopoulou, Evanthia; Walkenfort, Bernd; Kasimir-Bauer, Sabine; Bankfalvi, Agnes; Schlücker, Sebastian

    2016-08-15

    Surface-enhanced Raman scattering (SERS) microscopy is an emerging imaging technique for tissue-based cancer diagnostics. Specifically, immuno-SERS (iSERS) microscopy employs antibodies labelled by molecularly functionalized noble metal colloids for antigen localization on tissue specimen. Spectrally resolved iSERS acquisition schemes are typically rather time-consuming when large tissue areas must be scanned. Here, we demonstrate the application of iSERS imaging guided by wide field immunofluorescence (IF) for localization of the human epidermal growth factor receptor 2 (HER2) on breast tissue sections. The addition of unlabelled anti-HER2 primary antibodies to the tissue is followed by the incubation with secondary antibodies labelled with both Alexa-647 (for IF) and hydrophilically stabilized gold nanostars coated with aromatic thiols (for iSERS). False-color iSERS images clearly reveal the different HER2 expression levels on normal and breast cancer tissue, respectively. A series of negative controls confirms that the binding specificity of the secondary antibody is maintained after conjugation to the SERS nanoparticles.

  6. Evaluation and Adaptation of a Laboratory-Based cDNA Library Preparation Protocol for Retrospective Sequencing of Archived MicroRNAs from up to 35-Year-Old Clinical FFPE Specimens

    PubMed Central

    Loudig, Olivier; Wang, Tao; Ye, Kenny; Lin, Juan; Wang, Yihong; Ramnauth, Andrew; Liu, Christina; Stark, Azadeh; Chitale, Dhananjay; Greenlee, Robert; Multerer, Deborah; Honda, Stacey; Daida, Yihe; Spencer Feigelson, Heather; Glass, Andrew; Couch, Fergus J.; Rohan, Thomas; Ben-Dov, Iddo Z.

    2017-01-01

    Formalin-fixed paraffin-embedded (FFPE) specimens, when used in conjunction with patient clinical data history, represent an invaluable resource for molecular studies of cancer. Even though nucleic acids extracted from archived FFPE tissues are degraded, their molecular analysis has become possible. In this study, we optimized a laboratory-based next-generation sequencing barcoded cDNA library preparation protocol for analysis of small RNAs recovered from archived FFPE tissues. Using matched fresh and FFPE specimens, we evaluated the robustness and reproducibility of our optimized approach, as well as its applicability to archived clinical specimens stored for up to 35 years. We then evaluated this cDNA library preparation protocol by performing a miRNA expression analysis of archived breast ductal carcinoma in situ (DCIS) specimens, selected for their relation to the risk of subsequent breast cancer development and obtained from six different institutions. Our analyses identified six miRNAs (miR-29a, miR-221, miR-375, miR-184, miR-363, miR-455-5p) differentially expressed between DCIS lesions from women who subsequently developed an invasive breast cancer (cases) and women who did not develop invasive breast cancer within the same time interval (control). Our thorough evaluation and application of this laboratory-based miRNA sequencing analysis indicates that the preparation of small RNA cDNA libraries can reliably be performed on older, archived, clinically-classified specimens. PMID:28335433

  7. Automated extraction of DNA and RNA from a single formalin-fixed paraffin-embedded tissue section for analysis of both single-nucleotide polymorphisms and mRNA expression.

    PubMed

    Hennig, Guido; Gehrmann, Mathias; Stropp, Udo; Brauch, Hiltrud; Fritz, Peter; Eichelbaum, Michel; Schwab, Matthias; Schroth, Werner

    2010-12-01

    There is an increasing need for the identification of both DNA and RNA biomarkers from pathodiagnostic formalin-fixed paraffin-embedded (FFPE) tissue samples for the exploration of individualized therapy strategies in cancer. We investigated a fully automated, xylene-free nucleic acid extraction method for the simultaneous analysis of RNA and DNA biomarkers related to breast cancer. We copurified both RNA and DNA from a single 10-μm section of 210 paired samples of FFPE tumor and adjacent normal tissues (1-25 years of archival time) using a fully automated extraction method. Half of the eluate was DNase I digested for mRNA expression analysis performed by using reverse-transcription quantitative PCR for the genes estrogen receptor 1 (ESR1), progesterone receptor (PGR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian) (ERBB2), epoxide hydrolase 1 (EPHX1), baculoviral IAP repeat-containing 5 (BIRC5), matrix metallopeptidase 7 (MMP7), vascular endothelial growth factor A (VEGFA), and topoisomerase (DNA) II alpha 170kDa (TOP2A). The remaining undigested aliquot was used for the analysis of 7 single-nucleotide polymorphisms (SNPs) by MALDI-TOF mass spectrometry. In 208 of 210 samples (99.0%) the protocol yielded robust quantification-cycle values for both RNA and DNA normalization. Expression of the 8 breast cancer genes was detected in 81%-100% of tumor tissues and 21%-100% of normal tissues. The 7 SNPs were successfully genotyped in 91%-97% of tumor and 94%-97% of normal tissues. Allele concordance between tumor and normal tissue was 98.9%-99.5%. This fully automated process allowed an efficient simultaneous extraction of both RNA and DNA from a single FFPE section and subsequent dual analysis of selected genes. High gene expression and genotyping detection rates demonstrate the feasibility of molecular profiling from limited archival patient samples.

  8. Validation of a Gene Expression Test for Mesothelioma Prognosis in Formalin-Fixed Paraffin-Embedded Tissues.

    PubMed

    De Rienzo, Assunta; Cook, Robert W; Wilkinson, Jeff; Gustafson, Corinne E; Amin, Waqas; Johnson, Clare E; Oelschlager, Kristen M; Maetzold, Derek J; Stone, John F; Feldman, Michael D; Becich, Michael J; Yeap, Beow Y; Richards, William G; Bueno, Raphael

    2017-01-01

    A molecular test performed using fresh-frozen tissue was proposed for use in the prognosis of patients with pleural mesothelioma. The accuracy of the test and its properties was assessed under Clinical Laboratory Improvement Amendments-approved guidelines using FFPE tissue from an independent multicenter patient cohort. Concordance studies were performed using matched frozen and FFPE mesothelioma samples. The prognostic value of the test was evaluated in an independent validation cohort of 73 mesothelioma patients who underwent surgical resection. FFPE-based classification demonstrated overall high concordance (83%) with the matched frozen specimens, on removal of cases with low confidence scores, showing sensitivity and specificity in predicting type B classification (poor outcome) of 43% and 98%, respectively. Concordance between research and clinical methods increased to 87% on removal of low confidence cases. Median survival times in the validation cohort were 18 and 7 months in type A and type B cases, respectively (P = 0.002). Multivariate classification adding pathologic staging information to the gene expression score resulted in significant stratification of risk groups. The median survival times were 52 and 14 months in the low-risk (class 1) and intermediate-risk (class 2) groups, respectively. The prognostic molecular test for mesothelioma can be performed on FFPE tissues to predict survival, and can provide an orthogonal tool, in combination with established pathologic parameters, for risk evaluation.

  9. Liquid Tissue: proteomic profiling of formalin-fixed tissues.

    PubMed

    Prieto, DaRue A; Hood, Brian L; Darfler, Marlene M; Guiel, Thomas G; Lucas, David A; Conrads, Thomas P; Veenstra, Timothy D; Krizman, David B

    2005-06-01

    Identification and quantitation of candidate biomarker proteins in large numbers of individual tissues is required to validate specific proteins, or panels of proteins, for clinical use as diagnostic, prognostic, toxicological, or therapeutic markers. Mass spectrometry (MS) provides an exciting analytical methodology for this purpose. Liquid Tissue MS protein preparation allows researchers to utilize the vast, already existing, collections offormalin-fixed paraffin-embedded (FFPE) tissues for the procurement of peptides and the analysis across a variety of MS platforms.

  10. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    PubMed

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  11. Histology-guided protein digestion/extraction from FFPE pressure ulcer biopsies

    PubMed Central

    Taverna, Domenico; Pollins, Alonda C.; Nanney, Lillian B.; Sindona, Giovanni; Caprioli, Richard M.

    2015-01-01

    Herein we present a simple, reproducible, and versatile approach for in situ protein digestion and identification on formalin-fixed paraffin-embedded tissues (FFPE). This adaptation is based on the use of an enzyme delivery platform (hydrogel discs) that can be positioned on the surface of a tissue section. By simultaneous deposition of multiple hydrogels over select regions of interest within the same tissue section, multiple peptide extracts can be obtained from discrete histologic areas. After enzymatic digestion, the hydrogel extracts are submitted for LC-MS/MS analysis followed by database inquiry for protein identification. Further, imaging mass spectrometry (IMS) is used to reveal the spatial distribution of the identified peptides within a serial tissue section. Optimization was achieved using cutaneous tissue from surgically excised pressure ulcers that were subdivided into two prime regions of interest: the wound bed and the adjacent dermal area. The robust display of tryptic peptides within these spectral analyses of histologically defined tissue regions suggests that LC-MS/MS in combination with IMS can serve as useful exploratory tools. PMID:26440596

  12. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    PubMed

    Scolnick, Jonathan A; Dimon, Michelle; Wang, I-Ching; Huelga, Stephanie C; Amorese, Douglas A

    2015-01-01

    Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET), for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue RNA in both normal tissue and cancer cells.

  13. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples

    PubMed Central

    Scolnick, Jonathan A.; Dimon, Michelle; Wang, I-Ching; Huelga, Stephanie C.; Amorese, Douglas A.

    2015-01-01

    Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET), for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue RNA in both normal tissue and cancer cells. PMID:26132974

  14. A Comparison of Fresh Frozen vs. Formalin-Fixed, Paraffin-Embedded Specimens of Canine Mammary Tumors via Branched-DNA Assay

    PubMed Central

    Lüder Ripoli, Florenza; Mohr, Annika; Conradine Hammer, Susanne; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Hennecke, Silvia; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Mammary neoplasms are the tumors most affecting female dogs and women. Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable source of archived biological material. Fresh frozen (FF) tissue is considered ideal for gene expression analysis. However, strategies based on FFPE material offer several advantages. Branched-DNA assays permit a reliable and fast workflow when analyzing gene expression. The aim of this study was to assess the comparability of the branched-DNA assay when analyzing certain gene expression patterns between FF and FFPE samples in canine mammary tumors. RNA was isolated from 109 FFPE samples and from 93 FF samples of different canine mammary tissues. Sixteen (16) target genes (Tp53; Myc; HMGA1; Pik3ca; Mcl1; MAPK3; FOXO3; PTEN; GATA4; PFDN5; HMGB1; MAPK1; BRCA2; BRCA1; HMGA2; and Her2) were analyzed via branched-DNA assay (b-DNA). ACTB, GAPDH, and HPRT1 were used as data normalizers. Overall, the relative gene expression of the two different origins of samples showed an agreement of 63%. Still, care should be taken, as FFPE specimens showed lower expression of the analyzed targets when compared to FF samples. The fact that the gene expression in FFPE proved to be lower than in FF specimens is likely to have been caused by the effect of storage time. ACTB had the best performance as a data normalizer. PMID:27187374

  15. MicroRNA-profiling in formalin-fixed paraffin-embedded specimens.

    PubMed

    Lehmann, Ulrich

    2010-01-01

    The discovery of small regulatory RNA molecules during the last few years has changed our understanding of many biological and pathological processes. The most prominent and best analyzed class of these small regulatory noncoding RNAs is comprised by the microRNAs. The analysis of microRNA expression patterns is now widely used in biology and pathology employing a range of methodologies. However, many precious human tissue samples are only available as formalin-fixed paraffin-embedded (FFPE) specimen. In this chapter, the extraction of RNA from FFPE samples and the subsequent microRNA profiling utilizing fluorescence-labeled bead technology from Luminex Inc. is described.

  16. Staining methods applied to glycol methacrylate embedded tissue sections.

    PubMed

    Cerri, P S; Sasso-Cerri, E

    2003-01-01

    The use of glycol methacrylate (GMA) avoids some technical artifacts, which are usually observed in paraffin-embedded sections, providing good morphological resolution. On the other hand, weak staining have been mentioned during the use of different methods in plastic sections. In the present study, changes in the histological staining procedures have been assayed during the use of staining and histochemical methods in different GMA-embedded tissues. Samples of tongue, submandibular and sublingual glands, cartilage, portions of respiratory tract and nervous ganglion were fixed in 4% formaldehyde and embedded in glycol methacrylate. The sections of tongue and nervous ganglion were stained by H&E. Picrosirius, Toluidine Blue and Sudan Black B methods were applied, respectively, for identification of collagen fibers in submandibular gland, sulfated glycosaminoglycans in cartilage (metachromasia) and myelin lipids in nervous ganglion. Periodic Acid-Schiff (PAS) method was used for detection of glycoconjugates in submandibular gland and cartilage while AB/PAS combined methods were applied for detection of mucins in the respiratory tract. In addition, a combination of Alcian Blue (AB) and Picrosirius methods was also assayed in the sublingual gland sections. The GMA-embedded tissue sections showed an optimal morphological integrity and were favorable to the staining methods employed in the present study. In the sections of tongue and nervous ganglion, a good contrast of basophilic and acidophilic structures was obtained by H&E. An intense eosinophilia was observed either in the striated muscle fibers or in the myelin sheaths in which the lipids were preserved and revealed by Sudan Black B. In the cartilage matrix, a strong metachromasia was revealed by Toluidine Blue in the negatively-charged glycosaminoglycans. In the chondrocytes, glycogen granules were intensely positive to PAS method. Extracellular glycoproteins were also PAS positive in the basal membrane and in the

  17. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments.

    PubMed

    Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter

    2016-09-01

    A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended.

  18. Diagnostic performance of HPV E6/E7, hTERT, and Ki67 mRNA RT-qPCR assays on formalin-fixed paraffin-embedded cervical tissue specimens from women with cervical cancer.

    PubMed

    Wang, Hye-Young; Kim, Geehyuk; Cho, Hyemi; Kim, Sunghyun; Lee, Dongsup; Park, Sunyoung; Park, Kwang Hwa; Lee, Hyeyoung

    2015-06-01

    Human papillomavirus (HPV) is a major cause of cervical cancer, which is the third most common cancer in women. Human telomerase reverse transcriptase (hTERT) and Ki67 are tumor cell markers indicating cancer cell proliferation in cancer patients, and activation of hTERT and Ki67 leads to progressive cervical carcinogenesis. In the present study, we evaluated the CervicGen HPVE6/E7 mRNA RT-qDx assay, which detects 16 HPV high-risk (HR) genotypes (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68 and 69), and the CervicGen hTERT and Ki67 mRNA RT-qDx assay using 117 formalin-fixed paraffin-embedded (FFPE) cervical cancer tissue samples. The diagnostic validity of the CervicGen HPV RT-qDx assay for detecting histologically proven prevalent squamous cell carcinoma (SCC) was 94% sensitivity, 100% specificity, 77.8% positive predictive value (PPV), and 78.9% negative predictive value (NPV). The most common HPV genotypes detected in FFPE cervical cancer tissue samples were HPV 16 (56%) and HPV 18 (10%). The positivity rate of hTERT and Ki67 mRNA expressions in FFPE cervical cancer tissue samples on RT-qPCR was 65% and 93% respectively. Moreover, the positivity rates were 92% for a combination of HPV E6/E7 and hTERT mRNA expressions, 97% for HPV E6/E7 and Ki67 mRNA expressions, and 99% (99/100) for the combination of HPV E6/E7, hTERT, and Ki67 mRNA expressions. These data showed that SSC FFPE cervical cancer tissue samples correlated more strongly with high Ki67 mRNA expressions than with hTERT mRNA expressions. Notably, hTERT and Ki67 mRNA expression level was increased in high-grade cervical lesions, but was very low in normal samples. Our findings suggest that the combination of HPV E6/E7, hTERT, and Ki67 mRNA expression levels could be used in a complementary manner in diagnosing high-grade cervical lesions. Further studies are required to evaluate these assays as a useful predictive tool for screening low-grade cervical lesions. Copyright © 2015 Elsevier

  19. Development of a peptide nucleic acid probe to Trichosporon species and identification of trichosporonosis by use of in situ hybridization in formalin-fixed and paraffin-embedded (FFPE) sections.

    PubMed

    Shinozaki, Minoru; Okubo, Yoichiro; Sasai, Daisuke; Nakayama, Haruo; Murayama, Somay Yamagata; Ide, Tadashi; Wakayama, Megumi; Ishiwatari, Takao; Tochigi, Naobumi; Nemoto, Tetsuo; Shibuya, Kazutoshi

    2013-01-01

    In order to identify Trichosporon species in formalin-fixed and paraffin-embedded sections from which visual discrimination of non-glabrata Candida species is mostly ineffective but critical for the choice of antifungals, we tested the usefulness of a newly designed peptide nucleic acid probe (PNA) for in situ hybridization (ISH). Results confirmed the usefulness of ISH with our PNA probe in identifying Trichosporon species from Candida albicans.

  20. Comparison of 2 different PCR-based technologies for the detection of human papilloma virus from paraffin-embedded tissue: genómica clinical arrays versus SPF(10)-LiPA(25).

    PubMed

    Pérez, Cristina; Klaustermeier, Jo Ellen; Alemany, Laia; Tous, Sara; de Sanjosé, Silvia; Velasco, Julio

    2012-03-01

    The great interest in molecular epidemiology of human papilloma virus (HPV) in cervical cancer led us to perform a thorough evaluation of 2 polymerase chain reaction (PCR)-based methods for the detection of HPV in archival formalin-fixed paraffin-embedded (FFPE) samples. Thus, the aim of this study was to compare HPV detection in FFPE samples that have histopathologic diagnosis of invasive cervical cancer using SPF10 broad-spectrum primers PCR followed by DNA enzyme immunoassay and LiPA25 (version 1: Labo Biomedical products, Rijswijk, The Netherlands version 1) and the Papillomavirus Clinical Arrays technique (Genómica, Tres Cantos, Madrid, Spain). In this study, 235 biopsies with histopathologic diagnosis of invasive cervical cancer were analyzed for the detection and genotyping of HPV by LiPA25 SPF10-PCR System (version 1) and Papillomavirus Clinical Arrays technique. The detection of HPV DNA with Genómica technique was 75.1%, and 91.9% with LiPA25 SPF10-PCR. The Genómica technique detected a higher percentage of multiple infections (35%) than LiPA25 (8.9%), with a very low agreement for the detection of multiple infections between them (P>0.05). Our study highlights an important difference between 2 PCR-based methods for detection and genotyping of HPV. LiPA25 SPF10-PCR technology may be more adequate than Genómica for the detection of HPV DNA when using FFPE tissue.

  1. Effect of fixation and embedding on Raman spectroscopic analysis of bone tissue.

    PubMed

    Yeni, Y N; Yerramshetty, J; Akkus, O; Pechey, C; Les, C M

    2006-06-01

    Raman spectroscopy provides valuable information on the physicochemical properties of hard tissues. While the technique can analyze tissues in their native state, analysis of fixed, embedded, and sectioned specimens may be necessary on certain occasions. The information on the effects of fixatives and embedding media on Raman spectral properties is limited. We examined the effect of ethanol and glycerol as fixatives and a variety of embedding media (Araldite, Eponate, Technovit, glycol methacrylate, polymethyl methacrylate, and LR white) on Raman spectral properties (mineralization, crystallinity, and carbonation) measured from the cortical bone of mouse humeri. Humeri were fixed in ethanol or glycerol, followed by embedding in one of the media. Nonfixed, freeze-dried, and fixed but not embedded sections were also examined. Periosteal, endosteal, and midosteal regions of the intracortical envelope were analyzed. Raman spectra of fixative solutions and embedding media were also recorded separately in order to examine the specifics of overlap between spectra. We found significant effects of fixation, embedding, and anatomical location on Raman spectral properties. The interference of ethanol with tissue seemed to be relatively less pronounced than that of glycerol. However, there was no single combination of fixation and embedding that left Raman spectral parameters unaltered. We conclude that careful selection of a fixation and embedding combination should be made based on the parameter of interest and the type of tissue. It may be necessary to process multiple samples from the tissue, each using a combination appropriate for the Raman parameter in question.

  2. Evaluation of a panel of antibodies for the immunohistochemical identification of immune cells in paraffin-embedded lymphoid tissues of new- and old-world camelids.

    PubMed

    Uhde, Ann-Kathrin; Lehmbecker, Annika; Baumgärtner, Wolfgang; Spitzbarth, Ingo

    2017-02-01

    Different species of camelids play an important role in the epidemiology of various emerging infectious diseases such as Middle East respiratory syndrome. For precise investigations of the immunopathogenesis in these host species, appropriate immunohistochemical markers are highly needed in order to phenotype distinct immune cells populations in camelids. So far, specific immunohistochemical markers for camelid immune cells are rarely commercially available, and cross-reactivity studies are restricted to the use of frozen dromedary tissues. To bridge this gap, 14 commercially available primary antibodies were tested for their suitability to demonstrate immune cell populations on formalin fixed paraffin-embedded (FFPE) tissue sections of dromedaries, Bactrian camels, llamas, and alpacas in the present study. Out of these, 9 antibodies directed against CD3, CD20, CD79α, HLA-DR, Iba-1, myeloid/histiocyte antigen, CD204, CD208, and CD68 antigen exhibited distinct immunoreaction patterns to certain camelid immune cell subsets. The distribution of these antigens was comparatively evaluated in different anatomical compartments of thymus, spleen, mesenteric, and tracheobronchial lymph nodes. The presented results will provide a basis for further investigations in camelids, especially with respect to the role of the immune response in certain infectious diseases, which harbor a considerable risk to spill over to other species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Improving the Proteomic Analysis of Archival Tissue by Using Pressure-Assisted Protein Extraction: A Mechanistic Approach

    PubMed Central

    Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T

    2014-01-01

    Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE tissue. Our laboratory has taken a mechanistic approach to developing improved protein extraction protocols, by first studying the reactions of formaldehyde with proteins and ways to reverse these reactions, then applying this approach to a model system called a “tissue surrogate”, which is a gel formed by treating high concentrations of cytoplasmic proteins with formaldehyde, and finally FFPE mouse liver tissue. Our studies indicate that elevated pressure improves the recovery of proteins from FFPE tissue surrogates by hydrating and promoting solubilization of highly aggregated proteins allowing for the subsequent reversal (by hydrolysis) of formaldehyde-induced protein adducts and cross-links. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency and up to a 30-fold increase in the number of non-redundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of non-redundant proteins identified in the FFPE tissue was nearly identical to that of the corresponding frozen tissue. PMID:25049470

  4. The use of formalin fixed wax embedded tissue for proteomic analysis.

    PubMed

    Ralton, Lynda D; Murray, Graeme I

    2011-04-01

    The potential of proteomic approaches to elucidate disease pathogenesis and biomarker discovery is increasingly being recognised. These studies are usually based on the use of fresh tissue samples. Problems in obtaining and storing fresh frozen samples, especially either for the investigation of rare diseases or for the study of microscopic disease foci, have led to the investigation of the possible use of formalin fixed wax embedded tissue for proteomic biomarker detection Overcoming problems with protein cross-linking associated with formalin fixation of tissues, especially by using heat-mediated retrieval techniques combined with highly sensitive methods for protein separation and identification are now emerging, giving promise to the use of formalin fixed wax embedded tissues for proteomic analysis. Formalin fixed wax embedded tissues, together with their associated clinical and pathological information outcome may provide significant potential opportunities for proteomics research. Such studies of formalin fixed wax embedded tissue will allow access to already acquired clinical tissue samples which can be readily correlated with clinical, pathological and outcome data. It also provides access to rare types of tissue/diseases that would be either difficult to collect prospectively in a timely manner or are unlikely to be available as fresh samples. The purpose of this review is to provide an overview of the issues associated with the use of formalin fixed wax embedded tissues for proteomics.

  5. Rapid, sensitive, type specific PCR detection of the E7 region of human papillomavirus type 16 and 18 from paraffin embedded sections of cervical carcinoma.

    PubMed

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Steven; Koch, Jørn

    2010-01-22

    Human papillomavirus (HPV) infection, and in particularly infection with HPVs 16 and 18, is a central carcinogenic factor in the uterine cervix. We established and optimized a PCR assay for the detection and discrimination of HPV types 16 and 18 in archival formaldehyde fixed and paraffin embedded (FFPE) sections of cervical cancer.Tissue blocks from 35 cases of in situ or invasive cervical squamous cell carcinoma and surrogate FFPE sections containing the cell lines HeLa and SiHa were tested for HPV 16 and HPV18 by conventional PCR using type specific primers, and for the housekeeping gene beta-actin. Using HPV 16 E7 primers, PCR products with the expected length were detected in 18 of 35 of FFPE sections (51%). HPV 18 E7 specific sequences were detected in 3 of 35 FFPE sections (9%).In our experience, the PCR technique is a robust, simple and sensitive way of type specific detection of HPV16 and HPV18 genes in FFPE tissue. That makes this technique applicable to routine practices of HPV detection.

  6. Quantitation of CDH1 promoter methylation in formalin-fixed paraffin-embedded tissues of breast cancer patients using differential high resolution melting analysis.

    PubMed

    Naghitorabi, Mojgan; Mohammadi-Asl, Javad; Sadeghi, Hamid Mir Mohammad; Rabbani, Mohammad; Jafarian-Dehkordi, Abbas; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    E-cadherin (CDH1) plays an important role in cell-cell adhesion of epithelial tissues. Loss of E-cadherin expression can lead to loss of tissue integrity, metastasis, and cancer progression. Also loss of E-cadherin expression might be related to aberrant promoter methylation of the CDH1 gene. Many studies have been performed on CDH1 promoter methylation, especially in breast cancer. Although most of the studies have used qualitative methods for methylation analysis, this study is designed to quantitatively investigate CDH1 promoter methylation in breast cancer and its correlation with patients' clinicopathological features. Using differential high resolution melting analysis (D-HRMA), the methylation level of the CDH1 gene promoter was quantified in 98 breast cancer formalin-fixed paraffin-embedded (FFPE) tissues and also 10 fresh frozen normal breast tissues. All samples were detected to be methylated at the CDH1 promoter region. About 74.5% of the breast cancer samples were hypermethylated with an average methylation level of around 60%, while 25.5% of the patients were methylated with the mean methylation level of about 33%, and 90% of the normal samples had a mean methylation level of about 18%. Statistical analyses represented a significant correlation between CDH1 promoter methylation and cancer progression hallmarks, such as, clinical stage, nodal involvement, tumor size, and histological grade. In summary, quantitation of CDH1 promoter methylation can serve as a diagnostic and prognostic tool in breast cancer. Also D-HRMA can be used as a fast and reliable method for quantitation of promoter methylation.

  7. Agarose/gelatin immobilisation of tissues or embryo segments for orientated paraffin embedding and sectioning.

    PubMed

    McClelland, Kathryn S; Ng, Ee Ting; Bowles, Josephine

    2016-01-01

    The technique described in this protocol allows the user to position small tissues in the optimal orientation for paraffin embedding and sectioning by first immobilising the tissue in an agarose/gelatin cube. This method is an adaptation of methods used for early embryos and can be used for any small tissues or embryo segments. Processing of larger tissue sections using molds to create agarose/gelatin blocks has been described previously; this detailed protocol provides a method for dealing with much smaller tissues or embryos (≤5mm). The tissue is briefly fixed then an agarose/gelatin drop is created to surround the tissue. The tissue can be orientated as per the user's preference in the drop before it sets as is carved into a cube with a domed top. The cube is then dehydrated and goes through the embedding and sectioning process. The domed cube is easy to orientate when embedding the tissue in a wax block giving the user assured orientation of the small tissue for sectioning. Additionally, the agarose/gelatin cube is easy to see in the unmolded wax once embedded, making the region of interest easy to identify. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Gene Expression Analysis of Immunostained Endothelial Cells Isolated from Formaldehyde-fixated Paraffin Embedded Tumors Using Laser Capture Microdissection – a Technical Report

    PubMed Central

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E.

    2009-01-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by RT-PCR and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4°C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. GAPDH and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM. PMID:19425073

  9. Gene expression analysis of immunostained endothelial cells isolated from formaldehyde-fixated paraffin embedded tumors using laser capture microdissection--a technical report.

    PubMed

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E

    2009-12-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by reverse transcription-PCR (RT-PCR) and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4 degrees C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. Glyceraldehyde-3-phosphate dehydrogenase and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM.

  10. Nucleic acid extraction methods from fixed and paraffin-embedded tissues in cancer diagnostics.

    PubMed

    Bonin, Serena; Stanta, Giorgio

    2013-04-01

    Diagnostic tests, based on nucleic acid extracts from formalin-fixed and paraffin-embedded tissues, are now becoming increasingly common due to the introduction of biological agents for cancer therapy. Unfortunately, the formalin-fixed and paraffin-embedded tissues are heterogeneous in terms of processing and tissue type, and this has an impact on downstream molecular techniques, especially RNA-based techniques. The present review deals with most of the variables connected to the extraction of nucleic acids from formalin-fixed paraffin-embedded tissues, ranging from tissue processing to quality control of extracts. The most recent peer-reviewed publications (mostly published in the past 5 years) and information provided by company websites have been analyzed to compile this review.

  11. Multiplexed analysis of fixed tissue RNA using Ligation in situ Hybridization.

    PubMed

    Credle, Joel J; Itoh, Christopher Y; Yuan, Tiezheng; Sharma, Rajni; Scott, Erick R; Workman, Rachael E; Fan, Yunfan; Housseau, Franck; Llosa, Nicolas J; Bell, W Robert; Miller, Heather; Zhang, Sean X; Timp, Winston; Larman, H Benjamin

    2017-08-21

    Clinical tissues are prepared for histological analysis and long-term storage via formalin fixation and paraffin embedding (FFPE). The FFPE process results in fragmentation and chemical modification of RNA, rendering it less suitable for analysis by techniques that rely on reverse transcription (RT) such as RT-qPCR and RNA-Seq. Here we describe a broadly applicable technique called 'Ligation in situ Hybridization' ('LISH'), which is an alternative methodology for the analysis of FFPE RNA. LISH utilizes the T4 RNA Ligase 2 to efficiently join adjacent chimeric RNA-DNA probe pairs hybridized in situ on fixed RNA target sequences. Subsequent treatment with RNase H releases RNA-templated ligation products into solution for downstream analysis. We demonstrate several unique advantages of LISH-based assays using patient-derived FFPE tissue. These include >100-plex capability, compatibility with common histochemical stains and suitability for analysis of decade-old materials and exceedingly small microdissected tissue fragments. High-throughput DNA sequencing modalities, including single molecule sequencing, can be used to analyze ligation products from complex panels of LISH probes ('LISH-seq'), which can be amplified efficiently and with negligible bias. LISH analysis of FFPE RNA is a novel methodology with broad applications that range from multiplexed gene expression analysis to the sensitive detection of infectious organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.

    PubMed

    Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H

    2016-04-25

    Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.

  13. Formalin Fixed Paraffin Embedded Tissue as a Starting Point for PrPSc Detection by ELISA

    USDA-ARS?s Scientific Manuscript database

    Introduction: Formalin fixed paraffin embedded tissue are regularly employed in TSE diagnosis by IHC, the standard by which all other diagnostic protocols are currently judged. While IHC affords advantages over diagnostic approaches that typically utilize fresh or frozen tissue, such as Western blot...

  14. Decoupling tissue and cell scale stresses using embedded oil microdroplets

    NASA Astrophysics Data System (ADS)

    Shelton, Elijah; Serwane, Friedhelm; Mongera, Alessandro; Lucio, Adam; Campàs, Otger

    Embryonic development and organ morphogenesis require mechanical stresses to be patterned in space and time over length scales ranging from cellular to tissue level. While several approaches use 4D live-imaging to infer forces from the observed flow fields, few techniques allow direct measurements of stress in vivo and in situ. We use oil microdroplets injected in between cells as direct stress sensors. Through confocal imaging and custom software for high resolution 3D droplet surface reconstruction, we can directly measure the patterns of stress by looking at the deformations of the drop. This analysis allows us to decouple the stresses at the tissue scale from those generated at cellular scales by disentangling ellipsoidal drop deformation modes from higher order drop deformations. Using this technique we measure both tissue and cell scale stresses within aggregates of mesenchymal cells as well as within developing zebrafish embryonic tissues. The decoupling of mechanical stresses at cell and tissue scales makes our technique uniquely suited for understanding how tissue scale reorganizations emerge from cell scale interactions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  15. Oleic acid-added embedding medium for histological analysis of hard tissue.

    PubMed

    Lim, Jin Ik; Lee, Yong-Keun

    2009-10-01

    For the histological analysis of hard tissue such as bone, various acrylate-based materials have been used as an embedding medium. However, commercial embedding media are expensive, and cutting the embedded block takes a long time. In this study, mixtures of methyl methacrylate (MMA), di-butyl-phthalate (DBP), and oleic acid (OA) were tested for possible application as an embedding medium for large and small undecalcified bone specimens. Mechanical properties were tested in a compressive mode. We investigated the change of hydrophilicity in the sectioned surface by measuring the contact angle depending on the OA. Crystallinity was analyzed using a X-ray diffractometer (XRD). Surface analysis was performed using a confocal laser scanning microscope. To determine the staining efficiency of staining dyes, hamatoxylin-eosin (H&E) and Masson's trichrome (MT) staining methods were performed for the histological analysis of bone-implant complex. We confirmed that the investigated embedding media showed good properties such as optimal mechanical strength appropriate for cutting the embedded block and proper staining efficiency for histological analysis. Therefore, the MMA/DBP/OA mixtures can be used as an embedding media appropriate for various hard tissues and bone-implant complex.

  16. Application of BIOMED-2 clonality assays to formalin-fixed paraffin embedded follicular lymphoma specimens: superior performance of the IGK assays compared to IGH for suboptimal specimens.

    PubMed

    Halldórsdóttir, Anna Margrét; Zehnbauer, Barbara A; Burack, W Richard

    2007-07-01

    The BIOMED-2 PCR-based immunoglobulin gene rearrangement assays have quickly become the most commonly used laboratory method for detection of B-cell clonality. Therefore, the reliability of these assays under various conditions has become increasingly important. When studying paired cases of follicular lymphoma (FL) from individual patients, we used these assays to assess clonality in 40 formalin-fixed paraffin-embedded (FFPE) specimens from 19 patients diagnosed with FL. The assays of IGH rearrangement failed to give a clonal result in 26/40 (65%) specimens, while the IGK assays failed in only 3/40 (8%) specimens. The high failure rate of the IGH assays for this set of FFPE lymphomas cannot be explained by systematic problems with DNA extraction or amplification because the same IGH assays resulted in a low failure rate (3/32, 9%) for FFPE small lymphocytic lymphoma/chronic lymphocytic leukemia specimens and for fresh frozen FL specimens (1/6, 17%). Furthermore, in a second validation set of 13 FFPE follicular lymphoma the failure rate was 9/13 (69%). Therefore, the BIOMED-2 IGH assay did not perform well on FFPE follicular lymphoma specimens, and the IGK assay may be superior for assessing clonality when no fresh/frozen tissue is available.

  17. HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples.

    PubMed

    Moens, Lotte N J; Falk-Sörqvist, Elin; Ljungström, Viktor; Mattsson, Johanna; Sundström, Magnus; La Fleur, Linnéa; Mathot, Lucy; Micke, Patrick; Nilsson, Mats; Botling, Johan

    2015-11-01

    In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomolecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings.

  18. Microarray gene expression analysis of fixed archival tissue permits molecular classification and identification of potential therapeutic targets in diffuse large B-cell lymphoma.

    PubMed

    Linton, Kim; Howarth, Christopher; Wappett, Mark; Newton, Gillian; Lachel, Cynthia; Iqbal, Javeed; Pepper, Stuart; Byers, Richard; Chan, Wing John; Radford, John

    2012-01-01

    Refractory/relapsed diffuse large B-cell lymphoma (DLBCL) has a poor prognosis. Novel drugs targeting the constitutively activated NF-κB pathway characteristic of ABC-DLBCL are promising, but evaluation depends on accurate activated B cell-like (ABC)/germinal center B cell-like (GCB) molecular classification. This is traditionally performed on gene microarray expression profiles of fresh biopsies, which are not routinely collected, or by immunohistochemistry on formalin-fixed, paraffin-embedded (FFPE) tissue, which lacks reproducibility and classification accuracy. We explored the possibility of using routine archival FFPE tissue for gene microarray applications. We examined Affymetrix HG U133 Plus 2.0 gene expression profiles from paired archival FFPE and fresh-frozen tissues of 40 ABC/GCB-classified DLBCL cases to compare classification accuracy and test the potential for this approach to aid the discovery of therapeutic targets and disease classifiers in DLBCL. Unsupervised hierarchical clustering of unselected present probe sets distinguished ABC/GCB in FFPE with remarkable accuracy, and a Bayesian classifier correctly assigned 32 of 36 cases with >90% probability. Enrichment for NF-κB genes was appropriately seen in ABC-DLBCL FFPE tissues. The top discriminatory genes expressed in FFPE separated cases with high statistical significance and contained novel biology with potential therapeutic insights, warranting further investigation. These results support a growing understanding that archival FFPE tissues can be used in microarray experiments aimed at molecular classification, prognostic biomarker discovery, and molecular exploration of rare diseases. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene-fixed samples compared with restored formalin-fixed and paraffin-embedded DNA.

    PubMed

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte; Tost, Jörg

    2015-01-01

    Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K BeadChip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. An alternative protocol for DNA extraction from formalin fixed and paraffin wax embedded tissue.

    PubMed

    Coura, R; Prolla, J C; Meurer, L; Ashton-Prolla, P

    2005-08-01

    DNA extraction from paraffin wax embedded tissue requires special protocols, and most described methods report an amplification success rate of 60-80%. To propose a simple and inexpensive protocol consisting of xylene/ethanol dewaxing, followed by a kit based extraction. Xylene/ethanol dewaxing was followed by a long rehydration step and a kit based DNA extraction step. This method produced a 100% amplification success rate for fragments of 121 to 227 bp for tamponated formalin fixed paraffin wax embedded tissue. This cost effective and non-laborious protocol can successfully extract DNA from tamponated formalin fixed paraffin wax embedded tissue and should facilitate the molecular analysis of a large number of archival specimens in retrospective studies.

  1. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    PubMed

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.

  2. Simultaneous detection of BRCA mutations and large genomic rearrangements in germline DNA and FFPE tumor samples

    PubMed Central

    Enyedi, Márton Zsolt; Jaksa, Gábor; Pintér, Lajos; Sükösd, Farkas; Gyuris, Zoltán; Hajdu, Adrienn; Határvölgyi, Erika; Priskin, Katalin; Haracska, Lajos

    2016-01-01

    The development of breast and ovarian cancer is strongly connected to the inactivation of the BRCA1 and BRCA2 genes by different germline and somatic alterations, and their diagnosis has great significance in targeted tumor therapy, since recently approved PARP inhibitors show high efficiency in the treatment of BRCA-deficient tumors. This raises the need for new diagnostic methods that are capable of performing an integrative mutation analysis of the BRCA genes not only from germline DNA but also from formalin-fixed and paraffin-embedded (FFPE) tumor samples. Here we describe the development of such a methodology based on next-generation sequencing and a new bioinformatics software for data analysis. The diagnostic method was initially developed on an Illumina MiSeq NGS platform using germline-mutated stem cell lines and then adapted for the Ion Torrent PGM NGS platform as well. We also investigated the usability of NGS coverage data for the detection of copy number variations and exon deletions as a replacement of the conventional MLPA technique. Finally, we tested the developed workflow on FFPE samples from breast and ovarian cancer patients. Our method meets the sensitivity and specificity requirements for the genetic diagnosis of breast and ovarian cancers both from germline and FFPE samples. PMID:27533253

  3. Human papillomavirus detection in paraffin-embedded colorectal cancer tissues.

    PubMed

    Tanzi, Elisabetta; Bianchi, Silvia; Frati, Elena R; Amicizia, Daniela; Martinelli, Marianna; Bragazzi, Nicola L; Brisigotti, Maria Pia; Colzani, Daniela; Fasoli, Ester; Zehender, Gianguglielmo; Panatto, Donatella; Gasparini, Roberto

    2015-01-01

    Human papillomavirus (HPV) has a well-recognized aetiological role in the development of cervical cancer and other anogenital tumours. Recently, an association between colorectal cancer and HPV infection has been suggested, although this is still controversial. This study aimed at detecting and characterizing HPV infection in 57 paired biopsies from colorectal cancers and adjacent intact tissues using a degenerate PCR approach. All amplified fragments were genotyped by means of sequencing. Overall, HPV prevalence was 12.3 %. In particular, 15.8 % of tumour tissues and 8.8 % of non-cancerous tissue samples were HPV DNA-positive. Of these samples, 85.7 % were genotyped successfully, with 41.7 % of sequences identifying four genotypes of the HR (high oncogenic risk) clade Group 1; the remaining 58.3 % of HPV-genotyped specimens had an unclassified β-HPV. Examining additional cases and analysing whole genomes will help to outline the significance of these findings.

  4. Identification of bacterial pathogens from formalin-fixed, paraffin-embedded tissues by using 16S sequencing: retrospective correlation of results to clinicians' responses.

    PubMed

    Racsa, Lori D; DeLeon-Carnes, Marlene; Hiskey, Matthew; Guarner, Jeannette

    2017-01-01

    16S sequencing on formalin-fixed, paraffin-embedded (FFPE) material has been used to identify bacteria when culture-based phenotyping techniques have not worked. The objective of this study was to determine how frequently 16S sequencing used in FFPE material was helpful to clinicians in the diagnosis and treatment of infectious diseases. Requests for testing occurred upon consultation between an infectious disease pathologist and a surgical pathologist or an infectious disease physician. A selected paraffin block from each case was referred for 16S sequencing. Retrospectively, we correlated clinical history and management decisions on 27 cases that were tested by paneubacterial 16S sequencing. Samples included 24 surgical specimens, 1 autopsy, and 2 cytology blocks. Seventeen (63%) of the 27 cases had a positive 16S sequencing. Acute inflammation was present in 10 of these cases, and organisms were observed using special stains in 3. In 11 (65%) of the 17 cases, clinicians considered the organism identified by 16S sequencing to be the cause or possible cause of the infectious process. Organisms included common (Citrobacter) and fastidious bacteria (Haemophilus, Fusobacterium). In 3 cases, clinicians changed antibiotic treatment based on the bacteria identified, whereas in 8 (including 2 where no organism was found), clinicians continued the antibiotic treatment. The use of 16S sequencing on FFPE identified specific bacteria even when organisms were not observed histopathologically. 16S results had an impact in infectious disease management decisions.

  5. Multi-Center Evaluation of the Fully Automated PCR-Based Idylla™ KRAS Mutation Assay for Rapid KRAS Mutation Status Determination on Formalin-Fixed Paraffin-Embedded Tissue of Human Colorectal Cancer

    PubMed Central

    Solassol, Jérôme; Vendrell, Julie; Märkl, Bruno; Haas, Christian; Bellosillo, Beatriz; Montagut, Clara; Smith, Matthew; O’Sullivan, Brendan; D’Haene, Nicky; Le Mercier, Marie; Grauslund, Morten; Melchior, Linea Cecilie; Burt, Emma; Cotter, Finbarr; Stieber, Daniel; Schmitt, Fernando de Lander; Motta, Valentina; Lauricella, Calogero; Colling, Richard; Soilleux, Elizabeth; Fassan, Matteo; Mescoli, Claudia; Collin, Christine; Pagès, Jean-Christophe; Sillekens, Peter

    2016-01-01

    Since the advent of monoclonal antibodies against epidermal growth factor receptor (EGFR) in colorectal cancer therapy, the determination of RAS mutational status is needed for therapeutic decision-making. Most prevalent in colorectal cancer are KRAS exon 2 mutations (40% prevalence); lower prevalence is observed for KRAS exon 3 and 4 mutations (6%) and NRAS exon 2, 3, and 4 mutations (5%). The Idylla™ KRAS Mutation Test on the molecular diagnostics Idylla™ platform is a simple (<2 minutes hands-on time), highly reliable, and rapid (approximately 2 hours turnaround time) in vitro diagnostic sample-to-result solution. This test enables qualitative detection of 21 mutations in codons 12, 13, 59, 61, 117, and 146 of the KRAS oncogene being clinically relevant according to the latest clinical guidelines. Here, the performance of the Idylla™ KRAS Mutation Assay, for Research Use Only, was assessed on archived formalin-fixed paraffin-embedded (FFPE) tissue sections by comparing its results with the results previously obtained by routine reference approaches for KRAS genotyping. In case of discordance, samples were assessed further by additional methods. Among the 374 colorectal cancer FFPE samples tested, the overall concordance between the Idylla™ KRAS Mutation Assay and the confirmed reference routine test results was found to be 98.9%. The Idylla™ KRAS Mutation Assay enabled detection of 5 additional KRAS-mutated samples not detected previously with reference methods. As conclusion the Idylla™ KRAS Mutation Test can be applied as routine tool in any clinical setting, without needing molecular infrastructure or expertise, to guide the personalized treatment of colorectal cancer patients. PMID:27685259

  6. Genome-wide Detection of DNase I Hypersensitive Sites in Single Cells and FFPE Samples

    PubMed Central

    Jin, Wenfei; Tang, Qingsong; Wan, Mimi; Cui, Kairong; Zhang, Yi; Ren, Gang; Ni, Bing; Sklar, Jeffrey; Przytycka, Teresa M.; Childs, Richard; Levens, David; Zhao, Keji

    2015-01-01

    DNase I hypersensitive sites (DHSs) provide important information on the presence of transcriptional regulatory elements and the state of chromatin in mammalian cells1–3. Conventional DNase-Seq for genome-wide DHSs profiling is limited by the requirement of millions of cells4,5. Here we report an ultrasensitive strategy, called Pico-Seq, for detection of genome-wide DHSs in single cells. We show that DHS patterns at the single cell level are highly reproducible among individual cells. Among different single cells, highly expressed gene promoters and the enhancers associated with multiple active histone modifications display constitutive DHS while chromatin regions with fewer histone modifications exhibit high variation of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene expression programs and the cell-to-cell variations of DHS are predictive of gene expression. Finally, we apply Pico-Seq to pools of tumor cells and pools of normal cells, dissected from formalin-fixed paraffin-embedded (FFPE) tissue slides from thyroid cancer patients, and detect thousands of tumor-specific DHSs. Many of these DHSs are associated with promoters and enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one single-nucleotide variant (chr18:52417839 G>C) in the tumor cells of a follicular thyroid carcinoma patient, which affects the binding of the tumor suppressor protein p53 and correlates with decreased expression of its target gene TXNL1. In conclusion, Pico-Seq can reliably detect DHSs in single cells, greatly extending the range of applications of DHS analysis for both basic and translational research and may provide critical information for personalized medicine. PMID:26605532

  7. PrPSc detection in formalin-fixed paraffin-embedded tissue by ELISA

    USDA-ARS?s Scientific Manuscript database

    Formalin-fixed paraffin-embedded tissue is regularly employed in the diagnosis of transmissible spongiform encephalopathies (TSE) by immunohistochemistry (IHC), the standard by which all other TSE diagnostic protocols are judged. While IHC affords advantages over diagnostic approaches that typically...

  8. Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging

    NASA Astrophysics Data System (ADS)

    Bykov, Alexander V.; Popov, Alexey P.; Priezzhev, Alexander V.; Myllyla, Risto

    2011-06-01

    We report about manufacturing of fully functional capillary network embedded into the multilayer tissue phantom. Polyvinyl chloride-plastisol was used as a host transparent medium. Scattering was introduced by adding the TiO2submicron particles. OCT technique was used to characterize the manufactured phantoms and to monitor the vessels filling with different liquids.

  9. Transcriptome Sequencing (RNAseq) Enables Utilization of Formalin-Fixed, Paraffin-Embedded Biopsies with Clear Cell Renal Cell Carcinoma for Exploration of Disease Biology and Biomarker Development

    PubMed Central

    Eikrem, Oystein; Beisland, Christian; Hjelle, Karin; Flatberg, Arnar; Scherer, Andreas; Landolt, Lea; Skogstrand, Trude; Leh, Sabine; Beisvag, Vidar; Marti, Hans-Peter

    2016-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are an underused resource for molecular analyses. This proof of concept study aimed to compare RNAseq results from FFPE biopsies with the corresponding RNAlater® (Qiagen, Germany) stored samples from clear cell renal cell carcinoma (ccRCC) patients to investigate feasibility of RNAseq in archival tissue. From each of 16 patients undergoing partial or full nephrectomy, four core biopsies, such as two specimens with ccRCC and two specimens of adjacent normal tissue, were obtained with a 16g needle. One normal and one ccRCC tissue specimen per patient was stored either in FFPE or RNAlater®. RNA sequencing libraries were generated applying the new Illumina TruSeq® Access library preparation protocol. Comparative analysis was done using voom/Limma R-package. The analysis of the FFPE and RNAlater® datasets yielded similar numbers of detected genes, differentially expressed transcripts and affected pathways. The FFPE and RNAlater datasets shared 80% (n = 1106) differentially expressed genes. The average expression and the log2 fold changes of these transcripts correlated with R2 = 0.97, and R2 = 0.96, respectively. Among transcripts with the highest fold changes in both datasets were carbonic anhydrase 9 (CA9), neuronal pentraxin-2 (NPTX2) and uromodulin (UMOD) that were confirmed by immunohistochemistry. IPA revealed the presence of gene signatures of cancer and nephrotoxicity, renal damage and immune response. To simulate the feasibility of clinical biomarker studies with FFPE samples, a classifier model was developed for the FFPE dataset: expression data for CA9 alone had an accuracy, specificity and sensitivity of 94%, respectively, and achieved similar performance in the RNAlater dataset. Transforming growth factor-ß1 (TGFB1)-regulated genes, epithelial to mesenchymal transition (EMT) and NOTCH signaling cascade may support novel therapeutic strategies. In conclusion, in this proof of concept study, RNAseq data

  10. Transcriptome Sequencing (RNAseq) Enables Utilization of Formalin-Fixed, Paraffin-Embedded Biopsies with Clear Cell Renal Cell Carcinoma for Exploration of Disease Biology and Biomarker Development.

    PubMed

    Eikrem, Oystein; Beisland, Christian; Hjelle, Karin; Flatberg, Arnar; Scherer, Andreas; Landolt, Lea; Skogstrand, Trude; Leh, Sabine; Beisvag, Vidar; Marti, Hans-Peter

    2016-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are an underused resource for molecular analyses. This proof of concept study aimed to compare RNAseq results from FFPE biopsies with the corresponding RNAlater® (Qiagen, Germany) stored samples from clear cell renal cell carcinoma (ccRCC) patients to investigate feasibility of RNAseq in archival tissue. From each of 16 patients undergoing partial or full nephrectomy, four core biopsies, such as two specimens with ccRCC and two specimens of adjacent normal tissue, were obtained with a 16g needle. One normal and one ccRCC tissue specimen per patient was stored either in FFPE or RNAlater®. RNA sequencing libraries were generated applying the new Illumina TruSeq® Access library preparation protocol. Comparative analysis was done using voom/Limma R-package. The analysis of the FFPE and RNAlater® datasets yielded similar numbers of detected genes, differentially expressed transcripts and affected pathways. The FFPE and RNAlater datasets shared 80% (n = 1106) differentially expressed genes. The average expression and the log2 fold changes of these transcripts correlated with R2 = 0.97, and R2 = 0.96, respectively. Among transcripts with the highest fold changes in both datasets were carbonic anhydrase 9 (CA9), neuronal pentraxin-2 (NPTX2) and uromodulin (UMOD) that were confirmed by immunohistochemistry. IPA revealed the presence of gene signatures of cancer and nephrotoxicity, renal damage and immune response. To simulate the feasibility of clinical biomarker studies with FFPE samples, a classifier model was developed for the FFPE dataset: expression data for CA9 alone had an accuracy, specificity and sensitivity of 94%, respectively, and achieved similar performance in the RNAlater dataset. Transforming growth factor-ß1 (TGFB1)-regulated genes, epithelial to mesenchymal transition (EMT) and NOTCH signaling cascade may support novel therapeutic strategies. In conclusion, in this proof of concept study, RNAseq data

  11. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks

    PubMed Central

    Simmons, Alan J.; Scurrah, Cherie’ R.; McKinley, Eliot T.; Herring, Charles A.; Irish, Jonathan M.; Washington, Mary K.; Coffey, Robert J.; Lau, Ken S.

    2016-01-01

    Cellular heterogeneity poses a significant challenge to understanding tissue level phenotypes and confounds conventional bulk analyses. To facilitate the analysis of signaling at the single-cell level in human tissues, we applied mass cytometry using CyTOF (Cytometry Time-of-Flight) to formalin-fixed paraffin-embedded (FFPE) normal and diseased intestinal specimens. We developed and validated a technique called FFPE-DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue), a single-cell approach for characterizing native signaling states from embedded solid tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor α (TNF-α) in intestinal enterocytes, goblet cells and enteroendocrine cells, implicating the role of the downstream RAS-RAF-MEK-ERK signaling pathway in dictating goblet cell identity. In addition, application of FFPE-DISSECT, mass cytometry, and data-driven computational analyses to human colon specimens confirmed reduced differentiation in colorectal cancer (CRC) compared to normal colon, and revealed quantitative increases in inter- and intra-tissue heterogeneity in CRC with regards to the modular regulation of signaling pathways. Specifically, modular co-regulation of the kinases P38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in the proliferative compartment of the normal colon was loss in CRC, as evidenced by their impaired coordination over samplings of single cells in tissue. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, such as microsatellite instability and mutations in KRAS and BRAF, allows rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. FFPE-DISSECT coupled of mass cytometry can be used for deriving cellular landscapes from archived patient samples, beyond CRC, and as a high resolution tool for

  12. Clinical performance evaluation of the Idylla NRAS-BRAF mutation test on retrospectively collected formalin-fixed paraffin-embedded colorectal cancer tissue.

    PubMed

    Johnston, Louise; Power, Michael; Sloan, Philip; Long, Anna; Silmon, Angela; Chaffey, Ben; Lisgo, Andrea Jane; Little, Liam; Vercauteren, Ellen; Steiniche, Torben; Meyer, Tine; Simpson, John

    2017-09-12

    Understanding the molecular mechanisms of underlying disease has led to a movement away from the one-drug-fits-all paradigm towards treatment tailored to the genetic profile of the patient. The Biocartis Idylla platform is a novel fully automated, real-time PCR-based in vitro diagnostic system. The Idylla NRAS-BRAF mutation test has been developed for the qualitative detection of mutations in NRAS and BRAF oncogenes, facilitating genetic profiling of patients with cancer. The aim of this study was to carry out a formal clinical performance evaluation. Two-hundred and forty-two formalin-fixed paraffin-embedded (FFPE) human malignant colorectal cancer (CRC) tissue samples were identified in departmental archives and tested with both the Idylla NRAS-BRAF mutation test and the Agena Bioscience MassARRAY test. The overall concordance between the Idylla NRAS-BRAF mutation test and the MassARRAY comparator reference test result was 241/242 (99.59%, lower bound of one-sided 95% CI=98.1%) for NRAS and 242/242 (lower bound of 95% one-sided 95% CI=98.89%) for BRAF. The Idylla NRAS-BRAF test detected one NRAS mutation that had not been reported by the MassARRAY comparator reference test. Reanalysis of this sample by droplet digital PCR confirmed that the mutation was present, but at an allelic frequency below the stated sensitivity level of the MassARRAY system. These results confirm that the Idylla NRAS-BRAF mutation test has high concordance with a widely used NRAS-BRAF test, and is therefore suitable for use as an in vitro diagnostic device for this application. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Evaluation of the Xpert® HPV assay in the detection of Human Papillomavirus in formalin-fixed paraffin-embedded oropharyngeal carcinomas.

    PubMed

    Donà, Maria Gabriella; Rollo, Francesca; Pichi, Barbara; Spriano, Giuseppe; Pellini, Raul; Covello, Renato; Pescarmona, Edoardo; Fabbri, Giulia; Scalfari, Manuela; Gheit, Tarik; Benevolo, Maria

    2017-09-01

    The increasing incidence of HPV-related Oropharyngeal Squamous Cell Carcinoma (OPSCC) and the improved survival of HPV-positive OPSCC highlight the need for effective tools in evaluating HPV status on formalin-fixed paraffin-embedded (FFPE) cancers. To date, there is no agreement regarding the most appropriate method for HPV testing on FFPE materials. We aimed to investigate the performance of the Xpert® HPV assay (Cepheid) on crude lysates from OPSCC FFPE tissues. Crude lysates were obtained by proteinase K digestion of FFPE tissues that had already been analyzed by the INNO-LiPA HPV assay and p16(ink4a) immunostaining. 159 FFPE OPSCCs were evaluated. All the samples provided valid results with the Xpert, whereas three samples (1.8%) were invalid using the INNO-LiPA. Among the remaining 156 cases, 65 (41.7%) were concordantly positive and 87 (55.8%) concordantly negative (raw agreement 0.97, 95% CI: 0.93-0.99; Cohen K 0.95, 95% CI: 0.90-0.99). Type-specific data for the cases that were positive by both methods were completely concordant. Three samples were HPV16-positive with Xpert but negative with INNO-LiPA, while one OPSCC tested negative with Xpert and positive with INNO-LiPA. A very good agreement was observed between the Xpert and the p16 results, which was slightly higher than that for INNO-LiPA (Cohen K 0.87vs. 0.85). The Xpert HPV assay appears to be a very good method for HPV detection and genotyping on FFPE OPSCCs, and requires no prior purification of nucleic acids. This assay showed a very good agreement with INNO-LiPA and p16 findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preventing False Negatives for Histochemical Detection of Phenolics and Lignins in PEG-Embedded Plant Tissues.

    PubMed

    Ferreira, Bruno G; Falcioni, Renan; Guedes, Lubia M; Avritzer, Sofia C; Antunes, Werner C; Souza, Luiz A; Isaias, Rosy M S

    2017-02-01

    Polyethylene glycol (PEG) is a low-cost and advantageous embedding medium, which maintains the majority of cell contents unaltered during the embedding process. Some hard or complex plant materials are better embedded in PEG than in other usual embedding media. However, the histochemical tests for phenolics and lignins in PEG-embedded plant tissues commonly result in false negatives. We hypothesize that these false negatives should be prevented by the use of distinct fixatives, which should avoid the bonds between PEG and phenols. Novel protocols for phenolics and flavanols detection are efficiently tested, with fixation of the samples in ferrous sulfate and formalin or in caffeine and sodium benzoate, respectively. The differentiation of lignin types is possible in safranin-stained sections observed under fluorescence. The Maule's test faultlessly distinguishes syringyl-rich from guaiacyl- and hydroxyphenyl-rich lignins in PEG-embedded material under light microscopy. Current hypothesis is corroborated, that is, the adequate fixation solves the false-negative results, and the new proposed protocols fill up some gaps on the detection of phenolics and lignins.

  15. Histology and research at the hard tissue-implant interface using Technovit 9100 New embedding technique.

    PubMed

    Willbold, Elmar; Witte, Frank

    2010-11-01

    Calcified tissues, like bones and teeth, are among the most challenging tissues for histological research. However, especially with respect to dental or orthopaedic research, powerful histological techniques are necessary to study pathological conditions or traumatic injuries, and to investigate the molecular and cellular mechanisms of regeneration processes and functional recovery. The situation is even more complicated in orthopaedic research because here metallic implants or other devices made of various materials are often present, and the hard tissue-implant interface is of crucial interest in both biocompatibility and functional recovery research. After the cutting-grinding technique, embedding in technical resins is the most promising approach. Here we describe an optimized and standardized embedding and cutting technique using Technovit 9100 New. Using this technique, we are able to perform enzyme histochemistry, immunohistochemistry, a great variety of classical histological stains and even in situ hybridization. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Molecular Mapping Alzheimer's Disease: MALDI Imaging of Formalin-fixed, Paraffin-embedded Human Hippocampal Tissue

    PubMed Central

    Kelley, Andrea R.; Perry, George; Bethea, Chloe; Castellani, Rudolph J.; Bach, Stephan B.H.

    2016-01-01

    A method for the molecular mapping of formalin-fixed, paraffin-embedded human hippocampal tissue affected by Alzheimer's disease (AD) is presented. This approach utilizes imaging mass spectrometry (IMS) with matrix-assisted laser desorption/ionization (MALDI). The usefulness of this technique in comparing diseased versus nor mal tissue at the molecular level while continuing to maintain topological and morphological integrity is evident in the preliminary findings. The critical correlation of the deparaffination, washing, matrix deposition, and analysis steps in handling the tissue sections and how these steps impact the successful mapping of human hippocampal tissue is clearly demonstrated. By use of this technique we have been able to identify several differences between the hippocampal AD tissue and the control hippocampal tissue. From the observed peptide clip masses we present preliminary identifications of the amyloid-beta peptides known to be prominent in the brains of those with AD. We have obtained high-resolution mass spectra and mass images with 100μm spatial resolution. Future experiments will couple this work with MALDI LIFT experiments to enable top down proteomics of fresh frozen tissue, which is not possible with paraffin-embedded tissues. PMID:27843502

  17. Determination of collagen content within picrosirius red stained paraffin-embedded tissue sections using fluorescence microscopy

    PubMed Central

    Vogel, Benjamin; Siebert, Hanna; Hofmann, Ulrich; Frantz, Stefan

    2015-01-01

    Picrosirius red (PSR) staining is a commonly used histological technique to visualize collagen in paraffin-embedded tissue sections. PSR stained collagen appears red in light microscopy. However it is largely unknown that PSR stained collagen also shows a red fluorescence, whereas live cells have a distinct green autofluorescence. Both emission patterns can be detected using standard filter sets as found in conventional fluorescence microscopes. Here we used digital image addition and subtraction to determine the relative area of the pure collagen and live cell content in heart tissue in a semi-automated process using standard software. This procedure, which considers empty spaces (holes) within the section, can be easily adapted to quantify the collagen and live cell areas in healthy or fibrotic tissues as aorta, lung, kidney or liver by semi-automated planimetry exemplified herein for infarcted heart tissue obtained from the mouse myocardial infarction model. • Use of conventional PSR stained paraffin-embedded tissue sections for fluorescence analysis. • PSR and autofluorescence images are used to calculate area of collagen and area of live cells in the tissue; empty spaces (holes) in tissue are considered. • High throughput analysis of collagen and live cell content in tissue for statistical purposes. PMID:26150980

  18. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    PubMed Central

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  19. High quality genomic copy number data from archival formalin-fixed paraffin-embedded leiomyosarcoma: optimisation of universal linkage system labelling.

    PubMed

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment.

  20. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    PubMed

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  1. Terahertz absorption and reflection imaging of carcinoma-affected colon tissues embedded in paraffin

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Venckevicius, Rimvydas; Seliuta, Dalius; Valusis, Gintaras; Urbanowicz, Andrzej; Molis, Gediminas; Carneiro, Fatima; Carvalho Silva, Catia D.; Granja, Pedro L.

    2016-03-01

    In the present study, dehydrated human colon tissues embedded in paraffin were studied at THz frequency. A compact THz imaging system with high numerical aperture optics was developed for the analysis of adenocarcinoma-affected colon sections, in transmission and reflection geometry. A comprehensive analysis of the THz images revealed a contrast up to 23% between the neoplastic and control tissues. Absorption and reflection THz images demonstrated the possibility to distinguish adenocarcinoma-affected areas even without water in the tissue, as the main contrast mechanism in THz measurements has been observed to be water absorption in in vivo or freshly excised tissues. The present results corroborate with previous histologic findings in the same tissues, and confirm that the contrast prevails even in dehydrated tissues.

  2. Robust transcriptional tumor signatures applicable to both formalin-fixed paraffin-embedded and fresh-frozen samples

    PubMed Central

    Cheng, Jun; He, Jun; Liu, Huaping; Cai, Hao; Hong, Guini; Zhang, Jiahui; Li, Na; Ao, Lu; Guo, Zheng

    2017-01-01

    Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable resource for clinical researches. However, FFPE samples are usually considered an unreliable source for gene expression analysis due to the partial RNA degradation. In this study, through comparing gene expression profiles between FFPE samples and paired fresh-frozen (FF) samples for three cancer types, we firstly showed that expression measurements of thousands of genes had at least two-fold change in FFPE samples compared with paired FF samples. Therefore, for a transcriptional signature based on risk scores summarized from the expression levels of the signature genes, the risk score thresholds trained from FFPE (or FF) samples could not be applied to FF (or FFPE) samples. On the other hand, we found that more than 90% of the relative expression orderings (REOs) of gene pairs in the FF samples were maintained in their paired FFPE samples and largely unaffected by the storage time. The result suggested that the REOs of gene pairs were highly robust against partial RNA degradation in FFPE samples. Finally, as a case study, we developed a REOs-based signature to distinguish liver cirrhosis from hepatocellular carcinoma (HCC) using FFPE samples. The signature was validated in four datasets of FFPE samples and eight datasets of FF samples. In conclusion, the valuable FFPE samples can be fully exploited to identify REOs-based diagnostic and prognostic signatures which could be robustly applicable to both FF samples and FFPE samples with degraded RNA. PMID:28036264

  3. Technical report: immunofluorescence and TUNEL staining of celloidin embedded human temporal bone tissues.

    PubMed

    Markaryan, Adam; Nelson, Erik G; Tretiakova, Maria; Hinojosa, Raul

    2008-07-01

    The large archival human temporal bone collections of the world have been fixed in formalin and embedded in celloidin. These treatments have created challenges to the use of contemporary probes, which are routinely used in the evaluation of fresh and frozen tissues, for the analysis of archival temporal bone tissues. Formalin alters the configuration of proteins and can obscure antigens by modifying the epitopes recognized by antibodies. Celloidin embedding provides superior support of the delicate membranous structures of the inner ear to maintain tissue integrity during sectioning, however, inadequate removal of celloidin may limit tissue permeability resulting in poor penetration of large molecules. Methods are described in this manuscript that have allowed reproducible immunofluorescence and TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick end labeling) staining results in these archival tissues. To our knowledge, successful immunofluorescence staining of type I collagen, immunofluorescence staining of cytochrome c oxidase subunit III (COX III), and TUNEL staining in archival human temporal bone tissues with confocal microscopy has not been previously reported. These results demonstrate the utility of developing techniques to evaluate the existing collections of archival temporal bones which remain our greatest source of tissue for investigating the causes of ear diseases.

  4. Detection of immunoglobulins and complement components in formalin fixed and paraffin embedded renal biopsy material by immunoflourescence technique

    PubMed Central

    Mubarak, Muhammed; Kazi Javed, I; Kulsoom, Umme; Ishaque, Muhammed

    2012-01-01

    Background The technique of direct immunoflourescence (IF) is essential in the accurate diagnosis of renal glomerular diseases. The optimal results are obtained when the procedure is done on fresh frozen tissue (IF-F). However, techniques are available for IF study on formalin fixed and paraffin embedded (FFPE) renal biopsy specimens with variable reported success rates. Objectives We evaluated three such techniques on FFPE tissue and compared the results with those obtained by IF-F from the same patients. Materials and Methods Heat treatment with Tris buffer and citrate buffer, and pronase treatment of the FFPE material was carried out. Direct IF was done for renal panel immunoglobulins and complement components on all biopsies and the results were compared with the historical IF-F study. Results When compared to the IF-F, the immunoflourescence staining on the paraffin sections was less sensitive and less intense in all immune complex-mediated renal diseases, but the diagnostic findings were detected in majority of the cases. Conclusions In conclusion, it is possible to establish the diagnosis in most cases of immune complex-mediated glomerular diseases with IF on paraffin embedded tissue specimens. PMID:24475396

  5. Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering.

    PubMed

    Zhang, Ming-Lei; Cheng, Ji; Xiao, Ye-Chen; Yin, Ruo-Feng; Feng, Xu

    2017-02-25

    Engineering novel scaffolds that can mimic the functional extracellular matrix (ECM) would be a great achievement in bone tissue engineering. This paper reports the fabrication of novel collagen/chitosan/β-tricalcium phosphate (CCTP) based tissue engineering scaffold. In order to improve the regeneration ability of scaffold, we have embedded raloxifene (RLX)-loaded PLGA microsphere in the CCTP scaffold. The average pore of scaffold was in the range of 150-200μm with ideal mechanical strength and swelling/degradation characteristics. The release rate of RLX from the microsphere (MS) embedded scaffold was gradual and controlled. Also a significantly enhanced cell proliferation was observed in RLX-MS exposed cell group suggesting that microsphere/scaffold could be an ideal biomaterial for bone tissue engineering. Specifically, RLX-MS showed a significantly higher Alizarin red staining indicating the higher mineralization capacity of this group. Furthermore, a high alkaline phosphatase (ALP) activity for RLX-MS exposed group after 15days incubation indicates the bone regeneration capacity of MC3T3-E1 cells. Overall, present study showed that RLX-loaded microsphere embedded scaffold has the promising potential for bone tissue engineering applications. Copyright © 2016. Published by Elsevier B.V.

  6. microRNA levels in paraffin-embedded indolent B-cell non-Hodgkin lymphoma tissues from patients chronically infected with hepatitis B or C virus

    PubMed Central

    2014-01-01

    Background Epidemiological evidence links Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) to B-cell non-Hodgkin lymphoma (B-NHL). These B-NHLs, particularly those associated with HCV, may represent a distinct sub-group with peculiar molecular features, including peculiar expression of microRNAs (miRs). The aim of the present study was to search for miRs whose level in indolent B-NHL tissues could be associated with HBV or HCV infection. Methods Fourteen formalin fixed paraffin embedded (FFPE) tissues from HBV+, HCV+ and HBV-/HCV- indolent B-NHL patients were analyzed for levels of 34 selected miRs by quantitative Real-Time PCR. Reactive lymph nodes (RLNs) from HBV-/HCV- patients were included as non-tumor control. Statistical analysis of output data included Pearson and Spearman correlation and Mann-Whitney test and were carried out by the STATA software. Results MiR-92a was decreased exclusively in HBV-/HCV- B-NHLs, while miR-30b was increased in HBV+ and HCV+ samples, though only the HCV+ achieved full statistical significance. Analysis of a small subset of B-NHLs belonging to the same histological subtype (Nodal Marginal Zone Lymphoma) highlighted three miRs associated with HCV infection (miR-223, miR-29a and miR-29b) and confirmed decreased level of miR-92a in HBV-/HCV- samples also when considering this restricted B-NHL group. Conclusions Although caution is needed due to the limited number of analyzed samples, overall the results suggest that differences at the miR expression level exist between indolent B-NHLs developed in patients with or without HBV or HCV infection. The identification of three further miRs associated with HCV by analyzing histologically homogeneous samples suggests that variations of miR levels possibly associated with HBV or HCV may be obscured by the tissue-specific variability of miR level associated with the different histological subtypes of B-NHL. Thus, the identification of further miRs will require, in addition to an increased

  7. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.

    PubMed

    Kotorashvili, Adam; Ramnauth, Andrew; Liu, Christina; Lin, Juan; Ye, Kenny; Kim, Ryung; Hazan, Rachel; Rohan, Thomas; Fineberg, Susan; Loudig, Olivier

    2012-01-01

    Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded

  8. Effective DNA/RNA Co-Extraction for Analysis of MicroRNAs, mRNAs, and Genomic DNA from Formalin-Fixed Paraffin-Embedded Specimens

    PubMed Central

    Liu, Christina; Lin, Juan; Ye, Kenny; Kim, Ryung; Hazan, Rachel; Rohan, Thomas; Fineberg, Susan; Loudig, Olivier

    2012-01-01

    Background Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. Principal Findings For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. Significance We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which

  9. Determining the utility of veterinary tissue archives for retrospective DNA analysis

    PubMed Central

    Abed, Firas M.

    2016-01-01

    Histopathology tissue archives can be an important source of specimens for retrospective studies, as these include samples covering a large number of diseases. In veterinary medicine, archives also contain samples from a large variety of species and may represent naturally-occurring models of human disease. The formalin-fixed, paraffin-embedded (FFPE) tissues comprising these archives are rich resources for retrospective molecular biology studies and pilot studies for biomarkers, as evidenced by a number of recent publications highlighting FFPE tissues as a resource for analysis of specific diseases. However, DNA extracted from FFPE specimens are modified and fragmented, making utilization challenging. The current study examines the utility of FFPE tissue samples from a veterinary diagnostic laboratory archive in five year intervals from 1977 to 2013, with 2015 as a control year, to determine how standard processing and storage conditions has affected their utility for future studies. There was a significant difference in our ability to obtain large amplicons from samples from 2015 than from the remaining years, as well as an inverse correlation between the age of the samples and product size obtainable. However, usable DNA samples were obtained in at least some of the samples from all years tested, despite variable storage, fixation, and processing conditions. This study will help make veterinary diagnostic laboratory archives more useful in future studies of human and veterinary disease. PMID:27168995

  10. A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts

    PubMed Central

    Brown, Mark; Maawy, Ali; Chang, Alexander; Lee, Jacqueline; Gharibi, Armen; Katz, Matthew H; Fleming, Jason; Hoffman, Robert M; Bouvet, Michael; Doebler, Robert; Kelber, Jonathan A

    2017-01-01

    Next-generation sequencing (NGS) can identify and validate new biomarkers of cancer onset, progression and therapy resistance. Substantial archives of formalin-fixed, paraffin-embedded (FFPE) cancer samples from patients represent a rich resource for linking molecular signatures to clinical data. However, performing NGS on FFPE samples is limited by poor RNA purification methods. To address this hurdle, we developed an improved methodology for extracting high-quality RNA from FFPE samples. By briefly integrating a newly-designed micro-homogenizing (mH) tool with commercially available FFPE RNA extraction protocols, RNA recovery is increased by approximately 3-fold while maintaining standard A260/A280 ratios and RNA quality index (RQI) values. Furthermore, we demonstrate that the mH-purified FFPE RNAs are longer and of higher integrity. Previous studies have suggested that pancreatic ductal adenocarcinoma (PDAC) gene expression signatures vary significantly under in vitro versus in vivo and in vivo subcutaneous versus orthotopic conditions. By using our improved mH-based method, we were able to preserve established expression patterns of KRas-dependency genes within these three unique microenvironments. Finally, expression analysis of novel biomarkers in KRas mutant PDAC samples revealed that PEAK1 decreases and MST1R increases by over 100-fold in orthotopic versus subcutaneous microenvironments. Interestingly, however, only PEAK1 levels remain elevated in orthotopically grown KRas wild-type PDAC cells. These results demonstrate the critical nature of the orthotopic tumor microenvironment when evaluating the clinical relevance of new biomarkers in cells or patient-derived samples. Furthermore, this new mH-based FFPE RNA extraction method has the potential to enhance and expand future FFPE-RNA-NGS cancer biomarker studies. PMID:27602776

  11. Expression of miR-146a, miR-155, and miR-223 in formalin-fixed paraffin-embedded synovial tissues of patients with rheumatoid arthritis and osteoarthritis.

    PubMed

    Kriegsmann, Mark; Randau, Thomas M; Gravius, Sascha; Lisenko, Katharina; Altmann, Carolin; Arens, Norbert; Kriegsmann, Jörg

    2016-07-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease with a heterogeneous clinical presentation affecting about 1 % of adults in developed countries. Currently, the diagnosis is based on the revised criteria of the American College of Rheumatology (ACR) and the European League Against Rheumatism (EULAR) from 2010. These criteria include clinical and laboratory parameters. Because of the variability of the clinical picture, delayed diagnosis of RA occurs in a significant subset of patients. Therefore, the discovery of novel biomarkers that improve the diagnosis of RA is of particular interest. Recently, it became evident that miRNAs have regulatory activities in physiologic processes and human diseases. Upregulation of miR-146a, miR-155, and miR-223 has been shown in various compartments such as serum, blood, synovial fluid, and tissues in patients with RA. A total of 87 samples were analyzed (RA 50, osteoarthritis (OA) 37). RNA was isolated from formalin-fixed paraffin-embedded synovial tissue (FFPE). The relative expression of miR-146a, miR-155, and miR-223 was determined by comparison to a housekeeping RNA molecule (snRNA U6) and an RNA pool from histologically and clinically verified OA samples. miR-146a, miR-155, and miR-223 were significantly elevated in RA compared to OA synovial tissues (p < 0.001). A strong correlation between the miRNAs could be observed. The sensitivity and specificity for the detection of RA were 0.76/0.80 (miR-146a), 0.80/0.95 (miR-155), and 0.86/0.81 (miR-223). The combination of miR-155 and miR-223 resulted in the highest area under the curve (AUC 0.92) with a sensitivity and specificity of 0.84/0.91, respectively. Significantly higher expression levels of miR-146a, miR-155, and miR-223 in FFPE synovial tissue samples of patients with established RA compared to patients with OA were shown. The usefulness of these miRs for the differential diagnosis of early phases of RA against OA remains to be investigated.

  12. PrPSc detection in formalin-fixed paraffin-embedded tissue by ELISA

    PubMed Central

    2011-01-01

    Background Formalin-fixed paraffin-embedded tissue is regularly employed in the diagnosis of transmissible spongiform encephalopathies (TSE) by immunohistochemistry (IHC), the standard by which all other TSE diagnostic protocols are judged. While IHC affords advantages over diagnostic approaches that typically utilize fresh or frozen tissue, such as Western blot and ELISA, the process of fixing, staining, and analyzing individual sections by hand does not allow for rapid or high throughput screening. However, preservation of tissues in formalin is not dependent upon the availability of refrigeration. Findings Formalin-fixed paraffin-embedded tissues from TSE transmission studies of scrapie in sheep, chronic wasting disease in white-tailed deer or transmissible mink encephalopathy in cattle were cut at 5 μm thickness. Samples containing the tissue equivalent of as little as one 5 μm section can be used to readily discriminate positive from negative samples. Conclusions This approach cannot replace IHC but may be used along with IHC as both a more rapid and readily high throughput screen where fresh or frozen tissues are not available or impractical. PMID:22018205

  13. [An observation on the histological structure of Oncomelania hupensis soft tissue by agar-paraffin double-embedding method].

    PubMed

    Tan, Ping; Zhang, Jie; Li, Qing; Yu, Zhi-jun

    2014-12-01

    In order to study the histological structure of Oncomelania hupensis soft tissue, the fixed soft tissues of O. hupensis were pre-embedded in the agar and made blocks, then dehydrated, transparentized, immersed in paraffin, sectioned, and stained with haematoxylin-eosin (HE). Permanent slides of O. hupensis soft tissue were obtained. The histological structure of soft tissues was clear under the microscope.

  14. Microwave oven-based technique for immunofluorescent staining of paraffin-embedded tissues

    PubMed Central

    Buggs, Colleen

    2011-01-01

    Immunohistochemical analysis of formalin-fixed paraffin-embedded tissues can be challenging due to potential modifications of protein structure by exposure to formalin. Heat-induced antigen retrieval techniques can reverse reactions between formalin and proteins that block antibody recognition. Interactions between antibodies and antigens are further enhanced by microwave irradiation, which has simplified immunohistochemical staining protocols. In this report, we modify a technique for antigen retrieval and immunofluorescent staining of formalin-fixed paraffin-embedded tissues by showing that it works well with several antibodies and buffers. This microwave-assisted method for antigen retrieval and immunofluorescent staining eliminates the need for blocking reagents and extended washes, which greatly simplifies the protocol allowing one to complete the analysis in less than 3 h. PMID:17653827

  15. Microwave oven-based technique for immunofluorescent staining of paraffin-embedded tissues.

    PubMed

    Long, Delwin J; Buggs, Colleen

    2008-02-01

    Immunohistochemical analysis of formalin-fixed paraffin-embedded tissues can be challenging due to potential modifications of protein structure by exposure to formalin. Heat-induced antigen retrieval techniques can reverse reactions between formalin and proteins that block antibody recognition. Interactions between antibodies and antigens are further enhanced by microwave irradiation, which has simplified immunohistochemical staining protocols. In this report, we modify a technique for antigen retrieval and immunofluorescent staining of formalin-fixed paraffin-embedded tissues by showing that it works well with several antibodies and buffers. This microwave-assisted method for antigen retrieval and immunofluorescent staining eliminates the need for blocking reagents and extended washes, which greatly simplifies the protocol allowing one to complete the analysis in less than 3 h.

  16. Tissue MALDI Mass Spectrometry Imaging (MALDI MSI) of Peptides.

    PubMed

    Beine, Birte; Diehl, Hanna C; Meyer, Helmut E; Henkel, Corinna

    2016-01-01

    Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique to visualize molecular features of tissues based on mass detection. This chapter focuses on MALDI MSI of peptides and provides detailed operational instructions for sample preparation of cryoconserved and formalin-fixed paraffin-embedded (FFPE) tissue. Besides sample preparation we provide protocols for the MALDI measurement, tissue staining, and data analysis. On-tissue digestion and matrix application are described for two different commercially available and commonly used spraying devices: the SunCollect (SunChrom) and the ImagePrep (Bruker Daltonik GmbH).

  17. Performance of the linear array HPV genotyping test on paired cytological and formalin-fixed, paraffin-embedded cervical samples.

    PubMed

    Donà, Maria Gabriella; Ronchetti, Livia; Giuliani, Massimo; Carosi, Mariantonia; Rollo, Francesca; Congiu, Mario; Mazza, Domenica; Pescarmona, Edoardo; Vocaturo, Amina; Benevolo, Maria

    2013-05-01

    Detection and genotyping of human papillomavirus (HPV) from formalin-fixed, paraffin-embedded (FFPE) samples may be difficult when using assays based on amplification of large fragments. The objective of the present study was to investigate the performance of the Linear Array HPV Genotyping Test (Linear Array) on FFPE cervical cone biopsy specimens using paired cytologic samples obtained immediately before the conization as a criterion standard. Thirty-nine samples of grade 2 or higher cervical intraepithelial neoplasia were selected; all of the corresponding cytological samples were positive by the Linear Array and had a report of atypical squamous cells of undetermined significance or worse. A valid Linear Array test result was obtained for 38 FFPE specimens (97.4%, 95% CI 88.0 to 99.9). Specifically, 34 were HPV-positive (89.5%, 95% CI 76.5 to 96.9) and 4 were HPV-negative (10.5%, 95% CI 3.4 to 23.5). The overall agreement of the results obtained for the cytologic and histologic paired samples was good (Cohen's κ = 0.85, SE = 0.082, P = 0.000). Further analysis of samples with negative or invalid Linear Array test results, both modifying the nucleic acids extraction protocol and using the INNO-LiPA assay, suggested that failure of the Linear Array test in HPV detection from tissues was probably due to DNA fragmentation. Parallel analysis of paired FFPE and cytologic samples is extremely useful for evaluation of the efficiency of PCR-based assays in HPV detection and genotyping from tissue samples. In the present study, false-negative results were obtained in a limited percentage of cases, our data depicting the successful performance of the Linear Array test on FFPE samples.

  18. Relative shrinkage of adipocytes by paraffin in proportion to plastic embedding in human adipose tissue before and after weight loss.

    PubMed

    Verhoef, Sanne P M; van Dijk, Paul; Westerterp, Klaas R

    2013-01-01

    Adipocyte size is a major modulator of endocrine functioning of adipose tissue and methods allowing accurate determination of adipocyte size are important to study energy metabolism. The aim of this study was to assess the relative shrinkage of adipocytes before and after weight loss by comparing adipose tissue from the same subjects embedded in paraffin and plastic. 18 healthy subjects (5 males and 13 females) aged 20-50 y with a BMI of 28-38 kg/m² followed a very low energy diet for 8 weeks. Adipose tissue biopsies were taken prior to and after weight loss and were processed for paraffin and plastic sections. Parameters of adipocyte size were determined with computer image analysis. Mean adipocyte size was smaller in paraffin compared to plastic embedded tissue both before (66 ± 4 vs. 103 ± 5 μm, P < 0.001) as after weight loss (62 ± 4 vs. 91 ± 5 μm, P < 0.001). Relative shrinkage of adipocytes in paraffin embedded tissue in proportion to plastic embedded tissue was not significantly different before and after weight loss (73 and 69%, respectively). Shrinkage due to the type of embedding of the adipose tissue can be ignored when comparing before and after weight loss. Plastic embedding of adipose tissue provides more accurate and sensitive results.

  19. STED Super-Resolution Microscopy of Clinical Paraffin-Embedded Human Rectal Cancer Tissue

    PubMed Central

    Wurm, Christian Andreas; Rüschoff, Josef; Ghadimi, B. Michael; Liersch, Torsten; Jakobs, Stefan

    2014-01-01

    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories. PMID:25025184

  20. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue.

    PubMed

    Ilgen, Peter; Stoldt, Stefan; Conradi, Lena-Christin; Wurm, Christian Andreas; Rüschoff, Josef; Ghadimi, B Michael; Liersch, Torsten; Jakobs, Stefan

    2014-01-01

    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.

  1. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.

    PubMed

    Phadnis, Akshay; Kumar, Sumit; Srivastava, Atul

    2016-10-01

    The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×10(15)mm(-3) result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model.

  2. HIGH SENSITIVE PCR METHOD FOR DETECTION OF PATHOGENIC Leptospira spp. IN PARAFFIN-EMBEDDED TISSUES

    PubMed Central

    Noda, Angel Alberto; Rodríguez, Islay; Rodríguez, Yaindrys; Govín, Anamays; Fernández, Carmen; Obregón, Ana Margarita

    2014-01-01

    This study describes the development and application of a new PCR assay for the specific detection of pathogenic leptospires and its comparison with a previously reported PCR protocol. New primers were designed for PCR optimization and evaluation in artificially-infected paraffin-embedded tissues. PCR was then applied to post-mortem, paraffin-embedded samples, followed by amplicon sequencing. The PCR was more efficient than the reported protocol, allowing the amplification of expected DNA fragment from the artificially infected samples and from 44% of the post-mortem samples. The sequences of PCR amplicons from different patients showed >99% homology with pathogenic leptospires DNA sequences. The applicability of a highly sensitive and specific tool to screen histological specimens for the detection of pathogenic Leptospira spp. would facilitate a better assessment of the prevalence and epidemiology of leptospirosis, which constitutes a health problem in many countries. PMID:25229221

  3. Evaluating Quality of Aged Archival Formalin-Fixed Paraffin-Embedded Samples for RNA-Sequencing

    EPA Science Inventory

    Archival formalin-fixed paraffin-embedded (FFPE) samples offer a vast, untapped source of genomic data for biomarker discovery. However, the quality of FFPE samples is often highly variable, and conventional methods to assess RNA quality for RNA-sequencing (RNA-seq) are not infor...

  4. Evaluating Quality of Aged Archival Formalin-Fixed Paraffin-Embedded Samples for RNA-Sequencing

    EPA Science Inventory

    Archival formalin-fixed paraffin-embedded (FFPE) samples offer a vast, untapped source of genomic data for biomarker discovery. However, the quality of FFPE samples is often highly variable, and conventional methods to assess RNA quality for RNA-sequencing (RNA-seq) are not infor...

  5. Study of paraffin-embedded colon cancer tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.

    2015-01-01

    In this work, samples of non-neoplastic and adenocarcinoma-affected human colon tissue samples were analyzed using multipoint transmission time-domain THz spectroscopy (THz-TDS) to sort out the contrast-contributing factors other than water, the main contrast mechanism factor in in-vivo or in freshly excised bio-tissue. Solving the electromagnetic inverse problem through THz-TDS and, analyzing the transmittance spectra that yielded the frequency-dependent absorption coefficient α and refractive index n of non-neoplastic and neoplastic tissues, we show that it is possible to distinguish between non-neoplastic and neoplastic regions in paraffin-embedded dehydrated. Results and discussion are presented.

  6. Tissue proteomics using chemical immobilization and mass spectrometry.

    PubMed

    Shah, Punit; Zhang, Bai; Choi, Caitlin; Yang, Shuang; Zhou, Jianying; Harlan, Robert; Tian, Yuan; Zhang, Zhen; Chan, Daniel W; Zhang, Hui

    2015-01-15

    Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.

  7. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing.

    PubMed

    Mafficini, Andrea; Simbolo, Michele; Parisi, Alice; Rusev, Borislav; Luchini, Claudio; Cataldo, Ivana; Piazzola, Elena; Sperandio, Nicola; Turri, Giona; Franchi, Massimo; Tortora, Giampaolo; Bovo, Chiara; Lawlor, Rita T; Scarpa, Aldo

    2016-01-12

    BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue.

  8. BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing

    PubMed Central

    Mafficini, Andrea; Simbolo, Michele; Parisi, Alice; Rusev, Borislav; Luchini, Claudio; Cataldo, Ivana; Piazzola, Elena; Sperandio, Nicola; Turri, Giona; Franchi, Massimo; Tortora, Giampaolo; Bovo, Chiara; Lawlor, Rita T.; Scarpa, Aldo

    2016-01-01

    BRCA mutated ovarian cancers respond better to platinum-based therapy and to the recently approved PARP-inhibitors. There is the need for efficient and timely methods to detect both somatic and germline mutations using formalin-fixed paraffin-embedded (FFPE) tissues and commercially available technology. We used a commercial kit exploring all exons and 50bp exon-intron junctions of BRCA1 and BRCA2 genes, and semiconductor next-generation sequencing (NGS) on DNA from 47 FFPE samples of high-grade serous ovarian cancers. Pathogenic mutations were found in 13/47 (28%) cancers: eight in BRCA1 and five in BRCA2. All BRCA1 and two BRCA2 mutations were germline; three BRCA2 mutations were somatic. All mutations were confirmed by Sanger sequencing. To evaluate the performance of the NGS panel, we assessed its capability to detect the 6,953 variants described for BRCA1 and BRCA2 in ClinVar and COSMIC databases using callability analysis. 6,059 (87.1%) variants were identified automatically by the software; 829 (12.0%) required visual verification. The remaining 65 (0.9%) variants were uncallable, and would require 15 Sanger reactions to be resolved. Thus, the sensitivity of the NGS-panel was 99.1%. In conclusion, NGS performed with a commercial kit is highly efficient for detection of germline and somatic mutations in BRCA genes using routine FFPE tissue. PMID:26745875

  9. Evaluation of positive Rift Valley fever virus formalin-fixed paraffin embedded samples as a source of sequence data for retrospective phylogenetic analysis.

    PubMed

    Mubemba, B; Thompson, P N; Odendaal, L; Coetzee, P; Venter, E H

    2017-05-01

    Rift Valley fever (RVF), caused by an arthropod borne Phlebovirus in the family Bunyaviridae, is a haemorrhagic disease that affects ruminants and humans. Due to the zoonotic nature of the virus, a biosafety level 3 laboratory is required for isolation of the virus. Fresh and frozen samples are the preferred sample type for isolation and acquisition of sequence data. However, these samples are scarce in addition to posing a health risk to laboratory personnel. Archived formalin-fixed, paraffin-embedded (FFPE) tissue samples are safe and readily available, however FFPE derived RNA is in most cases degraded and cross-linked in peptide bonds and it is unknown whether the sample type would be suitable as reference material for retrospective phylogenetic studies. A RT-PCR assay targeting a 490 nt portion of the structural GN glycoprotein encoding gene of the RVFV M-segment was applied to total RNA extracted from archived RVFV positive FFPE samples. Several attempts to obtain target amplicons were unsuccessful. FFPE samples were then analysed using next generation sequencing (NGS), i.e. Truseq(®) (Illumina) and sequenced on the Miseq(®) genome analyser (Illumina). Using reference mapping, gapped virus sequence data of varying degrees of shallow depth was aligned to a reference sequence. However, the NGS did not yield long enough contigs that consistently covered the same genome regions in all samples to allow phylogenetic analysis.

  10. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies

    PubMed Central

    Nada, R.; Kumar, A.; Kumar, V. G.; Gupta, K. L.; Joshi, K.

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years. PMID:27194832

  11. Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.

    PubMed

    Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K

    2016-01-01

    Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.

  12. High-quality genomic DNA extraction from formalin-fixed and paraffin-embedded samples deparaffinized using mineral oil

    PubMed Central

    Lin, Jianghai; Kennedy, Stephen H.; Svarovsky, Therese; Rogers, Jeffrey; Kemnitz, Joseph W.; Xu, Anlong; Zondervan, Krina T.

    2009-01-01

    Extracting DNA from formalin-fixed and paraffin-embedded (FFPE) tissue remains a challenge, despite numerous attempts to develop a more effective method. Polymerase chain reaction (PCR) success rates with DNA extracted using current methods remain low. We extracted DNA from 140 long-term archived FFPE samples using a simple but effective deparaffinization method, removing the wax with mineral oil, and a commercially available DNA extraction kit. DNA quality was subsequently tested in a genotyping experiment with 14 microsatellite markers. High-quality DNA was obtained with a mean PCR success rate of 97% (range: 88–100%) across markers. The results suggested that DNA extracted using this novel method is likely to be suitable for genetic studies involving DNA fragments <200 bp. PMID:19698695

  13. Comparison of fine needle aspiration biopsy and paraffin embedded tissue sections for measuring AgNOR proteins.

    PubMed

    Tasdemir, S; Eroz, R; Cucer, N; Oktay, M; Türkeli, M

    2015-07-01

    Paraffin embedded tissue sections and fine needle aspiration biopsy (FNAB) are important methods for diagnosis. We compared thyroid tissue obtained by FNAB to paraffin embedded sections to determine whether there were differences in detection of the amounts of argyrophilic nucleolar organizing region (AgNOR) proteins. Twenty-two patients with papillary thyroid carcinoma were included in the study. Slides were prepared with both FNAB tissue and 3 μm sections of paraffin embedded tissue, and stained for AgNOR. One hundred nuclei per individual were evaluated; total AgNOR number/nucleus (TAn/TNn) and total AgNOR area/nuclear area (TAa/TNa) of individual cells were determined. Mean TAn/TNn and TAa/TNa values were 4.800 ± 1.118 and 13.382 ± 2.612, respectively, for FNAB samples; corresponding values were 2.406 ± 0.649 and 8.49 ± 0.893, respectively, for paraffin embedded sections. The differences between FNAB materials and paraffin embedded tissue sections were significant for the mean TAn/TNn and TAa/TNa values. Significant differences in the amounts of AgNOR protein detected were found between FNAB and paraffin embedded tissue sections.

  14. Revisiting fixation and embedding techniques for optimal detection of dendritic cell subsets in tissues.

    PubMed

    Accart, Nathalie; Sergi, Florinda; Rooke, Ronald

    2014-09-01

    Organ-specific cell types are maintained by tissue homeostasis and may vary in nature and/or frequency in pathological situations. Moreover, within a cell lineage, some sub-populations, defined by combinations of cell-surface markers, may have specific functions. Dendritic cells are the epitome of such a population as they may be subdivided into discrete sub-groups with defined functions in specific compartments of various organs. Technically, to study the distribution of DC sub-populations, it involves performing multiparametric immunofluorescence on well-conserved organ structures. However, immunodetection may be impacted by protein cross-linking and antigenic epitope masking by the use of 10% neutral-buffered formalin. To circumvent this and to preserve a good morphological tissue structure, we evaluated alternative fixatives such as Periodate Lysine Paraformaldehyde or Tris Zinc fixatives in combination with other embedding techniques. The cryosection protocols were adapted for optimal antigen detection but offered a poor morphological preservation. We therefore developed a new methodology based on Tris Zinc fixative, gelatin-sucrose embedding and freezing. Using multiple DC markers, we demonstrate that this treatment is an optimal protocol for cell-surface marker detection on high-quality tissue sections. © The Author(s) 2014.

  15. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq.

    PubMed

    Kondrashova, Olga; Love, Clare J; Lunke, Sebastian; Hsu, Arthur L; Waring, Paul M; Taylor, Graham R

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity.

  16. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq

    PubMed Central

    Kondrashova, Olga; Love, Clare J.; Lunke, Sebastian; Hsu, Arthur L.; Waring, Paul M.; Taylor, Graham R.

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  17. Papillomavirus genotyping on formaldehyde fixed paraffin-embedded tissues in vulvar intraepithelial neoplasia.

    PubMed

    Mazellier, S; Dadone-Montaudie, B; Chevallier, A; Loubatier, C; Vitale, S; Cardot-Leccia, N; Angeli, K; Trastour, C; Delotte, J; Giordanengo, V; Ambrosetti, D

    2017-08-09

    Few studies have described the epidemiology of human papillomavirus (HPV) in vulvar intraepithelial neoplasia (VIN). The aim of this study was to genotype HPV on formalin fixed paraffin-embedded tissues in VIN lesions. A 5-year retrospective study was conducted by including all patients attending the teaching hospital of Nice with a diagnosis of VIN between 1st January 2010 and 31st December 2014. For all patients, HPV genotyping was performed with the PapilloCheck(®) microarray kit, routinely used on cervical cytology samples, and optimized for formaldehyde fixed paraffin-embedded tissues in VIN. Forty patients were included in the study: 39 patients had usual VIN and one presented with differentiated VIN. Among the 39 patients with usual VIN, the prevalence of HPV was 90% (35/39). Thirty-two patients had high grade VIN (82%) and seven low grade VIN (18%). In high grade VIN, the most represented HPV types were: HPV 16 (21/32 66%), HPV 56 (3/32 9%) and HPV 33 (2/32 6%). In low grade VIN, the most represented HPV types were: HPV 16 (4/7 57%) and HPV 6 (3/7 43%). Interestingly, 5/39 (13%) of patients diagnosed with usual VIN also had co-existing lichen sclerosus. We have optimized a HPV genotyping technique, routinely used on cervical cytology samples, and on paraffin fixed embedded tissue showing VIN. Moreover, we have identified five patients with lichen sclerosus co-existing with usual VIN. This association has rarely been reported and proves that these two entities can coexist.

  18. Proteomic analysis of formalin-fixed prostate cancer tissue.

    PubMed

    Hood, Brian L; Darfler, Marlene M; Guiel, Thomas G; Furusato, Bungo; Lucas, David A; Ringeisen, Bradley R; Sesterhenn, Isabell A; Conrads, Thomas P; Veenstra, Timothy D; Krizman, David B

    2005-11-01

    Proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue would enable retrospective biomarker investigations of this vast archive of pathologically characterized clinical samples that exist worldwide. These FFPE tissues are, however, refractory to proteomic investigations utilizing many state of the art methodologies largely due to the high level of covalently cross-linked proteins arising from formalin fixation. A novel tissue microdissection technique has been developed and combined with a method to extract soluble peptides directly from FFPE tissue for mass spectral analysis of prostate cancer (PCa) and benign prostate hyperplasia (BPH). Hundreds of proteins from PCa and BPH tissue were identified, including several known PCa markers such as prostate-specific antigen, prostatic acid phosphatase, and macrophage inhibitory cytokine-1. Quantitative proteomic profiling utilizing stable isotope labeling confirmed similar expression levels of prostate-specific antigen and prostatic acid phosphatase in BPH and PCa cells, whereas the expression of macrophage inhibitory cytokine-1 was found to be greater in PCa as compared with BPH cells.

  19. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    PubMed

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  20. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples

    PubMed Central

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method. PMID:27649560

  1. Steps Towards Precision Medicine: Utilizing FFPE Specimens - TCGA

    Cancer.gov

    Roy W. Tarnuzzer, Ph.D., the Biospecimen Core Resource Program Manager at the TCGA Program Office, provides an overview of the Formalin-fixed Paraffin Pilot Project, an initiative to investigate best practices for use of FFPE specimens in genomic studies.

  2. Improved immunoelectron microscopic method for localizing cytoskeletal proteins in Lowicryl K4M embedded tissues.

    PubMed

    Loesser, K E; Doane, K J; Wilson, F J; Roisen, F J; Malamed, S

    1986-11-01

    We have modified the Lowicryl K4M low-temperature dehydration and embedding procedure for immunoelectron microscopy to provide improved ultrastructural detail and facilitate the localization of actin and tubulin in isolated rat adrenocortical cells, chick spinal cord with attached dorsal root ganglia (SC-DRG), and cultured dorsal root ganglia (DRG). Cells and tissues were fixed for immunocytochemistry either in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde (0.1 M PIPES buffer, pH 7.3) or in a mixture of 0.3% glutaraldehyde and 1.0% ethyldimethylaminopropylcarbodiimide (0.1 M phosphate buffered saline, pH 7.3). Dehydration was in ethanol at progressively lower temperatures to -35 degrees C. Infiltration at -35 degrees C was followed by ultraviolet polymerization at -20 degrees C. Comparable samples were fixed in glutaraldehyde and osmium tetroxide and embedded in Epon 812 or Epon-Araldite. Post-embedding immunostaining of thin sections utilized commercially available monoclonal antibodies to tubulin and actin followed by the protein A-gold technique (Roth et al., Endocrinology 108:247, 1981). Actin immunoreactivity was observed at the periphery of mitochondria and between mitochondria and lipid droplets in rat adrenocortical cells and at the periphery of neuronal cell processes of SC-DRG. Tubulin immunoreactivity was associated with microtubules throughout neurites of cultured DRG. Our modified technique allows preservation of ultrastructural details as well as localization of antigens by immunoelectron microscopy.

  3. Full-length protein extraction protocols and gel-based downstream applications in formalin-fixed tissue proteomics.

    PubMed

    Tanca, Alessandro; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Archival formalin-fixed, paraffin-embedded (FFPE) tissue repositories and their associated clinical information can represent a valuable resource for tissue proteomics. In order to make these tissues available for protein biomarker discovery and validation studies, dedicated sample preparation procedures overcoming the intermolecular cross-links introduced by formalin need to be implemented. This chapter describes a full-length protein extraction protocol optimized for downstream gel-based proteomics applications. Using the procedures detailed here, SDS-PAGE, western immunoblotting, GeLC-MS/MS, 2D-PAGE, and 2D-DIGE can be carried out on FFPE tissues. Technical tips, critical aspects, and drawbacks of the method are presented and discussed.

  4. The tissue is the issue: improved methylome analysis from paraffin-embedded tissues by application of the HOPE technique.

    PubMed

    Marwitz, Sebastian; Kolarova, Julia; Reck, Martin; Reinmuth, Niels; Kugler, Christian; Schädlich, Ines; Haake, Andrea; Zabel, Peter; Vollmer, Ekkehard; Siebert, Reiner; Goldmann, Torsten; Ammerpohl, Ole

    2014-08-01

    Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.

  5. Application of a novel and automated branched DNA in situ hybridization method for the rapid and sensitive localization of mRNA molecules in plant tissues1

    PubMed Central

    Bowling, Andrew J.; Pence, Heather E.; Church, Jeffrey B.

    2014-01-01

    • Premise of the study: A novel branched DNA detection technology, RNAscope in situ hybridization (ISH), originally developed for use on human clinical and animal tissues, was adapted for use in plant tissue in an attempt to overcome some of the limitations associated with traditional ISH assays. • Methods and Results: Zea mays leaf tissue was formaldehyde fixed and paraffin embedded (FFPE) and then probed with the RNAscope ISH assay for two endogenous genes, phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK). Results from both manual and automated methods showed tissue- and cell-specific mRNA localization patterns expected from these well-studied genes. • Conclusions: RNAscope ISH is a sensitive method that generates high-quality, easily interpretable results from FFPE plant tissues. Automation of the RNAscope method on the Ventana Discovery Ultra platform allows significant advantages for repeatability, reduction in variability, and flexibility of workflow processes. PMID:25202621

  6. Preparation of Formalin-fixed Paraffin-embedded Tissue Cores for both RNA and DNA Extraction.

    PubMed

    Patel, Palak G; Selvarajah, Shamini; Boursalie, Suzanne; How, Nathan E; Ejdelman, Joshua; Guerard, Karl-Philippe; Bartlett, John M; Lapointe, Jacques; Park, Paul C; Okello, John B A; Berman, David M

    2016-08-21

    Formalin-fixed paraffin embedded tissue (FFPET) represents a valuable, well-annotated substrate for molecular investigations. The utility of FFPET in molecular analysis is complicated both by heterogeneous tissue composition and low yields when extracting nucleic acids. A literature search revealed a paucity of protocols addressing these issues, and none that showed a validated method for simultaneous extraction of RNA and DNA from regions of interest in FFPET. This method addresses both issues. Tissue specificity was achieved by mapping cancer areas of interest on microscope slides and transferring annotations onto FFPET blocks. Tissue cores were harvested from areas of interest using 0.6 mm microarray punches. Nucleic acid extraction was performed using a commercial FFPET extraction system, with modifications to homogenization, deparaffinization, and Proteinase K digestion steps to improve tissue digestion and increase nucleic acid yields. The modified protocol yields sufficient quantity and quality of nucleic acids for use in a number of downstream analyses, including a multi-analyte gene expression platform, as well as reverse transcriptase coupled real time PCR analysis of mRNA expression, and methylation-specific PCR (MSP) analysis of DNA methylation.

  7. Complex Retrieval of Embedded IVC Filters: Alternative Techniques and Histologic Tissue Analysis

    SciTech Connect

    Kuo, William T.; Cupp, John S.; Louie, John D.; Kothary, Nishita; Hofmann, Lawrence V.; Sze, Daniel Y.; Hovsepian, David M.

    2012-06-15

    Purpose: We evaluated the safety and effectiveness of alternative endovascular methods to retrieve embedded optional and permanent filters in order to manage or reduce risk of long-term complications from implantation. Histologic tissue analysis was performed to elucidate the pathologic effects of chronic filter implantation. Methods: We studied the safety and effectiveness of alternative endovascular methods for removing embedded inferior vena cava (IVC) filters in 10 consecutive patients over 12 months. Indications for retrieval were symptomatic chronic IVC occlusion, caval and aortic perforation, and/or acute PE (pulmonary embolism) from filter-related thrombus. Retrieval was also performed to reduce risk of complications from long-term filter implantation and to eliminate the need for lifelong anticoagulation. All retrieved specimens were sent for histologic analysis. Results: Retrieval was successful in all 10 patients. Filter types and implantation times were as follows: one Venatech (1,495 days), one Simon-Nitinol (1,485 days), one Optease (300 days), one G2 (416 days), five Guenther-Tulip (GTF; mean 606 days, range 154-1,010 days), and one Celect (124 days). There were no procedural complications or adverse events at a mean follow-up of 304 days after removal (range 196-529 days). Histology revealed scant native intima surrounded by a predominance of neointimal hyperplasia and dense fibrosis in all specimens. Histologic evidence of photothermal tissue ablation was confirmed in three laser-treated specimens. Conclusion: Complex retrieval methods can now be used in select patients to safely remove embedded optional and permanent IVC filters previously considered irretrievable. Neointimal hyperplasia and dense fibrosis are the major components that must be separated to achieve successful retrieval of chronic filter implants.

  8. Identification of Penicillium marneffei in Paraffin-Embedded Tissue Using Nested PCR.

    PubMed

    Zeng, Hanxiang; Li, Xiqing; Chen, Xiejie; Zhang, Junmin; Sun, Jiufeng; Xie, Zhi; Xi, Liyan

    2009-07-01

    Penicillium marneffei is one of the unique thermally dimorphic fungi in Penicillium species that causes a disseminated, progressive and life threatening infection in immunocompromised patients. The diagnosis of Penicilliosis marneffei depends on culture that may delay the treatment due to the time-consuming process. In the present study, we evaluated the specificity and sensitivity of nested PCR to identify Penicillium marneffei from paraffin-embedded tissue. Two sets of oligonucleotide primers were derived from the sequence of 18S rRNA of Penicillium marneffei. The outer primers (RRF1 and RRH1) were specific to fungi. The inner primers (Pm1 and Pm2) were specific to Penicillium marneffei. The specific fragment of approximately 400 bp was amplified from all paraffin-embedded tissues from 14 patients with Penicilliosis marneffei and 10 bamboo rats. The detectable DNA concentration of single PCR and nested PCR were 14 pg/microl and 14 fg/microl, respectively. Further studies are required in order to use nested PCR for early diagnosis of the disease.

  9. Protocol for HER2 FISH determination on PAXgene-fixed and paraffin-embedded tissue in breast cancer.

    PubMed

    Oberauner-Wappis, Lisa; Loibner, Martina; Viertler, Christian; Groelz, Daniel; Wyrich, Ralf; Zatloukal, Kurt

    2016-04-01

    Molecular diagnostics in personalized medicine increasingly relies on the combination of a variety of analytical technologies to characterize individual diseases and to select patients for targeted therapies. The gold standard for tissue-based diagnostics is fixation in formalin and embedding in paraffin, which results in excellent preservation of morphology but negatively impacts on a variety of molecular assays. The formalin-free, non-cross-linking PAXgene tissue system preserves morphology in a similar way to formalin, but also preserves biomolecules essentially in a similar way to cryopreservation, which markedly widens the spectrum, sensitivity and accuracy of molecular analytics. In this study, we have developed and tested a protocol for PAXgene-fixed and paraffin-embedded tissues for fluorescent in situ hybridization (FISH). The implementation of a 24-h formalin postfixation step of slides from PAXgene-fixed and paraffin-embedded tissues allowed us to use the assays approved for formalin-fixed and paraffin-embedded tissues. The equivalence of the methodologies was demonstrated by FISH analysis of HER2 amplification in breast cancer cases. The 24-h postfixation step of the slides used for FISH can be well integrated in the routine diagnostic workflow and allows the remaining PAXgene-fixed and paraffin-embedded tissue to be used for further molecular testing.

  10. Efficient and cost-effective extraction of genomic DNA from formalin-fixed and paraffin-embedded tissues.

    PubMed

    Weiss, A Th A; Delcour, N M; Meyer, A; Klopfleisch, R

    2011-07-01

    Diagnostic and investigative molecular pathology frequently has to resort to extraction of DNA from formalin-fixed and paraffin-embedded tissue samples. Although many different protocols are reported for this type of material, extraction of sufficient amounts of intact DNA is still challenging. Here, the authors report a reproducible, simple, cost-effective, and efficient protocol that yields up to 140 μg of DNA from approximately 10 to 15 mg of formalin-fixed and paraffin-embedded tissue samples and compare it to available protocols. The protocol allows stable amplification of DNA fragments up to 600 bp in length in a wide variety of tissues. © The Authors 2011

  11. Immunofluorescent staining of influenza virus antigen in fixed and paraffin-embedded tissue of experimentally infected hamsters.

    PubMed

    Lück, P C; Helbig, J H; Witzleb, W

    1989-01-01

    Sections of formalin-fixed, paraffin-embedded tissue of experimentally influenza virus-infected hamsters were treated with 0.25% trypsin and tested for virus antigen by indirect immunofluorescent staining. The results were comparable to those obtained with aceton-fixed cryo-microtome sections. As far as we know, this is the first description of influenza virus demonstration in formalin-fixed, paraffin-embedded tissue after reactivation by trypsin-treatment. This technique may be useful for influenza virus detection in human autopsy cases. It allows an etiological diagnosis even when fresh tissue for cryocut sections or virus cultivation is not available.

  12. ToF-SIMS of tissues: “Lessons learned” from mice and women

    PubMed Central

    Gamble, Lara J.; Graham, Daniel J.; Bluestein, Blake; Whitehead, Nicholas P.; Hockenbery, David; Morrish, Fionnuala; Porter, Peggy

    2015-01-01

    The ability to image cells and tissues with chemical and molecular specificity could greatly expand our understanding of biological processes. The subcellular resolution mass spectral imaging capability of time of flight secondary ion mass spectrometry (ToF-SIMS) has the potential to acquire chemically detailed images. However, the complexities of biological systems combined with the sensitivity of ToF-SIMS require careful planning of experimental methods. Tissue sample preparation methods of formalin fixation followed by paraffin embedding (FFPE) and OCT embedding are compared. Results show that the FFPE can potentially be used as a tissue sample preparation protocol for ToF-SIMS analysis if a cluster ion presputter is used prior to analysis and if nonlipid related tissue features are the features of interest. In contrast, embedding tissue in OCT minimizes contamination and maintains lipid signals. Various data acquisition methodologies and analysis options are discussed and compared using mouse breast and diaphragm muscle tissue. Methodologies for acquiring ToF-SIMS 2D images are highlighted along with applications of multivariate analysis to better identify specific features in a tissue sections when compared to H&E images of serial sections. Identification of tissue features is necessary for researchers to visualize a molecular map that correlates with specific biological features or functions. Finally, lessons learned from sample preparation, data acquisition, and data analysis methods developed using mouse models are applied to a preliminary analysis of human breast tumor tissue sections. PMID:25708638

  13. Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study

    PubMed Central

    Desjardins, Adrien E.; Hendriks, Benno H.W.; van der Voort, Marjolein; Nachabé, Rami; Bierhoff, Walter; Braun, Guus; Babic, Drazenko; Rathmell, James P.; Holmin, Staffan; Söderman, Michael; Holmström, Björn

    2011-01-01

    Epidural injection is commonly used to provide intraoperative anesthesia, postoperative and obstetric analgesia, and to treat acute radicular pain. Identification of the epidural space is typically carried out using the loss of resistance (LOR) technique, but the usefulness of this technique is limited by false LOR and the inability to reliably detect intravascular or subarachnoid needle placement. In this study, we present a novel epidural needle that allows for the acquisition of optical reflectance spectra from tissue close to the beveled surface. This needle has optical fibers embedded in the cannula that deliver and receive light. With two spectrometers, light received from tissue is resolved across the wavelength range of 500 to 1600 nm. To determine the feasibility of optical tissue differentiation, spectra were acquired from porcine tissues during a post mortem laminectomy. The spectra were processed with an algorithm that derives estimates of the hemoglobin and lipid concentrations. The results of this study suggest that the optical epidural needle has the potential to improve the accuracy of epidural space identification. PMID:21698009

  14. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    PubMed

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis.

  15. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Ghaedi, Kamran; Salehi, Hossein; Arpanaei, Ayyoob

    2015-08-01

    Aligned poly lactic-co-glycolic acid (PLGA) and PLGA/gelatin nanofibrous scaffolds embedded with mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. The mean diameters of nanofibers were 641±24 nm for the pure PLGA scaffolds vs 418±85 nm and 267±58 nm for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The contact angle measurement results (102°±6.7 for the pure PLGA scaffold vs 81°±6.8 and 18°±8.7 for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively) revealed enhanced hydrophilicity of scaffolds upon incorporation of gelatin and MSNPs. Besides, embedding the scaffolds with MSNPs resulted in improved tensile mechanical properties. Cultivation of PC12 cells on the scaffolds demonstrated that introduction of MSNPs into PLGA and PLGA/gelatin matrices leads to the improved cell attachment and proliferation as well as long cellular processes. DAPI staining results indicated that cell proliferations on the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds were strikingly (nearly 2.5 and 3 folds, respectively) higher than that on the aligned pure PLGA scaffolds. These results suggest superior properties of silica nanoparticles-incorporated PLGA/gelatin eletrospun nanofibrous scaffolds for the stem cell culture and tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. PCR based identification and discrimination of agents of mucormycosis and aspergillosis in paraffin wax embedded tissue.

    PubMed

    Bialek, R; Konrad, F; Kern, J; Aepinus, C; Cecenas, L; Gonzalez, G M; Just-Nübling, G; Willinger, B; Presterl, E; Lass-Flörl, C; Rickerts, V

    2005-11-01

    Invasive fungal infections are often diagnosed by histopathology without identification of the causative fungi, which show significantly different antifungal susceptibilities. To establish and evaluate a system of two seminested polymerase chain reaction (PCR) assays to identify and discriminate between agents of aspergillosis and mucormycosis in paraffin wax embedded tissue samples. DNA of 52 blinded samples from five different centres was extracted and used as a template in two PCR assays targeting the mitochondrial aspergillosis DNA and the 18S ribosomal DNA of zygomycetes. Specific fungal DNA was identified in 27 of 44 samples in accordance with a histopathological diagnosis of zygomycosis or aspergillosis, respectively. Aspergillus fumigatus DNA was amplified from one specimen of zygomycosis (diagnosed by histopathology). In four of 16 PCR negative samples no human DNA was amplified, possibly as a result of the destruction of DNA before paraffin wax embedding. In addition, eight samples from clinically suspected fungal infections (without histopathological proof) were examined. The two PCR assays detected a concomitant infection with Absidia corymbifera and A fumigatus in one, and infections with Rhizopus arrhizus and A fumigatus in another two cases. The two seminested PCR assays described here can support a histopathological diagnosis of mucormycosis or aspergillosis, and can identify the infective agent, thereby optimising antifungal treatment.

  17. Expression of nerve growth factor receptor in paraffin-embedded soft tissue tumors.

    PubMed Central

    Perosio, P. M.; Brooks, J. J.

    1988-01-01

    Identification of growth factors and receptors in mesenchymal tumors may be crucial to understanding of growth regulation in sarcomas. During an immunohistochemical study of the expression of growth factors and receptors in human soft tissue tumors (STT), only 1 antisera capable of working in paraffin-embedded tissue was noted. A detailed study of 141 STT was undertaken to determine the frequency of expression of nerve growth factor receptor (NGF-R), its specificity and sensitivity for neural tumors, and the effect of fixation on detection. In normal mesenchymal tissue, only nerve sheath and perivascular staining was seen. No immunoreactivity was seen in many tumors including rhabdomyosarcoma, angiosarcoma, liposarcoma, Ewing's sarcoma, and alveolar soft part sarcoma. Less than 15% of tumors of smooth muscle, fibrous, or fibrohistiocytic origin showed immunoreactivity, usually focal. In contrast, a high frequency of immunoreactivity was noted in tumors of neural origin (74%). This included granular cell tumors (100%), Schwannoma/neurofibroma (91%), malignant Schwannoma (78%), neuroblastoma/neuroepithelioma (60%), and paraganglioma (57%). A high rate of reactivity was also seen in synovial sarcomas (80%), undifferentiated sarcomas (60%), and hemangiopericytomas (43%), suggesting a potential relationship to the neural phenotype. Among the neural tumors, Bouin's fixation was superior to formalin, suggesting that immunoreactivity for NGF-R is affected by fixation. This antibody may be a useful adjunct marker diagnostically. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 PMID:2456020

  18. Cytokine expression in paraffin wax-embedded tissues from conventional calves.

    PubMed

    Pedrera, M; Sánchez-Cordón, P J; Romero-Trevejo, J L; Raya, A I; Núñez, A; Gómez-Villamandos, J C

    2007-05-01

    The cross-reactivity of antibodies against human tumour necrosis factor (TNF)alpha, interleukin (IL)-1alpha, IL-1beta and porcine IL-6, and the distribution of immunolabelled cells were evaluated on paraffin wax-embedded tissues from five healthy calves. The tissues were fixed in 10% buffered formalin or Bouin's solution and processed for structural studies and immunohistochemical studies by the avidin-biotin-peroxidase technique. Bouin's solution proved to be the more suitable fixative and Tween 20 the most effective antigen unmasking technique for increasing detectable antigenicity. Constitutive expression of TNFalpha, IL-1alpha, IL-1beta and IL-6 by different cell populations, mainly macrophage-like cells, was detected. Lymphoid organs displayed a higher presence of immunolabelled cells than did lung, liver or kidney. TNFalpha and IL-1alpha appeared as the predominant cytokines, especially in the gut-associated lymphoid tissue of the ileum and in the regional mesenteric lymph nodes. The results will facilitate investigation of the role of these cytokine-producing cells in inflammatory disease processes in calves.

  19. A biocompatible polysaccharide hydrogel-embedded polypropylene mesh for enhanced tissue integration in rats.

    PubMed

    Abed, Aicha; Deval, Bruno; Assoul, Nabila; Bataille, Isabelle; Portes, Patrick; Louedec, Liliane; Henin, Dominique; Letourneur, Didier; Meddahi-Pellé, Anne

    2008-04-01

    Prosthetic materials are largely used in surgery and tissue engineering. However, many postoperative complications are due to poor integration of the materials, which delays the healing process. The objective of our study was to develop a synthetic scaffold that, according to histopathological and biomechanical criteria, would achieve both tolerance and efficiency. In this study, we evaluated the effect of intramuscular and subcutaneous implantation of a new hybrid mesh (HM) in rats. This HM was composed of clinical grade polypropylene mesh embedded in a polysaccharide hydrogel. Histological and biomechanical studies on the polysaccharide gel alone and on HM were performed 15 and 30 days after implantation, and then compared with two clinically used materials, porcine decellularized small intestinal submucosa and a polypropylene mesh. Results showed that the incorporation of a polypropylene mesh within the polysaccharide hydrogel led to the absence of adverse effects and better tissue organization. Thus, this new synthetic biocompatible HM with suitable properties for tissue repair appears to be a promising material for clinical applications.

  20. Simple salting-out method for DNA extraction from formalin-fixed, paraffin-embedded tissues.

    PubMed

    Rivero, Elena R C; Neves, Adriana C; Silva-Valenzuela, Maria G; Sousa, Suzana O M; Nunes, Fabio D

    2006-01-01

    The aim of this study was to standardize a method of DNA extraction from formalin-fixed and paraffin-embedded tissues (PETs) using a salt solution to precipitate protein and isopropanol to precipitate DNA. The samples were submitted to a DNA extraction method in which two different concentrations of ammonium acetate (2 and 4M) were compared with a phenol-chloroform extraction method and with a commercial DNA isolation kit. DNA was qualified and quantified by spectrophotometer analysis, electrophoresis, and amplification by PCR. The 167 and 268bp fragments of APC and beta-globin genes, respectively, were amplified equally from DNA extracted by all tested methods and in all cases. However, the 536bp fragment of beta-globin gene was not amplified in all cases. According to our results, the extraction method using ammonium acetate proved to be simple and suitable for obtaining DNA of good quality, which can be easily amplified by PCR.

  1. An efficient protocol for genomic DNA extraction from formalin-fixed paraffin-embedded tissues.

    PubMed

    Santos, Sara; Sá, Daniela; Bastos, Estela; Guedes-Pinto, Henrique; Gut, Ivo; Gärtner, Fátima; Chaves, Raquel

    2009-06-01

    Formalin-fixed paraffin-embedded tissues (FFPET) represent the largest source of archival biological material available for genomic studies. In this work we present an advanced protocol for extraction of high quality DNA from FFPET that can be applied in several molecular studies. Although cat mammary tumours (CMT) are the third most frequent tumour in cats the recovery of significant number of samples for molecular studies are in some way restricted to FFPET samples. We were able to obtain high quality DNA from FFPET of thirty six CMT that were subjected to pre-fixation and fixation processes routinely used in the veterinary hospitals. The quality of DNA obtained was tested by PCR amplification using six sets of primers that amplify single-copy fragments. The DNA fragments obtained were further sequenced. This protocol was able to provide FFPET gDNA that can be amplified and sequenced for larger fragments up to 1182bp.

  2. Applicability of a System for fully automated nucleic acid extraction from formalin-fixed paraffin-embedded sections for routine KRAS mutation testing.

    PubMed

    Lehmann, Annika; Schewe, Christiane; Hennig, Guido; Denkert, Carsten; Weichert, Wilko; Budczies, Jan; Dietel, Manfred

    2012-06-01

    Due to the approval of various new targeted therapies for the treatment of cancer, molecular pathology laboratories with a diagnostic focus have to meet new challenges: simultaneous handling of a large number of samples, small amounts of input material, and fragmentation of nucleic acids because of formalin fixation. As a consequence, fully automated systems for a fast and standardized extraction of high-quality DNA from formalin-fixed paraffin-embedded (FFPE) tissues are urgently needed. In this study, we tested the performance of a fully automated, high-throughput method for the extraction of nucleic acids from FFPE tissues. We investigated the extraction performance in sections of 5 different tissue types often analyzed in routine pathology laboratories (cervix, colon, liver, lymph node, and lung; n=340). Furthermore, we compared the quality, labor input, and applicability of the method for diagnostic purposes with those of a laboratory-validated manual method in a clinical setting by screening a set of 45 colorectal adenocarcinoma for the KRAS mutation. Automated extraction of both DNA and RNA was successful in 339 of 340 FFPE samples representing 5 different tissue types. In comparison with a conventional manual extraction protocol, the method showed an overall agreement of 97.7% (95% confidence interval, 88.2%-99.9%) for the subsequent mutational analysis of the KRAS gene in colorectal cancer samples. The fully automated system is a promising tool for a simple, robust, and rapid extraction of DNA and RNA from formalin-fixed tissue. It ensures a standardization of sample processing and can be applied to clinical FFPE samples in routine pathology.

  3. A novel liquidchip platform for simultaneous detection of 70 alleles of DNA somatic mutations on EGFR, KRAS, BRAF and PIK3CA from formalin-fixed and paraffin-embedded slides containing tumor tissue.

    PubMed

    Li, Guoqiang; Luo, Xiaodi; He, Jiaying; Zhu, Zeyao; Yu, Gang; Qin, Huijuan; Zeng, Tao; Liu, Zhiming; Wu, Shiyang; Xu, Jiasen; Ren-Heidenreich, Lifen

    2011-02-01

    DNA somatic mutations of EGFR, KRAS, BRAF and PIK3CA in the epidermal growth factor receptor (EGFR) signaling pathway play critical roles in the response or resistance of tumors to targeted therapy with tyrosine kinase inhibitors (EGFR-TKIs). To provide a high-throughput (HTP) clinical testing service for detecting these mutations, we developed a novel platform, SurPlex®-xTAG70plex-EGFR liquidchip. This platform was developed based on a universal 100-tag system. The procedures for multiplex PCR, allele specific primer extension (ASPE) and hybridization were optimized and standardized. A total of 70 alleles of somatic mutations of EGFR, KRAS, BRAF and PIK3CA can be detected simultaneously in one reaction from one formalin-fixed and paraffin-embedded (FFPE) slide within one day. Cross-reaction was < 8% between individual amplimers and 70 different ASPE primers. The sensitivity for detecting mutants in the wild-type DNA was 1%-5%. Seventy-three FFPE samples with somatic mutations were used to validate the 70plex. Seventy-one showed a complete match, while two were not detected. A simple, accurate, sensitive HTP technology was developed and standardized for detecting simultaneously 70 different alleles of EGFR, KRAS, BRAF and PIK3CA gene mutations from FFPE tumor slides.

  4. A pilot study on the expression of microRNAs resident on chromosome 21 in laser microdissected FFPE prostate adenocarcinoma samples.

    PubMed

    Mihala, Adrian; Alexa, Andreea Anda; Samoilă, Corina; Dema, Alis; Vizitiu, Anda Cornelia; Anghel, Andrei; Tămaş, Liviu; Marian, Cătălin Valer; Sîrbu, Ioan Ovidiu

    2015-01-01

    The tremendous research effort of the last decades added a new, epigenetic layer of complexity to the already complex image of prostate cancer pathogenesis. Here we use quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the expression of the microRNAs resident on chromosome 21 (miR-ch21) in laser capture microdissected (LCM) tissues from formalin-fixed paraffin-embedded (FFPE) archived, prostate adenocarcinoma samples. We show a strong, specific down-regulation of miR-ch21 in tumoral epithelia and stromae as compared to normal counterparts, results at odd with the current paradigm on the involvement of these microRNAs in prostate oncogenesis. By comparing this result with the expression of two well-known pluripotency associated microRNA, hsa-miR-372 and miR-373, we suggest that miR-ch21 down-regulation might be the result of specific silencing of miR genes mapped to chromosome 21. Further studies, of larger sample size are needed to confirm our preliminary data.

  5. Immunohistochemical diagnosis of tenacibaculosis in paraffin-embedded tissues of Senegalese sole Solea senegalensis Kaup, 1858.

    PubMed

    Faílde, L D; Bermúdez, R; Losada, A P; Riaza, A; Santos, Y; Quiroga, M I

    2014-11-01

    A sensitive and specific immunohistochemical technique was developed to improve the diagnosis of tenacibaculosis and to better understand its pathogenesis. Senegalese sole Solea senegalensis Kaup, 1858 were inoculated subcutaneously with a bacterial suspension of Tenacibaculum maritimum, and samples were taken at different hours post-inoculation. Sections from different organs were used as positive controls. In addition, a total of 128 field samples from different organs collected from tenacibaculosis outbreaks were used. Tenacibaculum maritimum antigens were detected in several organs of experimentally infected Senegalese sole and in at least one of the tissues from fish suffering from natural tenacibaculosis previously confirmed by culture and PCR-based methods. In fish collected during outbreaks, a strong positive reaction was detected in ulcerative skin areas. Moreover, bacterial antigen was identified inside scale pockets and in sites of the skin with mild lesion. In kidney and spleen, evident immunostaining of bacterial antigen was detected in both naturally and experimentally infected fish. Besides, the presence of T. maritimum in the intestinal tract without associated histological changes suggests that this organ may act as a reservoir for T. maritimum. The results of this study confirm the usefulness of IHC for the diagnosis of tenacibaculosis in paraffin-embedded tissues.

  6. Immunohistochemical detection of extrinsic and intrinsic mediators of apoptosis in porcine paraffin-embedded tissues.

    PubMed

    Barranco, Inmaculada; Gómez-Laguna, Jaime; Rodríguez-Gómez, Irene M; Salguero, Francisco J; Pallarés, Francisco J; Bernabé, Antonio; Carrasco, Librado

    2011-02-15

    Apoptosis is a strictly regulated mechanism of cell death that involves a complex network of biochemical pathways. Whether a cell undergoes apoptosis or not depends on a delicate balance of anti- and pro-apoptotic stimuli. This phenomenon can be induced by two different pathways: intrinsic and extrinsic pathways. The main aim of this study was to determine the ideal fixative and antigen retrieval method in porcine paraffin embedded tissues for the immunohistochemical detection of apoptosis mediators, from both extrinsic and intrinsic pathways. Tonsil, retropharyngeal lymph node and lung tissue samples were fixed in 10% neutral buffered formalin, Bouin solution and zinc salts fixative (ZSF) and different unmasking methods were carried out. Both 10% neutral buffered formalin and ZSF resulted as the fixatives of election to study apoptosis phenomena. Tween 20 (0.01% in PBS), citrate buffer (microwave, pH 6.0) and/or protease type XIV were the antigen retrieval methods which displayed better labelling. Our results allow to deep in the knowledge of apoptosis and its role in the pathogenesis of porcine diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Molecular Profiling of Selected Cell Populations in Tissues by On-chip MALDI MS

    PubMed Central

    Schwamborn, Kristina; Zavalin, Andrey I.; Caprioli, Richard M.; Aerni, Hans Rudolf

    2012-01-01

    INTRODUCTION: Spatial molecular analysis of tissues using MALDI MS is an emerging tool for pathology that enables discovery of diagnostically useful protein signatures that correlate with disease. An ongoing challenge is mapping disease-related proteomic changes in tissues with morphologically complex architecture where analysis at the single cell level is desired. Here we describe a novel highly sensitive workflow that allows the isolation and processing of selected cell subpopulations for MALDI MS analysis. Optimization of the method for fresh frozen and formalin fixed, paraffin embedded (FFPE) tissue is described, and the workflow is applied for the detection of differentially expressed proteins from cells related to perineural invasion (PNI) in human prostate cancer. METHODS: Tissue sections of 4–20 μm thickness were thaw-mounted onto Director slides for staining and dehydration. Laser capture microdissection (LCM) was carried out using a PALM microbeam instrument modified with a custom holder for mounting of capture chips consisting of Teflon printed slides. The sample was digested on-chip with trypsin in a humidity chamber to reduce evaporation of the digestion buffer. Differentially expressed peptides were detected directly from the chip using a 9.4 T Bruker Apex-Qe MALDI MS. RESULTS: An optimized workflow combining LCM, on-chip processing and analysis of fresh frozen and FFPE tissue allowed the detection of meaningful protein signatures from less than 50 dissected cells. Profiles from fresh frozen and FFPE mouse liver tissue from the same mouse showed similar peptide profiles, demonstrating successful on-chip antigen retrieval of FFPE tissue. We then applied this strategy for mapping of differentially expressed proteins in PNI. Molecular profiles from cells undergoing PNI and nerve distant bulk tumor cells showed many differentially expressed peptides, including peptides with m/z = 1356.624 and 1459.696. The rapid, high throughput analysis of cell type

  8. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies

    PubMed Central

    Do, Hongdo; Krypuy, Michael; Mitchell, Paul L; Fox, Stephen B; Dobrovic, Alexander

    2008-01-01

    Background Epithelial growth factor receptor (EGFR) and KRAS mutation status have been reported as predictive markers of tumour response to EGFR inhibitors. High resolution melting (HRM) analysis is an attractive screening method for the detection of both known and unknown mutations as it is rapid to set up and inexpensive to operate. However, up to now it has not been fully validated for clinical samples when formalin-fixed paraffin-embedded (FFPE) sections are the only material available for analysis as is often the case. Methods We developed HRM assays, optimised for the analysis of FFPE tissues, to detect somatic mutations in EGFR exons 18 to 21. We performed HRM analysis for EGFR and KRAS on DNA isolated from a panel of 200 non-small cell lung cancer (NSCLC) samples derived from FFPE tissues. Results All 73 samples that harboured EGFR mutations previously identified by sequencing were correctly identified by HRM, giving 100% sensitivity with 90% specificity. Twenty five samples were positive by HRM for KRAS exon 2 mutations. Sequencing of these 25 samples confirmed the presence of codon 12 or 13 mutations. EGFR and KRAS mutations were mutually exclusive. Conclusion This is the first extensive validation of HRM on FFPE samples using the detection of EGFR exons 18 to 21 mutations and KRAS exon 2 mutations. Our results demonstrate the utility of HRM analysis for the detection of somatic EGFR and KRAS mutations in clinical samples and for screening of samples prior to sequencing. We estimate that by using HRM as a screening method, the number of sequencing reactions needed for EGFR and KRAS mutation detection can be reduced by up to 80% and thus result in substantial time and cost savings. PMID:18495026

  9. Enrichment of PrPSc in formalin-fixed, paraffin-embedded tissues prior to analysis by Western blot.

    PubMed

    Nicholson, Eric M

    2011-07-01

    Diagnosis of prion disease is primarily through immunodetection of the infectious agent. Typically, 2 distinct procedures are recommended for a definitive diagnosis, with immunohistochemistry and Western blot providing the most information as to the specific isolate in question. In the past, these approaches required formalin-fixed, paraffin-embedded tissue and fresh or frozen tissue, respectively; however, methods have been developed that allow for use of fixed tissue for Western blot. The present study describes a method of enriching PrP(Sc) in formalin-fixed, paraffin-embedded tissues prior to Western blot analysis for the detection of PrP(Sc). With this modified procedure, 5 times the previously reported sample size may be used for analysis, greatly enhancing the sensitivity of this procedure.

  10. Images of Soft-bodied Animals with External Hard Shell: 3D Visualization of the Embedded Soft Tissue

    SciTech Connect

    Rao, Donepudi V.; Akatsuka, Takao; Tromba, Giuliana

    2004-05-12

    Images of soft-bodied animals (snails) of various types with external hard shell are obtained for 25, 27 and 29 keV synchrotron X-rays. The SYRMEP facility at Elettra,Trieste, Italy and the associated detection system has been used for the image acquisition. The interior properties of the embedded soft tissue are analysed utilizing the software. From the reconstructed images, the soft tissue distribution, void spaces associated with the soft tissue and external hard shell are identified. 3D images are reconstructed at these energies and optimum energy is chosen based on the quality of the image for further analysis. The optimum energy allowed us to visualize the visibility of low absorbing details and interior microstructure of the embedded soft tissue.

  11. In situ hybridization with labeled probes: assessment of african Swine Fever virus in formalin-fixed paraffin-embedded tissues.

    PubMed

    Ballester, Maria; Rodríguez, Fernando

    2015-01-01

    In situ hybridization (ISH) has become a very valuable molecular diagnostic tool to detect specific DNA or RNA sequences in biological samples through the use of complementary DNA- or RNA-labeled probes. Here, we describe an optimized in situ hybridization protocol to detect African swine fever virus (ASFV) DNA in formalin-fixed, paraffin-embedded tissues using digoxigenin-labeled probes.

  12. Monoclonal antibodies raised to paraffin wax embedded archival tissue; feasibility study of their potential to detect novel antigenic markers.

    PubMed

    Moran, E; Larkin, A; Cleary, I; Barnes, C; Kennedy, S M; Kelehan, P; Clynes, M

    1998-10-01

    A study to determine the feasibility of using archival paraffin wax embedded tissue to generate monoclonal antibodies is described. Specifically, monoclonal antibodies were raised to paraffin wax embedded normal human kidney tissue to test the possibility of producing antibodies to such tissue samples prior to attempting generation of antibodies to valuable archival tissue. Multiple sections (10 x 5 microm) were pooled and dewaxed as for immunohistochemical procedures and combined with Freund's adjuvant for immunization of BALB/c mice in vivo. Immunized spleen cells were fused with SP2 myeloma cells and subsequent clones screened on paraffin wax embedded normal human kidney sections, a range of cell lines and normal mouse tissue. Supernatants from 11 wells (from a total of 90 wells screened) showed different staining patterns on sections of paraffin wax embedded kidney. One clone, 1/11C, (isotype IgG1) which exhibited strong staining on all kidney tubules by immunohistochemical studies (glomeruli interstitium and vessels were unstained) and identified a band at 52 kDa on immunoblots of dewaxed kidney tissue (as used for immunogen) was chosen for further characterization. Immunoblotting of five mammalian cell lines showed differential expression of this 52 kDa band (distinct expression on 3/5, weak expression on 2/5 cell lines) whereas, all cell lines displayed a band at 44 kDa and a third band at 70 kDa was observed on 2/5 cell lines. In mouse tissue extracts, the 52 kDa band was identified in kidney tissue only (not in the lung, liver or spleen) with the 44 kDa and 70 kDa bands weakly expressed in all tissues. This preliminary investigation of a novel approach to identifying possible new antigenic markers or producing monoclonal antibodies which react better to known antigens on sections of paraffin wax embedded tissue showed that this method is feasible. The need to have a comprehensive screening system in place and the ability to identify potentially useful

  13. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue

    PubMed Central

    Gerdes, Michael J.; Sevinsky, Christopher J.; Sood, Anup; Adak, Sudeshna; Bello, Musodiq O.; Bordwell, Alexander; Can, Ali; Corwin, Alex; Dinn, Sean; Filkins, Robert J.; Hollman, Denise; Kamath, Vidya; Kaanumalle, Sireesha; Kenny, Kevin; Larsen, Melinda; Lazare, Michael; Lowes, Christina; McCulloch, Colin C.; McDonough, Elizabeth; Pang, Zhengyu; Rittscher, Jens; Santamaria-Pang, Alberto; Sarachan, Brion D.; Seel, Maximilian L.; Seppo, Antti; Shaikh, Kashan; Sui, Yunxia; Zhang, Jingyu; Ginty, Fiona

    2013-01-01

    Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics. PMID:23818604

  14. Detection and characterization of Newcastle disease virus in formalin-fixed, paraffin-embedded tissues from commercial broilers in Egypt.

    PubMed

    Abdel-Glil, Mostafa Y; Mor, Sunil K; Sharafeldin, Tamer A; Porter, Robert E; Goyal, Sagar M

    2014-03-01

    Newcastle disease (ND) is highly contagious and causes severe economic losses to the poultry industry due to high morbidity and mortality. In this report, we describe the detection of Newcastle disease virus (NDV) in formalin-fixed tissues from an outbreak of ND on broiler farms in Egypt. The affected birds experienced respiratory and/or nervous signs and a 75% mortality rate. Tissue samples were collected and placed in 10% neutral buffered formalin followed by embedding in paraffin. RNA was extracted from 80-microm formalin-fixed paraffin-embedded tissue blocks and recovered in 60 microl of elution buffer. All samples were negative for influenza virus by real-time reverse-transcription (RT)-PCR but positive for NDV. These flocks were known to have been vaccinated with a live NDV vaccine (LaSota strain). The nucleic acid sequences of the virus detected in this study were similar to those of a velogenic virus at its cleavage site 111GRRQKR*F117 and clustered with class II genogroup VII lineage of NDV, with a nucleotide sequence identity of 94%-99%. Although extraction and amplification of NDV from paraffin-embedded tissues from experimentally infected birds has been reported previously, this study reports on the use of RT-PCR on formalin-fixed tissues from actual field samples.

  15. New approaches for genotyping paraffin wax embedded breast tissue from patients with cancer: the Iowa women's health study.

    PubMed

    Thyagarajan, B; Anderson, K E; Kong, F; Selk, F R; Lynch, C F; Gross, M D

    2005-09-01

    The use of paraffin wax embedded tissue samples as a source of DNA for genotype analysis has been limited because of difficulties in DNA extraction and single nucleotide polymorphism (SNP) analysis. To test the feasibility of applying the combination of a commonly used DNA isolation procedure, PureGene, and a high throughput SNP analysis method, the polymerase chain reaction (PCR)-INVADER assay, to genotype several types of paraffin wax embedded breast tissues. Twenty formalin fixed, paraffin wax blocks were obtained from five participants in the Iowa women's health study. Each participant provided several types of tissue including normal lymph node, normal nipple/areola tissue, inflammatory/fibrotic breast tissue, or normal breast tissue, and tumour tissue. Good quality DNA (260/280 ratio >1.6) was obtained from all tissues. Normal lymph nodes yielded the largest amount of DNA (97.1 mug). DNA obtained from the samples was tested for a germline C1183T polymorphism in the MnSOD gene by three methods-PCR-RFLP (restriction fragment length polymorphism), INVADER assay, and PCR-INVADER assay. Of the 20 samples, PCR-RFLP genotyped 16, the PCR-INVADER assay 18, and the INVADER assay two. This methodology was then used to analyse five additional genotypes and confirmed the general applicability of the method. This study demonstrated the feasibility of (1) using several paraffin wax embedded breast tissues as a source of DNA for germline genetic analysis, with lymph nodes providing the highest yield, and (2) using the combination of a common extraction method with a high throughput SNP analysis method, the PCR-INVADER assay.

  16. Assessing the clinical value of microRNAs in formalin-fixed paraffin-embedded liposarcoma tissues: Overexpressed miR-155 is an indicator of poor prognosis

    PubMed Central

    Kapodistrias, Nikolaos; Mavridis, Konstantinos; Batistatou, Anna; Gogou, Penelope; Karavasilis, Vasilios; Sainis, Ioannis; Briasoulis, Evangelos; Scorilas, Andreas

    2017-01-01

    Liposarcoma (LPS) is a malignancy with extreme heterogeneity and thus optimization towards personalizing patient prognosis and treatment is essential. Here, we evaluated miR-155, miR-21, miR-143, miR-145 and miR-451 that are implicated in LPS, as novel FFPE tissue biomarkers. A total of 83 FFPE tissue specimens from primary LPS and lipomas (LPM) were analyzed. A proteinase K incubation-Trizol treatment coupled protocol was used for RNA isolation. After polyadenylation of total RNA and reverse transcription, expression analysis of 9 candidate reference and 5 target miRNAs was performed by qPCR. Genorm and NormFinder were used for finding the most suitable molecules for normalization. Survival analyses were performed in order to evaluate the prognostic potential of miRNAs. MiR-103 and miR-191 are most suitable for normalization of miRNA expression in LPS. MiR-155 and miR-21 are clearly overexpressed (P<0.001) in LPS compared with LPM specimens, whereas miR-145 (P<0.001), miR-143 (P =0.008) and miR-451 (P=0.037) are underexpressed. MiR-155 (P=0.007) and miR-21 (P=0.029) are differentially expressed between well-differentiated, dedifferentiated, myxoid/round cell and pleomorphic LPs tumor subtypes. MiR-155 represents a novel independent indicator of unfavorable prognosis in LPS (HR = 2.97, 95% CI = 1.23–7.17, P = 0.016). PMID:28036291

  17. Genomic gains and losses in malignant mesothelioma demonstrated by FISH analysis of paraffin-embedded tissues.

    PubMed

    Takeda, Maiko; Kasai, Takahiko; Enomoto, Yasunori; Takano, Masato; Morita, Kouhei; Kadota, Eiji; Iizuka, Norishige; Maruyama, Hiroshi; Nonomura, Akitaka

    2012-01-01

    Malignant mesothelioma (MM) results from the accumulation of a number of acquired genetic events at the onset. In MM, the most frequent changes were losses in 9p21, 1p36, 14q32 and 22q12, and gains in 5p, 7p and 8q24 by comparative genomic hybridisation analysis. Although the diagnostic utility of 9p21 homozygous deletion by fluorescence in situ hybridisation (FISH) analysis in MM has been reported recently, alterations of other genes have not been examined to any great extent. This study analysed the frequency of various genomic gains and losses in MM using FISH analysis. The authors performed a FISH analysis using paraffin-embedded tissues from 42 cases of MM. Chromosomal losses in MM were found at 9p21 (83%), 1p36 (43%), 14q32 (43%) and 22q12 (38%), whereas gains were found at 5p15 (48%), 7p12 (38%) and 8q24 (45%). There were no cases of adenomatoid tumour, benign mesothelial multicystic tumour, reactive mesothelial hyperplasia or pleuritis showing any gains or losses. At least one genomic abnormality was identified in all cases of MM. Among various histological subtypes, the chromosomal abnormality tended to be more common in cases showing sarcomatous elements (biphasic or pure sarcomatoid) than in cases showing an epithelioid histology. The authors found various genomic gains and losses in MM by FISH analysis. The frequency of each genomic gain or loss examined in MM by FISH analysis almost agreed with the comparative genomic hybridisation technique in previous studies. This study suggests that genomic evaluation by FISH analysis might be helpful in distinguishing MM from benign mesothelial proliferation.

  18. Preparation of Cells from Formalin-Fixed, Paraffin-Embedded Tissue for Use in Fluorescence In Situ Hybridization (FISH) Experiments.

    PubMed

    Weremowicz, Stanislawa

    2015-01-20

    Numerical and structural chromosome abnormalities can be accurately detected in cells from archived tissues using fluorescence in situ hybridization (FISH). This unit describes two common approaches to performing FISH in formalin-fixed, paraffin-embedded tissue. The first approach utilizes 4 to 6 μm tissue sections in cases for which preserving tissue morphology is necessary, and the second involves extraction of intact nuclei from 50-μm tissue sections. To interpret FISH results using 4 to 6 μm sections, an adequate number of nuclei must be evaluated to perform statistical analysis. Evaluation of 30 to 50 nuclei from the single-cell suspension generally gives an interpretable result. Copyright © 2015 John Wiley & Sons, Inc.

  19. Application of tissue mesodissection to molecular cancer diagnostics.

    PubMed

    Krizman, David; Adey, Nils; Parry, Robert

    2015-02-01

    To demonstrate clinical application of a mesodissection platform that was developed to combine advantages of laser-based instrumentation with the speed/ease of manual dissection for automated dissection of tissue off standard glass slides. Genomic analysis for KRAS gene mutation was performed on formalin fixed paraffin embedded (FFPE) cancer patient tissue that was dissected using the mesodissection platform. Selected reaction monitoring proteomic analysis for quantitative Her2 protein expression was performed on FFPE patient tumour tissue dissected by a laser-based instrument and the MilliSect instrument. Genomic analysis demonstrates highly confident detection of KRAS mutation specifically in lung cancer cells and not the surrounding benign, non-tumour tissue. Proteomic analysis demonstrates Her2 quantitative protein expression in breast cancer cells dissected manually, by laser-based instrumentation and by MilliSect instrumentation (mesodissection). Slide-mounted tissue dissection is commonly performed using laser-based instruments or manually scraping tissue by scalpel. Here we demonstrate that the mesodissection platform as performed by the MilliSect instrument for tissue dissection is cost-effective; it functions comparably to laser-based dissection and which can be adopted into a clinical diagnostic workflow. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Application of tissue mesodissection to molecular cancer diagnostics

    PubMed Central

    Krizman, David; Adey, Nils; Parry, Robert

    2015-01-01

    Aims To demonstrate clinical application of a mesodissection platform that was developed to combine advantages of laser-based instrumentation with the speed/ease of manual dissection for automated dissection of tissue off standard glass slides. Methods Genomic analysis for KRAS gene mutation was performed on formalin fixed paraffin embedded (FFPE) cancer patient tissue that was dissected using the mesodissection platform. Selected reaction monitoring proteomic analysis for quantitative Her2 protein expression was performed on FFPE patient tumour tissue dissected by a laser-based instrument and the MilliSect instrument. Results Genomic analysis demonstrates highly confident detection of KRAS mutation specifically in lung cancer cells and not the surrounding benign, non-tumour tissue. Proteomic analysis demonstrates Her2 quantitative protein expression in breast cancer cells dissected manually, by laser-based instrumentation and by MilliSect instrumentation (mesodissection). Conclusions Slide-mounted tissue dissection is commonly performed using laser-based instruments or manually scraping tissue by scalpel. Here we demonstrate that the mesodissection platform as performed by the MilliSect instrument for tissue dissection is cost-effective; it functions comparably to laser-based dissection and which can be adopted into a clinical diagnostic workflow. PMID:25430495

  1. Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy

    PubMed Central

    Creech, Matthew K.; Wang, Jing; Nan, Xiaolin; Gibbs, Summer L.

    2017-01-01

    Millions of archived formalin-fixed, paraffin-embedded (FFPE) specimens contain valuable molecular insight into healthy and diseased states persevered in their native ultrastructure. To diagnose and treat diseases in tissue on the nanoscopic scale, pathology traditionally employs electron microscopy (EM), but this platform has significant limitations including cost and painstaking sample preparation. The invention of single molecule localization microscopy (SMLM) optically overcame the diffraction limit of light to resolve fluorescently labeled molecules on the nanoscale, leading to many exciting biological discoveries. However, applications of SMLM in preserved tissues has been limited. Through adaptation of the immunofluorescence workflow on FFPE sections milled at histological thickness, cellular architecture can now be visualized on the nanoscale using SMLM including individual mitochondria, undulations in the nuclear lamina, and the HER2 receptor on membrane protrusions in human breast cancer specimens. Using astigmatism imaging, these structures can also be resolved in three dimensions to a depth of ~800 nm. These results demonstrate the utility of SMLM in efficiently uncovering ultrastructural information of archived clinical samples, which may offer molecular insights into the physiopathology of tissues to assist in disease diagnosis and treatment using conventional sample preparation methods. PMID:28098202

  2. Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy.

    PubMed

    Creech, Matthew K; Wang, Jing; Nan, Xiaolin; Gibbs, Summer L

    2017-01-18

    Millions of archived formalin-fixed, paraffin-embedded (FFPE) specimens contain valuable molecular insight into healthy and diseased states persevered in their native ultrastructure. To diagnose and treat diseases in tissue on the nanoscopic scale, pathology traditionally employs electron microscopy (EM), but this platform has significant limitations including cost and painstaking sample preparation. The invention of single molecule localization microscopy (SMLM) optically overcame the diffraction limit of light to resolve fluorescently labeled molecules on the nanoscale, leading to many exciting biological discoveries. However, applications of SMLM in preserved tissues has been limited. Through adaptation of the immunofluorescence workflow on FFPE sections milled at histological thickness, cellular architecture can now be visualized on the nanoscale using SMLM including individual mitochondria, undulations in the nuclear lamina, and the HER2 receptor on membrane protrusions in human breast cancer specimens. Using astigmatism imaging, these structures can also be resolved in three dimensions to a depth of ~800 nm. These results demonstrate the utility of SMLM in efficiently uncovering ultrastructural information of archived clinical samples, which may offer molecular insights into the physiopathology of tissues to assist in disease diagnosis and treatment using conventional sample preparation methods.

  3. Detection of metabolites discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the GC/MS approach.

    PubMed

    Wojakowska, Anna; Chekan, Mykola; Marczak, Łukasz; Polanski, Krzysztof; Lange, Dariusz; Pietrowska, Monika; Widlak, Piotr

    2015-12-05

    One of the critical issues in thyroid cancer diagnostic is differentiation between follicular adenoma, follicular carcinoma and the follicular variant of papillary carcinoma, which in some cases is not possible based on histopathological features only. In this paper we performed molecular profiling of thyroid tissue aiming to identify metabolites characteristic for different types of thyroid cancer. FFPE tissue specimens were analysed from 5 different types of thyroid malignancies (follicular, papillary/classical variant, papillary/follicular variant, medullary and anaplastic cancers), benign follicular adenoma and normal thyroid. Extracted metabolites were identified and semi-quantified using the GC/MS approach. There were 28 metabolites identified, whose abundances were significantly different among different types of thyroid tumours, including lipids, carboxylic acids, and saccharides. We concluded, that multi-component metabolome signature could be used for classification of different subtypes of follicular thyroid lesions. Moreover, potential applicability of the GC/MS-based analysis of FFPE tissue samples in diagnostics of thyroid cancer has been proved. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. A rapid plastic embedding technique for preparation of three-micron thick sections of decalcified hard tissue.

    PubMed

    Kimmel, D; Jee, W S

    1975-03-01

    A 24 hour start-to-finish method is described for the preparation of three-micron-thick sections of decalcified hard tissues. Following acetone dehydration, the tissue to be embedded is infiltrated under vacuum with a series of graded clearing solutions which approach the content of the final methyl methacrylate mixture. After overnight in a 35 C oven, the plastic is polymerized by four hours heating at 42 C. Three-micron-thick sections are then easily prepared by using a Jung microtome for high resolution histologic or detailed autoradiographic procedures.

  5. Gelatin In Situ Zymography on Fixed, Paraffin-embedded Tissue: Zinc and Ethanol Fixation Preserve Enzyme Activity

    PubMed Central

    Hadler-Olsen, Elin; Kanapathippillai, Premasany; Berg, Eli; Svineng, Gunbjørg; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2010-01-01

    In situ zymography is a method for the detection and localization of enzymatic activity in tissue sections. This method is used with frozen sections because routine fixation of tissue in neutral-buffered formalin inhibits enzyme activity. However, frozen sections present with poor tissue morphology, making precise localization of enzymatic activity difficult to determine. Ethanol- and zinc-buffered fixative (ZBF) are known to preserve both morphological and functional properties of the tissue well, but it has not previously been shown that these fixatives preserve enzyme activity. In the present study, we show that in situ zymography can be performed on ethanol- and ZBF-fixed paraffin-embedded tissue. Compared with snap-frozen tissue, ethanol- and ZBF-fixed tissue showed stronger signals and superior morphology, allowing for a much more precise detection of gelatinolytic activity. Gelatinolytic enzymes could also be extracted from both ethanol- and ZBF-fixed tissue. The yield, as analyzed by SDS-PAGE gelatin zymography and Western blotting, was influenced by the composition of the extraction buffer, but was generally lower than that obtained from unfixed tissue. (J Histochem Cytochem 58:29–39, 2010) PMID:19755718

  6. A simple and reliable pretreatment protocol facilitates fluorescent in situ hybridisation on tissue microarrays of paraffin wax embedded tumour samples

    PubMed Central

    Chin, S-F; Daigo, Y; Huang, H-E; Iyer, N G; Callagy, G; Kranjac, T; Gonzalez, M; Sangan, T; Earl, H; Caldas, C

    2003-01-01

    Aims: To describe a robust pretreatment protocol for preparing paraffin wax embedded tissues on tissue microarrays for fluorescence in situ hybridisation (FISH). The newly developed pretreatment protocol described here was compared with the commonly used sodium thiocyanate based protocol and two different heating methods used in standard antigen unmasking protocols for immunohistochemistry (pressure cooking and microwaving in citrate acid buffer). Methods: Dewaxed tissue sections were incubated in 10mM citric acid buffer at 80°C for 30 minutes to two hours, followed by a short pepsin digestion (1–5 mg/ml). Pretreated tissues were co-denatured with DNA probes at 80°C for 10 minutes, followed by hybridisation at 37°C for 48–72 hours. Results: The three protocols using citrate acid buffer produced FISH signals with superior signal to noise ratios compared with sodium thiocyanate pretreatment. Most importantly, the best tissue attachment was achieved using the newly developed pretreatment protocol: on tissue microarrays less than 1% of cores were lost. To date, a total of 30 probes have been successfully hybridised on to breast tissue and multi-tissue microarrays. Conclusion: This pretreatment protocol is easy, reproducible, and facilitates FISH on tissue microarrays, with potential for widespread application in cancer research. PMID:14514921

  7. A simple and reliable pretreatment protocol facilitates fluorescent in situ hybridisation on tissue microarrays of paraffin wax embedded tumour samples.

    PubMed

    Chin, S-F; Daigo, Y; Huang, H-E; Iyer, N G; Callagy, G; Kranjac, T; Gonzalez, M; Sangan, T; Earl, H; Caldas, C

    2003-10-01

    To describe a robust pretreatment protocol for preparing paraffin wax embedded tissues on tissue microarrays for fluorescence in situ hybridisation (FISH). The newly developed pretreatment protocol described here was compared with the commonly used sodium thiocyanate based protocol and two different heating methods used in standard antigen unmasking protocols for immunohistochemistry (pressure cooking and microwaving in citrate acid buffer). Dewaxed tissue sections were incubated in 10mM citric acid buffer at 80 degrees C for 30 minutes to two hours, followed by a short pepsin digestion (1-5 mg/ml). Pretreated tissues were co-denatured with DNA probes at 80 degrees C for 10 minutes, followed by hybridisation at 37 degrees C for 48-72 hours. The three protocols using citrate acid buffer produced FISH signals with superior signal to noise ratios compared with sodium thiocyanate pretreatment. Most importantly, the best tissue attachment was achieved using the newly developed pretreatment protocol: on tissue microarrays less than 1% of cores were lost. To date, a total of 30 probes have been successfully hybridised on to breast tissue and multi-tissue microarrays. This pretreatment protocol is easy, reproducible, and facilitates FISH on tissue microarrays, with potential for widespread application in cancer research.

  8. Quantitative infrared spectroscopy of formalin-fixed, paraffin-embedded tissue specimens: paraffin wax removal with organic solvents.

    PubMed

    Meuse, Curtis W; Barker, Peter E

    2009-12-01

    Formalin-fixed, paraffin-embedded tissue specimens form the basis for diagnostic histopathology. Although adequate for morphologic visualization, clinical variability in preparation of formalin-fixed, paraffin-embedded clinical specimens represents an obstacle to quantitative molecular genetic analysis in areas such as genomics and proteomics. A quantitative reexamination of classical histopathology tissue preparation methods was initiated to determine which protocol steps might improve molecular analysis, beginning with deparaffinization. Infrared spectroscopy in the spectral region above 2000/cm of fixed sectioned model cell cultures through glass microscope slides showed all solvents remove over 97% of paraffin. To further compare extractions among solvents xylene, hexane and limonene, the correlation coefficients between the spectrum of paraffin and the spectra of the mounted extracted model tissue sections across the spectral interval containing the prominent CH stretching bands of paraffin were calculated. The correlation coefficients allow different extraction methods to be ranked in terms of how much paraffin remains. The results indicate that among 3 model tissue sample types, xylene extraction removes more paraffin than hexane or limonene. More importantly, these results establish a starting point from which further analysis of preanalytical processing methods can proceed.

  9. Post-embedding Mammalian Tissue for Immunoelectron Microscopy: A Standardized Procedure Based on Heat-Induced Antigen Retrieval.

    PubMed

    Yamashita, Shuji

    2016-01-01

    We describe a standardized method of fixation, antigen retrieval, and image contrasting for post-embedding immunoelectron microscopy. Tissues are fixed with formaldehyde solutions containing Ca(2+) and Mg(2+) ions at pH 7.4 and then at pH 8.5. After dehydration with dimethylformamide, the specimens are embedded in LR-White resin. For antigen retrieval, ultrathin sections are heated in 0.5 M Tris-HCl, pH 9.0, for 1-2 h at 95 °C. After immunogold labeling, the sections are treated with a mixture of tannic acid and glutaraldehyde, with OsO4 solution, and then double-stained with uranyl acetate and lead citrate. The standardized method yields strong and reproducible immunoreactions for many antigens showing excellent image contrast without destruction of fine structures.

  10. Synthesis of SiO2-Coated Fe3O4 Nanoparticles Using Ultrasound and Its Application in DNA Extraction from Formalin-Fixed, Paraffin-Embedded Human Cancer Tissues

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Minh; Nam, Nguyen Hoang; Huyen, Nguyen Thi; Van Anh, Nguyen Thi; Nghia, Phan Tuan; Khoa, Nguyen Ba; Toan, Nguyen Linh; Luong, Nguyen Hoang

    2017-06-01

    SiO2-coated Fe3O4 nanoparticles (Fe3O4@SiO2 NPs) were successfully synthesized using ultrasound in order to extract DNA from cancer tissues for application in diagnostics. The core 10.7-nm-diameter Fe3O4 nanoparticles were synthesized by co-precipitation of Fe3+ and Fe2+ as reaction substrates and NH4OH as precipitant, then coated with a thin layer of amorphous silica by a modified Stober method. Further SiO2 coating using alkaline hydrolysis of tetraethyl orthosilicate in ethanol and water mixture was accelerated in the presence of a 37-kHz ultrasound, resulting in the NPs having different sizes of 14.5 nm (version M1), 24.4 nm (version M2), and 34.9 nm (version M3) with saturation magnetization values of 50.2 emu/g, 18.6 emu/g, 10.3 emu/g, respectively. Among the three Fe3O4@SiO2 NPs versions, the M1 NPs allowed extraction of DNAs from 10 mg formalin-fixed and paraffin-embedded (FFPE) tissues of nasopharyngeal carcinoma patients with the highest recovery of about 100-500 ng/ μl and good purity (A260/A280: 1.8-1.9). The extracted DNAs could be used as templates for downstream amplification of 252-bp sequencing specifically for the Braf cancer biomarker gene using polymerase chain reaction (PCR), as well as detection of the pathogenic Epstein-Barr virus (EBV) and the human papilloma-virus (HPV) using real-time PCR. DNA extraction recoveries of both EBV and HPV using Fe3O4@SiO2 NPs M1 were significantly better that those using commercialized Fe3O4@SiO2 microbeads, as indicated by lower threshold cycles of all fluorescent signals including fluorescein amidite (FAM) dye representative for EBV infection, hexachlorofluorescein (HEX) dye representative for β-globin (internal control), and SYBR Green dye representative for HPV infection in tested clinical samples from patients with nasopharyngeal carcinoma (NPC).

  11. Synthesis of SiO2-Coated Fe3O4 Nanoparticles Using Ultrasound and Its Application in DNA Extraction from Formalin-Fixed, Paraffin-Embedded Human Cancer Tissues

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Minh; Nam, Nguyen Hoang; Huyen, Nguyen Thi; Van Anh, Nguyen Thi; Nghia, Phan Tuan; Khoa, Nguyen Ba; Toan, Nguyen Linh; Luong, Nguyen Hoang

    2017-01-01

    SiO2-coated Fe3O4 nanoparticles (Fe3O4@SiO2 NPs) were successfully synthesized using ultrasound in order to extract DNA from cancer tissues for application in diagnostics. The core 10.7-nm-diameter Fe3O4 nanoparticles were synthesized by co-precipitation of Fe3+ and Fe2+ as reaction substrates and NH4OH as precipitant, then coated with a thin layer of amorphous silica by a modified Stober method. Further SiO2 coating using alkaline hydrolysis of tetraethyl orthosilicate in ethanol and water mixture was accelerated in the presence of a 37-kHz ultrasound, resulting in the NPs having different sizes of 14.5 nm (version M1), 24.4 nm (version M2), and 34.9 nm (version M3) with saturation magnetization values of 50.2 emu/g, 18.6 emu/g, 10.3 emu/g, respectively. Among the three Fe3O4@SiO2 NPs versions, the M1 NPs allowed extraction of DNAs from 10 mg formalin-fixed and paraffin-embedded (FFPE) tissues of nasopharyngeal carcinoma patients with the highest recovery of about 100-500 ng/μl and good purity (A260/A280: 1.8-1.9). The extracted DNAs could be used as templates for downstream amplification of 252-bp sequencing specifically for the Braf cancer biomarker gene using polymerase chain reaction (PCR), as well as detection of the pathogenic Epstein-Barr virus (EBV) and the human papilloma-virus (HPV) using real-time PCR. DNA extraction recoveries of both EBV and HPV using Fe3O4@SiO2 NPs M1 were significantly better that those using commercialized Fe3O4@SiO2 microbeads, as indicated by lower threshold cycles of all fluorescent signals including fluorescein amidite (FAM) dye representative for EBV infection, hexachlorofluorescein (HEX) dye representative for β-globin (internal control), and SYBR Green dye representative for HPV infection in tested clinical samples from patients with nasopharyngeal carcinoma (NPC).

  12. Assessment of FANCD2 nuclear foci formation in paraffin embedded tumors; a potential patient enrichment strategy for treatment with DNA interstrand crosslinking agents

    PubMed Central

    Duan, Wenrui; Gao, Li; Zhao, Weiqiang; Leon, Marino; Sadee, Wolfgang; Webb, Amy; Resnick, Kimberly; Wu, Xin; Ramaswamy, Bhuvaneswari; Cohn, David E.; Shapiro, Charles; Andreassen, Paul R.; Otterson, Gregory A.; Villalona-Calero, Miguel A.

    2013-01-01

    A major mechanism of DNA repair related to homologous recombination is the Fanconi Anemia pathway (FA). FA genes collaborate with BRCA genes to form foci of DNA repair on chromatin following DNA damage, or during S phase of the cell cycle. Our goal was to develop a method capable of evaluating the functional status of the pathway in patients’ tumor tissue, which could also be practically incorporated to large scale screening. In order to develop this method, we first used Western immunoblot to detect FANCD2 protein mono-ubiquitination in fresh tumor specimens of ovarian cancer patients undergoing surgery, and stained formalin fixed paraffin embedded (FFPE) tumor tissue simultaneously with DAPI, FANCD2 and Ki67 antibodies, eventually extending this method to other solid tumors. This triple stain permitted evaluation of the presence, or lack thereof, of FANCD2 subnuclear repair foci in proliferating cells by immunofluorescence microscopy. Overall, we evaluated 156 FFPE tumor samples using the FA triple staining immunofluorescence (FATSI) method. The ratios of FANCD2 foci negative tumors in ovarian, lung, and breast tumor samples were 21%, 20%, and 29.4%, respectively. Our studies have led to the development of a suitable method for screening, capable of identifying tumors with somatic functional defects in the FA pathway. The use of paraffin embedded tissues renders the reported method suitable for large scale screening to select patients for treatment with DNA interstrand crosslinking agents, PARP inhibitors or their combination. PMID:23063585

  13. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues.

    PubMed

    Kajimura, Junko; Ito, Reiko; Manley, Nancy R; Hale, Laura P

    2016-02-01

    Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies.

  14. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues

    PubMed Central

    Kajimura, Junko; Ito, Reiko; Manley, Nancy R.; Hale, Laura P.

    2015-01-01

    Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies. PMID:26392518

  15. Investigation into a new softening agent for use on formalin-fixed, paraffin wax-embedded tissue.

    PubMed

    Orchard, G E; Torres, J; Poirier, A; Sounthararajah, R; Webster, J; Notini, L; Hacker, L; Ismail, F; Nwokie, T; Humphrey, P; Spigler, E; Missaghian-Cully, S; Brewer, C; Meredith-Jones, A

    2009-01-01

    The use of tissue softening agents to improve microtomy of keratotic tissues is employed widely. Many of these softeners contain hazardous constituents such as phenol. In this study, the use of non-ionic surfactants or non-toxic ingredients are investigated with the aim of creating a new softening agent. The new agent should be more effective in facilitating the sectioning of hardened tissue while reducing toxicity and complications associated with sectioning hard tissue compared to a commercially available phenol-based formulation. Four formulations are compared against the commercial product for their capability to section routinely processed paraffin-embedded tissue under standard operating procedure parameters. The trial formulations were shown to be fast acting and enabled improved serial sectioning of hard keratotic tissue in nearly all the cases tested. There was no evidence of adverse staining using either tinctorial or immunohistochemical methods. The new formulations had advantages over the commercially available solutions, improving on the number and quality of sections attainable from the tissue blocks, as well as offering a composition less toxic than phenol-based products.

  16. Development and validation of a novel protein extraction methodology for quantitation of protein expression in formalin-fixed paraffin-embedded tissues using western blotting.

    PubMed

    Nirmalan, Niroshini J; Harnden, Patricia; Selby, Peter J; Banks, Rosamonde E

    2009-03-01

    The development of efficient formaldehyde cross-link reversal strategies will make the vast diagnostic tissue archives of pathology departments amenable to prospective and retrospective translational research, particularly in biomarker-driven proteomic investigations. Heat-induced antigen retrieval strategies (HIARs) have achieved varying degrees of cross-link reversal, potentially enabling archival tissue usage for proteomic applications outside its current remit of immunohistochemistry (IHC). While most successes achieved so far have been based on retrieving tryptic peptide fragments using shot-gun proteomic approaches, attempts at extracting full-length, non-degraded, immunoreactive proteins from archival tissue have proved challenging. We have developed a novel heat-induced antigen retrieval strategy using SDS-containing Laemmli buffer for efficient intact protein recovery from formalin-fixed tissues for subsequent analysis by western blotting. Protocol optimization and comparison of extraction efficacies with frozen tissues and current leader methodology is presented. Quantitative validation of methodology was carried out in a cohort of matched tumour/normal, frozen/FFPE renal tissue samples from 10 patients, probed by western blotting for a selected panel of seven proteins known to be differentially expressed in renal cancer. Our data show that the protocol enables efficient extraction of non-degraded, full-length, immunoreactive protein, with tumour versus normal differential expression profiles for a majority of the panel of proteins tested being comparable to matched frozen tissue controls (rank correlation, r = 0.7292, p < 1.825e-09). However, the variability observed in extraction efficacies for some membrane proteins emphasizes the need for cautious interpretation of quantitative data from this subset of proteins. The method provides a viable, cost-effective quantitative option for the validation of potential biomarker panels through a range of clinical

  17. A sensitive and high throughput TaqMan-based reverse transcription quantitative polymerase chain reaction assay efficiently discriminates ALK rearrangement from overexpression for lung cancer FFPE specimens.

    PubMed

    Lung, Jrhau; Lin, Yu-Ching; Hung, Ming-Szu; Jiang, Yuan Yuan; Lee, Kuan-Der; Lin, Paul Yann; Tsai, Ying Huang

    2016-04-01

    ALK fusion gene is an oncogenic driver in lung cancer with low prevalence, which can be ameliorated by crizotinib. Currently, ALK fusion gene can be diagnosed by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), but inconstistnt results between the two methods are encountered regularly. To make the ALK fusion gene screening more efficient and to provide a simple solution to clarify the discrepancy between FISH and IHC results, a sensitive TaqMan-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was established. The 3-plex TaqMan-based RT-qPCR assay was established and performed on 102 archived formalin-fixed, paraffin-embedded (FFPE) NSCLC samples to detect ALK rearrangement and overexpression. Break-apart FISH and automatic immunohistochemistry based ALK assays were performed side by side using tissue microarray. The RT-qPCR was performed successfully for 80 samples and 10 of them showed positive signals. Three out of the 10 qPCR positive cases were further confirmed by FISH and IHC test. Two others were IHC positive and FISH negative, and expressed full-length ALK transcript. The rest were neither FISH nor IHC positive and their ALK expression level was significantly lower than those FISH or IHC positive cases. Our RT-qPCR assay demonstrates that the capability and reliability of ALK detection is comparable to FISH and IHC, but it is more effective at discriminating ALK rearrangement from overexpression. The RT-qPCR assay easily clarifies the discrepancy between FISH and IHC, and can be incorporated into routine ALK screening for lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. [Comparison of two different real-time PCR systems in postmortem diagnosis of tuberculosis in paraffin-embedded tissues].

    PubMed

    Yağmur, Gülhan; Albayrak, Nurhan; Daş, Taner; Yıldırım, Muzaffer; Ozgün, Ayşe; Büyük, Yalçın

    2014-10-01

    Tuberculosis (TB) is one of those infections with high morbidity and mortality in all around the world. Hundreds of people died from this disease without diagnosed or due to resistant strains in Turkey. Therefore, it is important to identify postmortem cases who have died from tuberculosis. Molecular methods have been widely used as well as conventional methods in the diagnosis of tuberculosis. The aim of this study was to compare the two different real-time polymerase chain reaction (Rt-PCR) system in the postmortem diagnosis of Mycobacterium tuberculosis infections in paraffin-embedded tissues. A total of 40 paraffin-embedded tissue samples [lung (n= 35), brain (n= 2), heart (n= 2), lymph node (n= 1)] in which histopathologic findings consistent with TB (necrotizing granulomatous inflammation, gelatinous caseous pneumonia, necrotic fibrous nodul) obtained from 37 autopsy cases (31 male, 6 female; age range: 25-85 yrs) were included in the study. Paraffin-embedded tissues were deparafinized with xylene and ethyl alcohol and then DNA isolation was done with QIAsymphony DSP Virus/Pathogen Midi kit in the QIAsymphony device. DNA amplification process was performed by Rt-PCR using the kit Artus® M. tuberculosis RG-PCR in the Rotor-Gene® Q device (Qiagen, Germany). Likewise, after deparafinization process, samples placed in the cartridge and isolation and Rt-PCR was performed by Xpert® MTB/RIF (Cepheid, USA) system, simultaneosly. Seventeen and 20 out of the 40 paraffin-embedded tissues yielded positive results with Qiagen and Xpert system, respectively. M.tuberculosis DNA was found positive in 13 (32.5%) and negative in 16 (40%) of the samples by both of the systems, exhibiting 72.5% (29/40) of concordance. On the other hand, seven (17.5%) samples that were positive with Xpert system yielded negative result with the Qiagen, while four (10%) samples that were positive with Qiagen yielded negative result with the Xpert system. Of the 20 positive cases detected with

  19. A simple and reliable immunohistochemical method for colocalization of 2 antigens in the same cells of paraffin-embedded tissues.

    PubMed

    Yan, Jun; Catts, Vibeke S; Chan, Anthony; McCombe, Pamela A

    2013-10-01

    Immunohistochemistry (IHC) lacks an efficient technique for colocalizing multiple antigens in the same cells of a single tissue section. The development of a methodology which combines the advantage of low cost, high sensitivity, and specificity would benefit clinical diagnosis and general research. On the basis of a newly published method of visualizing 2 antigens on a single paraffin-embedded tissue section, we have further developed a novel sequential technique for colocalizing 2 different antigens in a same cell in a paraffin-embedded tissue section. In this technique, we combined the microwave heating technique (MVT) with normal IHC methods to sequentially double stain a paraffin section; and colocalize 2 antigens in a single cell through result comparison stored in a digital management system. This MVT colocalization method has a higher degree of sensitivity and specificity comparable with conventional staining of both immunofluorescence and IHC systems. The primary advantage of this method is that it is inexpensive and convenient; the antibody(s) used in this method can be generated from the same or different species; it allows colocalization or comparison of different results of cell morphology for any single cell of the section on 2 images, avoids uncertainty when overlapping 2 antigens on a single image.

  20. RT-PCR Analysis of RNA Extracted from Bouin-Fixed and Paraffin-Embedded Lymphoid Tissues

    PubMed Central

    Gloghini, Annunziata; Canal, Barbara; Klein, Ulf; Dal Maso, Luigino; Perin, Tiziana; Dalla-Favera, Riccardo; Carbone, Antonino

    2004-01-01

    In the present study, we have investigated whether RNA can be efficiently isolated from Bouin-fixed or formalin-fixed, paraffin-embedded lymphoid tissue specimens. To this aim, we applied a new and simple method that includes the combination of proteinase K digestion and column purification. By this method, we demonstrated that the amplification of long fragments could be accomplished after a pre-heating step before cDNA synthesis associated with the use of enzymes that work at high temperature. By means of PCR using different primers for two examined genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH]- and CD40), we amplified segments of cDNA obtained by reverse transcription of the isolated RNA extracted from Bouin-fixed or formalin-fixed paraffin-embedded tissues. Amplified fragments of the expected sizes were obtained for both genes tested indicating that this method is suitable for the isolation of high-quality RNA. To explore the possibility for giving accurate real time quantitative RT-PCR results, cDNA obtained from matched frozen, Bouin-fixed and formalin-fixed neoplastic samples (two diffuse large cell lymphomas, one plasmacytoma) was tested for the following target genes: CD40, Aquaporin-3, BLIMP1, IRF4, Syndecan-1. Delta threshold cycle (ΔCT) values for Bouin-fixed and formalin-fixed paraffin-embedded tissues and their correlation with those for frozen samples showed an extremely high correlation (r > 0.90) for all of the tested genes. These results show that the method of RNA extraction we propose is suitable for giving accurate real time quantitative RT-PCR results. PMID:15507667

  1. A gene-protein assay for human epidermal growth factor receptor 2 (HER2): brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17) in formalin-fixed, paraffin-embedded breast cancer tissue sections

    PubMed Central

    2012-01-01

    Background The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2)-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH) or immunohistochemistry (IHC), respectively. Our objective was to combine the US Food and Drug Administration (FDA)-approved HER2 & chromosome 17 centromere (CEN17) brightfield ISH (BISH) and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. Methods The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE) samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative)] and Calu-3 [HER2 positive (amplified gene, protein positive)]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5) and a conventional 3,3'-diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigenin-labeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. Results HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after) the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene-protein assay

  2. FNA smears of pancreatic ductal adenocarcinoma are superior to formalin-fixed paraffin-embedded tissue as a source of DNA: Comparison of targeted KRAS amplification and genotyping in matched preresection and postresection samples.

    PubMed

    Hartley, Christopher P; Mahajan, Aparna M; Selvaggi, Suzanne M; Rehrauer, William M

    2017-10-12

    The current study was conducted to compare DNA yield, including normalization to nuclear area, DNA amplification functionality, and detection of KRAS mutations between matched fine-needle aspiration (FNA) specimens and pancreatic resections diagnostic of pancreatic ductal adenocarcinoma. A retrospective sample of 30 matched single FNA smears and macrodissected formalin-fixed, paraffin-embedded (FFPE) curls (2 5-μm curls) were compared by measuring the following: nuclear area (via digital image analysis), DNA yield (via NanoDrop spectrophotometry and Quantus fluorometry), and polymerase chain reaction threshold cycles for KRAS amplifications. Variants in KRAS codons 12/13 and 61 were detected by fluorescent melt curve analyses, followed by Sanger DNA sequencing. Despite a similar nuclear area, FNA smears yielded greater DNA per nuclear area via 2 DNA quantification methods. KRAS codon 12 mutations were detected in 23 of 30 FNA specimens (77%) compared with 17 of 30 matched FFPE specimens (57%), for a concordance rate of 74%. No KRAS codon 13 or 61 mutations were detected. FNA specimens are a more optimal source of DNA, and represent an important resource in the preresection and postresection molecular analysis of pancreatic ductal adenocarcinoma. Cancer Cytopathol 2017. © 2017 American Cancer Society. © 2017 American Cancer Society.

  3. Alcohol based fixatives provide excellent tissue morphology, protein immunoreactivity and RNA integrity in paraffin embedded tissue specimens.

    PubMed

    Milcheva, Rositsa; Janega, Pavol; Celec, Peter; Russev, Russy; Babál, Pavel

    2013-04-01

    Fixation techniques preserving morphological fidelity, protein antigenicity and integrity of nucleic acids can have a high impact on both basic and applied biomedical sciences and diagnostic pathology. Different types of mouse tissues were fixed with neutral buffered formalin, ethanol supplemented with acetic acid and modified methacarn (methanol-Carnoy) fixative. The alcohol-fixed samples were processed in an Autotechnicon tissue processor or in an incubator. The preservation of tissue morphology was assessed in all specimens and the immunoreactivity was evaluated with antibodies specific for proteins with nuclear, membrane or cytoplasmic localization. RNA was extracted from all groups of fixed hind limb skeletal muscle specimens and was assessed versus unfixed tissue for preservation of its quantity and quality by amplification of gene-specific fragments of different lengths. Both alcohol-based fixatives preserved the tissue architecture and the specificity of immunoreactivity in excellent quality; the trimming approach did not result in detectable differences. Oligonucleotide fragments of length between 108 and 577 base pairs were amplified from all groups of alcohol-fixed skeletal muscle specimens in amounts comparative to the unfixed muscle tissue. We conclude that both alcohol-based fixatives are an excellent tool for storage of tissue samples designed for immunohistochemical and mRNA expression studies when the access to fresh samples is limited.

  4. Quality Control of RNA Preservation and Extraction from Paraffin-Embedded Tissue: Implications for RT-PCR and Microarray Analysis

    PubMed Central

    Pichler, Martin; Zatloukal, Kurt

    2013-01-01

    Analysis of RNA isolated from fixed and paraffin-embedded tissues is widely used in biomedical research and molecular pathological diagnostics. We have performed a comprehensive and systematic investigation of the impact of factors in the pre-analytical workflow, such as different fixatives, fixation time, RNA extraction method and storage of tissues in paraffin blocks, on several downstream reactions including complementary DNA (cDNA) synthesis, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray hybridization. We compared the effects of routine formalin fixation with the non-crosslinking, alcohol-based Tissue Tek Xpress Molecular Fixative (TTXMF, Sakura Finetek), and cryopreservation as gold standard for molecular analyses. Formalin fixation introduced major changes into microarray gene expression data and led to marked gene-to-gene variations in delta-ct values of qRT-PCR. We found that qRT-PCR efficiency and gene-to-gene variations were mainly attributed to differences in the efficiency of cDNA synthesis as the most sensitive step. These differences could not be reliably detected by quality assessment of total RNA isolated from formalin-fixed tissues by electrophoresis or spectrophotometry. Although RNA from TTXMF fixed samples was as fragmented as RNA from formalin fixed samples, much higher cDNA yield and lower ct-values were obtained in qRT-PCR underlining the negative impact of crosslinking by formalin. In order to better estimate the impact of pre-analytical procedures such as fixation on the reliability of downstream analysis, we applied a qRT-PCR-based assay using amplicons of different length and an assay measuring the efficiency of cDNA generation. Together these two assays allowed better quality assessment of RNA extracted from fixed and paraffin-embedded tissues and should be used to supplement quality scores derived from automated electrophoresis. A better standardization of the pre-analytical workflow, application

  5. Quality control of RNA preservation and extraction from paraffin-embedded tissue: implications for RT-PCR and microarray analysis.

    PubMed

    Kashofer, Karl; Viertler, Christian; Pichler, Martin; Zatloukal, Kurt

    2013-01-01

    Analysis of RNA isolated from fixed and paraffin-embedded tissues is widely used in biomedical research and molecular pathological diagnostics. We have performed a comprehensive and systematic investigation of the impact of factors in the pre-analytical workflow, such as different fixatives, fixation time, RNA extraction method and storage of tissues in paraffin blocks, on several downstream reactions including complementary DNA (cDNA) synthesis, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray hybridization. We compared the effects of routine formalin fixation with the non-crosslinking, alcohol-based Tissue Tek Xpress Molecular Fixative (TTXMF, Sakura Finetek), and cryopreservation as gold standard for molecular analyses. Formalin fixation introduced major changes into microarray gene expression data and led to marked gene-to-gene variations in delta-ct values of qRT-PCR. We found that qRT-PCR efficiency and gene-to-gene variations were mainly attributed to differences in the efficiency of cDNA synthesis as the most sensitive step. These differences could not be reliably detected by quality assessment of total RNA isolated from formalin-fixed tissues by electrophoresis or spectrophotometry. Although RNA from TTXMF fixed samples was as fragmented as RNA from formalin fixed samples, much higher cDNA yield and lower ct-values were obtained in qRT-PCR underlining the negative impact of crosslinking by formalin. In order to better estimate the impact of pre-analytical procedures such as fixation on the reliability of downstream analysis, we applied a qRT-PCR-based assay using amplicons of different length and an assay measuring the efficiency of cDNA generation. Together these two assays allowed better quality assessment of RNA extracted from fixed and paraffin-embedded tissues and should be used to supplement quality scores derived from automated electrophoresis. A better standardization of the pre-analytical workflow, application

  6. The storage period of the formalin-fixed paraffin-embedded tumor blocks does not influence the concentration and purity of the isolated DNA in a series of 83 renal and thyroid carcinomas.

    PubMed

    Nechifor-Boilă, Adela Corina; Loghin, Andrada; Vacariu, Victor; Halaţiu, Vasile Bogdan; Borda, Angela

    2015-01-01

    Optimal recovery of nucleic acids from formalin-fixed paraffin-embedded (FFPE) tissues is highly dependent on a series of pre-extraction steps, mainly related (but not limited) to fixation. The aim of our study was to investigate if the storage period of the FFPE blocks had a significant effect on the isolated DNA. We examined the quantity and purity of the isolated DNA from 83 FFPE blocks, corresponding to malignant thyroid (n=28) and renal (n=55) carcinomas that had been stored in our department for up to eight years. The DNA extraction protocol was based on a precipitation method (MasterPure™ DNA Purification Kit, Epicentre), in accordance to the manufacturer instructions, optimized in our laboratory. A spectrophotometer was used to determine the yield (A260) and purity (A260/A280 ratio) of the isolated DNA. We successfully isolated good DNA quantity and purity from all our study cases (mean concentration: 223.4 ± 104.16 ng/μL; mean A260/A280 ratio: 1.68 ± 0.09). Moreover, no statistically significant differences were observed between tumor blocks stored for 2-3 years and 7-8 years, respectively, both in terms of DNA quantity (p=0.196) and purity (p=0.663). In conclusion, we successfully validated an efficient, reproducible DNA extraction technique that provided a good range of DNA concentrations and purity, regardless the type of tissue (thyroid or kidney). Moreover, we demonstrated that the storage period of the FFPE blocks does not have a significant influence on the DNA quantity and purity.

  7. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats.

    PubMed

    Finne, Kenneth; Vethe, Heidrun; Skogstrand, Trude; Leh, Sabine; Dahl, Tone D; Tenstad, Olav; Berven, Frode S; Reed, Rolf K; Vikse, Bjørn Egil

    2014-12-01

    It is well known that hypertension may cause glomerular damage, but the molecular mechanisms involved are still incompletely understood. In the present study, we used formalin-fixed paraffin-embedded (FFPE) tissue to investigate changes in the glomerular proteome in the non-clipped kidney of two-kidney one-clip (2K1C) hypertensive rats, with special emphasis on the glomerular filtration barrier. 2K1C hypertension was induced in 6-week-old Wistar Hannover rats (n = 6) that were sacrificed 23 weeks later and compared with age-matched sham-operated controls (n = 6). Tissue was stored in FFPE tissue blocks and later prepared on tissue slides for laser microdissection. Glomeruli without severe morphological damage were isolated, and the proteomes were analysed using liquid chromatography-tandem mass spectrometry. 2K1C glomeruli showed reduced abundance of proteins important for slit diaphragm complex, such as nephrin, podocin and neph1. The podocyte foot process had a pattern of reduced abundance of transmembrane proteins but unchanged abundances of the podocyte cytoskeletal proteins synaptopodin and α-actinin-4. Lower abundance of important glomerular basement membrane proteins was seen. Possible glomerular markers of damage with increased abundance in 2K1C were transgelin, desmin and acyl-coenzyme A thioesterase 1. Microdissection and tandem mass spectrometry could be used to investigate the proteome of isolated glomeruli from FFPE tissue. Glomerular filtration barrier proteins had reduced abundance in the non-clipped kidney of 2K1C hypertensive rats. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA.

  8. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.

    PubMed

    Paul, Anup; Narasimhan, Arunn; Kahlen, Franz J; Das, Sarit K

    2014-04-01

    During laser-assisted photo-thermal therapy, the temperature of the heated tissue region must rise to the therapeutic value (e.g., 43°C) for complete ablation of the target cells. Large blood vessels (larger than 500 micron in diameter) at or near the irradiated tissues have a considerable impact on the transient temperature distribution in the tissue. In this study, the cooling effects of large blood vessels on temperature distribution in tissues during laser irradiation are predicted using finite element based simulation. A uniform flow is assumed at the entrance and three-dimensional conjugate heat transfer equations in the tissue region and the blood region are simultaneously solved for different vascular models. A volumetric heat source term based on Beer-Lambert law is introduced into the energy equation to account for laser heating. The heating pattern is taken to depend on the absorption and scattering coefficients of the tissue medium. Experiments are also conducted on tissue mimics in the presence and absence of simulated blood vessels to validate the numerical model. The coupled heat transfer between thermally significant blood vessels and their surrounding tissue for three different tissue-vascular networks are analyzed keeping the laser irradiation constant. A surface temperature map is obtained for different vascular models and for the bare tissue (without blood vessels). The transient temperature distribution is seen to differ according to the nature of the vascular network, blood vessel size, flow rate, laser spot size, laser power and tissue blood perfusion rate. The simulations suggest that the blood flow through large blood vessels in the vicinity of the photothermally heated tissue can lead to inefficient heating of the target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Panfungal Polymerase Chain Reaction for Identification of Fungal Pathogens in Formalin-Fixed Animal Tissues.

    PubMed

    Meason-Smith, Courtney; Edwards, Erin E; Older, Caitlin E; Branco, Mackenzie; Bryan, Laura K; Lawhon, Sara D; Suchodolski, Jan S; Gomez, Gabriel; Mansell, Joanne; Hoffmann, Aline Rodrigues

    2017-07-01

    Identification of fungal organisms often poses a problem for pathologists because the histomorphology of some fungal organisms is not specific, fresh tissues may not be available, and isolation and identification in culture may take a long time. The purpose of this study was to validate the use of panfungal polymerase chain reaction (PCR) to identify fungal organisms from formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed paraffin-embedded curls were tested from 128 blocks containing canine, feline, equine, and bovine tissues with cutaneous, nasal, pulmonary, and systemic fungal infections, identified by the presence of fungi in histologic sections. Quantitative scoring of histologic sections identified rare (11.9%), occasional (17.5%), moderate (17.5%), or abundant (53.1%) fungal organisms. DNA was isolated from FFPE tissues and PCR was performed targeting the internal transcribed spacer 2 (ITS-2) region, a segment of noncoding DNA found in all eukaryotes. Polymerase chain reaction products were sequenced and identified at ≥97% identity match using the Basic Local Alignment Search Tool and the NCBI database of ITS sequences. Of the 128 blocks, 117 (91.4%) yielded PCR products and high-quality sequences were derived from 89 (69.5%). Sequence and histologic identifications matched in 79 blocks (61.7%). This assay was capable of providing genus- and species-level identification when histopathology could not and, thus, is a beneficial complementary tool for diagnosis of fungal diseases.

  10. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Tan, Huaping; Jia, Yang; Zou, Siyue; Guo, Shuxuan; Zhao, Meng; Huang, Hao; Ling, Zhonghua; Chen, Yong; Hu, Xiaohong

    2017-02-01

    Injectable hydrogels and microspheres derived from natural polysaccharides have been extensively investigated as drug delivery systems and cell scaffolds. In this study, we report a preparation of covalent hydrogels basing polysaccharides via the Schiff' base reaction. Water soluble carboxymethyl chitosan (CMC) and oxidized chondroitin sulfate (OCS) were prepared for cross-linking of hydrogels. The mechanism of cross-linking is attributed to the Schiff' base reaction between amino and aldehyde groups of polysaccharides. Furthermore, bovine serum albumin (BSA) loaded chitosan-based microspheres (CMs) with a diameter of 3.8-61.6μm were fabricated by an emulsion cross-linking method, followed by embedding into CMC-OCS hydrogels to produce a composite CMs/gel scaffold. In the current work, gelation rate, morphology, mechanical properties, swelling ratio, in vitro degradation and BSA release of the CMs/gel scaffolds were examined. The results show that mechanical and bioactive properties of gel scaffolds can be significantly improved by embedding CMs. The solid CMs can serve as a filler to toughen the soft CMC-OCS hydrogels. Compressive modulus of composite gel scaffolds containing 20mg/ml of microspheres was 13KPa, which was higher than the control hydrogel without CMs. Cumulative release of BSA during 2weeks from CMs embedded hydrogel was 30%, which was significantly lower than those of CMs and hydrogels. Moreover, the composite CMs/gel scaffolds exhibited lower swelling ratio and slower degradation rate than the control hydrogel without CMs. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes in vitro. These results demonstrate the potential of CMs embedded CMC-OCS hydrogels as an injectable drug and cell delivery system in cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Small RNA Sequencing for Profiling MicroRNAs in Long-Term Preserved Formalin-Fixed and Paraffin-Embedded Non-Small Cell Lung Cancer Tumor Specimens

    PubMed Central

    Kadota, Kyuichi; Kannisto, Eric; Jones, David R.; Adusumilli, Prasad S.

    2015-01-01

    Background The preservation of microRNAs in formalin-fixed and paraffin-embedded (FFPE) tissue makes them particularly useful for biomarker studies. The utility of small RNA sequencing for microRNA expression profiling of FFPE samples has yet to be determined. Methods Total RNA was extracted from de-paraffinized and proteinase K-treated FFPE specimens (15–20 years old) of 8 human lung adenocarcinoma tumors by affinity chromatography on silica columns. MicroRNAs in the RNA preparations were quantified by the Illumina HiSeq 2000 sequencing platform with sequencing libraries prepared with the TruSeq Small RNA Sample Preparation Kit (version 2.0) to obtain unpaired reads of 50 b for small RNA fragments. MicroRNAs were also quantified using Agilent Human miRNA (release 16.0) microarrays that can detect 1,205 mature microRNAs and by quantitative reverse transcription (RT)-PCR assays. Results Between 9.1–16.9 million reads were obtained by small RNA sequencing of extracted RNA samples. Of these, only 0.6–2.3% (mean = 1.5%) represented microRNAs. The sequencing method detected 454–625 microRNAs/sample (mean = 550) compared with 200–349 (mean = 286) microRNAs detected by microarray. In Spearman correlation analyses, the average correlation coefficient for the 126 microRNAs detected in all samples by both methods was 0.37, and >0.5 for 63 microRNAs. In correlation analyses of the sequencing- and RT-PCR-based measurements, the coefficients were 0.19–0.95 (mean = 0.73) and >0.7, respectively, for 7 of 9 examined microRNAs. The average inter-replicate Spearman correlation coefficient for the sequencing method was 0.81. Conclusions Small RNA sequencing can be used to obtain microRNA profiles of FFPE tissue specimens with performance characteristics similar to those of microarrays, in spite of the fragmentation of ribosomal and messenger RNAs that reduces the method's informative capacity. The accuracy of the method can conceivably be improved by increasing sequencing

  12. Demonstration of Epstein-Barr virus in primary brain lymphoma by in situ DNA hybridisation in paraffin wax embedded tissue.

    PubMed Central

    Murphy, J K; Young, L S; Bevan, I S; Lewis, F A; Dockey, D; Ironside, J W; O'Brien, C J; Wells, M

    1990-01-01

    Tumour tissue from 29 patients with primary brain lymphoma was reviewed to determine if there was an aetiological association between Epstein-Barr virus and polyclonal and monoclonal lymphoproliferations. The morphology and immunophenotype in 24 patients for whom paraffin wax embedded tissue was available were studied. A high grade pleomorphic tumour morphology with plasmacytoid features was seen in 13 tumours. Because of the large number of pleomorphic lymphomas, all tumours were examined for the presence of the Epstein-Barr virus genome using in situ DNA hybridisation. A panel of three biotinylated probes to different sequences in the Epstein-Barr virus genome was used. Positive hybridisation with one or more probes was shown in tumours from 11 patients. The remaining tumours gave no hybridisation signal. There was no correlation between positive hybridisation and morphological subtype or clinical outcome. Images PMID:2159030

  13. Detection of T cells in paraffin wax embedded tissue using antibodies against a peptide sequence from the CD3 antigen.

    PubMed Central

    Mason, D Y; Cordell, J; Brown, M; Pallesen, G; Ralfkiaer, E; Rothbard, J; Crumpton, M; Gatter, K C

    1989-01-01

    Rabbit polyclonal antibodies were raised against a proline rich, peptide sequence, comprising 13 amino acids, in the cytoplasmic domain of the CD3 epsilon chain. Immunoprecipitation experiments showed that this antibody preparation recognised the CD3 antigen on human T lymphoblasts. The antibody stained normal T cells strongly in tissue sections which had been fixed in formalin or Bouin's solution and embedded in paraffin wax. Its reactivity with T cell lymphoma, when evaluated on a series of 96 previously phenotyped cases, closely agreed with the results obtained on cryostat sections. These results indicate that the specific detection of T cells in routinely processed tissue biopsy specimens is now technically feasible on a wide scale in diagnostic laboratories using CD3 peptide antibodies, and they also suggest that in future the use of anti-peptide antibodies may detect other lineage specific antigenic markers in paraffin wax sections. Images PMID:2531171

  14. A polychromatic staining method for epoxy embedded tissue: a new combination of methylene blue and basic fuchsine for light microscopy.

    PubMed

    D'Amico, F

    2005-01-01

    A simple and rapid method is described for staining semithin sections of material embedded in epoxy resin for observing tissues prior to transmission electron microscopy. The method is suitable for tissue fixed with a glutaraldehyde-formaldehyde mixture and postfixed in osmium tetroxide. No etching or oxidizing procedures are necessary. Sections 0.5-0.8 microm thick are dried onto a slide and stained with either 0.75% methylene blue and 0.25% azure B or 0.5% methylene blue and 0.5% azure II in 0.5% aqueous borax and heated over a flame for 8-10 sec. The slides are rinsed with water, then stained the same way with 0.1% basic fuchsine in 5% aqueous ethanol. Cytoplasm stains blue; nuclei darker blue; collagen, mucus and elastin pink to red; fat and intracellular lipid droplets gray-green.

  15. Exome sequencing-based molecular autopsy of formalin-fixed paraffin-embedded tissue after sudden death.

    PubMed

    Bagnall, Richard D; Ingles, Jodie; Yeates, Laura; Berkovic, Samuel F; Semsarian, Christopher

    2017-10-01

    Sudden death in the young is a devastating complication of inherited heart disorders. Finding the precise cause of death is important, but it is often unresolved after postmortem investigation. The addition of postmortem genetic testing, i.e., the molecular autopsy, can identify additional causes of death. We evaluated DNA extracted from formalin-fixed paraffin-embedded postmortem tissue for exome sequencing-based molecular autopsy after sudden death in the young. We collected clinical and postmortem information from patients with sudden death. Exome sequencing was performed on DNA extracted from fixed postmortem tissue. Variants relevant to the cause of death were sought. Five patients with genetically unresolved sudden death were recruited. DNA extracted from fixed postmortem tissue was degraded. Exome sequencing achieved 20-fold coverage of at least 82% of coding regions. A threefold excess of singleton variants was found in the exome sequencing data of one patient. We found a de novo SCN1A frameshift variant in a patient with sudden unexpected death in epilepsy and a LMNA nonsense variant in a patient with dilated cardiomyopathy. DNA extracted from fixed postmortem tissue is applicable to exome sequencing-based molecular autopsy. Fixed postmortem tissues are an untapped resource for exome-based studies of rare causes of sudden death.Genet Med advance online publication 23 March 2017.

  16. In situ hybridization and immunofluorescence on resin-embedded tissue to identify the components of Nissl substance.

    PubMed

    Singhrao, Sim K; Nair-Roberts, Radha G

    2010-05-01

    It is not clear whether the Nissl substance is present at the axon hillock. To clarify this gap in knowledge, we conducted in situ hybridization (ISH) on mouse brain tissue using 30-microm cryostat and 1-3-microm acrylic resin sections. Cryostat and rehydrated resin sections were exposed to digoxygenin-labeled glutamic acid decarboxylase 1 sense and antisense riboprobes. Consecutive sections from tissue embedded in resin were subjected to the ribosomal protein L26 primary antibody to determine the distribution of the ribo/polysomes. ISH results from the antisense riboprobe in both cryostat and resin-embedded tissue sections demonstrated an abundance of message in the neurons from the substantia nigra pars reticulate. In addition, the resin sections demonstrated hybridization signal in the axon hillock of some neurons. Immunofluorescence labeling of consecutive sections using an antibody to the most abundant ribosomal protein L26 confirmed their distribution in the cell body and the axon hillock of similar neurons. Compared with the 30-microm cryostat sections, the most striking feature of ISH in the thinner resin (2-3 microm) sections was that there was a phenomenal improvement in the overall clarity and spatial resolution. Reexamination of the axon hillock when continuous with the cell body in cryostat sections revealed that the same message was also present, except it was overlooked initially because of overlapping cell populations in thick tissue slices. As ribosomes are a component of Nissl substance, we propose that the axon hillock, like other parts of the neuron, does contain Nissl substance.

  17. Embedding of bone samples in methylmethacrylate: a suitable method for tracking LacZ mesenchymal stem cells in skeletal tissues.

    PubMed

    Hannouche, D; Raould, A; Nizard, R S; Sedel, L; Petite, H

    2007-03-01

    Considerable research has been focused on the use of bone marrow-derived mesenchymal stem cells (MSCs) for the repair of non-unions and bone defects. To date, the question of whether transplanted MSCs survive and engraft within newly formed tissue remains unresolved. The development of an easy and reliable method that would allow cell fate monitoring in transplant recipients is a pressing concern for the field of tissue engineering. To demonstrate the presence of transplanted cells in newly formed bone, we established a xenograft nude rat model allowing the detection of murine LacZ MSCs in vivo. MSCs were isolated from transgenic lacZ mice, seeded onto bioabsorbable collagen sponges, and transplanted to repair a calvarial defect in nude rats. As a preliminary step, the histological procedure was adapted to optimize the detection of LacZ cells in bone tissue embedded in methylmethacrylate (MMA). Four fixatives and four fixation times were evaluated. Among all the fixatives tested, 2% formaldehyde/0.2% glutaraldehyde at 4C for 4 days gave the best results for X-gal staining at pH 7.4 on both cell cultures and bone explants. All fixatives were effective for immunodetection of beta-gal. In the chimeric LacZ/nude rat animal model, MSCs were detected in vivo for up to 4 weeks after implantation and contributed to the repair and the neovascularization of the bone defect. LacZ is a suitable phenotypic marker to track MSCs in skeletal tissues embedded in MMA.

  18. Comparison of histological techniques to visualize iron in paraffin-embedded brain tissue of patients with Alzheimer's disease.

    PubMed

    van Duijn, Sara; Nabuurs, Rob J A; van Duinen, Sjoerd G; Natté, Remco

    2013-11-01

    Better knowledge of the distribution of iron in the brains of Alzheimer's disease (AD) patients may facilitate the development of an in vivo magnetic resonance (MR) marker for AD and may cast light on the role of this potentially toxic molecule in the pathogenesis of AD. Several histological iron staining techniques have been used in the past but they have not been systematically tested for sensitivity and specificity. This article compares three histochemical techniques and ferritin immunohistochemistry to visualize iron in paraffin-embedded human AD brain tissue. The specificity of the histochemical techniques was tested by staining sections after iron extraction. Iron was demonstrated in the white matter, in layers IV/V of the frontal neocortex, in iron containing plaques, and in microglia. In our hands, these structures were best visualized using the Meguro iron stain, a method that has not been described for iron staining in human brain or AD in particular. Ferritin immunohistochemistry stained microglia and iron containing plaques similar to the Meguro method but was less intense in myelin-associated iron. The Meguro method is most suitable for identifying iron-positive structures in paraffin-embedded human AD brain tissue.

  19. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel.

    PubMed

    Rossi, Carlo Alberto; Flaibani, Marina; Blaauw, Bert; Pozzobon, Michela; Figallo, Elisa; Reggiani, Carlo; Vitiello, Libero; Elvassore, Nicola; De Coppi, Paolo

    2011-07-01

    The success of skeletal muscle reconstruction depends on finding the most effective, clinically suitable strategy to engineer myogenic cells and biocompatible scaffolds. Satellite cells (SCs), freshly isolated or transplanted within their niche, are presently considered the best source for muscle regeneration. Here, we designed and developed the delivery of either SCs or muscle progenitor cells (MPCs) via an in situ photo-cross-linkable hyaluronan-based hydrogel, hyaluronic acid-photoinitiator (HA-PI) complex. Partially ablated tibialis anterior (TA) of C57BL/6J mice engrafted with freshly isolated satellite cells embedded in hydrogel showed a major improvement in muscle structure and number of new myofibers, compared to muscles receiving hydrogel + MPCs or hydrogel alone. Notably, SCs embedded in HA-PI also promoted functional recovery, as assessed by contractile force measurements. Tissue reconstruction was associated with the formation of both neural and vascular networks and the reconstitution of a functional SC niche. This innovative approach could overcome previous limitations in skeletal muscle tissue engineering.

  20. Detection of equine arteritis virus by two chromogenic RNA in situ hybridization assays (conventional and RNAscope(®)) and assessment of their performance in tissues from aborted equine fetuses.

    PubMed

    Carossino, Mariano; Loynachan, Alan T; James MacLachlan, N; Drew, Clifton; Shuck, Kathleen M; Timoney, Peter J; Del Piero, Fabio; Balasuriya, Udeni B R

    2016-11-01

    Equine arteritis virus (EAV) is the causative agent of equine viral arteritis, a respiratory and reproductive disease of equids. EAV infection can induce abortion in pregnant mares, fulminant bronchointerstitial pneumonia in foals, and persistent infection in stallions. Here, we developed two RNA in situ hybridization (ISH) assays (conventional and RNAscope(®) ISH) for the detection of viral RNA in formalin-fixed paraffin-embedded (FFPE) tissues and evaluated and compared their performance with nucleocapsid-specific immunohistochemistry (IHC) and virus isolation (VI; gold standard) techniques. The distribution and cellular localization of EAV RNA and antigen were similar in tissues from aborted equine fetuses. Evaluation of 80 FFPE tissues collected from 16 aborted fetuses showed that the conventional RNA ISH assay had a significantly lower sensitivity than the RNAscope(®) and IHC assays, whereas there was no difference between the latter two assays. The use of oligonucleotide probes along with a signal amplification system (RNAscope(®)) can enhance detection of EAV RNA in FFPE tissues, with sensitivity comparable to that of IHC. Most importantly, these assays provide important tools with which to investigate the mechanisms of EAV pathogenesis.

  1. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections

    USDA-ARS?s Scientific Manuscript database

    Rust fungi infect a wide range of plant species making them of particular interest to plant pathologists. In order to study the interactions between these important pathogenic fungi and their host plants it is useful to be able to differentiate fungal tissue from plant tissue. This can be accomplish...

  2. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue

    PubMed Central

    Quiroz-Zárate, Alejandro; Harshfield, Benjamin J.; Hu, Rong; Knoblauch, Nick; Beck, Andrew H.; Hankinson, Susan E.; Carey, Vincent; Tamimi, Rulla M.; Hunter, David J.; Quackenbush, John; Hazra, Aditi

    2017-01-01

    We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic studies of genome-wide association studies (GWAS) of breast cancer, the majority of which are located in intergenic or intronic regions. To explore regulatory impacts of these variants we conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive postmenopausal breast cancer cases in the Nurses’ Health Study (NHS) diagnosed from 1990–2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded (FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human Transcriptome Array. Significance and ranking of associations between tumor receptor status and expression variation was preserved between NHS FFPE and TCGA fresh-frozen sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signature genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with expression variation in 217 distinct genes. SNP-gene associations can be explored using an open-source interactive browser distributed in a Bioconductor package. Using a new a procedure for testing hypotheses relating SNP content to expression patterns in gene sets, defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpretation of the GWAS-identified variants remains to be uncovered, this study validates the utility of expression analysis of this FFPE expression set for more detailed integrative analyses. PMID:28152060

  3. Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue.

    PubMed

    Quiroz-Zárate, Alejandro; Harshfield, Benjamin J; Hu, Rong; Knoblauch, Nick; Beck, Andrew H; Hankinson, Susan E; Carey, Vincent; Tamimi, Rulla M; Hunter, David J; Quackenbush, John; Hazra, Aditi

    2017-01-01

    We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic studies of genome-wide association studies (GWAS) of breast cancer, the majority of which are located in intergenic or intronic regions. To explore regulatory impacts of these variants we conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive postmenopausal breast cancer cases in the Nurses' Health Study (NHS) diagnosed from 1990-2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded (FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human Transcriptome Array. Significance and ranking of associations between tumor receptor status and expression variation was preserved between NHS FFPE and TCGA fresh-frozen sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signature genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with expression variation in 217 distinct genes. SNP-gene associations can be explored using an open-source interactive browser distributed in a Bioconductor package. Using a new a procedure for testing hypotheses relating SNP content to expression patterns in gene sets, defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpretation of the GWAS-identified variants remains to be uncovered, this study validates the utility of expression analysis of this FFPE expression set for more detailed integrative analyses.

  4. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles.

    PubMed

    Cejas, Paloma; Li, Lewyn; O'Neill, Nicholas K; Duarte, Melissa; Rao, Prakash; Bowden, Michaela; Zhou, Chensheng W; Mendiola, Marta; Burgos, Emilio; Feliu, Jaime; Moreno-Rubio, Juan; Guadalajara, Héctor; Moreno, Víctor; García-Olmo, Damián; Bellmunt, Joaquim; Mullane, Stephanie; Hirsch, Michelle; Sweeney, Christopher J; Richardson, Andrea; Liu, X Shirley; Brown, Myles; Shivdasani, Ramesh A; Long, Henry W

    2016-06-01

    Extensive cross-linking introduced during routine tissue fixation of clinical pathology specimens severely hampers chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) analysis from archived tissue samples. This limits the ability to study the epigenomes of valuable, clinically annotated tissue resources. Here we describe fixed-tissue chromatin immunoprecipitation sequencing (FiT-seq), a method that enables reliable extraction of soluble chromatin from formalin-fixed paraffin-embedded (FFPE) tissue samples for accurate detection of histone marks. We demonstrate that FiT-seq data from FFPE specimens are concordant with ChIP-seq data from fresh-frozen samples of the same tumors. By using multiple histone marks, we generate chromatin-state maps and identify cis-regulatory elements in clinical samples from various tumor types that can readily allow us to distinguish between cancers by the tissue of origin. Tumor-specific enhancers and superenhancers that are elucidated by FiT-seq analysis correlate with known oncogenic drivers in different tissues and can assist in the understanding of how chromatin states affect gene regulation.

  5. Improved technique for fluorescence in situ hybridisation analysis of isolated nuclei from archival, B5 or formalin fixed, paraffin wax embedded tissue.

    PubMed

    Schurter, M J; LeBrun, D P; Harrison, K J

    2002-04-01

    Fluorescence in situ hybridisation (FISH) is an effective method to detect chromosomal alterations in a variety of tissue types, including archived paraffin wax embedded specimens fixed in B5 or formalin. However, precipitating fixatives such as B5 have been known to produce unsatisfactory results in comparison with formalin when used for FISH. This study describes an effective nuclear isolation and FISH procedure for B5 and formalin fixed tissue, optimising the nuclear isolation step and nuclei pretreatments using tonsil and mantle cell lymphoma specimens. The protocol presented can be used to isolate nuclei and perform FISH on B5 or formalin fixed, paraffin wax embedded samples from a variety of tissue types.

  6. Analysis of biological and technical variability in gene expression assays from formalin-fixed paraffin-embedded classical Hodgkin lymphomas.

    PubMed

    Vera-Lozada, Gabriela; Scholl, Vanesa; Barros, Mário Henrique M; Sisti, Davide; Guescini, Michele; Stocchi, Vilberto; Stefanoff, Claudio Gustavo; Hassan, Rocio

    2014-12-01

    Formalin-fixed paraffin-embedded (FFPE) tissues are invaluable sources of biological material for research and diagnostic purposes. In this study, we aimed to identify biological and technical variability in RT-qPCR TaqMan® assays performed with FFPE-RNA from lymph nodes of classical Hodgkin lymphoma samples. An ANOVA-nested 6-level design was employed to evaluate BCL2, CASP3, IRF4, LYZ and STAT1 gene expression. The most variable genes were CASP3 (low expression) and LYZ (high expression). Total variability decreased after normalization for all genes, except by LYZ. Genes with moderate and low expression were identified and suffered more the effects of the technical manipulation than high-expression genes. Pre-amplification was shown to introduce significant technical variability, which was partially alleviated by lowering to a half the amount of input RNA. Ct and Cy0 quantification methods, based on cycle-threshold and the kinetic of amplification curves, respectively, were compared. Cy0 method resulted in higher quantification values, leading to the decrease of total variability in CASP3 and LYZ genes. The mean individual noise was 0.45 (0.31 to 0.61 SD), indicating a variation of gene expression over ~1.5 folds from one case to another. We showed that total variability in RT-qPCR from FFPE-RNA is not higher than that reported for fresh complex tissues, and identified gene-, and expression level-sources of biological and technical variability, which can allow better strategies for designing RT-qPCR assays from highly degraded and inhibited samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues

    NASA Astrophysics Data System (ADS)

    Fleischer, Sharon; Shevach, Michal; Feiner, Ron; Dvir, Tal

    2014-07-01

    Coiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold.Coiled perimysial fibers within the heart muscle provide it with the ability to contract and relax efficiently. Here, we report on a new nanocomposite scaffold for cardiac tissue engineering, integrating coiled electrospun fibers with gold nanoparticles. Cultivation of cardiac cells within the hybrid scaffolds promoted cell organization into elongated and aligned tissues generating a strong contraction force, high contraction rate and low excitation threshold. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00300d

  8. Preservation of nucleic acids and tissue morphology in paraffin-embedded clinical samples: comparison of five molecular fixatives.

    PubMed

    Staff, Synnöve; Kujala, Paula; Karhu, Ritva; Rökman, Annika; Ilvesaro, Joanna; Kares, Saara; Isola, Jorma

    2013-09-01

    Formalin fixation preserves tissue morphology at the expense of macromolecule integrity. Freshly frozen samples are the golden standard for DNA and RNA analyses but require laborious deep-freezing and frozen sectioning for morphological studies. Alternative tissue stabilisation methods are therefore needed. We analysed the preservation of nucleic acids, immunohistochemical staining properties and tissue morphology in paraffin-embedded clinical tissue samples fixed with Z7, RCL2, PAXgene, Allprotect and RNAlater. Formalin-fixed and deep-frozen samples were used as controls. Immunohistochemical analyses showed good preservation of antigenicity in all except Allprotect and RNAlater-fixed samples. RNA quality, based on RNA integrity number value by Bioanalyzer, was comparable with freshly frozen samples only in PAXgene-fixed samples. According to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses, RNA from PAXgene samples yielded results similar to freshly frozen samples. No difference between fixatives was seen in DNA analyses (PCR and real-time PCR). In conclusion, PAXgene seems to be superior to other molecular fixatives and formaldehyde.

  9. Comparative evaluation of specific methods for labeling of Encephalitozoon cuniculi in paraffin wax-embedded tissue samples.

    PubMed

    Habenbacher, Bettina; Klang, Andrea; Fragner, Karin; Dinhopl, Nora; Künzel, Frank; Weissenböck, Herbert

    2012-03-01

    Detection of the microsporidian Encephalitozoon cuniculi in tissue samples is considered difficult. The aim of the current study was to determine whether immunohistochemistry (IHC) and in situ hybridization (ISH) represent reliable methods for the detection of E. cuniculi in postmortem tissue samples of rabbits. Paraffin-embedded tissue sections of brain and kidneys of 48 naturally infected pet rabbits, 10 negative controls, and the eyes of 3 further rabbits were used for all investigations. By IHC in 19 animals (37.3%), spores could be clearly detected and were all equally stained. By ISH using a digoxigenin-labeled oligonucleotide probe, only 6 animals (11.8%) proved undoubtedly positive. In these cases, many parasite-like objects revealed strong typical purple-black positive signals. However, several of the examined samples showed only partial staining of the pathogen or unclear results. Thus, in order to find an explanation for these inconsistent ISH results and to take a more detailed look at the different developmental stages of the organism, electron microscopy was applied. Empty spores, which had already discharged their polar filaments, prevailed in total number. Taken together, both techniques are rather insensitive, but under the condition that sufficient numbers of microsporidia are present, IHC can be recommended for specific identification of E. cuniculi in tissue samples. In contrast, ISH failed to detect some developmental stages of the organism, and, as such, ISH is therefore considered an inappropriate diagnostic method.

  10. Detection and Quantification of CWD Prions in Fixed Paraffin Embedded Tissues by Real-Time Quaking-Induced Conversion

    PubMed Central

    Hoover, Clare E.; Davenport, Kristen A.; Henderson, Davin M.; Pulscher, Laura A.; Mathiason, Candace K.; Zabel, Mark D.; Hoover, Edward A.

    2016-01-01

    Traditional diagnostic detection of chronic wasting disease (CWD) relies on immunodetection of misfolded CWD prion protein (PrPCWD) by western blotting, ELISA, or immunohistochemistry (IHC). These techniques require separate sample collections (frozen and fixed) which may result in discrepancies due to variation in prion tissue distribution and assay sensitivities that limit detection especially in early and subclinical infections. Here, we harness the power of real-time quaking induced conversion (RT-QuIC) to amplify, detect, and quantify prion amyloid seeding activity in fixed paraffin-embedded (FPE) tissue sections. We show that FPE RT-QuIC has greater detection sensitivity than IHC in tissues with low PrPCWD burdens, including those that are IHC-negative. We also employ amyloid formation kinetics to yield a semi-quantitative estimate of prion concentration in a given FPE tissue. We report that FPE RT-QuIC has the ability to enhance diagnostic and investigative detection of disease-associated PrPRES in prion, and potentially other, protein misfolding disease states. PMID:27157060

  11. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering

    PubMed Central

    Zhou, Jun-feng; Wang, Yi-guo; Cheng, Liang; Wu, Zhao; Sun, Xiao-dan; Peng, Jiang

    2016-01-01

    Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topography. There was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. PMID:27904497

  12. Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study.

    PubMed

    Ferrer, Isidre; Armstrong, Judith; Capellari, Sabina; Parchi, Piero; Arzberger, Thomas; Bell, Jeanne; Budka, Herbert; Ströbel, Thomas; Giaccone, Giorgio; Rossi, Giacomina; Bogdanovic, Nenad; Fakai, Peter; Schmitt, Andrea; Riederers, Peter; Al-Sarraj, Safa; Ravid, Rivka; Kretzschmar, Hans

    2007-07-01

    There is a large amount of tissue stored in brain collections and brain banks, but little is known about whether formalin-fixed tissues and paraffin blocks stored for years in brain banks are suitable for the retrospective genetic studies. The study was carried out in order to: (i) compare DNA preservation in frozen, formalin-fixed and paraffin-embedded tissues stored for different periods; (ii) study point mutations and triplet expansions in frozen, formalin-fixed and paraffin-embedded material stored for variable periods, and using different fixative solutions; (iii) compare different methods to optimize DNA extraction and DNA amplification from suboptimally preserved brain tissue. DNA preservation is suitable for genetic studies in samples stored at -80 degrees C for several years. Formalin-fixed, paraffin-embedded tissue was inferior to frozen tissue, but did yield adequate results in many cases depending on the type of fixative solution and time of fixation before embedding. Prolonged fixation in formalin rarely yielded useful DNA. Similar results were obtained in samples from prion diseases. The best results were obtained by using the Qiagen kits (QIAmp DNA Micro) in frozen material, paraffin blocks and formalin-fixed tissue. Genomiphi and TaKaRa Ex Taq methods were also assayed in paraffin blocks and in formalin-fixed samples with limited success.

  13. Desktop transcriptome sequencing from archival tissue to identify clinically relevant translocations.

    PubMed

    Sweeney, Robert T; Zhang, Bing; Zhu, Shirley X; Varma, Sushama; Smith, Kevin S; Montgomery, Stephen B; van de Rijn, Matt; Zehnder, Jim; West, Robert B

    2013-06-01

    Somatic mutations, often translocations or single nucleotide variations, are pathognomonic for certain types of cancers and are increasingly of clinical importance for diagnosis and prediction of response to therapy. Conventional clinical assays only evaluate 1 mutation at a time, and targeted tests are often constrained to identify only the most common mutations. Genome-wide or transcriptome-wide high-throughput sequencing (HTS) of clinical samples offers an opportunity to evaluate for all clinically significant mutations with a single test. Recently a "desktop version" of HTS has become available, but most of the experience to date is based on data obtained from high-quality DNA from frozen specimens. In this study, we demonstrate, as a proof of principle, that translocations in sarcomas can be diagnosed from formalin-fixed paraffin-embedded (FFPE) tissue with desktop HTS. Using the first generation MiSeq platform, full transcriptome sequencing was performed on FFPE material from archival blocks of 3 synovial sarcomas, 3 myxoid liposarcomas, 2 Ewing sarcomas, and 1 clear cell sarcoma. Mapping the reads to the "sarcomatome" (all known 83 genes involved in translocations and mutations in sarcoma) and using a novel algorithm for ranking fusion candidates, the pathognomonic fusions and the exact breakpoints were identified in all cases of synovial sarcoma, myxoid liposarcoma, and clear cell sarcoma. The Ewing sarcoma fusion gene was detectable in FFPE material only with a sequencing platform that generates greater sequencing depth. The results show that a single transcriptome HTS assay, from FFPE, has the potential to replace conventional molecular diagnostic techniques for the evaluation of clinically relevant mutations in cancer.

  14. Testing an aflatoxin B1 gene signature in rat archival tissues.

    PubMed

    Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R

    2012-05-21

    Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced

  15. Clinical Usefulness of PCR for Differential Diagnosis of Tuberculosis and Nontuberculous Mycobacterial Infection in Paraffin-Embedded Lung Tissues.

    PubMed

    Kim, Yo Na; Kim, Kyoung Min; Choi, Ha Na; Lee, Ju Hyung; Park, Ho Sung; Jang, Kyu Yun; Moon, Woo Sung; Kang, Myoung Jae; Lee, Dong Geun; Chung, Myoung Ja

    2015-09-01

    The need for isolation of nontuberculous mycobacteria (NTM) from clinical specimens has increased in recent years. Our aim was to determine the clinical usefulness of PCR for differential diagnosis of tuberculosis and nontuberculous mycobacterial infection in lung tissue that show chronic granulomatous inflammation. A total of 199 formalin-fixed, paraffin-embedded specimens, including 137 Mycobacterium tuberculosis (MTB), 17 NTM cases, and 45 other than mycobacterial cases were collected. We performed acid-fast staining, MTB and NTM nested PCRs, and MTB and NTM real-time PCRs. No histologic difference between MTB and NTM infections was observed. Sensitivity and specificity for detecting MTB were 70.1% and 95.1% by nested PCR, respectively, and 70.8% and 100.0% by real-time PCR, respectively. Sensitivity and specificity for detecting NTM were 52.9% and 96.15% by nested PCR, respectively, and 35.3% and 100.0% by real-time PCR, respectively. Mycobacteria were identified by acid-fast staining in 50 of 154 cases (32.5%). All 50 acid-fast staining-positive cases showed positive nested and real-time PCR results (n = 47 MTB PCR positive; n = 3 NTM PCR positive), and results agreed with final diagnosis. PCR will be useful for the rapid diagnosis of mycobacterial infection and differentiation of MTB from NTM in formalin-fixed, paraffin-embedded specimens, especially in acid-fast staining-positive specimens.

  16. Direct fluorescent antibody technique for the detection of bacterial kidney disease in paraffin-embedded tissues

    USGS Publications Warehouse

    Ochiai, T.; Yasutake, W.T.; Gould, R.W.

    1985-01-01

    The direct fluorescent antibody technique (FAT) was successfully used to detect the causative agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, in Bouin's solution flexed and paraffinembedded egg and tissue sections. This method is superior to gram stain and may be particularly useful in detecting the BKD organism in fish with low-grade infection.

  17. KRAS Genotyping of Paraffin-Embedded Colorectal Cancer Tissue in Routine Diagnostics

    PubMed Central

    Weichert, Wilko; Schewe, Christiane; Lehmann, Annika; Sers, Christine; Denkert, Carsten; Budczies, Jan; Stenzinger, Albrecht; Joos, Hans; Landt, Olfert; Heiser, Volker; Röcken, Christoph; Dietel, Manfred

    2010-01-01

    KRAS mutation testing before anti-epidermal growth factor receptor therapy of metastatic colorectal cancer has become mandatory in Europe. However, considerable uncertainty exists as to which methods for detection can be applied in a reproducible and economically sound manner in the routine diagnostic setting. To answer this question, we examined 263 consecutive routine paraffin slide specimens. Genomic DNA was extracted from microdissected tumor tissue. The DNA was analyzed prospectively by Sanger sequencing and array analysis as well as retrospectively by melting curve analysis and pyrosequencing; the results were correlated to tissue characteristics. The methods were then compared regarding the reported results, costs, and working times. Approximately 40% of specimens contained KRAS mutations, and the different methods reported concordant results (κ values >0.9). Specimens harboring fewer than 10% tumor cells showed lower mutation rates regardless of the method used, and histoanatomical variables had no influence on the frequency of the mutations. Costs per assay were higher for array analysis and melting curve analysis when compared with the direct sequencing methods. However, for sequencing methods equipment costs were much higher. In conclusion, Sanger sequencing, array analysis, melting curve analysis, and pyrosequencing were equally effective for routine diagnostic KRAS mutation analysis; however, interpretation of mutation results in conjunction with histomorphologic tissue review and on slide tumor tissue dissection is required for accurate diagnosis. PMID:20007841

  18. PCR detection of Clostridium chauvoei in pure cultures and in formalin-fixed, paraffin-embedded tissues.

    PubMed

    Uzal, F A; Hugenholtz, P; Blackall, L L; Petray, S; Moss, S; Assis, R A; Fernandez Miyakawa, M; Carloni, G

    2003-02-02

    The polymerase chain reaction (PCR) was used to amplify specific segments of the 16S ribosomal RNA gene of Clostridium chauvoei, a major pathogen of ruminants. Three sets of primers were used to produce amplicons of 159, 836 and 959 base pairs (bp), respectively. The PCR was evaluated by testing clinically important strains of Clostridium, including 21 strains of C. chauvoei, five strains each of Clostridium septicum and Clostridium perfringens and two strains each of Clostridium novyi, Clostridium histolyticum and Clostridium sordellii. Both purified DNA and biomass from pure cultures of each of these microorganisms were evaluated as templates in the PCR. In addition, extracts of formalin-fixed, paraffin-embedded tissues of eight sheep experimentally inoculated with C. chauvoei or C. septicum (four animals each) were also tested by the PCR using the three sets of primers. Purified DNA template of all C. chauvoei strains produced PCR amplicons of the expected size for all three primer pairs. However, when biomass from pure cultures of C. chauvoei or tissue extracts were used as templates, only the primer pair designed to produce the 159bp amplicon gave consistently positive results. No positive results were obtained with any primer pair when purified DNA or biomass from pure cultures of non-target clostridial species were used as templates. Therefore, the PCR primer sets appear to be very specific for identifying C. chauvoei in both cultures and tissues.

  19. Transcriptomic Profiling of Adipose Tissue in Obese Women in Response to Acupuncture Catgut Embedding Therapy with Moxibustion.

    PubMed

    Garcia-Vivas, Jessica M; Galaviz-Hernandez, Carlos; Fernandez-Retana, Jorge; Pedroza-Torres, Abraham; Perez-Plasencia, Carlos; Lopez-Camarillo, Cesar; Marchat, Laurence A

    2016-08-01

    Complementary and alternative medicine, such as Traditional Chinese Medicine, represents an efficient therapeutic option for obesity control. It was previously reported that acupuncture catgut embedding therapy (ACET) with moxibustion reduces body weight and reverts insulin resistance in obese women. This study aimed to evidence changes in adipokines and gene expression in adipose tissue that could explain the effects of ACET with moxibustion. Overweight/obese women were treated with ACET with moxibustion or sham acupuncture as control. Peripheral blood samples and fat biopsies were taken before and after intervention. Circulating adipokines (leptin, adiponectin, tumor necrosis factor alpha, and resistin) were quantified by enzyme-linked immunosorbent assay. Gene expression in adipose tissue was determined by cDNA microarray assays and assessed by quantitative reverse transcription real-time polymerase chain reaction. ACET with moxibustion did not modify circulating adipokines levels. However, correlations with anthropometric and biochemical parameters were affected. Interestingly, transcriptional changes in adipose tissue revealed the modulation of genes participating in homeostasis control, lipid metabolism, olfactory transduction, and gamma-aminobutyric acid signaling pathway. The effects of ACET with moxibustion on body weight and insulin resistance were associated with the regulation of biochemical events that are altered in obesity.

  20. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release.

    PubMed

    Chen, Muwan; Le, Dang Q S; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug.

  1. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    PubMed Central

    Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634

  2. Double immunofluorescent staining of rat macrophages in formalin-fixed paraffin-embedded tissue using two monoclonal mouse antibodies.

    PubMed

    Isidro, Raymond A; Isidro, Angel A; Cruz, Myrella L; Hernandez, Siomara; Appleyard, Caroline B

    2015-12-01

    The conventional approach of double immunostaining to visualize more than one protein in tissues or cells using antibodies from two different host species is not always feasible due to limitations with antibody availability. Previously reported methodologies for performing multiple immunostains on the same tissue or cells with antibodies originating from the same species are varied in their complexity, sensitivity, and approach to prevent unwanted interactions between antibodies. In the ever-expanding field of macrophage biology, much more is known about mouse and human macrophages than their rat counterparts. The limited availability of validated and well-characterized monoclonal antibodies from different species is one factor responsible for preventing advances in rat macrophage biology. Here we describe an immunostaining method for identifying and examining rat macrophages that is sufficiently sensitive for use in formalin-fixed paraffin-embedded tissue and that uses only commercially available reagents and antibodies. This method can be used to help characterize both physiological and pathophysiological processes in rat macrophages and can be adapted for use with any two antibodies from the same species of origin as long as one of the antibodies is biotinylated.

  3. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing.

    PubMed

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M T; Gradinaru, Viviana; Pierce, Niles A; Cai, Long

    2016-08-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. © 2016. Published by The Company of Biologists Ltd.

  4. A simple method using alizarin red S for the detection of calcium in epoxy resin embedded tissue.

    PubMed

    Gilmore, S K; Whitson, S W; Bowers, D E

    1986-03-01

    This report presents a simple procedure for staining 1-2 microns epoxy plastic sections of cells and mineralizing matrix present in fetal bovine bone tissue cultures. A 0.3% aqueous toluidine blue O solution was used as a cellular stain and was followed with 2% alizarin red S for the detection of calcium at sites of mineralization. Effects of concentration and pH of alizarin red S on the penetration of epon embedded thick sections were investigated. Optimal staining was achieved with a 2% aqueous alizarin red S solution adjusted to a pH of 5.5-6.5. This staining procedure provides unusually clear contrast between mineral and bone cells in plastic sections for light microscopy.

  5. Ewing's Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue.

    PubMed

    Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C

    2016-04-30

    The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

  6. A model for heat transfer from embedded blood vessels in two-dimensional tissue preparations.

    PubMed

    Zhu, L; Weinbaum, S

    1995-02-01

    Two-dimensional microvascular tissue preparations have been extensively used to study blood flow in the microcirculation, and, most recently, the mechanism of thermal equilibration between thermally significant countercurrent artery-vein pairs. In this paper, an approximate three-dimensional solution for the heat transfer from a periodic array of blood vessels in a tissue preparation of uniform thickness with surface convection is constructed using a newly derived fundamental solution for a Green's function for this flow geometry. This approximate solution is exact when the ratio K' of the blood to tissue conductivity is unity and a highly accurate approximation when K' not equal to 1. This basic solution is applied to develop a model for the heat transfer from a countercurrent artery-vein pair in an exteriorized rat cremaster muscle preparation. The numerical results provide important new insight into the design of microvascular experiments in which the axial variation of the thermal equilibration in microvessels can be measured for the first time. The solutions also provide new insight into the design of fluted fins and microchips that are convectively cooled by internal pores.

  7. Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections.

    PubMed

    Atkins, Derek; Reiffen, Karl-August; Tegtmeier, Conny Lund; Winther, Henrik; Bonato, Marcellus S; Störkel, Stephan

    2004-07-01

    The epidermal growth factor receptor (EGFR) is highly expressed in a variety of solid malignant tumors and its expression has been correlated with disease progression and poor survival. With the advent of targeted therapies, especially IMC-C225 (Cetuximab), a monoclonal antibody (MAb) directed against the EGFR, there is an increasing interest in immunohistochemistry (IHC)-based EGFR screening methods using paraffin-embedded tumor specimens to select cancer patients eligible for treatment with Cetuximab. With the EGFRpharmDX kit, a complete assay for demonstration of EGFR is now available. Because no information about the preservation of the EGFR under various conditions of fixation is available, we performed a prospective study on a panel of commonly used fixatives to determine optimal tissue preservation protocols. The stability of the epitope on cut tissue sections stored for a period up to 24 month was also tested using material originating from patients with head and neck cancer, non-small-cell lung carcinomas, and colorectal adenocarcinomas. Depending on the fixative used and the time of storage of cut tissue sections, a variation in the determined level of EGFR expression was demonstrated compared with the most optimal fixation procedure.

  8. Laser Optoacoustic Spectroscopy (LOS) of a gold nanorod solution embedded in a liquid tissue phantom

    NASA Astrophysics Data System (ADS)

    Cunningham, Vincent; Lamela, Horacio; Gallego, Daniel C.

    2011-10-01

    A technique capable of characterizing the spectral parameters of gold nanostructures is demonstrated. These properties are providing numerous advances in the field of high sensitive diagnostics, drug delivery and optical therapeutic applications. To obtain spectroscopic measurements of gold nanorods within a turbid media that mimics soft tissue, this work presents the potential of the photon to ultrasound conversion, by means of real-time Laser Optoacoustic Spectroscopy (LOS), The obtained results are shown for the complete wavelength range of 410 to 1000 nm that followed by a comprehensive comparative analysis with achieved results of parallel reference measurement schemeand standard spectrophotometry.

  9. Utility of the Roche Cobas 4800 for detection of high-risk human papillomavirus in formalin-fixed paraffin-embedded oropharyngeal squamous cell carcinoma.

    PubMed

    Pettus, Jason R; Wilson, Terri L; Steinmetz, Heather B; Lefferts, Joel A; Tafe, Laura J

    2017-02-01

    Clinical laboratories are expected to reliably identify human papilloma virus (HPV) associated oropharyngeal squamous cell carcinoma (OPSCC) for prognostic and potential therapeutic applications. In addition to surrogate p16 immunohistochemistry (IHC) testing, DNA-based HPV-specific testing strategies are widely utilized. Recognizing the efficiency of the Roche Cobas 4800 platform for testing gynecological cytology specimens for high-risk HPV, we elected to evaluate the potential utility of this platform for testing formalin-fixed paraffin-embedded (FFPE) OPSCC tissue. Using the Roche Linear Array assay for comparison, we tested twenty-eight samples (16 primary OPSCC, 2 lymph node metastases from primary OPSCC, 1 oral tongue carcinoma, 3 benign squamous papillomas, and 3 non-oropharyngeal carcinoma tissues). Excluding two invalid results, the Roche Cobas 4800 testing resulted in excellent inter-assay concordance (25/26, 96.2%) and 100% concordance for HPV-16/HPV-18 positive samples. This data suggests that the Roche Cobas 4800 platform may be a cost-effective method for testing OPSCC FFPE tissues in a clinical molecular pathology laboratory setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel.

    PubMed

    Baek, Jihye; Chen, Xian; Sovani, Sujata; Jin, Sungho; Grogan, Shawn P; D'Lima, Darryl D

    2015-04-01

    Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.

  11. Molecular genotyping of Echinococcus granulosus using formalin-fixed paraffin-embedded preparations from human isolates in unusual tissue sites.

    PubMed

    Hizem, A; M'rad, S; Oudni-M'rad, M; Mestiri, S; Hammedi, F; Mezhoud, H; Zakhama, A; Mokni, M; Babba, H

    2016-07-01

    Cystic echinococcosis (CE) caused by Echinococcus granulosus remains a serious problem worldwide for issues relating to public health and the economy. The most predominantly affected sites are the liver and the lungs, but other organs such as the heart, the spleen and the peritoneum can also be infected. Access to cysts from uncommon sites has limited genomic and molecular investigations. In the present study, genotypes of E. granulosus sensu lato were identified from formalin-fixed paraffin-embedded tissues (FF-PETs) implicated in human CE. Tissue samples were obtained from 57 patients with histologically confirmed CE. DNA samples were analysed using Egss 1 polymerase chain reaction (PCR) specific to the mitochondrial 12S rRNA gene of E. granulosus sensu stricto. All cysts were typed as E. granulosus sensu stricto with up to 35% of the liver and 16.6% of lungs being the most frequently infected, and up to 48.4% of samples being from rare sites. No correlation was found between cyst site and either the gender or the age of patients. This study demonstrates the possibility of exploiting atypical cysts using FF-PET samples and highlights the predominance of E. granulosus sensu stricto species in the Tunisian population, even in unusual infection sites.

  12. Velocity and attenuation of shear waves in the phantom of a muscle-soft tissue matrix with embedded stretched fibers

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.

    2016-09-01

    We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.

  13. Imaging through diffusive layers using speckle pattern fractal analysis and application to embedded object detection in tissues

    NASA Astrophysics Data System (ADS)

    Tremberger, George, Jr.; Flamholz, A.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Brathwaite, G.; Boteju, J.; Marchese, P.; Lieberman, D.; Cheung, T.; Holden, Todd

    2007-09-01

    The absorption effect of the back surface boundary of a diffuse layer was studied via laser generated reflection speckle pattern. The spatial speckle intensity provided by a laser beam was measured. The speckle data were analyzed in terms of fractal dimension (computed by NIH ImageJ software via the box counting fractal method) and weak localization theory based on Mie scattering. Bar code imaging was modeled as binary absorption contrast and scanning resolution in millimeter range was achieved for diffusive layers up to thirty transport mean free path thick. Samples included alumina, porous glass and chicken tissue. Computer simulation was used to study the effect of speckle spatial distribution and observed fractal dimension differences were ascribed to variance controlled speckle sizes. Fractal dimension suppressions were observed in samples that had thickness dimensions around ten transport mean free path. Computer simulation suggested a maximum fractal dimension of about 2 and that subtracting information could lower fractal dimension. The fractal dimension was shown to be sensitive to sample thickness up to about fifteen transport mean free paths, and embedded objects which modified 20% or more of the effective thickness was shown to be detectable. The box counting fractal method was supplemented with the Higuchi data series fractal method and application to architectural distortion mammograms was demonstrated. The use of fractals in diffusive analysis would provide a simple language for a dialog between optics experts and mammography radiologists, facilitating the applications of laser diagnostics in tissues.

  14. Development of molecular methods for the identification of aspergillus and emerging moulds in paraffin wax embedded tissue sections.

    PubMed

    Paterson, P J; Seaton, S; McLaughlin, J; Kibbler, C C

    2003-12-01

    Invasive infection with emerging moulds is increasing in incidence and reliable methods for speciating these organisms in tissue sections need to be developed. Two methods for extracting fungal DNA from paraffin wax embedded tissue sections, based on the TaKaRa DEXPAT kit and QIAamp DNA mini kit, were optimised and compared. DNA was amplified by PCR using pan-fungal probes, and detected by Southern blot hybridisation using a high stringency method with a probe specific for Aspergillus fumigatus and A flavus. The method based on the TaKaRa DEXPAT kit, with additional steps using lyticase and ethanol precipitation, was superior. Less than 10 conidia were detectable using spiked samples and a positive result was obtained with 100% of clinical samples known to be culture positive for A fumigatus. Other moulds could be identified by using species specific probes or by sequencing PCR products. The method based on the TaKaRa DEXPAT kit could detect less than 10 conidia/sample. The method allowed accurate identification of A fumigatus and A flavus and other species could be identified using species specific probes or by DNA sequencing. These methods will provide a valuable diagnostic tool for both patient management and future antifungal and epidemiological studies.

  15. Meniscus Tissue Engineering Using a Novel Combination of Electrospun Scaffolds and Human Meniscus Cells Embedded within an Extracellular Matrix Hydrogel

    PubMed Central

    Baek, Jihye; Chen, Xian; Sovani, Sujata; Jin, Sungho; Grogan, Shawn P; D’Lima, Darryl D

    2015-01-01

    Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time PCR, respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies. PMID:25640671

  16. An immunocytochemical procedure for protein localization in various nematode life stages combined with plant tissues using methylacrylate-embedded specimens.

    PubMed

    Vieira, Paulo; Banora, Mohamed Youssef; Castagnone-Sereno, Philippe; Rosso, Marie-Noëlle; Engler, Gilbert; de Almeida Engler, Janice

    2012-10-01

    Plant-parasitic nematodes possess a large number of proteins that are secreted in planta, allowing them to be successful parasites of plants. The majority of these proteins are synthesized mainly in the nematode subventral and dorsal glands as well as in other organs. To improve the immunovisualization of these proteins, we adapted a methacrylate embedding method for the localization of proteins inside nematode tissues, and extracellularly when secreted in planta or within plant cells. An important advantage is that the method is applicable for all nematode stages: preparasitic as well as parasitic stages, including large mature females. Herein, the method has been successfully applied for the localization of four nematode secreted proteins, such as Mi-MAP-1, Mi-CBM2-bearing proteins, Mi-PEL3, and Mi-6D4. In addition, we could also localize 14-3-3 proteins, as well as two cytoskeletal proteins, by double-immunolabeling on preparasitic juveniles. Superior preservation of nematode and plant morphology, allowed more accurate protein localization as compared with other methods. Besides excellent epitope preservation, dissolution of methacrylate from tissue sections unmasks target proteins and thereby drastically increases antibody access.

  17. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities

    PubMed Central

    Guan, Liming; Xu, Gang

    2017-01-01

    Objectives To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. Materials and Methods Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion. SPSS 19.0 software was used for statistical analyses. Results Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. Conclusion High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer. PMID:28121624

  18. Immunohistochemical diagnosis of Fabry nephropathy and localisation of globotriaosylceramide deposits in paraffin-embedded kidney tissue sections.

    PubMed

    Valbuena, Carmen; Leitão, Dina; Carneiro, Fátima; Oliveira, João Paulo

    2012-02-01

    Fabry disease (FD) is a rare X-linked lysosomal storage disorder of glycosphingolipids, mostly globotriaosylceramide (Gb3). Proteinuric chronic kidney disease develops frequently, and recognition of Fabry nephropathy on a kidney biopsy may be the first clue to the underlying diagnosis. Since the accumulated glycosphingolipids are largely extracted by the paraffin-embedding procedure, the most characteristic feature of Fabry nephropathy on routine light microscopy (LM) is nonspecific cell vacuolization. To test whether residual Gb3 in kidney tissue might be exploited for the specific diagnosis of Fabry nephropathy, paraffin-embedded kidney biopsies of nine FD patients (one boy, four men, four women) and of a female carrier of a mild genetic mutation, with no evidence of Fabry nephropathy, were immunostained with an anti-Gb3 antibody. The adult biopsies were additionally co-stained with a lysosomal marker (anti-lysosomal-associated membrane protein 2 (anti-LAMP2) antibody). The distribution of Gb3 deposits was scored per cell type and compared to the histological scorings of glycosphingolipid inclusions on semi-thin sections. FD patients had residual Gb3 in all types of glomerular, tubular, interstitial and vascular kidney cells. The highest expression of LAMP2 was seen in tubular cells, but there were no meaningful associations between LAMP2 expression and prevalence of Gb3 deposits on different kidney cell types. The histological scorings of glycosphingolipid inclusions were relatively higher than the corresponding immunohistochemical scorings of Gb3 deposits. In the mildly affected female, Gb3 expression was limited to tubular cells, a pattern similar to controls. Gb3 immunostaining allows the specific diagnosis of Fabry nephropathy even in kidney biopsies routinely processed for LM.

  19. Primary oral Penicillium marneffei infection diagnosed by PCR-based molecular identification and transmission electron microscopic observation from formalin-fixed paraffin-embedded tissues.

    PubMed

    Hua, Xia; Zhang, Ruifeng; Yang, Hanjun; Lei, Song; Zhang, Yizhi; Ran, Yuping

    2012-11-07

    We report a case of primary oral Penicillium marneffei infection in a 39-year-old man without HIV infection. Although fungal culture was negative, the patient was finally confirmed to have P. marneffei infection by PCR-based molecular identification and transmission electron microscopic observation from formalin-fixed, paraffin-embedded tissues. The patient was cured with taking itraconazole for 3 months.

  20. Utility of frozen section analysis for fungal organisms in soft tissue wound debridement margin determination.

    PubMed

    Zimmermann, Nives; Hagen, Matthew C; Schrager, Jason J; Hebbeler-Clark, Renee S; Masineni, Sreeharsha

    2015-10-15

    Zygomycetes cause different patterns of infection in immunosuppressed individuals, including sino-orbito-cerebral, pulmonary, skin/soft tissue infection and disseminated disease. Infections with Zygomycetes have a high mortality rate, even with prompt treatment, which includes anti-fungal agents and surgical debridement. In some centers, clear margins are monitored by serial frozen sections, but there are no specific guidelines for the use of frozen sections during surgical debridement. Studies in fungal rhinosinusitis found 62.5-85 % sensitivity of frozen section analysis in margin assessment. However, the utility of frozen section analysis for margin evaluation in debridement of skin/soft tissue infection has not been published. We present a case of zygomycosis of decubitus ulcers in which we assessed statistical measures of performance of frozen section analysis for presence of fungal organisms on the margin, compared with formalin-fixed paraffin embedded (FFPE) sections as gold standard. A total of 33 specimens (94 blocks) were sectioned, stained with H&E and evaluated by both frozen and FFPE analysis. Negative interpretations were confirmed by Gomori methenamine silver stain on FFPE sections. H&E staining of frozen sections had 68.4 % sensitivity and 100 % specificity for assessing margins clear of fungal organisms. The negative and positive predictive values were 70.0 % and 100 %, respectively. Using presence of acute inflammation and necrosis as markers of fungal infection improved sensitivity (100 %) at the expense of specificity (42.9 %). Use of intraoperative assessment of skin and soft tissue margins for fungal infection is a valuable tool in the management of skin and soft tissue fungal infection treatment.

  1. Comparison of protocols for DNA extraction from long-term preserved formalin fixed tissues.

    PubMed

    Paireder, Stefan; Werner, Bettina; Bailer, Josef; Werther, Wolfgang; Schmid, Erich; Patzak, Beatrix; Cichna-Markl, Margit

    2013-08-15

    The current study compared the applicability of protocols to extract DNA from formalin fixed heart tissues that have been preserved for more than 50 years. Ten methods were tested: a cetyltrimethylammonium bromide (CTAB) standard protocol, seven variants of this standard protocol, and two commercial kits. In the case of younger specimens (fixed in 1951, 1934, or 1914), extracts with DNA concentrations ≥ 10.0 ng/μl were obtained with the standard CTAB protocol, two variants of the standard protocol including prolonged tissue digestion (72 h instead of 1-2h), and a commercial kit particularly recommended for DNA extraction from formalin fixed paraffin embedded tissues (FFPE Kit). With the FFPE Kit, DNA could also be extracted from older tissues (fixed in 1893, 1850/1851, or before 1820). In general, the purity of the DNA extracts, assessed from the ratio of the absorbance at 260 and 280 nm, was not very high. In spite of their rather low purity, the DNA extracts could, however, be used to amplify a 122-bp sequence and, in most cases, also a 171-bp sequence of the gene coding for human albumin by the polymerase chain reaction (PCR).

  2. Molecular risk assessment of BIG 1-98 participants by expression profiling using RNA from archival tissue

    PubMed Central

    2010-01-01

    Background The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months. Methods RNA from fresh frozen (FF) and FFPE tumor samples of 82 patients were used for quality control, and independent FFPE tissues of 342 postmenopausal participants of BIG 1-98 with ER-positive cancer were analyzed by measuring prospectively selected genes and computing scores representing the functions of the estrogen receptor (eight genes, ER_8), the progesterone receptor (five genes, PGR_5), Her2 (two genes, HER2_2), and proliferation (ten genes, PRO_10) by quantitative reverse transcription PCR (qRT-PCR) on TaqMan Low Density Arrays. Molecular scores were computed for each category and ER_8, PGR_5, HER2_2, and PRO_10 scores were combined into a RISK_25 score. Results Pearson correlation coefficients between FF- and FFPE-derived scores were at least 0.94 and high concordance was observed between molecular scores and immunohistochemical data. The HER2_2, PGR_5, PRO_10 and RISK_25 scores were significant predictors of disease free-survival (DFS) in univariate Cox proportional hazard regression. PRO_10 and RISK_25 scores predicted DFS in patients with histological grade II breast cancer and in lymph node positive disease. The PRO_10 and PGR_5 scores were independent predictors of DFS in multivariate Cox regression models incorporating clinical risk indicators; PRO_10 outperformed Ki-67 labeling index in multivariate Cox proportional hazard analyses. Conclusions Scores representing the endocrine responsiveness and proliferation status of breast cancers were developed from gene expression analyses based on RNA derived from FFPE tissues. The validation of the molecular scores with tumor samples of participants of the BIG 1-98 trial demonstrates that such scores can serve as independent prognostic factors to estimate

  3. Histological and genotypical characterization of feline cutaneous mycobacteriosis: a retrospective study of formalin-fixed paraffin-embedded tissues.

    PubMed

    Davies, Jennifer L; Sibley, Jennifer A; Myers, Sherry; Clark, Edward G; Appleyard, Greg D

    2006-06-01

    Twenty-nine cases presumptively diagnosed as feline cutaneous mycobacteriosis were evaluated microscopically with haematoxylin and eosin and modified Fite's stained sections using archived formalin-fixed paraffin-embedded tissue specimens. Lesions were characterized histologically as feline leprosy (7 cases lepromatous and 16 cases tuberculoid) or atypical mycobacteriosis (3 cases); three cases did not fit these criteria and were classified as 'miscellaneous'. Actinomycetales-specific polymerase chain reaction (PCR) of variable regions 1, 2 and 3 of the 16S ribosomal RNA (rRNA) gene and subsequent sequence analysis of the amplicons were performed to identify the species of mycobacteria associated with each case. Together, this study identified 10 different Actinomycetales organisms with greater than 98% nucleotide sequence identity to named species, nine were of the genus Mycobacterium and eight were associated with feline leprosy (both lepromatous and tuberculoid). Based on this study, we conclude that feline cutaneous mycobacteriosis should be considered as a syndrome with varied clinical and histological presentations associated with a variety of different Mycobacterium species, organisms other than Mycobacterium sp. may be associated with feline cutaneous mycobacteriosis lesions, and molecular diagnostic techniques can be an important tool for identifying agents associated with lesions of feline cutaneous mycobacteriosis.

  4. Identification of 5-Hydroxytryptamine-Producing Cells by Detection of Fluorescence in Paraffin-Embedded Tissue Sections

    PubMed Central

    Kaneko, Y.; Onda, N.; Watanabe, Y.; Shibutani, M.

    2016-01-01

    5-Hydroxytryptamine (5-HT) produced by enterochromaffin (EC) cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of fluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of fluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between fluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Fluorescence+ EC cells were detected in the colon of mice and rats. Fluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or fluorescence. These results suggest that fluorescence+ cells are identical to 5-HT+ cells, and the source of fluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This fluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings. PMID:27734992

  5. [Efficacy of PCR for the differential diagnosis of tuberculosis in granulomatous lesions of paraffin-embedded formalin fixed tissues].

    PubMed

    Montenegro, Sonia; Delgado, Carolina; Pineda, Susana; Reyes, Cristian; Barra, Tiare de la; Cabezas, Claudia; Spencer, Loreto; Mucientes, Francisco

    2014-12-01

    Granulomatous lesions occur in tuberculosis (TB), other infections, toxic, allergic, and autoimmune diseases among others. In absence of a an acid-fast bacilli (AFB) confirmation of TB is necessary. To assess the efficacy of PCR for TB detection and to correlate with granuloma histology and AFB staining. We analyzed 380 fixed paraffin-embedded tissues (PETs) of granulomas with and without caseous necrosis; suppurative; sarcoidal; or of chronic nonspecific nature. Nested PCR-IS6110 for Mycobacterium tuberculosis complex (MTB) and a nested pan-Mycobacterium for the hsp65 gene were used for Mycobacterium spp detection. PCR was more sensitive than AFB staining for all five catagories of granulomas: G1: PCR 71%, AFB staining 28%. G2: PCR 37%, AFB 8%. G3: PCR 17%, AFB staining 7%. G4: PCR 8%, AFB staining 4%. G5: PCR 6%, AFB staining 0%. Molecular diagnosis of TB using PCR-based testing is a fast, efficacious and sensitive method that increased the accuracy of PET histological diagnosis associated with granulomatous lesions.

  6. Vinculin and cellular retinol-binding protein-1 are markers for quiescent and activated hepatic stellate cells in formalin-fixed paraffin embedded human liver.

    PubMed

    Van Rossen, Elke; Vander Borght, Sara; van Grunsven, Leo Adrianus; Reynaert, Hendrik; Bruggeman, Veerle; Blomhoff, Rune; Roskams, Tania; Geerts, Albert

    2009-03-01

    Hepatic stellate cells (HSCs) have important roles in the pathogenesis of liver fibrosis and cirrhosis. As response to chronic injury HSCs are activated and change from quiescent into myofibroblast-like cells. Several HSC-specific markers have been described in rat or mouse models. The aim of our work was to identify the best marker(s) for human HSCs. To this end we used the automated high throughput NexES IHC staining device (Ventana Medical Systems) to incubate sections under standardized conditions. Formalin fixed paraffin embedded (FFPE) normal and diseased human livers were studied. With immunohistochemistry we examined the expression of synemin, desmin, vimentin, vinculin, neurotrophin-3 (NT-3), alpha-smooth muscle actin (alpha-SMA), cellular retinol-binding protein-1 (CRBP-1), glial fibrillary acidic protein (GFAP), cysteine- and glycine-rich protein 2 (CRP2), and cytoglobin/stellate cell activation-associated protein (cygb/STAP). This is the first study in which a series of HSC markers is compared on serial FFPE human tissues. CRBP-1 clearly stains lobular HSCs without reacting with smooth muscle cells (SMCs) and shows variable cholangiocyte positivity. Vinculin has a similar staining pattern as CRBP-1 but additionally stains SMCs, and (myo)fibroblasts. In conclusion, we therefore propose to use CRBP-1 and/or vinculin to stain HSCs in human liver tissues.

  7. The relationship between gastric cancer and Helicobacter pylori in formaldehyde fixed paraffin embedded gastric tissues of gastric cancer patients-scorpion real-time PCR assay findings.

    PubMed

    Naserpour Farivar, Taghi; Johari, Pouran; Najafipour, Reza; Farzam, Amir; Nasirian, Neda; HajManouchehri, Fatemeh; Jahani Hashemi, Hassan; Azimi, Akram; Bahrami, Mohammad

    2014-01-01

    Gastric cancer is the second leading cause of cancer-related deaths worldwide and it seems that environmental and lifestyle factors and infection with Helicobacter pylori (H. pylori) have had a major role in the etiology of gastric cancer. The aim of this study was to investigate the presence of H. pylori DNA in archival gastric tissues of patients with gastric cancer disease by rapid, sensitive and specific technique of Scorpion Realtime PCR. This retrospective cross-sectional study was performed on 285 paraffin embedded gastric specimens of patients who were pathologically proved for gastric cancer admitted in Bou-Ali, Shahid Rajaie and Dehkhoda hospitals and Bahar and Farzam private laboratory in Qazvin city in Iran during 2009 and 150 paraffin embedded pathological specimens of patients with other proved diagnosis other than gastric cancer. Results of our Scorpion Realtime PCR analysis showed that DNA of H. pylori DNA was present in 78.42% of our total specimens. Modified McMullen's Staining of paraffin embedded sections was positive in 210 patients. Also we were not able to finding significant relationship between demographic characteristics of our studied patients and presence of H. pylori DNA in their formaldehyde fixed paraffin embedded gastric tissues samples. Existence of H. pylori in gastric tissue samples of patients with gastric cancer is controversial and our results indicated that in our studied specimens prevalence of H. pylori was significantly more than recent published reports.

  8. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    PubMed Central

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A.C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-01-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section. PMID:28327648

  9. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging.

    PubMed

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A C; Huck, Christian W; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-22

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  10. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging

    NASA Astrophysics Data System (ADS)

    Meksiarun, Phiranuphon; Ishigaki, Mika; Huck-Pezzei, Verena A. C.; Huck, Christian W.; Wongravee, Kanet; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated paraffin components were used for removing the contribution of paraffin from the tissue spectra. These three methods were compared in terms of the efficiency of paraffin removal and the ability to retain the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for the paraffin-embedded tissue section.

  11. Detection of West Nile virus using formalin fixed paraffin embedded tissues in crows and horses: quantification of viral transcripts by real-time RT-PCR.

    PubMed

    Tewari, Deepanker; Kim, Hyun; Feria, Willard; Russo, Brigite; Acland, Helen

    2004-08-01

    West Nile virus (WNV) RNA was quantified in WNV infected crows and horses with the help of a real-time reverse transcriptase-PCR assay. A 5' nuclease assay, based on NS5 gene detection with a fluorescent probe was used for quantifying WNV RNA using formalin fixed paraffin embedded tissue specimens. Quantitative detection of WNV RNA showed the presence of a higher amount of the viral RNA in crow tissues compared to equine tissues and these results correlated well with the detection of WNV antigen by immunostaining. In crows, the highest amount of virus was seen in the intestine and in horses in the brain.

  12. Application of in-situ hybridization for the detection and identification of avian malaria parasites in paraffin wax-embedded tissues from captive penguins

    PubMed Central

    Dinhopl, Nora; Mostegl, Meike M.; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Fragner, Karin; Weissenböck, Herbert

    2011-01-01

    In captive penguins, avian malaria due to Plasmodium parasites is a well-recognized disease problem as these protozoa may cause severe losses among valuable collections of zoo birds. In blood films from naturally infected birds, identification and differentiation of malaria parasites based on morphological criteria are difficult because parasitaemia is frequently light and blood stages, which are necessary for identification of parasites, are often absent. Post-mortem diagnosis by histological examination of tissue samples is sometimes inconclusive due to the difficulties in differentiating protozoal tissue stages from fragmented nuclei in necrotic tissue. The diagnosis of avian malaria would be facilitated by a technique with the ability to specifically identify developmental stages of Plasmodium in tissue samples. Thus, a chromogenic in-situ hybridization (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 18S rRNA, was developed for the detection of Plasmodium parasites in paraffin wax-embedded tissues. This method was validated in comparison with traditional techniques (histology, polymerase chain reaction), on various tissues from 48 captive penguins that died at the zoological garden Schönbrunn, Vienna, Austria. Meronts of Plasmodium gave clear signals and were easily identified using ISH. Potential cross-reactivity of the probe was ruled out by the negative outcome of the ISH against a number of protozoa and fungi. Thus, ISH proved to be a powerful, specific and sensitive tool for unambiguous detection of Plasmodium parasites in paraffin wax-embedded tissue samples. PMID:21711191

  13. Application of in-situ hybridization for the detection and identification of avian malaria parasites in paraffin wax-embedded tissues from captive penguins.

    PubMed

    Dinhopl, Nora; Mostegl, Meike M; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Fragner, Karin; Weissenböck, Herbert

    2011-06-01

    In captive penguins, avian malaria due to Plasmodium parasites is a well-recognized disease problem as these protozoa may cause severe losses among valuable collections of zoo birds. In blood films from naturally infected birds, identification and differentiation of malaria parasites based on morphological criteria are difficult because parasitaemia is frequently light and blood stages, which are necessary for identification of parasites, are often absent. Post-mortem diagnosis by histological examination of tissue samples is sometimes inconclusive due to the difficulties in differentiating protozoal tissue stages from fragmented nuclei in necrotic tissue. The diagnosis of avian malaria would be facilitated by a technique with the ability to specifically identify developmental stages of Plasmodium in tissue samples. Thus, a chromogenic in-situ hybridization (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 18S rRNA, was developed for the detection of Plasmodium parasites in paraffin wax-embedded tissues. This method was validated in comparison with traditional techniques (histology, polymerase chain reaction), on various tissues from 48 captive penguins that died at the zoological garden Schönbrunn, Vienna, Austria. Meronts of Plasmodium gave clear signals and were easily identified using ISH. Potential cross-reactivity of the probe was ruled out by the negative outcome of the ISH against a number of protozoa and fungi. Thus, ISH proved to be a powerful, specific and sensitive tool for unambiguous detection of Plasmodium parasites in paraffin wax-embedded tissue samples.

  14. Molecular Detection and Genotypic Characterization of Toxoplasma gondii in Paraffin-Embedded Fetoplacental Tissues of Women with Recurrent Spontaneous Abortion

    PubMed Central

    Abdoli, Amir; Dalimi, Abdolhossein; Soltanghoraee, Haleh; Ghaffarifar, Fatemeh

    2017-01-01

    Background Congenital toxoplasmosis is an important cause of spontaneous abortion worldwide. However, there is limited information on detection and genotypic characterization of Toxoplasma gondii (T. gondii) in women with recurrent spontaneous abortion (RSA). The aim of this study is the molecular detection and genotypic characterization of T. gondii in formalin-fixed, paraffin-embedded fetoplacental tissues (FFPTs) of women with RSA that have referred to the Avicenna Research Institute in Tehran, Iran. Materials and Methods This experimental research was undertaken on 210 FFPTs of women with RSA. The information of the patients was collected from the archives of Avicenna Research Institute in Tehran, Iran. After DNA extraction, the presence of T. gondii was examined by nested polymerase chain reaction targeting the GRA6 gene. Genotyping was performed on positive samples using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) that targeted the GRA6 and SAG3 genes. Sequencing was conducted on two GRA6 positive samples. Results T. gondii DNA was detected in 3.8% (8/210) of the samples. Genotyping showed that all positive samples belonged to type III of the T. gondii genotype. Sequencing two genomic DNAs of the GRA6 gene revealed 99% similarity with each other and 99-100% similarity with T. gondii sequences deposited in GenBank. There were six patients with histories of more than three abortions; one patient had a healthy girl and another patient had two previous abortions. Abortions occurred in the first trimester of pregnancy in seven patients and in the second trimester of pregnancy in one patient. Conclusion The results of this study have indicated that genotype III is the predominant type of T. gondii in women with RSA in Tehran, Iran. Also, our findings suggest that toxoplasmosis may play a role in the pathogenesis of RSA. However, further studies are needed to elucidate a clear relationship between T. gondii infection and RSA. PMID

  15. Dermatofibrosarcoma protuberans: dealing with slow Mohs procedures employing formalin-fixed, paraffin wax-embedded tissue in a busy diagnostic laboratory.

    PubMed

    Orchard, G E; Shams, M

    2012-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a relatively uncommon tumour that arises in the dermis and underlying soft tissue. Surgical removal is the preferred treatment, with relatively wide clearance margins of 3 cm or more. Slow Mohs procedures are often employed successfully to treat patients with such tumours. Slow Mohs procedures offer the benefit of improved cure rates and maximal tissue conservation. However, dealing with such tissue successfully presents the laboratory with a host of technical problems. This report advocates a set protocol to follow for slow Mohs, based on the experience acquired from dealing with 37 cases of DFSP over a 12-year period. The report establishes the benefits of slow Mohs paraffin wax-embedded tissue over frozen sections in terms of improved morphology, tissue preservation and immunocytochemical labelling with anti-CD34.

  16. Immunohistochemical detection and localization of new type gosling viral enteritis virus in paraformaldehyde-fixed paraffin-embedded tissue.

    PubMed

    Chen, Shun; Cheng, Anchun; Wang, Mingshu; Zhu, Dekang; Luo, Qihui; Liu, Fei; Chen, Xiaoyue

    2009-08-15

    To determine the distribution and localization of new type gosling viral enteritis virus (NGVEV) in paraformaldehyde-fixed paraffin-embedded tissues of experimentally infected goslings, for the first time, an immunohistochemical (IHC) staining method was reported. Anti-NGVEV polyclonal serum was obtained from the rabbits immunized with purified NGVEV antigen, which was extracted by caprylic-ammonium sulphate method and purified through High-Q columns anion exchange chromatography. Three-day-old NGVEV-free goslings were orally inoculated with NGVEV-CN strain suspension as infection group and phosphate buffered saline solution (PBS) as control group, respectively. The tissues were collected at sequential time points between 0.5 and 720h post inoculation (PI), and prepared for IHC staining and ultra-structural observation. The positive immunoreactivity could be readily detected in the lymphoid and gastrointestinal organs of infected goslings as early as 48 h PI, in the liver, kidney, pancreas and myocardium from 72 h, and in the cerebrum and cerebellum from 96 h, while it was hardly detected in the respiratory organs at any time. The positive staining reaction could be detected in NGVEV-infected goslings until 600 h PI, and no positive staining cell could be observed in the controls. The highest levels of viral antigen were found in the bursa of Fabricius (BF), thymus, proventriculus, gizzard and intestine tract, moreover, the liver, kidney, spleen, myocardium and pancreas were intensively and widely stained. The target cells had a ubiquitous distribution, especially included the epithelial cells, endothelial cells, superficial and crypt mucosal cells, glandular cells, fibrocytes, macrophages and lymphocytes, which served as the principal sites for antigen localization. The ultra-structural observation by transmission electron microscope (TEM) further indicated that NGVEV particles could be widely detected in the lymphoid and digestive organs of infected goslings from

  17. Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting.

    PubMed

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Oo, Htoo Zarni; Resende, Mafalda; Gustavson, Tobias; Mao, Yang; Sugiura, Nobuo; Liew, Janet; Fazli, Ladan; Theander, Thor G; Daugaard, Mads; Salanti, Ali

    2016-07-01

    In clinical oncology, diagnosis and evaluation of optimal treatment strategies are mostly based on histopathological examination combined with immunohistochemical (IHC) expression analysis of cancer-associated antigens in formalin fixed paraffin-embedded (FFPE) tissue biopsies. However, informative IHC analysis depends on both the specificity and affinity of the binding reagent, which are inherently difficult to quantify in situ. Here we describe a label-free method that allows for the direct and real-time assessment of molecular binding kinetics in situ on FFPE tissue specimens using quartz crystal microbalance (QCM) enabled biosensor technology. We analysed the interaction between the rVAR2 protein and its placental-like chondroitin sulfate (pl-CS) receptor in primary human placenta tissue and in breast and prostate tumour specimens in situ. rVAR2 interacted with FFPE human placenta and cancer tissue with an affinity in the nanomolar range, and showed no detectable interaction with pl-CS negative normal tissue. We further validated the method by including analysis with the androgen receptor N-20 antibody (anti-AR). As the KD value produced by this method is independent of the number of epitopes available, this readout offers a quantitative and unbiased readout for in situ binding-avidity and amount of binding epitopes. In summary, this method adds a new and important dimension to classical IHC-based molecular pathology by adding information about the binding characteristics in biologically relevant conditions. This can potentially be used to select optimal biologics for diagnostic and for therapeutic applications as well as guide the development of novel high affinity binding drugs.

  18. Implementation of a microwave-assisted tissue-processing system and an automated embedding system for breast needle core biopsy samples: morphology, immunohistochemistry, and FISH evaluation.

    PubMed

    Pegolo, Enrico; Pandolfi, Maura; Di Loreto, Carla

    2013-07-01

    A platform composed of a microwave (MW)-assisted tissue-processing system and an automated embedding system has been recently introduced in pathology laboratories. Needle core biopsy (NCB) is an established, highly accurate method for diagnosing breast lesions and for providing important pathologic, predictive, and prognostic information such as biomarker expression in case of breast carcinoma. The aim of this study was to evaluate whether breast NCBs processed with the MW-assisted tissue-processing system and automatically embedded show good-quality histology preparations and whether they are suitable for the assessment of estrogen receptor (ER), progesterone receptor (PR), Ki-67, and HER2 in breast carcinoma. A series of 233 consecutive breast NCBs processed by both conventional and MW-assisted tissue-processing systems was included in this study. The histomorphologic and immunohistochemical quality, as well as the results of the evaluation of the biomarkers, were compared-the conventional processing method being the gold standard for comparison. The quality of hematoxylin-eosin and immunohistochemical tissue sections provided by the new system is comparable to that obtained after the conventional processing method. Moreover, in breast carcinomas, a perfect agreement between the paired tissues when evaluating ER and PR status (Cohen κ = 1) and a very good agreement when evaluating Ki-67 (κ = 0.91) and HER2 (κ = 0.93) have been found. In conclusion, applying strict criteria in tissue-handling steps, breast NCB can be processed and automatically embedded with these platforms. The diagnosability and the evaluation of the main prognostic and predictive biomarkers have been proved to be reliable.

  19. Editor's Highlight: Dose-Response Analysis of RNA-Seq Profiles in Archival Formalin-Fixed Paraffin-Embedded Samples.

    PubMed

    Hester, Susan D; Bhat, Virunya; Chorley, Brian N; Carswell, Gleta; Jones, Wendell; Wehmas, Leah C; Wood, Charles E

    2016-12-01

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here, we evaluated transcriptomic dose responses using RNA-sequencing in paired FFPE and frozen (FROZ) samples from 2 archival studies in mice, one <2 years old and the other >20 years old. Experimental treatments included 3 different doses of di(2-ethylhexyl)phthalate or dichloroacetic acid for the recently archived and older studies, respectively. Total RNA was ribo-depleted and sequenced using the Illumina HiSeq platform. In the recently archived study, FFPE samples had 35% lower total counts compared to FROZ samples but high concordance in fold-change values of differentially expressed genes (DEGs) (r(2)  =( )0.99), highly enriched pathways (90% overlap with FROZ), and benchmark dose estimates for preselected target genes (<5% difference vs FROZ). In contrast, older FFPE samples had markedly lower total counts (3% of FROZ) and poor concordance in global DEGs and pathways. However, counts from FFPE and FROZ samples still positively correlated (r(2 ) = 0.84 across all transcripts) and showed comparable dose responses for more highly expressed target genes. These findings highlight potential applications and issues in using RNA-sequencing data from FFPE samples. Recently archived FFPE samples were highly similar to FROZ samples in sequencing quality metrics, DEG profiles, and dose-response parameters, while further methods development is needed for older lower-quality FFPE samples. This work should help advance the use of archival resources in chemical safety and translational science.

  20. A Single Simple Procedure for Dewaxing, Hydration and Heat-Induced Epitope Retrieval (HIER) for Immunohistochemistry in Formalin-Fixed Paraffin-Embedded Tissue

    PubMed Central

    Paulsen, I.M.S.; Dimke, H.

    2015-01-01

    Heat-induced epitope retrieval (HIER) is widely used for immunohistochemistry on formalin-fixed paraffin-embedded tissue and includes temperatures well above the melting point of paraffin. We therefore tested whether traditional xylene-based removal of paraffin is required on sections from paraffin-embedded tissue, when HIER is performed by vigorous boiling in 10 mM Tris/0.5 mM EGTA-buffer (pH=9). Immunohistochemical results using HIER with or without prior dewaxing in xylene were evaluated using 7 primary antibodies targeting proteins located in the cytosol, intracellular vesicles and plasma membrane. No effect of omitting prior dewaxing was observed on staining pattern. Semiquantitative analysis did not show HIER to influence the intensity of labelling consistently. Consequently, quantification of immune labelling intensity using fluorescent secondary antibodies was performed at 5 dilutions of primary antibody with and without prior dewaxing in xylene. No effect of omitting prior dewaxing on signal intensity was detectable indicating similar immunoreactivity in dewaxed and non-dewaxed sections. The intensity of staining the nucleus with the DNA-stain ToPro3 was similarly unaffected by omission of dewaxing in xylene. In conclusion, the HIER procedure described and tested can be used as a single procedure enabling dewaxing, hydration and epitope retrieval for immunohistochemistry in formalin-fixed paraffin-embedded tissue. PMID:26708177

  1. Detection of Tropical Fungi in Formalin-Fixed, Paraffin-Embedded Tissue: Still an Indication for Microscopy in Times of Sequence-Based Diagnosis?

    PubMed Central

    Frickmann, Hagen; Loderstaedt, Ulrike; Racz, Paul; Tenner-Racz, Klara; Eggert, Petra; Haeupler, Alexandra; Bialek, Ralf; Hagen, Ralf Matthias

    2015-01-01

    Introduction. The aim of the study was the evaluation of panfungal PCR protocols with subsequent sequence analysis for the diagnostic identification of invasive mycoses in formalin-fixed, paraffin-embedded tissue samples with rare tropical mycoses. Materials and Methods. Five different previously described panfungal PCR/sequencing protocols targeting 18S and 28S ribosomal RNA gene fragments as well as internal transcribed spacer 1 and 2 fragments were evaluated with a collection of 17 formalin-fixed, paraffin-embedded tissue samples of patients with rare and/or tropical invasive mycoses, comprising chromoblastomycosis, coccidioidomycosis, cryptococcosis, histoplasmosis, mucormycosis, mycetoma/maduromycosis, and rhinosporidiosis, in a proof-of-principle analysis. Results. The primers of the panfungal PCRs readily and predominantly reacted with contaminating environmental fungi that had deposited on the paraffin blocks. Altogether three sequence results of histoplasmosis and mycetoma samples that matched the histological assessment were associated with sample age <10 years and virtually without PCR inhibition. Conclusions. The high risk of amplifying environmental contaminants severely reduces the usefulness of the assessed panfungal PCR/sequencing protocols for the identification of rare and/or tropical mycoses in stored formalin-fixed, paraffin-embedded tissues. Histological assessment remains valuable for such indications if cultural differentiation is impossible from inactivated sample material. PMID:25961048

  2. A single simple procedure for dewaxing, hydration and heat-induced epitope retrieval (HIER) for immunohistochemistry in formalin fixed paraffin-embedded tissue.

    PubMed

    Paulsen, I M S; Dimke, H; Frische, S

    2015-11-03

    Heat-induced epitope retrieval (HIER) is widely used for immunohistochemistry on formalin fixed paraffin-embedded tissue and includes temperatures well above the melting point of paraffin. We therefore tested whether traditional xylene-based removal of paraffin is required on sections from paraffin-embedded tissue, when HIER is performed by vigorous boiling in 10 mM Tris/0.5 mM EGTA-buffer (pH=9). Immunohistochemical results using HIER with or without prior dewaxing in xylene were evaluated using 7 primary antibodies targeting proteins located in the cytosol, intracellular vesicles and plasma membrane. No effect of omitting prior dewaxing was observed on staining pattern. Semiquantitative analysis did not show HIER to influence the intensity of labelling consistently. Consequently, quantification of immune labelling intensity using fluorescent secondary antibodies was performed at 5 dilutions of primary antibody with and without prior dewaxing in xylene. No effect of omitting prior dewaxing on signal intensity was detectable indicating similar immunoreactivity in dewaxed and non-dewaxed sections. The intensity of staining the nucleus with the DNA-stain ToPro3 was similarly unaffected by omission of dewaxing in xylene. In conclusion, the HIER procedure described and tested can be used as a single procedure enabling dewaxing, hydration and epitope retrieval for immunohistochemistry in formalin fixed paraffin-embedded tissue.

  3. In Situ Detection of Bacteria within Paraffin-embedded Tissues Using a Digoxin-labeled DNA Probe Targeting 16S rRNA.

    PubMed

    Choi, Yun Sik; Kim, Yong Cheol; Baek, Keum Jin; Choi, Youngnim

    2015-05-21

    The presence of bacteria within the pocket epithelium and underlying connective tissue in gingival biopsies from patients with periodontitis has been reported using various methods, including electron microscopy, immunohistochemistry or immunofluorescence using bacteria-specific antibodies, and fluorescent in situ hybridization (FISH) using a fluorescence-labeled oligonucleotide probe. Nevertheless, these methods are not widely used due to technical limitation or difficulties. Here a method to localize bacteria within paraffin-embedded tissues using DIG-labeled DNA probes has been introduced. The paraffin-embedded tissues are the most common form of biopsy tissues available from pathology banks. Bacteria can be detected either in a species-specific or universal manner. Bacterial signals are detected as either discrete forms (coccus, rod, fusiform, and hairy form) of bacteria or dispersed forms. The technique allows other histological information to be obtained: the epithelia, connective tissue, inflammatory infiltrates, and blood vessels are well distinguished. This method can be used to study the role of bacteria in various diseases, such as periodontitis, cancers, and inflammatory immune diseases.

  4. [Significance of BIOMED-2 standardized IG/TCR gene rearrangement detection in paraffin-embedded section in lymphoma diagnosis].

    PubMed

    Ai, Xiaofei; Fu, Qianqian; Wang, Jun; Zheng, Yingchun; Han, Cong; Li, Qinghua; Sun, Qi; Ru, Kun

    2014-06-01

    To explore the feasibility of detecting lymphoma with the application of BIOMED-2 standardized immunoglobulin/T cell receptor (IG/TCR) gene rearrangement system in formalin fixed paraffin-embedded (FFPE) tissue samples, and to discuss the relationship between the longest amplification fragment of extracted DNA and positive detection rate of different IGH V-J primers. DNA was extracted from 50 cases of FFPE tissue samples. Multiplex-PCR amplifications were performed and then the IG/TCR gene rearrangements were analyzed using BIOMED-2 standardized clonality analysis system. (1)When the DNA concentration was diluted to 50-100 ng/μl from 100-500 ng/μl, the proportion of the longest amplification fragment (300-400 bp) of DNA was improved from 10.0% to 90.0% in 30 cases of diffuse large B cell lymphoma (DLBCL) wax roll samples (P<0.01). The positive rate of IGH+IGK was increased from 46.7% to 83.3%, the difference was statistically significant (P=0.006). The lengths of the longest amplification fragments of DNA were all longer than 300 bp in the paraffin section sample