Smart Prosthetic Hand Technology - Phase 2
2011-05-01
identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new
A FPGA embedded web server for remote monitoring and control of smart sensors networks.
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2013-12-27
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.
A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2014-01-01
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047
DOT National Transportation Integrated Search
2010-01-01
The Smart Grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a : network of embedded systems deployed for their cyber control. Our objective is to qualitatively and quantitatively analyze ...
Embedded Control System for Smart Walking Assistance Device.
Bosnak, Matevz; Skrjanc, Igor
2017-03-01
This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.
All-printed smart structures: a viable option?
NASA Astrophysics Data System (ADS)
O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory
2014-03-01
The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.
Smart Homes for All: Collaborating Services in a for-All Architecture for Domotics
NASA Astrophysics Data System (ADS)
Catarci, Tiziana; Cincotti, Febo; de Leoni, Massimiliano; Mecella, Massimo; Santucci, Giuseppe
Nowadays, control equipments such as automobiles, home appliances, communication, control and office machines, offer their functionalities in the form of services. Such service pervasivity is particularly evident in immersive realities, i.e., scenarios in which invisible embedded systems need to continuously interact with human users, in order to provide continuous sensed information and to react to service requests from the users themselves. The sm4all project, which will be presented in this paper, is investigating an innovative middleware platform for collaborating smart embedded services in immersive and person-centric environments, through the use of composability and semantic techniques.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
Active control of transmission loss with smart foams.
Kundu, Abhishek; Berry, Alain
2011-02-01
Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.
Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yirong
The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less
Design of Smart Home Systems Prototype Using MyRIO
NASA Astrophysics Data System (ADS)
Ratna Wati, Dwi Ann; Abadianto, Dika
2017-06-01
This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.
Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agamy, Mohammed
The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less
Modeling Smart Structure of Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping
2012-06-01
With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.
IEEE 1451.2 based Smart sensor system using ADuc847
NASA Astrophysics Data System (ADS)
Sreejithlal, A.; Ajith, Jose
IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.
NASA Astrophysics Data System (ADS)
Balta, J. A.; Bosia, F.; Michaud, V.; Dunkel, G.; Botsis, J.; Månson, J.-A.
2005-08-01
This paper describes the production of an adaptive composite by embedding thin pre-strained shape memory alloy actuators into a Kevlar-epoxy host material. In order to combine the activation and sensing capabilities, fibre Bragg grating sensors are also embedded into the specimens, and the strain measured in situ during activation. The effect of manufacturing conditions, and hence of the initial stress state in the composite before activation, on the magnitude of the measured strains is discussed. The results of stress and strain simulations are compared with experimental data, and guidelines are provided for the optimization of the composite. Finally, a pilot experiment is carried out to provide an example of how a strain-stabilizing feedback mechanism can be implemented in the smart structure.
A state-of-the-art assessment of active structures
NASA Technical Reports Server (NTRS)
1992-01-01
A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed.
The SmartHand transradial prosthesis
2011-01-01
Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies. PMID:21600048
Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily
2017-09-06
Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing with technical limitations and resulting frustration. Prescribers and installers must consider ways to mitigate these costs experienced by users.
SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert
"SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less
Smart fabrics: integrating fiber optic sensors and information networks.
El-Sherif, Mahmoud
2004-01-01
"Smart Fabrics" are defined as fabrics capable of monitoring their own "health", and sensing environmental conditions. They consist of special type of sensors, signal processing, and communication network embedded into textile substrate. Available conventional sensors and networking systems are not fully technologically mature for such applications. New classes of miniature sensors, signal processing and networking systems are urgently needed for such application. Also, the methodology for integration into textile structures has to be developed. In this paper, the development of smart fabrics with embedded fiber optic systems is presented for applications in health monitoring and diagnostics. Successful development of such smart fabrics with embedded sensors and networks is mainly dependent on the development of the proper miniature sensors technology, and on the integration of these sensors into textile structures. The developed smart fabrics will be discussed and samples of the results will be presented.
Constitutive modeling and control of 1D smart composite structures
NASA Astrophysics Data System (ADS)
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
SMART Layer and SMART Suitcase for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.
2001-06-01
Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.
Mobile Monitoring and Embedded Control System for Factory Environment
Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai
2013-01-01
This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642
Mobile monitoring and embedded control system for factory environment.
Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai
2013-12-17
This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.
Advanced Smart Structures Flight Experiments for Precision Spacecraft
NASA Astrophysics Data System (ADS)
Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory
2000-07-01
This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.
Foam-PVDF smart skin for active control of sound
NASA Astrophysics Data System (ADS)
Fuller, Chris R.; Guigou, Cathy; Gentry, C. A.
1996-05-01
This work is concerned with the development and testing of a foam-PVDF smart skin designed for active noise control. The smart skin is designed to reduce sound by the action of the passive absorption of the foam (which is effective at higher frequencies) and the active input of an embedded PVDF element driven by an oscillating electrical input (which is effective at lower frequencies). It is primarily developed to be used in an aircraft fuselage in order to reduce interior noise associated with turbulent boundary layer excitation. The device consists of cylindrically curved sections of PVDF piezoelectric film embedded in partially reticulated polyurethane acoustic foam. The active PVDF layer was configured to behave in a linear sense as well as to couple the predominantly in-plane strain due to the piezoelectric effect and the vertical motion that is needed to accelerate fluid particles and hence radiate sound away from the foam surface. For performance testing, the foam-PVDF element was mounted near the surface of an oscillating rigid piston mounted in a baffle in an anechoic chamber. A far-field and a near-field microphone were considered as an error sensor and compared in terms of their efficiency to control the far-field sound radiation. A feedforward LMS controller was used to minimize the error sensor signal under broadband excitation (0 - 1.6 kHz). The potential of the smart foam-PVDF skin for globally reducing sound radiation is demonstrated as more than 20 dB attenuation is obtained over the studied frequency band. The device thus has the potential of simultaneously controlling low and high frequency sound in a very thin compact arrangement.
Adjustment method for embedded metrology engine in an EM773 series microcontroller.
Blazinšek, Iztok; Kotnik, Bojan; Chowdhury, Amor; Kačič, Zdravko
2015-09-01
This paper presents the problems of implementation and adjustment (calibration) of a metrology engine embedded in NXP's EM773 series microcontroller. The metrology engine is used in a smart metering application to collect data about energy utilization and is controlled with the use of metrology engine adjustment (calibration) parameters. The aim of this research is to develop a method which would enable the operators to find and verify the optimum parameters which would ensure the best possible accuracy. Properly adjusted (calibrated) metrology engines can then be used as a base for variety of products used in smart and intelligent environments. This paper focuses on the problems encountered in the development, partial automatisation, implementation and verification of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Understanding the Internet of Things
ERIC Educational Resources Information Center
Pierce, Dennis
2017-01-01
The universe of objects containing microprocessors or embedded sensors capable of communicating and transmitting information across networks is called the Internet of Things, and it has enormous implications for community colleges. Already, many colleges are saving time and money by monitoring and controlling "smart building" features…
FPGA-based multiprocessor system for injection molding control.
Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A
2012-10-18
The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.
A Taxonomy on Accountability and Privacy Issues in Smart Grids
NASA Astrophysics Data System (ADS)
Naik, Ameya; Shahnasser, Hamid
2017-07-01
Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
Štular, Danaja; Jerman, Ivan; Naglič, Iztok; Simončič, Barbara; Tomšič, Brigita
2017-03-01
Silver nanoparticles were embedded into a temperature- and pH-responsive microgel based on poly-(N-isopropylacrylamide) and chitosan (PNCS) before or after its application to cotton fabric to create a smart stimuli-responsive textile with simultaneous moisture management and controlled antimicrobial activities. Two different methods of silver embedment into the PNCS microgel using two different forms of silver nanoparticles were studied, i.e., in-situ synthesis of AgCl nanocrystals into PNCS microgel particles that had previously been applied to cotton fabric, as well as the direct incorporation of colloidal silver into the microgel suspension prior to its deposition on cellulose fibres. SEM and FT-IR analysis were employed to determine the morphological and chemical changes of the modified cotton fibres, while EDS and ICP MS analysis were used to confirm the presence of the silver nanoparticles. The influence of silver embedment on the swelling/deswelling activity of the PNCS microgel was studied using the temperature- and pH-responsiveness, as determined by the moisture content, water vapour transmission rate and water uptake. The antimicrobial activity against the bacteria Staphylococcus aureus and Escherichia coli was assessed. Regardless of the embedment technique, the presence of silver nanoparticles resulted in impaired moisture management activity of the studied microgel. The PNCS microgel proved to be a suitable carrier of antimicrobial agents, assuring the effective controlled release of silver triggered by changes in the temperature and pH of the surroundings, which granted the cotton fabric excellent antimicrobial activity against Gram-negative E. coli (>99%) and Gram-positive S. aureus (>85%). Copyright © 2016 Elsevier Ltd. All rights reserved.
DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results
NASA Technical Reports Server (NTRS)
Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.
2001-01-01
To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.
Fiber optic smart structures and skins V; Proceedings of the Meeting, Boston, MA, Sept. 8, 9, 1992
NASA Technical Reports Server (NTRS)
Claus, Richard O. (Editor); Rogowski, Robert S. (Editor)
1993-01-01
The present conference discusses the materials used in applications of fiber-optics (F-O) to smart structures, extrinsic Fabry-Perot interferometric F-O sensors, sapphire F-O sensors, two-mode F-O sensors with photoinduced refractive index, an F-O accelerometer using two-mode fibers, and embedded F-O acoustic sensors for flaw detection. Also discussed are an optoelectronic smart structure interface, F-O sensors for simultaneous detection of strain and temperature, an optical Mach-Zehnder interferometer for smart skins, a split-cavity cross-coupled extrinsic fiber interferometer, and an embedded Bragg grating F-O sensor for composite flexbeams, an Er-doped ring-laser strain sensor.
Smart wing wind tunnel test results
NASA Astrophysics Data System (ADS)
Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.
1997-05-01
The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.
Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo
2011-01-01
Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755
Hamatani, Kiyohiro; Eguchi, Hidetaka; Mukai, Mayumi; Koyama, Kazuaki; Taga, Masataka; Ito, Reiko; Hayashi, Yuzo; Nakachi, Kei
2010-01-01
Since many thyroid cancer tissue samples from atomic bomb (A-bomb) survivors have been preserved for several decades as unbuffered formalin-fixed, paraffin-embedded specimens, molecular oncological analysis of such archival specimens is indispensable for clarifying the mechanisms of thyroid carcinogenesis in A-bomb survivors. Although RET gene rearrangements are the most important targets, it is a difficult task to examine all of the 13 known types of RET gene rearrangements with the use of the limited quantity of RNA that has been extracted from invaluable paraffin-embedded tissue specimens of A-bomb survivors. In this study, we established an improved 5' rapid amplification of cDNA ends (RACE) method using a small amount of RNA extracted from archival thyroid cancer tissue specimens. Three archival thyroid cancer tissue specimens from three different patients were used as in-house controls to determine the conditions for an improved switching mechanism at 5' end of RNA transcript (SMART) RACE method; one tissue specimen with RET/PTC1 rearrangement and one with RET/PTC3 rearrangement were used as positive samples. One other specimen, used as a negative sample, revealed no detectable expression of the RET gene tyrosine kinase domain. We established a 5' RACE method using an amount of RNA as small as 10 ng extracted from long-term preserved, unbuffered formalin-fixed, paraffin-embedded thyroid cancer tissue by application of SMART technology. This improved SMART RACE method not only identified common RET gene rearrangements, but also isolated a clone containing a 93-bp insert of rare RTE/PTC8 in RNA extracted from formalin-fixed, paraffin-embedded thyroid cancer specimens from one A-bomb survivor who had been exposed to a high radiation dose. In addition, in the papillary thyroid cancer of another high-dose A-bomb survivor, this method detected one novel type of RET gene rearrangement whose partner gene is acyl coenzyme A binding domain 5, located on chromosome 10p. We conclude that our improved SMART RACE method is expected to prove useful in molecular analyses using archival formalin-fixed, paraffin-embedded tissue samples of limited quantity.
Electronics for Piezoelectric Smart Structures
NASA Technical Reports Server (NTRS)
Warkentin, D. J.; Tani, J.
1997-01-01
This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.
Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems.
Munera, Eduardo; Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Noguera, Juan Fco Blanes
2015-07-24
The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client's requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client's requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented.
A Control System and Streaming DAQ Platform with Image-Based Trigger for X-ray Imaging
NASA Astrophysics Data System (ADS)
Stevanovic, Uros; Caselle, Michele; Cecilia, Angelica; Chilingaryan, Suren; Farago, Tomas; Gasilov, Sergey; Herth, Armin; Kopmann, Andreas; Vogelgesang, Matthias; Balzer, Matthias; Baumbach, Tilo; Weber, Marc
2015-06-01
High-speed X-ray imaging applications play a crucial role for non-destructive investigations of the dynamics in material science and biology. On-line data analysis is necessary for quality assurance and data-driven feedback, leading to a more efficient use of a beam time and increased data quality. In this article we present a smart camera platform with embedded Field Programmable Gate Array (FPGA) processing that is able to stream and process data continuously in real-time. The setup consists of a Complementary Metal-Oxide-Semiconductor (CMOS) sensor, an FPGA readout card, and a readout computer. It is seamlessly integrated in a new custom experiment control system called Concert that provides a more efficient way of operating a beamline by integrating device control, experiment process control, and data analysis. The potential of the embedded processing is demonstrated by implementing an image-based trigger. It records the temporal evolution of physical events with increased speed while maintaining the full field of view. The complete data acquisition system, with Concert and the smart camera platform was successfully integrated and used for fast X-ray imaging experiments at KIT's synchrotron radiation facility ANKA.
Utilizing adaptive wing technology in the control of a micro air vehicle
NASA Astrophysics Data System (ADS)
Null, William R.; Wagner, Matthew G.; Shkarayev, Sergey V.; Jouse, Wayne C.; Brock, Keith M.
2002-07-01
Evolution of the design of micro air vehicles (MAVs) towards miniaturization has been severely constrained by the size and mass of the electronic components needed to control the vehicles. Recent research, experimentation, and development in the area of smart materials have led to the possibility of embedding control actuators, fabricated from smart materials, in the wing of the vehicle, reducing both the size and mass of these components. Further advantages can be realized by developing adaptive wing structures. Small size and mass, and low airspeeds, can lead to considerable buffeting during flight, and may result in a loss of flight control. In order to counter these effects, we are developing a thin, variable-cambered airfoil design with actuators embedded within the wing. In addition to reducing the mass and size of the vehicle or, conversely, increasing its available payload, an important benefit from the adaptive wing concept is the possibility of in-flight modification of the flight envelope. Reduced airspeeds, which are crucial during loiter, can be realized by an in-flight increase in wing camber. Conversely, decreases in camber provide for an airframe best suited for rapid ingress/egress and extension of the mission range.
FPGA-Based Multiprocessor System for Injection Molding Control
Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J.; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.
2012-01-01
The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036
Fabrication of a smart air intake structure using shape memory alloy wire embedded composite
NASA Astrophysics Data System (ADS)
Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon
2010-05-01
Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in ∩-shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components
NASA Astrophysics Data System (ADS)
Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian
2018-03-01
Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.
Conductive polymer sensor arrays for smart orthopaedic implants
NASA Astrophysics Data System (ADS)
Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.
2017-04-01
This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.
DARPA/ARFL/NASA Smart Wing second wind tunnel test results
NASA Astrophysics Data System (ADS)
Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.
1999-07-01
To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.
Always-on low-power optical system for skin-based touchless machine control.
Lecca, Michela; Gottardi, Massimo; Farella, Elisabetta; Milosevic, Bojan
2016-06-01
Embedded vision systems are smart energy-efficient devices that capture and process a visual signal in order to extract high-level information about the surrounding observed world. Thanks to these capabilities, embedded vision systems attract more and more interest from research and industry. In this work, we present a novel low-power optical embedded system tailored to detect the human skin under various illuminant conditions. We employ the presented sensor as a smart switch to activate one or more appliances connected to it. The system is composed of an always-on low-power RGB color sensor, a proximity sensor, and an energy-efficient microcontroller (MCU). The architecture of the color sensor allows a hardware preprocessing of the RGB signal, which is converted into the rg space directly on chip reducing the power consumption. The rg signal is delivered to the MCU, where it is classified as skin or non-skin. Each time the signal is classified as skin, the proximity sensor is activated to check the distance of the detected object. If it appears to be in the desired proximity range, the system detects the interaction and switches on/off the connected appliances. The experimental validation of the proposed system on a prototype shows that processing both distance and color remarkably improves the performance of the two separated components. This makes the system a promising tool for energy-efficient, touchless control of machines.
Smart materials and structures
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Heyman, Joseph S.
1993-01-01
Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.
A federated capability-based access control mechanism for internet of things (IoTs)
NASA Astrophysics Data System (ADS)
Xu, Ronghua; Chen, Yu; Blasch, Erik; Chen, Genshe
2018-05-01
The prevalence of Internet of Things (IoTs) allows heterogeneous embedded smart devices to collaboratively provide intelligent services with or without human intervention. While leveraging the large-scale IoT-based applications like Smart Gird and Smart Cities, IoT also incurs more concerns on privacy and security. Among the top security challenges that IoTs face is that access authorization is critical in resource and information protection over IoTs. Traditional access control approaches, like Access Control Lists (ACL), Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC), are not able to provide a scalable, manageable and efficient mechanisms to meet requirement of IoT systems. The extraordinary large number of nodes, heterogeneity as well as dynamicity, necessitate more fine-grained, lightweight mechanisms for IoT devices. In this paper, a federated capability-based access control (FedCAC) framework is proposed to enable an effective access control processes to devices, services and information in large scale IoT systems. The federated capability delegation mechanism, based on a propagation tree, is illustrated for access permission propagation. An identity-based capability token management strategy is presented, which involves registering, propagation and revocation of the access authorization. Through delegating centralized authorization decision-making policy to local domain delegator, the access authorization process is locally conducted on the service provider that integrates situational awareness (SAW) and customized contextual conditions. Implemented and tested on both resources-constrained devices, like smart sensors and Raspberry PI, and non-resource-constrained devices, like laptops and smart phones, our experimental results demonstrate the feasibility of the proposed FedCAC approach to offer a scalable, lightweight and fine-grained access control solution to IoT systems connected to a system network.
Strain characterization of embedded aerospace smart materials using shearography
NASA Astrophysics Data System (ADS)
Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.
2015-04-01
The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.
Occupancy-driven smart register for building energy saving (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Zhangjie; Wang, Ya S.
2017-04-01
The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise shape and air flow control. The performance and the specification of the smart registers will be characterized experimentally. Its capacity of regulating airflow, forming air curtain will be demonstrated.
Increasing the resilience and security of the United States' power infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
2015-08-01
The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less
NASA Astrophysics Data System (ADS)
Fiorini, Paolo
1987-10-01
Sensor based, computer controlled end effectors for mechanical arms are receiving more and more attention in the robotics industry, because commonly available grippers are only adequate for simple pick and place tasks. This paper describes the current status of the research at JPL on a smart hand for a Puma 560 robot arm. The hand is a self contained, autonomous system, capable of executing high level commands from a supervisory computer. The mechanism consists of parallel fingers, powered by a DC motor, and controlled by a microprocessor embedded in the hand housing. Special sensors are integrated in the hand for measuring the grasp force of the fingers, and for measuring forces and torques applied between the arm and the surrounding environment. Fingers can be exercised under position, velocity and force control modes. The single-chip microcomputer in the hand executes the tasks of communication, data acquisition and sensor based motor control, with a sample cycle of 2 ms and a transmission rate of 9600 baud. The smart hand described in this paper represents a new development in the area of end effector design because of its multi-functionality and autonomy. It will also be a versatile test bed for experimenting with advanced control schemes for dexterous manipulation.
NASA Astrophysics Data System (ADS)
Farajpour, A.; Rastgoo, A.; Mohammadi, M.
2017-03-01
Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
NASA Technical Reports Server (NTRS)
Zaman, Afroz; Bauch, Matthew; Raible, Daniel
2011-01-01
Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.
Embedded systems engineering for products and services design.
Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M
2012-01-01
Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.
Deformation Measurements of Smart Aerodynamic Surfaces
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Burner, Alpheus
2005-01-01
Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.
A Real Time Controller For Applications In Smart Structures
NASA Astrophysics Data System (ADS)
Ahrens, Christian P.; Claus, Richard O.
1990-02-01
Research in smart structures, especially the area of vibration suppression, has warranted the investigation of advanced computing environments. Real time PC computing power has limited development of high order control algorithms. This paper presents a simple Real Time Embedded Control System (RTECS) in an application of Intelligent Structure Monitoring by way of modal domain sensing for vibration control. It is compared to a PC AT based system for overall functionality and speed. The system employs a novel Reduced Instruction Set Computer (RISC) microcontroller capable of 15 million instructions per second (MIPS) continuous performance and burst rates of 40 MIPS. Advanced Complimentary Metal Oxide Semiconductor (CMOS) circuits are integrated on a single 100 mm by 160 mm printed circuit board requiring only 1 Watt of power. An operating system written in Forth provides high speed operation and short development cycles. The system allows for implementation of Input/Output (I/O) intensive algorithms and provides capability for advanced system development.
Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera
NASA Astrophysics Data System (ADS)
Dziri, Aziz; Duranton, Marc; Chapuis, Roland
2016-07-01
Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.
A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
1997-01-01
A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.
Erdogan, Hakan; Yilmaz, Mehmet; Babur, Esra; Duman, Memed; Aydin, Halil M; Demirel, Gokhan
2016-05-09
Control of drug release by an external stimulus may provide remote controllability, low toxicity, and reduced side effects. In this context, varying physical external stimuli, including magnetic and electric fields, ultrasound, light, and pharmacological stimuli, have been employed to control the release rate of drug molecules in a diseased region. However, the design and development of alternative on-demand drug-delivery systems that permit control of the dosage of drug released via an external stimulus are still required. Here, we developed near-infrared laser-activatable microspheres based on Fmoc-diphenylalanine (Phe-Phe) dipeptides and plasmonic gold nanorods (AuNRs) via a simple freeze-quenching approach. These plasmonic nanoparticle-embedded microspheres were then employed as a smart drug-delivery platform for native, continuous, and pulsatile doxorubicin (DOX) release. Remarkable sustained, burst, and on-demand DOX release from the fabricated microspheres were achieved by manipulating the laser exposure time. Our results demonstrate that AuNR-embedded dipeptide microspheres have great potential for controlled drug-delivery systems.
Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires
NASA Astrophysics Data System (ADS)
Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo
2002-07-01
In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.
From Secure Memories to Smart Card Security
NASA Astrophysics Data System (ADS)
Handschuh, Helena; Trichina, Elena
Non-volatile memory is essential in most embedded security applications. It will store the key and other sensitive materials for cryptographic and security applications. In this chapter, first an overview is given of current flash memory architectures. Next the standard security features which form the basis of so-called secure memories are described in more detail. Smart cards are a typical embedded application that is very vulnerable to attacks and that at the same time has a high need for secure non-volatile memory. In the next part of this chapter, the secure memories of so-called flash-based high-density smart cards are described. It is followed by a detailed analysis of what the new security challenges for such objects are.
NASA Astrophysics Data System (ADS)
Song, Gangbing; Gu, Haichang; Mo, Yi-Lung
2008-06-01
This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.
Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing
2017-08-22
The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.
Scheduling of network access for feedback-based embedded systems
NASA Astrophysics Data System (ADS)
Liberatore, Vincenzo
2002-07-01
nd communication capabilities. Examples range from smart dust embedded in building materials to networks of appliances in the home. Embedded devices will be deployed in unprecedented numbers, will enable pervasive distributed computing, and will radically change the way people interact with the surrounding environment [EGH00a]. The paper targets embedded systems and their real-time (RT) communication requirements. RT requirements arise from the
Noncontact power/interrogation system for smart structures
NASA Astrophysics Data System (ADS)
Spillman, William B., Jr.; Durkee, S.
1994-05-01
The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.
Occupant-responsive optimal control of smart facade systems
NASA Astrophysics Data System (ADS)
Park, Cheol-Soo
Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.
NASA Astrophysics Data System (ADS)
Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede
2016-04-01
This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.
uFarm: a smart farm management system based on RFID
NASA Astrophysics Data System (ADS)
Kim, Hyoungsuk; Lee, Moonsup; Jung, Jonghyuk; Lee, Hyunwook; Kim, Taehyoun
2007-12-01
Recently, the livestock industry in Korea has been threatened by many challenges such as low productivity due to labor intensiveness, global competition compelled by the Free Trade Agreement (FTA), and emerging animal disease issues such as BSE or foot-and-mouth. In this paper, we propose a smart farm management system, called uFarm, which would come up with such challenges by automating farm management. First, we automate labor-intensive jobs using equipments based on sensors and actuators. The automation subsystem can be controlled by remote user through wireless network. Second, we provide real-time traceability of information on farm animals using the radio-frequency identification (RFID) method and embedded data server with network connectivity.
Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1995-01-01
Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.
Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control
NASA Astrophysics Data System (ADS)
Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej
2017-08-01
In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.
Microstructure of the smart composite structures with embedded fiber optic sensing nerves
NASA Astrophysics Data System (ADS)
Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin
1997-11-01
The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.
Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout
Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar
2018-05-18
PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
SNE Industrial Fieldbus Interface
NASA Technical Reports Server (NTRS)
Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos
2011-01-01
Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.
Smart Materials, Structures, and Mathematical Issues for Active Damage Control
1997-10-01
composites at both low and high velocities. The effect of low volume fractions (3% and 6%) of embedded Nitinol fibers on the impact-absorbing ability...ICI Wilton Materials Research Center General Dynamics Lockheed-Martin Hercules Aerospace Company U.S. Nitinol Owens-Corning DSB Associates...Reduction in a Plate," submitted to AIAA Journal. Paine, J. S. N., Rogers, C. A. 1993. "Characterization of Interfacial Adhesion of Nitinol Fibers
2007-07-01
air turbulence and structural vibration , etc. Flexible load- bearing skins and reconfigurable support structures for smart and adaptive morphing...phenomena for flapping-wing micro air vehicles, the prevention and control of nonlinear and aeroelastic phenomena, energy harvesting from environmental...Embedded Ultrasonic NDE is a research project aimed at studying the Lamb wave interaction between piezoelectric wafer active sensors (PWAS) and the host
DOT National Transportation Integrated Search
2013-12-01
This study aims to integrate commercial measurement and communication components into a scour : monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its : performance in laboratory and field conditions for t...
DOT National Transportation Integrated Search
2016-08-01
Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...
Study of interface influence on bending performance of CFRP with embedded optical fibers
NASA Astrophysics Data System (ADS)
Liu, Rong-mei; Liang, Da-kai
2008-11-01
Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.
On the impact of `smart tyres' on existing ABS/EBD control systems
NASA Astrophysics Data System (ADS)
Cheli, Federico; Leo, Elisbetta; Melzi, Stefano; Sabbioni, Edoardo
2010-12-01
The paper focuses on the possibility of enhancing the performances of the ABS (Antilock Braking System)/EBD (electronic braking distribution) control system by using the additional information provided by 'smart tyres' (i.e. tyres with embedded sensors and digital-computing capability). In particular, on the basis of previous works [Braghin et al., Future car active controls through the measurement of contact forces and patch features, Veh. Syst. Dyn. 44 (2006), pp. 3-13], the authors assumed that these components should be able to provide estimates for the normal loads acting on the four wheels and for the tyre-road friction coefficient. The benefits produced by the introduction of these additional channels into the existing ABS/EBD control logic were evaluated through simulations carried out with a validated 14 degrees of freedom (dofs) vehicle + ABS/EBD control logic numerical model. The performance of the ABS control system was evaluated through a series of braking manoeuvres on straight track focusing the attention on μ -jump conditions, while the performance of the EBD control system was assessed by means of braking manoeuvres carried out considering several weight distributions.
Damage suppression system using embedded SMA (shape memory alloy) foils in CFRP laminate structures
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Shimanuki, Masakazu; Kiyoshima, Satoshi; Takaki, Junji; Takeda, Nobuo
2003-08-01
This paper presents an overview of the demonstrator program with respect to the damage growth suppression effects using embedded SMA foils in CFRP laminates. The damage growth suppression effects were demonstrated for the technical verification in order to apply to aircraft structure. In our previous studies, the authors already confirmed the damage growth suppression effects of CFRP laminates with embedded pre-strained SMA foils through both coupon and structural element tests. It was founded that these effects were obtained by the suppression of the strain energy release rate based on the suppression of the crack opening displacement due to the recovery stress of SMA foils through the detail observation of the damage behavior. In this study, these results were verified using the demonstrator test article, which was 1/3-scaled model of commercial airliner fuselage structure. For the demonstration of damage growth suppression effects, the evaluation area was located in the lower panel, which was dominated in tension load during demonstration. The evaluation area is the integrated stiffened panel including both "smart area" (CFRP laminate with embedded pre-strained SMA foils) and "conventional area" (standard CFRP laminate) for the direct comparison. The demonstration was conducted at 80 degree Celsius in smart area and room temperature (RT) in conventional area during quasi-static load-unload test method. As the test results, the demonstrator test article presented that the damage onset strain in the smart area was improved by 30% for compared with the conventional area. Therefore, the successful technical verification of the damage onset/growth suppression effect using the demonstrator presented the feasibility of the application of smart material and structural system to aircraft structures.
Composite Polymeric Membranes with Directionally Embedded Fibers for Controlled Dual Actuation.
Liu, Li; Bakhshi, Hadi; Jiang, Shaohua; Schmalz, Holger; Agarwal, Seema
2018-04-20
In this paper, preparation method and actuation properties of an innovative composite membrane composed of thermo- and pH-responsive poly(N-isopropylacrylamide-co-acrylic acid) fibers (average diameter ≈ 905 nm) embedded within a passive thermoplastic polyurethane (TPU) matrix at different angles with degree of alignment as high as 98% are presented. The composite membrane has a gradient of TPU along the thickness. It has the capability of temperature- and pH-dependent direction-, and size-controlled actuation in few minutes. The stresses generated at the responsive fiber and nonresponsive matrix provide actuation, whereas the angle at which fibers are embedded in the matrix controls the actuation direction and size. The temperature has no effect on actuation and actuated forms at pH 7 and above, whereas the size of the actuated forms can be controlled by the temperature at lower pH. The membranes are strong enough to reversibly lift and release ≈426 times weight of their own mass (2.47 g metal ring is lifted by a 5.8 mg membrane). Soft actuators are of interest as smart scaffolds, robotics, catalysis, drug release, energy storage, electrodes, and metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes
NASA Technical Reports Server (NTRS)
Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.
1996-01-01
Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.
Prevention of Information Leakage by Photo-Coupling in Smart Card
NASA Astrophysics Data System (ADS)
Shen, Sung-Shiou; Chiu, Jung-Hui
Advances in smart card technology encourages smart card use in more sensitive applications, such as storing important information and securing application. Smart cards are however vulnerable to side channel attacks. Power consumption and electromagnetic radiation of the smart card can leak information about the secret data protected by the smart card. Our paper describes two possible hardware countermeasures that protect against side channel information leakage. We show that power analysis can be prevented by adopting photo-coupling techniques. This method involves the use of LED with photovoltaic cells and photo-couplers on the power, reset, I/O and clock lines of the smart card. This method reduces the risk of internal data bus leakage on the external data lines. Moreover, we also discuss the effectiveness of reducing electromagnetic radiation by using embedded metal plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL ismore » tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.« less
NASA Astrophysics Data System (ADS)
Kitsios, Aristidis; Bousakas, Konstantinos; Salame, Takla; Bogno, Bachirou; Papageorgas, Panagiotis; Vokas, Georgios A.; Mauffay, Fabrice; Petit, Pierre; Aillerie, Michel; Charles, Jean-Pierre
2017-02-01
In this paper, the energy efficiency of a contemporary Smart Grid that is based on Distributed Renewable Energy Sources (DRES) is examined under the scope of the communication systems utilized between the energy loads and the energy sources. What is evident is that the Internet of Things (IoT) technologies that are based on the existing Web infrastructure can be heavily introduced in this direction especially when combined with long range low bandwidth networking technologies, power line communication technologies and optimization methodologies for renewable energy generation. The renewable energy generation optimization will be based on devices embedded in the PV panels and the wind power generators, which will rely on bidirectional communications with local gateways and remote control stations for achieving energy efficiency. Smart meters and DRES combined with IoT communications will be the enabling technologies for the ultimate fusion of Internet technology and renewable energy generation realizing the Energy Internet.
Embedded data collector (EDC) evaluation, phase II - comparison with instrumented static load tests.
DOT National Transportation Integrated Search
2013-12-01
A total of 139 piles and 213,000 hammer blows were compared between the Embedded Data Collector : (EDC), the Pile Driving Analyzer (PDA), and the CAse Pile Wave Analysis Program (CAPWAP) along with : SmartPile Review versions (3.6, 3.72, 3.73, 3.76 a...
NASA Astrophysics Data System (ADS)
Radchenko, Andro
River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour progress and topology. Smart Rocks Network wireless communication is based on the magnetoinductive (MI) link, at low (125 KHz) frequency, allowing for signal to penetrate through the water, rocks, and the bridge structure. The dissertation describes the Smart Rocks Network implementation, its electronic design and the electromagnetic/computational intelligence techniques used for the network mapping.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1996-01-01
The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.
Optical fibre sensing in metals by embedment in 3D printed metallic structures
NASA Astrophysics Data System (ADS)
Maier, R. R. J.; Havermann, D.; Schneller, O.; Mathew, J.; Polyzos, D.; MacPherson, W. N.; Hand, D. P.
2014-05-01
Additive manufacturing or 3D printing of structural components in metals has potential to revolutionise the manufacturing industry. Embedded sensing in such structures opens a route towards SMART metals, providing added functionality, intelligence and enhanced performance in many components. Such embedded sensors would be capable of operating at extremely high temperatures by utilizing regenerated fibre Bragg gratings and in-fibre Fabry-Perot cavities.
NASA Technical Reports Server (NTRS)
Trottier, C. Michael
1996-01-01
Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).
A technology roadmap of smart biosensors from conventional glucose monitoring systems.
Shende, Pravin; Sahu, Pratiksha; Gaud, Ram
2017-06-01
The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.
Fabrication and testing of SMA composite beam with shape control
NASA Astrophysics Data System (ADS)
Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj
2017-07-01
Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.
Fabryq: Using Phones as Smart Proxies to Control Wearable Devices from the Web
2014-06-12
energy efficient, embedded low power device with a short range radio; 2) a user’s mobile phone, which shows a user interface but also acts as a router...ically relays information to a companion application running on the user’s mobile phone (or PC), which in turn communi- cates with servers that the...skills in several diverse fields. Thus, experimentation in deploy- able, mobile wearable devices is largely reserved to experts, and implementation cycles
Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.
2017-01-01
Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079
Homeostasis control of building environment using sensor agent robot
NASA Astrophysics Data System (ADS)
Nagahama, Eri; Mita, Akira
2012-04-01
A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.
Embedding of Superelastic SMA Wires into Composite Structures: Evaluation of Impact Properties
NASA Astrophysics Data System (ADS)
Pappadà, Silvio; Rametta, Rocco; Toia, Luca; Coda, Alberto; Fumagalli, Luca; Maffezzoli, Alfonso
2009-08-01
Shape memory alloy (SMA) represents the most versatile way to realize smart materials with sensing, controlling, and actuating functions. Due to their unique mechanical and thermodynamic properties and to the possibility to obtain SMA wires with very small diameters, they are used as smart components embedded into the conventional resins or composites, obtaining active abilities, tunable properties, self-healing properties, and damping capacity. Moreover, superelastic SMAs are used to increase the impact resistance properties of composite materials. In this study, the influence of the integration of thin superelastic wires to suppress propagating damage of composite structures has been investigated. Superelastic SMAs have very high strain to failure and recoverable elastic strain, due to a stress-induced martensitic phase transition creating a plateau region in the stress-strain curve. NiTi superelastic wires ( A f = -15 °C fully annealed) of 0.10 mm in diameter have been produced and characterized by SAES Getters. The straight annealed wire shows the typical flag stress-strain behavior. The measured loading plateau is about 450 MPa at ambient temperature with a recoverable elastic strain of more than 6%. For these reasons superelastic SMA fibers can absorb much more strain energy than other fibers before their failure, partly with a constant stress level. In this paper, the improvement of composite laminates impact properties by embedding SMA wires is evaluated and indications for design and manufacturing of SMA composites with high-impact properties are also given.
NASA Astrophysics Data System (ADS)
Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kumar
2009-03-01
Smart materials when interact with engineering structures, should have the capability to sense, measure, process, and detect any change in the selected variables (stress, damage) at critical locations. These smart materials can be classified into active and passive depending on the type of the structure, variables to be monitored, and interaction mechanism due to surface bonding or embedment. Some of the prominent smart materials are piezoelectric materials, micro fiber composite, polymers, shape memory alloys, electrostrictive and magnetostrictive materials, electrorheological and magnetorheological fluids and fiber optics. In addition, host structures do have the properties to support or repel the usage of smart materials inside or on it. This paper presents some of the most widely used smart materials and their interaction mechanism for structural health monitoring of engineering structures.
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Zhang, Zhichun; Wang, Chuan; Ou, Jinping
2006-03-01
FRP ( Fiber Reinforced Polymer ) has become the popular material to alternate steel in civil engineering under harsh corrosion environment. But due to its low shear strength ability, the anchor for FRP is most important for its practical application. However, the strain state of the surface between FRP and anchor is not fully understood due to that there is no proper sensor to monitor the inner strain in the anchor by traditional method. In this paper, a new smart FBG-based FRP anchor is brought forward, and the inner strain distribution of FRP anchor has been monitored using FRP-OFBG sensors, a smart FBG-embedded FRP rebar, which is pre-embedded in the FRP rod and cast in the anchor. Based on the strain distribution information the bonding shear stress on the surface of FRP rod along the anchor can also be obtained. This method can supply important information for FRP anchor design and can also monitor the anchorage system, which is useful for the application of FRP in civil engineering. The experimental results also show that the smart FBG-based FRP anchor can give direct information of the load and damage of the FRP anchor.
Smart fiber-reinforced polymer anchorage system with optical fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Huang, Minghua; Zhou, Zhi; He, Jianping; Chen, Genda; Ou, Jinping
2010-03-01
Civil Engineers have used fiber reinforced polymer (FRP) with high axial strength as an effective and economical alternative to steel in harsh corrosion environments. However, the practical applications of FRP are limited by the tendency of FRP materials to fail suddenly under lateral pressure and surface injury. For example, shear stresses result from the bonding effect between the FRP material and the structure of the anchorage system due to the lower shear strength of FRP. This paper proposes a novel smart FRP anchorage system with embedded optical fiber Bragg grating (FBG) sensors to monitor the axial strain state and accordingly the interfacial shear stress, as well as the interfacial damage characteristics of FRP anchorage. One FBG sensor was embedded in an FRP rod outside the anchorage region to evaluate the properties of the material, and seven FBG sensors were distributed along the rod in the anchor to monitor the axial strain variations and study the interfacial mechanical behaviors of the smart FRP anchorage under a static pulling load. The experimental results agreed well with theoretical predictions. The smart FRP anchorage system with optical FBG sensors proves effective and practical for monitoring the long-term mechanical behavior of FRP anchorage systems.
Active chainmail fabrics for soft robotic applications
NASA Astrophysics Data System (ADS)
Ransley, Mark; Smitham, Peter; Miodownik, Mark
2017-08-01
This paper introduces a novel type of smart textile with electronically responsive flexibility. The chainmail inspired fabric is modelled parametrically and simulated via a rigid body physics framework with an embedded model of temperature controlled actuation. Our model assumes that individual fabric linkages are rigid and deform only through their own actuation, thereby decoupling flexibility from stiffness. A physical prototype of the active fabric is constructed and it is shown that flexibility can be significantly controlled through actuator strains of ≤10%. Applications of these materials to soft-robotics such as dynamically reconfigurable orthoses and splints are discussed.
A robust embedded vision system feasible white balance algorithm
NASA Astrophysics Data System (ADS)
Wang, Yuan; Yu, Feihong
2018-01-01
White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.
1989-01-01
prestrained Nitinol (an alloy of nickel and titanium) wires are embedded in an off-axis position in the graphite fiber reinforced epoxy composite beam... Nitinol ) alloy. Shape memory alloys have been applied to a number of items including connectors and heat engines, but have usually found application in... nitinol wire; the design includes prevention from ancillary jams. Miwa (1985) discusses the use of SMA actuator to sequential robotic control of multiple
Spacecraft attitude control using a smart control system
NASA Technical Reports Server (NTRS)
Buckley, Brian; Wheatcraft, Louis
1992-01-01
Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment. The technical approach, the system architecture, the development environments, knowledge base development, and results of this effort are detailed.
Control systems using modal domain optical fiber sensors for smart structure applications
NASA Technical Reports Server (NTRS)
Lindner, Douglas K.; Reichard, Karl M.
1991-01-01
Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.
Terry Wipf; Brent M. Phares; Micheal Ritter
2012-01-01
Recently efforts have been put toward the development of civil structures that have embedded sensors and on-board data processing capabilities, typically termed âsmart structures.â The fusion of these smart technologies into infrastructures is intended to give bridge owners/managers better and more timely information on how structures are behaving and when they need...
Ethernet-based smart networked elements (sensors and actuators)
NASA Astrophysics Data System (ADS)
Mata, Carlos T.; Perotti, José M.; Oostdyk, Rebecca L.; Lucena, Angel
2006-05-01
This paper outlines the present design approach for the Ethernet-Based Smart Networked Elements (SNE) being developed by NASA's Instrumentation Branch and the Advanced Electronics and Technology Development Laboratory of ASRC Aerospace Corporation at Kennedy Space Center (KSC). The SNEs are being developed as part of the Integrated Intelligent Health Management System (IIHMS), jointly developed by Stennis Space Center (SSC), KSC, and Marshall Space Flight Center (MSFC). SNEs are sensors/actuators with embedded intelligence, capable of networking among themselves and with higher-level systems (external processors and controllers) to provide not only instrumentation data but also associated data validity qualifiers. NASA KSC has successfully developed and preliminarily demonstrated this new generation of SNEs. SNEs that collect pressure, strain, and temperature measurements (including cryogenic temperature ranges) have been developed and tested in the laboratory and are ready for demonstration in the field.
Materials science. Materials that couple sensing, actuation, computation, and communication.
McEvoy, M A; Correll, N
2015-03-20
Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.
Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.
Lin, Xiaoyou; Seet, Boon-Chong
2017-04-01
This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.
Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon
2016-01-01
Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network. PMID:27314351
Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon
2016-06-14
Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.
Time-varying SMART design and data analysis methods for evaluating adaptive intervention effects.
Dai, Tianjiao; Shete, Sanjay
2016-08-30
In a standard two-stage SMART design, the intermediate response to the first-stage intervention is measured at a fixed time point for all participants. Subsequently, responders and non-responders are re-randomized and the final outcome of interest is measured at the end of the study. To reduce the side effects and costs associated with first-stage interventions in a SMART design, we proposed a novel time-varying SMART design in which individuals are re-randomized to the second-stage interventions as soon as a pre-fixed intermediate response is observed. With this strategy, the duration of the first-stage intervention will vary. We developed a time-varying mixed effects model and a joint model that allows for modeling the outcomes of interest (intermediate and final) and the random durations of the first-stage interventions simultaneously. The joint model borrows strength from the survival sub-model in which the duration of the first-stage intervention (i.e., time to response to the first-stage intervention) is modeled. We performed a simulation study to evaluate the statistical properties of these models. Our simulation results showed that the two modeling approaches were both able to provide good estimations of the means of the final outcomes of all the embedded interventions in a SMART. However, the joint modeling approach was more accurate for estimating the coefficients of first-stage interventions and time of the intervention. We conclude that the joint modeling approach provides more accurate parameter estimates and a higher estimated coverage probability than the single time-varying mixed effects model, and we recommend the joint model for analyzing data generated from time-varying SMART designs. In addition, we showed that the proposed time-varying SMART design is cost-efficient and equally effective in selecting the optimal embedded adaptive intervention as the standard SMART design.
Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe
2013-01-24
The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.
Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe
2013-01-01
The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed. PMID:23348037
A new smart traffic monitoring method using embedded cement-based piezoelectric sensors
NASA Astrophysics Data System (ADS)
Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin
2015-02-01
Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h-1 to 70 km h-1, the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement.
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
Fiber-Optic Sensor And Smart Structures Research At Florida Institute Of Technology
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Alavie, A. Tino; Ham, Fredric M.; Franke, Jorge E.; Thursby, Michael H.
1990-02-01
This paper discusses the fundamental issues being investigated by Florida Institute of Technology (F.I.T.) to implement the technology of smart structural systems for DoD, NASA, and commercial applications. Embedded sensors and actuators controlled by processors can provide a modification of the mechanical characteristics of composite structures to produce smart structures1-3. Recent advances in material science have spurred the development and use of composite materials in a wide range of applications from rotocraft blades and advanced tactical fighter aircraft to undersea and aerospace structures. Along with the advantages of an increased strength-to-weight ratio, the use of these materials has raised a number of questions related to understanding their failure mechanisms. Also, being able to predict structural failures far enough in advance to prevent them and to provide real-time structural health and damage monitoring has become a realistic possibility. Unfortunately, conventional sensors, actuators, and digital processors, although highly developed and well proven for other systems, may not be best suited for most smart structure applications. Our research has concentrated on few-mode and polarimetric single-fiber strain sensors4-7 and optically activated shape memory alloy (SMA) actuators controlled by artificial neural processors. We have constructed and characterized both few-mode and polarimetric sensors for a variety of fiber types, including standard single-mode, high-birefringence polarization preserving, and low-birefringence polarization insensitive fibers. We have investigated signal processing techniques for these sensors and have demonstrated active phase tracking for the high- and low-birefringence polarimetric sensors through the incorporation into the system of an electrooptic modulator designed and fabricated at F.I.T.. We have also started the design and testing of neural network architectures for processing the sensor signal outputs to calculate strain magnitude and actuator control signals for simple structures.
C2 at the Edge: Operating in a Disconnected Low-Bandwidth Environment
2015-06-01
using their embedded Bluetooth communications capability. This thesis tests the throughput of the system at the maximum connection distances between...users with real-time chat capability of all locally available devices. 14. SUBJECT TERMS Infrastructure-less, mobile, network, Bluetooth , scatternet...thesis aims to create a communications network of smart devices, using their embedded Bluetooth communica- tions capability. This thesis tests the
Assuring Life in Composite Systems
NASA Technical Reports Server (NTRS)
Chamis, Christos c.
2008-01-01
A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.
Stream processing health card application.
Polat, Seda; Gündem, Taflan Imre
2012-10-01
In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.
Smart Sensors for Launch Vehicles
NASA Astrophysics Data System (ADS)
Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.
2017-12-01
Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.
``Smart'' baroreception along the aortic arch, with reference to essential hypertension
NASA Astrophysics Data System (ADS)
Kember, G. C.; Zamir, M.; Armour, J. A.
2004-11-01
Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.
Energy efficiency of task allocation for embedded JPEG systems.
Fan, Yang-Hsin; Wu, Jan-Ou; Wang, San-Fu
2014-01-01
Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin.
Energy Efficiency of Task Allocation for Embedded JPEG Systems
2014-01-01
Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin. PMID:24982983
A review of smart homes- present state and future challenges.
Chan, Marie; Estève, Daniel; Escriba, Christophe; Campo, Eric
2008-07-01
In the era of information technology, the elderly and disabled can be monitored with numerous intelligent devices. Sensors can be implanted into their home for continuous mobility assistance and non-obtrusive disease prevention. Modern sensor-embedded houses, or smart houses, cannot only assist people with reduced physical functions but help resolve the social isolation they face. They are capable of providing assistance without limiting or disturbing the resident's daily routine, giving him or her greater comfort, pleasure, and well-being. This article presents an international selection of leading smart home projects, as well as the associated technologies of wearable/implantable monitoring systems and assistive robotics. The latter are often designed as components of the larger smart home environment. The paper will conclude by discussing future challenges of the domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabolsky, Edward M.; Bhattacharyya, Debangsu; Graham, David
The objective of the work was to develop refractory “smart bricks”, which would contain embedded temperature, strain/stress, and spallation sensors throughout the volume of high-chromia (-Cr2O3) refractory brick. The proposed work included work to interconnect the sensors to the reactor exterior, where the sensor signals may be processed by low-power electronics and transmitted wirelessly to a central processing hub. The data processing and wireless transmitter hardware was specifically designed to be isolated (with low power consumption) and to be adaptable to future implementation of energy-harvesting strategies for extended life. Finally, the collected data was incorporated into a model to estimatemore » refractory degradation, a technique that could help monitor the health of the refractory in real-time. The long-term goal of this program was to demonstrate high-temperature, wireless sensor arrays for in situ three-dimensional (3-D) refractory monitoring or mapping for slagging gasification systems. The research was in collaboration with HarbisonWalker International (HWI) Technology Center in West Mifflin, PA. HWI is a leading developer and manufacturer of ceramic refractory products for high-temperature applications. The work completed focused on the following areas: 1) Investigation of the chemical stability, microstructural evolution, grain growth kinetics, degree of homogeneity (quantitative image analysis), and electrical properties of refractory oxide-silicide composites at temperatures between 750-1450ºC; 2) Fabrication of silicide-alumina composite and oxide thermocouples and thermistor preforms and the development of techniques to embed them into high-chromia refractory bricks to form “smart bricks”; 3) Utilization of commercial off-the-shelf discrete components to prototype circuits for interfacing between smart brick sensors and the wireless sensor network. The prototypes were then used to design an integrated circuit for thermistor, thermocouple, and capacitive-based smart brick sensor interfacing; 4) Interfacing of the smart bricks with embedded sensors with wireless motes thus yielding a complete signal chain. This end-to-end data collection system was tested on a furnace heated to 1350 °C; 5) Development of a slag penetration model and a nonlinear unknown input filter for the data from the embedded sensors for estimating temperature and extent of slag penetration.« less
Smart concrete slabs with embedded tubular PZT transducers for damage detection
NASA Astrophysics Data System (ADS)
Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing
2018-02-01
The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.
A telemetry system embedded in clothes for indoor localization and elderly health monitoring.
Charlon, Yoann; Fourty, Nicolas; Campo, Eric
2013-09-04
This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a "smart" shoe and in a hat in order to form a "smart" hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system.
Application of smart optical fiber sensors for structural load monitoring
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-06-01
This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.
Lamberti, Alfredo; Luyckx, Geert; Van Paepegem, Wim; Rezayat, Ali; Vanlanduit, Steve
2017-01-01
Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites’ operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95.1% of the cases. PMID:28368319
Lamberti, Alfredo; Luyckx, Geert; Van Paepegem, Wim; Rezayat, Ali; Vanlanduit, Steve
2017-04-01
Nowadays, it is possible to manufacture smart composite materials with embedded fiber optic sensors. These sensors can be exploited during the composites' operating life to identify occurring damages such as delaminations. For composite materials adopted in the aviation and wind energy sector, delaminations are most often caused by impacts with external objects. The detection, localization and quantification of such impacts are therefore crucial for the prevention of catastrophic events. In this paper, we demonstrate the feasibility to perform impact identification in smart composite structures with embedded fiber optic sensors. For our analyses, we manufactured a carbon fiber reinforced plate in which we embedded a distributed network of fiber Bragg grating (FBG) sensors. We impacted the plate with a modal hammer and we identified the impacts by processing the FBG data with an improved fast phase correlation (FPC) algorithm in combination with a variable selective least squares (VS-LS) inverse solver approach. A total of 164 impacts distributed on 41 possible impact locations were analyzed. We compared our methodology with the traditional P-Inv based approach. In terms of impact localization, our methodology performed better in 70.7% of the cases. An improvement on the impact time domain reconstruction was achieved in 95 . 1 % of the cases.
NASA Astrophysics Data System (ADS)
Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra
The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Smart bricks for strain sensing and crack detection in masonry structures
NASA Astrophysics Data System (ADS)
Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo
2018-01-01
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
NASA Astrophysics Data System (ADS)
Zonta, Daniele; Pozzi, Matteo; Wu, Huayong; Inaudi, Daniele
2008-03-01
This paper introduces a concept of smart structural elements for the real-time condition monitoring of bridges. These are prefabricated reinforced concrete elements embedding a permanent sensing system and capable of self-diagnosis when in operation. The real-time assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the method assigns a probability to each possible damage scenario, and estimates the statistical distribution of the damage parameters involved (such as location and extent). To verify the effectiveness of the technology, we produced and tested in the laboratory a reduced-scale smart beam prototype. The specimen is 3.8 m long and has cross-section 0.3 by 0.5m, and has been prestressed using a Dywidag bar, in such a way as to control the preload level. The sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a composite bar, along with a number of traditional metal-foil strain gauges. The method allowed clear recognition of increasing fault states, simulated on the beam by gradually reducing the prestress level.
Design, fabrication and control of origami robots
NASA Astrophysics Data System (ADS)
Rus, Daniela; Tolley, Michael T.
2018-06-01
Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.
Control of complex components with Smart Flexible Phased Arrays.
Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph
2006-12-22
The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.
A rhythm-based authentication scheme for smart media devices.
Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.
A Rhythm-Based Authentication Scheme for Smart Media Devices
Lee, Jae Dong; Park, Jong Hyuk
2014-01-01
In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743
Smart Material Demonstrators Based on Shape Memory Alloys and Electroceramics
NASA Technical Reports Server (NTRS)
Cooke, Arther V.
1996-01-01
This paper describes the development and characterization of two technology demonstrators that were produced under the auspices of an ARPA sponsored smart materials synthesis and processing effort. The ARPA Smart Materials and Synthesis (SMS) Program was a 2 year, $10M partnership led by Martin Marietta Laboratories - Baltimore and included Lockheed Missiles & Space Co., NRL, AVX Corp., Martin Marietta Astronautics Groups, BDM Federal, Inc., Virginia Tech, Clemson, University of Maryland, Denver University, and The Johns Hopkins University. In order to demonstrate the usefulness of magnetron sputtered shape memory foil and the manufacturability of reliable, reproducible electrostrictive actuators, the team designed a broadband active vibration cancellation device for suppressing the vibration load on delicate instruments and precision pointing devices mounted on orbiting satellites and spacecraft. The results of extensive device characterization and bench testing are discussed. Initial simulation results show excellent control authority and amplitude attenuation over the range of anticipated disturbance frequencies. The SMS Team has also developed an active 1-3 composite comprising micro-electrostrictive actuators embedded in a polymeric matrix suitable for underwater applications such as sonar quieting and listening arrays, and for medical imaging. Follow-on programs employing these technologies are also described.
Application of Smart Infrastructure Systems approach to precision medicine.
Govindaraju, Diddahally R; Annaswamy, Anuradha M
2015-12-01
All biological variation is hierarchically organized dynamic network system of genomic components, organelles, cells, tissues, organs, individuals, families, populations and metapopulations. Individuals are axial in this hierarchy, as they represent antecedent, attendant and anticipated aspects of health, disease, evolution and medical care. Humans show individual specific genetic and clinical features such as complexity, cooperation, resilience, robustness, vulnerability, self-organization, latent and emergent behavior during their development, growth and senescence. Accurate collection, measurement, organization and analyses of individual specific data, embedded at all stratified levels of biological, demographic and cultural diversity - the big data - is necessary to make informed decisions on health, disease and longevity; which is a central theme of precision medicine initiative (PMI). This initiative also calls for the development of novel analytical approaches to handle complex multidimensional data. Here we suggest the application of Smart Infrastructure Systems (SIS) approach to accomplish some of the goals set forth by the PMI on the premise that biological systems and the SIS share many common features. The latter has been successfully employed in managing complex networks of non-linear adaptive controls, commonly encountered in smart engineering systems. We highlight their concordance and discuss the utility of the SIS approach in precision medicine programs.
Design and implementation of smart sensor nodes for wireless disaster monitoring systems
NASA Astrophysics Data System (ADS)
Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung
2004-07-01
A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.
Ertefaie, Ashkan; Lucy, Xi; Lynch, Kevin G.; McKay, James R.; Oslin, David; Almirall, Daniel
2016-01-01
Aims To demonstrate how Q-learning, a novel data analysis method, can be used with data from a sequential, multiple assignment, randomized trial (SMART) to construct empirically an adaptive treatment strategy (ATS) that is more tailored than the ATSs already embedded in a SMART. Method We use Q-learning with data from the Extending Treatment Effectiveness of Naltrexone (ExTENd) SMART (N=250) to construct empirically an ATS employing naltrexone, behavioral intervention, and telephone disease management to reduce alcohol consumption over 24 weeks in alcohol dependent individuals. Results Q-learning helped to identify a subset of individuals who, despite showing early signs of response to naltrexone, require additional treatment to maintain progress. Conclusions Q-learning can inform the development of more cost-effective, stepped-care strategies for treating substance use disorders. PMID:28029718
Kristensen, Lasse S; Wojdacz, Tomasz K; Thestrup, Britta B; Wiuf, Carsten; Hager, Henrik; Hansen, Lise Lotte
2009-12-21
The High Resolution Melting (HRM) technology has recently been introduced as a rapid and robust analysis tool for the detection of DNA methylation. The methylation status of multiple tumor suppressor genes may serve as biomarkers for early cancer diagnostics, for prediction of prognosis and for prediction of response to treatment. Therefore, it is important that methodologies for detection of DNA methylation continue to evolve. Sensitive Melting Analysis after Real Time - Methylation Specific PCR (SMART-MSP) and Methylation Sensitive - High Resolution Melting (MS-HRM) are two methods for single locus DNA methylation detection based on HRM. Here, we have assessed the quality of DNA extracted from up to 30 years old Formalin Fixed Paraffin Embedded (FFPE) tissue for DNA methylation analysis using SMART-MSP and MS-HRM. The quality assessment was performed on DNA extracted from 54 Non-Small Cell Lung Cancer (NSCLC) samples derived from FFPE tissue, collected over 30 years and grouped into five years intervals. For each sample, the methylation levels of the CDKN2A (p16) and RARB promoters were estimated using SMART-MSP and MS-HRM assays designed to assess the methylation status of the same CpG positions. This allowed for a direct comparison of the methylation levels estimated by the two methods for each sample. CDKN2A promoter methylation levels were successfully determined by SMART-MSP and MS-HRM in all 54 samples. Identical methylation estimates were obtained by the two methods in 46 of the samples. The methylation levels of the RARB promoter were successfully determined by SMART-MSP in all samples. When using MS-HRM to assess RARB methylation five samples failed to amplify and 15 samples showed a melting profile characteristic for heterogeneous methylation. Twenty-seven of the remaining 34 samples, for which the methylation level could be estimated, gave the same result as observed when using SMART-MSP. MS-HRM and SMART-MSP can be successfully used for single locus methylation studies using DNA derived from up to 30 years old FFPE tissue. Furthermore, it can be expected that MS-HRM and SMART-MSP will provide similar methylation estimates when assays are designed to analyze the same CpG positions.
Development of lightweight structural health monitoring systems for aerospace applications
NASA Astrophysics Data System (ADS)
Pearson, Matthew
This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..
Development of smart textiles with embedded fiber optic chemical sensors
NASA Astrophysics Data System (ADS)
Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.
2004-03-01
Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2007-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
Analysis of Smart Composite Structures Including Debonding
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Seeley, Charles E.
1997-01-01
Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite laminates with pre-existing debonding. Significant changes in the modes shapes and reductions in the control authority result due to partially debonded actuators. An experimental investigation addresses practical issues, such as circuit design and implementation, associated with piezoelectric sensing and actuation of composite laminates. Composite specimens with piezoelectric transducers were designed, constructed and tested to validate the higher order theory. These specimens were tested with various stacking sequences, debonding lengths and gains for both open and closed loop cases. Frequency changes of 15% and damping on the order of more than 20% of critical damping, via closed loop control, was achieved. Correlation with the higher order theory is very good. Debonding is shown to adversely affect the open and closed loop frequencies, damping ratios, settling time and control authority.
Towards Smart and Resilient City: A Conceptual Model
NASA Astrophysics Data System (ADS)
Arafah, Y.; Winarso, H.; Suroso, D. S. A.
2018-05-01
This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.
Measurement of stress waves in EDC piles.
DOT National Transportation Integrated Search
2008-12-30
"This project focused on instrumentation analysis of one Smart Structures Incorporated, EDC pile. In general, the EDC pile is a pre-stressed 18" x 18" concrete pile that has been outfitted with embedded strain gages and accelerometers at six location...
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng
2010-11-01
In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.
A Bluetooth-Based Device Management Platform for Smart Sensor Environment
NASA Astrophysics Data System (ADS)
Lim, Ivan Boon-Kiat; Yow, Kin Choong
In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.
"Smart pebble" designs for sediment transport monitoring
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars
2015-04-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.
Biometrics and smart cards combine to offer high security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidman, S.
1986-01-01
This paper discusses the Smart Card a plastic credit card sized package with an embedded computer chip which encompasses a level of technical sophistication which makes it virtually impossible to counterfeit. The question of legitimacy of the person using the Card for physical, computer, or network access can be answered by storing a biometric template of the authorized user in the Smart Card's unalterable memory. The bimetric template can be based upon a retina print, a hand print, a finger print, a wrist-vein print, a voice print, or pseudo-biometrics, such as signature dynamics, gait dynamics or keyboard typing patterns. Thesemore » Cards will function only when they are being used by the authorized individuals to whom they are issued.« less
Energy monitoring and managing for electromobility purposes
NASA Astrophysics Data System (ADS)
Slanina, Zdenek; Docekal, Tomas
2016-09-01
This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1997-01-01
The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.
"Smart pebble" design for environmental monitoring applications
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Pavlovskis, Edgars
2014-05-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.
The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.
NASA Astrophysics Data System (ADS)
Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng
2018-03-01
As an effective fall accident preventive method, insight into near-miss falls provides an efficient solution to find out the causes of fall accidents, classify the type of near-miss falls and control the potential hazards. In this context, the paper proposes a method to detect and identify near-miss falls that occur when a worker walks in a workplace based on artificial neural network (ANN). The energy variation generated by workers who meet with near-miss falls is measured by sensors embedded in smart phone. Two experiments were designed to train the algorithm to identify various types of near-miss falls and test the recognition accuracy, respectively. At last, a test was conducted by workers wearing smart phones as they walked around a simulated construction workplace. The motion data was collected, processed and inputted to the trained ANN to detect and identify near-miss falls. Thresholds were obtained to measure the relationship between near-miss falls and fall accidents in a quantitate way. This approach, which integrates smart phone and ANN, will help detect near-miss fall events, identify hazardous elements and vulnerable workers, providing opportunities to eliminate dangerous conditions in a construction site or to alert possible victims that need to change their behavior before the occurrence of a fall accident.
Active Disaster Response System for a Smart Building
Lin, Chun-Yen; Chu, Edward T.-H; Ku, Lun-Wei; Liu, Jane W. S.
2014-01-01
Disaster warning and surveillance systems have been widely applied to help the public be aware of an emergency. However, existing warning systems are unable to cooperate with household appliances or embedded controllers; that is, they cannot provide enough time for preparedness and evacuation, especially for disasters like earthquakes. In addition, the existing warning and surveillance systems are not responsible for collecting sufficient information inside a building for relief workers to conduct a proper rescue action after a disaster happens. In this paper, we describe the design and implementation of a proof of concept prototype, named the active disaster response system (ADRS), which automatically performs emergency tasks when an earthquake happens. ADRS can interpret Common Alerting Protocol (CAP) messages, published by an official agency, and actuate embedded controllers to perform emergency tasks to respond to the alerts. Examples of emergency tasks include opening doors and windows and cutting off power lines and gas valves. In addition, ADRS can maintain a temporary network by utilizing the embedded controllers; hence, victims trapped inside a building are still able to post emergency messages if the original network is disconnected. We conducted a field trial to evaluate the effectiveness of ADRS after an earthquake happened. Our results show that compared to manually operating emergency tasks, ADRS can reduce the operation time by up to 15 s, which is long enough for people to get under sturdy furniture, or to evacuate from the third floor to the first floor, or to run more than 100 m. PMID:25237897
Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José
2016-07-22
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.
Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José
2016-01-01
The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Dabbagh, Ali
2018-03-01
In this paper, a three-variable plate model is utilized to explore the wave propagation problem of smart sandwich nanoplates made of a magnetostrictive core and ceramic face sheets while subjected to thermo-magnetic loading. Herein, the magnetostriction effect is considered and controlled via a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak elastic substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small-scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations are derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of the propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of the presented model are verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.
The role of local interaction mechanics in fiber optic smart structures
NASA Astrophysics Data System (ADS)
Sirkis, J. S.; Dasgupta, A.
1993-04-01
The concept of using 'smart' composite materials/structures with built-in self-diagnostic capabilities for health monitoring involves embedding discrete and/or distributed sensory networks in the host composite material, along with a central and/or distributed artificial intelligence capability for signal processing, data collection, interpretation and diagnostic evaluations. This article concentrates on the sensory functions in 'smart' structure applications and concentrates in particular on optical fiber sensors. Specifically, we present an overview of recent research dealing with the basic mechanics of local interactions between the embedded optical fiber sensors and the surrounding host composite. The term 'local' is defined by length scales on the order of several optical fiber diameters. We examine some generic issues, such as the 'calibration' and 'obtrusivity' of the sensor, and the inherent damage caused by the sensor inclusions to the surrounding host and vice-versa under internal and/or external applied loads. Analytical, numerical and experimental results are presented regarding the influence of local strain concentrations caused by the sensory inclusions on sensor and host performance. The important issues examined are the local mechanistic effects of optical fiber coatings on the behavior of the sensor and the host, and mechanical survivability of optical fibers experiencing quasi-static and time-varying thermomechanical loading.
Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes
NASA Technical Reports Server (NTRS)
Dehart, D. W.; Doederlein, T.; Koury, J.; Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.
1989-01-01
Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.
Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.
Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers
NASA Astrophysics Data System (ADS)
Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.
1989-01-01
Several planned United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) space systems such as Space Based Radar (SBR), Space Based Laser (SBL), and Space Station, pose serious vibration and control issues. Their low system mass combined with their large size, precision pointing/shape control and rapid retargetting requirements, will result in an unprecedented degree of interaction between the system controller and the modes of vibration of the structure. The resulting structural vibrations and/or those caused by foreign objects impacting the space structure could seriously degrade system performance, making it virtually impossible for passive structural systems to perform their missions. Therefore an active vibration control system which will sense these natural and spurious vibrations, evaluate them and dampen them out is required. This active vibration control system must be impervious to the space environment and electromagnetic interference, have very low weight, and in essence become part of the structure itself. The concept of smart structures meets these criteria. Smart structures is defined as the embedment of sensors, actuators, and possibly microprocessors in the material which forms the structure, a concept that is particularly applicable to advanced composites. These sensors, actuators, and microprocessors will work interactively to sense, evaluate, and dampen those vibrations which pose a threat to large flexible space systems (LSS). The sensors will also be capable of sensing any degradation to the structure. The Air Force Astronautics Laboratory (AFAL) has been working in the area of dynamics and control of LSS for the past five years. Several programs involving both contractual and in-house efforts to develop sensors and actuators for controlling LSS have been initiated. Presently the AFAL is developing a large scale laboratory which will have the capacity of performing large angle retargetting manuevers and vibration analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.
León-Vargas, Fabian; Calm, Remei; Bondia, Jorge; Vehí, Josep
2012-01-01
Objective Set-inversion-based prandial insulin delivery is a new model-based bolus advisor for postprandial glucose control in type 1 diabetes mellitus (T1DM). It automatically coordinates the values of basal–bolus insulin to be infused during the postprandial period so as to achieve some predefined control objectives. However, the method requires an excessive computation time to compute the solution set of feasible insulin profiles, which impedes its integration into an insulin pump. In this work, a new algorithm is presented, which reduces computation time significantly and enables the integration of this new bolus advisor into current processing features of smart insulin pumps. Methods A new strategy was implemented that focused on finding the combined basal–bolus solution of interest rather than an extensive search of the feasible set of solutions. Analysis of interval simulations, inclusion of physiological assumptions, and search domain contractions were used. Data from six real patients with T1DM were used to compare the performance between the optimized and the conventional computations. Results In all cases, the optimized version yielded the basal–bolus combination recommended by the conventional method and in only 0.032% of the computation time. Simulations show that the mean number of iterations for the optimized computation requires approximately 3.59 s at 20 MHz processing power, in line with current features of smart pumps. Conclusions A computationally efficient method for basal–bolus coordination in postprandial glucose control has been presented and tested. The results indicate that an embedded algorithm within smart insulin pumps is now feasible. Nonetheless, we acknowledge that a clinical trial will be needed in order to justify this claim. PMID:23294789
Structural health monitoring using smart optical fiber sensors
NASA Astrophysics Data System (ADS)
Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.
2001-04-01
This paper describes the potential of a smart monitoring system, incorporating optical fiber sensing techniques, to provide important structural information to designers and users alike. This technology has application in all areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35 m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions and the resulting strain information could be used by engineers to improve the structural design process. The optical strain sensor system comprises of three main components: the sensor network, the opto-electronic data acquisition unit (OFSSS) and the external PC which acts as a data log and display. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electromagnetic interference. The capability of this system has been demonstrated within the maritime environment, but can be adapted for any application.
Smart and hybrid materials: perspectives for their use in textile structures for better health care.
Carosio, Stefano; Monero, Alessandra
2004-01-01
High tech materials such as Shape Memory Alloys can be effectively integrated in textiles, thus providing multifunctional garments with potential application to the health care industry or for simply improving the quality of life. The objective of the present paper is to describe the development of a novel hybrid fabric with embedded shape memory (Nitinol) wires, and the related clothing application with the capability of recovering any shape depending upon the environment and becoming superelastic. The use of these smart garments for biomedical applications will be illustrated, thus opening new perspectives for enhanced health care provision.
Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald
2016-01-01
This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192
Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples
NASA Astrophysics Data System (ADS)
Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.
2010-02-01
A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.
Overview of demonstrator program of Japanese Smart Materials and Structure System project
NASA Astrophysics Data System (ADS)
Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo
2003-08-01
The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-01-01
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-09-16
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.
Smart Power Supply for Battery-Powered Systems
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.
2010-01-01
A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have differing power needs, this supply also has a secondary power bus, which can be programmed a priori or on-the-fly to boost the primary battery voltage level from 24 to 50 V to accommodate various loads as they are brought on line. Through voltage and current monitoring, the device can also shield the charging source from overloads, keep it within safe operating modes, and can meter available power to the application and maintain safe operations.
Application of smart BFRP bars with distributed fiber optic sensors into concrete structures
NASA Astrophysics Data System (ADS)
Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei
2010-04-01
In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.
Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita
2016-06-22
The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.
Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications
Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita
2016-01-01
The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna. PMID:27338407
Teaching Evolution: From SMART Objectives to Threshold Experience
ERIC Educational Resources Information Center
Wolf, Alexander; Akkaraju, Shylaja
2014-01-01
Despite the centrality of evolution to the study of biology, the pedagogical methods employed to teach the subject are often instructor-centered and rarely embedded in every topic throughout the curriculum. In addition, students' prior beliefs about evolution are often dismissed rather than incorporated into the classroom. In this article we…
Locomotion of inchworm-inspired robot made of smart soft composite (SSC).
Wang, Wei; Lee, Jang-Yeob; Rodrigue, Hugo; Song, Sung-Hyuk; Chu, Won-Shik; Ahn, Sung-Hoon
2014-10-07
A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion. Each foot of the robot has three segments with different friction coefficients to implement the anchor and sliding movement. Then, utilizing actuation patterns between the body and feet based on the looping gait, the robot achieves a biomimetic inchworm gait. Experiments were conducted to evaluate the robot's locomotive performance for both linear locomotion and turning movement. Results show that the proposed robot's stride length was nearly one third of its body length, with a maximum linear speed of 3.6 mm s(-1), a linear locomotion efficiency of 96.4%, a maximum turning capability of 4.3 degrees per stride, and a turning locomotion efficiency of 39.7%.
a New Ubiquitous-Based Indoor Positioning System with Minimum Extra Hardware Using Smart Phones
NASA Astrophysics Data System (ADS)
Hassany Pazoky, S.; Chehreghan, A.; Sadeghi Niaraki, A.; Abbaspour, R. Ali
2014-10-01
Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS). Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.
Corredor, Iván; Bernardos, Ana M.; Iglesias, Josué; Casar, José R.
2012-01-01
Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym. PMID:23012544
NASA Astrophysics Data System (ADS)
Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah
2017-10-01
Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.
Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications
NASA Astrophysics Data System (ADS)
Liu, Jiayu; Wang, Yanjie; Zhao, Dongxu; Zhang, Chi; Chen, Hualing; Li, Dichen
2014-03-01
Minimally Invasive Surgery (MIS) is receiving much attention for a number of reasons, including less trauma, faster recovery and enhanced precision. The traditional robotic actuators do not have the capabilities required to fulfill the demand for new applications in MIS. Ionic Polymer-Metal Composite (IPMC), one of the most promising smart materials, has extensive desirable characteristics such as low actuation voltage, large bending deformation and high functionality. Compared with traditional actuators, IPMCs can mimic biological muscle and are highly promising for actuation in robotic surgery. In this paper, a new approach which involves molding and integrating IPMC actuators into a soft silicone tube to create an active actuating tube capable of multi-degree-of-freedom motion is presented. First, according to the structure and performance requirements of the actuating tube, the biaxial bending IPMC actuators fabricated by using solution casting method have been implemented. The silicone was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D Printing technology. Then an assembly based fabrication process was used to mold or integrate biaxial bending IPMC actuators into the soft silicone material to create an active control tube. The IPMC-embedded tube can generate multi-degree-of-freedom motions by controlling each IPMC actuator. Furthermore, the basic performance of the actuators was analyzed, including the displacement and the response speed. Experimental results indicate that IPMC-embedded tubes are promising for applications in MIS.
NASA Astrophysics Data System (ADS)
Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.
2016-10-01
The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.
NASA Technical Reports Server (NTRS)
Packard, D.; Schmitt, D.
1984-01-01
Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.
Sensor technology for smart homes.
Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia
2011-06-01
A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Assessing the Decision Process towards Bring Your Own Device
ERIC Educational Resources Information Center
Koester, Richard F.
2017-01-01
Information technology continues to evolve to the point where mobile technologies--such as smart phones, tablets, and ultra-mobile computers have the embedded flexibility and power to be a ubiquitous platform to fulfill the entire user's computing needs. Mobile technology users view these platforms as adaptable enough to be the single solution for…
Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu
2017-10-15
Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical signal processing of spatially distributed sensor data in smart structures
NASA Technical Reports Server (NTRS)
Bennett, K. D.; Claus, R. O.; Murphy, K. A.; Goette, A. M.
1989-01-01
Smart structures which contain dense two- or three-dimensional arrays of attached or embedded sensor elements inherently require signal multiplexing and processing capabilities to permit good spatial data resolution as well as the adequately short calculation times demanded by real time active feedback actuator drive circuitry. This paper reports the implementation of an in-line optical signal processor and its application in a structural sensing system which incorporates multiple discrete optical fiber sensor elements. The signal processor consists of an array of optical fiber couplers having tailored s-parameters and arranged to allow gray code amplitude scaling of sensor inputs. The use of this signal processor in systems designed to indicate the location of distributed strain and damage in composite materials, as well as to quantitatively characterize that damage, is described. Extension of similar signal processing methods to more complicated smart materials and structures applications are discussed.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-07
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-21
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Wireless health monitoring of cracks in structures with MEMS-IDT sensors
NASA Astrophysics Data System (ADS)
Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.
2002-07-01
The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
Wireless microsensors for health monitoring of aircraft structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-01-01
The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.
A Novel Certificateless Signature Scheme for Smart Objects in the Internet-of-Things.
Yeh, Kuo-Hui; Su, Chunhua; Choo, Kim-Kwang Raymond; Chiu, Wayne
2017-05-01
Rapid advances in wireless communications and pervasive computing technologies have resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously providing intelligence and convenience to our daily life. In IoT-based network environments, smart objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring security for interactions between these smart things is significantly more important, and a topic of ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies is demonstrated in terms of the summarized security and performance comparisons.
A Novel Certificateless Signature Scheme for Smart Objects in the Internet-of-Things
Yeh, Kuo-Hui; Su, Chunhua; Choo, Kim-Kwang Raymond; Chiu, Wayne
2017-01-01
Rapid advances in wireless communications and pervasive computing technologies have resulted in increasing interest and popularity of Internet-of-Things (IoT) architecture, ubiquitously providing intelligence and convenience to our daily life. In IoT-based network environments, smart objects are embedded everywhere as ubiquitous things connected in a pervasive manner. Ensuring security for interactions between these smart things is significantly more important, and a topic of ongoing interest. In this paper, we present a certificateless signature scheme for smart objects in IoT-based pervasive computing environments. We evaluate the utility of the proposed scheme in IoT-oriented testbeds, i.e., Arduino Uno and Raspberry PI 2. Experiment results present the practicability of the proposed scheme. Moreover, we revisit the scheme of Wang et al. (2015) and revealed that a malicious super type I adversary can easily forge a legitimate signature to cheat any receiver as he/she wishes in the scheme. The superiority of the proposed certificateless signature scheme over relevant studies is demonstrated in terms of the summarized security and performance comparisons. PMID:28468313
ROSA: Resource-Oriented Service Management Schemes for Web of Things in a Smart Home.
Liao, Chun-Feng; Chen, Peng-Yu
2017-09-21
A Pervasive-computing-enriched smart home environment, which contains many embedded and tiny intelligent devices and sensors coordinated by service management mechanisms, is capable of anticipating intentions of occupants and providing appropriate services accordingly. Although there are a wealth of research achievements in recent years, the degree of market acceptance is still low. The main reason is that most of the devices and services in such environments depend on particular platform or technology, making it hard to develop an application by composing the devices or services. Meanwhile, the concept of Web of Things (WoT) is becoming popular recently. Based on WoT, the developers can build applications based on popular web tools or technologies. Consequently, the objective of this paper is to propose a set of novel WoT-driven plug-and-play service management schemes for a smart home called Resource-Oriented Service Administration (ROSA). We have implemented an application prototype, and experiments are performed to show the effectiveness of the proposed approach. The results of this research can be a foundation for realizing the vision of "end user programmable smart environments".
Using Multi-modal Sensing for Human Activity Modeling in the Real World
NASA Astrophysics Data System (ADS)
Harrison, Beverly L.; Consolvo, Sunny; Choudhury, Tanzeem
Traditionally smart environments have been understood to represent those (often physical) spaces where computation is embedded into the users' surrounding infrastructure, buildings, homes, and workplaces. Users of this "smartness" move in and out of these spaces. Ambient intelligence assumes that users are automatically and seamlessly provided with context-aware, adaptive information, applications and even sensing - though this remains a significant challenge even when limited to these specialized, instrumented locales. Since not all environments are "smart" the experience is not a pervasive one; rather, users move between these intelligent islands of computationally enhanced space while we still aspire to achieve a more ideal anytime, anywhere experience. Two key technological trends are helping to bridge the gap between these smart environments and make the associated experience more persistent and pervasive. Smaller and more computationally sophisticated mobile devices allow sensing, communication, and services to be more directly and continuously experienced by user. Improved infrastructure and the availability of uninterrupted data streams, for instance location-based data, enable new services and applications to persist across environments.
Observations of Munitions Mobility During a Nor'easter at Wallops Island
NASA Astrophysics Data System (ADS)
Swann, C.; Frank, D. P.; Braithwaite, E. F., III; Hagg, R. K.; Calantoni, J.
2017-12-01
Unexploded ordnance (or munitions) may migrate, bury, or become exposed over time, and may pose a hazard to both humans and environment. Understanding the behavior of munitions under various wave and current conditions is central to management and remediation of contaminated underwater sites. We embedded Inertial Measurement Units (IMUs) into inert replicas of large caliber munitions (81 mm - 155 mm), herein referred to as `smart munitions'. Several smart munitions were deployed in the field with IMUs logging at 16 Hz continuously. Simultaneously the local hydrodynamic conditions were monitored to correlate any resulting munitions mobility. Here, we present the response of the smart munitions to wave and current conditions observed during a nor'easter off the coast of Wallops Island, Virginia USA in about 10 m water depth. During the nor'easter, peak significant wave heights of 2.8 m were observed in 10 m water depth. Over a roughly 10-hour period, an 81 mm smart munition migrated approximately 206 ft in a net onshore direction. Displacement and heading of the migrated smart munition were estimated by divers during the recovery. Integration of the trajectory of motion for the smart munition using a custom signal processing algorithm was in good agreement with the diver measurements. Discussion will focus on the relationship of the local sediment type and the potential for munitions mobility.
Investigation of residual stresses in shape memory alloy (SMA) composites
NASA Astrophysics Data System (ADS)
Berman, Justin Bradley
Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system transformation methods proposed in this study can be implemented in other non-smartphone-based SHM systems as long as similar instrumentation is available.
NASA Astrophysics Data System (ADS)
Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing
2017-09-01
Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.
Securing resource constraints embedded devices using elliptic curve cryptography
NASA Astrophysics Data System (ADS)
Tam, Tony; Alfasi, Mohamed; Mozumdar, Mohammad
2014-06-01
The use of smart embedded device has been growing rapidly in recent time because of miniaturization of sensors and platforms. Securing data from these embedded devices is now become one of the core challenges both in industry and research community. Being embedded, these devices have tight constraints on resources such as power, computation, memory, etc. Hence it is very difficult to implement traditional Public Key Cryptography (PKC) into these resource constrained embedded devices. Moreover, most of the public key security protocols requires both public and private key to be generated together. In contrast with this, Identity Based Encryption (IBE), a public key cryptography protocol, allows a public key to be generated from an arbitrary string and the corresponding private key to be generated later on demand. While IBE has been actively studied and widely applied in cryptography research, conventional IBE primitives are also computationally demanding and cannot be efficiently implemented on embedded system. Simplified version of the identity based encryption has proven its competence in being robust and also satisfies tight budget of the embedded platform. In this paper, we describe the choice of several parameters for implementing lightweight IBE in resource constrained embedded sensor nodes. Our implementation of IBE is built using elliptic curve cryptography (ECC).
Smart Sensors' Role in Integrated System Health Management
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Mata, Carlos
2005-01-01
During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic agents, and communication protocols need to be established and standardized to allow the embedding and exchange of health information among sensors and ISHM. This workshop is aimed to foster the exchange of ideas and lessons learned between government, industry and academia to aid in the establishment of ISHM (and smart sensors) standards and guidelines as well as to identify present technology gaps that will have to be overcome to successfully achieve this goal.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
Joy and the "Smart Kids": Competing Ways of Being and Believing
ERIC Educational Resources Information Center
Majors, Yolanda J.
2014-01-01
Through a sharing of personal experience, this article aims to draw attention to the language of schooling--a language, both simple and sophisticated, that many schools, as institutions, devise to communicate with insiders and outsiders. The author argues that there is a mismatch between assumed best practices embedded in this language and the…
Robonaut 2 and Watson: Cognitive Dexterity for Future Exploration
NASA Technical Reports Server (NTRS)
Badger, Julia M.; Strawser, Philip; Farrell, Logan; Goza, S. Michael; Claunch, Charles A.; Chancey, Raphael; Potapinski, Russell
2018-01-01
Future exploration missions will dictate a level of autonomy never before experienced in human spaceflight. Mission plans involving the uncrewed phases of complex human spacecraft in deep space will require a coordinated autonomous capability to be able to maintain the spacecraft when ground control is not available. One promising direction involves embedding intelligence into the system design both through the employment of state-of-the-art system engineering principles as well as through the creation of a cognitive network between a smart spacecraft or habitat and embodiments of cognitive agents. The work described here details efforts to integrate IBM's Watson and other cognitive computing services into NASA Johnson Space Center (JSC)'s Robonaut 2 (R2) anthropomorphic robot. This paper also discusses future directions this work will take. A cognitive spacecraft management system that is able to seamlessly collect data from subsystems, determine corrective actions, and provide commands to enable those actions is the end goal. These commands could be to embedded spacecraft systems or to a set of robotic assets that are tied into the cognitive system. An exciting collaboration with Woodside provides a promising Earth-bound testing analog, as controlling and maintaining not normally manned off-shore platforms have similar constraints to the space missions described.
An embedded stress sensor for concrete SHM based on amorphous ferromagnetic microwires.
Olivera, Jesús; González, Margarita; Fuente, José Vicente; Varga, Rastislav; Zhukov, Arkady; Anaya, José Javier
2014-10-24
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 µs/MPa, respectively.
Smart sensors enable smart air conditioning control.
Cheng, Chin-Chi; Lee, Dasheng
2014-06-24
In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.
Smart Sensors Enable Smart Air Conditioning Control
Cheng, Chin-Chi; Lee, Dasheng
2014-01-01
In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai
2017-01-01
This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859
Smart CFRP systems for the controlled retrofitting of reinforced concrete members
NASA Astrophysics Data System (ADS)
Schaller, M.-B.; Käseberg, S.; Kuhne, M.
2010-09-01
During the last ten years an increasing amount of Carbon Fiber Reinforced Polymer (CFRP) applications to rehabilitate damaged concrete elements was observed. Thereby some important disadvantages of the brittle materials must be considered, for example the low ductility of the bond between CFRP and concrete and brittle failure of FRP. With embedded sensor systems it is possible to measure crack propagation and strains. In this paper a sensor based CFRP system will be presented, that can be used for strengthening and measuring. The used optical fibers with Fiber Bragg Gratings (FBG) have a large number of advantages in opposite to electrical measuring methods. Examples are small dimensions, low weight as well as high static and dynamic resolution of measured values. The main problem during the investigations was the fixing of the glass fiber and the small FBG at the designated position. In this paper the possibility of setting the glass fiber with embroidery at the reinforcing fiber material will be presented. On the basis of four point bending tests on beams (dimensions of 700 x 150 x 150 mm) and tests on wrapped columns the potential of the Smart CFRP system is introduced.
Multiple sensor smart robot hand with force control
NASA Technical Reports Server (NTRS)
Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal
1987-01-01
A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.
A system for respiratory motion detection using optical fibers embedded into textiles.
D'Angelo, L T; Weber, S; Honda, Y; Thiel, T; Narbonneau, F; Luth, T C
2008-01-01
In this contribution, a first prototype for mobile respiratory motion detection using optical fibers embedded into textiles is presented. The developed system consists of a T-shirt with an integrated fiber sensor and a portable monitoring unit with a wireless communication link enabling the data analysis and visualization on a PC. A great effort is done worldwide to develop mobile solutions for health monitoring of vital signs for patients needing continuous medical care. Wearable, comfortable and smart textiles incorporating sensors are good approaches to solve this problem. In most of the cases, electrical sensors are integrated, showing significant limits such as for the monitoring of anaesthetized patients during Magnetic Resonance Imaging (MRI). OFSETH (Optical Fibre Embedded into technical Textile for Healthcare) uses optical sensor technologies to extend the current capabilities of medical technical textiles.
NASA Astrophysics Data System (ADS)
Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James
2017-04-01
Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.
Data management for biofied building
NASA Astrophysics Data System (ADS)
Matsuura, Kohta; Mita, Akira
2015-03-01
Recently, Smart houses have been studied by many researchers to satisfy individual demands of residents. However, they are not feasible yet as they are very costly and require many sensors to be embedded into houses. Therefore, we suggest "Biofied Building". In Biofied Building, sensor agent robots conduct sensing, actuation, and control in their house. The robots monitor many parameters of human lives such as walking postures and emotion continuously. In this paper, a prototype network system and a data model for practical application for Biofied Building is pro-posed. In the system, functions of robots and servers are divided according to service flows in Biofield Buildings. The data model is designed to accumulate both the building data and the residents' data. Data sent from the robots and data analyzed in the servers are automatically registered into the database. Lastly, feasibility of this system is verified through lighting control simulation performed in an office space.
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran
2016-01-01
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran
2016-06-27
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.
Towards sensor array materials: can failure be delayed?
Mekid, Samir; Saheb, Nouari; Khan, Shafique M A; Qureshi, Khurram K
2015-01-01
Further to prior development in enhancing structural health using smart materials, an innovative class of materials characterized by the ability to feel senses like humans, i.e. ‘nervous materials’, is discussed. Designed at all scales, these materials will enhance personnel and public safety, and secure greater reliability of products. Materials may fail suddenly, but any system wishes that failure is known in good time and delayed until safe conditions are reached. Nervous materials are expected to be the solution to this statement. This new class of materials is based on the novel concept of materials capable of feeling multiple structural and external stimuli, e.g. stress, force, pressure and temperature, while feeding information back to a controller for appropriate real-time action. The strain–stress state is developed in real time with the identified and characterized source of stimulus, with optimized time response to retrieve initial specified conditions, e.g. shape and strength. Sensors are volumetrically embedded and distributed, emulating the human nervous system. Immediate applications are in aircraft, cars, nuclear energy and robotics. Such materials will reduce maintenance costs, detect initial failures and delay them with self-healing. This article reviews the common aspects and challenges surrounding this new class of materials with types of sensors to be embedded seamlessly or inherently, including appropriate embedding manufacturing techniques with modeling and simulation methods. PMID:27877794
Towards sensor array materials: can failure be delayed?
NASA Astrophysics Data System (ADS)
Mekid, Samir; Saheb, Nouari; Khan, Shafique M. A.; Qureshi, Khurram K.
2015-06-01
Further to prior development in enhancing structural health using smart materials, an innovative class of materials characterized by the ability to feel senses like humans, i.e. ‘nervous materials’, is discussed. Designed at all scales, these materials will enhance personnel and public safety, and secure greater reliability of products. Materials may fail suddenly, but any system wishes that failure is known in good time and delayed until safe conditions are reached. Nervous materials are expected to be the solution to this statement. This new class of materials is based on the novel concept of materials capable of feeling multiple structural and external stimuli, e.g. stress, force, pressure and temperature, while feeding information back to a controller for appropriate real-time action. The strain-stress state is developed in real time with the identified and characterized source of stimulus, with optimized time response to retrieve initial specified conditions, e.g. shape and strength. Sensors are volumetrically embedded and distributed, emulating the human nervous system. Immediate applications are in aircraft, cars, nuclear energy and robotics. Such materials will reduce maintenance costs, detect initial failures and delay them with self-healing. This article reviews the common aspects and challenges surrounding this new class of materials with types of sensors to be embedded seamlessly or inherently, including appropriate embedding manufacturing techniques with modeling and simulation methods.
Four strategies for the age of smart services.
Allmendinger, Glen; Lombreglia, Ralph
2005-10-01
Most industrial manufacturers realize that the real money isn't in products but in services. Companies such as General Electric and IBM have famously made the transition: A large proportion of their revenues and margins come from providing value-added services to customers. But other companies attempting to do the same might miss the boat. It is not enough, the authors say, just to provide services. Businesses must now provide "smart services"--building intelligence (awareness and connectivity) into the products themselves. Citing examples such as Heidelberger Druckmaschinen's Internet-connected printing presses and Eaton Electrical's home-monitoring service, the authors demonstrate how a product that can report its status back to its maker represents an opportunity for the manufacturer to cultivate richer, longer-term relationships with customers. Four business models will emerge in this new, networked world. If you go it alone, it may be as an embedded innovator- that is, your networked product sends back information that can help you optimize service delivery, eliminate waste and inefficiency, and raise service margins. Or, you may pursue a more aggressive solutionist business model- that is, you position your networked product as a "complete solution provider," able to deliver a broader scope of high-value services than those provided by the embedded innovator's product. In the case of a system that aggregates and processes data from multiple products in a building or home, you may be either an aggregator or a synergist, partnering with others to pursue a smart-services opportunity. An aggregator's product is the hub, collecting and processing usage information- and creating a high-value body of data. A synergist's product is the spoke, contributing valuable data or functionality. Woe to the company that takes none of these paths; it'll soon find its former customers locked in--and happily--to other smart service providers.
PLCs used in smart home control
NASA Astrophysics Data System (ADS)
Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.
2016-02-01
This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.
Equality of Educational Opportunity, Merit and the New Zealand Education System
ERIC Educational Resources Information Center
Seve-Williams, Nuhisifa
2013-01-01
Pacific students in New Zealand (NZ) quickly learn that they are not very smart. The statistics tell them this. They also come to believe that they do not try very hard. The talk of equal opportunities tells them this, especially when it is coupled with negative statistics. This is not surprising. Education in NZ has been embedded in notions of…
Thermomechanical Modeling of Shape Memory Alloys and Applications
NASA Astrophysics Data System (ADS)
Lexcellent, C.; Leclercq, S.
The aim of the present paper is a general macroscopic description of the thermomechanical behavior of shape memory alloys (SMA). We use for framework the thermodynamics of irreversible processes. This model is efficient for describing the behavior of "smart" structures as a bronchial, a tentacle element and an prosthesis hybrid structure made of Ti Ni SMA wires embedded in a resin epoxy matrix.
Real-time optimizations for integrated smart network camera
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois
2005-02-01
We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.
Hybrid Piezoelectric/Fiber-Optic Sensor Sheets
NASA Technical Reports Server (NTRS)
Lin, Mark; Qing, Xinlin
2004-01-01
Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.
Smart Helmet: Wearable Multichannel ECG and EEG
Chanwimalueang, Theerasak; Goverdovsky, Valentin; Looney, David; Sharp, David; Mandic, Danilo P.
2016-01-01
Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet. PMID:27957405
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Shajari, A. R.; Amir, S.; Loghman, A.
2012-08-01
Nonlinear vibration and stability of a smart composite micro-tube made of Poly-vinylidene fluoride (PVDF) reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under electro-thermal loadings is investigated. The BNNTs are considered to be long straight fibers and the composite used in this study is in the category of piezoelectric fiber reinforced composites (PEFRC). The micro-tube is conveying a fully developed isentropic, incompressible and irrotational fluid flow. The smart micro-tube is modeled as a thin shell based on the nonlinear Donnell's shell theory. Effects of mean flow velocity, fluid viscosity, elastic medium modulus, temperature change, imposed electric potential, small scale, aspect ratio, volume percent and orientation angle of the BNNTs on the vibration behavior of the micro-tube are taken into account. The results indicate that increasing mean flow velocity considerably increases the nonlinearity effects so that small scale and temperature change effects become negligible. It has also been found that stability of the system is strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. The system studied in this article can be used as sensor and actuator in the sensitive applications.
ROSA: Resource-Oriented Service Management Schemes for Web of Things in a Smart Home
Chen, Peng-Yu
2017-01-01
A Pervasive-computing-enriched smart home environment, which contains many embedded and tiny intelligent devices and sensors coordinated by service management mechanisms, is capable of anticipating intentions of occupants and providing appropriate services accordingly. Although there are a wealth of research achievements in recent years, the degree of market acceptance is still low. The main reason is that most of the devices and services in such environments depend on particular platform or technology, making it hard to develop an application by composing the devices or services. Meanwhile, the concept of Web of Things (WoT) is becoming popular recently. Based on WoT, the developers can build applications based on popular web tools or technologies. Consequently, the objective of this paper is to propose a set of novel WoT-driven plug-and-play service management schemes for a smart home called Resource-Oriented Service Administration (ROSA). We have implemented an application prototype, and experiments are performed to show the effectiveness of the proposed approach. The results of this research can be a foundation for realizing the vision of “end user programmable smart environments”. PMID:28934159
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Zhou, Zhi; Ou, Jinping
2012-06-01
Suspenders, as the main bearing components in an arch bridge, can only manage to serve for about tens of years, or even a few years due to the influences of corrosion and fatigue load. This paper proposes a method of testing the suspender dynamic behavior with optical fiber Bragg grating sensors embedded in the glass fiber reinforced polymer (GFRP-OFBGS). Firstly, layout method of FRP-OFBGS among the suspender and protection technology are studied, and the self-monitoring smart suspender is developed. Secondly, stretching experiments were carried out on the smart suspender. The test experimental results demonstrated that the whole procedure of the stretching test can be perfectly monitored. Finally, the self-monitoring smart suspender successfully was applied in Ebian Bridge to monitor the strain history of suspenders under traffic load, and traffic effect to suspenders with various lengths and to different steel strands of a single suspender. Based on the monitoring data, the arch bridge suspenders fatigue damage dynamic evaluation methods and calculation results were given. The field monitoring results demonstrated that, the self-monitoring smart suspender mentioned in this paper is capable of monitoring suspender dynamic response and possible fatigue damages.
Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin
2016-01-01
Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965
Soft Smart Garments for Lower Limb Joint Position Analysis.
Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia
2017-10-12
Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.
Maximizing Information Diffusion in the Cyber-physical Integrated Network †
Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan
2015-01-01
Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks. PMID:26569254
Soft Smart Garments for Lower Limb Joint Position Analysis
Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia
2017-01-01
Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors’ responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case. PMID:29023365
Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin
2016-06-24
Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method.
NASA Technical Reports Server (NTRS)
Bandhil, Pavan; Chitikeshi, Sanjeevi; Mahajan, Ajay; Figueroa, Fernando
2005-01-01
This paper proposes the development of intelligent sensors as part of an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA s Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Integrated Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS). The PIS discussed here consists of a thermocouple used to read temperature in an analog form which is then converted into digital values. A microprocessor collects the sensor readings and runs numerous embedded event detection routines on the collected data and if any event is detected, it is reported, stored and sent to a remote system through an Ethernet connection. Hence the output of the PIS is data coupled with confidence factor in the reliability of the data which leads to information on the health of the sensor at all times. All protocols are consistent with IEEE 1451.X standards. This work lays the foundation for the next generation of smart devices that have embedded intelligence for distributed decision making capabilities.
Prototype of smart office system using based security system
NASA Astrophysics Data System (ADS)
Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.
2018-05-01
Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.
NASA Astrophysics Data System (ADS)
Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.
2016-08-01
Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Stefanov, Dimitar H; Bien, Zeungnam; Bang, Won-Chul
2004-06-01
Smart houses are considered a good alternative for the independent life of older persons and persons with disabilities. Numerous intelligent devices, embedded into the home environment, can provide the resident with both movement assistance and 24-h health monitoring. Modern home-installed systems tend to be not only physically versatile in functionality but also emotionally human-friendly, i.e., they may be able to perform their functions without disturbing the user and without causing him/her any pain, inconvenience, or movement restriction, instead possibly providing him/her with comfort and pleasure. Through an extensive survey, this paper analyzes the building blocks of smart houses, with particular attention paid to the health monitoring subsystem as an important component, by addressing the basic requirements of various sensors implemented from both research and clinical perspectives. The paper will then discuss some important issues of the future development of an intelligent residential space with a human-friendly health monitoring functional system.
Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T
2016-08-24
Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children's motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.
Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing.
Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun
2015-09-24
Wearable electronics used in smart clothing for healthcare monitoring or personalized identification is a new and fast-growing research topic. The challenge is that the electronics has to be simultaneously highly stretchable, mechanically robust and water-washable, which is unreachable for traditional electronics or previously reported stretchable electronics. Herein we report the wearable electronics of sliver nanowire (Ag-NW)/poly(dimethylsiloxane) (PDMS) nanocomposite which can meet the above multiple requirements. The electronics of Ag-NW/PDMS nanocomposite films is successfully fabricated by an original pre-straining and post-embedding (PSPE) process. The composite film shows a very high conductivity of 1.52 × 10(4) S cm(-1) and an excellent electrical stability with a small resistance fluctuation under a large stretching strain. Meanwhile, it shows a robust adhesion between the Ag-NWs and the PDMS substrate and can be directly machine-washed. These advantages make it a competitive candidate as wearable electronics for smart clothing applications.
Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.
2016-01-01
Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3–6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay. PMID:27553971
Rechargeable Li/Li(x)CoO(2) 100 Ah/600 Ah Battery With Integral Smart Charge Control
1999-03-01
Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control By Charles J. Kelly ^ (Alliant Techsystems, Inc., Alliant Power...Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control By Charles J. Kelly (Alliant Techsystems, Inc., Alliant Power Sources...AND SUBTITLE Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control 6 AUTHOR(S) C. J. Kelly (Alliant Power Sources Co
A Smart City Lighting Case Study on an OpenStack-Powered Infrastructure.
Merlino, Giovanni; Bruneo, Dario; Distefano, Salvatore; Longo, Francesco; Puliafito, Antonio; Al-Anbuky, Adnan
2015-07-06
The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration.
A Smart City Lighting Case Study on an OpenStack-Powered Infrastructure
Merlino, Giovanni; Bruneo, Dario; Distefano, Salvatore; Longo, Francesco; Puliafito, Antonio; Al-Anbuky, Adnan
2015-01-01
The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration. PMID:26153775
Single-Image Distance Measurement by a Smart Mobile Device.
Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling
2017-12-01
Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.
Latest Development in Advanced Sensors at Kennedy Space Center (KSC)
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)
2002-01-01
Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.
Comparison of individual pitch and smart rotor control strategies for load reduction
NASA Astrophysics Data System (ADS)
Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.
2014-06-01
Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.
Application study on aircraft structures of CFRP laminates with embedded SMA foils
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Takeda, Nobuo
2002-07-01
This paper reports some research results for the application study of the smart materials an structural using Shape Memory Alloy (SMA) foils. First, the authors acquired the recovery strain of CFRP laminates generated by the recovery stress of the pre-strained SMA foils. Then, the quasi-static load-unload tests were conducted using several kinds of quasi-isotropic CFRP laminates with embedded SMA foils. Micro-mechanics of damage behavior due to the effects of the recovery strain and the first transverse crack strain were discussed. The improvement of maximum 40 percent for the onset strain of the transverse cracks and maximum 60 percent for the onset strain of delamination were achieved for CFRP laminates with embedded pre-strained SMA foils compared with standard CFRP laminates. Furthermore, the authors conducted the structural element test for application to actual structures. Testing technique and the manufacturing technique of the structural element specimen were established.
Development of a metal-based composite actuator
NASA Astrophysics Data System (ADS)
Asanuma, Hiroshi; Haga, Osamu; Ishii, Toshio; Kurihara, Haruki; Ohira, Junichiro; Hakoda, Genji
2000-06-01
This paper describes a basic concept and elemental developments to realize a metal based composite actuator to be used for smart structures. In this study, CFRP prepreg was laminated on aluminum plate to develop an actuator and this laminate could perform unidirectional actuation. SiC continuous fiber/Al composite thin plate could also be used for form a modified type of actuator instead of using CFRP. As sensors to be embedded in this actuator, the following ones wee developed. (1) A pre-notched optical fiber filament could be embedded in aluminum matrix without fracture by the interphase forming/bonding method with copper insert and could be fractured in it at the notch, which enabled forming of an optical interference type strain sensor. (2) Nickel wire could be uniformly oxidized and embedded in aluminum matrix without fracture, which could successfully work as a temperature sensor and a strain sensor.
Development of damage suppression system using embedded SMA foil in CFRP laminates
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Kobayashi, Masakazu; Okabe, Tomonaga; Takeda, Nobuo
2001-07-01
Some recent studies have suggested possible applications of Shape Memory Alloy (SMA) for a smart health monitoring and suppression of damage growth. The authors have been conducting research and development studies on applications of embedded SMA foil actuators in CFRP laminates as the basic research for next generation aircrafts. First the effective surface treatment for improvement of bonding properties between SMA and CFRP was studied. It was certified that the anodic oxide treatment by 10% NaOH solution was the most effective treatment from the results of peel resistance test and shear strength test. Then, CFRP laminates with embedded SMA foils were successfully fabricated using this effective surface treatment. The damage behavior of quasi-isotropic CFRP laminates with embedded SMA foils was characterized in both quasi-static load-unload and fatigue tests. The relationship between crack density and applied strain was obtained. The recovery stress generated by embedded SMA foils could increase the onset strain of transverse cracking by 0.2%. The onset strain of delmination in CFRP laminates was also increased accordingly. The shear-lag analysis was also conducted to predict the damage evolution in CFRP laminates with embedded SMA foils. The adhesive layers on both sides of SMA foils were treated as shear elements. The theoretical analysis successfully predicted the experimental results.
Fiber optic sensor technology - An opportunity for smart aerospace structures
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Rogowski, R. S.; Claus, R. O.
1988-01-01
Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.
Tailoring superelasticity of soft magnetic materials
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
2015-10-01
Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simulations. This behavior results from a combination of two stress-induced mechanisms: a detachment mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.
Embedded sensor systems for health - providing the tools in future healthcare.
Lindén, Maria; Björkman, Mats
2014-01-01
Wearable, embedded sensor systems for health applications are foreseen to be enablers in the future healthcare. They will provide ubiquitous monitoring of multiple parameters without restricting the person to stay at home or in the hospital. By following trend changes in the health status, early deteriorations will be detected and treatment can start earlier. Also health prevention will be supported. Such future healthcare requires technology development, including miniaturized sensors, smart textiles and wireless communication. The tremendous amount of data generated by these systems calls for both signal processing and decision support to guarantee the quality of data and avoid overflow of information. Safe and secure communications have to protect the integrity of the persons monitored.
Exploiting IoT Technologies and Open Source Components for Smart Seismic Network Instrumentation
NASA Astrophysics Data System (ADS)
Germenis, N. G.; Koulamas, C. A.; Foundas, P. N.
2017-12-01
The data collection infrastructure of any seismic network poses a number of requirements and trade-offs related to accuracy, reliability, power autonomy and installation & operational costs. Having the right hardware design at the edge of this infrastructure, embedded software running inside the instruments is the heart of pre-processing and communication services implementation and their integration with the central storage and processing facilities of the seismic network. This work demonstrates the feasibility and benefits of exploiting software components from heterogeneous sources in order to realize a smart seismic data logger, achieving higher reliability, faster integration and less development and testing costs of critical functionality that is in turn responsible for the cost and power efficient operation of the device. The instrument's software builds on top of widely used open source components around the Linux kernel with real-time extensions, the core Debian Linux distribution, the earthworm and seiscomp tooling frameworks, as well as components from the Internet of Things (IoT) world, such as the CoAP and MQTT protocols for the signaling planes, besides the widely used de-facto standards of the application domain at the data plane, such as the SeedLink protocol. By using an innovative integration of features based on lower level GPL components of the seiscomp suite with higher level processing earthworm components, coupled with IoT protocol extensions to the latter, the instrument can implement smart functionality such as network controlled, event triggered data transmission in parallel with edge archiving and on demand, short term historical data retrieval.
NASA Astrophysics Data System (ADS)
Hudson, Tyler Blake
An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS-FBG throughout the cure cycle. Also, the residual strain can be readily determined at the end of the cure. This system demonstrated a real-time, in-situ, cure monitoring system using embedded multiplexed FBG/PS-FBG sensors to record both guided wave-based signals and strain. The distinct advantages of a fiber optic-based system include multiplexing, small size, embedding, utilization in harsh environments, electrically passive operation, and electromagnetic interference (EMI) immunity. The embedded multiplexed FBG/PS-FBG fiber optic sensor can monitor the entire life-cycle of the composite structure from curing, post-cure/assembly, and in-service for creating "smart structures".
An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires
Olivera, Jesús; González, Margarita; Fuente, José Vicente; Varga, Rastislav; Zhukov, Arkady; Anaya, José Javier
2014-01-01
A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1–30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 μs/MPa, respectively. PMID:25347582
Smart-actuated continuous moldline technology (CMT) mini wind tunnel test
NASA Astrophysics Data System (ADS)
Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.
1999-07-01
The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.
Birchley, Giles; Huxtable, Richard; Murtagh, Madeleine; Ter Meulen, Ruud; Flach, Peter; Gooberman-Hill, Rachael
2017-04-04
Smart-home technologies, comprising environmental sensors, wearables and video are attracting interest in home healthcare delivery. Development of such technology is usually justified on the basis of the technology's potential to increase the autonomy of people living with long-term conditions. Studies of the ethics of smart-homes raise concerns about privacy, consent, social isolation and equity of access. Few studies have investigated the ethical perspectives of smart-home engineers themselves. By exploring the views of engineering researchers in a large smart-home project, we sought to contribute to dialogue between ethics and the engineering community. Either face-to-face or using Skype, we conducted in-depth qualitative interviews with 20 early- and mid-career smart-home researchers from a multi-centre smart-home project, who were asked to describe their own experience and to reflect more broadly about ethical considerations that relate to smart-home design. With participants' consent, interviews were audio-recorded, transcribed and analysed using a thematic approach. Two overarching themes emerged: in 'Privacy', researchers indicated that they paid close attention to negative consequences of potential unauthorised information sharing in their current work. However, when discussing broader issues in smart-home design beyond the confines of their immediate project, researchers considered physical privacy to a lesser extent, even though physical privacy may manifest in emotive concerns about being watched or monitored. In 'Choice', researchers indicated they often saw provision of choice to end-users as a solution to ethical dilemmas. While researchers indicated that choices of end-users may need to be restricted for technological reasons, ethical standpoints that restrict choice were usually assumed and embedded in design. The tractability of informational privacy may explain the greater attention that is paid to it. However, concerns about physical privacy may reduce acceptability of smart-home technologies to future end-users. While attention to choice suggests links with privacy, this may misidentify the sources of privacy and risk unjustly burdening end-users with problems that they cannot resolve. Separating considerations of choice and privacy may result in more satisfactory treatment of both. Finally, through our engagement with researchers as participants this study demonstrates the relevance of (bio)ethics as a critical partner to smart-home engineering.
Smart Inverter Control and Operation for Distributed Energy Resources
NASA Astrophysics Data System (ADS)
Tazay, Ahmad F.
The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.
The application of autostereoscopic display in smart home system based on mobile devices
NASA Astrophysics Data System (ADS)
Zhang, Yongjun; Ling, Zhi
2015-03-01
Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.
NASA Astrophysics Data System (ADS)
Häuser, Marco; Richter, Josef; Kriel, Herman; Turbyfill, Amanda; Buetow, Brent; Ward, Michael
2016-07-01
Together with the ongoing major instrument upgrade of the Hobby-Eberly Telescope (HET) we present the planned upgrade of the HET Segment Control System (SCS) to SCS2. Because HET's primary mirror is segmented into 91 individual 1-meter hexagonal mirrors, the SCS is essential to maintain the mirror alignment throughout an entire night of observations. SCS2 will complete tip, tilt and piston corrections of each mirror segment at a significantly higher rate than the original SCS. The new motion control hardware will further increase the system's reliability. The initial optical measurements of this array are performed by the Mirror Alignment Recovery System (MARS) and the HET Extra Focal Instrument (HEFI). Once the segments are optically aligned, the inductive edge sensors give sub-micron precise feedback of each segment's positions relative to its adjacent segments. These sensors are part of the Segment Alignment Maintenance System (SAMS) and are responsible for providing information about positional changes due to external influences, such as steep temperature changes and mechanical stress, and for making compensatory calculations while tracking the telescope on sky. SCS2 will use the optical alignment systems and SAMS inputs to command corrections of every segment in a closed loop. The correction period will be roughly 30 seconds, mostly due to the measurement and averaging process of the SAMS algorithm. The segment actuators will be controlled by the custom developed HET Segment MOtion COntroller (SMOCO). It is a direct descendant of University Observatory Munich's embedded, CAN-based system and instrument control tool-kit. To preserve the existing HET hardware layout, each SMOCO will control two adjacent mirror segments. Unlike the original SCS motor controllers, SMOCO is able to drive all six axes of its two segments at the same time. SCS2 will continue to allow for sub-arcsecond precision in tip and tilt as well as sub-micro meter precision in piston. These estimations are based on the current performance of the segment support mechanics. SMOCO's smart motion control allows for on-the-y correction of the move targets. Since SMOCO uses state-of-the-art motion control electronics and embedded decentralized controllers, we expect reduction in thermal emission as well as less maintenance time.
Multi-functional dielectric elastomer artificial muscles for soft and smart machines
NASA Astrophysics Data System (ADS)
Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.
2012-08-01
Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.
Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL -
Video Text Version | Energy Systems Integration Facility | NREL Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version This is the text version for the Smarter Grid Solutions
NASA Astrophysics Data System (ADS)
Gabler, Markus; Tkachenko, Viktoriya; Küppers, Simon; Kuka, Georg G.; Habel, Wolfgang R.; Milwich, Markus; Knippers, Jan
2012-04-01
The main goal of the presented work was to evolve a multifunctional beam composed out of fiber reinforced plastics (FRP) and an embedded optical fiber with various fiber Bragg grating sensors (FBG). These beams are developed for the use as structural member for bridges or industrial applications. It is now possible to realize large scale cross sections, the embedding is part of a fully automated process and jumpers can be omitted in order to not negatively influence the laminate. The development includes the smart placement and layout of the optical fibers in the cross section, reliable strain transfer, and finally the coupling of the embedded fibers after production. Micromechanical tests and analysis were carried out to evaluate the performance of the sensor. The work was funded by the German ministry of economics and technology (funding scheme ZIM). Next to the authors of this contribution, Melanie Book with Röchling Engineering Plastics KG (Haren/Germany; Katharina Frey with SAERTEX GmbH & Co. KG (Saerbeck/Germany) were part of the research group.
Use of Dynamic Distortion to Predict and Alleviate Loss of Control
NASA Technical Reports Server (NTRS)
Klyde, David; Liang, Chi-Ying; Alvarez, Daniel
2011-01-01
This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.
Uav Photogrammetric Solution Using a Raspberry pi Camera Module and Smart Devices: Test and Results
NASA Astrophysics Data System (ADS)
Piras, M.; Grasso, N.; Jabbar, A. Abdul
2017-08-01
Nowadays, smart technologies are an important part of our action and life, both in indoor and outdoor environment. There are several smart devices very friendly to be setting, where they can be integrated and embedded with other sensors, having a very low cost. Raspberry allows to install an internal camera called Raspberry Pi Camera Module, both in RGB band and NIR band. The advantage of this system is the limited cost (< 60 euro), their light weight and their simplicity to be used and embedded. This paper will describe a research where a Raspberry Pi with the Camera Module was installed onto a UAV hexacopter based on arducopter system, with purpose to collect pictures for photogrammetry issue. Firstly, the system was tested with aim to verify the performance of RPi camera in terms of frame per second/resolution and the power requirement. Moreover, a GNSS receiver Ublox M8T was installed and connected to the Raspberry platform in order to collect real time position and the raw data, for data processing and to define the time reference. IMU was also tested to see the impact of UAV rotors noise on different sensors like accelerometer, Gyroscope and Magnetometer. A comparison of the achieved results (accuracy) on some check points of the point clouds obtained by the camera will be reported as well in order to analyse in deeper the main discrepancy on the generated point cloud and the potentiality of these proposed approach. In this contribute, the assembling of the system is described, in particular the dataset acquired and the results carried out will be analysed.
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
New and improved ways to treat hydrocephalus: Pursuit of a smart shunt.
Lutz, Barry R; Venkataraman, Pranav; Browd, Samuel R
2013-01-01
The most common treatment for hydrocephalus is placement of a cerebrospinal fluid shunt to supplement or replace lost drainage capacity. Shunts are life-saving devices but are notorious for high failure rates, difficulty of diagnosing failure, and limited control options. Shunt designs have changed little since their introduction in 1950s, and the few changes introduced have had little to no impact on these long-standing problems. For decades, the community has envisioned a "smart shunt" that could provide advanced control, diagnostics, and communication based on implanted sensors, feedback control, and telemetry. The most emphasized contribution of smart shunts is the potential for advanced control algorithms, such as weaning from shunt dependency and personalized control. With sensor-based control comes the opportunity to provide data to the physician on patient condition and shunt function, perhaps even by a smart phone. An often ignored but highly valuable contribution would be designs that correct the high failure rates of existing shunts. Despite the long history and increasing development activity in the past decade, patients are yet to see a commercialized smart shunt. Most smart shunt development focuses on concepts or on isolated technical features, but successful smart shunt designs will be a balance between technical feasibility, economic viability, and acceptable regulatory risk. Here, we present the status of this effort and a framework for understanding the challenges and opportunities that will guide introduction of smart shunts into patient care.
New and improved ways to treat hydrocephalus: Pursuit of a smart shunt
Lutz, Barry R.; Venkataraman, Pranav; Browd, Samuel R.
2013-01-01
The most common treatment for hydrocephalus is placement of a cerebrospinal fluid shunt to supplement or replace lost drainage capacity. Shunts are life-saving devices but are notorious for high failure rates, difficulty of diagnosing failure, and limited control options. Shunt designs have changed little since their introduction in 1950s, and the few changes introduced have had little to no impact on these long-standing problems. For decades, the community has envisioned a “smart shunt” that could provide advanced control, diagnostics, and communication based on implanted sensors, feedback control, and telemetry. The most emphasized contribution of smart shunts is the potential for advanced control algorithms, such as weaning from shunt dependency and personalized control. With sensor-based control comes the opportunity to provide data to the physician on patient condition and shunt function, perhaps even by a smart phone. An often ignored but highly valuable contribution would be designs that correct the high failure rates of existing shunts. Despite the long history and increasing development activity in the past decade, patients are yet to see a commercialized smart shunt. Most smart shunt development focuses on concepts or on isolated technical features, but successful smart shunt designs will be a balance between technical feasibility, economic viability, and acceptable regulatory risk. Here, we present the status of this effort and a framework for understanding the challenges and opportunities that will guide introduction of smart shunts into patient care. PMID:23653889
Precise GNSS Positioning Using Smart Devices
Caldera, Stefano; Pertusini, Lisa
2017-01-01
The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved. PMID:29064417
Precise GNSS Positioning Using Smart Devices.
Realini, Eugenio; Caldera, Stefano; Pertusini, Lisa; Sampietro, Daniele
2017-10-24
The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.
Novel textile systems for the continuous monitoring of vital signals: design and characterization.
Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José
2015-08-01
In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.
Conformal and embedded IDT microsensors for health monitoring of structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
2000-06-01
MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.
Etxaniz, Josu; Aranguren, Gerardo
2017-04-30
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model
Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco
2015-01-01
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network. PMID:26134104
On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.
Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco
2015-06-30
Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.
Probabilistic assessment of smart composite structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael C.
1994-01-01
A composite wing with spars and bulkheads is used to demonstrate the effectiveness of probabilistic assessment of smart composite structures to control uncertainties in distortions and stresses. Results show that a smart composite wing can be controlled to minimize distortions and to have specified stress levels in the presence of defects. Structural responses such as changes in angle of attack, vertical displacements, and stress in the control and controlled plies are probabilistically assessed to quantify their respective uncertainties. Sensitivity factors are evaluated to identify those parameters that have the greatest influence on a specific structural response. Results show that smart composite structures can be configured to control both distortions and ply stresses to satisfy specified design requirements.
Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-01-01
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-09-22
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.
Analysis of commode grab bar usage for the monitoring of older adults in the smart home environment.
Arcelus, Amaya; Holtzman, Megan; Goubran, Rafik; Sveistrup, Heidi; Guitard, Paulette; Knoefel, Frank
2009-01-01
The occurrence of falls inside the home is a common yet potentially hazardous issue for adults as they age. Even with the installation of physical aids such as grab bars, weight transfers on and off a toilet or bathtub can become increasingly difficult as a person's level of physical mobility and sense of balance deteriorate. Detecting this deterioration becomes an important goal in fall prevention within a smart home. This paper develops an unobtrusive method of analyzing the usage of toilet grab bars using pressure sensors embedded into the arm rests of a commode. Clinical parameters are successfully extracted automatically from a series of stand-to-sit (StSi) and sit-to-stand (SiSt) transfers performed by a trial group of young and older adults. A preliminary comparison of the parameters indicates differences between the two groups, and aligns well with published characteristics obtained using accelerometers worn on the body. The unobtrusive nature of this method provides a useful tool to be incorporated into a system of continuous monitoring of older adults within the smart home environment.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
Mapping and navigational control for a smart wheelchair.
Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F
2012-01-01
A smart wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A smart wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of smart wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current smart wheelchair technology.
Smart Drug Delivery Systems in Cancer Therapy.
Unsoy, Gozde; Gunduz, Ufuk
2018-02-08
Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
An innovative and multi-functional smart vibration platform
NASA Astrophysics Data System (ADS)
Olmi, C.; Song, G.; Mo, Y. L.
2007-08-01
Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
Wireless and embedded carbon nanotube networks for damage detection in concrete structures
NASA Astrophysics Data System (ADS)
Saafi, Mohamed
2009-09-01
Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.
Compressive sensing based wireless sensor for structural health monitoring
NASA Astrophysics Data System (ADS)
Bao, Yuequan; Zou, Zilong; Li, Hui
2014-03-01
Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.
Development of integrated control system for smart factory in the injection molding process
NASA Astrophysics Data System (ADS)
Chung, M. J.; Kim, C. Y.
2018-03-01
In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
Twamley, Elizabeth W; Jak, Amy J; Delis, Dean C; Bondi, Mark W; Lohr, James B
2014-01-01
Traumatic brain injury (TBI) can result in cognitive impairments and persistent postconcussive symptoms that limit functional recovery, including return to work. We evaluated a 12 wk compensatory cognitive training intervention (Cognitive Symptom Management and Rehabilitation Therapy [CogSMART]) in the context of supported employment for Veterans with mild to moderate TBI. Participants were randomly assigned to receive 12 wk of supported employment plus CogSMART or enhanced supported employment that controlled for therapist attention (control). CogSMART sessions were delivered by the employment specialist and included psychoeducation regarding TBI; strategies to improve sleep, fatigue, headaches, and tension; and compensatory cognitive strategies in the domains of prospective memory, attention, learning and memory, and executive functioning. Compared with controls, those assigned to supported employment plus CogSMART demonstrated significant reductions in postconcussive symptoms (Cohen d = 0.97) and improvements in prospective memory functioning (Cohen d = 0.72). Effect sizes favoring CogSMART for posttraumatic stress disorder symptom severity, depressive symptom severity, and attainment of competitive work within 14 wk were in the small to medium range (Cohen d = 0.35-0.49). Those who received CogSMART rated the intervention highly. Results suggest that adding CogSMART to supported employment may improve postconcussive symptoms and prospective memory. These effects, as well as smaller effects on psychiatric symptoms and ability to return to work, warrant replication in a larger trial.
An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy.
Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis
2017-03-21
The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system's ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year.
An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy
Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Castedo, Luis
2017-01-01
The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system’s ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year. PMID:28335568
Zhang, Xuqing; Zhong, Yu; Xia, Xinhui; Xia, Yang; Wang, Donghuang; Zhou, Cheng'ao; Tang, Wangjia; Wang, Xiuli; Wu, J B; Tu, Jiangping
2018-04-25
Lithium-sulfur batteries (LSBs) are deemed to be among the most prospective next-generation advanced high-energy batteries. Advanced cathode materials fabricated from biological carbon are becoming more popular due to their unique properties. Inspired by the fibrous structure of bamboo, herein we put forward a smart strategy to convert bamboo sticks for barbecue into uniform bamboo carbon fibers (BCF) via a simple hydrothermal treatment proceeded in alkaline solution. Then NiCl 2 is used to etch the fibers through a heat treatment to achieve Ni-embedded porous graphitic carbon fibers (PGCF/Ni) for LSBs. The designed PGCF/Ni/S electrode exhibits improved electrochemical performances including high initial capacity (1198 mAh g -1 at 0.2 C), prolonged cycling life (1030 mAh g -1 at 0.2 C after 200 cycles), and improved rate capability. The excellent properties are attributed to the synergistic effect of 3D porous graphitic carbon fibers with highly conductive Ni nanoparticles embedded.
Application of smart materials for improved flight performance of military aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudva, J.; Appa, K.; Martin, C.
1995-12-31
This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less
Data distribution service-based interoperability framework for smart grid testbed infrastructure
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
2016-03-02
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
Decentralized adaptive control designs and microstrip antennas for smart structures
NASA Astrophysics Data System (ADS)
Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.
1996-05-01
Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.
Smart home design and operation preferences of Americans and Koreans.
Jeong, Kyeong-Ah; Salvendy, Gavriel; Proctor, Robert W
2010-05-01
The purpose of the present study was to generate both culture-specific and universal design and operational guidelines for smart homes. Questionnaire surveys were performed in the USA and South Korea to collect data on preferences for various aspects of the design and operation of smart homes. The factors that the survey participants considered most important were derived through factor analyses of the survey data and the responses of Americans and Koreans were compared to generate culture-specific guidelines. The five factors derived were: 1) environmental connection and control; 2) smart devices (appliances) and their control; 3) physical safety and security concerns; 4) comfort and relaxation issues; 5) control restriction issues. The two cultures showed different preference structures with statistical significance for all five factors. Prediction capability of the derived factors was also examined through multiple regressions for buying intention, interest, self-vision of living, moving intention, living satisfaction and perceived time and effort savings. 'Environmental connection and control' and 'smart devices (appliances) and their control' seemed to be the most influential factors for Americans and Koreans, respectively. STATEMENT OF RELEVANCE: Analysis of a survey of design and operational preferences for smart homes yielded five factors on which US and South Korean respondents differed. These factors form the basis for culture-specific guidelines, which, along with universal guidelines, should be followed in design of user-centred smart homes.
Street deployment of pedestrian control smart traffic signals.
DOT National Transportation Integrated Search
2009-04-01
Smart Signals is a term used to describe the application of network based distributed control technology to the control of traffic signals at signalized intersections. Presently, signalized intersections use a centralized control approach where all o...
NASA Astrophysics Data System (ADS)
Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui
2017-12-01
This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.
Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare
NASA Astrophysics Data System (ADS)
de Silva, Liyanage C.; Petra, M. Iskandar; Punchihewa, G. Amal
In this paper we present our research results related to smart monitoring, control and communication with the main objective of energy efficiency and eldercare in mind. One of the main objectives of this research work is to use multitude of different sensors to monitor activities in a smart home and use the results to control the home environment to meet the objectives of energy efficiency and eldercare. Here we present the application of the smart monitoring to a prototype system.
Smart homes to improve the quality of life for all.
Aiello, Marco; Aloise, Fabio; Baldoni, Roberto; Cincotti, Febo; Guger, Christoph; Lazovik, Alexander; Mecella, Massimo; Pucci, Paolo; Rinsma, Johanna; Santucci, Giuseppe; Taglieri, Massimiliano
2011-01-01
A home is smart when, being aware of its own state and that of its users, is capable of controlling itself in order to support the user wishes and thus improving their quality of life. This holds both for users with special needs and for those with ordinary domestic needs. In this paper, we overview the Smart Homes for All project which represents the current state of the art with respect to software control and user interfaces in the smart homes arena.
Du, Guofeng; Li, Zhao; Song, Gangbing
2018-05-23
Impact loads can have major adverse effects on the safety of civil engineering structures, such as concrete-filled steel tubular (CFST) columns. The study of mechanical behavior and stress analysis of CFST columns under impact loads is very important to ensure their safety against such loads. At present, the internal stress monitoring of the concrete cores CFST columns under impact loads is still a very challenging subject. In this paper, a PVDF (Polyvinylidene Fluoride) piezoelectric smart sensor was developed and successfully applied to the monitoring of the internal stress of the concrete core of a CFST column under impact loads. The smart sensor consists of a PVDF piezoelectric film sandwiched between two thin steel plates through epoxy. The protection not only prevents the PVDF film from impact damages but also ensures insulation and waterproofing. The smart sensors were embedded into the circular concrete-filled steel tube specimen during concrete pouring. The specimen was tested against impact loads, and testing data were collected. The time history of the stress obtained from the PVDF smart sensor revealed the evolution of core concrete internal stress under impact loads when compared with the impact force⁻time curve of the hammer. Nonlinear finite element simulations of the impact process were also carried out. The results of FEM simulations had good agreement with the test results. The results showed that the proposed PVDF piezoelectric smart sensors can effectively monitor the internal stress of concrete-filled steel tubular columns under impact loads.
Development of damage suppression system using embedded SMA foil sensor and actuator
NASA Astrophysics Data System (ADS)
Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Song, Dong Y.; Takeda, Nobuo
2000-06-01
The recent studies suggest possible applications of shape memory alloy (SMA) for a smart health monitoring and suppression of damage growth. The authors have been conducting research and development studies on applications of embedded SMA foil sensors and actuators in CFRP laminates. The goal of this research is suppression of damage growth in CFRP laminates. At first, the authors proposed a concept of damage suppression in CFRP laminates. Then, the development studies are conducted in three phases. The first phase is the improvement of interlaminar shear strength between SMA and CFRP laminates. Some surface treatments were investigated for the improvement of bonding property by peel resistance test and single lap shear strength test. The second phase is the investigation of fabrication technique for producing a CFRP panel with embedded SMA foils. Fixture jigs were devised to introduce tensile loads during the fabrication process. The third phase is the strength demonstration of CFRP laminates with embedded SMA foils. Some strength test were conducted to obtain the design data for aircraft structures. It is confirmed that the shrinking force of pre-strained SMA influences to the strength and the crack density of CFRP panel.
Intelligent and robust optimization frameworks for smart grids
NASA Astrophysics Data System (ADS)
Dhansri, Naren Reddy
A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.
Smart cards: a specific application in the hospital.
Güler, I; Zengin, R M; Sönmez, M
1998-12-01
Computers have the ability to process and access tremendous amounts of information in our daily lives. But, now, individuals have this ability by carrying a smart card in their own wallets. These cards provide us the versatility, power, and security of computers. This study begins with a short description of smart cards and their advantages. Then, an electronic circuit that is designed for healthcare application in hospitals is introduced. This circuit functions as a smart card holder identifier, access controller for hospital doors and also can be used as a smart card reader/writer. Design steps of this electronic circuit, operation principles, serial communication with P.C., and the software are examined. Finally a complete access control network for hospital doors that functions with smart cards is discussed.
Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
Lahdenoja, Olli; Hurnanen, Tero; Iftikhar, Zuhair; Nieminen, Sami; Knuutila, Timo; Saraste, Antti; Kiviniemi, Tuomas; Vasankari, Tuija; Airaksinen, Juhani; Pankaala, Mikko; Koivisto, Tero
2018-01-01
We present a smartphone-only solution for the detection of atrial fibrillation (AFib), which utilizes the built-in accelerometer and gyroscope sensors [inertial measurement unit, (IMU)] in the detection. Depending on the patient's situation, it is possible to use the developed smartphone application either regularly or occasionally for making a measurement of the subject. The smartphone is placed on the chest of the patient who is adviced to lay down and perform a noninvasive recording, while no external sensors are needed. After that, the application determines whether the patient suffers from AFib or not. The presented method has high potential to detect paroxysmal ("silent") AFib from large masses. In this paper, we present the preprocessing, feature extraction, feature analysis, and classification results of the envisioned AFib detection system based on clinical data acquired with a standard mobile phone equipped with Google Android OS. Test data was gathered from 16 AFib patients (validated against ECG), as well as a control group of 23 healthy individuals with no diagnosed heart diseases. We obtained an accuracy of 97.4% in AFib versus healthy classification (a sensitivity of 93.8% and a specificity of 100%). Due to the wide availability of smart devices/sensors with embedded IMU, the proposed methods could potentially also scale to other domains such as embedded body-sensor networks.
NASA Astrophysics Data System (ADS)
Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.
2016-04-01
The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging. Electronic supplementary information (ESI) available: Details on the estimations of evaporation rates and limits of detection, ESI figures and author contributions. See DOI: 10.1039/c6nr00537c
1992-11-13
AD-A269 879 Damage-Survivable j and Damage-Tolerant Laminated Composites .4.. with Optimally placed Piezoelectric Layers Final Report No. 1 S. P...Damage Surviable and Damage-Tolerant Laminated Composites With Optimally Placed Piezoelectric Layers 12. PERSONAL AUTHOR(S) S.P. Joshi, W.S. Chan ൕa...block number) The main objective of the research is to assure that the embedded sensors/actuators in a smart laminated composite structure are damage
Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.
Tian, Jiajun; Zhang, Qi; Han, Ming
2013-03-11
Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.
Development of a smart type motor operated valve for nuclear power plants
NASA Astrophysics Data System (ADS)
Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo
2005-12-01
In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.
NASA Astrophysics Data System (ADS)
Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.
2017-10-01
Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.
Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration
NASA Astrophysics Data System (ADS)
Patil, Devendra; Song, Gangbing
2016-04-01
As offshore oil and gas exploration moves further offshore and into deeper waters to reach hydrocarbon reserves, it is becoming essential for the industry to develop more reliable and efficient hydraulic accumulators to supply pressured hydraulic fluid for various control and actuation operations, such as closing rams of blowout preventers and controlling subsea valves on the seafloor. By utilizing the shape memory effect property of nitinol, which is a type of shape memory alloy (SMA), an innovative SMA actuated hydraulic accumulator prototype has been developed and successfully tested at Smart Materials and Structure Laboratory at the University of Houston. Absence of gas in the developed SMA accumulator prototype makes it immune to hydrostatic head loss caused by water depth and thus reduces the number of accumulators required in deep water operations. Experiments with a feedback control have demonstrated that the proposed SMA actuated accumulator can provide precisely regulated pressurized fluids. Furthermore the potential use of ultracapacitors along with an embedded system to control the electric power supplied to SMA allows this accumulator to be an autonomous device for deployment. The developed SMA accumulator will make deepwater oil extraction systems more compact and cost effective.
Change management methodologies trained for automotive infotainment projects
NASA Astrophysics Data System (ADS)
Prostean, G.; Volker, S.; Hutanu, A.
2017-01-01
An Automotive Electronic Control Units (ECU) development project embedded within a car Environment is constantly under attack of a continuous flow of modifications of specifications throughout the life cycle. Root causes for those modifications are for instance simply software or hardware implementation errors or requirement changes to satisfy the forthcoming demands of the market to ensure the later commercial success. It is unavoidable that from the very beginning until the end of the project “requirement changes” will “expose” the agreed objectives defined by contract specifications, which are product features, budget, schedule and quality. The key discussions will focus upon an automotive radio-navigation (infotainment) unit, which challenges aftermarket devises such as smart phones. This competition stresses especially current used automotive development processes, which are fit into a 4 Year car development (introduction) cycle against a one-year update cycle of a smart phone. The research will focus the investigation of possible impacts of changes during all phases of the project: the Concept-Validation, Development and Debugging-Phase. Building a thorough understanding of prospective threats is of paramount importance in order to establish the adequate project management process to handle requirement changes. Personal automotive development experiences and Literature review of change- and configuration management software development methodologies led the authors to new conceptual models, which integrates into the structure of traditional development models used in automotive projects, more concretely of radio-navigation projects.
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
NASA Technical Reports Server (NTRS)
Koehne, Jessica E.
2016-01-01
A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.
Wilksch, Simon M; Paxton, Susan J; Byrne, Susan M; Austin, S Bryn; O'Shea, Anne; Wade, Tracey D
2017-01-01
To investigate if baseline shape and weight concern (SWC) moderated outcomes in Prevention Across the Spectrum, a randomized-controlled trial (RCT) of 3 school-based programs aimed at reducing eating disorder and obesity risk factors. N = 1,316 Grade 7 and 8 girls and boys (M age = 13.21 years) across three Australian states were randomly allocated to: Media Smart; Life Smart; Helping, Encouraging, Listening and Protecting Peers Initiative (HELPP) or control (usual school class). Moderation was explored by testing interaction effects for group (Media Smart; Life Smart; HELPP; Control) × moderator (SWC: higher-SWC; lower-SWC) × time (post-program; 6-month follow-up; 12-month follow-up), with baseline risk factor scores entered as covariates. Moderation effects were found for shape concern, weight concern, eating concern, regular eating (i.e., meal skipping), physical activity, body dissatisfaction, dieting, and perfectionism. Post-hoc testing found eating concern at post-program was the only variable where higher-SWC Media Smart participants experienced a reduction in risk relative to controls. Both higher-SWC Life Smart and HELPP participants reported an increase in eating concern relative to controls and both groups were skipping more meals than controls at 12-month follow-up. Amongst lower-SWC participants, Media Smart was the only group to experience a benefit relative to controls (physical activity). This study highlights the need for moderator analyses to become more routinely conducted in universal trials, to ensure that participants across baseline risk levels are benefiting and not harmed from program participation. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2017; 50:66-75). © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
Cyber and physical equipment digital control system in Industry 4.0 item designing company
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The problem of organization of digital control of the item designing company equipped with cyber and physical systems is being studied. A scheme of cyber and physical systems and personnel interaction in the Industry 4.0 smart factory company is presented. A scheme of assembly units transportation in the Industry 4.0 smart factory company is provided. A scheme of digital control system in the Industry 4.0 smart factory company is given.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.
1998-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption
Power systems and requirements for the integration of smart structures into aircraft
NASA Astrophysics Data System (ADS)
Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.
2002-07-01
Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.
ERIC Educational Resources Information Center
Gearhart, Christopher
2016-01-01
This study examines McGraw-Hill Higher Education's LearnSmart online textbook supplement and its effect on student exam performance in an interpersonal communication course. Students (N = 62) in two sections were either enrolled in a control group with no required LearnSmart usage or a treatment group with requisite LearnSmart assignments.…
2011-03-01
they can continue to leverage these capabilities (building Smart Grid infrastructure and providing Internet connectivity to every home ) while ensuring...21 Figure 9. Smart Grid Interoperability .............................................................................. 22 Figure 10. Smart ...Grid Integration .................................................................................... 24 Figure 11. National Smart Grid Initiatives
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951
Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.
Zhang, Liping; Tang, Shanyu; Luo, He
2016-01-01
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
Fuzzy Modal Control Applied to Smart Composite Structure
NASA Astrophysics Data System (ADS)
Koroishi, E. H.; Faria, A. W.; Lara-Molina, F. A.; Steffen, V., Jr.
2015-07-01
This paper proposes an active vibration control technique, which is based on Fuzzy Modal Control, as applied to a piezoelectric actuator bonded to a composite structure forming a so-called smart composite structure. Fuzzy Modal Controllers were found to be well adapted for controlling structures with nonlinear behavior, whose characteristics change considerably with respect to time. The smart composite structure was modelled by using a so called mixed theory. This theory uses a single equivalent layer for the discretization of the mechanical displacement field and a layerwise representation of the electrical field. Temperature effects are neglected. Due to numerical reasons it was necessary to reduce the size of the model of the smart composite structure so that the design of the controllers and the estimator could be performed. The role of the Kalman Estimator in the present contribution is to estimate the modal states of the system, which are used by the Fuzzy Modal controllers. Simulation results illustrate the effectiveness of the proposed vibration control methodology for composite structures.
Liam, Chong-Kin; Pang, Yong-Kek; Chua, Keong-Tiong
2014-06-01
To evaluate Malaysian patients' satisfaction levels and asthma control with Symbicort SMART® in the primary care setting. This is a cross-sectional, multicentre study involving adult patients with persistent asthma who were prescribed only Symbicort SMART in the preceding one month prior to recruitment. Patients' satisfaction with Symbicort SMART and asthma control were evaluated using the self-administered Satisfaction with Asthma Treatment Questionnaire (SATQ) and the Asthma Control Test (ACT). Asthma was controlled (ACT score >20) in 189 (83%) of 228 patients. The mean overall SATQ score for patients with controlled asthma was 5.65 indicating a high satisfaction level, which was positively correlated with high ACT scores. There were differences in asthma control based on ethnicity, number of unscheduled visits and treatment compliance. Symbicort SMART resulted in a high satisfaction level and asthma control among Malaysian patients treated in the primary care setting and it is an effective and appealing treatment for asthmatic patients.
NASA Astrophysics Data System (ADS)
Mahdavinejad, M.; Bitaab, N.
2017-08-01
Search for high-performance architecture and dreams of future architecture resulted in attempts towards meeting energy efficient architecture and planning in different aspects. Recent trends as a mean to meet future legacy in architecture are based on the idea of innovative technologies for resource efficient buildings, performative design, bio-inspired technologies etc. while there are meaningful differences between architecture of developed and developing countries. Significance of issue might be understood when the emerging cities are found interested in Dubaization and other related booming development doctrines. This paper is to analyze the level of developing countries’ success to achieve smart-eco buildings’ goals and objectives. Emerging cities of West of Asia are selected as case studies of the paper. The results of the paper show that the concept of high-performance architecture and smart-eco buildings are different in developing countries in comparison with developed countries. The paper is to mention five essential issues in order to improve future architecture of developing countries: 1- Integrated Strategies for Energy Efficiency, 2- Contextual Solutions, 3- Embedded and Initial Energy Assessment, 4- Staff and Occupancy Wellbeing, 5- Life-Cycle Monitoring.
Bonaccorsi, Manuele; Betti, Stefano; Rateni, Giovanni; Esposito, Dario; Brischetto, Alessia; Marseglia, Marco; Dario, Paolo; Cavallo, Filippo
2017-01-01
This paper introduces HighChest, an innovative smart freezer designed to promote energy efficient behavior and the responsible use of food. Introducing a novel human–machine interface (HMI) design developed through assessment phases and a user involvement stage, HighChest is state of the art, featuring smart services that exploit embedded sensors and Internet of things functionalities, which enhance the local capabilities of the appliance. The industrial design thinking approach followed for the advanced HMI is intended to maximize the social impact of the food management service, enhancing both the user experience of the product and the user’s willingness to adopt eco- and energy-friendly behaviors. The sensor equipment realizes automatic recognition of food by learning from the users, as well as automatic localization inside the deposit space. Moreover, it provides monitoring of the appliance’s usage, avoiding temperature and humidity issues related to improper use. Experimental tests were conducted to evaluate the localization system, and the results showed 100% accuracy for weights greater or equal to 0.5 kg. Drifts due to the lid opening and prolonged usage time were also measured, to implement automatic reset corrections. PMID:28604609
FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation
Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo
2010-01-01
Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656
Smart skin spiral antenna with chiral absorber
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
1995-05-01
Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.
Application of Sequential Quadratic Programming to Minimize Smart Active Flap Rotor Hub Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Leyland, Jane
2014-01-01
In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.
Smart healthcare textile sensor system for unhindered-pervasive health monitoring
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.
2012-04-01
Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.
Feasibility of BCI Control in a Realistic Smart Home Environment.
Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand
2016-01-01
Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the "Domus" smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%).
Feasibility of BCI Control in a Realistic Smart Home Environment
Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand
2016-01-01
Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the “Domus”1 smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%). PMID:27616986
Consensus positive position feedback control for vibration attenuation of smart structures
NASA Astrophysics Data System (ADS)
Omidi, Ehsan; Nima Mahmoodi, S.
2015-04-01
This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.
Heris, Hossein K.; Rahmat, Meysam
2015-01-01
Hybrid HA/Ge hydrogel particles are embedded in a secondary HA network to improve their structural integrity. The internal microstructure of the particles is imaged through TEM. CSLM is used to identify the location of the Ge molecules in the microgels. Through indentation tests, the Young’s modulus of the individual particles is found to be 22 ± 2.5 kPa. The overall shear modulus of the composite is 75 ± 15 Pa at 1 Hz. The mechanical properties of the substrate are found to be viable for cell adhesion. The particles’ diameter at pH = 8 is twice that at pH = 5. The pH sensitivity is found to be appropriate for smart drug delivery. Based on their mechanical and structural properties, HA–Ge hierarchical materials may be well suited for use as injectable biomaterials for tissue reconstruction. PMID:22147507
Distributed condition monitoring techniques of optical fiber composite power cable in smart grid
NASA Astrophysics Data System (ADS)
Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu
2011-11-01
Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.
Smart Microsystems with Photonic Element and Their Applications to Aerospace Platforms
NASA Technical Reports Server (NTRS)
Adamovsky, G.; Lekki, J.; Sutter, J. K.; Sarkisov, S. S.; Curley, M. J.; Martin, C. E.
2000-01-01
The need to make manufacturing, operation, and support of airborne vehicles safer and more efficient forces engineers and scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EMI, fire safety, high bandwidth, and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection, and processing of the signal occurs at the peripherals that include smart structures and devices. Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators, embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the Glenn Research Center (GRC).
Experimental study of a smart foam sound absorber.
Leroy, Pierre; Berry, Alain; Herzog, Philippe; Atalla, Noureddine
2011-01-01
This article presents the experimental implementation and results of a hybrid passive/active absorber (smart foam) made up from the combination of a passive absorbent (foam) and a curved polyvinylidene fluoride (PVDF) film actuator bonded to the rear surface of the foam. Various smart foam prototypes were built and tested in active absorption experiments conducted in an impedance tube under plane wave propagation condition at frequencies between 100 and 1500 Hz. Three control cases were tested. The first case used a fixed controller derived in the frequency domain from estimations of the primary disturbance at a directive microphone position in the tube and the transfer function between the control PVDF and the directive microphone. The two other cases used an adaptive time-domain feedforward controller to absorb either a single-frequency incident wave or a broadband incident wave. The non-linearity of the smart foams and the causality constraint were identified to be important factors influencing active control performance. The effectiveness of the various smart foam prototypes is discussed in terms of the active and passive absorption coefficients as well as the control voltage of the PVDF actuator normalized by the incident sound pressure.
NASA Astrophysics Data System (ADS)
Leroy, Pierre
The objective of this thesis is to conduct a thorough numerical and experimental analysis of the smart foam concept, in order to highlight the physical mechanisms and the technological limitations for the control of acoustic absorption. A smart foam is made of an absorbing material with an embedded actuator able to complete the lack of effectiveness of this material in the low frequencies (<500Hz). In this study, the absorbing material is a melamine foam and the actuator is a piezoelectric film of PVDF. A 3D finite element model coupling poroelastic, acoustic, elastic and piezoelectric fields is proposed. The model uses volume and surface quadratic elements. The improved formulation (u,p) is used. An orthotropic porous element is proposed. The power balance in the porous media is established. This model is a powerful and general tool allowing the modeling of all hybrid configurations using poroelastic and piezoelectric fields. Three smart foams prototypes have been built with the aim of validating the numerical model and setting up experimental active control. The comparison of numerical calculations and experimental measurements shows the validity of the model for passive aspects, transducer behaviors and also for control configuration. The active control of acoustic absorption is carried out in normal incidence with the assumption of plane wave in the frequency range [0-1500Hz]. The criterion of minimization is the reflected pressure measured by an unidirectional microphone. Three control cases were tested: off line control with a sum of pure tones, adaptive control with the nFX-LMS algorithm for a pure tone and for a random broad band noise. The results reveal the possibility of absorbing a pressure of 1.Pa at 1.00Hz with 100V and a broad band noise of 94dB with a hundred Vrms starting from 250Hz. These results have been obtained with a mean foam thickness of 4cm. The control ability of the prototypes is directly connected to the acoustic flow. An important limitation for the broad band control comes from the high distortion level through the system in the low and high frequency range (<500Hz, > 1500Hz). The use of the numerical model, supplemented by an analytical study made it possible to clarify the action mode and the dissipation mechanisms in smart foams. The PVDF moves with the same phase and amplitude of the residual incidental pressure which is not dissipated in the foam. Viscous effect dissipation is then very weak in the low frequencies and becomes more important in the high frequencies. The wave which was not been dissipated in the porous material is transmitted by the PVDF in the back cavity. The outlooks of this study are on the one hand, the improvement of the model and the prototypes and on the other hand, the widening of the field of research to the control of the acoustic transmission and the acoustic radiation of surfaces. The model could be improved by integrating viscoelastic elements able to account for the behavior of the adhesive layer between the PVDF and foam. A modelisation of electro-elastomers materials would also have to be implemented in the code. This new type of actuator could make it possible to exceed the PVDF displacement limitations. Finally it would be interesting for the industrial integration prospects to seek configurations able to maximize acoustic absorption and to limit the transmission and the radiation of surfaces at the same time.
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
Smart material screening machines using smart materials and controls
NASA Astrophysics Data System (ADS)
Allaei, Daryoush; Corradi, Gary; Waigand, Al
2002-07-01
The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-08-01
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
Coordinated Optimization of Distributed Energy Resources and Smart Loads in Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2016-11-14
Distributed energy resources (DERs) and smart loads have the potential to provide flexibility to the distribution system operation. A coordinated optimization approach is proposed in this paper to actively manage DERs and smart loads in distribution systems to achieve the optimal operation status. A three-phase unbalanced Optimal Power Flow (OPF) problem is developed to determine the output from DERs and smart loads with respect to the system operator's control objective. This paper focuses on coordinating PV systems and smart loads to improve the overall voltage profile in distribution systems. Simulations have been carried out in a 12-bus distribution feeder andmore » results illustrate the superior control performance of the proposed approach.« less
1994-06-01
and Optimization of Composite and Sandwich Panels Using Piezoelectric Stiffeners-Actuators" Z. Chaudhry, T. Ganino and Craig A. Rogers, Virginia...Mitigation’ Abu S. Islam and Kevin C. Craig, Rensselaer Polytechnic Institute * ’Damage Detection in Composite Structures Using Piezoelectric Materials" H...Singh, L. Y. Lo and J. S. Sirkis, University of Maryland "Meaningful Damage Evolution Tracking In Composites Using Structurally Embedded Optical Fiber
NASA Astrophysics Data System (ADS)
Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.
2016-05-01
A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.
Towards a smart glove: arousal recognition based on textile Electrodermal Response.
Valenza, Gaetano; Lanata, Antonio; Scilingo, Enzo Pasquale; De Rossi, Danilo
2010-01-01
This paper investigates the possibility of using Electrodermal Response, acquired by a sensing fabric glove with embedded textile electrodes, as reliable means for emotion recognition. Here, all the essential steps for an automatic recognition system are described, from the recording of physiological data set to a feature-based multiclass classification. Data were collected from 35 healthy volunteers during arousal elicitation by means of International Affective Picture System (IAPS) pictures. Experimental results show high discrimination after twenty steps of cross validation.
Advanced materials and techniques for fibre-optic sensing
NASA Astrophysics Data System (ADS)
Henderson, Philip J.
2014-06-01
Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.
Survey of cyber security issues in smart grids
NASA Astrophysics Data System (ADS)
Chen, Thomas M.
2010-04-01
The future smart grid will enable cost savings and lower energy use by means of smart appliances and smart meters which support dynamic load management and real-time monitoring of energy use and distribution. The introduction of two-way communications and control into power grid introduces security and privacy concerns. This talk will survey the security and privacy issues in smart grids using the NIST reference model, and relate these issues to cyber security in the Internet.
Common Badging and Access Control System (CBACS)
NASA Technical Reports Server (NTRS)
Baldridge, Tim
2005-01-01
The goals of the project are: Achieve high business value through a common badging and access control system that integrates with smart cards. Provide physical (versus logical) deployment of smart cards initially. Provides a common consistent and reliable environment into which to release the smart card. Gives opportunity to develop agency-wide consistent processes, practices and policies. Enables enterprise data capture and management. Promotes data validation prior to SC issuance.
DoD Comprehensive Military Unmanned Aerial Vehicle Smart Device Ground Control Station Threat Model
2015-04-01
design , imple- mentation, and test evaluation were interviewed to evaluate the existing gaps in the DoD processes for cybersecurity. This group exposed...such as antenna design and signal reception have made satellite communication networks a viable solution for smart devices on the battlefield...DoD Comprehensive Military Unmanned AERIAL VEHICLE SMART DEVICE GROUND CONTROL STATION THREAT MODEL Image designed by Diane Fleischer Report
Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers.
Chaves-Diéguez, David; Pellitero-Rivero, Alexandre; García-Coego, Daniel; González-Castaño, Francisco Javier; Rodríguez-Hernández, Pedro Salvador; Piñeiro-Gómez, Óscar; Gil-Castiñeira, Felipe; Costa-Montenegro, Enrique
2015-07-03
Smart cities are expected to improve the quality of life of citizens by relying on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and interconnect thousands of sensors and actuators scattered across the city. At the same time, mobile devices widely assist professional and personal everyday activities. A very good example of the potential of these devices for smart cities is their powerful support for intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert users. In our work, we consider a scenario that combines IoT and AR within a smart city maintenance service to improve the accessibility of sensor and actuator devices in the field, where responsiveness is crucial. In it, depending on the location and needs of each service, data and commands will be transported by an urban communications network or consulted on the spot. Direct AR interaction with urban objects has already been described; it usually relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify object resources. These IDs allow information about the objects to be retrieved from a remote server. In this work, we present a novel solution that replaces static AR markers with dynamic markers based on LED communication, which can be decoded through cameras embedded in smartphones. These dynamic markers can directly deliver sensor information to the rendering device, on top of the object ID, without further network interaction.
Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers
Chaves-Diéguez, David; Pellitero-Rivero, Alexandre; García-Coego, Daniel; González-Castaño, Francisco Javier; Rodríguez-Hernández, Pedro Salvador; Piñeiro-Gómez, Óscar; Gil-Castiñeira, Felipe; Costa-Montenegro, Enrique
2015-01-01
Smart cities are expected to improve the quality of life of citizens by relying on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and interconnect thousands of sensors and actuators scattered across the city. At the same time, mobile devices widely assist professional and personal everyday activities. A very good example of the potential of these devices for smart cities is their powerful support for intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert users. In our work, we consider a scenario that combines IoT and AR within a smart city maintenance service to improve the accessibility of sensor and actuator devices in the field, where responsiveness is crucial. In it, depending on the location and needs of each service, data and commands will be transported by an urban communications network or consulted on the spot. Direct AR interaction with urban objects has already been described; it usually relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify object resources. These IDs allow information about the objects to be retrieved from a remote server. In this work, we present a novel solution that replaces static AR markers with dynamic markers based on LED communication, which can be decoded through cameras embedded in smartphones. These dynamic markers can directly deliver sensor information to the rendering device, on top of the object ID, without further network interaction. PMID:26151215
Energy harvesting from mastication forces via a smart tooth
NASA Astrophysics Data System (ADS)
Bani-Hani, Muath; Karami, M. Amin
2016-04-01
The batteries of the current pacing devices are relatively large and occupy over 60 percent of the size of pulse generators. Therefore, they cannot be placed in the subtle areas of human body. In this paper, the mastication force and the resulting tooth pressure are converted to electricity. The pressure energy can be converted to electricity by using the piezoelectric effect. The tooth crown is used as a power autonomous pulse generator. We refer to this envisioned pulse generator as the smart tooth. The smart tooth is in the form of a dental implant. A piezoelectric vibration energy harvester is designed and modeled for this purpose. The Piezoelectric based energy harvesters investigated and analyzed in this paper initially includes a single degree of freedom piezoelectric based stack energy harvester which utilizes a harvesting circuit employing the case of a purely resistive circuit. The next step is utilizing and investigating a bimorph piezoelectric beam which is integrated/embedded in the smart tooth implant. Mastication process causes the bimorph beam to buckle or return to unbuckled condition. The transitions results in vibration of the piezoelectric beam and thus generate energy. The power estimated by the two mechanisms is in the order of hundreds of microwatts. Both scenarios of the energy harvesters are analytically modeled. The exact analytical solution of the piezoelectric beam energy harvester with Euler-Bernoulli beam assumptions is presented. The electro-mechanical coupling and the geometric nonlinearities have been included in the model for the piezoelectric beam.
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
DOT National Transportation Integrated Search
2009-01-01
Can a self-calibrating signal control system lead to wider adoption of adaptive traffic control systems? The focus of Next Generation of Smart Traffic Signals, an Exploratory Advanced Research (EAR) Program project, is a system that-with lit...
An overview of distributed microgrid state estimation and control for smart grids.
Rana, Md Masud; Li, Li
2015-02-12
Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs) are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE) and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF) based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method.
Rohini, G; Jamuna, V
This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.
Rohini, G.; Jamuna, V.
2016-01-01
This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189
An octopus-bioinspired solution to movement and manipulation for soft robots.
Calisti, M; Giorelli, M; Levy, G; Mazzolai, B; Hochner, B; Laschi, C; Dario, P
2011-09-01
Soft robotics is a challenging and promising branch of robotics. It can drive significant improvements across various fields of traditional robotics, and contribute solutions to basic problems such as locomotion and manipulation in unstructured environments. A challenging task for soft robotics is to build and control soft robots able to exert effective forces. In recent years, biology has inspired several solutions to such complex problems. This study aims at investigating the smart solution that the Octopus vulgaris adopts to perform a crawling movement, with the same limbs used for grasping and manipulation. An ad hoc robot was designed and built taking as a reference a biological hypothesis on crawling. A silicone arm with cables embedded to replicate the functionality of the arm muscles of the octopus was built. This novel arm is capable of pushing-based locomotion and object grasping, mimicking the movements that octopuses adopt when crawling. The results support the biological observations and clearly show a suitable way to build a more complex soft robot that, with minimum control, can perform diverse tasks.
Development of a custom-made "smart-sphere" to assess incipient entrainment by rolling
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Kitsikoudis, Vasileios; Alexakis, Athanasios; Trinder, Jon
2017-04-01
The most widely applied criterion for sediment incipient motion in engineering applications is the time- and space-averaged approach of critical Shields shear stress. Nonetheless, in the recent years published research has highlighted the importance of turbulence fluctuations in sediment incipient motion and its stochastic character. The present experimental study investigates statistically the link of the response of a "smart-pebble" to hydrodynamics in near-critical flow conditions and discusses how such a device can be utilized in engineering design. A set of specifically designed fluvial experiments monitoring the entrainment conditions for a "smart-pebble", were carried out in a tilting, recirculating flume in turbulent flow conditions while three-dimensional flow measurements were obtained with an acoustic Doppler velocimeter. The "smart-pebble" employed herein is a custom-made instrumented sphere with 7 cm diameter, which has a number of sensors embedded within its waterproof 3D-printed plastic shell. Specifically, the "smart-pebble" is equipped with miniaturized, off the shelf, low-cost, three-dimensional acceleration, orientation and angular displacement sensors. A 3D-printed local micro topography of known geometry was installed in the flume's test section and the "smart-pebble" was placed there in order to facilitate the analysis. Every time the "smart-sphere" is displaced by the flow a downstream located pin blocks its full entrainment. This allows for continuous recording of the entrainment events due to the passage of energetic events, after which the "smart-pebble" returns to its resting pocket. The "smart-pebble" device under such a configuration allows the recording of normally indiscernible (with the naked eye) vibrations, twitching motions, and full entrainments for the studied particle, allowing its analysis from a Langrangian framework. During the incipient motion experiments the retrieved data are stored in an internal memory unit or transferred online with short-range Wi-Fi antennas. In addition, two high-speed commercial cameras are used to monitor the process and provide additional information. The hydrodynamic force that the "smart-pebble" is subject to is expressed with the recently proposed impulse and energy criteria, which imply that a sufficient energetic turbulent flow structure requires not only a hydrodynamic force above a certain threshold but this force has to be exerted for sufficient time for momentum transfer to occur efficiently. It is found that the probability of entrainment for the "smart-pebble" is linked to the number of energetic flow events above a threshold level. The findings of this experimental study aim to shed more light in coarse sediment incipient motion and pave the way for the utilization of such devices in the field in actual engineering applications.
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid
NASA Astrophysics Data System (ADS)
Yao, Tong
In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
NASA Astrophysics Data System (ADS)
Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian
2015-02-01
A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.
Experimental investigation of nonlinear characteristics of a smart fluid damper
NASA Astrophysics Data System (ADS)
Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju
2018-05-01
Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
Analyzing Resiliency of the Smart Grid Communication Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anas AlMajali, Anas; Viswanathan, Arun; Neuman, Clifford
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
Research on the application of wisdom technology in smart city
NASA Astrophysics Data System (ADS)
Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi
2015-12-01
This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.
NASA Astrophysics Data System (ADS)
Pecora, R.; Amoroso, F.; Noviello, M. C.; Dimino, I.; Concilio, A.
2018-03-01
The in-flight control of the wing shape is widely considered as one of the most promising solutions to enhance the aerodynamic efficiency of the aircraft thus minimizing the fuel burnt per mission ([1]-[26]). In force of the fallout that the implementation of such a technology might have on the greening of the next generation air transport, ever increasing efforts are spent worldwide to investigate on robust solutions actually compliant with industrial standards and applicable airworthiness requirements. In the framework of the CleanSky2, a research program in aeronautics among the largest ever founded by the European Union, the authors focused on the design and validation of two devices enabling the camber-morphing of winglets and flaps specifically tailored for EASA CS-25 category aircraft ([29]). The shape transition was obtained through smart architectures based on segmented (finger-like) ribs with embedded electromechanical actuators. The combined actions of the two smart systems was conceived to modulate the load distribution along the wing while keeping it optimal at all flight conditions with unequalled benefits in terms of lift-over-drag ratio increase and root bending moment alleviation. Although characterized by a quasi-static actuation, and not used as primary control surfaces, the devices were deeply analysed with reference to their impact on aircraft aeroelastic stability. Rational approaches were adopted to duly capture their dynamics through a relevant number of elastic modes; aeroelastic coupling mechanisms were identified in nominal operative conditions as well as in case of systems' malfunctioning or failure. Trade off flutter and divergence analyses were finally carried out to assess the robustness of the adopted solutions in terms of movable parts layout, massbalancing and actuators damping.
Sarıkaya, Rabia; Erciyas, Kamile; Kara, Muhammed Isa; Sezer, Ufuk; Erciyas, Ali Fuat; Ay, Sinan
2016-10-01
In this study, different concentrations of boron have been evaluated for genotoxic and antigenotoxic properties by using the somatic mutation and recombination test (SMART) on Drosophila melanogaster. The treatment concentrations were chosen to a pretest. Third-instar larvae trans-heterozygous for two genetic markers, multiple wing hair (mwh) and flare (flr3), were treated at different concentrations (0.1, 5, 10, 20, and 40 mg/mL) of boron. In addition to investigating antigenotoxic effects, the same boron concentrations were co-administered with 0.1 mM Ethyl Methane Sulfonate (EMS). Distilled water was used as a negative control; 0.1 mM of EMS was used as a positive control. For the chronic feeding study, small plastic vials were prepared with 1.5 g of dry Drosophila Instant Medium and 5 mL of the respective test solution. Hundreds of trans-heterozygous larvae were embedded into this medium. Feeding ended with pupation of the surviving larvae. After metamorphosis, all surviving flies were collected and stored in a 70% ethanol solution. Preparation and microscopic analyses of wing were made after the treatment. Then the observed mutations were classified according to size and type of mutation per wing. Results indicated that there is no significant genotoxic effect with all of the boron concentrations. In addition, the antigenotoxic activities of boron against EMS were tested. Results indicated that all boron concentrations (0.1, 5, 10, 20 and 40 mg/mL) were able to abolish the genotoxic effects induced by the EMS. It is suggested that the observed effects can be linked to the antioxidant properties of boron. Moreover, these in vivo results will contribute to the antigenotoxicity database of boron.
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.
NASA Technical Reports Server (NTRS)
Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.
2003-01-01
An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final entry, NASA LaRC also performed three-dimensional unstructured Navier Stokes CFD analyses in an attempt to predict the potential aerodynamic impact of the smart control surface on overall model forces and moments. Eight different control surface shapes were selected for study at Mach = 0.6, Reynolds number = 3.25 x 10(exp 6), and + 2 deg., 3 deg., 8 deg., and 10 deg.model angles-of-attack. For the baseline, undeflected control surface geometry, the CFD predictions and wind-tunnel results matched well. The agreement was not as good for the more complex aero-loaded control surface shapes, though, because of the inability to accurately predict those shapes. Despite these results, the NASA CFD study served as an important step in studying advanced control effectors.
Intelligent control of a smart walker and its performance evaluation.
Grondin, Simon L; Li, Qingguo
2013-06-01
Recent technological advances have allowed the development of force-dependent, intelligently controlled smart walkers that are able to provide users with enhanced mobility, support and gait assistance. The purpose of this study was to develop an intelligent rule-based controller for a smart walker to achieve a smooth interaction between the user and the walker. This study developed a rule-based mapping between the interaction force, measured by a load cell attached to the walker handle, and the acceleration of the walker. Ten young, healthy subjects were used to evaluate the performance of the proposed controller compared to a well-known admittance-based control system. There were no significant differences between the two control systems concerning their user experience, velocity profiles or average cost of transportation. However, the admittance-based control system required a 1.2N lower average interaction force to maintain the 1m/s target speed (p = 0.002). Metabolic data also indicated that smart walker-assisted gait could considerably reduce the metabolic demand of walking with a four-legged walker.
Integrated Design and Implementation of Embedded Control Systems with Scilab
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-01-01
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost. PMID:27873827
Integrated Design and Implementation of Embedded Control Systems with Scilab.
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-09-05
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.
Scattering Control Using Nonlinear Smart Metasurface with Internal Feedback
NASA Astrophysics Data System (ADS)
Semenikhina, D. V.; Semenikhin, A. I.
2017-05-01
The ideology of creation of a nonlinear smart metasurface with internal feedback for the adaptive control by spectral composition of scattered field is offered. The metasurface contains a lattice of strip elements with nonlinear loads-sensors. They are included in a circuit of internal feedback for the adaptive control of scattered field. Numerically it is shown that maximal levels of the second harmonic in the spectrum of scattered far field correspond to maximum of voltage rectified on metasurface. Experimentally the prototype of the plane smart covering on the basis of the metasurface in the form of strip lattice with controlled nonlinear loads-sensors is investigated for an idea confirmation.
Ogawa, Takeshi; Hirayama, Jun-Ichiro; Gupta, Pankaj; Moriya, Hiroki; Yamaguchi, Shumpei; Ishikawa, Akihiro; Inoue, Yoshihiro; Kawanabe, Motoaki; Ishii, Shin
2015-08-01
Smart houses for elderly or physically challenged people need a method to understand residents' intentions during their daily-living behaviors. To explore a new possibility, we here developed a novel brain-machine interface (BMI) system integrated with an experimental smart house, based on a prototype of a wearable near-infrared spectroscopy (NIRS) device, and verified the system in a specific task of controlling of the house's equipments with BMI. We recorded NIRS signals of three participants during typical daily-living actions (DLAs), and classified them by linear support vector machine. In our off-line analysis, four DLAs were classified at about 70% mean accuracy, significantly above the chance level of 25%, in every participant. In an online demonstration in the real smart house, one participant successfully controlled three target appliances by BMI at 81.3% accuracy. Thus we successfully demonstrated the feasibility of using NIRS-BMI in real smart houses, which will possibly enhance new assistive smart-home technologies.
Recovery Act. Advanced Load Identification and Management for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Casey, Patrick; Du, Liang
2014-02-12
In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.« less
Advanced technologies for encryption of satellite links
NASA Astrophysics Data System (ADS)
McMahan, Sherry S.
The use of encryption on satellite links is discussed. Advanced technology exists to provide transmission security for large earth station with data rates up to 50 megabits per second. One of the major concerns in the use of encryption equipment with very small aperture terminals (VSAT) is the key management issue and the related operational costs. The low cost requirement and the lack of physical protection of remote VSATs place severe constraints on the design of encryption equipment. Encryption may be accomplished by embedding a tamper proof encryption module into the baseband unit of each VSAT. VSAT networks are usually star networks where there is a single large earth station that serves as a hub and all satellite communications takes place between each VSAT and the hub earth station. The hub earth station has the secret master key of each VSAT. These master keys are used to downline load encrypted session keys to each VSAT. A more secure alternative is to use public key techniques where each embedded VSAT encryption module internally generates its own secret and public numbers. The secret number never leaves the module while the public number is sent to the hub at the time of initialization of the encryption module into the VSAT. Physical access control to encryption modules of VSAT systems can be implemented using passwords, smart cards or biometrics.
Thermal effects on an embedded grating sensor in an FRP structure
NASA Astrophysics Data System (ADS)
Lau, Kin-tak; Yuan, Libo; Zhou, Li-min
2001-08-01
Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.
NASA Astrophysics Data System (ADS)
Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu
2018-05-01
This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.
A smart grid simulation testbed using Matlab/Simulink
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2014-06-01
The smart grid is the integration of computing and communication technologies into a power grid with a goal of enabling real time control, and a reliable, secure, and efficient energy system [1]. With the increased interest of the research community and stakeholders towards the smart grid, a number of solutions and algorithms have been developed and proposed to address issues related to smart grid operations and functions. Those technologies and solutions need to be tested and validated before implementation using software simulators. In this paper, we developed a general smart grid simulation model in the MATLAB/Simulink environment, which integrates renewable energy resources, energy storage technology, load monitoring and control capability. To demonstrate and validate the effectiveness of our simulation model, we created simulation scenarios and performed simulations using a real-world data set provided by the Pecan Street Research Institute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
SMART WINDOWS FOR SMART BUILDINGS
Roughly one third of all energy consumed in the U.S. is used in the residential or commercial sector. Of that, over half of the energy is used to provide lighting and to control the temperature of those buildings. “Smart buildings” is a concept to apply principles ...
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro
2017-01-01
NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.
Sun, Chenglu; Li, Wei; Chen, Wei
2017-01-01
For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188
Generic Dynamic Environment Perception Using Smart Mobile Devices.
Danescu, Radu; Itu, Razvan; Petrovai, Andra
2016-10-17
The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device's camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system.
Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb
2014-03-01
In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk
2015-01-01
Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.
An Overview of Distributed Microgrid State Estimation and Control for Smart Grids
Rana, Md Masud; Li, Li
2015-01-01
Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs) are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE) and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF) based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method. PMID:25686316
Google Home: smart speaker as environmental control unit.
Noda, Kenichiro
2017-08-23
Environmental Control Units (ECU) are devices or a system that allows a person to control appliances in their home or work environment. Such system can be utilized by clients with physical and/or functional disability to enhance their ability to control their environment, to promote independence and improve their quality of life. Over the last several years, there have been an emergence of several inexpensive, commercially-available, voice activated smart speakers into the market such as Google Home and Amazon Echo. These smart speakers are equipped with far field microphone that supports voice recognition, and allows for complete hand-free operation for various purposes, including for playing music, for information retrieval, and most importantly, for environmental control. Clients with disability could utilize these features to turn the unit into a simple ECU that is completely voice activated and wirelessly connected to appliances. Smart speakers, with their ease of setup, low cost and versatility, may be a more affordable and accessible alternative to the traditional ECU. Implications for Rehabilitation Environmental Control Units (ECU) enable independence for physically and functionally disabled clients, and reduce burden and frequency of demands on carers. Traditional ECU can be costly and may require clients to learn specialized skills to use. Smart speakers have the potential to be used as a new-age ECU by overcoming these barriers, and can be used by a wider range of clients.
Smart Grid | Climate Neutral Research Campuses | NREL
begun to build smart grids. Most operate electricity grids that include power generation; load control plant managers use these communications for energy management and load shedding, which are among the top familiar with equipment interoperability, central dispatch, and load shedding. These are common in smart
77 FR 65244 - 60-Day Notice of Proposed Information Collection: Smart Traveler Enrollment Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
... DEPARTMENT OF STATE [Public Notice 8072] 60-Day Notice of Proposed Information Collection: Smart Traveler Enrollment Program ACTION: Notice of request for public comments. SUMMARY: The Department of State...: Title of Information Collection: Smart Traveler Enrollment Program (STEP) OMB Control Number: 1405-0152...
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
NASA Technical Reports Server (NTRS)
1980-01-01
Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.
De Jonckheere, J; Narbonneau, F; Jeanne, M; Kinet, D; Witt, J; Krebber, K; Paquet, B; Depre, A; Logier, R
2009-01-01
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging is presented. We report on two pure optical sensing technologies for respiratory movements monitoring - a macro bending sensor and a Bragg grating sensor, designed to measure the elongation due to abdominal and thoracic motions during breathing. We demonstrate that the two sensors can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient.
Leading change in an organization.
Lexa, Frank James
2010-01-01
Change leadership is a core function of your leadership role. Learning to do it better will help you in many of the other tasks you face in your position. Change and adapting to it are not optional; change is simply a fact in the environment. Ignoring it in your job is no less critical than trying to ignore an oncoming truck in the wrong lane. Change leadership will be easier for you and your organization if it is embedded in policies and smart practices rather than done in an ad hoc fashion.
Embedded Systems and TensorFlow Frameworks as Assistive Technology Solutions.
Mulfari, Davide; Palla, Alessandro; Fanucci, Luca
2017-01-01
In the field of deep learning, this paper presents the design of a wearable computer vision system for visually impaired users. The Assistive Technology solution exploits a powerful single board computer and smart glasses with a camera in order to allow its user to explore the objects within his surrounding environment, while it employs Google TensorFlow machine learning framework in order to real time classify the acquired stills. Therefore the proposed aid can increase the awareness of the explored environment and it interacts with its user by means of audio messages.
Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin
2016-04-19
The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.
2013-04-01
This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.
NASA Astrophysics Data System (ADS)
Arena, Maurizio; Noviello, Maria Chiara; Rea, Francesco; Amoroso, Francesco; Pecora, Rosario
2018-03-01
The design and application of adaptive devices are currently ambitious targets in the field of aviation research addressed at new generation aircraft. The development of intelligent structures involves aspects of multidisciplinary nature: the combination of compact architectures, embedded electrical systems and smart materials, allows for developing a highly innovative device. The paper aims to present the control system design of an innovative morphing flap tailored for the next generation regional aircraft, within Clean Sky 2 - Airgreen 2 European Research Scenario. A distributed system of electromechanical actuators (EMAs) has been sized to enable up to three operating modes of a structure arranged in four blocks along the chord-wise direction: •overall camber-morphing; •upwards/downwards deflection and twisting of the final tip segment. A state-of-art feedback logic based on a decentralized control strategy for shape control is outlined, including the results of dynamic stability analysis based on the blocks rational schematization within Matlab/Simulink® environment. Such study has been performed implementing a state-space model, considering also design parameters as the torsional stiffness and damping of the actuation chain. The design process is flowing towards an increasingly "robotized" system, which can be externally controlled to perform certain operations. Future developments will be the control laws implementation as well as the functionality test on a real flap prototype.
NASA Astrophysics Data System (ADS)
Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O.
2017-10-01
Previous studies have successfully demonstrated the capability and reliability of the use of Smart Aggregate (SA) transducers to monitor reinforced concrete (RC) structures. However, they mainly focused on the applications of embedded SAs to new structural members, while no major attention was paid to the monitoring of existing RC members using externally mounted SAs. In this paper, a mounted SA-based approach is proposed for a real-time health monitoring of existing RC beams. The proposed approach is verified through monitoring of RC beams under flexural loading, on each of which SA transducers are mounted as an actuator and sensors. The experimental results show that the proposed SA-based approach effectively evaluates the cracking status of RC beams in terms of the peak of power spectral density and damage indexes obtained at multiple sensor locations. It is also shown that the proposed sensor system can also capture a precautionary signal for major cracking.
NASA Astrophysics Data System (ADS)
Zou, Dujian; Liu, Tiejun; Yang, Antai; Zhao, Yanru; Du, Chengcheng
2017-10-01
The reliability of piezoceramic based smart aggregate (SA) used for damage detection of concrete structures has already been validated by laboratory tests. However, the in situ concrete members are generally under a big range of stress levels, and the performance of SA under various compressive stresses is still unclear. In this study, an electronic universal testing machine was employed to apply different stresses on the SAs. The received signals of SA sensor accompanying with different drive signals were recorded. The experimental results show that the amplitude of received signals increases firstly, and then tends to be stable with stress. This enhancement is mainly induced by the decrease in thickness of epoxy resin layer caused by compressive stress. It indicates that the change of load applied on monitored concrete members embedded with SAs may lead to a change in monitoring signal amplitude even in elastic range, but it does not stand for the change of health state of monitored concrete member.
The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Thibeault, S. A.
2006-01-01
This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.
Dynamics of Solid-Liquid Composite Beams
NASA Astrophysics Data System (ADS)
Matia, Yoav; Gat, Amir
2017-11-01
Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.
Smart homes for people with neurological disability: state of the art.
Gentry, Tony
2009-01-01
Smart home technology can include environmental adaptations that allow remote control of home appliances, electronic communication, safety monitoring and automated task cueing, any of which may prove useful for people with neurological disability. This article outlines currently available smart home technologies, examines the burgeoning research in this area, discusses clinical and consumer resources and reviews ethical, funding and professional training considerations for smart home applications. I conclude that more outcomes-based research and collaboration among stakeholders is essential in order to establish guidance for designing, selecting and implementing individualized smart home solutions for those with neurological disability.
Design of the smart home system based on the optimal routing algorithm and ZigBee network.
Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.
Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives
Weng, Lin; Xie, Jingwei
2017-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25732665
Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future.
Genchi, Giada Graziana; Marino, Attilio; Grillone, Agostina; Pezzini, Ilaria; Ciofani, Gianni
2017-05-01
The remote control of cellular functions through smart nanomaterials represents a biomanipulation approach with unprecedented potential applications in many fields of medicine, ranging from cancer therapy to tissue engineering. By actively responding to external stimuli, smart nanomaterials act as real nanotransducers able to mediate and/or convert different forms of energy into both physical and chemical cues, fostering specific cell behaviors. This report describes those classes of nanomaterials that have mostly paved the way to a "wireless" control of biological phenomena, focusing the discussion on some examples close to the clinical practice. In particular, magnetic fields, light irradiation, ultrasound, and pH will be presented as means to manipulate the cellular fate, due to the peculiar physical/chemical properties of some smart nanoparticles, thus providing realistic examples of "nanorobots" approaching the visionary ideas of Richard Feynman. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives.
Weng, Lin; Xie, Jingwei
2015-01-01
In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field.
Design of the smart home system based on the optimal routing algorithm and ZigBee network
Xie, Xiaoxia
2017-01-01
To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system. PMID:29131868
Smart wing wind tunnel model design
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.
1997-05-01
To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.
Power Hardware-in-the-Loop Testing of a Smart Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige
This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less
cHRV Uncovering Daily Stress Dynamics Using Bio-Signal from Consumer Wearables.
Hao, Tian; Chang, Henry; Ball, Marion; Lin, Kun; Zhu, Xinxin
2017-01-01
Knowing the dynamics of one's daily stress is essential to effective stress management in the context of smart and connected health. However, there lacks a practical and unobtrusive means to obtain real-time and longitudinal stress information. In this paper, we attempt to derive a convenient HRV-based (heart rate variability) biomarker named cHRV, which can be used to reliably reflect stress dynamics. cHRV's key advantage lies in its low maintenance and high practicality. It can be efficiently calculated only using data from photoplethysmography (PPG) sensors, the mainstream heart rate sensor embedded in most of the consumer wearables like Apple Watch. Benefiting from the proliferation of wearables, cHRV is ideal for day-to-day stress monitoring. To evaluate its feasibility and performance, we have conducted 14 in-lab controlled experiments. The result shows that the proposed cHRV has strong correlation with the stress dynamics (r > 0.95), therefore exhibits great potential for continuous stress assessment.
A rule-based smart automated fertilization and irrigation systems
NASA Astrophysics Data System (ADS)
Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
A new paradigm on battery powered embedded system design based on User-Experience-Oriented method
NASA Astrophysics Data System (ADS)
Wang, Zhuoran; Wu, Yue
2014-03-01
The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.
NASA Astrophysics Data System (ADS)
Leist, Steven Kyle
4D printing is an emerging additive manufacturing technology that combines 3D printing with smart materials. Current 3D printing technology can print objects with a multitude of materials; however, these objects are usually static, geometrically permanent, and not suitable for multi-functional use. The 4D printed objects can change their shape over time when exposed to different external stimuli such as heat, pressure, magnetic fields, or moisture. In this research, heat and light reactive smart materials are explored as a 4D printing materials. Synthetization of a material that actuates when exposed to stimulus can be a very difficult process, and merging that same material with the ability to be 3D printed can be further difficult. A common 3D printing thermoplastic, poly(lactic) acid (PLA), is used as a shape memory material that is 3D printed using a fused deposition machine (FDM) and combined with nylon fabric for the exploration of smart textiles. The research shows that post printed PLA possesses shape memory properties depending on the thickness of the 3D printed material and the activation temperature. PLA can be thermomechanically trained into temporary shapes and return to its original shape when exposed to high temperatures. PLA can be 3D printed onto nylon fabrics for the creation of the smart textiles. Additionally, a photoisomerable shape changing material is explored because light activation is wireless, controllable, focusable, abundant, causes rapid shape change of the smart material, and induces reversible shape change in the material. This study supports the fundamental research to generate knowledge needed for synthesis of a novel azobenzene shape changing polymer (SCP) and integrating this smart material into objects printed with a 4D printing process using syringe printing. Multiple versions of azobenzene SCP are synthesized that actuate when exposed to 365 nm and 455 nm light. Two SCPs, MeOABHx and DR1Hx, are selected for the 4D printing research because of their ability to photoisomerize at room temperature and 3D printability. The physical properties of these polymers are characterized, photomechanical bending tests are performed, and the photo-generated stress is measured using a dynamic mechanical analyzer (DMA). The SCPs are deposited onto a passive layer to create bilayer films in order to actuate. The photomechanical efficiency of bilayer films is evaluated depending on the thickness of the passive layer film, type of azobenzene SCP, wavelength of the light source, intensity of the light source, and distance between the light and films. 4D printing can be used to streamline the design and manufacturing process of actuating parts. Complex heavy parts can be removed from actuation systems such as onboard power storage, motors, sensors, and processors by embedding these capabilities into the material themselves. This reduces the amount of required parts, the amount of materials, and reduces the cost of producing these parts. 4D printed products possess the properties of programmability, reaction and adaption to their environment, and automation. Therefore, they can find wider applications including foldable unmanned aerial vehicles, artificial muscles, grippers, biomedical drug delivery systems, stents, and minimally invasive surgeries.
Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system
NASA Technical Reports Server (NTRS)
Mclauchlan, Robert A.
1987-01-01
Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.
Smart RISUG: a potential new contraceptive and its magnetic field-mediated sperm interaction.
Jha, Rakhi K; Jha, Pradeep K; Guha, Sujoy K
2009-01-01
The rationale and technique underlying a novel concept of noninvasive fertility control by a new Cuproferrogel contraceptive drug, iron oxide-copper-styrene maleic anhydride-dimethyl sulphoxide (Fe3O4-Cu-SMA-DMSO) composite named 'Smart RISUG' (smart reversible inhibition of sperm under guidance) in presence of pulsed magnetic field (PMF; 1 mT to 800 mT) is explained. It was synthesized by dispersing iron oxide particles and copper particles into SMA-DMSO (male contraceptive RISUG) and characterized for particle distribution, particle size measurement and transmittance peaks, etc. Interaction of the RISUG particles as well as Smart RISUG particles with Albino rat sperm cell was studied in presence as well as absence of PMF. To find an explanation to increased reaching of the Smart RISUG drug into sperm under influence of magnetic field, the transport properties were characterized by high resolution transmission electron microscopy and atomic force microscopy. Smart RISUG could be mobilized into sperm cell membrane at the PMF, 760 mT in about 50 seconds. Adoption of novel drug Smart RISUG involving new technique may open the pathway for non surgical control of drug distribution, detection and restoration of the normal fertility after removal of the contraceptive from the male/female reproductive tube in presence of electromagnetic field.
Processable Data Making in the Remote Server Sent by Android Phone as a GIS Data Collecting Tool
NASA Astrophysics Data System (ADS)
Karaagac, Abdullah; Bostancı, Bulent
2016-04-01
Mobile technologies are improving and getting cheaper everyday. Not only smart phones are improved much but also new types of mobile applications and sensors come with the smart phone together. Maps and navigation applications one of the most popular types of applications on these types. Most of these applications uses location services including GNSS, Wi Fi, cellular data and beacon services. Although these coordinate precision not very high, it is appropriate for many applications to utilize. Android is a mobile operating system based on Linux Kernel. It is compatible for varies mobile devices like smart phones, tablets, smart TV's, wearable technologies etc. Android has large capability for application development by using the open source libraries and device sensors like gyroscope, GNSS etc. Android Studio is the most popular integrated development environment (IDE) for Android devices, mainly developing by Google. It had been announced on May 16, 2013 at Google I/O conference. Android Studio is built upon Gradle architecture which is written in Java language. SQLite is a relational database operating system which has so common usage for mobile devices. It developed by using C programming library. It is mostly used via embedding into a software or application. It supports many operating systems including Android. Remote servers can be in several forms from high complexity to simplicity. For this project we will use a open source quad core board computer named Raspberry Pi 2. This device includes 900 MHz ARMv7 compatible quad core CPU, VideoCore IV GPU and 1 GB RAM. Although Raspberry Pi 2's main operating system is Raspbian, we use Debian which are both Linux based operating systems. Raspberry is compatible for many programming language, however some languages are optimized for this device. These are Python, Java, C, C++, Ruby, Perl and Squeak Smalltalk. In this paper, a mobile application will be developed to send coordinate and string data to a SQL database embedded to a remote server. The application will run on Android Operating System running mobile phone. The application will get the location information from the GNSS and cellular data. The user will enter the other information individually. These information will send by clicking a button to remote server which runs SQLite. All these informations will be convertible to any type of measure like type of coordinates could be converted from WGS 84 to ITRF.
Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele
2014-01-01
A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field. PMID:25529206
Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele
2014-12-18
A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field.
An IBeacon-Based Location System for Smart Home Control.
Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen
2018-06-11
Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.
Xu, Lina; O'Hare, Gregory M P; Collier, Rem
2017-07-05
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.
O’Hare, Gregory M. P.; Collier, Rem
2017-01-01
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity. PMID:28678164
Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control
NASA Technical Reports Server (NTRS)
Heyliger, P. R.; Ramirez, G.; Pei, K. C.
1994-01-01
The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.
Smart ventilation energy and indoor air quality performance in residential buildings: A review
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
2017-12-30
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Smart ventilation energy and indoor air quality performance in residential buildings: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.
Lynggaard, Per; Skouby, Knud Erik
2016-11-02
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.
NASA Astrophysics Data System (ADS)
Carrico, James D.; Tyler, Tom; Leang, Kam K.
2017-10-01
Smart polymeric and gel actuators change shape or size in response to stimuli like electricity, heat, or light. These smart polymeric- and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices. This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process, like 3D printing, is exploited to create custom shaped monolithic devices. In particular, the advantages and limitations, examples of applications, manufacturing and fabrication techniques, and methods for actuator control are discussed. Finally, a rigorous comparison and analysis of some of the advantages and limitations, as well as manufacturing processes, for these materials, are presented.
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
A concise review on smart polymers for controlled drug release.
Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali
2016-06-01
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
A double responsive smart upconversion fluorescence sensing material for glycoprotein.
Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo
2016-11-15
A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein. Copyright © 2016 Elsevier B.V. All rights reserved.
Selectively Patterning Polymer Opal Films via Microimprint Lithography.
Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J
2014-11-01
Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.
Li, Kejia; Warren, Steve
2012-06-01
Pulse oximeters are central to the move toward wearable health monitoring devices and medical electronics either hosted by, e.g., smart phones or physically embedded in their design. This paper presents a small, low-cost pulse oximeter design appropriate for wearable and surface-based applications that also produces quality, unfiltered photo-plethysmograms (PPGs) ideal for emerging diagnostic algorithms. The design's "filter-free" embodiment, which employs only digital baseline subtraction as a signal compensation mechanism, distinguishes it from conventional pulse oximeters that incorporate filters for signal extraction and noise reduction. This results in high-fidelity PPGs with thousands of peak-to-peak digitization levels that are sampled at 240 Hz to avoid noise aliasing. Electronic feedback controls make these PPGs more resilient in the face of environmental changes (e.g., the device can operate in full room light), and data stream in real time across either a ZigBee wireless link or a wired USB connection to a host. On-board flash memory is available for store-and-forward applications. This sensor has demonstrated an ability to gather high-integrity data at fingertip, wrist, earlobe, palm, and temple locations from a group of 48 subjects (20 to 64 years old).
NASA Astrophysics Data System (ADS)
Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.
2004-12-01
The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.
Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Karandeev, D.
2015-10-01
The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.
None
2018-02-13
NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.
Smart Board in the Music Classroom
ERIC Educational Resources Information Center
Baker, Jean
2007-01-01
A Smart Board is an interactive whiteboard connected to a computer and a data projector. Images can be projected on the board, and the Smart Board can be used as a computer. A person can control the computer using his finger, and can mark directly on the screen using various colors. Best of all, users can easily import many types of information,…
The role of smart systems in rendezvous, close proximity operations and docking maneuvers
NASA Astrophysics Data System (ADS)
Szatkowski, Gerard P.
Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.
Next generation radiotherapy biomaterials loaded with high-Z nanoparticles
NASA Astrophysics Data System (ADS)
Cifter, Gizem
This research investigates the dosimetric feasibility of using high-Z nanoparticles as localized radiosensitizers to boost the dose to the residual tumor cells during accelerated partial breast irradiation while minimizing the dose to surrounding healthy tissue. Analytical microdosimetry calculations were carried out to calculate dose enhancement (DEF) in the presence of high-Z nanoparticles. It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. Prototype smart biomaterials were produced by incorporating the GNPs in poly (D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. In vitro release of GNPs was monitored over time by optical/spectroscopy methods as a function of various design parameters. The prototype smart biomaterials displayed sustained customizable release of NPs in-vitro, reaching a burst release profile approximately after 25 days. The results also show that customizable release profiles can be achievable by varying GNP concentrations that are embedded within smart biomaterials, as well as other design parameters. This would potentially allow customizable local dose boost resulting in diverse treatment planning opportunities for individual cases. Considered together, the results provide preliminary data for development of next generation of RT biomaterials, which can be employed at no additional inconvenience to RT patients.
Generic Dynamic Environment Perception Using Smart Mobile Devices
Danescu, Radu; Itu, Razvan; Petrovai, Andra
2016-01-01
The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device’s camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system. PMID:27763501
Hangover free! The social and material trajectories of PartySmart.
Pordié, Laurent
2015-04-01
This paper presents three embedded episodes in the life of a polyherbal drug indicated as a preventative measure for hangovers. Invented and marketed in 2005 by a leading ayurvedic pharmaceutical company in India, PartySmart is a reformulated compound based on ayurvedic, biomedical and phytochemical sources. This creative process has involved multiple translations, resulting in hybrid pharmacological models, including, for instance, ayurvedic post-digestive tastes and biomedical effects on enzymatic activities. These modes of therapeutic action are conceptualizations of an active drug-- i.e., a digested and metabolized drug. A problem arises, however, in the fact that the ingestion of this drug is linked to alcohol consumption in a country where it is widely considered in negative terms. For this reason, PartySmart was seen as an ambivalent presence in the firm's catalogue and thus a series of interventions aiming to uphold the image of this drug transformed both its social inscription and its materiality. This transformation also took a different, global trajectory as the drug gradually developed as a transnational pharmaceutical commodity and became a new object in new latitudes. By focusing on the social and material dimensions of this drug in these contexts, this paper calls upon science studies to expand the scope of pharmaceutical anthropology. It brings together various layers of analysis to offer new perspectives on contemporary herbal formulations as they traverse material cultures, medical epistemologies, sociopolitical borders, legal environments and social practices.
Choi, Yeonja; Song, Eunju; Oh, Eunjung
2015-04-01
This study aims to verify the communication skills training for nursing students by using a video clip on a smart phone. The study settings were the nursing departments of two universities in South Korea. This study was a quasi-experimental one using a nonequivalent control group pre-posttest design. The experimental and control groups consisted of second-year nursing students who had taken a communication course. The experimental group included 45 students, and the control group included 42 students. The experimental group improved more significantly than the control group in communication competence and emotional intelligence. Using a video clip on a smart phone is helpful for communication teaching method. Copyright © 2014 Elsevier Inc. All rights reserved.
Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme
NASA Astrophysics Data System (ADS)
Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi
2015-10-01
This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.
In vivo wireless biodiagnosis system for long-term bioactivity monitoring network
NASA Astrophysics Data System (ADS)
Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung
2004-07-01
Attempts to develop a
Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong
2012-06-01
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
A smart-hose for concrete displacing booms
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Bucca, Giuseppe; Fava, Victor; Resta, Ferruccio
2016-04-01
During the last years, continuum robots have been used in many applications. They are smart structures with continuous curving, similar to a worm or an elephant trunk, characterized by a very high number of sub-actuated degrees of freedom (dof). They need a robust control system, aiming at both positioning the robot and suppressing induced vibrations. The idea is to adopt such a robot on a construction machine for the concrete distribution, substituting the reinforced rubber hose with the robotic smart solution. Particular attention has been paid to a control strategy able to reduce vibrations induced by the pumping procedure.
Machine learning in smart home control systems - Algorithms and new opportunities
NASA Astrophysics Data System (ADS)
Berg, Ivan A.; Khorev, Oleg E.; Matvevnina, Arina I.; Prisjazhnyj, Alexey V.
2017-11-01
Worldwide, more and more attention is paid to issues related to a smart home. If in 2000 Scopus registered 25 publications with about "smart house", in 2016 their number increased up to 1600. The top three countries with interest in smart home technologies include the United States, China and India. Corporations begin to offer their package solutions for automation of the intellectual home, dozens of start-ups around the creation of technology are established. Where is such interest from? What can offer intelligent home technologies? What can an end user receive?
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
Self-Guided Multimedia Stress Management and Resilience Training for Flight Controllers
NASA Technical Reports Server (NTRS)
Rose, R. D.; Zbozinek, T. D.; Hentschel, P. G.; Smith, S, M.; O'Brien J.; Oftedal, A.; Craske, M. G.
2016-01-01
Stress and anxiety-related problems are among the most common and costly behavioral health problems in society, and for those working in operational environments (i.e. astronauts, flight controllers, military) this can seriously impact crew performance, safety, and wellbeing. Technology-based interventions are effective for treating behavioral health problems, and can significantly improve the delivery of evidence-based health care. This study is evaluating the effectiveness, usefulness, and usability of a self-guided multimedia stress management and resilience training program in a randomized controlled trial (RCT) with a sample of flight controllers at Johnson Space Center. The intervention, SMART-OP (Stress Management and Resilience Training for Optimal Performance), is a six-session, cognitive behavioral-based computer program that uses self-guided, interactive activities to teach skills that can help individuals build resilience and manage stress. In a prior RCT with a sample of stressed but otherwise healthy individuals, SMART-OP reduced perceived stress and increased perceived control over stress in comparison to an Attention Control (AC) group. SMART-OP was rated as "highly useful" and "excellent" in usability and acceptability. Based on a-amylase data, individuals in SMART-OP recovered quicker and more completely from a social stress test as compared to the AC group [1]. In the current study, flight controllers are randomized either to receive SMART-OP training, or to a 6-week waitlist control period (WLC) before beginning SMART-OP. Eligible participants include JSC flight controllers and instructors without any medical or psychiatric disorder, but who are stressed based on self-report. Flight controllers provide a valid analog sample to astronauts in that they work in an operational setting, use similar terminology to astronauts, are mission-focused, and work under the same broader work culture. The study began in December 2014, and to date 79 flight controllers and instructors have expressed interest in the study, 49 of those were cleared for participation, we have screened 44 for eligibility, and 23 have met inclusion criteria. Recruitment is ongoing and the study will continue until December 2016. Outcome measures include perceived stress, perceived control over stress, resilience, mood, personality, emotion regulation, sleep, health behaviors, and psychophysiological data such as 24-hour heart rate, alpha amylase, and urinary and salivary cortisol. We are also collecting user feedback such as usability, working alliance, usefulness, and treatment credibility.
Casey, Monica; Hayes, Patrick S; Glynn, Fergus; OLaighin, Gearóid; Heaney, David; Murphy, Andrew W; Glynn, Liam G
2014-08-01
Regular physical activity is known to help prevent and treat numerous non-communicable diseases. Smartphone applications (apps) have been shown to increase physical activity in primary care but little is known regarding the views of patients using such technology or how such technology may change behaviour. To explore patients' views and experiences of using smartphones to promote physical activity in primary care. This qualitative study was embedded within the SMART MOVE randomised controlled trial, which used an app (Accupedo-Pro Pedometer) to promote physical activity in three primary care centres in the west of Ireland. Taped and transcribed semi-structured interviews with a purposeful sample of 12 participants formed the basis of the investigation. Framework analysis was used to analyse the data. Four themes emerged from the analysis: transforming relationships with exercise; persuasive technology tools; usability; and the cascade effect. The app appeared to facilitate a sequential and synergistic process of positive change, which occurred in the relationship between the participants and their exercise behaviour; the study has termed this the 'Know-Check-Move' effect. Usability challenges included increased battery consumption and adjusting to carrying the smartphone on their person. There was also evidence of a cascade effect involving the families and communities of participants. Notwithstanding technological challenges, an app has the potential to positively transform, in a unique way, participants' relationships with exercise. Such interventions can also have an associated cascade effect within their wider families and communities. © British Journal of General Practice 2014.
Casey, Monica; Hayes, Patrick S; Glynn, Fergus; ÓLaighin, Gearóid; Heaney, David; Murphy, Andrew W; Glynn, Liam G
2014-01-01
Background Regular physical activity is known to help prevent and treat numerous non-communicable diseases. Smartphone applications (apps) have been shown to increase physical activity in primary care but little is known regarding the views of patients using such technology or how such technology may change behaviour. Aim To explore patients’ views and experiences of using smartphones to promote physical activity in primary care. Design and setting This qualitative study was embedded within the SMART MOVE randomised controlled trial, which used an app (Accupedo-Pro Pedometer) to promote physical activity in three primary care centres in the west of Ireland. Method Taped and transcribed semi-structured interviews with a purposeful sample of 12 participants formed the basis of the investigation. Framework analysis was used to analyse the data. Results Four themes emerged from the analysis: transforming relationships with exercise; persuasive technology tools; usability; and the cascade effect. The app appeared to facilitate a sequential and synergistic process of positive change, which occurred in the relationship between the participants and their exercise behaviour; the study has termed this the ‘Know-Check-Move’ effect. Usability challenges included increased battery consumption and adjusting to carrying the smartphone on their person. There was also evidence of a cascade effect involving the families and communities of participants. Conclusion Notwithstanding technological challenges, an app has the potential to positively transform, in a unique way, participants’ relationships with exercise. Such interventions can also have an associated cascade effect within their wider families and communities. PMID:25071063
Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision
Lynggaard, Per; Skouby, Knud Erik
2016-01-01
The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851
Smart pillow for heart-rate monitoring using a fiber optic sensor
NASA Astrophysics Data System (ADS)
Chen, Zhihao; Teo, Ju Teng; Ng, Soon Huat; Yim, Huiqing
2011-03-01
In this paper, we propose and demonstrate a new method to monitor heart rate using fiber optic microbending based sensor for in-bed non-intrusive monitoring. The sensing system consists of transmitter, receiver, sensor mat, National Instrument (NI) data acquisition (DAQ) card and a computer for signal processing. The sensor mat is embedded inside a commercial pillow. The heart rate measurement system shows an accuracy of +/-2 beats, which has been successfully demonstrated in a field trial. The key technological advantage of our system is its ability to measure heart rate with no preparation and minimal compliance by the patient.
Facilitating and securing offline e-medicine service through image steganography.
Kamal, A H M; Islam, M Mahfuzul
2014-06-01
E-medicine is a process to provide health care services to people using the Internet or any networking technology. In this Letter, a new idea is proposed to model the physical structure of the e-medicine system to better provide offline health care services. Smart cards are used to authenticate the user singly. A very unique technique is also suggested to verify the card owner's identity and to embed secret data to the card while providing patients' reports either at booths or at the e-medicine server system. The simulation results of card authentication and embedding procedure justify the proposed implementation.
Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space
NASA Technical Reports Server (NTRS)
Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest
2013-01-01
Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.
Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space
NASA Technical Reports Server (NTRS)
Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris
2013-01-01
Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free- flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.
Common Badging and Access Control System (CBACS)
NASA Technical Reports Server (NTRS)
Dischinger, Portia
2005-01-01
This slide presentation presents NASA's Common Badging and Access Control System. NASA began a Smart Card implementation in January 2004. Following site surveys, it was determined that NASA's badging and access control systems required upgrades to common infrastructure in order to provide flexibly, usability, and return on investment prior to a smart card implantation. Common Badging and Access Control System (CBACS) provides the common infrastructure from which FIPS-201 compliant processes, systems, and credentials can be developed and used.
VOLTTRON - An Intelligent Agent Platform for the Smart Grid
None
2018-05-16
The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Chu, Peter; Gadh, Rajit
Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuitmore » by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system« less
Summary of Research 1998, Department of Aeronautics and Astronautics
1999-08-01
included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and...Using Smart Materials," Journal of Smart Materials and Structures, Vol. 7, pp. 95-104, 1998. Agrawal, B. and Treanor, K., "Shape Control of a Beam Using...Piezoelectric Actuators," Journal of Smart Materials and Structures, accepted. THESES DIRECTED: Johnson, S. and Vlattas, J., "Active Vibration
Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hardy, Robin C. (Editor); Simpson, Joycelyn O. (Editor)
1996-01-01
The objective of the Fourth Annual Conference on Advances in Smart Materials for Aerospace Applications was to provide a forum for technical dialogue on numerous topics in the area of smart materials. The proceedings presented herein represent the technical contributions of the participants of the workshop. Topics addressed include shape memory alloys, ferroelectrics, fiber optics, finite element simulation, and active control.
Overview of the DARPA/AFRL/NASA Smart Wing Phase II program
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim
2001-06-01
The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.
[Design and implementation of controlling smart car systems using P300 brain-computer interface].
Wang, Jinjia; Yang, Chengjie; Hu, Bei
2013-04-01
Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.
Quantification of uncertainties in the performance of smart composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1993-01-01
A composite wing with spars, bulkheads, and built-in control devices is evaluated using a method for the probabilistic assessment of smart composite structures. Structural responses (such as change in angle of attack, vertical displacements, and stresses in regular plies with traditional materials and in control plies with mixed traditional and actuation materials) are probabilistically assessed to quantify their respective scatter. Probabilistic sensitivity factors are computed to identify those parameters that have a significant influence on a specific structural response. Results show that the uncertainties in the responses of smart composite structures can be quantified. Responses such as structural deformation, ply stresses, frequencies, and buckling loads in the presence of defects can be reliably controlled to satisfy specified design requirements.
Pilot symbol-assisted beamforming algorithms in the WCDMA reverse link
NASA Astrophysics Data System (ADS)
Kong, Dongkeon; Lee, Jong H.; Chun, Joohwan; Woo, Yeon Sik; Soh, Ju Won
2001-08-01
We present a pilot symbol-assisted beamforming algorithm and a simulation tool of smart antennas for Wideband Code Division Multiple Access (WCDMA) in reverse link. In the 3GPP WCDMA system smart antenna technology has more room to play with than in the second generation wireless mobile systems such as IS-95 because the pilot symbol in Dedicated Physical Control Channel (DPCCH) can be utilized. First we show a smart antenna structure and adaptation algorithms, and then we explain a low-level smart antenna implementation using Simulink and MATLAB. In the design of our smart antenna system we pay special attention for the easiness of the interface to the baseband modem; Our ultimate goal is to implement a baseband smart antenna chip sets that can easily be added to to-be-existed baseband WCDMA modem units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commerciallymore » available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less
A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.
Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres
2016-05-28
Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.
Applying Utility Functions to Adaptation Planning for Home Automation Applications
NASA Astrophysics Data System (ADS)
Bratskas, Pyrros; Paspallis, Nearchos; Kakousis, Konstantinos; Papadopoulos, George A.
A pervasive computing environment typically comprises multiple embedded devices that may interact together and with mobile users. These users are part of the environment, and they experience it through a variety of devices embedded in the environment. This perception involves technologies which may be heterogeneous, pervasive, and dynamic. Due to the highly dynamic properties of such environments, the software systems running on them have to face problems such as user mobility, service failures, or resource and goal changes which may happen in an unpredictable manner. To cope with these problems, such systems must be autonomous and self-managed. In this chapter we deal with a special kind of a ubiquitous environment, a smart home environment, and introduce a user-preference-based model for adaptation planning. The model, which dynamically forms a set of configuration plans for resources, reasons automatically and autonomously, based on utility functions, on which plan is likely to best achieve the user's goals with respect to resource availability and user needs.
NASA Technical Reports Server (NTRS)
Barret, C.
1995-01-01
The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.
Modular telerobot control system for accident response
NASA Astrophysics Data System (ADS)
Anderson, Richard J. M.; Shirey, David L.
1999-08-01
The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-01-01
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-04-11
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.
Peters, Matthew
2009-01-01
When an adequate standard of asthma control is not achieved with maintenance treatment of inhaled corticosteroids, the addition of a long-acting beta(2)-adrenergic receptor agonist (LABA) bronchodilator is recommended. Using a combination product, salmeterol/fluticasone propionate (Seretide or Advair) or budesonide/formoterol (Symbicort) is preferred for convenience and avoids any risk that LABA might be used as monotherapy. As formoterol has a rapid onset of bronchodilator effect, the budesonide/formoterol combination can be used for both the maintenance and reliever components of asthma treatment (Symbicort SMART) and this is endorsed as an effective treatment by the Global Initiative for Asthma. The efficacy of this approach has been evaluated in a series of well conducted, controlled studies. Current control of asthma symptoms is improved or achieved with reduced total dose administration with Symbicort SMART compared with any reasonable alternate option. In every study, the risk of severe exacerbations was lower with Symbicort SMART than comparator treatment. Patients who benefit to the greatest extent are those with evidence of more severe asthma and greater exacerbation risk. When initiated in suitable patients in conjunction with appropriate education, Symbicort SMART is dominant in pharmacoeconomic terms. Symbicort SMART delivers improved asthma outcomes with lower treatment and social costs than any alternative.
Active stabilization of thin-wall structures under compressive loading
NASA Astrophysics Data System (ADS)
Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey
2003-08-01
The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.
Smart Sectors Program: Best Practices in Permitting Profile
Smart Sectors profile about a streamlined permitting success story between South Carolina Department of Health and Environmental Control, US Army Corps of Engineers, EPA, non-governmental organizations, and a major aircraft manufacturer in Charleston, SC.