Science.gov

Sample records for embl nucleotide sequence

  1. Automated Identification of Nucleotide Sequences

    NASA Technical Reports Server (NTRS)

    Osman, Shariff; Venkateswaran, Kasthuri; Fox, George; Zhu, Dian-Hui

    2007-01-01

    STITCH is a computer program that processes raw nucleotide-sequence data to automatically remove unwanted vector information, perform reverse-complement comparison, stitch shorter sequences together to make longer ones to which the shorter ones presumably belong, and search against the user s choice of private and Internet-accessible public 16S rRNA databases. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] In STITCH, a template 16S rRNA sequence is used to position forward and reverse reads. STITCH then automatically searches known 16S rRNA sequences in the user s chosen database(s) to find the sequence most similar to (the sequence that lies at the smallest edit distance from) each spliced sequence. The result of processing by STITCH is the identification of the most similar well-described bacterium. Whereas previously commercially available software for analyzing genetic sequences operates on one sequence at a time, STITCH can manipulate multiple sequences simultaneously to perform the aforementioned operations. A typical analysis of several dozen sequences (length of the order of 103 base pairs) by use of STITCH is completed in a few minutes, whereas such an analysis performed by use of prior software takes hours or days.

  2. Submitting MIGS, MIMS, MIENS Information to EMBL and Standards and the Sequencing Pipelines of the Gordon and Betty Moore Foundation (GSC8 Meeting)

    ScienceCinema

    Vaughan, Bob [EMBL; Kaye, Jon [Gordon and Betty Moore Foundation

    2016-07-12

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Bob Vaughan of EMBL on submitting MIGS/MIMS/MIENS information to EMBL-EBI's system, followed by a brief talk from Jon Kaye of the Gordon and Betty Moore Foundation on standards and the foundation's sequencing pipelines at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009

  3. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  4. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  5. Long-range correlations in nucleotide sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-01-01

    DNA sequences have been analysed using models, such as an n-step Markov chain, that incorporate the possibility of short-range nucleotide correlations. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  6. Long-range correlations in nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-03-01

    DNA SEQUENCES have been analysed using models, such as an it-step Markov chain, that incorporate the possibility of short-range nucleotide correlations1. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  7. Nucleotide capacitance calculation for DNA sequencing

    SciTech Connect

    Lu, Jun-Qiang; Zhang, Xiaoguang

    2008-01-01

    Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nano-gap electrodes may not sufficient to be used as a stand alone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.

  8. The International Nucleotide Sequence Database Collaboration.

    PubMed

    Nakamura, Yasukazu; Cochrane, Guy; Karsch-Mizrachi, Ilene

    2013-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org), one of the longest-standing global alliances of biological data archives, captures, preserves and provides comprehensive public domain nucleotide sequence information. Three partners of the INSDC work in cooperation to establish formats for data and metadata and protocols that facilitate reliable data submission to their databases and support continual data exchange around the world. In this article, the INSDC current status and update for the year of 2012 are presented. Among discussed items of international collaboration meeting in 2012, BioSample database and changes in submission are described as topics.

  9. The International Nucleotide Sequence Database Collaboration

    PubMed Central

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Takagi, Toshihisa; Sequence Database Collaboration, International Nucleotide

    2016-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org) comprises three global partners committed to capturing, preserving and providing comprehensive public-domain nucleotide sequence information. The INSDC establishes standards, formats and protocols for data and metadata to make it easier for individuals and organisations to submit their nucleotide data reliably to public archives. This work enables the continuous, global exchange of information about living things. Here we present an update of the INSDC in 2015, including data growth and diversification, new standards and requirements by publishers for authors to submit their data to the public archives. The INSDC serves as a model for data sharing in the life sciences. PMID:26657633

  10. Accessing and distributing EMBL data using CORBA (common object request broker architecture)

    PubMed Central

    Wang, Lichun; Rodriguez-Tomé, Patricia; Redaschi, Nicole; McNeil, Phil; Robinson, Alan; Lijnzaad, Philip

    2000-01-01

    Background: The EMBL Nucleotide Sequence Database is a comprehensive database of DNA and RNA sequences and related information traditionally made available in flat-file format. Queries through tools such as SRS (Sequence Retrieval System) also return data in flat-file format. Flat files have a number of shortcomings, however, and the resources therefore currently lack a flexible environment to meet individual researchers' needs. The Object Management Group's common object request broker architecture (CORBA) is an industry standard that provides platform-independent programming interfaces and models for portable distributed object-oriented computing applications. Its independence from programming languages, computing platforms and network protocols makes it attractive for developing new applications for querying and distributing biological data. Results: A CORBA infrastructure developed by EMBL-EBI provides an efficient means of accessing and distributing EMBL data. The EMBL object model is defined such that it provides a basis for specifying interfaces in interface definition language (IDL) and thus for developing the CORBA servers. The mapping from the object model to the relational schema in the underlying Oracle database uses the facilities provided by PersistenceTM, an object/relational tool. The techniques of developing loaders and 'live object caching' with persistent objects achieve a smart live object cache where objects are created on demand. The objects are managed by an evictor pattern mechanism. Conclusions: The CORBA interfaces to the EMBL database address some of the problems of traditional flat-file formats and provide an efficient means for accessing and distributing EMBL data. CORBA also provides a flexible environment for users to develop their applications by building clients to our CORBA servers, which can be integrated into existing systems. PMID:11178259

  11. Estimation of evolutionary distances between nucleotide sequences.

    PubMed

    Zharkikh, A

    1994-09-01

    A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414-422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269-285, 1984) method is superior to others.

  12. Remote access to ACNUC nucleotide and protein sequence databases at PBIL.

    PubMed

    Gouy, Manolo; Delmotte, Stéphane

    2008-04-01

    The ACNUC biological sequence database system provides powerful and fast query and extraction capabilities to a variety of nucleotide and protein sequence databases. The collection of ACNUC databases served by the Pôle Bio-Informatique Lyonnais includes the EMBL, GenBank, RefSeq and UniProt nucleotide and protein sequence databases and a series of other sequence databases that support comparative genomics analyses: HOVERGEN and HOGENOM containing families of homologous protein-coding genes from vertebrate and prokaryotic genomes, respectively; Ensembl and Genome Reviews for analyses of prokaryotic and of selected eukaryotic genomes. This report describes the main features of the ACNUC system and the access to ACNUC databases from any internet-connected computer. Such access was made possible by the definition of a remote ACNUC access protocol and the implementation of Application Programming Interfaces between the C, Python and R languages and this communication protocol. Two retrieval programs for ACNUC databases, Query_win, with a graphical user interface and raa_query, with a command line interface, are also described. Altogether, these bioinformatics tools provide users with either ready-to-use means of querying remote sequence databases through a variety of selection criteria, or a simple way to endow application programs with an extensive access to these databases. Remote access to ACNUC databases is open to all and fully documented (http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html).

  13. Nucleotide sequence alignment using sparse coding and belief propagation.

    PubMed

    Roozgard, Aminmohammad; Barzigar, Nafise; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Cheng, Samuel

    2013-01-01

    Advances in DNA information extraction techniques have led to huge sequenced genomes from organisms spanning the tree of life. This increasing amount of genomic information requires tools for comparison of the nucleotide sequences. In this paper, we propose a novel nucleotide sequence alignment method based on sparse coding and belief propagation to compare the similarity of the nucleotide sequences. We used the neighbors of each nucleotide as features, and then we employed sparse coding to find a set of candidate nucleotides. To select optimum matches, belief propagation was subsequently applied to these candidate nucleotides. Experimental results show that the proposed approach is able to robustly align nucleotide sequences and is competitive to SOAPaligner [1] and BWA [2].

  14. Nucleotide Sequence of the Akv env Gene

    PubMed Central

    Lenz, Jack; Crowther, Robert; Straceski, Anthony; Haseltine, William

    1982-01-01

    The sequence of 2,191 nucleotides encoding the env gene of murine retrovirus Akv was determined by using a molecular clone of the Akv provirus. Deduction of the encoded amino acid sequence showed that a single open reading frame encodes a 638-amino acid precursor to gp70 and p15E. In addition, there is a typical leader sequence preceding the amino terminus of gp70. The locations of potential glycosylation sites and other structural features indicate that the entire gp70 molecule and most of p15E are located on the outer side of the membrane. Internal cleavage of the env precursor to generate gp70 and p15E occurs immediately adjacent to several basic amino acids at the carboxyl terminus of gp70. This cleavage generates a region of 42 uncharged, relatively hydrophobic amino acids at the amino terminus of p15E, which is located in a position analogous to the hydrophobic membrane fusion sequence of influenza virus hemagglutinin. The mature polypeptides are predicted to associate with the membrane via a region of 30 uncharged, mostly hydrophobic amino acids located near the carboxyl terminus of p15E. Distal to this membrane association region is a sequence of 35 amino acids at the carboxyl terminus of the env precursor, which is predicted to be located on the inner side of the membrane. By analogy to Moloney murine leukemia virus, a proteolytic cleavage in this region removes the terminal 19 amino acids, thus generating the carboxyl terminus of p15E. This leaves 15 amino acids at the carboxyl terminus of p15E on the inner side of the membrane in a position to interact with virion cores during budding. The precise location and order of the large RNase T1-resistant oligonucleotides in the env region were determined and compared with those from several leukemogenic viruses of AKR origin. This permitted a determination of how the differences in the leukemogenic viruses affect the primary structure of the env gene products. PMID:6283170

  15. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis.

    PubMed

    Neale, A D; Scopes, R K; Wettenhall, R E; Hoogenraad, N J

    1987-02-25

    Pyruvate decarboxylase (EC 4.1.1.1), the penultimate enzyme in the alcoholic fermentation pathway of Zymomonas mobilis, converts pyruvate to acetaldehyde and carbon dioxide. The complete nucleotide sequence of the structural gene encoding pyruvate decarboxylase from Zymomonas mobilis has been determined. The coding region is 1704 nucleotides long and encodes a polypeptide of 567 amino acids with a calculated subunit mass of 60,790 daltons. The amino acid sequence was confirmed by comparison with the amino acid sequence of a selection of tryptic fragments of the enzyme. The amino acid composition obtained from the nucleotide sequence is in good agreement with that obtained experimentally.

  16. Nucleotide sequence of the luxC gene encoding fatty acid reductase of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Chao, Y F; Weng, S F

    1993-02-26

    The nucleotide sequence of the luxC gene (EMBL Accession No. 65156) encoding fatty acid reductase (FAR) of the lux operon from Photobacterium leiognathi PL741 was determined and the encoded amino acid sequence deduced. The fatty acid reductase is a component of the fatty acid reductase complex. The complex is responsible for converting fatty acid to aldehyde which serves as the substrate in the luciferase-catalyzed bioluminescent reaction. The protein comprises 478 amino acid residues and has a calculated M(r) of 53,858. Alignment and comparison of the fatty acid reductase of P. leiognathi with that of Vibrio harveyi B392 and Vibrio fischeri ATCC 7744 shows that there is 70% and 59% amino acid residues identity, respectively.

  17. Nucleotide sequence of papaya mosaic virus RNA.

    PubMed

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  18. Reading biological processes from nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Murugan, Anand

    Cellular processes have traditionally been investigated by techniques of imaging and biochemical analysis of the molecules involved. The recent rapid progress in our ability to manipulate and read nucleic acid sequences gives us direct access to the genetic information that directs and constrains biological processes. While sequence data is being used widely to investigate genotype-phenotype relationships and population structure, here we use sequencing to understand biophysical mechanisms. We present work on two different systems. First, in chapter 2, we characterize the stochastic genetic editing mechanism that produces diverse T-cell receptors in the human immune system. We do this by inferring statistical distributions of the underlying biochemical events that generate T-cell receptor coding sequences from the statistics of the observed sequences. This inferred model quantitatively describes the potential repertoire of T-cell receptors that can be produced by an individual, providing insight into its potential diversity and the probability of generation of any specific T-cell receptor. Then in chapter 3, we present work on understanding the functioning of regulatory DNA sequences in both prokaryotes and eukaryotes. Here we use experiments that measure the transcriptional activity of large libraries of mutagenized promoters and enhancers and infer models of the sequence-function relationship from this data. For the bacterial promoter, we infer a physically motivated 'thermodynamic' model of the interaction of DNA-binding proteins and RNA polymerase determining the transcription rate of the downstream gene. For the eukaryotic enhancers, we infer heuristic models of the sequence-function relationship and use these models to find synthetic enhancer sequences that optimize inducibility of expression. Both projects demonstrate the utility of sequence information in conjunction with sophisticated statistical inference techniques for dissecting underlying biophysical

  19. Nucleotide sequence of SHV-2 beta-lactamase gene

    SciTech Connect

    Garbarg-Chenon, A.; Godard, V.; Labia, R.; Nicolas, J.C. )

    1990-07-01

    The nucleotide sequence of plasmid-mediated beta-lactamase SHV-2 from Salmonella typhimurium (SHV-2pHT1) was determined. The gene was very similar to chromosomally encoded beta-lactamase LEN-1 of Klebsiella pneumoniae. Compared with the sequence of the Escherichia coli SHV-2 enzyme (SHV-2E.coli) obtained by protein sequencing, the deduced amino acid sequence of SHV-2pHT1 differed by three amino acid substitutions.

  20. Nucleotide sequences important for translation initiation of enterovirus RNA.

    PubMed Central

    Iizuka, N; Yonekawa, H; Nomoto, A

    1991-01-01

    An infectious cDNA clone was constructed from the genome of coxsackievirus B1 strain. A number of RNA transcripts that have mutations in the 5' noncoding region were synthesized in vitro from the modified cDNA clones and examined for their abilities to act as mRNAs in a cell-free translation system prepared from HeLa S3 cells. RNAs that lack nucleotide sequences at positions 568 to 726 and 565 to 726 were found to be less efficient and inactive mRNAs, respectively. To understand the biological significance of this region of RNA, small deletions and point mutations were introduced in the nucleotide sequence between positions 538 and 601. Except for a nucleotide substitution at 592 (U----C) within the 7-base conserved sequence, mutations introduced in the sequence downstream of position 568 did not affect much, if any, of the ability of RNA to act as mRNA. Except for a point mutation at 558 (C----U), mutations upstream of position 567 appeared to inactivate the mRNA. In the upstream region, a sequence consisting of 21 nucleotides at positions 546 to 566 is perfectly conserved in the 5' noncoding regions of enterovirus and rhinovirus genomes. These results suggest that the 7-base conserved sequence functions to maintain the efficiency of translation initiation and that the nucleotide sequence upstream of position 567, including the 21-base conserved sequence, plays essential roles in translation initiation. A deletion mutant whose genome lacks the nucleotide sequence at positions 568 to 726 showed a small-plaque phenotype and less virulence against suckling mice than the wild-type virus. Thus, reduction of the efficiency of translation initiation may result in the construction of enteroviruses with the lower-virulence phenotype. Images PMID:1651409

  1. Nucleotide sequence of the coat protein gene of canine parvovirus.

    PubMed Central

    Rhode, S L

    1985-01-01

    The nucleotide sequence of the canine parvovirus (CPV2) from map units 33 to 95 has been determined. This includes the entire coat protein gene and noncoding sequences at the 3' end of the gene, exclusive of the terminal inverted repeat. The predicted capsid protein structures are discussed and compared with those of the rodent parvoviruses H-1 and MVM. PMID:3989914

  2. [Tabular excel editor for analysis of aligned nucleotide sequences].

    PubMed

    Demkin, V V

    2010-01-01

    Excel platform was used for transition of results of multiple aligned nucleotide sequences obtained using the BLAST network service to the form appropriate for visual analysis and editing. Two macros operators for MS Excel 2007 were constructed. The array of aligned sequences transformed into Excel table and processed using macros operators is more appropriate for analysis than initial html data.

  3. The Nucleotide Sequence of the lac Operator

    PubMed Central

    Gilbert, Walter; Maxam, Allan

    1973-01-01

    The lac repressor protects the lac operator against digestion with deoxyribonuclease. The protected fragment is double-stranded and about 27 base-pairs long. We determined the sequence of RNA transcription copies of this fragment and present a sequence for 24 base pairs. It is: 5′--T G G A A T T G T G A G C G G A T A A C A A T T 3′ 3′--A C C T T A A C A C T C G C C T A T T G T T A A 5′ The sequence has 2-fold symmetry regions; the two longest are separated by one turn of the DNA double helix. PMID:4587255

  4. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid...

  5. Nucleotide sequence composition and method for detection of neisseria gonorrhoeae

    SciTech Connect

    Lo, A.; Yang, H.L.

    1990-02-13

    This patent describes a composition of matter that is specific for {ital Neisseria gonorrhoeae}. It comprises: at least one nucleotide sequence for which the ratio of the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria gonorrhoeae} to the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria meningitidis} is greater than about five. The ratio being obtained by a method described.

  6. Cloning and characterization of a highly repetitive fish nucleotide sequence.

    PubMed

    Datta, U; Dutta, P; Mandal, R K

    1988-01-01

    We have cloned and sequenced a highly repetitive HindIII fragment of DNA from the common carp Cyprinus carpio. It represents a tandemly repeated sequence with a monomeric unit of 245 bp and comprises 8% of the fish genome. Higher units of this monomer appear as a ladder in Southern blots. The monomeric unit has been sequenced; it is A + T-rich with some direct and some inverse-repeat nucleotide clusters.

  7. Nucleotide correlations and electronic transport of DNA sequences

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Vasconcelos, M. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2005-02-01

    We use a tight-binding formulation to investigate the transmissivity and wave-packet dynamics of sequences of single-strand DNA molecules made up from the nucleotides guanine G , adenine A , cytosine C , and thymine T . In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of two artificial sequences: (i) the Rudin-Shapiro one, which has long-range correlations; (ii) a random sequence, which is a kind of prototype of a short-range correlated system, presented here with the same first-neighbor pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the persistence of resonances of finite segments. On the other hand, the wave-packet dynamics seems to be mostly influenced by the short-range correlations.

  8. The complete nucleotide sequence of bean yellow mosaic potyvirus RNA.

    PubMed

    Guyatt, K J; Proll, D F; Menssen, A; Davidson, A D

    1996-01-01

    The complete nucleotide sequence of an Australian strain of bean yellow mosaic virus (BYMV-S) has been determined from cloned viral cDNAs. The BYMV-S genome is 9 547 nucleotides in length excluding a poly(A) tail. Computer analysis of the sequence revealed a single long open reading frame (ORF) of 9168 nucleotides, commencing at position 206 and terminating with UAG at position 9374-6. The ORF potentially encodes a polyprotein of 3056 amino acids with a deduced Mr of 347 409. The 5' and 3' untranslated regions are 205 and 174 nucleotides in length respectively. Alignment of the amino acid sequence of the BYMV-S polyprotein with those of other potyviruses identified nine putative proteolytic cleavage sites. The predicted consensus cleavage site of the BYMV NIa protease was found to differ from that described for other potyviruses. Processing of the BYMV polyprotein at the designated proteolytic cleavage sites would result in a typical potyviral genome arrangement. The amino acid sequences of the putative BYMV encoded proteins were compared to the homologous gene products of twelve individual potyviruses to identify overall and specific regions of amino acid sequence homology.

  9. Nucleotide sequencing and identification of some wild mushrooms.

    PubMed

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits.

  10. Nucleotide Sequencing and Identification of Some Wild Mushrooms

    PubMed Central

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K.; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits. PMID:24489501

  11. Method for the detection of specific nucleic acid sequences by polymerase nucleotide incorporation

    DOEpatents

    Castro, Alonso

    2004-06-01

    A method for rapid and efficient detection of a target DNA or RNA sequence is provided. A primer having a 3'-hydroxyl group at one end and having a sequence of nucleotides sufficiently homologous with an identifying sequence of nucleotides in the target DNA is selected. The primer is hybridized to the identifying sequence of nucleotides on the DNA or RNA sequence and a reporter molecule is synthesized on the target sequence by progressively binding complementary nucleotides to the primer, where the complementary nucleotides include nucleotides labeled with a fluorophore. Fluorescence emitted by fluorophores on single reporter molecules is detected to identify the target DNA or RNA sequence.

  12. Complete nucleotide sequence and genome organization of bovine parvovirus.

    PubMed Central

    Chen, K C; Shull, B C; Moses, E A; Lederman, M; Stout, E R; Bates, R C

    1986-01-01

    We determined the complete nucleotide sequence of bovine parvovirus (BPV), an autonomous parvovirus. The sequence is 5,491 nucleotides long. The terminal regions contain nonidentical imperfect palindromic sequences of 150 and 121 nucleotides. In the plus strand, there are three large open reading frames (left ORF, mid ORF, and right ORF) with coding capacities of 729, 255, and 685 amino acids, respectively. As with all parvoviruses studied to date, the left ORF of BPV codes for the nonstructural protein NS-1 and the right ORF codes for the major parts of the three capsid proteins. The mid ORF probably encodes the major part of the nonstructural protein NP-1. There are promoterlike sequences at map units 4.5, 12.8, and 38.7 and polyadenylation signals at map units 61.6, 64.6, and 98.5. BPV has little DNA homology with the defective parvovirus AAV, with the human autonomous parvovirus B19, or with the other autonomous parvoviruses sequenced (canine parvovirus, feline panleukopenia virus, H-1, and minute virus of mice). Even though the overall DNA homology of BPV with other parvoviruses is low, several small regions of high homology are observed when the amino acid sequences encoded by the left and right ORFs are compared. From these comparisons, it can be shown that the evolutionary relationship among the parvoviruses is B19 in equilibrium with AAV in equilibrium with BPV in equilibrium with MVM. The highly conserved amino acid sequences observed among all parvoviruses may be useful in the identification and detection of parvoviruses and in the design of a general parvovirus vaccine. PMID:3783814

  13. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    PubMed Central

    Schmid, Andreas K.; Davis, Ronald W.

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging. PMID:27149617

  14. The nucleotide sequence of the human beta-globin gene.

    PubMed

    Lawn, R M; Efstratiadis, A; O'Connell, C; Maniatis, T

    1980-10-01

    We report the complete nucleotide sequence of the human beta-globin gene. The purpose of this study is to obtain information necessary to study the evolutionary relationships between members of the human beta-like globin gene family and to provide the basis for comparing normal beta-globin genes with those obtained from the DNA of individuals with genetic defects in hemoglobin expression.

  15. The complete nucleotide sequence of pelargonium leaf curl virus.

    PubMed

    McGavin, Wendy J; MacFarlane, Stuart A

    2016-05-01

    Investigation of a tombusvirus isolated from tulip plants in Scotland revealed that it was pelargonium leaf curl virus (PLCV) rather than the originally suggested tomato bushy stunt virus. The complete sequence of the PLCV genome was determined for the first time, revealing it to be 4789 nucleotides in size and to have an organization similar to that of the other, previously described tombusviruses. Primers derived from the sequence were used to construct a full-length infectious clone of PLCV that recapitulates the disease symptoms of leaf curling in systemically infected pelargonium plants.

  16. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  17. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  18. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  19. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  20. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  1. Bioinformatics comparison of sulfate-reducing metabolism nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    The sulfate-reducing bacteria can be traced back to 3.5 billion years ago. The thermodynamics details of the sulfur cycle have been well documented. A recent sulfate-reducing bacteria report (Robator, Jungbluth, et al , 2015 Jan, Front. Microbiol) with Genbank nucleotide data has been analyzed in terms of the sulfite reductase (dsrAB) via fractal dimension and entropy values. Comparison to oil field sulfate-reducing sequences was included. The AUCG translational mass fractal dimension versus ATCG transcriptional mass fractal dimension for the low temperature dsrB and dsrA sequences reported in Reference Thirteen shows correlation R-sq ~ 0.79 , with a probably of about 3% in simulation. A recent report of using Cystathionine gamma-lyase sequence to produce CdS quantum dot in a biological method, where the sulfur is reduced just like in the H2S production process, was included for comparison. The AUCG mass fractal dimension versus ATCG mass fractal dimension for the Cystathionine gamma-lyase sequences was found to have R-sq of 0.72, similar to the low temperature dissimilatory sulfite reductase dsr group with 3% probability, in contrary to the oil field group having R-sq ~ 0.94, a high probable outcome in the simulation. The other two simulation histograms, namely, fractal dimension versus entropy R-sq outcome values, and di-nucleotide entropy versus mono-nucleotide entropy R-sq outcome values are also discussed in the data analysis focusing on low probability outcomes.

  2. Nucleotide sequence and genome organization of canine parvovirus.

    PubMed Central

    Reed, A P; Jones, E V; Miller, T J

    1988-01-01

    The genome of a canine parvovirus isolate strain (CPV-N) was cloned, and the DNA sequence was determined. The entire genome, including ends, was 5,323 nucleotides in length. The terminal repeat at the 3' end of the genome shared similar structural characteristics but limited homology with the rodent parvoviruses. The 5' terminal repeat was not detected in any of the clones. Instead, a region of DNA starting near the capsid gene stop codon and extending 248 base pairs into the coding region had been duplicated and inserted 75 base pairs downstream from the poly(A) addition site. Consensus sequences for the 5' donor and 3' acceptor sites as well as promotors and poly(A) addition sites were identified and compared with the available information on related parvoviruses. The genomic organization of CPV-N is similar to that of feline parvovirus (FPV) in that there are two major open reading frames (668 and 722 amino acids) in the plus strand (mRNA polarity). Both coding domains are in the same frame, and no significant open reading frames were apparent in any of the other frames of both minus and plus DNA strands. The nucleotide and amino acid homologies of the capsid genes between CPV-N and FPV were 98 and 99%, respectively. In contrast, the nucleotide and amino acid homologies of the capsid genes for CPV-N and CPV-b (S. Rhode III, J. Virol. 54:630-633, 1985) were 95 and 98%, respectively. These results indicate that very few nucleotide or amino acid changes differentiate the antigenic and host range specificity of FPV and CPV. PMID:2824850

  3. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns

    PubMed Central

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A.; Kopylova, Evguenia; Morton, James T.; Zech Xu, Zhenjiang; Kightley, Eric P.; Thompson, Luke R.; Hyde, Embriette R.; Gonzalez, Antonio

    2017-01-01

    ABSTRACT High-throughput sequencing of 16S ribosomal RNA gene amplicons has facilitated understanding of complex microbial communities, but the inherent noise in PCR and DNA sequencing limits differentiation of closely related bacteria. Although many scientific questions can be addressed with broad taxonomic profiles, clinical, food safety, and some ecological applications require higher specificity. Here we introduce a novel sub-operational-taxonomic-unit (sOTU) approach, Deblur, that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms. Deblur substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity. Using simulations, mock mixtures, and real data sets, we detected closely related bacterial sequences with single nucleotide differences while removing false positives and maintaining stability in detection, suggesting that Deblur is limited only by read length and diversity within the amplicon sequences. Because Deblur operates on a per-sample level, it scales to modern data sets and meta-analyses. To highlight Deblur’s ability to integrate data sets, we include an interactive exploration of its application to multiple distinct sequencing rounds of the American Gut Project. Deblur is open source under the Berkeley Software Distribution (BSD) license, easily installable, and downloadable from https://github.com/biocore/deblur. IMPORTANCE Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time. PMID:28289731

  4. The nucleotide sequence of a nematode vitellogenin gene.

    PubMed Central

    Spieth, J; Denison, K; Zucker, E; Blumenthal, T

    1985-01-01

    The nematode, Caenorhabditis elegans, contains a family of six genes that code for vitellogenins. Here we report the complete nucleotide sequence of one of these genes, vit-5. The gene specifies a mRNA of 4869 nucleotides, including untranslated regions of 9 bases at the 5' end and 51 bases at the 3' end. Vit-5 contains four short introns totalling 218 bp. The predicted vitellogenin, yp170A, has a molecular weight of 186,430. At its N terminus it is clearly related to the vitellogenins of vertebrates. However, the vit-5-encoded protein does not contain a serine-rich sequence related to the vertebrate vitellin, phosvitin. In fact, the amino acid composition of the nematode protein is very similar to that of the vertebrate protein without phosvitin. Vit-5 has a highly asymmetric codon choice dictionary. The favored codons are different from those favored in other organisms, but are characteristic of highly expressed C. elegans genes. The strong selection against rare codons is not as great near the 5' end of the gene; rare codons are 15 times more frequent within the first 54 bp than in the next 4.8 kb. PMID:3855245

  5. Nucleotide sequences specific to Yersinia pestis and methods for the detection of Yersinia pestis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Motin, Vladinir L.

    2009-02-24

    Nucleotide sequences specific to Yersinia pestis that serve as markers or signatures for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  6. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2009-02-24

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  7. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2007-02-06

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  8. Nucleotide sequences specific to Brucella and methods for the detection of Brucella

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.

    2009-02-24

    Nucleotide sequences specific to Brucella that serves as a marker or signature for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  9. The complete nucleotide sequence of chrysanthemum stem necrosis virus.

    PubMed

    Dullemans, A M; Verhoeven, J Th J; Kormelink, R; van der Vlugt, R A A

    2015-02-01

    The complete genome sequence of chrysanthemum stem necrosis virus (CSNV) was determined using Roche 454 next-generation sequencing. CSNV is a tentative member of the genus Tospovirus within the family Bunyaviridae, whose members are arthropod-borne. This is the first report of the entire RNA genome sequence of a CSNV isolate. The large RNA of CSNV is 8955 nucleotides (nt) in size and contains a single open reading frame of 8625 nt in the antisense arrangement, coding for the putative RNA-dependent RNA polymerase (L protein) of 2874 aa with a predicted Mr of 331 kDa. Two untranslated regions of 397 and 33 nt are present at the 5' and 3' termini, respectively. The medium (M) and small (S) RNAs are 4830 and 2947 nt in size, respectively, and show 99 % identity to the corresponding genomic segments of previously partially characterized CSNV genomes. Protein sequences for the precursor of the Gn/Gc proteins, N and NSs, are identical in length in all of the analysed CSNV isolates.

  10. Generalized Levy-walk model for DNA nucleotide sequences

    NASA Technical Reports Server (NTRS)

    Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Simons, M.; Stanley, H. E.

    1993-01-01

    We propose a generalized Levy walk to model fractal landscapes observed in noncoding DNA sequences. We find that this model provides a very close approximation to the empirical data and explains a number of statistical properties of genomic DNA sequences such as the distribution of strand-biased regions (those with an excess of one type of nucleotide) as well as local changes in the slope of the correlation exponent alpha. The generalized Levy-walk model simultaneously accounts for the long-range correlations in noncoding DNA sequences and for the apparently paradoxical finding of long subregions of biased random walks (length lj) within these correlated sequences. In the generalized Levy-walk model, the lj are chosen from a power-law distribution P(lj) varies as lj(-mu). The correlation exponent alpha is related to mu through alpha = 2-mu/2 if 2 < mu < 3. The model is consistent with the finding of "repetitive elements" of variable length interspersed within noncoding DNA.

  11. Complete nucleotide sequence of a native plasmid from Brevibacterium linens.

    PubMed

    Moore, Mathew; Svenson, Charles; Bowling, David; Glenn, Dianne

    2003-03-01

    Brevibacterium linens has commercial significance in the dairy industry and potential application in the production of bacteriocins and carotenoids. Strain development of these industrially significant organisms would be facilitated by the use of vectors, yet few are available. In this study we report the isolation of four novel plasmids from the Gram-positive coryneform B. linens, and determine the first complete nucleotide sequence of a native plasmid of B. linens. The cryptic plasmid pLIM is 7610 bp in length, and belongs to a subfamily of theta replicating ColE2-related plasmids. Initial investigation suggests that replication in pLIM requires two replicases, a primase (RepA) and a DNA binding protein (RepB), encoded by a single operon repAB. The origin of replication is located upstream of repAB transcription.

  12. Base sequence context effects on nucleotide excision repair.

    PubMed

    Cai, Yuqin; Patel, Dinshaw J; Broyde, Suse; Geacintov, Nicholas E

    2010-08-23

    Nucleotide excision repair (NER) plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P), 10S (+)-trans-anti-B[a]P-N(2)-dG in six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.

  13. Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae.

    PubMed Central

    Frey, J; Meier, R; Gygi, D; Nicolet, J

    1991-01-01

    The DNA sequence of the gene encoding the structural protein of hemolysin I (HlyI) of Actinobacillus pleuropneumoniae serotype 1 strain 4074 was analyzed. The nucleotide sequence shows a 3,072-bp reading frame encoding a protein of 1,023 amino acids with a calculated molecular size of 110.1 kDa. This corresponds to the HlyI protein, which has an apparent molecular size on sodium dodecyl sulfate gels of 105 kDa. The structure of the protein derived from the DNA sequence shows three hydrophobic regions in the N-terminal part of the protein, 13 glycine-rich domains in the second half of the protein, and a hydrophilic C-terminal area, all of which are typical of the cytotoxins of the RTX (repeats in the structural toxin) toxin family. The derived amino acid sequence of HlyI shows 42% homology with the hemolysin of A. pleuropneumoniae serotype 5, 41% homology with the leukotoxin of Pasteurella haemolytica, and 56% homology with the Escherichia coli alpha-hemolysin. The 13 glycine-rich repeats and three hydrophobic areas of the HlyI sequence show more similarity to the E. coli alpha-hemolysin than to either the A. pleuropneumoniae serotype 5 hemolysin or the leukotoxin (while the last two are more similar to each other). Two types of RTX hemolysins therefore seem to be present in A. pleuropneumoniae, one (HlyI) resembling the alpha-hemolysin and a second more closely related to the leukotoxin. Ca(2+)-binding experiments using HlyI and recombinant A. pleuropneumoniae prohemolysin (HlyIA) that was produced in E. coli shows that HlyI binds 45Ca2+, probably because of the 13 glycine-rich repeated domains. Activation of the prohemolysin is not required for Ca2+ binding. Images PMID:1879928

  14. [Nucleotide sequence of genes for alpha- and beta-subunits of luciferase from Photobacterium leiognathi].

    PubMed

    Illarionov, B A; Protopopova, M V; Karginov, V A; Mertvetsov, N P; Gitel'zon, I I

    1988-03-01

    Nucleotide sequence of the Photobacterium leiognathi DNA containing genes of alpha and beta subunits of luciferase has been determined. We also deduced amino acid sequence and molecular mass of luciferase and localized luciferase genes in the sequenced DNA fragment.

  15. The ChEMBL database in 2017

    PubMed Central

    Gaulton, Anna; Hersey, Anne; Nowotka, Michał; Bento, A. Patrícia; Chambers, Jon; Mendez, David; Mutowo, Prudence; Atkinson, Francis; Bellis, Louisa J.; Cibrián-Uhalte, Elena; Davies, Mark; Dedman, Nathan; Karlsson, Anneli; Magariños, María Paula; Overington, John P.; Papadatos, George; Smit, Ines; Leach, Andrew R.

    2017-01-01

    ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 and 2014 Nucleic Acids Research Database Issues. Since then, alongside the continued extraction of data from the medicinal chemistry literature, new sources of bioactivity data have also been added to the database. These include: deposited data sets from neglected disease screening; crop protection data; drug metabolism and disposition data and bioactivity data from patents. A number of improvements and new features have also been incorporated. These include the annotation of assays and targets using ontologies, the inclusion of targets and indications for clinical candidates, addition of metabolic pathways for drugs and calculation of structural alerts. The ChEMBL data can be accessed via a web-interface, RDF distribution, data downloads and RESTful web-services. PMID:27899562

  16. The ChEMBL database in 2017.

    PubMed

    Gaulton, Anna; Hersey, Anne; Nowotka, Michał; Bento, A Patrícia; Chambers, Jon; Mendez, David; Mutowo, Prudence; Atkinson, Francis; Bellis, Louisa J; Cibrián-Uhalte, Elena; Davies, Mark; Dedman, Nathan; Karlsson, Anneli; Magariños, María Paula; Overington, John P; Papadatos, George; Smit, Ines; Leach, Andrew R

    2017-01-04

    ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 and 2014 Nucleic Acids Research Database Issues. Since then, alongside the continued extraction of data from the medicinal chemistry literature, new sources of bioactivity data have also been added to the database. These include: deposited data sets from neglected disease screening; crop protection data; drug metabolism and disposition data and bioactivity data from patents. A number of improvements and new features have also been incorporated. These include the annotation of assays and targets using ontologies, the inclusion of targets and indications for clinical candidates, addition of metabolic pathways for drugs and calculation of structural alerts. The ChEMBL data can be accessed via a web-interface, RDF distribution, data downloads and RESTful web-services.

  17. Nucleotide sequence of the human N-myc gene

    SciTech Connect

    Stanton, L.W.; Schwab, M.; Bishop, J.M.

    1986-03-01

    Human neuroblastomas frequently display amplification and augmented expression of a gene known as N-myc because of its similarity to the protooncogene c-myc. It has therefore been proposed that N-myc is itself a protooncogene, and subsequent tests have shown that N-myc and c-myc have similar biological activities in cell culture. The authors have now detailed the kinship between N-myc and c-myc by determining the nucleotide sequence of human N-myc and deducing the amino acid sequence of the protein encoded by the gene. The topography of N-myc is strikingly similar to that of c-myc: both genes contain three exons of similar lengths; the coding elements of both genes are located in the second and third exons; and both genes have unusually long 5' untranslated regions in their mRNAs, with features that raise the possibility that expression of the genes may be subject to similar controls of translation. The resemblance between the proteins encoded by N-myc and c-myc sustains previous suspicions that the genes encode related functions.

  18. Nucleotide sequence from the coding region of rabbit β-globin messenger RNA

    PubMed Central

    Proudfoot, N.J.

    1976-01-01

    A sequence of 89 nucleotides from rabbit β-globin mRNA has been determined and is shown to code for residues 107 to 137 of the β-globin protein. In addition, a sequence heterogeneity has been identified within this 89 nucleotide long sequence which corresponds to a known polymorphic variant of rabbit β-globin. Images PMID:61580

  19. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: comparison with the hepatitis B virus sequence.

    PubMed Central

    Galibert, F; Chen, T N; Mandart, E

    1982-01-01

    The complete nucleotide sequence of a woodchuck hepatitis virus genome cloned in Escherichia coli was determined by the method of Maxam and Gilbert. This sequence was found to be 3,308 nucleotides long. Potential ATG initiator triplets and nonsense codons were identified and used to locate regions with a substantial coding capacity. A striking similarity was observed between the organization of human hepatitis B virus and woodchuck hepatitis virus. Nucleotide sequences of these open regions in the woodchuck virus were compared with corresponding regions present in hepatitis B virus. This allowed the location of four viral genes on the L strand and indicated the absence of protein coded by the S strand. Evolution rates of the various parts of the genome as well as of the four different proteins coded by hepatitis B virus and woodchuck hepatitis virus were compared. These results indicated that: (i) the core protein has evolved slightly less rapidly than the other proteins; and (ii) when a region of DNA codes for two different proteins, there is less freedom for the DNA to evolve and, moreover, one of the proteins can evolve more rapidly than the other. A hairpin structure, very well conserved in the two genomes, was located in the only region devoid of coding function, suggesting the location of the origin of replication of the viral DNA. Images PMID:7086958

  20. Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal.

    PubMed

    Shahid, M S; Yoshida, S; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2013-06-01

    Carica papaya (papaya) is a fruit crop that is cultivated mostly in kitchen gardens throughout Nepal. Leaf samples of C. papaya plants with leaf curling, vein darkening, vein thickening, and a reduction in leaf size were collected from a garden in Darai village, Rampur, Nepal in 2010. Full-length clones of a monopartite Begomovirus, a betasatellite and an alphasatellite were isolated. The complete nucleotide sequence of the Begomovirus showed the arrangement of genes typical of Old World begomoviruses with the highest nucleotide sequence identity (>99 %) to an isolate of Ageratum yellow vein virus (AYVV), confirming it as an isolate of AYVV. The complete nucleotide sequence of betasatellite showed greater than 89 % nucleotide sequence identity to an isolate of Tomato leaf curl Java betasatellite originating from Indonesian. The sequence of the alphasatellite displayed 92 % nucleotide sequence identity to Sida yellow vein China alphasatellite. This is the first identification of these components in Nepal and the first time they have been identified in papaya.

  1. Nucleotide sequences of the cylindrical inclusion protein genes of two Japanese zucchini yellow mosaic virus isolates.

    PubMed

    Kundu, A K; Ohshima, K; Sako, N; Yaegashi, H

    1999-02-01

    The nucleotide sequences of the cylindrical inclusion protein (CIP) genes of two Japanese zucchini yellow mosaic virus (ZYMV) isolates (ZYMV-169 and ZYMV-M) were determined. The CIP genes of both isolates comprised 1902 nucleotides and encoded 634 amino acids containing consensus nucleotide binding motif. The sequence similarities between the two isolates at the nucleotide and amino acid levels were 91% and 98%, respectively. When the CIP gene sequences of the Japanese ZYMV isolates were compared with those of previously reported ZYMV isolates, the nucleotide and amino acid sequence similarities ranged between 81% and 97%, and between 95% and 97%, respectively. Phylogenetic analysis of the deduced amino acid sequences of the CIP genes indicated that the Japanese ZYMV isolates were closely related to those of other ZYMV isolates.

  2. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data...

  3. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data...

  4. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data...

  5. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data...

  6. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data...

  7. Complete nucleotide sequence of a potyvirus causing maize dwarf mosaic disease in central China.

    PubMed

    Liu, X; Wang, X; Zhao, Y; Zheng, C; Zhou, G

    2003-01-01

    The full-length nucleotide sequence of a potyvirus causing the maize dwarf mosaic (MDM) disease in Henan province, central China, was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA 5'-end (5'-RACE). The viral genome comprised of 9596 nucleotides except the polyA tail and encoded a putative polyprotein of 3603 amino acids. The entire genomic sequence of this isolate shared identities of 94.2% and 98.3% with Sugarcane mosaic virus (SCMV) HZ isolate at the nucleotide and deduced amino acid levels, respectively, but only a 69.1% identity with MDM virus (MDMV) Bulgarian isolate (MDMV-Bg) at the nucleotide level. Phylogenetical tree analysis of the complete nucleotide sequences indicated that the Henan isolate of a potyvirus causing MDM disease is in fact a Henan strain of SCMV (SCMV-HN).

  8. Nucleotide sequence of the Lactococcus lactis NCDO 763 (ML3) rpoD gene.

    PubMed

    Gansel, X; Hartke, A; Boutibonnes, P; Auffray, Y

    1993-10-19

    The complete nucleotide sequence of rpoD gene from Lactococcus lactis has been determined. The nucleotide data have indicated the presence of an open reading frame of 1020 base pairs encoding a polypeptide which shares the framework structure for principal sigma factors of eubacteria strains.

  9. Nucleotide sequence of a lysine transfer ribonucleic Acid from bakers' yeast.

    PubMed

    Madison, J T; Boguslawski, S J; Teetor, G H

    1972-05-12

    The nucleotide sequence of one of the two major lysine transfer RNA's from bakers' yeast has been determined. Its structure is compared to that of a lysine tRNA from a haploid yeast. A total of 21 nucleotides differ in the two molecules. Only the T-psi-C-G (thymidine-pseudouridine-cytidine-guanosine) loop and its supporting stem are identical.

  10. The EMBL-EBI bioinformatics web and programmatic tools framework.

    PubMed

    Li, Weizhong; Cowley, Andrew; Uludag, Mahmut; Gur, Tamer; McWilliam, Hamish; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Lopez, Rodrigo

    2015-07-01

    Since 2009 the EMBL-EBI Job Dispatcher framework has provided free access to a range of mainstream sequence analysis applications. These include sequence similarity search services (https://www.ebi.ac.uk/Tools/sss/) such as BLAST, FASTA and PSI-Search, multiple sequence alignment tools (https://www.ebi.ac.uk/Tools/msa/) such as Clustal Omega, MAFFT and T-Coffee, and other sequence analysis tools (https://www.ebi.ac.uk/Tools/pfa/) such as InterProScan. Through these services users can search mainstream sequence databases such as ENA, UniProt and Ensembl Genomes, utilising a uniform web interface or systematically through Web Services interfaces (https://www.ebi.ac.uk/Tools/webservices/) using common programming languages, and obtain enriched results with novel visualisations. Integration with EBI Search (https://www.ebi.ac.uk/ebisearch/) and the dbfetch retrieval service (https://www.ebi.ac.uk/Tools/dbfetch/) further expands the usefulness of the framework. New tools and updates such as NCBI BLAST+, InterProScan 5 and PfamScan, new categories such as RNA analysis tools (https://www.ebi.ac.uk/Tools/rna/), new databases such as ENA non-coding, WormBase ParaSite, Pfam and Rfam, and new workflow methods, together with the retirement of depreciated services, ensure that the framework remains relevant to today's biological community.

  11. Variation in the nucleotide sequence of a prolamin gene family in wild rice.

    PubMed

    Barbier, P; Ishihama, A

    1990-07-01

    Variation in the DNA sequence of the 10 kDa prolamin gene family within the wild rice species Oryza rufipogon was probed using the direct sequencing of PCR-amplified genes. A comparison of the nucleotide and deduced amino-acid sequences of eight Asian strains of O. rufipogon and one strain of the related African species O. longistaminata is presented.

  12. Complete nucleotide sequence of the 23S rRNA gene of the Cyanobacterium, Anacystis nidulans.

    PubMed Central

    Douglas, S E; Doolittle, W F

    1984-01-01

    The nucleotide sequence of the Anacystis nidulans 23S rRNA gene, including the 5'- and 3'-flanking regions has been determined. The gene is 2876 nucleotides long and shows higher primary sequence homology to the 23S rRNAs of plastids (84.5%) than to that of E. coli (79%). The predicted rRNA transcript also shares many secondary structural features with those of plastids, reinforcing the endosymbiont hypothesis for the origin of these organelles. PMID:6326060

  13. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses.

    PubMed Central

    Ina, Y; Gojobori, T

    1994-01-01

    To examine whether positive selection operates on the hemagglutinin 1 (HA1) gene of human influenza A viruses (H1 subtype), 21 nucleotide sequences of the HA1 gene were statistically analyzed. The nucleotide sequences were divided into antigenic and nonantigenic sites. The nucleotide diversities for antigenic and nonantigenic sites of the HA1 gene were computed at synonymous and nonsynonymous sites separately. For nonantigenic sites, the nucleotide diversities were larger at synonymous sites than at nonsynonymous sites. This is consistent with the neutral theory of molecular evolution. For antigenic sites, however, the nucleotide diversities at nonsynonymous sites were larger than those at synonymous sites. These results suggest that positive selection operates on antigenic sites of the HA1 gene of human influenza A viruses (H1 subtype). PMID:8078892

  14. RNA Secondary Structures Having a Compatible Sequence of Certain Nucleotide Ratios.

    PubMed

    Barrett, Christopher L; Li, Thomas J X; Reidys, Christian M

    2016-11-01

    Given a random RNA secondary structure, S, we study RNA sequences having fixed ratios of nucleotides that are compatible with S. We perform this analysis for RNA secondary structures subject to various base-pairing rules and minimum arc- and stack-length restrictions. Our main result reads as follows: in the simplex of nucleotide ratios, there exists a convex region, in which, in the limit of long sequences, a random structure asymptotically almost surely (a.a.s.) has compatible sequence with these ratios and outside of which a.a.s. a random structure has no such compatible sequence. We localize this region for RNA secondary structures subject to various base-pairing rules and minimum arc- and stack-length restrictions. In particular, for GC-sequences (GC denoting the nucleotides guanine and cytosine, respectively) having a ratio of G nucleotides smaller than 1/3, a random RNA secondary structure without any minimum arc- and stack-length restrictions has a.a.s. no such compatible sequence. For sequences having a ratio of G nucleotides larger than 1/3, a random RNA secondary structure has a.a.s. such compatible sequences. We discuss our results in the context of various families of RNA structures.

  15. FASH: A web application for nucleotides sequence search

    PubMed Central

    Veksler-Lublinksy, Isana; Barash, Danny; Avisar, Chai; Troim, Einav; Chew, Paul; Kedem, Klara

    2008-01-01

    FASH (Fourier Alignment Sequence Heuristics) is a web application, based on the Fast Fourier Transform, for finding remote homologs within a long nucleic acid sequence. Given a query sequence and a long text-sequence (e.g, the human genome), FASH detects subsequences within the text that are remotely-similar to the query. FASH offers an alternative approach to Blast/Fasta for querying long RNA/DNA sequences. FASH differs from these other approaches in that it does not depend on the existence of contiguous seed-sequences in its initial detection phase. The FASH web server is user friendly and very easy to operate. FASH can be accessed at (secured website) PMID:18505581

  16. Nucleotide sequence of Neurospora crassa cytoplasmic initiator tRNA.

    PubMed Central

    Gillum, A M; Hecker, L I; Silberklang, M; Schwartzbach, S D; RajBhandary, U L; Barnett, W E

    1977-01-01

    Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs. Images PMID:146192

  17. Cloning and nucleotide sequence of the aroA gene of Bordetella pertussis.

    PubMed Central

    Maskell, D J; Morrissey, P; Dougan, G

    1988-01-01

    The aroA locus of Bordetella pertussis, encoding 5-enolpyruvylshikimate 3-phosphate synthase, has been cloned into Escherichia coli by using a cosmid vector. The gene is expressed in E. coli and complemented an E. coli aroA mutant. The nucleotide sequence of the B. pertussis aroA gene was determined and contains an open reading frame encoding 442 amino acids, with a calculated molecular weight for 5-enolpyruvylshikimate 3-phosphate synthase of 46,688. The amino acid sequence derived from the nucleotide sequence shows homology with the published amino acid sequences of aroA gene products of other microorganisms. PMID:2897356

  18. Isolation and complete nucleotide sequence of the measles virus IMB-1 strain in China.

    PubMed

    Ma, Shao-hui; Wang, Li-chun; Liu, Jian-sheng; Shi, Hai-jing; Liu, Long-ding; Li, Qi-han

    2010-12-01

    The complete nucleotide sequence of the measles virus strain IMB-1, which was isolated in China, was determined. As in other measles viruses, its genome is 15,894 nucleotides in length and encodes six proteins. The full-length nucleotide sequence of the IMB-1 isolate differed from vaccine strains (including wild-type Edmonston strain) by 4%-5% at the nucleotide sequence level. This isolate has amino acid variations over the full genome, including in the hemagglutinin and fusion genes. This report is the first to describe the full-length genome of a genotype H1 strain and provide an overview of the diversity of genetic characteristics of a circulating measles virus.

  19. Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA2.

    PubMed Central

    Brault, V; Hibrand, L; Candresse, T; Le Gall, O; Dunez, J

    1989-01-01

    The complete nucleotide sequence of hungarian grapevine chrome mosaic nepovirus (GCMV) RNA2 has been determined. The RNA sequence is 4441 nucleotides in length, excluding the poly(A) tail. A polyprotein of 1324 amino acids with a calculated molecular weight of 146 kDa is encoded in a single long open reading frame extending from nucleotides 218 to 4190. This polyprotein is homologous with the protein encoded by the S strain of tomato black ring virus (TBRV) RNA2, the only other nepovirus sequenced so far. Direct sequencing of the viral coat protein and in vitro translation of transcripts derived from cDNA sequences demonstrate that, as for comoviruses, the coat protein is located at the carboxy terminus of the polyprotein. A model for the expression of GCMV RNA2 is presented. Images PMID:2798129

  20. Insertion sites and the terminal nucleotide sequences of the Tn4 transposon.

    PubMed

    Hyde, D R; Tu, C P

    1982-07-10

    The nucleotide sequences at the ends of the Tn4 transposon (mercury spectinomycin and sulfonamide resistance) have been determined. They are inverted repeated sequences of 38 nucleotides with three mismatched base pairs. These sequences are strongly homologous with the terminal sequences of Tn501 (mercury resistance) but less so with those of Tn3 (ampicillin resistance). The Tn4 transposon generates pentanucleotide members (Tn3, Tn1000, Tn501, Tn551, IS2) with the exception of Tn1721 and bacteriophage Mu. Among the three Tn4 insertion sites examined here, two of them occurred near a nonanucleotide sequence in perfect homology with part of the terminal inverted-repeat sequence of Tn4 and the third insertion occurred near a sequence of partial homology to one end of Tn4. All three insertions were in the same orientation such that IRb is proximal to its homologous sequence on the recipient DNA.

  1. Complete nucleotide sequences of a distinct bipartite begomovirus, bitter gourd yellow vein virus, infecting Momordica charantia.

    PubMed

    Tahir, Muhammad; Haider, Muhammad Saleem; Briddon, Rob W

    2010-11-01

    Momordica charantia (Cucurbitaceae), a vegetable crop commonly cultivated throughout Pakistan, and begomoviruses, a serious threat to crop plants, are natives of tropical and subtropical regions of the world. Leaf samples of M. charantia with yellow vein symptoms typical of begomovirus infections and samples from apparently healthy plants were collected from areas around Lahore in 2004. Full-length clones of a bipartite begomovirus were isolated from symptomatic samples. The complete nucleotide sequences of the components of one isolate were determined, and these showed the arrangement of genes typical of Old World begomoviruses. The complete nucleotides sequence of DNA A showed the highest nucleotide sequence identity (86.9%) to an isolate of Tomato leaf curl New Delhi virus (ToLCNDV), confirming it to belong to a distinct species of begomovirus, for which the name Bitter gourd yellow vein virus (BGYVV) is proposed. Sequence comparisons showed that BGYVV likely emerged as a result of inter-specific recombination between ToLCNDV and tomato leaf curl Bangladesh virus (ToLCBDV). The complete nucleotide sequence of DNA B showed 97.2% nucleotide sequence identity to that of an Indian strain of Squash leaf curl China virus.

  2. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  3. Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene.

    PubMed Central

    Heidekamp, F; Dirkse, W G; Hille, J; van Ormondt, H

    1983-01-01

    The nucleotide sequence of the tmr gene, encoded by the octopine Ti plasmid from Agrobacterium tumefaciens (pTiAch5), was determined. The T-DNA, which encompasses this gene, is involved in tumor formation and maintenance, and probably mediates the cytokinin-independent growth of transformed plant cells. The nucleotide sequence of the tmr gene displays a continuous open reading frame specifying a polypeptide chain of 240 amino acids. The 5'- terminus of the polyadenylated tmr mRNA isolated from octopine tobacco tumor cell lines was determined by nuclease S1 mapping. The nucleotide sequence 5'-TATAAAA-3', which sequence is identical to the canonical "TATA" box, was found 29 nucleotides upstream from the major initiation site for RNA synthesis. Two potential polyadenylation signals 5'-AATAAA-3' were found at 207 and 275 nucleotides downstream from the TAG stopcodon of the tmr gene. A comparison was made of nucleotide stretches, involved in transcription control of T-DNA genes. Images PMID:6312414

  4. The nucleotide sequence of tomato mottle virus, a new geminivirus isolated from tomatoes in Florida.

    PubMed

    Abouzid, A M; Polston, J E; Hiebert, E

    1992-12-01

    A new geminivirus, tomato mottle virus (TMoV), affecting tomato production in Florida has been cloned and sequenced. Sequence analysis of the cloned replicative forms of TMoV revealed four potential coding regions for the A component [2601 nucleotides (nt)] and two for the B component (2541 nt). Comparisons of the nucleotide sequence of the TMoV genome with those of other whitefly-transmitted geminiviruses indicate that TMoV is a typical bipartite geminivirus of the New World and is closely related to but distinct from abutilon mosaic virus.

  5. Nucleotide sequences of 5S rRNAs from four jellyfishes.

    PubMed

    Hori, H; Ohama, T; Kumazaki, T; Osawa, S

    1982-11-25

    The nucleotide sequences of 5S rRNAs from four jellyfishes, Spirocodon saltatrix, Nemopsis dofleini, Aurelia aurita and Chrysaora quinquecirrha have been determined. The sequences are highly similar to each other. A fairly high similarity was also found between these jellyfishes and a sea anemone, Anthopleura japonica.

  6. Should nucleotide sequence analyzing computer algorithms always extend homologies by extending homologies?

    PubMed

    Burnett, L; Basten, A; Hensley, W J

    1986-01-10

    Most computer algorithms used for comparing or aligning nucleotide sequences rely on the premise that the best way to extend a homology between the two sequences is to select a match rather than a mismatch. We have tested this assumption and found that it is not always valid.

  7. Mayaro virus: complete nucleotide sequence and phylogenetic relationships with other alphaviruses.

    PubMed

    Lavergne, Anne; de Thoisy, Benoît; Lacoste, Vincent; Pascalis, Hervé; Pouliquen, Jean-François; Mercier, Véronique; Tolou, Hugues; Dussart, Philippe; Morvan, Jacques; Talarmin, Antoine; Kazanji, Mirdad

    2006-05-01

    Mayaro (MAY) virus is a member of the genus Alphavirus in the family Togaviridae. Alphaviruses are distributed throughout the world and cause a wide range of diseases in humans and animals. Here, we determined the complete nucleotide sequence of MAY from a viral strain isolated from a French Guianese patient. The deduced MAY genome was 11,429 nucleotides in length, excluding the 5' cap nucleotide and 3' poly(A) tail. Nucleotide and amino acid homologies, as well as phylogenetic analyses of the obtained sequence confirmed that MAY is not a recombinant virus and belongs to the Semliki Forest complex according to the antigenic complex classification. Furthermore, analyses based on the E1 region revealed that MAY is closely related to Una virus, the only other South American virus clustering with the Old World viruses. On the basis of our results and of the alphaviruses diversity and pathogenicity, we suggest that alphaviruses may have an Old World origin.

  8. Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation.

    PubMed

    Rima, Bert K

    2015-05-01

    The stability and conservation of the sequences of RNA viruses in the field and the high error rates measured in vitro are paradoxical. The field stability indicates that there are very strong selective constraints on sequence diversity. The nature of these constraints is discussed. Apart from constraints on variation in cis-acting RNA and the amino acid sequences of viral proteins, there are other ones relating to the presence of specific dinucleotides such CpG and UpA as well as the importance of RNA secondary structures and RNA degradation rates. Recent other constraints identified in other RNA viruses, such as effects of secondary RNA structure on protein folding or modification of cellular tRNA complements, are also discussed. Using the family Paramyxoviridae, I show that the codon usage pattern (CUP) is (i) specific for each virus species and (ii) that it is markedly different from the host - it does not vary even in vaccine viruses that have been derived by passage in a number of inappropriate host cells. The CUP might thus be an additional constraint on variation, and I propose the concept of codon constellation to indicate the informational content of the sequences of RNA molecules relating not only to stability and structure but also to the efficiency of translation of a viral mRNA resulting from the CUP and the numbers and position of rare codons.

  9. Nucleotide sequence of a human tRNA gene heterocluster

    SciTech Connect

    Chang, Y.N.; Pirtle, I.L.; Pirtle, R.M.

    1986-05-01

    Leucine tRNA from bovine liver was used as a hybridization probe to screen a human gene library harbored in Charon-4A of bacteriophage lambda. The human DNA inserts from plaque-pure clones were characterized by restriction endonuclease mapping and Southern hybridization techniques, using both (3'-/sup 32/P)-labeled bovine liver leucine tRNA and total tRNA as hybridization probes. An 8-kb Hind III fragment of one of these ..gamma..-clones was subcloned into the Hind III site of pBR322. Subsequent fine restriction mapping and DNA sequence analysis of this plasmid DNA indicated the presence of four tRNA genes within the 8-kb DNA fragment. A leucine tRNA gene with an anticodon of AAG and a proline tRNA gene with an anticodon of AGG are in a 1.6-kb subfragment. A threonine tRNA gene with an anticodon of UGU and an as yet unidentified tRNA gene are located in a 1.1-kb subfragment. These two different subfragments are separated by 2.8 kb. The coding regions of the three sequenced genes contain characteristic internal split promoter sequences and do not have intervening sequences. The 3'-flanking region of these three genes have typical RNA polymerase III termination sites of at least four consecutive T residues.

  10. Methods for making nucleotide probes for sequencing and synthesis

    DOEpatents

    Church, George M; Zhang, Kun; Chou, Joseph

    2014-07-08

    Compositions and methods for making a plurality of probes for analyzing a plurality of nucleic acid samples are provided. Compositions and methods for analyzing a plurality of nucleic acid samples to obtain sequence information in each nucleic acid sample are also provided.

  11. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations.

    PubMed

    Abascal, Federico; Zardoya, Rafael; Telford, Maximilian J

    2010-07-01

    We present TranslatorX, a web server designed to align protein-coding nucleotide sequences based on their corresponding amino acid translations. Many comparisons between biological sequences (nucleic acids and proteins) involve the construction of multiple alignments. Alignments represent a statement regarding the homology between individual nucleotides or amino acids within homologous genes. As protein-coding DNA sequences evolve as triplets of nucleotides (codons) and it is known that sequence similarity degrades more rapidly at the DNA than at the amino acid level, alignments are generally more accurate when based on amino acids than on their corresponding nucleotides. TranslatorX novelties include: (i) use of all documented genetic codes and the possibility of assigning different genetic codes for each sequence; (ii) a battery of different multiple alignment programs; (iii) translation of ambiguous codons when possible; (iv) an innovative criterion to clean nucleotide alignments with GBlocks based on protein information; and (v) a rich output, including Jalview-powered graphical visualization of the alignments, codon-based alignments coloured according to the corresponding amino acids, measures of compositional bias and first, second and third codon position specific alignments. The TranslatorX server is freely available at http://translatorx.co.uk.

  12. Nucleotide sequence and taxonomical distribution of the bacteriocin gene lin cloned from Brevibacterium linens M18.

    PubMed

    Valdes-Stauber, N; Scherer, S

    1996-04-01

    Linocin M18 is an antilisterial bacteriocin produced by the red smear cheese bacterium Brevibacterium linens M18. Oligonucleotide probes based on the N-terminal amino acid sequence were used to locate its single copy gene, lin, on the chromosomal DNA. The amino acid composition, N-terminal sequence, and molecular mass derived from the nucleotide sequence of an open reading frame of 798 nucleotides coding for 266 amino acids found on a 3-kb BamHI restriction fragment correspond closely to those obtained from the purified protein (N. Valdés-Stauber and S. Scherer, Appl. Environ. Microbiol. 60:3809-3814, 1994). No sequence homology to any protein or nucleotide sequences deposited in databases was found. Comparison of the nucleotide sequence and the N-terminal amino acid sequence derived from the protein suggests that B. linens M18 produces an N-formyl-methionyl-CAC tRNA. A wide taxonomical distribution of the gene within coryneform bacteria has been demonstrated by PCR amplification. The structural gene from linocin M18 is present at least in three Brevibacterium species, five Arthrobacter species, and five Corynebacterium species.

  13. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences.

    PubMed

    McDonald, Michael J; Wang, Wei-Chi; Huang, Hsien-Da; Leu, Jun-Yi

    2011-06-01

    The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.

  14. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    PubMed

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  15. Nucleotide sequence of an Escherichia coli chromosomal hemolysin.

    PubMed Central

    Felmlee, T; Pellett, S; Welch, R A

    1985-01-01

    We determined the DNA sequence of an 8,211-base-pair region encompassing the chromosomal hemolysin, molecularly cloned from an O4 serotype strain of Escherichia coli. All four hemolysin cistrons (transcriptional order, C, A, B, and D) were encoded on the same DNA strand, and their predicted molecular masses were, respectively, 19.7, 109.8, 79.9, and 54.6 kilodaltons. The identification of pSF4000-encoded polypeptides in E. coli minicells corroborated the assignment of the predicted polypeptides for hlyC, hlyA, and hlyD. However, based on the minicell results, two polypeptides appeared to be encoded on the hlyB region, one similar in size to the predicted molecular mass of 79.9 kilodaltons, and the other a smaller 46-kilodalton polypeptide. The four hemolysin gene displayed similar codon usage, which is atypical for E. coli. This reflects the low guanine-plus-cytosine content (40.2%) of the hemolysin DNA sequence and suggests the non-E. coli origin of the hemolysin determinant. In vitro-derived deletions of the hemolysin recombinant plasmid pSF4000 indicated that a region between 433 and 301 base pairs upstream of the putative start of hlyC is necessary for hemolysin synthesis. Based on the DNA sequence, a stem-loop transcription terminator-like structure (a 16-base-pair stem followed by seven uridylates) in the mRNA was predicted distal to the C-terminal end of hlyA. A model for the general transcriptional organization of the E. coli hemolysin determinant is presented. Images PMID:3891743

  16. Complete nucleotide sequence of the polymerase 3 gene of human influenza virus A/WSN/33.

    PubMed Central

    Kaptein, J S; Nayak, D P

    1982-01-01

    The complete nucleotide sequence of polymerase 3 (P3) gene of a human influenza virus (A/WSN/33) has been determined using cDNA clones except for the last 11 nucleotides which were obtained by direct RNA sequencing. The WSN P3 gene contains 2,341 nucleotides and codes for a protein of 759 amino acids (molecular weight 85,800). The WSN P3 protein, as deduced from the plus-strand DNA sequence, is basic and enriched in positively charged amino acids. In addition, it contains clusters of basic amino acids which may provide sites for the interaction of P3 protein with the capped primer, template, and/or other polymerase proteins during the transcriptive and replicative processes of influenza viral RNA. PMID:7045393

  17. Nucleotide sequence of the capsid protein gene of papaya leaf-distortion mosaic potyvirus.

    PubMed

    Maoka, T; Kashiwazaki, S; Tsuda, S; Usugi, T; Hibino, H

    1996-01-01

    The DNA complementary to the 3'-terminal 1 404 nucleotides [excluding the poly(A) tail] of papaya leaf-distortion mosaic potyvirus (PLDMV) RNA was cloned and sequenced. The sequence starts within a long open reading frame (ORF) of 1 195 nucleotides and is followed by a 3' non-coding region of 209 nucleotides. Capsid protein (CP) is encoded at the 3' terminus of the ORF. The CP contains 293 residues and has a Mr of 33 277. The CP of PLDMV exhibits 49 to 59% sequence similarity at the amino acid level to the CPs of papaya ringspot potyvirus (PRSV) and other potyviruses. This result is consistent with the absence of a serological relationship between PLDMV and PRSV or other potyviruses. The results support the assignment of PLDMV as a distinct member of the genus Potyvirus.

  18. Nucleotide Sequence of the Protective Antigen Gene of Bacillus Anthracis

    DTIC Science & Technology

    1988-02-02

    transcription and translation of the Bacillus megaterium protein C gene. J. Bacteriol. 158:e09-813. 9. Friedlander, A, M. 1986. Macrophages are sensitive to...of the Protective Antigen Gene of Bacillus anthracis 6. pEaltranalO opl. AMPOA’T B*u~iA S. L. Welkos, J. R. Lowe, F. Eden-McCutchan, M. Vodkin, S. M... Bacillus anthracls and the 5’ and 3’ flanking sequences were determined. Protective antigen ie one of three proteins comprising anthrax toxin. The open

  19. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA.

    PubMed Central

    Horai, S; Hayasaka, K

    1990-01-01

    Nucleotide sequences of the major noncoding region of human mitochondrial DNA (mtDNA) from 95 human placentas have been determined. These sequences include at least a 482-bp-long region encompassing most of the D-loop-forming region. Comparisons of these sequences with those previously determined have revealed remarkable features of nucleotide substitutions and insertion/deletion events. The nucleotide diversity among the sequences is estimated as 1.45%, which is three- to fourfold higher than the corresponding value estimated from restriction-enzyme analysis of whole mtDNA genome. A hypervariable region has also been defined. In this 14-bp region, 17 different sequences were detected. More than 97% of the base changes are transitions. A significantly nonrandom distribution of nucleotide substitutions and sequence length variations were also noted. The phylogenetic analysis indicates that diversity among the negroids is much larger than that among the caucasoids or the mongoloids. In fact, part of the negroids first diverged from other humans in the phylogenetic tree. A striking finding in the phylogenetic analysis is that the mongoloids can be separated into two distinct groups. Divergence of part of the mongoloids follows the earliest divergence of part of the negroids. The remainder of the mongoloids subsequently diverged together with the caucasoids. This observation confirmed our earlier study, which clearly demonstrated, by the restriction-enzyme analysis, existence of two distinct groups in the Japanese. Images Figure 3 PMID:2316527

  20. An Integrated System for DNA Sequencing by Synthesis Using Novel Nucleotide Analogues

    PubMed Central

    Guo, Jia; Yu, Lin; Turro, Nicholas J.; Ju, Jingyue

    2010-01-01

    Conspectus The Human Genome Project has concluded, but its successful completion has increased, rather than decreased, the need for high-throughput DNA sequencing technologies. The possibility of clinically screening a full genome for an individual's mutations offers tremendous benefits, both for pursuing personalized medicine as well as uncovering the genomic contributions to diseases. The Sanger sequencing method—although enormously productive for more than 30 years—requires an electrophoretic separation step that, unfortunately, remains a key technical obstacle for achieving economically acceptable full-genome results. Alternative sequencing approaches thus focus on innovations that can reduce costs. The DNA sequencing by synthesis (SBS) approach has shown great promise as a new sequencing platform, with particular progress reported recently. The general fluorescent SBS approach involves (i) incorporation of nucleotide analogs bearing fluorescent reporters, (ii) identification of the incorporated nucleotide by its fluorescent emissions, and (iii) cleavage of the fluorophore, along with the reinitiation of the polymerase reaction for continuing sequence determination. In this Account, we review the construction of a DNA-immobilized chip and the development of novel nucleotide reporters for the SBS sequencing platform. Click chemistry, with its high selectivity and coupling efficiency, was explored for surface immobilization of DNA. The first generation (G-1) modified nucleotides for SBS feature a small chemical moiety capping the 3′-OH and a fluorophore tethered to the base through a chemically cleavable linker; the design ensures that the nucleotide reporters are good substrates for the polymerase. The 3′-capping moiety and the fluorophore on the DNA extension products, generated by the incorporation of the G-1 modified nucleotides, are cleaved simultaneously to reinitiate the polymerase reaction. The sequence of a DNA template immobilized on a surface

  1. The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus.

    PubMed

    Fillmer, Kornelia; Adkins, Scott; Pongam, Patchara; D'Elia, Tom

    2016-08-01

    We report the first complete genome sequence of tropical soda apple mosaic virus (TSAMV), a tobamovirus originally isolated from tropical soda apple (Solanum viarum) collected in Okeechobee, Florida. The complete genome of TSAMV is 6,350 nucleotides long and contains four open reading frames encoding the following proteins: i) 126-kDa methyltransferase/helicase (3354 nt), ii) 183-kDa polymerase (4839 nt), iii) movement protein (771 nt) and iv) coat protein (483 nt). The complete genome sequence of TSAMV shares 80.4 % nucleotide sequence identity with pepper mild mottle virus (PMMoV) and 71.2-74.2 % identity with other tobamoviruses naturally infecting members of the Solanaceae plant family. Phylogenetic analysis of the deduced amino acid sequences of the 126-kDa and 183-kDa proteins and the complete genome sequence place TSAMV in a subcluster with PMMoV within the Solanaceae-infecting subgroup of tobamoviruses.

  2. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a.

    PubMed

    Vanderslice, P; Copeland, W C; Robertus, J D

    1986-11-15

    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  3. Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley.

    PubMed

    Ren, Xifeng; Wang, Yonggang; Yan, Songxian; Sun, Dongfa; Sun, Genlou

    2014-04-01

    Spike morphology is a key characteristic in the study of barley genetics, breeding, and domestication. Variation at the six-rowed spike 1 (vrs1) locus is sufficient to control the development and fertility of the lateral spikelet of barley. To study the genetic variation of vrs1 in wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley (Hordeum vulgare subsp. vulgare), nucleotide sequences of vrs1 were examined in 84 wild barleys (including 10 six-rowed) and 20 cultivated barleys (including 10 six-rowed) from four populations. The length of the vrs1 sequence amplified was 1536 bp. A total of 40 haplotypes were identified in the four populations. The highest nucleotide diversity, haplotype diversity, and per-site nucleotide diversity were observed in the Southwest Asian wild barley population. The nucleotide diversity, number of haplotypes, haplotype diversity, and per-site nucleotide diversity in two-rowed barley were higher than those in six-rowed barley. The phylogenetic analysis of the vrs1 sequences partially separated the six-rowed and the two-rowed barley. The six-rowed barleys were divided into four groups.

  4. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.

    PubMed

    Arabi, Juliette; Judson, Mark L I; Deharveng, Louis; Lourenço, Wilson R; Cruaud, Corinne; Hassanin, Alexandre

    2012-02-01

    Here we study the evolution of nucleotide composition in third codon-positions of CO1 sequences of Chelicerata, using a phylogenetic framework, based on 180 taxa and three markers (CO1, 18S, and 28S rRNA; 5,218 nt). The analyses of nucleotide composition were also extended to all CO1 sequences of Chelicerata found in GenBank (1,701 taxa). The results show that most species of Chelicerata have a positive strand bias in CO1, i.e., in favor of C nucleotides, including all Amblypygi, Palpigradi, Ricinulei, Solifugae, Uropygi, and Xiphosura. However, several taxa show a negative strand bias, i.e., in favor of G nucleotides: all Scorpiones, Opisthothelae spiders and several taxa within Acari, Opiliones, Pseudoscorpiones, and Pycnogonida. Several reversals of strand-specific bias can be attributed to either a rearrangement of the control region or an inversion of a fragment containing the CO1 gene. Key taxa for which sequencing of complete mitochondrial genomes will be necessary to determine the origin and nature of mtDNA rearrangements involved in the reversals are identified. Acari, Opiliones, Pseudoscorpiones, and Pycnogonida were found to show a strong variability in nucleotide composition. In addition, both mitochondrial and nuclear genomes have been affected by higher substitution rates in Acari and Pseudoscorpiones. The results therefore indicate that these two orders are more liable to fix mutations of all types, including base substitutions, indels, and genomic rearrangements.

  5. Nucleotide sequence and genome organization of a new proposed crinivirus, tetterwort vein chlorosis virus.

    PubMed

    Zhao, Fumei; Yoo, Ran Hee; Lim, Seungmo; Igori, Davaajargal; Lee, Su-Heon; Moon, Jae Sun

    2015-11-01

    The genome of tetterwort vein chlorosis virus (TVCV) from South Korea has been completely sequenced. Its genomic organization resembles those of other criniviruses, with several new features, indicating that TVCV is a member of a new species in the genus Crinivirus, family Closteroviridae. RNA1 contains 8467 nucleotides, with at least four opening reading frames (ORFs). ORF1a encodes a protein with predicted papain-like protease, methyltransferase, and helicase activities. ORF1b encodes a putative RNA-dependent RNA polymerase that is apparently expressed through a +1 ribosomal frameshift. RNA2 contains 8113 nucleotides encoding at least nine proteins, similar to most crinivirus RNA2s. The 3' untranslated regions of the bipartite RNA genome share 82.1% nucleotide sequence identity.

  6. Complete nucleotide sequence of the new potexvirus "Alstroemeria virus X". Brief report.

    PubMed

    Fuji, S; Shinoda, K; Ikeda, M; Furuya, H; Naito, H; Fukumoto, F

    2005-11-01

    A flexuous virus was isolated in Japan from an alstroemeria plant showing mosaic symptoms. The virus had a broad host range but had systemically latent infectivity in alstroemeria. The virus was assigned to the genus Potexvirus based on morphology and physical properties and on an analysis of the complete nucleotide sequence. The genomic RNA of the virus was 7,009 nucleotides in length, excluding the 3'-terminal poly (A) tail. It contained five open reading frames (ORFs), which was consistent with other members of the genus Potexvirus. Although nucleotide sequences of the ORFs differ from previously reported potexviruses, a phylogenetic analysis placed it phylogenetically close to Narcissus mosaic virus and Scallion virus X. Therefore, we propose that this virus should be designated as Alstroemeria virus X (AlsVX).

  7. Complete nucleotide sequence of a begomovirus and associated betasatellite infecting croton (Croton bonplandianus) in Pakistan.

    PubMed

    Hussain, Khadim; Hussain, Mazhar; Mansoor, Shahid; Briddon, Rob W

    2011-06-01

    The complete sequences of a begomovirus and an associated betasatellite isolated from Croton bonplandianus originating from Pakistan were determined. The sequence of the begomovirus showed the highest level of nucleotide sequence identity (88.9%) to an isolate of papaya leaf curl virus and thus represents a new species, for which we propose the name Croton yellow vein virus (CYVV). The sequence of the betasatellite showed the highest levels of sequence identity (82 to 98.4%) to six sequences in the databases that have yet to be reported, followed by isolates of tomato leaf curl Joydebpur betasatellite (48.7 to 52.5%). This indicates that the betasatellite identified here (and the six sequences in the databases) is an isolate of a newly identified species for which the name Croton yellow vein mosaic betasatellite (CroYVMB) is proposed. For the begomovirus, an analysis of the sequence indicates that it has a recombinant origin.

  8. Complete nucleotide sequence of a novel strain of fig fleck-associated virus from China.

    PubMed

    He, Zhen; Mijit, Mahmut; Li, Shifang; Zhang, Zhixiang

    2017-04-01

    The complete nucleotide sequence of fig fleck-associated virus from Xinjiang Uygur Autonomous Region of China (FFkaV-CN) was determined. The 6,723-nucleotide-long viral genome, excluding a terminal poly(A) tail, contains three open reading frames (ORFs). Pairwise comparisons showed that FFkaV-CN shares 83% and 92% sequence identity with FFkaV-Italy based on the complete genomic sequence and CP aa sequence, respectively, slightly higher than the species demarcation criterion for the genus Maculavirus. Phylogenetic analysis showed that FFkaV-CN and FFkaV-Italy clustered into one group. These results indicate that FFkaV-CN is a novel strain of FFkaV with a genome organization somewhat different from what was reported for FFkaV-Italy.

  9. Dependence of the E. coli promoter strength and physical parameters upon the nucleotide sequence

    PubMed Central

    Berezhnoy, Andrey Y.; Shckorbatov, Yuriy G.

    2005-01-01

    The energy of interaction between complementary nucleotides in promoter sequences of E. coli was calculated and visualized. The graphic method for presentation of energy properties of promoter sequences was elaborated on. Data obtained indicated that energy distribution through the length of promoter sequence results in picture with minima at −35, −8 and +7 regions corresponding to areas with elevated AT (adenine-thymine) content. The most important difference from the random sequences area is related to −8. Four promoter groups and their energy properties were revealed. The promoters with minimal and maximal energy of interaction between complementary nucleotides have low strengths, the strongest promoters correspond to promoter clusters characterized by intermediate energy values. PMID:16252339

  10. On the feasibility of using the intrinsic fluorescence of nucleotides for DNA sequencing.

    SciTech Connect

    Chowdhury, M. H.; Ray, K.; Johnson, R. L.; Gray, S. K.; Pond, J.; Lakowicz, J. R.; Univ. of Maryland; Univ. of Virginia; Lumerical Solutions, Inc.

    2010-04-29

    There is presently a worldwide effort to increase the speed and decrease the cost of DNA sequencing as exemplified by the goal of the National Human Genome Research Institute (NHGRI) to sequence a human genome for under $1000. Several high throughput technologies are under development. Among these, single strand sequencing using exonuclease appear very promising. However, this approach requires complete labeling of at least two bases at a time, with extrinsic high quantum yield probes. This is necessary because nucleotides absorb in the deep ultraviolet (UV) and emit with extremely low quantum yields. Hence intrinsic emission from DNA and nucleotides is not being exploited for DNA sequencing. In the present paper we consider the possibility of identifying single nucleotides using their intrinsic emission. We used the finite-difference time-domain (FDTD) method to calculate the effects of aluminum nanoparticles on nearby fluorophores that emit in the UV. We find that the radiated power of UV fluorophores is significantly increased when they are in close proximity to aluminum nanostructures. We show that there will be increased localized excitation near aluminum particles at wavelengths used to excite intrinsic nucleotide emission. Using FDTD simulation we show that a typical DNA base when coupled to appropriate aluminum nanostructures leads to highly directional emission. Additionally we present experimental results showing that a thin film of nucleotides show enhanced emission when in close proximity to aluminum nanostructures. Finally we provide Monte Carlo simulations that predict high levels of base calling accuracy for an assumed number of photons that is derived from the emission spectra of the intrinsic fluorescence of the bases. Our results suggest that single nucleotides can be detected and identified using aluminum nanostructures that enhance their intrinsic emission. This capability would be valuable for the ongoing efforts toward the $1000 genome.

  11. Molecular cloning and nucleotide sequencing of human immunoglobulin epsilon chain cDNA.

    PubMed Central

    Seno, M; Kurokawa, T; Ono, Y; Onda, H; Sasada, R; Igarashi, K; Kikuchi, M; Sugino, Y; Nishida, Y; Honjo, T

    1983-01-01

    DNA complementary to mRNA of human immunoglobulin E heavy chain (epsilon chain) isolated and purified from U266 cells has been synthesized and inserted into the PstI site of pBR322 by G-C tailing. This recombinant plasmid was used to transform E. coli chi 1776 to screen 1445 tetracycline resistant colonies. Nine clones (pGETI - 9) containing cDNA coding for the human epsilon chain were recognized by colony hybridization and Southern blotting analysis with a nick-translated human IgE genome fragment. The nucleotide sequence of the longest cDNA contained in pGET2 was determined. The results indicate that the sequence of 1657 nucleotides codes for 494 amino acids covering a part of the variable region and all of the constant region of the human epsilon chain. Most of the amino acid sequence deduced from the nucleotide sequence is in substantial agreement with that reported. Furthermore a termination codon after the -COOH terminal amino acid marks the beginning of a 3' untranslated region of 125 nucleotides with a poly A tail. Taking this into account, the structure of the human epsilon chain mRNA, except a part of the 5' end, is conserved fairly well in the cDNA insert in pGET2. Images PMID:6300763

  12. Complete Nucleotide Sequence of a Citrobacter freundii Plasmid Carrying KPC-2 in a Unique Genetic Environment

    PubMed Central

    Yao, Yancheng; Imirzalioglu, Can; Hain, Torsten; Kaase, Martin; Gatermann, Soeren; Exner, Martin; Mielke, Martin; Hauri, Anja; Dragneva, Yolanta; Bill, Rita; Wendt, Constanze; Wirtz, Angela; Chakraborty, Trinad

    2014-01-01

    The complete and annotated nucleotide sequence of a 54,036-bp plasmid harboring a blaKPC-2 gene that is clonally present in Citrobacter isolates from different species is presented. The plasmid belongs to incompatibility group N (IncN) and harbors the class A carbapenemase KPC-2 in a unique genetic environment. PMID:25395635

  13. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI.

    PubMed

    Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Gur, Tamer; Cowley, Andrew; Li, Weizhong; Uludag, Mahmut; Pundir, Sangya; Cham, Jennifer A; McWilliam, Hamish; Lopez, Rodrigo

    2015-07-01

    The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature.

  14. The nucleotide sequence and genome structure of mung bean yellow mosaic geminivirus.

    PubMed

    Morinaga, T; Ikegami, M; Miura, K

    1993-01-01

    Complete nucleotide sequences of the infectious cloned DNA components (DNA 1 and DNA 2) of mung bean yellow mosaic virus (MYMV) were determined. MYMV DNA 1 and DNA 2 consists of 2,723 and 2,675 nucleotides respectively. DNA 1 and DNA 2 have little sequence similarity except for a region of approximately 200 bases which is almost identical in the two molecules. Analysis of open reading frames revealed nine potential coding regions for proteins of mol. wt. > 10,000, six in DNA 1 and three in DNA 2. The nucleotide sequence of MYMV DNA was compared with that of bean golden mosaic virus (BGMV), tomato golden mosaic virus (TGMV) and African cassava mosaic virus (ACMV). The 200-base region common to the two DNAs of each virus had little sequence similarity, except for a highly conserved 33-36 base sequence potentially capable of forming a stable hairpin structure. The potential coding regions in the MYMV DNAs had counterparts in the BGMV, TGMV and ACMV, suggesting an overall similarity in genome organization, except for absence of 1L3 in MYMV DNA 1. The most highly conserved ORFs, MYMV 1R1, BGMV 1R1, TGMV 1R1 and ACMV 1R1, are the putative genes for the coat proteins of MYMV, BGMV, TGMV and ACMV, respectively. MYMV 1L1 has also a high degree of sequence similarity with BGMV 1L1, TGMV 1L1 and ACMV 1L1.

  15. Nucleotide sequence of the 3'-terminal region of potato virus YN RNA.

    PubMed

    van der Vlugt, R; Allefs, S; de Haan, P; Goldbach, R

    1989-01-01

    The sequence of the 3'-terminal 1611 nucleotides of the genome of the tobacco veinal necrosis strain of potato virus Y (PVYN) was determined. The sequence revealed an open reading frame of 1285 nucleotides, of which the start was not identified, and an untranslated region of 316 nucleotides upstream of a poly(A) tract. Comparison of the open reading frame with the amino-terminal sequence of the viral coat protein enabled mapping of the start of the coat protein at amino acid -267, and indicated that maturation of this protein requires proteolytic processing from a larger polyprotein precursor at a glutamine/glycine dipeptide sequence. The coat protein of PVYN displayed significant (51 to 63%) sequence homology to the coat proteins of four other potyviruses, tobacco etch virus, tobacco vein mottling virus, plum pox virus and sugarcane mosaic virus. Even higher sequence homology (91%) was detected with the coat protein of a fifth potyvirus, pepper mottle virus (PeMV). This homology was of the same level as found between the coat proteins of PVYN and a second strain of this virus, PVYD. Since, moreover, PVYN and PeMV were the only potyviruses displaying homology in the 3'-terminal, non-translated regions of their genomes, we conclude that PeMV should be regarded as a strain of PVY.

  16. Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene.

    PubMed Central

    Green, K Y; Sears, J F; Taniguchi, K; Midthun, K; Hoshino, Y; Gorziglia, M; Nishikawa, K; Urasawa, S; Kapikian, A Z; Chanock, R M

    1988-01-01

    Human rotavirus field isolates were characterized by direct sequence analysis of the gene encoding the serotype-specific major neutralization protein (VP7). Single-stranded RNA transcripts were prepared from virus particles obtained directly from stool specimens or after two or three passages in MA-104 cells. Two regions of the gene (nucleotides 307 through 351 and 670 through 711) which had previously been shown to contain regions of sequence divergence among rotavirus serotypes were sequenced by the dideoxynucleotide method with two different synthetic oligonucleotide primers. The resulting nucleotide sequences were compared with the corresponding sequences from rotaviruses of known serotype (serotype 1, 2, 3, or 4). A total of 25 field isolates and 10 laboratory strains examined by this method exhibited marked sequence identity in both areas of the gene with the corresponding regions of 1 of the 4 reference strains. In addition, the predicted serotype from the sequence analysis correlated in each case with the serotype determined when the rotaviruses were examined by plaque reduction neutralization or reactivity with serotype-specific monoclonal antibodies. These data suggest that as a result of the high degree of sequence conservation observed among rotaviruses of the same serotype, it is possible to predict the serotype of a rotavirus isolate by direct sequence analysis of its VP7 gene. PMID:2833626

  17. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer.

    PubMed

    Starega-Roslan, Julia; Galka-Marciniak, Paulina; Krzyzosiak, Wlodzimierz J

    2015-12-15

    The ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs. We found that the nucleotide sequence at the Dicer cleavage site influences both of these miRNA characteristics. With regard to cleavage mechanism, we demonstrate that the Dicer RNase IIIA domain that cleaves within the 3' arm of the pre-miRNA is more sensitive to the nucleotide sequence of its substrate than is the RNase IIIB domain. The RNase IIIA domain avoids releasing miRNAs with G nucleotide and prefers to generate miRNAs with a U nucleotide at the 5' end. We also propose that the sequence restrictions at the Dicer cleavage site might be the factor that contributes to the generation of miRNA duplexes with 3' overhangs of atypical lengths. This finding implies that the two RNase III domains forming the single processing center of Dicer may exhibit some degree of flexibility, which allows for the formation of these non-standard 3' overhangs.

  18. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer

    PubMed Central

    Starega-Roslan, Julia; Galka-Marciniak, Paulina; Krzyzosiak, Wlodzimierz J.

    2015-01-01

    The ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs. We found that the nucleotide sequence at the Dicer cleavage site influences both of these miRNA characteristics. With regard to cleavage mechanism, we demonstrate that the Dicer RNase IIIA domain that cleaves within the 3′ arm of the pre-miRNA is more sensitive to the nucleotide sequence of its substrate than is the RNase IIIB domain. The RNase IIIA domain avoids releasing miRNAs with G nucleotide and prefers to generate miRNAs with a U nucleotide at the 5′ end. We also propose that the sequence restrictions at the Dicer cleavage site might be the factor that contributes to the generation of miRNA duplexes with 3′ overhangs of atypical lengths. This finding implies that the two RNase III domains forming the single processing center of Dicer may exhibit some degree of flexibility, which allows for the formation of these non-standard 3′ overhangs. PMID:26424848

  19. Isolation and nucleotide sequence of a cDNA clone encoding rat mitochondrial malate dehydrogenase.

    PubMed Central

    Grant, P M; Tellam, J; May, V L; Strauss, A W

    1986-01-01

    We have determined the complete sequence of the rat mitochondrial malate dehydrogenase (mMDH) precursor derived from nucleotide sequence of the cDNA. A single synthetic oligodeoxynucleotide probe was used to screen a rat atrial cDNA library constructed in lambda gt10. A 1.2 kb full-length cDNA clone provided the first complete amino acid sequence of pre-mMDH. The 1014 nucleotide-long open reading frame encodes the 314 residue long mature mMDH protein and a 24 amino acid NH2-terminal extension which directs mitochondrial import and is cleaved from the precursor after import to generate mature mMDH. The amino acid composition of the transit peptide is polar and basic. The pre-mMDH transit peptide shows marked homology with those of two other enzymes targeted to the rat mitochondrial matrix. Images PMID:3755817

  20. Nucleotide sequence and genome organization of atractylodes mottle virus, a new member of the genus Carlavirus.

    PubMed

    Zhao, Fumei; Igori, Davaajargal; Lim, Seungmo; Yoo, Ran Hee; Lee, Su-Heon; Moon, Jae Sun

    2015-11-01

    The complete genome sequence of a member of a distinct species of the genus Carlavirus in the family Betaflexiviridae, tentatively named atractylodes mottle virus (AtrMoV), has been determined. Analysis of its genomic organization indicates that it has a single-stranded, positive-sense genomic RNA of 8866 nucleotides, excluding the poly(A) tail, and consists of six open reading frames typical of members of the genus Carlavirus. The individual open reading frames of AtrMoV show moderately low sequence similarity to those of other carlaviruses at the nucleotide and amino acid sequence levels. Pairwise comparison and phylogenetic analysis suggest that AtrMoV is most closely related to chrysanthemum virus B.

  1. A novel HLA-B*51 allele (B*5116) identified by nucleotide sequencing.

    PubMed

    Tamouza, R; Carbonnelle, E; Schaeffer, V; Sadki, K; Abed, Y; Marzais, F; Poirier, J C; Fortier, C; Toubert, A; Raffoux, C; Charron, D

    2000-02-01

    We report here an additional HLA-B*51 variant designated HLA-B*5116. Detected by an abnormal serological reactivity pattern, this variant was identified as a B*51 allele by polymerase chain reaction using sequence-specific primers (PCR-SSP) and characterized by nucleotide sequencing. The new variant sequence match closely with the classical HLA-B*5101 excepted two adjacent nucleotide substitutions at positions 216 and 217 of the third exon and the subsequent Leucine to Glutamic acid change at codon 163 of the alpha2 domain (CTG-->GAG). This new variant was not detected in three different ethnic groups (French, Algerian and Lebanese) suggesting a very rare frequency.

  2. Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nucleotide sequence of Dweet mottle virus (DMV) was determined and compared to sequences of members of the family Alpha- and Beta-flexiviridae. The DMV genome has 8747 nucleotides (nt) excluding the poly-(A) tail at the 3’ end of the genome. The overall G+C content of DMV genomic RNA is 40%. D...

  3. Complete nucleotide sequence analysis of a Dengue-1 virus isolated on Easter Island, Chile.

    PubMed

    Cáceres, C; Yung, V; Araya, P; Tognarelli, J; Villagra, E; Vera, L; Fernández, J

    2008-01-01

    Dengue-1 viruses responsible for the dengue fever outbreak in Easter Island in 2002 were isolated from acute-phase sera of dengue fever patients. In order to analyze the complete genome sequence, we designed primers to amplify contiguous segments across the entire sequence of the viral genome. RT-PCR products obtained were cloned, and complete nucleotide and deduced amino acid sequences were determined. This report constitutes the first complete genetic characterization of a DENV-1 isolate from Chile. Phylogenetic analysis shows that an Easter Island isolate is most closely related to Pacific DENV-1 genotype IV viruses.

  4. Complete nucleotide sequence of a subviral DNA molecule of porcine circovirus type 2.

    PubMed

    Wen, Han

    2016-07-01

    Porcine circovirus type 2 (PCV2) is a member of the genus Circovirus in the family Circoviridae. Most subgenomic molecules of PCV2 have been mapped. Here, the first full-length sequence of a subviral molecule of PCV2 (CH-IVT12) containing a reverse complement sequence of the PCV2 genome was determined by sequencing DNA extracted from PK15 cells infected with PCV2. The circular CH-IVT12 DNA consists of 1136 nucleotides and contains one major open reading frame.

  5. Nucleotide sequence of a new isolate of ribgrass mosaic tobamovirus infecting Impatiens New Guinea.

    PubMed

    Wetzel, T; Njapo Ngangom, H O; Chotewutmontri, S; Krczal, G

    2006-04-01

    The complete nucleotide sequence of a tobamovirus isolated from Impatiens New Guinea was determined. The genome was 6302 nt long, and its genomic organisation was similar to those of other crucufer tobamoviruses. Sequence comparisons with the corresponding sequences of other crucifer tobamoviruses revealed highest levels of identity with the ribgrass mosaic virus (Shanghai isolate). A small open reading frame putatively encoding a 4.5-kDa protein with a low degree of similarity to the ORF6 of tobacco mosaic virus was found nested in the movement protein gene.

  6. Nucleotide sequences of the coat protein genes of two Japanese zucchini yellow mosaic virus isolates.

    PubMed

    Kundu, A K; Ohshima, K; Sako, N

    1997-10-01

    The nucleotide (nt) sequences of the coat protein (CP) genes of two Japanese zucchini yellow mosaic virus (ZYMV) isolates (ZYMV-169 and ZYMV-M) were determined. The CP genes of both isolates were 837 nt long and encoded 279 amino acids (aa). The nt and deduced aa sequence similarities between the two isolates were 92% and 94.6%, respectively. The deduced aa sequences of CPs of the Japanese isolates were compared with those of previously reported ZYMV isolates by phylogenetic analysis. This comparison lead us to divide all ZMYV isolates into 3 groups in which ZYMV-169 formed its own distinct group.

  7. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    PubMed

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye.

  8. The nucleotide sequence at the termini of adenovirus type 5 DNA.

    PubMed Central

    Steenbergh, P H; Maat, J; van Ormondt, H; Sussenbach, J S

    1977-01-01

    The sequences of the first 194 base pairs at both termini of adenovirus type 5 (Ad5) DNA have been determined, using the chemical degradation technique developed by Maxam and Gilbert (Proc. Nat. Acad. Sci. USA 74 (1977), pp. 560-564). The nucleotide sequences 1-75 were confirmed by analysis of labeled RNA transcribed from the terminal HhaI fragments in vitro. The sequence data show that Ad5 DNA has a perfect inverted terminal repetition of 103 base pairs long. Images PMID:600799

  9. PatMatch: a program for finding patterns in peptide and nucleotide sequences

    PubMed Central

    Yan, Thomas; Yoo, Danny; Berardini, Tanya Z.; Mueller, Lukas A.; Weems, Dan C.; Weng, Shuai; Cherry, J. Michael; Rhee, Seung Y.

    2005-01-01

    Here, we present PatMatch, an efficient, web-based pattern-matching program that enables searches for short nucleotide or peptide sequences such as cis-elements in nucleotide sequences or small domains and motifs in protein sequences. The program can be used to find matches to a user-specified sequence pattern that can be described using ambiguous sequence codes and a powerful and flexible pattern syntax based on regular expressions. A recent upgrade has improved performance and now supports both mismatches and wildcards in a single pattern. This enhancement has been achieved by replacing the previous searching algorithm, scan_for_matches [D'Souza et al. (1997), Trends in Genetics, 13, 497–498], with nondeterministic-reverse grep (NR-grep), a general pattern matching tool that allows for approximate string matching [Navarro (2001), Software Practice and Experience, 31, 1265–1312]. We have tailored NR-grep to be used for DNA and protein searches with PatMatch. The stand-alone version of the software can be adapted for use with any sequence dataset and is available for download at The Arabidopsis Information Resource (TAIR) at . The PatMatch server is available on the web at for searching Arabidopsis thaliana sequences. PMID:15980466

  10. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences.

    PubMed

    Chen, Wei; Lin, Hao; Chou, Kuo-Chen

    2015-10-01

    With the avalanche of DNA/RNA sequences generated in the post-genomic age, it is urgent to develop automated methods for analyzing the relationship between the sequences and their functions. Towards this goal, a series of sequence-based methods have been proposed and applied to analyze various character-unknown DNA/RNA sequences in order for in-depth understanding their action mechanisms and processes. Compared with the classical sequence-based methods, the pseudo nucleotide composition or PseKNC approach developed very recently has the following advantages: (1) it can convert length-different DNA/RNA sequences into dimension-fixed digital vectors that can be directly handled by all the existing machine-learning algorithms or operation engines; (2) it can contain the desired features and properties according to the selection or definition of users; (3) it can cover considerable sequence pattern information, both local and global. This minireview is focused on the concept of pseudo nucleotide composition, its development and applications.

  11. Linking the human cytogenetic map with nucleotide sequence: the CCAP clone set.

    PubMed

    Jang, Wonhee; Yonescu, Raluca; Knutsen, Turid; Brown, Theresa; Reppert, Tricia; Sirotkin, Karl; Schuler, Gregory D; Ried, Thomas; Kirsch, Ilan R

    2006-07-15

    We present the completed dataset and clone repository of the Cancer Chromosome Aberration Project (CCAP), an initiative developed and funded through the intramural program of the U.S. National Cancer Institute, to provide seamless linkage of human cytogenetic markers with the primary nucleotide sequence of the human genome. Spaced at 1-2 Mb intervals across the human genome, 1,339 bacterial artificial chromosome (BAC) clones have been localized to chromosomal bands through high-resolution fluorescence in situ hybridization (FISH) mapping. Of these clones, 99.8% can be positioned on the primary human genome sequence and 95% are placed at or close to their precise nucleotide starts and stops. This dataset can be studied and manipulated within generally available public Web sites. The clones are available from a commercial repository. The CCAP BAC clone set provides anchors for the interrogation of gene and sequence involvement in oncogenic and developmental disorders when the starting point is the recognition of a structural, numerical, or interstitial chromosomal aberration. This dataset also provides a current view of the quality and coherence of the available genome sequence and insight into the nucleotide and three-dimensional structures that manifest as Giemsa light and dark chromosomal banding patterns.

  12. Nucleotide sequence and expression of the 14-3-3 from the halotolerant alga Dunaliella salina.

    PubMed

    Wang, Tian-yun; Jing, Chang-Qin; Dong, Wei-Hua; Zhang, Jun-He; Zhang, Yu

    2010-02-01

    Previously we reported the nucleotide sequence of a 14-3-3 cDNA cloned from the unicellular green alga Dunaliella salina, however, the nucleotide sequence of this gene have not been reported so far. In the present study, the cloning and characterization of the nucleotide sequence, the gene copy and expression were undertaken. The coding sequence of the gene was found to be interrupted by five introns of 132, 266, 153, 152 and 625 bp, respectively. Introns 3-5 were found in conserved positions as compared to the Chlamydomonas reinhardtii 14-3-3 gene. D. salina 14-3-3 cDNA was inserted into the prokaryotic expression plasmid pET-28 and transformed into E. coli BL21, and the recombinant expressed 14-3-3 protein was purified from E. coli and immunized the rabbit. Indirect ELISA coated with 14-3-3 illustrated that the rabbit antisera titration was 1:1.00E + 06. Western blotting assays confirmed that prepared rabbit antibodies could recognize the recombinant 14-3-3 protein. Southern blotting results showed that there was only one copy of the 14-3-3 present in the genome of D. salina and 14-3-3 expression did not change throughout the Dnualiella cell cycle.

  13. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  14. Quadfinder: server for identification and analysis of quadruplex-forming motifs in nucleotide sequences

    PubMed Central

    Scaria, Vinod; Hariharan, Manoj; Arora, Amit; Maiti, Souvik

    2006-01-01

    G-quadruplex secondary structures, which play a structural role in repetitive DNA such as telomeres, may also play a functional role at other genomic locations as targetable regulatory elements which control gene expression. The recent interest in application of quadruplexes in biological systems prompted us to develop a tool for the identification and analysis of quadruplex-forming nucleotide sequences especially in the RNA. Here we present Quadfinder, an online server for prediction and bioinformatics of uni-molecular quadruplex-forming nucleotide sequences. The server is designed to be user-friendly and needs minimal intervention by the user, while providing flexibility of defining the variants of the motif. The server is freely available at URL . PMID:16845097

  15. Nucleotide sequence and replication properties of the Bacillus borstelensis cryptic plasmid pHT926.

    PubMed Central

    Ebisu, S; Murahashi, Y; Takagi, H; Kadowaki, K; Yamaguchi, K; Yamagata, H; Udaka, S

    1995-01-01

    The nucleotide sequence of pHT926, a cryptic plasmid found in Bacillus borstelensis HP926, was determined. pHT926 replicates by a rolling-circle mechanism and belongs to the pC194 plasmid family. The copy number of pHT926 was fourfold higher than that of pUB110 and very stably maintained in Bacillus choshinensis. PMID:7487045

  16. Nucleotide sequence of alkyl-dihydroxyacetonephosphate synthase cDNA from Dictyostelium discoideum.

    PubMed

    de Vet, E C; van den Bosch, H

    1998-11-27

    The nucleotide sequence is reported of alkyl-dihydroxyacetonephosphate synthase cDNA from the cellular slime mold Dictyostelium discoideum. The open reading frame encodes a protein of 611 amino acids which shows a 33% amino acid identity to the human enzyme. This D. discoideum homolog carries a variant of the peroxisomal targeting signal type 1 at its C-terminus (PKL). Expression of the cDNA in Escherichia coli yielded an enzymatically active protein.

  17. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... And/or Amino Acid Sequences § 1.824 Form and format for nucleotide and/or amino acid sequence... readable form may be created by any means, such as word processors, nucleotide/amino acid sequence...

  18. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... And/or Amino Acid Sequences § 1.824 Form and format for nucleotide and/or amino acid sequence... readable form may be created by any means, such as word processors, nucleotide/amino acid sequence...

  19. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... And/or Amino Acid Sequences § 1.824 Form and format for nucleotide and/or amino acid sequence... readable form may be created by any means, such as word processors, nucleotide/amino acid sequence...

  20. The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae).

    PubMed

    Yang, Ling; Wei, Zhao-Jun; Hong, Gui-Yun; Jiang, Shao-Tong; Wen, Long-Ping

    2009-07-01

    Using long-polymerase chain reaction (Long-PCR) method, we determined the complete nucleotide sequence of the mitochondrial genome (mitogenome) of Phthonandria atrilineata. The complete mtDNA from P. atrilineata was 15,499 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The P. atrilineata genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. The nucleotide composition of P. atrilineata mitogenome was biased toward A + T nucleotides (81.02%), and the 13 PCGs show different A + T contents that range from 73.25% (cox1) to 92.12% (atp8). Phthonandria had the canonical set of 22 tRNA genes, that fold in the typical cloverleaf structure described for metazoan mt tRNAs, with the unique exception of trnS(AGN). The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, which confirmed that P. atrilineata is most closely related to the superfamily Bombycoidea.

  1. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus.

    PubMed Central

    Chang, G J; Cropp, B C; Kinney, R M; Trent, D W; Gubler, D J

    1995-01-01

    The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I contained viruses isolated from East and Central Africa. E genotype II viruses were divided into two sublineages: IIA viruses from West Africa and IIB viruses from America, except for a 1979 virus isolated from Trinidad (TRINID79A). Unique signature patterns were identified at 111 nucleotide and 12 amino acid positions within the yellow fever virus E gene by signature pattern analysis. Yellow fever viruses from East and Central Africa contained unique signatures at 60 nucleotide and five amino acid positions, those from West Africa contained unique signatures at 25 nucleotide and two amino acid positions, and viruses from America contained such signatures at 30 nucleotide and five amino acid positions in the E gene. The dissemination of yellow fever viruses from Africa to the Americas is supported by the close genetic relatedness of genotype IIA and IIB viruses and genetic evidence of a possible second introduction of yellow fever virus from West Africa, as illustrated by the TRINID79A virus isolate. The E protein genes of American IIB yellow fever viruses had higher frequencies of amino acid substitutions than did genes of yellow fever viruses of genotypes I and IIA on the basis of comparisons with a consensus amino acid sequence for the yellow fever E gene. The great variation in the E proteins of American yellow fever virus probably results from positive selection imposed by virus interaction with different species of mosquitoes or nonhuman primates in the Americas. PMID:7637022

  2. Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida.

    PubMed Central

    Irie, S; Doi, S; Yorifuji, T; Takagi, M; Yano, K

    1987-01-01

    The nucleotide sequence of the genes from Pseudomonas putida encoding oxidation of benzene to catechol was determined. Five open reading frames were found in the sequence. Four corresponding protein molecules were detected by a DNA-directed in vitro translation system. Escherichia coli cells containing the fragment with the four open reading frames transformed benzene to cis-benzene glycol, which is an intermediate of the oxidation of benzene to catechol. The relation between the product of each cistron and the components of the benzene oxidation enzyme system is discussed. Images PMID:3667527

  3. Analysis of a cloned colicin Ib gene: complete nucleotide sequence and implications for regulation of expression.

    PubMed Central

    Varley, J M; Boulnois, G J

    1984-01-01

    The complete nucleotide sequence of a 2,971 base pair EcoRI fragment carrying the structural gene for colicin Ib has been determined. The length of the gene is 1,881 nucleotides which is predicted to produce a protein of 626 amino acids and of molecular weight 71,364. The structural gene is flanked by likely promoter and terminator signals and in between the promoter and the ribosome binding site is an inverted repeat sequence which resembles other sequences known to bind the LexA protein. Further analysis of the 5' flanking sequences revealed a second region which may act either as a second LexA binding site and/or in the binding of cyclic AMP receptor protein. Comparison of the predicted amino acid sequence of colicin Ib with that of colicins A and E1 reveals localised homology. The implications of these similarities in the proteins and of regulation of the colicin Ib structural gene are discussed. Images PMID:6091036

  4. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    SciTech Connect

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  5. Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana.

    PubMed

    Wang, Y; Zhou, D; Wang, S; Yang, L

    2015-07-14

    Single nucleotide polymorphisms (SNPs) are widespread in the Nicotiana genome. Using an alignment and variation detection method, we developed 20,607,973 SNPs, based on the expressed sequence tag sequences of 10 Nicotiana species. The replacement rate was much higher than the transversion rate in the SNPs, and SNPs widely exist in the Nicotiana. In vitro verification indicated that all of the SNPs were high quality and accurate. Evolutionary relationships between 15 varieties were investigated by polymerase chain reaction with a special primer; the specific 302 locus of these sequence results clearly indicated the origin of Zhongyan 100. A database of Nicotiana SNPs (NSNP) was developed to store and search for SNPs in Nicotiana. NSNP is a tool for researchers to develop SNP markers of sequence data.

  6. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J.

    PubMed Central

    Joerger, M C; Klaenhammer, T R

    1990-01-01

    Lactobacillus helveticus 481 produces a 37-kDa bacteriocin called helveticin J. Libraries of chromosomal DNA from L. helveticus were prepared in lambda gt11 and probed for phage-producing fusion proteins that could react with polyclonal helveticin J antibody. Two recombinant phage, HJ1 and HJ4, containing homologous inserts of 350 and 600 bp, respectively, produced proteins that reacted with antibody. These two phage clones specifically hybridized to L. helveticus 481 total genomic DNA but not to DNA from strains that did not produce helveticin J or strains producing unrelated bacteriocins. HJ1 and HJ4 lysogens produced beta-galactosidase fusion proteins that shared similar epitopes with each other and helveticin J. The intact helveticin J gene (hlv) was isolated by screening a library of L. helveticus chromosomal DNA in lambda EMBL3 with the insert DNA from phage HJ4 as a probe. The DNA sequence of a contiguous 3,364-bp region was determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequenced fragment. The 3' end of another open reading frame, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. ORF2 could encode an 11,808-Da protein. The L. helveticus DNA inserts of the HJ1 and HJ4 clones reside within ORF3, which begins 30 bp downstream from the termination codon of ORF2. ORF3 could encode a 37,511-Da protein. Downstream from ORF3, the 5' end of another ORF (ORF4) was found. A Bg/II fragment containing ORF2 and ORF3 was cloned into pGK12, and the recombinant plasmid, pTRK135, was transformed into Lactobacillus acidophilus via electroporation. Transformants carrying pTRK135 produced a bacteriocin that was heat labile and exhibited an acitivity spectrum that was the same as that of helveticin J. Images PMID:2228964

  7. Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed Central

    Dunn, J J; Buchstein, S R; Butler, L L; Fisenne, S; Polin, D S; Lade, B N; Luft, B J

    1994-01-01

    We have determined the complete nucleotide sequence of a small circular plasmid from the spirochete Borrelia burgdorferi Ip21, the agent of Lyme disease. The plasmid (cp8.3/Ip21) is 8,303 bp long, has a 76.6% A+T content, and is unstable upon passage of cells in vitro. An analysis of the sequence revealed the presence of two nearly perfect copies of a 184-bp inverted repeat sequence separated by 2,675 bp containing three closely spaced, but nonoverlapping, open reading frames (ORFs). Each inverted repeat ends in sequences that may function as signals for the initiation of transcription and translation of flanking plasmid sequences. A unique oligonucleotide probe based on the repeated sequence showed that the DNA between the repeats is present predominantly in a single orientation. Additional copies of the repeat were not detected elsewhere in the Ip21 genome. An analysis for potential ORFs indicates that the plasmid has nine highly probable protein-coding ORFs and one that is less probable; together, they occupy almost 71% of the nucleotide sequence. Analysis of the deduced amino acid sequences of the ORFs revealed one (ORF-9) with features in common with Borrelia lipoproteins and another (ORF-2) having limited homology with a replication protein, RepC, from a gram-positive plasmid that replicates by a rolling circle (RC) mechanism. Known collectively as RC plasmids, such plasmids require a double-stranded origin at which the Rep protein nicks the DNA to generate a single-stranded replication intermediate. cp8.3/Ip21 has three copies of the heptameric motif characteristically found at a nick site of most RC plasmids. These observations suggest that cp8.3/Ip21 may replicate by an RC mechanism. Images PMID:8169221

  8. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern.

    PubMed Central

    Elima, K; Eerola, I; Rosati, R; Metsäranta, M; Garofalo, S; Perälä, M; De Crombrugghe, B; Vuorio, E

    1993-01-01

    Overlapping genomic clones covering the 7.2 kb mouse alpha 1(X) collagen gene, 0.86 kb of promoter and 1.25 kb of 3'-flanking sequences were isolated from two genomic libraries and characterized by nucleotide sequencing. Typical features of the gene include a unique three-exon structure, similar to that in the chick gene, with the entire triple-helical domain of 463 amino acids coded by a single large exon. The highest degree of amino acid and nucleotide sequence conservation was seen in the coding region for the collagenous and C-terminal non-collagenous domains between the mouse and known chick, bovine and human collagen type X sequences. More divergence between the sequences occurred in the N-terminal non-collagenous domain. Similarity between the mammalian collagen X sequences extended into the 3'-untranslated sequence, particularly near the polyadenylation site. The promoter of the mouse collagen X gene was found to contain two TATAA boxes 159 bp apart; primer extension analyses of the transcription start site revealed that both were functional. The promoter has an unusual structure with a very low G + C content of 28% between positions -220 and -1 of the upstream transcription start site. Northern and in situ hybridization analyses confirmed that the expression of the alpha 1(X) collagen gene is restricted to hypertrophic chondrocytes in tissues undergoing endochondral calcification. The detailed sequence information of the gene is useful for studies on the promoter activity of the gene and for generation of transgenic mice. Images Figure 3 Figure 5 Figure 6 PMID:8424763

  9. Nucleotide sequence of the internal transcribed spacers and 5.8S region of ribosomal DNA in Pinus pinea L.

    PubMed

    Marrocco, R; Gelati, M T; Maggini, F

    1996-01-01

    The nucleotide sequence of the first internal transcribed spacer (ITS1) belonging to different ribosomal RNA genes from Pinus pinea are reported. The analyzed ITS1 can be distinguished on the basis of their length, being one 2631 bp and the other 271 bp long. Nucleotide comparison of these regions did not show appreciable sequence homology. The larger ITS1 contains five tandem arranged subrepeats with size ranging between 219 bp and 237 bp. The nucleotide sequence of the 5.8S and the ITS2 regions belonging to the larger ribosomal RNA gene are also reported.

  10. Nucleotide sequence and analysis of the mgl operon of Escherichia coli K12.

    PubMed

    Hogg, R W; Voelker, C; Von Carlowitz, I

    1991-10-01

    The nucleotide sequence of the Escherichia coli K12 beta-methylgalactoside transport operon, mgl, was determined. Primer extension analysis indicated that the synthesis of mRNA initiates at guanine residue 145 of the determined sequence. The operon contains three open reading frames (ORF). The operator proximal ORF, mglB, encodes the galactose binding protein, a periplasmic protein of 332 amino acids including the 23 residue amino-terminal signal peptide. Following a 62 nucleotide spacer, the second ORF, mglA, is capable of encoding a protein of 506 amino acids. The amino-terminal and carboxyl-terminal halves of this protein are homologous to each other and each half contains a putative nucleotide binding site. The third ORF, mglC, is capable of encoding a hydrophobic protein of 336 amino acids which is thought to generate the transmembrane pore. The overall organization of the mglBAC operon and its potential to encode three proteins is similar to that of the ara FGH high affinity transport operon, located approximately 1 min away on the E. coli K12 chromosome.

  11. Mouse mammary tumor virus-like nucleotide sequences in canine and feline mammary tumors.

    PubMed

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-12-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats.

  12. Mouse Mammary Tumor Virus-Like Nucleotide Sequences in Canine and Feline Mammary Tumors▿

    PubMed Central

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-01-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats. PMID:20881168

  13. Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2.

    PubMed Central

    Kok, J; Leenhouts, K J; Haandrikman, A J; Ledeboer, A M; Venema, G

    1988-01-01

    A 6.5-kilobase HindIII fragment that specifies the proteolytic activity of Streptococcus cremoris Wg2 was sequenced entirely. The nucleotide sequence revealed two open reading frames (ORFs), a small ORF1 with 295 codons and a large ORF2 containing 1,772 codons. For both ORFs, there was no stop codon on the HindIII fragment. A partially overlapping PstI fragment was used to locate the translation stop of the large ORF2. The entire ORF2 contained 1,902 coding triplets, followed by an apparently rho-independent terminator sequence. The inferred amino acid sequence would result in a protein of 200 kilodaltons. Both ORFs have their putative transcription and translation signals in a 345-base-pair ClaI fragment. ORF2 is preceded by a promoter region containing a 15-base-pair complementary direct repeat. Both the truncated 33- and the 200-kilodalton proteins have a signal peptide-like N-terminal amino acid sequence. The protein specified by ORF2 contained regions of extensive homology with serine proteases of the subtilisin family. Specifically, amino acid sequences involved in the formation of the active site (viz., Asp-32, His-64, and Ser-221 of the subtilisins) are well conserved in the S. cremoris Wg2 proteinase. The homologous sequences are separated by nonhomologous regions which contain several inserts, most notably a sequence of approximately 200 amino acids between the His and Ser residues of the active site. PMID:3278687

  14. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity.

    PubMed Central

    Ogilvie, K K; Usman, N; Nicoghosian, K; Cedergren, R J

    1988-01-01

    Chemical synthesis is described of a 77-nucleotide-long RNA molecule that has the sequence of an Escherichia coli Ado-47-containing tRNA(fMet) species in which the modified nucleosides have been substituted by their unmodified parent nucleosides. The sequence was assembled on a solid-phase, controlled-pore glass support in a stepwise manner with an automated DNA synthesizer. The ribonucleotide building blocks used were fully protected 5'-monomethoxytrityl-2'-silyl-3'-N,N-diisopropylaminophosphoram idites. p-Nitro-phenylethyl groups were used to protect the O6 of guanine residues. The fully deprotected tRNA analogue was characterized by polyacrylamide gel electrophoresis (sizing), terminal nucleotide analysis, sequencing, and total enzyme degradation, all of which indicated that the sequence was correct and contained only 3-5 linkages. The 77-mer was then assayed for amino acid acceptor activity by using E. coli methionyl-tRNA synthetase. The results indicated that the synthetic product, lacking modified bases, is a substrate for the enzyme and has an amino acid acceptance 11% of that of the major native species, tRNA(fMet) containing 7-methylguanosine at position 47. Images PMID:3413059

  15. Mitochondrial DNA in the sea urchin Arbacia lixula: evolutionary inferences from nucleotide sequence analysis.

    PubMed

    De Giorgi, C; Lanave, C; Musci, M D; Saccone, C

    1991-07-01

    From the stirodont Arbacia lixula we determined the sequence of 5,127 nucleotides of mitochondrial DNA (mtDNA) encompassing 18 tRNAs, two complete coding genes, parts of three other coding genes, and part of the 12S ribosomal RNA (rRNA). The sequence confirms that the organization of mtDNA is conserved within echinoids. Furthermore, it underlines the following peculiar features of sea urchin mtDNA: the clustering of tRNAs, the short noncoding regulatory sequence, and the separation by the ND1 and ND2 genes of the two rRNA genes. Comparison with the orthologous sequences from the camarodont species Paracentrotus lividus and Strongylocentrotus purpuratus revealed that (1) echinoids have an extra piece on the amino terminus of the ND5 gene that is probably the remnant of an old leucine tRNA gene; (2) third-position codon nucleotide usage has diverged between A. lixula and the camarodont species to a significant extent, implying different directional mutational pressures; and (3) the stirodont-camarodont divergence occurred twice as long ago as did the P. lividus-S. purpuratus divergence.

  16. Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene.

    PubMed Central

    Abdullah, K M; Lo, R Y; Mellors, A

    1991-01-01

    Pasteurella haemolytica serotype A1 secretes a glycoprotease which is specific for O-sialoglycoproteins such as glycophorin A. The gene encoding the glycoprotease enzyme has been cloned in the recombinant plasmid pH1, and its nucleotide sequence has been determined. The gene (designated gcp) codes for a protein of 35.2 kDa, and an active enzyme protein of this molecular mass can be observed in Escherichia coli clones carrying pPH1. In vivo labeling of plasmid-encoded proteins in E. coli maxicells demonstrated the expression of a 35-kDa protein from pPH1. The amino-terminal sequence of the heterologously expressed protein corresponds to that predicted from the nucleotide sequence. The glycoprotease is a neutral metalloprotease, and the predicted amino acid sequence of the glycoprotease contains a putative zinc-binding site. The gene shows no significant homology with the genes for other proteases of procaryotic or eucaryotic origin. However, there is substantial homology between gcp and an E. coli gene, orfX, whose product is believed to function in the regulation of macromolecule biosynthesis. Images PMID:1885539

  17. The complete nucleotide sequence and genome organization of a novel carmovirus - Honeysuckle ringspot virus isolated from honeysuckle.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A virus associated with yellow to purple ringspot on honeysuckle plants has been detected and tentatively named as Honeysuckle ringspot virus (HnRSV). The complete nucleotide sequence of HnRSV has been determined from infected honeysuckle. The genomic RNA of HnRSV is 3,956 nucleotides in length and ...

  18. High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products.

    PubMed

    Scripture, J B; Voelker, C; Miller, S; O'Donnell, R T; Polgar, L; Rade, J; Horazdovsky, B F; Hogg, R W

    1987-09-05

    The nucleotide sequence of the "high-affinity" L-arabinose transport operon has been determined 3' from the regulatory region and found to contain three open reading frames designated araF, araG and araH. The first gene 3' to the regulatory region, araF, encodes the 23-residue signal peptide and the 306-residue mature form of the L-arabinose binding protein (33,200 Mr). The binding protein, which has been described elsewhere, is hydrophilic, soluble and found in the periplasm of Escherichia coli. This gene is followed by an intragenic space of 72 nucleotides, which contains a region of dyad symmetry 23 nucleotides long capable of forming an 11-member stem-loop. The second gene, designated araG, contains an open reading frame capable of encoding an equally hydrophilic protein containing 504 residues (55,000 Mr). Following a 14-nucleotide spacer, which does not appear to have any secondary structure, the third open reading frame, herein designated araH, is capable of encoding a hydrophobic protein containing 329 residues (34,000 Mr) that can only be envisioned as having an integral membrane location. 3' to araH there is a T-rich region containing a 24-nucleotide area of dyad symmetry centered 55 nucleotides from the termination codon. Analysis of the derived primary sequences of the araG and araH products indicates the nature and potential features of these components. The araG protein was found to possess internal homology between its amino and carboxyl-terminal halves, suggesting a common origin. The araG gene product has been shown to be homologous to the rbsA gene product, the hisP product, the ptsB product and the malK product, all of which presumably play similar roles in their respective transport systems. Putative ATP binding sites are observed within the regions of homology. The araH gene product has been shown to be homologous to the rbsC gene product, which is the first observed homology between two purported membrane proteins.

  19. The ChEMBL bioactivity database: an update

    PubMed Central

    Bento, A. Patrícia; Gaulton, Anna; Hersey, Anne; Bellis, Louisa J.; Chambers, Jon; Davies, Mark; Krüger, Felix A.; Light, Yvonne; Mak, Lora; McGlinchey, Shaun; Nowotka, Michal; Papadatos, George; Santos, Rita; Overington, John P.

    2014-01-01

    ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 Nucleic Acids Research Database Issue. Since then, a variety of new data sources and improvements in functionality have contributed to the growth and utility of the resource. In particular, more comprehensive tracking of compounds from research stages through clinical development to market is provided through the inclusion of data from United States Adopted Name applications; a new richer data model for representing drug targets has been developed; and a number of methods have been put in place to allow users to more easily identify reliable data. Finally, access to ChEMBL is now available via a new Resource Description Framework format, in addition to the web-based interface, data downloads and web services. PMID:24214965

  20. The ChEMBL bioactivity database: an update.

    PubMed

    Bento, A Patrícia; Gaulton, Anna; Hersey, Anne; Bellis, Louisa J; Chambers, Jon; Davies, Mark; Krüger, Felix A; Light, Yvonne; Mak, Lora; McGlinchey, Shaun; Nowotka, Michal; Papadatos, George; Santos, Rita; Overington, John P

    2014-01-01

    ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 Nucleic Acids Research Database Issue. Since then, a variety of new data sources and improvements in functionality have contributed to the growth and utility of the resource. In particular, more comprehensive tracking of compounds from research stages through clinical development to market is provided through the inclusion of data from United States Adopted Name applications; a new richer data model for representing drug targets has been developed; and a number of methods have been put in place to allow users to more easily identify reliable data. Finally, access to ChEMBL is now available via a new Resource Description Framework format, in addition to the web-based interface, data downloads and web services.

  1. Nucleotide sequence of the bean strain of southern bean mosaic virus.

    PubMed

    Othman, Y; Hull, R

    1995-01-10

    The genome of the bean strain of southern bean mosaic virus (SBMV-B) comprises 4109 nucleotides and thus is slightly shorter than those of the two other sequenced sobemoviruses (southern bean mosaic virus, cowpea strain (SBMV-C) and rice yellow mottle virus (RYMV)). SBMV-B has an overall sequence similarity with SBMV-C of 55% and with RYMV of 45%. Three potential open reading frames (ORFs) were recognized in SBMV-B which were in similar positions in the genomes of SBMV-C and RYMV. However, there was no analog of SBMV-C and RYMV ORF 3. From a comparison of the predicted sequences of the ORFs of these three sobemoviruses and of the noncoding regions, it is suggested that the two SBMV strains differ from one another as much as they do from RYMV and that they should be considered as different viruses.

  2. Nucleotide sequence of a satellite RNA associated with carrot motley dwarf in parsley and carrot.

    PubMed

    Menzel, Wulf; Maiss, Edgar; Vetten, H Josef

    2009-02-01

    Carrot motley dwarf (CMD) is known to result from a mixed infection by two viruses, the polerovirus Carrot red leaf virus and one of the umbraviruses Carrot mottle mimic virus or Carrot mottle virus. Some umbraviruses have been shown to be associated with small satellite (sat) RNAs, but none have been reported for the latter two. A CMD-affected parsley plant was used for sap transmission to test plants, that were used for dsRNA isolation. The presence of a 0.8-kbp dsRNA indicated the occurrence of a hitherto unrecognized satRNA associated with CMD. The satRNAs of the CMD isolate from parsley and an isolate from carrot have been sequenced and showed 94% sequence identity. Nucleotide sequences and putative translation products had no significant similarities to GenBank entries. To our knowledge, this is the first report of satRNAs associated with CMD.

  3. Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015.

    PubMed

    Furuse, Yuki; Okamoto, Michiko; Oshitani, Hitoshi

    2015-11-01

    Infection due to the Middle East respiratory syndrome coronavirus (MERS-CoV) is widespread. The present study was performed to assess the protocols used for the molecular diagnosis of MERS-CoV by analyzing the nucleotide sequences of viruses detected between 2012 and 2015, including sequences from the large outbreak in eastern Asia in 2015. Although the diagnostic protocols were established only 2 years ago, mismatches between the sequences of primers/probes and viruses were found for several of the assays. Such mismatches could lead to a lower sensitivity of the assay, thereby leading to false-negative diagnosis. A slight modification in the primer design is suggested. Protocols for the molecular diagnosis of viral infections should be reviewed regularly after they are established, particularly for viruses that pose a great threat to public health such as MERS-CoV.

  4. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  5. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase.

    PubMed

    Moye, W S; Amuro, N; Rao, J K; Zalkin, H

    1985-07-15

    The yeast GDH1 gene encodes NADP-dependent glutamate dehydrogenase. This gene was isolated by complementation of an Escherichia coli glutamate auxotroph. NADP-dependent glutamate dehydrogenase was overproduced 6-10-fold in Saccharomyces cerevisiae bearing GDH1 on a multicopy plasmid. The nucleotide sequence of the 1362-base pair coding region and 5' and 3' flanking sequences were determined. Transcription start sites were located by S1 nuclease mapping. Regulation of GDH1 was not maintained when the gene was present on a multicopy plasmid. Protein secondary structure predictions identified a region with potential to form the dinucleotide-binding domain. The amino acid sequences of the yeast and Neurospora crassa enzymes are 63% conserved. Unlike the N. crassa gene, yeast GDH1 has no introns.

  6. Nucleotide-sequence-specific de novo methylation in a somatic murine cell line.

    PubMed Central

    Szyf, M; Schimmer, B P; Seidman, J G

    1989-01-01

    DNA fragments encoding the mouse steroid 21-hydroxylase (C21 or Cyp21A1) gene are de novo methylated when introduced into the mouse adrenocortical tumor cell line Y1 by DNA-mediated gene transfer. Although CCGG sequences within the C21 gene are de novo methylated, CCGG sites within flanking vector sequences, other mammalian gene sequences driven by the C21 promoter, and the neomycin-resistance gene, which was cotransfected with the C21 gene, do not become methylated. At least two separate signals for de novo methylation are encoded within the gene since three fragments derived from the C21 gene were methylated de novo. Specific de novo methylation of C21-derived sequences does not occur in L cells or Y1 kin8 cells; this suggests that the cellular factors needed for de novo methylation of the C21 gene are not ubiquitous. Most DNA sequences are not de novo methylated when introduced into somatic cells and DNA sequences other than the C21 gene are not de novo methylated when introduced into Y1 cells. Several groups have suggested that de novo methylation occurs in early embryonic cells and that somatic cells strictly maintain their methylation pattern by a semiconservative methyltransferase. Our results suggest that de novo methylation of specific nucleotide sequences can occur in some mammalian somatic cells. Images PMID:2789380

  7. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  8. Complete Nucleotide Sequence of an Australian Isolate of Turnip mosaic virus before and after Seven Years of Serial Passaging

    PubMed Central

    Pretorius, Lara; Moyle, Richard L.; Dalton-Morgan, Jessica; Hussein, Nasser

    2016-01-01

    The complete genome sequence of an Australian isolate of Turnip mosaic virus was determined by Sanger sequencing. After seven years of serial passaging by mechanical inoculation, the isolate was resequenced by RNA sequencing (RNA-Seq). Eighteen single nucleotide polymorphisms were identified between the isolates. Both isolates had 96% identity to isolate AUST10. PMID:27856582

  9. Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer's yeast.

    PubMed Central

    Sone, H; Fujii, T; Kondo, K; Shimizu, F; Tanaka, J; Inoue, T

    1988-01-01

    The nucleotide sequence of a 1.4-kilobase DNA fragment containing the alpha-acetolactate decarboxylase gene of Enterobacter aerogenes was determined. The sequence contains an entire protein-coding region of 780 nucleotides which encodes an alpha-acetolactate decarboxylase of 260 amino acids. The DNA sequence coding for alpha-acetolactate decarboxylase was placed under the control of the alcohol dehydrogenase I promoter of the yeast Saccharomyces cerevisiae in a plasmid capable of autonomous replication in both S. cerevisiae and Escherichia coli. Brewer's yeast cells transformed by this plasmid showed alpha-acetolactate decarboxylase activity and were used in laboratory-scale fermentation experiments. These experiments revealed that the diacetyl concentration in wort fermented by the plasmid-containing yeast strain was significantly lower than that in wort fermented by the parental strain. These results indicated that the alpha-acetolactate decarboxylase activity produced by brewer's yeast cells degraded alpha-acetolactate and that this degradation caused a decrease in diacetyl production. PMID:3278689

  10. The nucleotide sequence of sacbrood virus of the honey bee: an insect picorna-like virus.

    PubMed

    Ghosh, R C; Ball, B V; Willcocks, M M; Carter, M J

    1999-06-01

    We have determined the nucleotide sequence of sacbrood virus (SBV), which causes a fatal infection of honey bee larvae. The genomic RNA of SBV is longer than that of typical mammalian picornaviruses (8832 nucleotides) and contains a single, large open reading frame (179-8752) encoding a polyprotein of 2858 amino acids. Sequence comparison with other virus polyproteins revealed regions of similarity to characterized helicase, protease and RNA-dependent RNA polymerase domains; structural genes were located at the 5' terminus with non-structural genes at the 3' end. Picornavirus-like agents of insects have two distinct genomic organizations; some resemble mammalian picornaviruses with structural genes at the 5' end and non-structural genes at the 3' end, and others resemble caliciviruses in which this order is reversed; SBV thus belongs to the former type. Sequence comparison suggested that SBV is distantly related to infectious flacherie virus (IFV) of the silk worm, which possesses an RNA of similar size and gene order.

  11. Infectivity and complete nucleotide sequence of cucumber fruit mottle mosaic virus isolate Cm cDNA.

    PubMed

    Rhee, Sun-Ju; Hong, Jin-Sung; Lee, Gung Pyo

    2014-07-01

    Three isolates of cucumber fruit mottle mosaic virus (CFMMV) were collected from melon, cucumber, and pumpkin plants in Korea. A full-length cDNA clone of CFMMV-Cm (melon isolate) was produced and evaluated for infectivity after T7 transcription in vitro (pT7CF-Cmflc). The complete CFMMV genome sequence of the infectious clone pT7CF-Cmflc was determined. The genome of CFMMV-Cm consisted of 6,571 nucleotides and shared high nucleotide sequence identity (98.8 %) with the Israel isolate of CFMMV. Based on the infectious clone pT7CF-Cmflc, a CaMV 35S-promoter driven cDNA clone (p35SCF-Cmflc) was subsequently constructed and sequenced. Mechanical inoculation with RNA transcripts of pT7CF-Cmflc and agro-inoculation with p35SCF-Cmflc resulted in systemic infection of cucumber and melon, producing symptoms similar to those produced by CFMMV-Cm. Progeny virus in infected plants was detected by RT-PCR, western blot assay, and transmission electron microscopy.

  12. Structure and nucleotide sequence of the rat intestinal vitamin D-dependent calcium binding protein gene.

    PubMed Central

    Krisinger, J; Darwish, H; Maeda, N; DeLuca, H F

    1988-01-01

    The vitamin D-dependent intestinal calcium binding protein (ICaBP, 9 kDa) is under transcriptional regulation by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the hormonal active form of the vitamin. To study the mechanism of gene regulation by 1,25-(OH)2D3, we isolated the rat ICaBP gene by using a cDNA probe. Its nucleotide sequence revealed 3 exons separated by 2 introns within approximately 3 kilobases. The first exon represents only noncoding sequences, while the second and third encode the two calcium binding domains of the protein. The gene contains a 15-base-pair imperfect palindrome in the first intron that shows high homology to the estrogen-responsive element. This sequence may represent the vitamin D-responsive element involved in the regulation of the ICaBP gene. The second intron shows an 84-base-pair-long simple nucleotide repeat that implicates Z-DNA formation. Genomic Southern analysis shows that the rat gene is represented as a single copy. Images PMID:3194402

  13. Complete nucleotide sequence and genome organization of a Cactus virus X strain from Hylocereus undatus (Cactaceae).

    PubMed

    Liou, M R; Chen, Y R; Liou, R F

    2004-05-01

    The complete nucleotide sequence of a strain of Cactus virus X (CVX-Hu) isolated from Hylocereus undatus (Cactaceae) has been determined. Excluding the poly(A) tail, the sequence is 6614 nucleotides in length and contains seven open reading frames (ORFs). The genome organization of CVX is similar to that of other potexviruses. ORF1 encodes the putative viral replicase with conserved methyltransferase, helicase, and polymerase motifs. Within ORF1, two other ORFs were located separately in the +2 reading frame, we call these ORF6 and ORF7. ORF2, 3, and 4, which form the "triple gene block" characteristic of the potexviruses, encode proteins with molecular mass of 25, 12, and 7 KDa, respectively. ORF5 encodes the coat protein with an estimated molecular mass of 24 KDa. Sequence analysis indicated that proteins encoded by ORF1-5 display certain degree of homology to the corresponding proteins of other potexviruses. Putative product of ORF6, however, shows no significant similarity to those of other potexviruses. Phylogenetic analyses based on the replicase (the methyltransferase, helicase, and polymerase domains) and coat protein demonstrated a closer relationship of CVX with Bamboo mosaic virus, Cassava common mosaic virus, Foxtail mosaic virus, Papaya mosaic virus, and Plantago asiatica mosaic virus.

  14. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.

    PubMed

    Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy

    2015-05-01

    We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.

  15. Nucleotide sequence of the transforming gene of m1 murine sarcoma virus.

    PubMed Central

    Brow, M A; Sen, A; Sutcliffe, J G

    1984-01-01

    The v-mosm1 nucleotide sequence codes for a protein that is 376 amino acids long. Although the N-terminus is homologous with that of the v-mos124 protein, the C-terminus is substantially different from the C-termini of all other examined mos proteins, suggesting that this region is nonessential and perhaps cleaved. Overall, v-mosm1 has greater homology with c-mos than does v-mos124, but mutually exclusive differences between c-mos and each of the v-mos genes preclude linear descent and suggest a common ancestral murine sarcoma virus. PMID:6319757

  16. The Complete Nucleotide Sequence of the Mitochondrial Genome of Bactrocera minax (Diptera: Tephritidae)

    PubMed Central

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5′ end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  17. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae).

    PubMed

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5' end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  18. Within-Host Nucleotide Diversity of Virus Populations: Insights from Next-Generation Sequencing

    PubMed Central

    Nelson, Chase W.; Hughes, Austin L.

    2014-01-01

    Next-generation sequencing (NGS) technology offers new opportunities for understanding the evolution and dynamics of viral populations within individual hosts over the course of infection. We review simple methods for estimating synonymous and nonsynonymous nucleotide diversity in viral genes from NGS data without the need for inferring linkage. We discuss the potential usefulness of these data for addressing questions of both practical and theoretical interest, including fundamental questions regarding the effective population sizes of within-host viral populations and the modes of natural selection acting on them. PMID:25481279

  19. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences.

    PubMed

    Sanromán-Iglesias, María; Lawrie, Charles H; Liz-Marzán, Luis M; Grzelczak, Marek

    2017-03-01

    Circulating DNA (ctDNA) and specifically the detection cancer-associated mutations in liquid biopsies promises to revolutionize cancer detection. The main difficulty however is that the length of typical ctDNA fragments (∼150 bases) can form secondary structures potentially obscuring the mutated fragment from detection. We show that an assay based on gold nanoparticles (65 nm) stabilized with DNA (Au@DNA) can discriminate single nucleotide polymorphism in clinically relevant ssDNA sequences (70-140 bases). The preincubation step was crucial to this process, allowing sequential bridging of Au@DNA, so that single base mutation can be discriminated, down to 100 pM concentration.

  20. Complete nucleotide sequence of a virus associated with rusty mottle disease of sweet cherry (Prunus avium).

    PubMed

    Villamor, D V; Druffel, K L; Eastwell, K C

    2013-08-01

    Cherry rusty mottle is a disease of sweet cherries first described in 1940 in western North America. Because of the graft-transmissible nature of the disease, a viral nature of the disease was assumed. Here, the complete genomic nucleotide sequences of virus isolates from two trees expressing cherry rusty mottle disease symptoms are characterized; the virus is designated cherry rusty mottle associated virus (CRMaV). The biological and molecular characteristics of this virus in comparison to those of cherry necrotic rusty mottle virus (CNRMV) and cherry green ring mottle virus (CGRMV) are described. CRMaV was subsequently detected in additional sweet cherry trees expressing symptoms of cherry rusty mottle disease.

  1. Optimizing nucleotide sequence ensembles for combinatorial protein libraries using a genetic algorithm.

    PubMed

    Craig, Roger A; Lu, Jin; Luo, Jinquan; Shi, Lei; Liao, Li

    2010-01-01

    Protein libraries are essential to the field of protein engineering. Increasingly, probabilistic protein design is being used to synthesize combinatorial protein libraries, which allow the protein engineer to explore a vast space of amino acid sequences, while at the same time placing restrictions on the amino acid distributions. To this end, if site-specific amino acid probabilities are input as the target, then the codon nucleotide distributions that match this target distribution can be used to generate a partially randomized gene library. However, it turns out to be a highly nontrivial computational task to find the codon nucleotide distributions that exactly matches a given target distribution of amino acids. We first showed that for any given target distribution an exact solution may not exist at all. Formulated as a constrained optimization problem, we then developed a genetic algorithm-based approach to find codon nucleotide distributions that match as closely as possible to the target amino acid distribution. As compared with the previous gradient descent method on various objective functions, the new method consistently gave more optimized distributions as measured by the relative entropy between the calculated and the target distributions. To simulate the actual lab solutions, new objective functions were designed to allow for two separate sets of codons in seeking a better match to the target amino acid distribution.

  2. A simple ABO genotyping by PCR using sequence-specific primers with mismatched nucleotides.

    PubMed

    Taki, Takashi; Kibayashi, Kazuhiko

    2014-05-01

    In forensics, the specific ABO blood group is often determined by analyzing the ABO gene. Among various methods used, PCR employing sequence-specific primers (PCR-SSP) is simpler than other methods for ABO typing. When performing the PCR-SSP, the pseudo-positive signals often lead to errors in ABO typing. We introduced mismatched nucleotides at the second and the third positions from the 3'-end of the primers for the PCR-SSP method and examined whether reliable typing could be achieved by suppressing pseudo-positive signals. Genomic DNA was extracted from nail clippings of 27 volunteers, and the ABO gene was examined with PCR-SSP employing primers with and without mismatched nucleotides. The ABO blood group of the nail clippings was also analyzed serologically, and these results were compared with those obtained using PCR-SSP. When mismatched primers were employed for amplification, the results of the ABO typing matched with those obtained by the serological method. When primers without mismatched nucleotides were used for PCR-SSP, pseudo-positive signals were observed. Thus our method may be used for achieving more reliable ABO typing.

  3. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data.

    PubMed

    Batley, Jacqueline; Barker, Gary; O'Sullivan, Helen; Edwards, Keith J; Edwards, David

    2003-05-01

    We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity was also calculated based on the cosegregation of the SNP pattern between multiple SNP loci in an alignment. The utility of this method was demonstrated by applying it to 102,551 maize (Zea mays) expressed sequence tag sequences. A total of 14,832 candidate polymorphisms were identified with an SNP redundancy score of two or greater. Segregation of these SNPs with haplotype indicates that candidate SNPs with high redundancy and cosegregation confidence scores are likely to represent true SNPs. This was confirmed by validation of 264 candidate SNPs from 27 loci, with a range of redundancy and cosegregation scores, in four inbred maize lines. The SNP transition/transversion ratio and insertion/deletion size frequencies correspond to those observed by direct sequencing methods of SNP discovery and suggest that the majority of predicted SNPs and insertion/deletions identified using this approach represent true genetic variation in maize.

  4. Complete nucleotide sequences of two begomoviruses infecting Madagascar periwinkle (Catharanthus roseus) from Pakistan.

    PubMed

    Ilyas, Muhammad; Nawaz, Kiran; Shafiq, Muhammad; Haider, Muhammad Saleem; Shahid, Ahmad Ali

    2013-02-01

    Though Catharanthus roseus (Madagascar periwinkle) is an ornamental plant, it is famous for its medicinal value. Its alkaloids are known for anti-cancerous properties, and this plant is studied mainly for its alkaloids. Here, this plant has been studied for its viral diseases. Complete DNA sequences of two begomoviruses infecting C. roseus originating from Pakistan were determined. The sequence of one begomovirus (clone KN4) shows the highest level of nucleotide sequence identity (86.5 %) to an unpublished virus, chili leaf curl India virus (ChiLCIV), and then (84.4 % identity) to papaya leaf curl virus (PaLCV), and thus represents a new species, for which the name "Catharanthus yellow mosaic virus" (CYMV) is proposed. The sequence of another begomovirus (clone KN6) shows the highest level of sequence identity (95.9 % to 99 %) to a newly reported virus from India, papaya leaf crumple virus (PaLCrV). Sequence analysis shows that KN4 and KN6 are recombinants of Pedilanthus leaf curl virus (PedLCV) and croton yellow vein mosaic virus (CrYVMV).

  5. Overproduction and nucleotide sequence of the respiratory D-lactate dehydrogenase of Escherichia coli.

    PubMed Central

    Rule, G S; Pratt, E A; Chin, C C; Wold, F; Ho, C

    1985-01-01

    Recombinant DNA plasmids containing the gene for the membrane-bound D-lactate dehydrogenase (D-LDH) of Escherichia coli linked to the promoter PL from lambda were constructed. After induction, the levels of D-LDH were elevated 300-fold over that of the wild type and amounted to 35% of the total cellular protein. The nucleotide sequence of the D-LDH gene was determined and shown to agree with the amino acid composition and the amino-terminal sequence of the purified enzyme. Removal of the amino-terminal formyl-Met from D-LDH was not inhibited in cells which contained these high levels of D-LDH. Images PMID:3882663

  6. Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.).

    PubMed

    Thai, B T; Burridge, C P; Pham, T A; Austin, C M

    2005-02-01

    Direct sequencing of mitochondrial DNA (mtDNA) D-loop (745 bp) and MTATPase6/MTATPase8 (857 bp) regions was used to investigate genetic variation within common carp and develop a global genealogy of common carp strains. The D-loop region was more variable than the MTATPase6/MTATPase8 region, but given the wide distribution of carp the overall levels of sequence divergence were low. Levels of haplotype diversity varied widely among countries with Chinese, Indonesian and Vietnamese carp showing the greatest diversity whereas Japanese Koi and European carp had undetectable nucleotide variation. A genealogical analysis supports a close relationship between Vietnamese, Koi and Chinese Color carp strains and to a lesser extent, European carp. Chinese and Indonesian carp strains were the most divergent, and their relationships do not support the evolution of independent Asian and European lineages and current taxonomic treatments.

  7. Nucleotide sequence alignment of hdcA from Gram-positive bacteria

    PubMed Central

    Diaz, Maria; Ladero, Victor; Redruello, Begoña; Sanchez-Llana, Esther; del Rio, Beatriz; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A.

    2016-01-01

    The decarboxylation of histidine -carried out mainly by some gram-positive bacteria- yields the toxic dietary biogenic amine histamine (Ladero et al. 2010 〈10.2174/157340110791233256〉 [1], Linares et al. 2016 〈http://dx.doi.org/10.1016/j.foodchem.2015.11.013〉〉 [2]). The reaction is catalyzed by a pyruvoyl-dependent histidine decarboxylase (Linares et al. 2011 〈10.1080/10408398.2011.582813〉 [3]), which is encoded by the gene hdcA. In order to locate conserved regions in the hdcA gene of Gram-positive bacteria, this article provides a nucleotide sequence alignment of all the hdcA sequences from Gram-positive bacteria present in databases. For further utility and discussion, see 〈http://dx.doi.org/ 10.1016/j.foodcont.2015.11.035〉〉 [4]. PMID:26958625

  8. Complete nucleotide sequence of a new variant of grapevine fanleaf virus from northeastern China.

    PubMed

    Zhou, Jun; Fan, Xudong; Dong, Yafeng; Zhang, Zunping; Ren, Fang; Hu, Guojun; Li, Zhengnan

    2017-02-01

    The complete RNA1 and RNA2 sequences of a new grapevine fanleaf virus isolate (GFLV-SDHN) from northeastern China were determined. The two RNAs are 7,367 and 3,788 nucleotides (nt) in length, respectively, excluding the poly(A) tails. Compared to other GFLV isolates, GFLV-SDHN has a 22- to 24-nt insertion in the RNA1 5' untranslated region, and there was 19.1-20.1 % and 11.7 %-13.0 % sequence divergence in RNA1, and 15.5 %-20.5 % and 8.5-13.5 % in RNA2, at the nt and amino acid level, respectively. Phylogenetic analysis revealed that the origins of GFLV-SDHN are distinct from those of other GFLV isolates. One recombination event was identified in the 2A(HP) region of RNA2 in GFLV-SDHN.

  9. The complete nucleotide sequence and genome organization of pea streak virus (genus Carlavirus).

    PubMed

    Su, Li; Li, Zhengnan; Bernardy, Mike; Wiersma, Paul A; Cheng, Zhihui; Xiang, Yu

    2015-10-01

    Pea streak virus (PeSV) is a member of the genus Carlavirus in the family Betaflexiviridae. Here, the first complete genome sequence of PeSV was determined by deep sequencing of a cDNA library constructed from dsRNA extracted from a PeSV-infected sample and Rapid Amplification of cDNA Ends (RACE) PCR. The PeSV genome consists of 8041 nucleotides excluding the poly(A) tail and contains six open reading frames (ORFs). The putative peptide encoded by the PeSV ORF6 has an estimated molecular mass of 6.6 kDa and shows no similarity to any known proteins. This differs from typical carlaviruses, whose ORF6 encodes a 12- to 18-kDa cysteine-rich nucleic-acid-binding protein.

  10. [Nucleotide sequence of HLA-DQA1 promoter region (QAP) in a lung cancer patient].

    PubMed

    Qiu, C; Zhou, W; Song, C

    1996-06-01

    The HLA-DQA1 allele and nucleotide sequence of HLA-DQA1 promoter region (QAP) in a patient with IDDM complicated lung cancer have been identified by PCR/SSCP, PCR/SSCP and PCR/sequencing. The results showed that: (1) All of the lung cancer patient and his family members carried HLA-DQA1* 0301/0501 alleles. (2) a single base substitution G-->A at position -155 and deletion CAA at position -161 to -163 occurred in the patient. These results suggest that the mutation of HLA-DQA1 promoter region may modulate HLA-DQA1 gene expression by trans-acting factors binding to variant cis-acting elements and may be responsible for pathogenesis of lung cancer.

  11. Molecular detection and nucleotide sequence analysis of a new Aichi virus closely related to canine kobuvirus in sewage samples.

    PubMed

    Yamashita, Teruo; Adachi, Hirokazu; Hirose, Emi; Nakamura, Noriko; Ito, Miyabi; Yasui, Yoshihiro; Kobayashi, Shinichi; Minagawa, Hiroko

    2014-05-01

    Between 2001 and 2005, 207 raw sewage samples were collected at the inflow of a sewage treatment plant in Aichi Prefecture, Japan. Of the 207 sewage samples, 137 (66.2 %) were found to be positive for amplification of Aichi virus (AiV) nucleotide using reverse transcription (RT)-PCR with 10 forward and 10 reverse primers in the 3D region corresponding to the nucleotide sequence of all kobuviruses. AiV genotype A sequences were detected in all 137 samples. New sequences of AiV were detected in nine samples, exhibiting 83 % similarity with AiV A846/88, but 95 % similarity with canine kobuvirus (CKV) US-PC0082 in this region. The nucleotide sequences from the VP3 region to the 3' untranslated region (UTR) of sewage sample Y12/2004 were determined. The number of nucleotides in each region was the same as that of CKV. The similarity of the nucleotide (amino acid) identity of a complete VP1 region was 90.5 % (94.8 %) between Y12/2004 and CKV US-PC0082. The phylogenic analyses based on the nucleotide and the deduced amino acid sequences of VP1 and 3D showed that Y12/2004 was independent from AiV, but closely related to CKV. These results suggested that CKV is present in Aichi Prefecture, Japan.

  12. The nucleotide sequence surrounding the replication origin of the cop3 mutant of the bacteriocinogenic plasmid Clo DF13.

    PubMed Central

    Stuitje, A R; Veltkamp, E; Maat, J; Heyneker, H L

    1980-01-01

    The nucleotide sequence from about 100 base-pairs downstream to about 600 base pairs upstream the CloDF13 replication origin has been determined. A comparison of this sequence with the corresponding ColE1 origin sequence reveals that: The sequence at the origin of replication is conserved. There are large differences in the nucleotide sequence downstream the replication origin, whereas there is a large homology in the region of about 410 base-pairs upstream the replication origin. This conserved region might code for a largely homologous basic, arginine rich polypeptide of about 45 amino-acids, for both ColE1 and CloDF13. Although there are large differences in the primary structure of the region coding for the 100 nucleotide RNA, the secondary structure of this region seems to be conserved. Images PMID:6253936

  13. The nucleotide sequence surrounding the replication origin of the cop3 mutant of the bacteriocinogenic plasmid Clo DF13.

    PubMed

    Stuitje, A R; Veltkamp, E; Maat, J; Heyneker, H L

    1980-04-11

    The nucleotide sequence from about 100 base-pairs downstream to about 600 base pairs upstream the CloDF13 replication origin has been determined. A comparison of this sequence with the corresponding ColE1 origin sequence reveals that: The sequence at the origin of replication is conserved. There are large differences in the nucleotide sequence downstream the replication origin, whereas there is a large homology in the region of about 410 base-pairs upstream the replication origin. This conserved region might code for a largely homologous basic, arginine rich polypeptide of about 45 amino-acids, for both ColE1 and CloDF13. Although there are large differences in the primary structure of the region coding for the 100 nucleotide RNA, the secondary structure of this region seems to be conserved.

  14. Nucleotide sequence of ermA, a macrolide-lincosamide-streptogramin B determinant in Staphylococcus aureus.

    PubMed Central

    Murphy, E

    1985-01-01

    The complete nucleotide sequence of ermA, the prototype macrolide-lincosamide-streptogramin B resistance gene from Staphylococcus aureus, has been determined. The sequence predicts a 243-amino-acid protein that is homologous to those specified by ermC, ermAM, and ermD, resistance determinants from Staphylococcus aureus, Streptococcus sanguis, and Bacillus licheniformis, respectively. The ermA transcript, identified by Northern analysis and S1 mapping, contains a 5' leader sequence of 211 bases which has the potential to encode two short peptides of 15 and 19 amino acids; the second, longer peptide has 13 amino acids in common with the putative regulatory leader peptide of ermC. The coding sequence for this peptide is deleted in several mutants in which macrolide-lincosamide-streptogramin B resistance is constitutively expressed. Potential secondary structures available to the leader sequence of the wild-type (inducible) transcript and to constitutive deletion, insertion, and point mutations provide additional support for the translational attenuation model for induction of macrolide-lincosamide-streptogramin B resistance. Images PMID:2985541

  15. Nucleotide sequence analysis of beta tubulin gene in a wide range of dermatophytes.

    PubMed

    Rezaei-Matehkolaei, Ali; Mirhendi, Hossein; Makimura, Koichi; de Hoog, G Sybren; Satoh, Kazuo; Najafzadeh, Mohammad Javad; Shidfar, Mohammad Reza

    2014-10-01

    We investigated the resolving power of the beta tubulin protein-coding gene (BT2) for systematic study of dermatophyte fungi. Initially, 144 standard and clinical strains belonging to 26 species in the genera Trichophyton, Microsporum, and Epidermophyton were identified by internal transcribe spacer (ITS) sequencing. Subsequently, BT2 was partially amplified in all strains, and sequence analysis performed after construction of a BT2 database that showed length ranged from approximately 723 (T. ajelloi) to 808 nucleotides (M. persicolor) in different species. Intraspecific sequence variation was found in some species, but T. tonsurans, T. equinum, T. concentricum, T. verrucosum, T. rubrum, T. violaceum, T. eriotrephon, E. floccosum, M. canis, M. ferrugineum, and M. audouinii were invariant. The sequences were found to be relatively conserved among different strains of the same species. The species with the closest resemblance were Arthroderma benhamiae and T. concentricum and T. tonsurans and T. equinum with 100% and 99.8% identity, respectively; the most distant species were M. persicolor and M. amazonicum. The dendrogram obtained from BT2 topology was almost compatible with the species concept based on ITS sequencing, and similar clades and species were distinguished in the BT2 tree. Here, beta tubulin was characterized in a wide range of dermatophytes in order to assess intra- and interspecies variation and resolution and was found to be a taxonomically valuable gene.

  16. Computational generation and screening of RNA motifs in large nucleotide sequence pools

    PubMed Central

    Kim, Namhee; Izzo, Joseph A.; Elmetwaly, Shereef; Gan, Hin Hark; Schlick, Tamar

    2010-01-01

    Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 1012–1014-sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We use the new protocol to search for aptamer and ribozyme motifs in pools up to experimental pool size (1014 sequences). We show that motif scanning, structure matching and flanking sequence analysis, respectively, reduce the initial sequence pool by 6–8, 1–2 and 1 orders of magnitude, consistent with the rare occurrence of active motifs in random pools. The final yields match the theoretical yields from probability theory for simple motifs and overestimate experimental yields, which constitute lower bounds, for aptamers because screening analyses beyond secondary structure information are not considered systematically. We also show that designed pools using our nucleotide transition probability matrices can produce higher yields for RNA ligase motifs than random pools. Our methods for generating, analyzing and designing large pools can help improve RNA design via simulation of aspects of in vitro selection. PMID:20448026

  17. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens.

    PubMed

    Pernodet, J L; Boccard, F; Alegre, M T; Gagnat, J; Guérineau, M

    1989-06-30

    The Streptomyces ambofaciens genome contains four rRNA gene clusters. These copies are called rrnA, B, C and D. The complete nucleotide (nt) sequence of rrnD has been determined. These genes possess striking similarity with other eubacterial rRNA genes. Comparison with other rRNA sequences allowed the putative localization of the sequences encoding mature rRNAs. The structural genes are arranged in the order 16S-23S-5S and are tightly linked. The mature rRNAs are predicted to contain 1528, 3120 and 120 nt, for the 16S, 23S and 5S rRNAs, respectively. The 23S rRNA is, to our knowledge, the longest of all sequenced prokaryotic 23S rRNAs. When compared to other large rRNAs it shows insertions at positions where they are also present in archaebacterial and in eukaryotic large rRNAs. Secondary structure models of S. ambofaciens rRNAs are proposed, based upon those existing for other bacterial rRNAs. Positions of putative transcription start points and of a termination signal are suggested. The corresponding putative primary transcript, containing the 16S, 23S and 5S rRNAs plus flanking regions, was folded into a secondary structure, and sequences possibly involved in rRNA maturation are described. The G + C content of the rRNA gene cluster is low (57%) compared with the overall G + C content of Streptomyces DNA (73%).

  18. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    SciTech Connect

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  19. Unique nucleotide sequence (UNS)-guided assembly of repetitive DNA parts for synthetic biology applications

    PubMed Central

    Torella, Joseph P.; Lienert, Florian; Boehm, Christian R.; Chen, Jan-Hung; Way, Jeffrey C.; Silver, Pamela A.

    2016-01-01

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts and hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies — for example repeated terminator and insulator sequences — that complicate recombination-based assembly. We and others have recently developed DNA assembly methods that we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly-assembled constructs, or into high-quality combinatorial libraries in only 2–3 days. If the DNA parts must be generated from scratch, an additional 2–5 days are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques. PMID:25101822

  20. Evidence for Balancing Selection from Nucleotide Sequence Analyses of Human G6PD

    PubMed Central

    Verrelli, Brian C.; McDonald, John H.; Argyropoulos, George; Destro-Bisol, Giovanni; Froment, Alain; Drousiotou, Anthi; Lefranc, Gerard; Helal, Ahmed N.; Loiselet, Jacques; Tishkoff, Sarah A.

    2002-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) mutations that result in reduced enzyme activity have been implicated in malarial resistance and constitute one of the best examples of selection in the human genome. In the present study, we characterize the nucleotide diversity across a 5.2-kb region of G6PD in a sample of 160 Africans and 56 non-Africans, to determine how selection has shaped patterns of DNA variation at this gene. Our global sample of enzymatically normal B alleles and A, A−, and Med alleles with reduced enzyme activities reveals many previously uncharacterized silent-site polymorphisms. In comparison with the absence of amino acid divergence between human and chimpanzee G6PD sequences, we find that the number of G6PD amino acid polymorphisms in human populations is significantly high. Unlike many other G6PD-activity alleles with reduced activity, we find that the age of the A variant, which is common in Africa, may not be consistent with the recent emergence of severe malaria and therefore may have originally had a historically different adaptive function. Overall, our observations strongly support previous genotype-phenotype association studies that proposed that balancing selection maintains G6PD deficiencies within human populations. The present study demonstrates that nucleotide sequence analyses can reveal signatures of both historical and recent selection in the genome and may elucidate the impact that infectious disease has had during human evolution. PMID:12378426

  1. Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage phi 29.

    PubMed Central

    Escarmís, C; Salas, M

    1981-01-01

    Phage phi 29 DNA cannot be phosphorylated with polynucleotide kinase and [gamma-32P]ATP because of the presence of a viral protein covalently linked to the 5' termini. The 5' ends can, however, be made susceptible to phosphorylation by treatment with alkali and alkaline phosphatase. Restriction fragments Hpa II C and Hpa II F, corresponding to the right and left ends of phi 29 DNA, respectively, were labeled at the 5' ends with polynucleotide kinase and [gamma-32P]ATP or at the 3' ends with terminal transferase and [alpha-32P]ATP or [alpha-32P]cordycepin 5'-triphosphate. After a secondary cleavage of the labeled fragments, the sequence of the first 150-180 nucleotides at the termini of phi 29 DNA was determined by the method of Maxam and Gilbert. The ends of phi 29 DNA are flush, and a six-nucleotides-long inverted terminal repetition was found. The functional implications of the sequences determined are discussed. Images PMID:6262800

  2. Mapping DNA methylation by transverse current sequencing: Reduction of noise from neighboring nucleotides

    NASA Astrophysics Data System (ADS)

    Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian

    Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.

  3. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase.

    PubMed Central

    Clark, A G; Weiss, K M; Nickerson, D A; Taylor, S L; Buchanan, A; Stengård, J; Salomaa, V; Vartiainen, E; Perola, M; Boerwinkle, E; Sing, C F

    1998-01-01

    Allelic variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene (LPL) was scored in 71 healthy individuals (142 chromosomes) from three populations: African Americans (24) from Jackson, MS; Finns (24) from North Karelia, Finland; and non-Hispanic Whites (23) from Rochester, MN. The sequences had a total of 88 variable sites, with a nucleotide diversity (site-specific heterozygosity) of .002+/-.001 across this 9.7-kb region. The frequency spectrum of nucleotide variation exhibited a slight excess of heterozygosity, but, in general, the data fit expectations of the infinite-sites model of mutation and genetic drift. Allele-specific PCR helped resolve linkage phases, and a total of 88 distinct haplotypes were identified. For 1,410 (64%) of the 2,211 site pairs, all four possible gametes were present in these haplotypes, reflecting a rich history of past recombination. Despite the strong evidence for recombination, extensive linkage disequilibrium was observed. The number of haplotypes generally is much greater than the number expected under the infinite-sites model, but there was sufficient multisite linkage disequilibrium to reveal two major clades, which appear to be very old. Variation in this region of LPL may depart from the variation expected under a simple, neutral model, owing to complex historical patterns of population founding, drift, selection, and recombination. These data suggest that the design and interpretation of disease-association studies may not be as straightforward as often is assumed. PMID:9683608

  4. QGRS-H Predictor: a web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences

    PubMed Central

    Menendez, Camille; Frees, Scott; Bagga, Paramjeet S.

    2012-01-01

    Naturally occurring G-quadruplex structural motifs, formed by guanine-rich nucleic acids, have been reported in telomeric, promoter and transcribed regions of mammalian genomes. G-quadruplex structures have received significant attention because of growing evidence for their role in important biological processes, human disease and as therapeutic targets. Lately, there has been much interest in the potential roles of RNA G-quadruplexes as cis-regulatory elements of post-transcriptional gene expression. Large-scale computational genomics studies on G-quadruplexes have difficulty validating their predictions without laborious testing in ‘wet’ labs. We have developed a bioinformatics tool, QGRS-H Predictor that can map and analyze conserved putative Quadruplex forming 'G'-Rich Sequences (QGRS) in mRNAs, ncRNAs and other nucleotide sequences, e.g. promoter, telomeric and gene flanking regions. Identifying conserved regulatory motifs helps validate computations and enhances accuracy of predictions. The QGRS-H Predictor is particularly useful for mapping homologous G-quadruplex forming sequences as cis-regulatory elements in the context of 5′- and 3′-untranslated regions, and CDS sections of aligned mRNA sequences. QGRS-H Predictor features highly interactive graphic representation of the data. It is a unique and user-friendly application that provides many options for defining and studying G-quadruplexes. The QGRS-H Predictor can be freely accessed at: http://quadruplex.ramapo.edu/qgrs/app/start. PMID:22576365

  5. Identification of protein-interacting nucleotides in a RNA sequence using composition profile of tri-nucleotides.

    PubMed

    Panwar, Bharat; Raghava, Gajendra P S

    2015-04-01

    The RNA-protein interactions play a diverse role in the cells, thus identification of RNA-protein interface is essential for the biologist to understand their function. In the past, several methods have been developed for predicting RNA interacting residues in proteins, but limited efforts have been made for the identification of protein-interacting nucleotides in RNAs. In order to discriminate protein-interacting and non-interacting nucleotides, we used various classifiers (NaiveBayes, NaiveBayesMultinomial, BayesNet, ComplementNaiveBayes, MultilayerPerceptron, J48, SMO, RandomForest, SMO and SVM(light)) for prediction model development using various features and achieved highest 83.92% sensitivity, 84.82 specificity, 84.62% accuracy and 0.62 Matthew's correlation coefficient by SVM(light) based models. We observed that certain tri-nucleotides like ACA, ACC, AGA, CAC, CCA, GAG, UGA, and UUU preferred in protein-interaction. All the models have been developed using a non-redundant dataset and are evaluated using five-fold cross validation technique. A web-server called RNApin has been developed for the scientific community (http://crdd.osdd.net/raghava/rnapin/).

  6. Identification and nucleotide sequence of the glycoprotein gB gene of equine herpesvirus 4.

    PubMed Central

    Riggio, M P; Cullinane, A A; Onions, D E

    1989-01-01

    The nucleotide sequence of the glycoprotein gB gene of equine herpesvirus 4 (EHV-4) was determined. The gene was located within a BamHI genomic library by a combination of Southern and dot-blot hybridization with probes derived from the herpes simplex virus type 1 (HSV-1) gB DNA sequence. The predominant portion of the coding sequences was mapped to a 2.95-kilobase BamHI-EcoRI subfragment at the left-hand end of BamHI-C. Potential TATA box, CAT box, and mRNA start site sequences and the translational initiation codon were located in the BamHI M fragment of the virus, which is located immediately to the left of BamHI-C. A polyadenylation signal, AATAAA, occurs nine nucleotides past the chain termination codon. Translation of these sequences would give a 110-kilodalton protein possessing a 5' hydrophobic signal sequence, a hydrophilic surface domain containing 11 potential N-linked glycosylation sites, a hydrophobic transmembrane domain, and a 3' highly charged cytoplasmic domain. A potential internal proteolytic cleavage site, Arg-Arg/Ser, was identified at residues 459 to 461. Analysis of this protein revealed amino acid sequence homologies of 47% with HSV-1 gB, 54% with pseudorabies virus gpII, 51% with varicella-zoster virus gpII, 29% with human cytomegalovirus gB, and 30% with Epstein-Barr virus gB. Alignment of EHV-4 gB with HSV-1 (KOS) gB further revealed that four potential N-linked glycosylation sites and all 10 cysteine residues on the external surface of the molecules are perfectly conserved, suggesting that the proteins possess similar secondary and tertiary structures. Thus, we showed that EHV-4 gB is highly conserved with the gB and gpII glycoproteins of other herpesviruses, suggesting that this glycoprotein has a similar overall function in each virus. Images PMID:2915378

  7. The bioinformatics of nucleotide sequence coding for proteins requiring metal coenzymes and proteins embedded with metals

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Cheung, E.; Holden, T.; Sullivan, R.; Nguyen, A.; Lieberman, D.; Cheung, T.

    2015-09-01

    All metallo-proteins need post-translation metal incorporation. In fact, the isotope ratio of Fe, Cu, and Zn in physiology and oncology have emerged as an important tool. The nickel containing F430 is the prosthetic group of the enzyme methyl coenzyme M reductase which catalyzes the release of methane in the final step of methano-genesis, a prime energy metabolism candidate for life exploration space mission in the solar system. The 3.5 Gyr early life sulfite reductase as a life switch energy metabolism had Fe-Mo clusters. The nitrogenase for nitrogen fixation 3 billion years ago had Mo. The early life arsenite oxidase needed for anoxygenic photosynthesis energy metabolism 2.8 billion years ago had Mo and Fe. The selection pressure in metal incorporation inside a protein would be quantifiable in terms of the related nucleotide sequence complexity with fractal dimension and entropy values. Simulation model showed that the studied metal-required energy metabolism sequences had at least ten times more selection pressure relatively in comparison to the horizontal transferred sequences in Mealybug, guided by the outcome histogram of the correlation R-sq values. The metal energy metabolism sequence group was compared to the circadian clock KaiC sequence group using magnesium atomic level bond shifting mechanism in the protein, and the simulation model would suggest a much higher selection pressure for the energy life switch sequence group. The possibility of using Kepler 444 as an example of ancient life in Galaxy with the associated exoplanets has been proposed and is further discussed in this report. Examples of arsenic metal bonding shift probed by Synchrotron-based X-ray spectroscopy data and Zn controlled FOXP2 regulated pathways in human and chimp brain studied tissue samples are studied in relationship to the sequence bioinformatics. The analysis results suggest that relatively large metal bonding shift amount is associated with low probability correlation R

  8. Power Spectrum and Mutual Information Analyses of DNA Base (Nucleotide) Sequences

    NASA Astrophysics Data System (ADS)

    Isohata, Yasuhiko; Hayashi, Masaki

    2003-03-01

    On the basis of the power spectrum analyses for the base (nucleotide) sequences of various genes, we have studied long-range correlations in total base sequences which are expressed as 1/fα, behaviour of the exponent α for the accumulated base sequences as well as periodicities at short range. In particular from the analysis of content rate distributions of α we have obtained the average value \\barα=0.40± 0.01 and \\barα=0.20± 0.01 for the human genes and S. cerevisiae genes, respectively. We have also performed the analyses using the mutual information function. We show that there exists a clear difference between the content rate distributions of correlation lengths for the sample human genes and the S. cerevisiae genes. We are led to a conjecture that the elongation of the correlation length in the base sequences of genes from the early eukaryote (S. cerevisiae) to the late eukaryote (human) should be the definite reflection of the evolutionary process.

  9. Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses.

    PubMed

    Araujo, Ricardo; Eusebio, Nadia; Caramalho, Rita

    2015-03-01

    Practical schemes based on single nucleotide polymorphisms (SNP) have been proposed as alternatives to simplify and replace the molecular methodologies based on the extensive sequencing analysis of genes. SNaPshot mini-sequencing has been progressively experienced during the last decade and represents a fast and robust strategy to analyze critical polymorphisms. Such assays have been proposed to characterize some bacteria and microbial eukaryotes, and its feasibility was now reviewed in the present manuscript. The mini-sequencing schemes showed high discriminatory power and competence for identification of microorganisms, but some specificity errors were still found, particularly for species of the Burkholderia cepacia complex and mycobacteria. SNP assays designed for other goals, e.g., comparison of strains, detection of serotypes, virulence, epidemic, and phylogenetic-related subgroups of isolates, can be very useful by facilitating the investigation of large collections of isolates. The next-generation of SNP assays might consider the inclusion of large number of markers to fully characterize microbial taxonomy and strains; nevertheless, these new technologies are still prone to errors and can largely benefit from integration with well-established mini-sequencing assays. Newly proposed molecular tools should be systematically tested in collections of isolates with high indexes of diversity and guarantee interlaboratorial validation.

  10. The nucleotide sequence of a Polish isolate of Tomato torrado virus.

    PubMed

    Budziszewska, Marta; Obrepalska-Steplowska, Aleksandra; Wieczorek, Przemysław; Pospieszny, Henryk

    2008-12-01

    A new virus was isolated from greenhouse tomato plants showing symptoms of leaf and apex necrosis in Wielkopolska province in Poland in 2003. The observed symptoms and the virus morphology resembled viruses previously reported in Spain called Tomato torrado virus (ToTV) and that in Mexico called Tomato marchitez virus (ToMarV). The complete genome of a Polish isolate Wal'03 was determined using RT-PCR amplification using oligonucleotide primers developed against the ToTV sequences deposited in Genbank, followed by cloning, sequencing, and comparison with the sequence of the type isolate. Phylogenetic analyses, performed on the basis of fragments of polyproteins sequences, established the relationship of Polish isolate Wal'03 with Spanish ToTV and Mexican ToMarV, as well as with other viruses from Sequivirus, Sadwavirus, and Cheravirus genera, reported to be the most similar to the new tomato viruses. Wal'03 genome strands has the same organization and very high homology with the ToTV type isolate, showing only some nucleotide and deduced amino acid changes, in contrast to ToMarV, which was significantly different. The phylogenetic tree clustered aforementioned viruses to the same group, indicating that they have a common origin.

  11. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  12. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera.

    PubMed Central

    Itoh, T; Ohtsuki, I; Yamashita, I; Fukui, S

    1987-01-01

    The complete nucleotide sequence of the glucoamylase gene GLU1 from the yeast Saccharomycopsis fibuligera has been determined. The GLU1 DNA hybridized to a polyadenylated RNA of 2.1 kilobases. A single open reading frame codes for a 519-amino-acid protein which contains four potential N-glycosylation sites. The putative precursor begins with a hydrophobic segment that presumably acts as a signal sequence for secretion. Glucoamylase was purified from a culture fluid of the yeast Saccharomyces cerevisiae which had been transformed with a plasmid carrying GLU1. The molecular weight of the protein was 57,000 by both gel filtration and acrylamide gel electrophoresis. The protein was glycosylated with asparagine-linked glycosides whose molecular weight was 2,000. The amino-terminal sequence of the protein began from the 28th amino acid residue from the first methionine of the putative precursor. The amino acid composition of the purified protein matched the predicted amino acid composition. These results confirmed that GLU1 encodes glucoamylase. A comparison of the amino acid sequence of glucoamylases from several fungi and yeast shows five highly conserved regions. One homology region is absent from the yeast enzyme and so may not be essential to glucoamylase function. Images PMID:3114236

  13. The Complete Nucleotide Sequence and Biotype Variability of Papaya leaf distortion mosaic virus.

    PubMed

    Maoka, Tetsuo; Hataya, Tatsuji

    2005-02-01

    ABSTRACT The complete nucleotide sequence of the genome of Papaya leaf distortion mosaic virus (PLDMV) was determined. The viral RNA genome of strain LDM (leaf distortion mosaic) comprised 10,153 nucleotides, excluding the poly(A) tail, and contained one long open reading frame encoding a polyprotein of 3,269 amino acids (molecular weight 373,347). The polyprotein contained nine putative proteolytic cleavage sites and some motifs conserved in other potyviral polyproteins with 44 to 50% identities, indicating that PLDMV is a distinct species in the genus Potyvirus. Like the W biotype of Papaya ringspot virus (PRSV), the non-papaya-infecting biotype of PLDMV (PLDMV-C) was found in plants of the family Cucurbitaceae. The coat protein (CP) sequence of PLDMV-C in naturally infected-Trichosanthes bracteata was compared with those of three strains of the P biotype (PLDMV-P), LDM and two additional strains M (mosaic) and YM (yellow mosaic), which are biologically different from each other. The CP sequences of three strains of PLDMV-P share high identities of 95 to 97%, while they share lower identities of 88 to 89% with that of PLDMV-C. Significant changes in hydrophobicity and a deletion of two amino acids at the N-terminal region of the CP of PLDMV-C were observed. The finding of two biotypes of PLDMV implies the possibility that the papaya-infecting biotype evolved from the cucurbitaceae-infecting potyvirus, as has been previously suggested for PRSV. In addition, a similar evolutionary event acquiring infectivity to papaya may arise frequently in viruses in the family Cucurbitaceae.

  14. Cloning and genomic nucleotide sequence of the matrix attachment region binding protein from the halotolerant alga Dunaliella salina.

    PubMed

    Wang, Peng-Ju; Wang, Tian-Yun; Wang, Ya-Feng; Yang, Rui; Li, Zhao-Xi

    2013-07-01

    In our previous study, the sequence of a matrix attachment region binding protein (MBP) cDNA was cloned from the unicellular green alga Dunaliella salina. However, the nucleotide sequence of this gene has not been reported so far. In this paper, the nucleotide sequence of MBP was cloned and characterized, and its gene copy number was determined. The MBP nucleotide sequence is 5641 bp long, and interrupted by 12 introns ranging from 132 to 562 bp. All the introns in the D. salina MBP gene have orthodox splice sites, exhibiting GT at the 5' end and AG at the 3' end. Southern blot analysis showed that MBP only has one copy in the D. salina genome.

  15. Complete nucleotide sequences of two isolates of cherry green ring mottle virus from peach (Prunus persica) in China.

    PubMed

    Wang, Lihui; Jiang, Dongmei; Niu, Feiqing; Lu, Meiguang; Wang, Hongqing; Li, Shifang

    2013-03-01

    Two complete nucleotide sequences of cherry green ring mottle virus (CGRMV) isolated from peach in Hebei (Hs10) and Fujian (F9) Provinces, China, were determined. Five open reading frames (ORFs) were found in the genomes of both isolates. The F9 and Hs10 isolates shared 82.2 % and 83.4-94.4 % nucleotide sequence identity, respectively, with two CGRMV isolates from cherry. Analysis of the nucleotide and amino acid sequences from the five ORFs of both isolates showed that Hs10 shares the greatest sequence identity with P1A (GenBank AJ291761) from cherry. Phylogenetic analysis indicated that CGRMV isolates from peach and cherry are closely related to members of the genus Foveavirus.

  16. The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences.

    PubMed Central

    van Ooyen, A; Kwee, V; Nusse, R

    1985-01-01

    The mouse mammary tumor virus can induce mammary tumors in mice by proviral activation of an evolutionarily conserved cellular oncogene called int-1. Here we present the nucleotide sequence of the human homologue of int-1, and compare it with the mouse gene. Like the mouse gene, the human homologue contains a reading frame of 370 amino acids, with only four substitutions. The amino acid changes are all in the hydrophobic leader domain of the int-1 encoded protein, and do not significantly alter its hydropathic index. The conservation between the mouse and the human int-1 genes is not restricted to exons; extensive parts of the introns are also homologous. Thus, int-1 ranks among the most conserved genes known, a property shared with other oncogenes. PMID:2998762

  17. Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates.

    PubMed

    Spector, D H; Varmus, H E; Bishop, J M

    1978-09-01

    We have detected nucleotide sequences related to the transforming gene of avian sarcoma vius (ASV) in the DNA of uninfected vertebrates. Purified radioactive DNA (cDNAsarc) complementary to most of all of the gene (src) required for transformation of fibroblasts by ASV was annealed with DNA from a variety of normal species. Under conditions that facilitate pairing of partially matched nucleotide sequences (1.5 M NaCl, 59 degrees), cDNAsarc formed duplexes with chicken, human, calf, mouse, and salmon DNA but not with DNA from sea urchin, Drosophila, or Escherichia coli. The kinetics of duplex formation indicated that cDNAsarc was reacting with nucleotide sequences present in a single copy or at most a few copies per cell. In contrast to the preceding findings, nucleotide sequences complementary to the remainder of the ASV genome were observed only in chicken DNA. Thermal denaturation studies of the duplexes formed with cDNAsarc indicated a high degree of conservation of the nucleotide sequences related to src in vertebrate DNAs; the reductions in melting temperature suggested about 3--4% mismatching of cDNAsarc with chicken DNA and 8--10% mismatching of cDNAsarc with the other vertebrate DNAs.

  18. Plastid sequence evolution: a new pattern of nucleotide substitutions in the Cucurbitaceae.

    PubMed

    Decker-Walters, Deena S; Chung, Sang-Min; Staub, Jack E

    2004-05-01

    Nucleotide substitutions (i.e., point mutations) are the primary driving force in generating DNA variation upon which selection can act. Substitutions called transitions, which entail exchanges between purines (A = adenine, G = guanine) or pyrimidines (C = cytosine, T = thymine), typically outnumber transversions (e.g., exchanges between a purine and a pyrimidine) in a DNA strand. With an increasing number of plant studies revealing a transversion rather than transition bias, we chose to perform a detailed substitution analysis for the plant family Cucurbitaceae using data from several short plastid DNA sequences. We generated a phylogenetic tree for 19 taxa of the tribe Benincaseae and related genera and then scored conservative substitution changes (e.g., those not exhibiting homoplasy or reversals) from the unambiguous branches of the tree. Neither the transition nor (A+T)/(G+C) biases found in previous studies were supported by our overall data. More importantly, we found a novel and symmetrical substitution bias in which Gs had been preferentially replaced by A, As by C, Cs by T, and Ts by G, resulting in the G-->A-->C-->T-->G substitution series. Understanding this pattern will lead to new hypotheses concerning plastid evolution, which in turn will affect the choices of substitution models and other tree-building algorithms for phylogenetic analyses based on nucleotide data.

  19. Nucleotide sequence of the gene ereA encoding the erythromycin esterase in Escherichia coli.

    PubMed

    Ounissi, H; Courvalin, P

    1985-01-01

    We have cloned and determined the nucleotide sequence of the gene ereA of plasmid pIP1100 which confers high-level resistance to erythromycin (Em) in Escherichia coli. The gene was defined by initiation and termination codons and by in vitro insertion-inactivation into an open reading frame (ORF) of 1032 bp corresponding to a product with an Mr of 37 765. However, the enzyme, an Em esterase, displayed an apparent Mr of 43 000 upon electrophoresis of a minicell extract on the SDS-polyacrylamide gels. The G + C content (50.5%) of the gene ereA and the preferential codon usage in its ORF suggest that this resistance determinant should be indigenous to E. coli.

  20. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  1. Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene.

    PubMed

    Barany, F; Gelfand, D H

    1991-12-20

    Thermostable DNA ligase has been harnessed for the detection of single-base genetic diseases using the ligase chain reaction [Barany, Proc. Natl. Acad. Sci. USA 88 (1991) 189-193]. The Thermus thermophilus (Tth) DNA ligase-encoding gene (ligT) was cloned in Escherichia coli by genetic complementation of a ligts 7 defect in an E. coli host. Nucleotide sequence analysis of the gene revealed a single chain of 676 amino acid residues with 47% identity to the E. coli ligase. Under phoA promoter control, Tth ligase was overproduced to greater than 10% of E. coli cellular proteins. Adenylated and deadenylated forms of the purified enzyme were distinguished by apparent molecular weights of 81 kDa and 78 kDa, respectively, after separation via sodium dodecyl sulfate-polyacrylamide-gel electrophoresis.

  2. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase.

    PubMed Central

    Sayavedra-Soto, L A; Powell, G K; Evans, H J; Morris, R O

    1988-01-01

    An indispensable part of the hydrogen-recycling system in Bradyrhizobium japonicum is the uptake hydrogenase, which is composed of 34.5- and 65.9-kDa subunits. The gene encoding the large subunit is located on a 5.9-kilobase fragment of the H2-uptake-complementing cosmid pHU52 [Zuber, M., Harker, A.R., Sultana, M.A. & Evans, H.J. (1986) Proc. Natl. Acad. Sci. USA 83, 7668-7672]. We have now determined that the structural genes for both subunits are present on this fragment. Two open reading frames are present that correspond in size and deduced amino acid sequence to the hydrogenase subunits, except that the small-subunit coding region contains a leader peptide of 46 amino acids. The two genes are separated by a 32-nucleotide intergenic region and likely constitute an operon. Comparison of the deduced amino acid sequences of the B. japonicum genes with those from Desulfovibrio gigas, Desulfovibrio baculatus, and Rhodobacter capsulatus indicates significant sequence identity. Images PMID:3054886

  3. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies.

  4. Cloning and nucleotide sequence of a specific DNA fragment from Paracoccidioides brasiliensis.

    PubMed

    Goldani, L Z; Maia, A L; Sugar, A M

    1995-06-01

    We cloned and sequenced a species-specific 110-bp DNA fragment from Paracoccidioides brasiliensis. The DNA fragment was generated by PCR with primers complementary to the rat beta-actin gene under a low annealing temperature. Comparison of the nucleotide sequence, after excluding the primers, with those in the GenBank database identified approximately 60% homology with an exon of a major surface glycoprotein gene from Pneumocystis carinii and a fragment of unknown function in Saccharomyces cerevisiae chromosome VIII. By Southern hybridization analysis, the 32P-labelled fragment detected 1.0- and 1.9-kb restriction fragments within whole-cell genomic DNA of P. brasiliensis digested with HindIII and PstI, respectively, but failed to hybridize to genomic DNAs from Candida albicans, Blastomyces dermatitidis, Cryptococcus neoformans, Aspergillus fumigatus, Saccharomyces cerevisiae, Pneumocystis carinii, rat tissue, or humans under low-stringency hybridization conditions. Additionally, the specific DNA fragment from three different P. brasiliensis isolates (Pb18, RP18, RP17) was amplified by PCR with primers mostly complementary to nonactin sequences of the 110-bp DNA fragment. In contrast, there were no amplified products from other fungus genomic DNAs previously tested, including Histoplasma capsulatum. To date, this is the first species-specific DNA fragment cloned from P. brasiliensis which might be useful as a diagnostic marker for the identification and classification of different P. brasiliensis isolates.

  5. Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence.

    PubMed

    Allgayer, Julia; Kitsera, Nataliya; von der Lippen, Carina; Epe, Bernd; Khobta, Andriy

    2013-10-01

    8-Oxoguanine (8-oxoG) is a major product of oxidative DNA damage, which induces replication errors and interferes with transcription. By varying the position of single 8-oxoG in a functional gene and manipulating the nucleotide sequence surrounding the lesion, we found that the degree of transcriptional inhibition is independent of the distance from the transcription start or the localization within the transcribed or the non-transcribed DNA strand. However, it is strongly dependent on the sequence context and also proportional to cellular expression of 8-oxoguanine DNA glycosylase (OGG1)-demonstrating that transcriptional arrest does not take place at unrepaired 8-oxoG and proving a causal connection between 8-oxoG excision and the inhibition of transcription. We identified the 5'-CAGGGC[8-oxoG]GACTG-3' motif as having only minimal transcription-inhibitory potential in cells, based on which we predicted that 8-oxoG excision is particularly inefficient in this sequence context. This anticipation was fully confirmed by direct biochemical assays. Furthermore, in DNA containing a bistranded Cp[8-oxoG]/Cp[8-oxoG] clustered lesion, the excision rates differed between the two strands at least by a factor of 9, clearly demonstrating that the excision preference is defined by the DNA strand asymmetry rather than the overall geometry of the double helix or local duplex stability.

  6. The complete nucleotide sequence and genomic characterization of grapevine asteroid mosaic associated virus.

    PubMed

    Vargas-Asencio, José; Wojciechowska, Klaudia; Baskerville, Maia; Gomez, Annika L; Perry, Keith L; Thompson, Jeremy R

    2017-01-02

    In analyzing grapevine clones infected with grapevine red blotch associated virus, we identified a small number of isometric particles of approximately 30nm in diameter from an enriched fraction of leaf extract. A dominant protein of 25kDa was isolated from this fraction using SDS-PAGE and was identified by mass spectrometry as belonging to grapevine asteroid mosaic associated virus (GAMaV). Using a combination of three methods RNA-Seq, sRNA-Seq, and Sanger sequencing of RT- and RACE-PCR products, we obtained a full-length genome sequence consisting of 6719 nucleotides without the poly(A) tail. The virus possesses all of the typical conserved functional domains concordant with the genus Marafivirus and lies evolutionarily between citrus sudden death associated virus and oat blue dwarf virus. A large shift in RNA-Seq coverage coincided with the predicted location of the subgenomic RNA involved in coat protein (CP) expression. Genus wide sequence alignments confirmed the cleavage motif LxG(G/A) to be dominant between the helicase and RNA dependent RNA polymerase (RdRp), and the RdRp and CP domains. A putative overlapping protein (OP) ORF lacking a canonical translational start codon was identified with a reading frame context more consistent with the putative OPs of tymoviruses and fig fleck associated virus than with those of marafiviruses. BLAST analysis of the predicted GAMaV OP showed a unique relatedness to the OPs of members of the genus Tymovirus.

  7. Cloning and nucleotide sequence of a specific DNA fragment from Paracoccidioides brasiliensis.

    PubMed Central

    Goldani, L Z; Maia, A L; Sugar, A M

    1995-01-01

    We cloned and sequenced a species-specific 110-bp DNA fragment from Paracoccidioides brasiliensis. The DNA fragment was generated by PCR with primers complementary to the rat beta-actin gene under a low annealing temperature. Comparison of the nucleotide sequence, after excluding the primers, with those in the GenBank database identified approximately 60% homology with an exon of a major surface glycoprotein gene from Pneumocystis carinii and a fragment of unknown function in Saccharomyces cerevisiae chromosome VIII. By Southern hybridization analysis, the 32P-labelled fragment detected 1.0- and 1.9-kb restriction fragments within whole-cell genomic DNA of P. brasiliensis digested with HindIII and PstI, respectively, but failed to hybridize to genomic DNAs from Candida albicans, Blastomyces dermatitidis, Cryptococcus neoformans, Aspergillus fumigatus, Saccharomyces cerevisiae, Pneumocystis carinii, rat tissue, or humans under low-stringency hybridization conditions. Additionally, the specific DNA fragment from three different P. brasiliensis isolates (Pb18, RP18, RP17) was amplified by PCR with primers mostly complementary to nonactin sequences of the 110-bp DNA fragment. In contrast, there were no amplified products from other fungus genomic DNAs previously tested, including Histoplasma capsulatum. To date, this is the first species-specific DNA fragment cloned from P. brasiliensis which might be useful as a diagnostic marker for the identification and classification of different P. brasiliensis isolates. PMID:7650207

  8. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani.

    PubMed

    Zardoya, Rafael; Malaga-Trillo, Edward; Veith, Michael; Meyer, Axel

    2003-10-23

    The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected.

  9. Complete Nucleotide Sequence of Watermelon Chlorotic Stunt Virus Originating from Oman

    PubMed Central

    Khan, Akhtar J.; Akhtar, Sohail; Briddon, Rob W.; Ammara, Um; Al-Matrooshi, Abdulrahman M.; Mansoor, Shahid

    2012-01-01

    Watermelon chlorotic stunt virus (WmCSV) is a bipartite begomovirus (genus Begomovirus, family Geminiviridae) that causes economic losses to cucurbits, particularly watermelon, across the Middle East and North Africa. Recently squash (Cucurbita moschata) grown in an experimental field in Oman was found to display symptoms such as leaf curling, yellowing and stunting, typical of a begomovirus infection. Sequence analysis of the virus isolated from squash showed 97.6–99.9% nucleotide sequence identity to previously described WmCSV isolates for the DNA A component and 93–98% identity for the DNA B component. Agrobacterium-mediated inoculation to Nicotiana benthamiana resulted in the development of symptoms fifteen days post inoculation. This is the first bipartite begomovirus identified in Oman. Overall the Oman isolate showed the highest levels of sequence identity to a WmCSV isolate originating from Iran, which was confirmed by phylogenetic analysis. This suggests that WmCSV present in Oman has been introduced from Iran. The significance of this finding is discussed. PMID:22852046

  10. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses.

    PubMed

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3-6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1-2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site.

  11. Nucleotide sequence and the encoded amino acids of human apolipoprotein A-I mRNA.

    PubMed Central

    Law, S W; Brewer, H B

    1984-01-01

    The cDNA clones encoding the precursor form of human liver apolipoprotein A-I (apoA-I), preproapoA-I, have been isolated from a cDNA library. A 17-base synthetic oligonucleotide based on residues 108-113 of apoA-I and a 26-base primer-extended, dideoxynucleotide-terminated cDNA were used as hybridization probes to select for recombinant plasmids bearing the apoA-I sequence. The complete nucleic acid sequence of human liver preproapoA-I has been determined by analysis of the cloned cDNA. The sequence is composed of 801 nucleotides encoding 267 amino acid residues. PreproapoA-I contains an 18-amino-acid prepeptide and a 6-amino-acid propeptide connected to the amino terminus of the 243-amino acid mature apoA-I. Southern blotting analysis of chromosomal DNA obtained from peripheral blood indicated the apoA-I gene is contained in a 2.1-kilobase-pair Pst I fragment and there is no gross difference in structural organization between the normal apoA-I gene and the Tangier disease apoA-I gene. Images PMID:6198645

  12. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  13. The complete nucleotide sequence and genome organization of tomato chlorosis virus.

    PubMed

    Wintermantel, W M; Wisler, G C; Anchieta, A G; Liu, H-Y; Karasev, A V; Tzanetakis, I E

    2005-11-01

    The crinivirus tomato chlorosis virus (ToCV) was discovered initially in diseased tomato and has since been identified as a serious problem for tomato production in many parts of the world, particularly in the United States, Europe and Southeast Asia. The complete nucleotide sequence of ToCV was determined and compared with related crinivirus species. RNA 1 is organized into four open reading frames (ORFs), and encodes proteins involved in replication, based on homology to other viral replication factors. RNA 2 is composed of nine ORFs including genes that encode a HSP70 homolog and two proteins involved in encapsidation of viral RNA, referred to as the coat protein and minor coat protein. Sequence homology between ToCV and other criniviruses varies throughout the viral genome. The minor coat protein (CPm) of ToCV, which forms part of the "rattlesnake tail" of virions and may be involved in determining the unique, broad vector transmissibility of ToCV, is larger than the CPm of lettuce infectious yellows virus (LIYV) by 217 amino acids. Among sequenced criniviruses, considerable variability exists in the size of some viral proteins. Analysis of these differences with respect to biological function may provide insight into the role crinivirus proteins play in virus infection and transmission.

  14. Human ribosomal RNA gene: nucleotide sequence of the transcription initiation region and comparison of three mammalian genes.

    PubMed Central

    Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M

    1982-01-01

    The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460

  15. Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.

    PubMed

    Matsumoto, Tomotaka; Akashi, Hiroshi; Yang, Ziheng

    2015-07-01

    Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to evaluate their performance when the substitution process is nonstationary. The methods we evaluated include parsimony and likelihood using the single best reconstruction (SBR), averaging over reconstructions weighted by the posterior probabilities (AWP), and a new method called expected Markov counting (EMC) that produces maximum-likelihood estimates of substitution counts for any branch under a nonstationary Markov model. We simulated base composition evolution on a phylogeny for six species, with different selective pressures on G+C content among lineages, and compared the counts of nucleotide substitutions recorded during simulation with the inference by different methods. We found that large systematic biases resulted from (i) the use of parsimony or likelihood with SBR, (ii) the use of a stationary model when the substitution process is nonstationary, and (iii) the use of the Hasegawa-Kishino-Yano (HKY) model, which is too simple to adequately describe the substitution process. The nonstationary general time reversible (GTR) model, used with AWP or EMC, accurately recovered the substitution counts, even in cases of complex parameter fluctuations. We discuss model complexity and the compromise between bias and variance and suggest that the new methods may be useful for studying complex patterns of nucleotide substitution in large genomic data sets.

  16. The nucleotide sequence of cysteine transfer ribonucleic acid from baker's yeast. Identification of the products from partial degradation of the molecule and derivation of the complete sequence.

    PubMed Central

    Holness, N J; Atfield, G

    1976-01-01

    1. A series of large oligonucleotide fragments derived from tRNA Cys, were separated chromatographically and the sequence of each was deduced by examination of the products of digestion with pancreatic and T1 ribonucleases. 2. The location of the specific cleavage points in the nucleotide chain was similar to that produced by brief treatment with pancreatic ribonuclease. 3. The fragments could be arranged into two alternative sequences. The correct sequence was deduced by the sequential removal and identification of the first nine nucleotides from the 3'-end of the terminal half of the molecules. PMID:819006

  17. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  18. Nucleotide sequence of the capsid protein gene and 3' non-coding region of papaya mosaic virus RNA.

    PubMed

    Abouhaidar, M G

    1988-01-01

    The nucleotide sequences of cDNA clones corresponding to the 3' OH end of papaya mosaic virus RNA have been determined. The 3'-terminal sequence obtained was 900 nucleotides in length, excluding the poly(A) tail, and contained an open reading frame capable of giving rise to a protein of 214 amino acid residues with an Mr of 22930. This protein was identified as the viral capsid protein. The 3' non-coding region of PMV genome RNA was about 121 nucleotides long [excluding the poly(A) tail] and homologous to the complementary sequence of the non-coding region at the 5' end of PMV RNA. A long open reading frame was also found in the predicted 5' end region of the negative strand.

  19. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  20. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    PubMed

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  1. Nucleotide sequence analysis and DNA hybridization studies of the ant(4')-IIa gene from Pseudomonas aeruginosa.

    PubMed Central

    Shaw, K J; Munayyer, H; Rather, P N; Hare, R S; Miller, G H

    1993-01-01

    The ant(4')-IIa gene was previously cloned from Pseudomonas aeruginosa on a 1.6-kb DNA fragment (G. A. Jacoby, M. J. Blaser, P. Santanam, H. Hächler, F. H. Kayser, R. S. Hare, and G. H. Miller, Antimicrob. Agents Chemother. 34:2381-2386, 1990). In the current study, the ant(4')-IIa gene was localized by gamma-delta mutagenesis. A region of approximately 600 nucleotides which contained the ant(4')-IIa gene was identified, and DNA sequence analysis revealed two overlapping open reading frames (ORFs) within this region. Northern (RNA) blot analysis demonstrated expression of both ORFs in P. aeruginosa; therefore, site-directed mutagenesis was used to identify the ORF which encodes the ant(4')-IIa gene. No homology was found between ant(4')-IIa and ant(4')-Ia DNA sequences. Hybridization experiments confirmed that the ant(4')-Ia probe hybridized only to gram-positive presumptive ANT(4')-I strains and that the ant(4')-IIa probe hybridized only to gram-negative strains presumed to carry ANT(4')-II. Seven gram-negative strains which had been classified as having ANT(4')-II resistance profiles did not hybridize with probes for either ant(4')-Ia or ant(4')-IIa, suggesting that at least one additional ant(4') gene may exist. The predicted amino-terminal sequences of the ANT(4')-Ia and ANT(4')-IIa proteins showed significant sequence similarity between residues 38 and 63 of the ANT(4')-Ia protein and residues 26 and 51 of the ANT(4')-IIa protein. PMID:8494365

  2. Complete nucleotide sequence of rose yellow leaf virus, a new member of the family Tombusviridae.

    PubMed

    Mollov, Dimitre; Lockhart, Ben; Zlesak, David C

    2014-10-01

    The genome of the rose yellow leaf virus (RYLV) has been determined to be 3918 nucleotides long and to contain seven open reading frames (ORFs). ORF1 encodes a 27-kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to encode an 87-kDa (p87) protein that has amino acid similarity to the RNA-dependent RNA polymerase (RdRp) of members of the family Tombusviridae. ORFs 3 and 4 have no significant amino acid similarity to known functional viral ORFs. ORF5 encodes a 6-kDa (p6) protein that has similarity to movement proteins of members of the Tombusviridae. ORF5A has no conventional start codon and overlaps with p6. A putative +1 frameshift mechanism allows p6 translation to continue through the stop codon and results in a 12-kDa protein that has high homology to the carmovirus p13 movement protein. The 37-kDa protein encoded by ORF6 has amino acid sequence similarity to coat proteins (CP) of members of the Tombusviridae. ORF7 has no significant amino acid similarity to known viral ORFs. Phylogenetic analysis of the RdRp amino acid sequences grouped RYLV together with the unclassified Rosa rugosa leaf distortion virus (RrLDV), pelargonium line pattern virus (PLPV), and pelargonium chlorotic ring pattern virus (PCRPV) in a distinct subgroup of the family Tombusviridae.

  3. Nucleotide sequence and phylogenetic analysis of a new potexvirus: Malva mosaic virus.

    PubMed

    Côté, Fabien; Paré, Christine; Majeau, Nathalie; Bolduc, Marilène; Leblanc, Eric; Bergeron, Michel G; Bernardy, Michael G; Leclerc, Denis

    2008-01-01

    A filamentous virus isolated from Malva neglecta Wallr. (common mallow) and propagated in Chenopodium quinoa was grown, cloned and the complete nucleotide sequence was determined (GenBank accession # DQ660333). The genomic RNA is 6858 nt in length and contains five major open reading frames (ORFs). The genomic organization is similar to members and the viral encoded proteins shared homology with the group of the Potexvirus genus in the Flexiviridae family. Phylogenetic analysis revealed a close relationship with narcissus mosaic virus (NMV), scallion virus X (ScaVX) and, to a lesser extent, to Alstroemeria virus X (AlsVX) and pepino mosaic virus (PepMV). A novel putative pseudoknot structure is predicted in the 3'-UTR of a subgroup of potexviruses, including this newly described virus. The consensus GAAAA sequence is detected at the 5'-end of the genomic RNA and experimental data strongly suggest that this motif could be a distinctive hallmark of this genus. The name Malva mosaic virus is proposed.

  4. Complete nucleotide sequence analysis of the norovirus GII.4 Sydney variant in South Korea.

    PubMed

    Park, Ji-Sun; Lee, Sung-Geun; Jin, Ji-Young; Cho, Han-Gil; Jheong, Weon-Hwa; Paik, Soon-Young

    2015-01-01

    Norovirus is the primary cause of acute gastroenteritis in individuals of all ages. In Australia, a new strain of norovirus (GII.4) was identified in March 2012, and this strain has spread rapidly around the world. In August 2012, this new GII.4 strain was identified in patients in South Korea. Therefore, to examine the characteristics of the epidemic norovirus GII.4 2012 variant in South Korea, we conducted KM272334 full-length genomic analysis. The genome of the gg-12-08-04 strain consisted of 7,558 bp and contained three open reading frame (ORF) composites throughout the whole genome: ORF1 (5,100 bp), ORF2 (1,623 bp), and ORF3 (807 bp). Phylogenetic analyses showed that gg-12-08-04 belonged to the GII.4 Sydney 2012 variant, sharing 98.92% nucleotide similarity with this variant strain. According to SimPlot analysis, the gg-12-08-04 strain was a recombinant strain with breakpoint at the ORF1/2 junction between Osaka 2007 and Apeldoorn 2008 strains. This study is the first report of the complete sequence of the GII.4 Sydney 2012 strain in South Korea. Therefore, this may represent the standard sequence of the norovirus GII.4 2012 variant in South Korea and could therefore be useful for the development of norovirus vaccines.

  5. Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum.

    PubMed

    Dineen, Sean S; Bradshaw, Marite; Karasek, Charles E; Johnson, Eric A

    2004-06-01

    The nucleotide sequences of the upstream regions of the botulinum neurotoxin type A1 (BoNT/A1) cluster of Clostridium botulinum strain NCTC 2916 and the BoNT/A2 cluster of strain Kyoto-F were determined. A novel gene, designated orfx3, was identified following the orfx2 gene in both clusters. ORF-X2 and ORF-X3 exhibit similarity to the BoNT cluster associated P-47 protein. The BoNT/A1 and BoNT/A2 clusters share a similar gene arrangement, but exhibit differences in the spacing between certain genes. Sequences with similarity to transposases were identified in these intergenic regions, suggesting that these differences arose from an ancestral insertion event. Transcriptional analysis of the BoNT/A2 cluster revealed that the genes of the cluster are primarily synthesized as three polycistronic transcripts. Two divergent polycistronic transcripts, one encoding the orfx1, orfx2, and orfx3 genes, the second encoding the p47, ntnh, and bont/a2 genes, are transcribed from conserved BoNT cluster promoters. The third polycistronic transcript, expressed at low levels, encodes the positive regulatory botR gene and the orfx genes. This is the first complete analysis of a botulinum toxin A2 cluster.

  6. Complete nucleotide sequence of a Spanish isolate of Parietaria mottle virus infecting tomato.

    PubMed

    Galipienso, Luis; Rubio, Luis; López, Luis; Soler, Salvador; Aramburu, José

    2009-10-01

    The genome of a Spanish isolate of Parietaria mottle virus (PMoV) obtained from tomato (strain PMoV-T) was completely sequenced. Protein motifs conserved for RNA viruses were identified: the p1 protein contained a metyltransferase domain in its N-terminal half and a triphosphatase/ helicase domain in its C-terminal half, the p2 protein contained a RNA polymerase domain; the 3a protein contained a RNA-binding domain with α-helix and β-sheet secondary structures. In addition, stem-loop structures with potential capacity of protein interactions were predicted on the untranslated terminal regions. Comparison with the other sequenced PMoV isolate showed nucleotide identities of 93, 90, and 93% for genomic RNAs 1, 2 and 3, respectively, and amino acid identities ranging from 88 to 97% for the different proteins. A cytosine deletion was detected at position 1,366 of RNA 3, involving a start codon for the coat protein (CP) gene different from the other PMoV isolate, resulting in a CP 16 amino acids shorter. Comparison of synonymous and nonsynonymous mutations revealed different selective constraints along the genome.

  7. Nucleotide sequence and structural organization of the human vasopressin pituitary receptor (V3) gene.

    PubMed

    René, P; Lenne, F; Ventura, M A; Bertagna, X; de Keyzer, Y

    2000-01-04

    In the pituitary, vasopressin triggers ACTH release through a specific receptor subtype, termed V3 or V1b. We cloned the V3 cDNA and showed that its expression was almost exclusive to pituitary corticotrophs and some corticotroph tumors. To study the determinants of this tissue specificity, we have now cloned the gene for the human (h) V3 receptor and characterized its structure. It is composed of two exons, spanning 10kb, with the coding region interrupted between transmembrane domains 6 and 7. We established that the transcription initiation site is located 498 nucleotides upstream of the initiator codon and showed that two polyadenylation sites may be used, while the most frequent is the most downstream. Sequence analysis of the promoter region showed no TATA box but identified consensus binding motifs for Sp1, CREB, and half sites of the estrogen receptor binding site. However comparison with another corticotroph-specific gene, proopiomelanocortin, did not identify common regulatory elements in the two promoters except for a short GC-rich region. Unexpectedly, hV3 gene analysis revealed that a formerly cloned 'artifactual' hV3 cDNA indeed corresponded to a spliced antisense transcript, overlapping the 5' part of the coding sequence in exon 1 and the promoter region. This transcript, hV3rev, was detected in normal pituitary and in many corticotroph tumors expressing hV3 sense mRNA and may therefore play a role in hV3 gene expression.

  8. A survey of chromosomal and nucleotide sequence variation in Drosophila miranda.

    PubMed Central

    Yi, Soojin; Bachtrog, Doris; Charlesworth, Brian

    2003-01-01

    There have recently been several studies of the evolution of Y chromosome degeneration and dosage compensation using the neo-sex chromosomes of Drosophila miranda as a model system. To understand these evolutionary processes more fully, it is necessary to document the general pattern of genetic variation in this species. Here we report a survey of chromosomal variation, as well as polymorphism and divergence data, for 12 nuclear genes of D. miranda. These genes exhibit varying levels of DNA sequence polymorphism. Compared to its well-studied sibling species D. pseudoobscura, D. miranda has much less nucleotide sequence variation, and the effective population size of this species is inferred to be several-fold lower. Nevertheless, it harbors a few inversion polymorphisms, one of which involves the neo-X chromosome. There is no convincing evidence for a recent population expansion in D. miranda, in contrast to D. pseudoobscura. The pattern of population subdivision previously observed for the X-linked gene period is not seen for the other loci, suggesting that there is no general population subdivision in D. miranda. However, data on an additional region of period confirm population subdivision for this gene, suggesting that local selection is operating at or near period to promote differentiation between populations. PMID:12930746

  9. Nucleotide sequence of the 3'-noncoding region of alfalfa mosaic virus RNA 4 and its homology with the genomic RNAs.

    PubMed Central

    Koper-Zwarthoff, E C; Brederode, F T; Walstra, P; Bol, J F

    1979-01-01

    A 226-nucleotide fragment was derived from alfalfa mosaic virus RNA 4 (ALMV RNA 4), the subgenomic messenger for viral coat protein, and its sequence was deduced by in vitro labeling with polynucleotide kinase and application of RNA sequencing techniques. The fragment contains the 3'-terminal 45 nucleotides of the coat protein cistron and the complete 3'-noncoding region of 182 nucleotides. The total length of RNA 4 was calculated to be 881 nucleotides. AlMV RNAs 1, 2 and 3 were elongated with a 3'-terminal poly(A) stretch and subjected to sequence analysis by using a specific primer, reverse transcriptase and chain terminators. This revealed and extensive homology between the 3'-terminal 140 to 150 nucleotides of all four ALMV RNAs. Despite a number of base substitutions, the secondary structure of the homologous region is highly conserved. The observed homology indicates that, as with RNA 4, the sites with a high affinity for the viral coat protein are located at the 3'-termini of the genomic RNAs. Images PMID:537914

  10. Complete Nucleotide Sequences and Genome Organization of Two Pepper Mild Mottle Virus Isolates from Capsicum annuum in South Korea

    PubMed Central

    Choi, Seung-Kook; Choi, Gug-Seoun; Kwon, Sun-Jung

    2016-01-01

    The complete genome sequences of pepper mild mottle virus (PMMoV)-P2 and -P3 were determined by the Sanger sequencing method. Although PMMoV-P2 and PMMoV-P3 have different pathogenicity in some pepper cultivars, the complete genome sequences of PMMoV-P2 and -P3 are composed of 6,356 nucleotides (nt). In this study, we report the complete genome sequences and genome organization of PMMoV-P2 and -P3 isolates from pepper species in South Korea. PMID:27198033

  11. [Polymorphism of DNA nucleotide sequence as a source of enhancement of the discrimination potential of the STR-markers].

    PubMed

    Zemskova, E Yu; Timoshenko, T V; Leonov, S N; Ivanov, P L

    2016-01-01

    The objective of the present pilot investigation was to reveal and to study polymorphism of nucleotide sequence in the alleles of STR loci of human autosomal DNA with special reference to the role of this phenomenon as a source of the differences between homonymous allelic variants. The secondary objection was to evaluate the possibility of using the data thus obtained for the enhancement of the informative value of the forensic medical genotyping of STR loci by means of identification of single nucleotide polymorphisms (SNP) for the purpose of extending their allelic spectrum. The methodological basis of the study was constituted by the comprehensive amplified fragment length polymorphism (AFLP) analysis and amplified fragment sequence polymorphisms (AFSP) analysis of DNA with the use of the PLEX-ID^TM analytical mass-spectrometry platform (Abbot Molecular, USA). The study has demonstrated that polymorphism of DNA nucleotide sequence can be regarded as the possible source of enhancement of the discriminating potential of STR markers. It means that the analysis of polymorphism of DNA nucleotide sequence for genotyping AFLP-type markers of chromosomal DNA can considerably increase the effectiveness of their application as individualizing markers for the purpose of molecular genetic expertises.

  12. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is DNA, RNA, or PRT (protein). If a nucleotide sequence contains both DNA and RNA fragments, the type shall be “DNA.” In addition, the combined DNA/RNA molecule shall be further described in the to feature... combined DNA/RNA” Name/Key Provide appropriate identifier for feature, preferably from WIPO Standard...

  13. Complete nucleotide sequence of a begomovirus associated with satellites molecules infecting a new host Tagetes patula in India.

    PubMed

    Marwal, Avinash; Sahu, Anurag Kumar; Choudhary, Devendra Kumar; Gaur, R K

    2013-08-01

    In the year 2012 leaf curl disease was observed on Marigold (Tagetes patula) in Lakshmangrh, Sikar province of India. Affected plants were severely stunted with apical leaf curl and crinkled leaves, symptoms typical of begomovirus infection. This is the first report of complete nucleotide sequence of a begomovirus associated with satellites molecules infecting a new host Tagetes patula in India.

  14. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton genome complexity was investigated with a saturated molecular genetic map that combined several sets of microsatellites or simple sequence repeats (SSR) and the first major public set of single nucleotide polymorphism (SNP) markers in cotton genomes (Gossypium spp.), and that was constructed ...

  15. Comparing genotyping-by-sequencing and Single Nucleotide Polymorphism chip genotyping in Quantitive Trait Loci mapping in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  16. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... is DNA, RNA, or PRT (protein). If a nucleotide sequence contains both DNA and RNA fragments, the type shall be “DNA.” In addition, the combined DNA/RNA molecule shall be further described in the to feature... combined DNA/RNA” Name/Key Provide appropriate identifier for feature, preferably from WIPO Standard...

  17. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is DNA, RNA, or PRT (protein). If a nucleotide sequence contains both DNA and RNA fragments, the type shall be “DNA.” In addition, the combined DNA/RNA molecule shall be further described in the to feature... combined DNA/RNA” Name/Key Provide appropriate identifier for feature, preferably from WIPO Standard...

  18. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... is DNA, RNA, or PRT (protein). If a nucleotide sequence contains both DNA and RNA fragments, the type shall be “DNA.” In addition, the combined DNA/RNA molecule shall be further described in the to feature... combined DNA/RNA” Name/Key Provide appropriate identifier for feature, preferably from WIPO Standard...

  19. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... is DNA, RNA, or PRT (protein). If a nucleotide sequence contains both DNA and RNA fragments, the type shall be “DNA.” In addition, the combined DNA/RNA molecule shall be further described in the to feature... combined DNA/RNA” Name/Key Provide appropriate identifier for feature, preferably from WIPO Standard...

  20. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  1. Compilation of 5S rRNA and 5S rRNA gene sequences

    PubMed Central

    Specht, Thomas; Wolters, Jörn; Erdmann, Volker A.

    1990-01-01

    The BERLIN RNA DATABANK as of Dezember 31, 1989, contains a total of 667 sequences of 5S rRNAs or their genes, which is an increase of 114 new sequence entries over the last compilation (1). It covers sequences from 44 archaebacteria, 267 eubacteria, 20 plastids, 6 mitochondria, 319 eukaryotes and 11 eukaryotic pseudogenes. The hardcopy shows only the list (Table 1) of those organisms whose sequences have been determined. The BERLIN RNA DATABANK uses the format of the EMBL Nucleotide Sequence Data Library complemented by a Sequence Alignment (SA) field including secondary structure information. PMID:1692116

  2. [Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA].

    PubMed

    Semerikova, S A; Semerikov, V L

    2014-01-01

    A phylogenetic study of firs (Abies Mill.) was conducted using nucleotide sequences of several chloroplast DNA regions with a total length of 5580 bp. The analysis included 37 taxa, which represented the main evolutionary lineages of the genus, and Keteleeria daviana. According to phylogenetic reconstruction the Abies species were subdivided into six main groups, generally corresponding to their geographic distribution. The phylogenetic tree had three basal clades. All of these clades contained American species, and only one of them contained Eurasian species. The divergence time calibrations, based on paleobotanical data and the chloroplast DNA mutation rate estimates in Pinaceae, produced similar results..The age of diversification among the clades of the present-day Abies was estimated as the end of the Oligocene-beginning of Miocene. The age of the separation of Mediterranean firs from the Asian-North American branch corresponds to the Miocene. The age of diversification within the young groups of Mediterranean, Asian, and boreal American firs (A. lasiocarpa, A. balsamea, A. fraseri) was estimated as the Pliocene-Pleistocene. Based on the phylogenetic reconstruction obtained, the most plausible biogeographic scenarios were suggested. It is noted that the existing systematic classification of the genus Abies strongly contradicts with phylogenetic reconstruction and requires revision.

  3. Nucleotide sequence of a lysine tRNA from Bacillus subtilis.

    PubMed Central

    Yamada, Y; Ishikura, H

    1977-01-01

    A lysine tRNA (tRNA1Lys) was purified from Bacillus subtilis W168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be pG-A-G-C-C-A-U-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-U-C-U-G-A-C-U-U(U*)-U-U-K-A-psi-C-A-G-A-G-G-m7G(G)-U-C-G-A-A-G-G-T-psi-C-G-A-G-U-C-C-U-U-C-A-U-G-G-C-U-C-A-C-C-AOH, where K and U* are unidentified nucleosides. The nucleosides of U34 and m7G46 were partially substituted with U* and G, respectively. The binding ability of lysyl-tRNA1Lys to Escherichia coli ribosomes was stimulated with ApApA as well as ApApG. PMID:414208

  4. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer.

    PubMed

    Morrison, Carl D; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C; Johnson, Candace S; Trump, Donald L

    2014-02-11

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.

  5. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    PubMed Central

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  6. Quantitative theory of entropic forces acting on constrained nucleotide sequences applied to viruses.

    PubMed

    Greenbaum, Benjamin D; Cocco, Simona; Levine, Arnold J; Monasson, Rémi

    2014-04-01

    We outline a theory to quantify the interplay of entropic and selective forces on nucleotide organization and apply it to the genomes of single-stranded RNA viruses. We quantify these forces as intensive variables that can easily be compared between sequences, outline a computationally efficient transfer-matrix method for their calculation, and apply this method to influenza and HIV viruses. We find viruses altering their dinucleotide motif use under selective forces, with these forces on CpG dinucleotides growing stronger in influenza the longer it replicates in humans. For a subset of genes in the human genome, many involved in antiviral innate immunity, the forces acting on CpG dinucleotides are even greater than the forces observed in viruses, suggesting that both effects are in response to similar selective forces involving the innate immune system. We further find that the dynamics of entropic forces balancing selective forces can be used to predict how long it will take a virus to adapt to a new host, and that it would take H1N1 several centuries to adapt to humans from birds, typically contributing many of its synonymous substitutions to the forcible removal of CpG dinucleotides. By examining the probability landscape of dinucleotide motifs, we predict where motifs are likely to appear using only a single-force parameter and uncover the localization of UpU motifs in HIV. Essentially, we extend the natural language and concepts of statistical physics, such as entropy and conjugated forces, to understanding viral sequences and, more generally, constrained genome evolution.

  7. Postzygotic single-nucleotide mosaicisms in whole-genome sequences of clinically unremarkable individuals

    PubMed Central

    Huang, August Y; Xu, Xiaojing; Ye, Adam Y; Wu, Qixi; Yan, Linlin; Zhao, Boxun; Yang, Xiaoxu; He, Yao; Wang, Sheng; Zhang, Zheng; Gu, Bowen; Zhao, Han-Qing; Wang, Meng; Gao, Hua; Gao, Ge; Zhang, Zhichao; Yang, Xiaoling; Wu, Xiru; Zhang, Yuehua; Wei, Liping

    2014-01-01

    Postzygotic single-nucleotide mutations (pSNMs) have been studied in cancer and a few other overgrowth human disorders at whole-genome scale and found to play critical roles. However, in clinically unremarkable individuals, pSNMs have never been identified at whole-genome scale largely due to technical difficulties and lack of matched control tissue samples, and thus the genome-wide characteristics of pSNMs remain unknown. We developed a new Bayesian-based mosaic genotyper and a series of effective error filters, using which we were able to identify 17 SNM sites from ∼80× whole-genome sequencing of peripheral blood DNAs from three clinically unremarkable adults. The pSNMs were thoroughly validated using pyrosequencing, Sanger sequencing of individual cloned fragments, and multiplex ligation-dependent probe amplification. The mutant allele fraction ranged from 5%-31%. We found that C→T and C→A were the predominant types of postzygotic mutations, similar to the somatic mutation profile in tumor tissues. Simulation data showed that the overall mutation rate was an order of magnitude lower than that in cancer. We detected varied allele fractions of the pSNMs among multiple samples obtained from the same individuals, including blood, saliva, hair follicle, buccal mucosa, urine, and semen samples, indicating that pSNMs could affect multiple sources of somatic cells as well as germ cells. Two of the adults have children who were diagnosed with Dravet syndrome. We identified two non-synonymous pSNMs in SCN1A, a causal gene for Dravet syndrome, from these two unrelated adults and found that the mutant alleles were transmitted to their children, highlighting the clinical importance of detecting pSNMs in genetic counseling. PMID:25312340

  8. Phylogenetic analysis of beta-papillomaviruses as inferred from nucleotide and amino acid sequence data.

    PubMed

    Gottschling, Marc; Köhler, Anja; Stockfleth, Eggert; Nindl, Ingo

    2007-01-01

    Human papillomaviruses (HPV) of the beta-group seem to be involved in the pathogenesis of non-melanoma skin cancer. Papillomaviruses are host specific and are considered closely co-evolving with their hosts. Evolutionary incongruence between early genes and late genes has been reported among oncogenic genital alpha-papillomaviruses and considerably challenge phylogenetic reconstructions. We investigated the relationships of 29 beta-HPV (25 types plus four putative new types, subtypes, or variants) as inferred from codon aligned and amino acid sequence data of the genes E1, E2, E6, E7, L1, and L2 using likelihood, distance, and parsimony approaches. An analysis of a L1 fragment included additional nucleotide and amino acid sequences from seven non-human beta-papillomaviruses. Early genes and late genes evolution did not conflict significantly in beta-papillomaviruses based on partition homogeneity tests (p > or = 0.001). As inferred from the complete genome analyses, beta-papillomaviruses were monophyletic and segregated into four highly supported monophyletic assemblages corresponding to the species 1, 2, 3, and fused 4/5. They basically split into the species 1 and the remainder of beta-papillomaviruses, whose species 3, 4, and 5 constituted the sistergroup of species 2. beta-Papillomaviruses have been isolated from humans, apes, and monkeys, and phylogenetic analyses of the L1 fragment showed non-human papillomaviruses highly polyphyletic nesting within the HPV species. Thus, host and virus phylogenies were not congruent in beta-papillomaviruses, and multiple invasions across species borders may contribute (additionally to host-linked evolution) to their diversification.

  9. Evaluation of the flanking nucleotide sequences of sarcomeric hypertrophic cardiomyopathy substitution mutations.

    PubMed

    Meurs, Kathryn M; Mealey, Katrina L

    2008-07-03

    Hypertrophic cardiomyopathy (HCM) is a familial myocardial disease with a prevalence of 1 in 500. More than 400 causative mutations have been identified in 13 sarcomeric and myofilament related genes, 350 of these are substitution mutations within eight sarcomeric genes. Within a population, examples of recurring identical disease causing mutations that appear to have arisen independently have been noted as well as those that appear to have been inherited from a common ancestor. The large number of novel HCM mutations could suggest a mechanism of increased mutability within the sarcomeric genes. The objective of this study was to evaluate the most commonly reported HCM genes, beta myosin heavy chain (MYH7), myosin binding protein C, troponin I, troponin T, cardiac regulatory myosin light chain, cardiac essential myosin light chain, alpha tropomyosin and cardiac alpha-actin for sequence patterns surrounding the substitution mutations that may suggest a mechanism of increased mutability. The mutations as well as the 10 flanking nucleotides were evaluated for frequency of di-, tri- and tetranucleotides containing the mutation as well as for the presence of certain tri- and tetranculeotide motifs. The most common substitutions were guanine (G) to adenine (A) and cytosine (C) to thymidine (T). The CG dinucleotide had a significantly higher relative mutability than any other dinucleotide (p<0.05). The relative mutability of each possible trinucleotide and tetranucleotide sequence containing the mutation was calculated; none were at a statistically higher frequency than the others. The large number of G to A and C to T mutations as well as the relative mutability of CG may suggest that deamination of methylated CpG is an important mechanism for mutation development in at least some of these cardiac genes.

  10. Full length nucleotide sequences of 30 common SLC44A2 alleles encoding human neutrophil antigen-3 (HNA-3)

    PubMed Central

    Chen, Qing; Srivastava, Kshitij; Ardinski, Stefanie C.; Lam, Kevin; Huvard, Michael J.; Schmid, Pirmin; Flegel, Willy A.

    2015-01-01

    Background HNA-3a alloantibodies can cause severe transfusion-related acute lung injury (TRALI). The frequency of the single nucleotide polymorphisms (SNPs) indicative of the two clinically relevant HNA-3a/b antigens are known in many populations. In the present study, we determined the full length nucleotide sequence of common SLC44A2 alleles encoding the choline transporter-like protein-2 (CTL2) that harbors HNA-3a/b antigens. Study design and methods A method was devised to determine the full length coding sequence and adjacent intron sequences from genomic DNA by 8 polymerase chain reaction (PCR) amplifications covering all 22 SLC44A2 exons. Samples from 200 African American, 96 Caucasian, 2 Hispanic and 4 Asian blood donors were analyzed. We developed a decision tree to determine alleles (confirmed haplotypes) from the genotype data. Results A total of 10 SNPs were detected in the SLC44A2 coding sequence. The non-coding sequences harbored an additional 28 SNPs (1 in the 5’-untranslated region (UTR); 23 in the introns; and 4 in the 3’-UTR). No SNP indicative of a non-functional allele was detected. The nucleotide sequences for 30 SLC44A2 alleles (haplotypes) were confirmed. There may be 66 haplotypes among the 604 chromosomes screened. Conclusions We found 38 SNPs, including 1 novel SNP, in 8192 nucleotides covering the coding sequence of the SLC44A2 gene among 302 blood donors. Population frequencies of these SNPs were established for African Americans and Caucasians. Because alleles encoding HNA-3b are more common than non-functional SLC44A2 alleles, we confirmed our previous postulate that African American donors are less likely to form HNA-3a antibodies compared to Caucasians. PMID:26437811

  11. ChEMBL web services: streamlining access to drug discovery data and utilities

    PubMed Central

    Davies, Mark; Nowotka, Michał; Papadatos, George; Dedman, Nathan; Gaulton, Anna; Atkinson, Francis; Bellis, Louisa; Overington, John P.

    2015-01-01

    ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology. PMID:25883136

  12. Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome.

    PubMed Central

    Plucienniczak, A; Schroeder, E; Zettlmeissl, G; Streeck, R E

    1985-01-01

    The nucleotide sequence of a 7.6 kb vaccinia DNA segment from a genomic region conserved among different orthopox virus has been determined. This segment contains a tight cluster of 12 partly overlapping open reading frames most of which can be correlated with previously identified early and late proteins and mRNAs. Regulatory signals used by vaccinia virus have been studied. Presumptive promoter regions are rich in A, T and carry the consensus sequences TATA and AATAA spaced at 20-24 base pairs. Tandem repeats of a CTATTC consensus sequence are proposed to be involved in the termination of early transcription. PMID:2987815

  13. The nucleotide sequence of blue-green algae phenylalanine-tRNA and the evolutionary origin of chloroplasts.

    PubMed Central

    Hecker, L I; Barnett, W E; Lin, F K; Furr, T D; Heckman, J E; RajBhandary, U L; Chang, S H

    1982-01-01

    Phenylalanine tRNA from the blue-green alga, Agmenellum quadruplicatum, has been purified to homogeneity. The nucleotide sequence of this tRNA was determined to be: (see tests) Comparisons of the sequence and the modified nucleosides of this tRNA with those of other tRNAPhes thus far sequenced, indicate that this blue green algal tRNAPhe is typically prokaryotic and closely resembles the chloroplast tRNAPhes of higher plants and Euglena. The significance of this observation to the evolutionary origin of chloroplasts is discussed. Images PMID:6817301

  14. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    SciTech Connect

    White, D.A.; Zilinskas, B.A. )

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity) with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).

  15. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna

    PubMed Central

    2011-01-01

    Background Daphnia (Crustacea: Cladocera) plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP) marker development. Results We developed three expressed sequence tag (EST) libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. Conclusions A large proportion (47%) of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna. PMID:21668940

  16. Nucleotide sequence and characterization of a Bacillus subtilis gene encoding a flagellar switch protein.

    PubMed Central

    Zuberi, A R; Bischoff, D S; Ordal, G W

    1991-01-01

    The nucleotide sequence of the Bacillus subtilis fliM gene has been determined. This gene encodes a 38-kDa protein that is homologous to the FliM flagellar switch proteins of Escherichia coli and Salmonella typhimurium. Expression of this gene in Che+ cells of E. coli and B. subtilis interferes with normal chemotaxis. The nature of the chemotaxis defect is dependent upon the host used. In B. subtilis, overproduction of FliM generates mostly nonmotile cells. Those cells that are motile switch less frequently. Expression of B. subtilis FliM in E. coli also generates nonmotile cells. However, those cells that are motile have a tumble bias. The B. subtilis fliM gene cannot complement an E. coli fliM mutant. A frameshift mutation was constructed in the fliM gene, and the mutation was transferred onto the B. subtilis chromosome. The mutant has a Fla- phenotype. This phenotype is consistent with the hypothesis that the FliM protein encodes a component of the flagellar switch in B. subtilis. Additional characterization of the fliM mutant suggests that the hag and mot loci are not expressed. These loci are regulated by the SigD form of RNA polymerase. We also did not observe any methyl-accepting chemotaxis proteins in an in vivo methylation experiment. The expression of these proteins is also dependent upon SigD. It is possible that a functional basal body-hook complex may be required for the expression of SigD-regulated chemotaxis and motility genes. Images PMID:1898932

  17. Nucleotide Sequence and Genetic Structure of a Novel Carbaryl Hydrolase Gene (cehA) from Rhizobium sp. Strain AC100

    PubMed Central

    Hashimoto, Masayuki; Fukui, Mitsuru; Hayano, Kouichi; Hayatsu, Masahito

    2002-01-01

    Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon. PMID:11872471

  18. HLA-C locus allelic dropout in Sanger sequence-based typing due to intronic single nucleotide polymorphism.

    PubMed

    Cheng, Christopher; Kashi, Zahra Mehdizadeh; Martin, Russell; Woodruff, Gillian; Dinauer, David; Agostini, Tina

    2014-12-01

    We report a novel HLA-C allele that was identified during routine HLA typing using sequence-based methods. The patient was initially typed as a C*06:02, 06:04 with two nucleotide mismatches in exon 3, (C to T and T to G changes) which would have resulted in a non-synonymous mutation of a leucine residue being replaced with tryptophan. Further resolution of the patient's type by using sequence-specific primers (SSP) revealed that the companion allele to C*06:02 was a novel C*17:01. Confirmation of the existence of the new allele was performed across multiple platforms: Sanger sequencing, SSP, and Next Generation Sequencing (NGS) on the original sample and allele-specific clones for the entire HLA-C locus. The investigation revealed a single nucleotide mismatch within the Sanger sequencing primer binding site in intron 3. The mutation caused the initial C*17 dropout in exons 2 and 3. Further analysis of the Sanger and NGS data revealed that the C*17 had two additional unique positions in introns 2 and 7. The companion C*06:02 allele also possessed a novel position at intron 3. On August 31, 2013, the WHO nomenclature committee officially named the novel C*17:01 allele sequence as C*17:01:01:03 and the novel C*06:02 allele sequence as C*06:02:01:03.

  19. Nucleotide sequence and analysis of the 58.3 to 65.5-kb early region of bacteriophage T4.

    PubMed Central

    Valerie, K; Stevens, J; Lynch, M; Henderson, E E; de Riel, J K

    1986-01-01

    The complete 7.2-kb nucleotide sequence from the 58.3 to 65.5-kb early region of bacteriophage T4 has been determined by Maxam and Gilbert sequencing. Computer analysis revealed at least 20 open reading frames (ORFs) within this sequence. All major ORFs are transcribed from the left strand, suggesting that they are expressed early during infection. Among the ORFs, we have identified the ipIII, ipII, denV and tk genes. The ORFs are very tightly spaced, even overlapping in some instances, and when ORF interspacing occurs, promoter-like sequences can be implicated. Several of the sequences preceding the ORFs, in particular those at ipIII, ipII, denV, and orf61.9, can potentially form stable stem-loop structures. PMID:3024113

  20. Complete nucleotide sequence and analysis of the putative polyprotein of maize dwarf mosaic virus genomic RNA (Bulgarian isolate).

    PubMed

    Kong, P; Steinbiss, H H

    1998-01-01

    The complete nucleotide sequence of maize dwarf mosaic virus Bulgarian isolate (MDMV-Bg) was determined. The viral genome was 9515 nt and contained an open reading frame encoding 3042 amino acids, flanked by 3'- and 5'-UTRs of 139 and 250 nucleotides, respectively. MDMV-Bg was more conserved in the coding region (52.9%) than in the UTRs (45.8%) when compared to the 15 other potyviruses. Of ten putative gene products of MDMV-Bg, the P1 was the most variable protein (24.9%) while the NIb was the most conserved protein (67.3%). Several sequence variations were observed between MDMV-Bg and Johnson grass mosaic virus (JGMV), and more between MDMV-Bg and the dicot potyviruses. Phylogenetic analysis suggested that MDMV-Bg was the most closely related to JGMV.

  1. The nucleotide sequence of the coat protein genes of satsuma dwarf virus and naval orange infectious mottling virus.

    PubMed

    Iwanami, T; Kondo, Y; Makita, Y; Azeyanagi, C; Ieki, H

    1998-01-01

    The sequence of the 3'-terminal 4320 and 2409 nucleotides were determined for RNA2 of satsuma dwarf virus (SDV) and navel infectious mottling virus (NIMV). Both sequences contained a part of a long open reading frame which encodes larger and smaller coat proteins (CPs) at the 3'-terminus followed by a 3'non-coding region upstream of a poly (A) tail. Amino acid sequence identity for larger and smaller CPs ranged 81-84% and 68-78%, respectively, among SDV, NIMV and the previously sequenced citrus mosaic virus (CiMV). No significant sequence similarity was found between the CPs of SDV or NIMV and those of the como-, nepo- or other viruses. The nucleotide sequence identity of the 3' non-coding region of RNA2 were 68%-78% among SDV, CiMV and NIMV. These results suggest that SDV, CiMV and NIMV are distinct, though related, viruses. They may be assigned as members of the new genus, which is close to the genera of Comovirus and Nepovirus.

  2. Cloning and nucleotide sequence of the gene coding for aspartokinase II from a thermophilic methylotrophic Bacillus sp.

    PubMed Central

    Schendel, F J; Flickinger, M C

    1992-01-01

    The structural gene coding for the lysine-sensitive aspartokinase II of the methylotrophic thermotolerant Bacillus sp. strain MGA3 was cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking all three aspartokinase isozymes. The nucleotide sequence of the entire 2.2-kb PstI fragment was determined, and a single open reading frame coding for the aspartokinase II enzyme was found. Aspartokinase II was shown to be an alpha 2 beta 2 tetramer (M(r) 122,000) with the beta subunit (M(r) 18,000) encoded within the alpha subunit (M(r) 45,000) in the samea reading frame. The enzyme was purified, and the N-terminal sequences of the alpha and beta subunits were identical with those predicted from the gene sequences. The predicted amino acid sequence was 76% identical with the sequence of the Bacillus subtilis aspartokinase II. The transcription initiation site was located approximately 350 bp upstream of the translation start site, and putative promoter regions at -10 (TATGCT) and -35 (ATGACA) were identified. A 300-nucleotide intervening sequence between the transcription initiation and translational start sites suggests a possible attenuation mechanism for the regulation of transcription of this enzyme in the presence of lysine. Images PMID:1444390

  3. Complete nucleotide sequence of the haemagglutinin gene from a human influenza virus of the Hong Kong subtype.

    PubMed Central

    Both, G W; Sleigh, M J

    1980-01-01

    The complete nucleotide sequence has been determined for a cloned double-stranded DNA copy of the haemagglutinin gene from the human influenza strain A/NT/60/68/29C, a laboratory-isolated variant of A/NT/60/68, an early strain of the Hong Kong subtype. The gene is 1765 nucleotides long and contains information sufficient to code for a protein of 566 amino acids, which includes a hydrophobic leader peptide (16 residues), HA1 (328), HA2 (221) and an arginine residue which joins the HA subunits. Comparison of the predicted amino acid sequence for 29C haemagglutinin with protein sequence data available for HA from other influenza strains shows that no potential coding information is lost by processing of the mRNA. A comparison of the amino acid sequences predicted from the gene sequences for 29C and fowl plague virus haemagglutinins, (1) indicates the extent to which changes can occur in the primary sequence of different regions of the protein, while maintaining essential structure and function. Images PMID:6253883

  4. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    PubMed Central

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  5. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  6. A close relationship between primary nucleotides sequence structure and the composition of functional genes in the genome of prokaryotes.

    PubMed

    Garcia, Juan A L; Fernández-Guerra, Antoni; Casamayor, Emilio O

    2011-12-01

    Comparative genomics is an essential tool to unravel how genomes change over evolutionary time and to gain clues on the links between functional genomics and evolution. In prokaryotes, the large, good quality, genome sequences available in public databases and the recently developed large-scale computational methods, offer an unprecedent view on the ecology and evolution of microorganisms through comparative genomics. In this work, we examined the links among genome structure (i.e., the sequential distribution of nucleotides itself by detrended fluctuation analysis, DFA) and genomic diversity (i.e., gene functionality by Clusters of Orthologous Genes, COGs) in 828 full sequenced prokaryotic genomes from 548 different bacteria and archaea species. DFA scaling exponent α indicated persistent long-range correlations (fractality) in each genome analyzed. Higher resolution power was found when considering the sequential succession of purine (AG) vs. pyrimidine (CT) bases than either keto (GT) to amino (AC) forms or strongly (GC) vs. weakly (AT) bonded nucleotides. Interestingly, the phyla Aquificae, Fusobacteria, Dictyoglomi, Nitrospirae, and Thermotogae were closer to archaea than to their bacterial counterparts. A strong significant correlation was found between scaling exponent α and COGs distribution, and we consistently observed that the larger α the more heterogeneous was the gene distribution within each functional category, suggesting a close relationship between primary nucleotides sequence structure and functional genes composition.

  7. [Analysis on the preference of synonymous codon in VP1 nucleotide sequence of the EV71 based on RSCU method].

    PubMed

    Qi, Bin; Zhao, Jing-Jing; Gao, Lei; Zhu, Ping

    2009-11-01

    Based on RSCU method and by analyzing the preference of codon usage in VP1 nucleotide sequences of EV71 isolated in Chinese mainland and Taiwan region from 1998 to 2008, it is clear that there is an obvious time discrimination in RSCU calculated from EV71 VP1 strain between two different regions of China and it is more obvious in Taiwan region, therefore, according to the diversity of RSCU, the years can be divided into 2 intervals in Chinese mainland and 4 intervals in Taiwan region, especially, the number of intervals in one region have a positive co-relation with the activity of variation of the EV71 in the same region. The change of the preference of codon usage in VP1 nucleotide sequences of EV71 can significantly embody the Variation of the EV71, so we can make use of the analysis on preference of codon usage in VP1 nucleotide sequences of EV71 to predict the possible variation trend of the EV71.

  8. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations.

    PubMed

    Manara, Richard M A; Tomasio, Susana; Khalid, Syma

    2015-01-27

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is "exonuclease sequencing", in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  9. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the bell-ring frog, Buergeria buergeri (family Rhacophoridae).

    PubMed

    Sano, Naomi; Kurabayashi, Atsushi; Fujii, Tamotsu; Yonekawa, Hiromichi; Sumida, Masayuki

    2004-06-01

    In this study we determined the complete nucleotide sequence (19,959 bp) of the mitochondrial DNA of the rhacophorid frog Buergeria buergeri. The gene content, nucleotide composition, and codon usage of B. buergeri conformed to those of typical vertebrate patterns. However, due to an accumulation of lengthy repetitive sequences in the D-loop region, this species possesses the largest mitochondrial genome among all the vertebrates examined so far. Comparison of the gene organizations among amphibian species (Rana, Xenopus, salamanders and caecilians) revealed that the positioning of four tRNA genes and the ND5 gene in the mtDNA of B. buergeri diverged from the common vertebrate gene arrangement shared by Xenopus, salamanders and caecilians. The unique positions of the tRNA genes in B. buergeri are shared by ranid frogs, indicating that the rearrangements of the tRNA genes occurred in a common ancestral lineage of ranids and rhacophorids. On the other hand, the novel position of the ND5 gene seems to have arisen in a lineage leading to rhacophorids (and other closely related taxa) after ranid divergence. Phylogenetic analysis based on nucleotide sequence data of all mitochondrial genes also supported the gene rearrangement pathway.

  10. IRE1α nucleotide sequence cleavage specificity in the unfolded protein response.

    PubMed

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2017-01-01

    Inositol-requiring enzyme 1 (IRE1) is a conserved sensor of the unfolded protein response that has protein kinase and endoribonuclease (RNase) enzymatic activities and thereby initiates HAC1/XBP1 splicing. Previous studies demonstrated that human IRE1α (hIRE1α) does not cleave Saccharomyces cerevisiae HAC1 mRNA. Using an in vitro cleavage assay, we show that adenine to cytosine nucleotide substitution at the +1 position in the 3' splice site of HAC1 RNA is required for specific cleavage by hIRE1α. A similar restricted nucleotide specificity in the RNA substrate was observed for XBP1 splicing in vivo. Together these findings underscore the essential role of cytosine nucleotide at +1 in the 3' splice site for determining cleavage specificity of hIRE1α.

  11. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase.

    PubMed

    Kawazu, T; Nakanishi, Y; Uozumi, N; Sasaki, T; Yamagata, H; Tsukagoshi, N; Udaka, S

    1987-04-01

    The gene encoding beta-amylase was cloned from Bacillus polymyxa 72 into Escherichia coli HB101 by inserting HindIII-generated DNA fragments into the HindIII site of pBR322. The 4.8-kilobase insert was shown to direct the synthesis of beta-amylase. A 1.8-kilobase AccI-AccI fragment of the donor strain DNA was sufficient for the beta-amylase synthesis. Homologous DNA was found by Southern blot analysis to be present only in B. polymyxa 72 and not in other bacteria such as E. coli or B. subtilis. B. polymyxa, as well as E. coli harboring the cloned DNA, was found to produce enzymatically active fragments of beta-amylases (70,000, 56,000, or 58,000, and 42,000 daltons), which were detected in situ by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nucleotide sequence analysis of the cloned 3.1-kilobase DNA revealed that it contains one open reading frame of 2,808 nucleotides without a translational stop codon. The deduced amino acid sequence for these 2,808 nucleotides encoding a secretory precursor of the beta-amylase protein is 936 amino acids including a signal peptide of 33 or 35 residues at its amino-terminal end. The existence of a beta-amylase of larger than 100,000 daltons, which was predicted on the basis of the results of nucleotide sequence analysis of the gene, was confirmed by examining culture supernatants after various cultivation periods. It existed only transiently during cultivation, but the multiform beta-amylases described above existed for a long time. The large beta-amylase (approximately 160,000 daltons) existed for longer in the presence of a protease inhibitor such as chymostatin, suggesting that proteolytic cleavage is the cause of the formation of multiform beta-amylases.

  12. Organization and nucleotide sequence of a densovirus genome imply a host-dependent evolution of the parvoviruses.

    PubMed Central

    Bando, H; Kusuda, J; Gojobori, T; Maruyama, T; Kawase, S

    1987-01-01

    The genome structure of a densovirus from a silkworm was determined by sequencing more than 85% of the complete genome DNA. This is the first report of the genome organization of an insect parvovirus deduced from the DNA sequence. In the viral genome, two large open reading frames designated 1 and 2 and one smaller open reading frame designated 3 were identified. The first two open reading frames shared the same strand, while the third was found in the complementary sequence. Computer analysis suggested that open reading frame 2 may encode all four structural proteins. The genome organization and a part of the nucleotide sequence were conserved among the insect densovirus, rodent parvoviruses, and a human dependovirus. These viruses may have diverged from a common ancestor. PMID:3027382

  13. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus.

    PubMed

    Schwarz, S; Cardoso, M

    1991-08-01

    The nucleotide sequence of the chloramphenicol acetyltransferase gene (cat) and its regulatory region, encoded by the plasmid pSCS7 from Staphylococcus aureus, was determined. The structural cat gene encoded a protein of 209 amino acids, which represented one monomer of the enzyme chloramphenicol acetyltransferase (CAT). Comparisons between the amino acid sequences of the pSCS7-encoded CAT from S. aureus and the previously sequenced CAT variants from S. aureus, Staphylococcus intermedius, Staphylococcus haemolyticus, Bacillus pumilis, Clostridium difficile, Clostridium perfringens, Escherichia coli, Shigella flexneri, and Proteus mirabilis were performed. An alignment of CAT amino acid sequences demonstrated the presence of 34 conserved amino acids among all CAT variants. These conserved residues were considered for their possible roles in the structure and function of CAT. On the basis of the alignment, a phylogenetic tree was constructed. It demonstrated relatively large evolutionary distances between the CAT variants of enteric bacteria, Clostridium, Bacillus, and Staphylococcus species.

  14. Complete Nucleotide Sequence and Genetic Organization of the 210-Kilobase Linear Plasmid of Rhodococcus erythropolis BD2

    PubMed Central

    Stecker, Christiane; Johann, Andre; Herzberg, Christina; Averhoff, Beate; Gottschalk, Gerhard

    2003-01-01

    The complete nucleotide sequence of the linear plasmid pBD2 from Rhodococcus erythropolis BD2 comprises 210,205 bp. Sequence analyses of pBD2 revealed 212 putative open reading frames (ORFs), 97 of which had an annotatable function. These ORFs could be assigned to six functional groups: plasmid replication and maintenance, transport and metalloresistance, catabolism, transposition, regulation, and protein modification. Many of the transposon-related sequences were found to flank the isopropylbenzene pathway genes. This finding together with the significant sequence similarities of the ipb genes to genes of the linear plasmid-encoded biphenyl pathway in other rhodococci suggests that the ipb genes were acquired via transposition events and subsequently distributed among the rhodococci via horizontal transfer. PMID:12923100

  15. Nucleotide sequence of the melA gene, coding for alpha-galactosidase in Escherichia coli K-12.

    PubMed Central

    Liljeström, P L; Liljeström, P

    1987-01-01

    Melibiose uptake and hydrolysis in E.coli is performed by the MelB and MelA proteins, respectively. We report the cloning and sequencing of the melA gene. The nucleotide sequence data showed that melA codes for a 450 amino acid long protein with a molecular weight of 50.6 kd. The sequence data also supported the assumption that the mel locus forms an operon with melA in proximal position. A comparison of MelA with alpha-galactosidase proteins from yeast and human origin showed that these proteins have only limited homology, the yeast and human proteins being more related. However, regions common to all three proteins were found indicating sequences that might comprise the active site of alpha-galactosidase. PMID:3031590

  16. Role of base stacking and sequence context in the inhibition of yeast DNA polymerase eta by pyrene nucleotide.

    PubMed

    Hwang, Hanshin; Taylor, John-Stephen

    2004-11-23

    The Y family DNA polymerase yeast pol eta inserts pyrene deoxyribose monophosphate (dPMP) in preference to A opposite an abasic site, the 3'-T of a thymine dimer, and a normal T with almost equal efficiency. In contrast, pol A family polymerases such as Klenow fragment and T7 DNA polymerase only insert dPMP efficiently opposite an abasic site and the 3'-T of a thymine dimer but not opposite undamaged DNA. Pyrene nucleotide is also an efficient chain-terminating inhibitor of DNA synthesis by pol eta but not by Klenow fragment or T7 DNA polymerase. To better understand the origin of the efficiency and sequence specificity of dPMP insertion by pol eta, the kinetics of dPMP insertion opposite various templates have been determined. In one sequence context, the efficiency of dPMP insertion increases 4.6-fold opposite G < A < T < C, suggesting that the templating nucleotide modulates dPMP insertion efficiency by having to destack prior to dPTP binding. The efficiency of insertion of dPMP opposite T in the same sequence context increases 7-fold for primers terminating in G < A < C < T and is similar to that observed for nontemplated blunt-end extension, suggesting that stacking interactions between the pyrene and the primer terminus are also important. On heterogeneous templates, the average selectivity for dPMP insertion relative to the complementary dNMP decreases in the order of dAMP > dGMP > dTMP > dCMP, from a high of 5.8 when dAMP is to be inserted following a T to a low of 0.5 when dCMP is to be inserted following a C. The relative preference for dPMP insertion at a given site can be largely explained by the energetic cost of destacking the templating base and stacking of pyrene nucleotide relative to that of stacking and base pairing the complementary nucleotide. Thus, pyrene nucleotide represents a novel class of nucleotide-based chain-terminating DNA synthesis inhibitors whose base portion consists of a hydrophobic, non-hydrogen bonding, base-pair mimic.

  17. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations

    PubMed Central

    Manara, Richard M. A.; Tomasio, Susana; Khalid, Syma

    2015-01-01

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is “exonuclease sequencing”, in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  18. Complete nucleotide sequence of Rose yellow leaf virus, a new member of the family Tombusviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the Rose yellow leaf virus (RYLV) has been determined to be 3918 nucleotides containing seven open reading frames (ORFs). ORF1 encodes a 27 kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to encode a 87 kDa (p87) protein t...

  19. Cloning, sequence, and properties of the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens.

    PubMed Central

    French, C E; Boonstra, B; Bufton, K A; Bruce, N C

    1997-01-01

    The gene encoding the soluble pyridine nucleotide transhydrogenase (STH) of Pseudomonas fluorescens was cloned and expressed in Escherichia coli. STH is related to the flavoprotein disulfide oxidoreductases but lacks one of the conserved redox-active cysteine residues. The gene is highly similar to an E. coli gene of unknown function. PMID:9098078

  20. Identification of essential nucleotides in an upstream repressing sequence of Saccharomyces cerevisiae by selection for increased expression of TRK2.

    PubMed Central

    Vidal, M; Buckley, A M; Yohn, C; Hoeppner, D J; Gaber, R F

    1995-01-01

    The TRK2 gene in Saccharomyces cerevisiae encodes a membrane protein involved in potassium transport and is expressed at extremely low levels. Dominant cis-acting mutations (TRK2D), selected by their ability to confer TRK2-dependent growth on low-potassium medium, identified an upstream repressor element (URS1-TRK2) in the TRK2 promoter. The URS1-TRK2 sequence (5'-AGCCGCACG-3') shares six nucleotides with the ubiquitous URS1 element (5'-AGCCGCCGA-3'), and the protein species binding URS1-CAR1 (URSF) is capable of binding URS1-TRK2 in vitro. Sequence analysis of 17 independent repression-defective TRK2D mutations identified three adjacent nucleotides essential for URS1-mediated repression in vivo. Our results suggest a role for context effects with regard to URS1-related sequences: several mutant alleles of the URS1 element previously reported to have little or no effect when analyzed within the context of a heterologous promoter (CYC1) [Luche, R.M., Sumrada, R. & Cooper, T.G. (1990) Mol. Cell. Biol. 10, 3884-3895] have major effects on repression in the context of their native promoters (TRK2 and CAR1). TRK2D mutations that abolish repression also reveal upstream activating sequence activity either within or adjacent to URS1. Additivity between TRK2D and sin3 delta mutations suggest that SIN3-mediated repression is independent of that mediated by URS1. Images Fig. 1 Fig. 4 PMID:7892273

  1. Nucleotide sequence of the 5' end of araBAD operon messenger RNA in Escherichia coli B/r.

    PubMed

    Lee, N; Carbon, J

    1977-01-01

    The transcription reaction in vitro provides a means of analyzing the nucleotide sequence of the mRNA of the araBAD operon. By controlling the time of synthesis, we obtained araBAD mRNA of varying lengths beginning from the 5' end. These 5' fragments were freed of lambda RNA transcripts by successive hybridizations to the sense strands of a pair of lambda ara transducing phages that carry ara genes in opposite orientations. The purified 5' fragments were ordered by their times of appearance during synchronized RNA elongation and by nearest neighbor analyses. The results, when combined with the knowledge of the NH2-terminal sequence of the product of the first cistron (L-ribulokinase gene araB), establish the nucleotide sequence of the first 69 bases at the 5' end of the araBAD operon mRNA. The AUG starter codon for L-ribulokinase is located at positions 29-31. The sequence is: 5' A-C-C-C-G-U-U-U-U-U-U-U-U-G-G-A-U-G-G-A-G-U-G-A-A-A-C-G-A-U-G-G-C-G-A-U-U-G-C-A-A-U-U-G-G-C-C-U-C-G-A-U-U-U-U-G-C-A-G-U-G-A-U-U-C-U-G-(U)-. . .3'.

  2. Complete nucleotide sequence of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp.

    PubMed Central

    Yeung, M K

    1993-01-01

    The nucleotide sequence of the Actinomyces viscosus T14V sialidase gene (nanH) and flanking regions was determined. An open reading frame of 2,703 nucleotides that encodes a predominately hydrophobic protein of 901 amino acids (M(r), 92,871) was identified. The amino acid sequence at the amino terminus of the predicted protein exhibited properties characteristic of a typical leader peptide. Five 12-amino-acid units that shared between 33 and 67% sequence identity were noted within the central domain of the protein. Each unit contained the sequence Ser-X-Asp-X-Gly-X-Thr-Trp, which is conserved among other bacterial and trypanosoma sp. sialidases. Thus, the A. viscosus T14V nanH gene and the other prokaryotic and eukaryotic sialidase genes evolved from a common ancestor. Southern hybridization analyses under conditions of high stringency revealed the existence of DNA sequences homologous to A. viscosus T14V nanH in the genomes of 18 strains of five Actinomyces species that expressed various levels of sialidase activity. The data demonstrate that the sialidase genes from divergent groups of Actinomyces spp. are highly conserved. Images PMID:8418033

  3. An Interpretation of the Ancestral Codon from Miller’s Amino Acids and Nucleotide Correlations in Modern Coding Sequences

    PubMed Central

    Carels, Nicolas; de Leon, Miguel Ponce

    2015-01-01

    Purine bias, which is usually referred to as an “ancestral codon”, is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller’s spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins. PMID:25922573

  4. Nucleotide sequence of the Klebsiella pneumoniae nifD gene and predicted amino acid sequence of the alpha-subunit of nitrogenase MoFe protein.

    PubMed Central

    Ioannidis, I; Buck, M

    1987-01-01

    The nucleotide sequence of the Klebsiella pneumoniae nifD gene is presented and together with the accompanying paper [Holland, Zilberstein, Zamir & Sussman (1987) Biochem. J. 247, 277-285] completes the sequence of the nifHDK genes encoding the nitrogenase polypeptides. The K. pneumoniae nifD gene encodes the 483-amino acid-residue nitrogenase alpha-subunit polypeptide of Mr 54156. The alpha-subunit has five strongly conserved cysteine residues at positions 63, 89, 155, 184 and 275, some occurring in a region showing both primary sequence and potential structural homology to the K. pneumoniae nitrogenase beta-subunit. A comparison with six other alpha-subunit amino acid sequences has been made, which indicates a number of potentially important domains within alpha-subunits. PMID:3322262

  5. Partition enrichment of nucleotide sequences (PINS)--a generally applicable, sequence based method for enrichment of complex DNA samples.

    PubMed

    Kvist, Thomas; Sondt-Marcussen, Line; Mikkelsen, Marie Just

    2014-01-01

    The dwindling cost of DNA sequencing is driving transformative changes in various biological disciplines including medicine, thus resulting in an increased need for routine sequencing. Preparation of samples suitable for sequencing is the starting point of any practical application, but enrichment of the target sequence over background DNA is often laborious and of limited sensitivity thereby limiting the usefulness of sequencing. The present paper describes a new method, Probability directed Isolation of Nucleic acid Sequences (PINS), for enrichment of DNA, enabling the sequencing of a large DNA region surrounding a small known sequence. A 275,000 fold enrichment of a target DNA sample containing integrated human papilloma virus is demonstrated. Specifically, a sample containing 0.0028 copies of target sequence per ng of total DNA was enriched to 786 copies per ng. The starting concentration of 0.0028 target copies per ng corresponds to one copy of target in a background of 100,000 complete human genomes. The enriched sample was subsequently amplified using rapid genome walking and the resulting DNA sequence revealed not only the sequence of a the truncated virus, but also 1026 base pairs 5' and 50 base pairs 3' to the integration site in chromosome 8. The demonstrated enrichment method is extremely sensitive and selective and requires only minimal knowledge of the sequence to be enriched and will therefore enable sequencing where the target concentration relative to background is too low to allow the use of other sample preparation methods or where significant parts of the target sequence is unknown.

  6. Differentiation of Erysipelothrix rhusiopathiae strains by nucleotide sequence analysis of a hypervariable region in the spaA gene: discrimination of a live vaccine strain from field isolates.

    PubMed

    Nagai, Shinya; To, Ho; Kanda, Akira

    2008-05-01

    Erysipelothrix rhusiopathiae causes erysipelas in swine and is considered a reemerging disease contributing substantially to economic losses in the swine industry. Since an attenuated live vaccine was commercialized in 1974 in Japan, outbreaks of acute septicemia or subacute urticaria of erysipelas have decreased dramatically. In contrast, a chronic form of erysipelas found during meat inspections in slaughterhouses has been increasing. In this study, a new strain-typing method was developed based on nucleotide sequencing of a hypervariable region in the surface protective antigen (spaA) gene for discrimination of the live vaccine strain from field isolates. Sixteen strains isolated from arthritic lesions found in slaughtered pigs were segregated into 4 major patterns: 1) identical nucleotide sequence with the vaccine strain: 3 isolates; 2) 1 nucleotide substitution (C to A) at position 555: 5 isolates; 3) 1 nucleotide substitution at various positions: 5 isolates; and 4) 2 nucleotide substitutions: 3 isolates. Isolates with the same nucleotide sequence as the vaccine strain were further characterized by other properties, including the mouse pathogenicity test. One strain isolated from pigs on a farm where the live vaccine had been used was found to be closely related to the vaccine strain. The phylogenetic tree constructed based on the spaA sequence suggests that the evolutionary distance of the isolates is related to the pathogenicity in mice. The new strain-typing system based on nucleotide sequencing of the spaA region is useful to discriminate the vaccine strain from field isolates.

  7. Nucleotide sequence polymorphism at the apical membrane antigen-1 locus reveals population history of Plasmodium vivax in Thailand

    PubMed Central

    Putaporntip, Chaturong; Jongwutiwes, Somchai; Grynberg, Priscila; Cui, Liwang; Hughes, Austin L.

    2009-01-01

    Apical membrane antigen-1 is a candidate for inclusion in a vaccine for the human malaria parasite Plasmodium vivax. We collected 231 complete sequences of the gene encoding this antigen (pvama-1) from three regions of Thailand, the most extensive collection to date of sequences at this locus. The domain II loop (previously mentioned as a potential vaccine component) was almost completely conserved, with a single amino acid variant (I313R) observed in a single sequence. The 3′ portion of the gene (domain II through the stop codon) showed significantly lower nucleotide diversity than the 5′ portion (start codon through domain I); and a given domain I sequence might be found in a haplotype with more than one domain II sequence. These results imply a hotspot of recombination between domains I and II. We found significant geographic subdivision among the three regions of Thailand (NW, East, and South) in which collections were made in 2007. Numbers of P. vivax infections have experienced overall declines since 1990 in all three regions; but the decline has been most recent in the NW, and there has been a rebound in numbers of infections in the South since 2000. Consistent with population history, amino acid sequence diversity was greatest in the NW. The South, which had by far the lowest sequence diversity of the three regions, showed signs of a population that has expanded from a small number of founders after a bottleneck. PMID:19643205

  8. Determination of the minimal essential nucleotide sequence for diphtheria tox repressor binding by in vitro affinity selection.

    PubMed

    Tao, X; Murphy, J R

    1994-09-27

    The expression of diphtheria toxin in lysogenic toxigenic strains of Corynebacterium diphtheriae is controlled by the heavy metal ion-activated regulatory protein DtxR. In the presence of divalent heavy metal ions, DtxR specifically binds to the diphtheria tox operator and protects a 27-bp interrupted palindromic sequence from DNase I digestion. To determine the consensus DNA sequence for DtxR binding, we have used gel electrophoresis mobility-shift assay and polymerase chain reaction (PCR) amplification for in vitro affinity selection of DNA binding sequences from a universe of 6.9 x 10(10) variants. After 10 rounds of in vitro affinity selection, each round coupled with 30 cycles of PCR amplification, we isolated and characterized a family of DNA sequences that function as DtxR-responsive genetic elements both in vitro and in vivo. Moreover, these DNA sequences were found to bind activated DtxR with an affinity similar to that of the wild-type tox operator. The DNA sequence analysis of 21 unique in vitro affinity-selected binding sites has revealed the minimal essential nucleotide sequence for DtxR binding to be a 9-bp palindrome separated by a single base pair.

  9. Nucleotide sequence of Zygosaccharomyces bailii virus Z: Evidence for +1 programmed ribosomal frameshifting and for assignment to family Amalgaviridae.

    PubMed

    Depierreux, Delphine; Vong, Minh; Nibert, Max L

    2016-06-02

    Zygosaccharomyces bailii virus Z (ZbV-Z) is a monosegmented dsRNA virus that infects the yeast Zygosaccharomyces bailii and remains unclassified to date despite its discovery >20years ago. The previously reported nucleotide sequence of ZbV-Z (GenBank AF224490) encompasses two nonoverlapping long ORFs: upstream ORF1 encoding the putative coat protein and downstream ORF2 encoding the RNA-dependent RNA polymerase (RdRp). The lack of overlap between these ORFs raises the question of how the downstream ORF is translated. After examining the previous sequence of ZbV-Z, we predicted that it contains at least one sequencing error to explain the nonoverlapping ORFs, and hence we redetermined the nucleotide sequence of ZbV-Z, derived from the same isolate of Z. bailii as previously studied, to address this prediction. The key finding from our new sequence, which includes several insertions, deletions, and substitutions relative to the previous one, is that ORF2 in fact overlaps ORF1 in the +1 frame. Moreover, a proposed sequence motif for +1 programmed ribosomal frameshifting, previously noted in influenza A viruses, plant amalgaviruses, and others, is also present in the newly identified ORF1-ORF2 overlap region of ZbV-Z. Phylogenetic analyses provided evidence that ZbV-Z represents a distinct taxon most closely related to plant amalgaviruses (genus Amalgavirus, family Amalgaviridae). We conclude that ZbV-Z is the prototype of a new species, which we propose to assign as type species of a new genus of monosegmented dsRNA mycoviruses in family Amalgaviridae. Comparisons involving other unclassified mycoviruses with RdRps apparently related to those of plant amalgaviruses, and having either mono- or bisegmented dsRNA genomes, are also discussed.

  10. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.

    PubMed Central

    Aslanidis, C; Schmid, K; Schmitt, R

    1989-01-01

    The plasmid-borne raf operon encodes functions required for inducible uptake and utilization of raffinose by Escherichia coli. Raf functions include active transport (Raf permease), alpha-galactosidase, and sucrose hydrolase, which are negatively controlled by the Raf repressor. We have defined the order and extent of the three structural genes, rafA, rafB, and rafD; these are contained in a 5,284-base-pair nucleotide sequence. By comparisons of derived primary structures with known subunit molecular weights and an N-terminal peptide sequence, rafA was assigned to alpha-galactosidase (708 amino acids), rafB was assigned to Raf permease (425 amino acids), and rafD was assigned to sucrose hydrolase (476 amino acids). Transcription was shown to initiate 13 nucleotides upstream of rafA; a putative promoter, a ribosome-binding site, and a transcription termination signal were identified. Striking similarities between Raf permease and lacY-encoded lactose permease, revealed by high sequence conservation (76%), overlapping substrate specificities, and similar transport kinetics, suggest a common origin of these transport systems. alpha-Galactosidase and sucrose hydrolase are not related to host enzymes but have their counterparts in other species. We propose a modular origin of the raf operon and discuss selective forces that favored the given gene organization also found in the E. coli lac operon. Images PMID:2556373

  11. Nucleotide sequence and infectious cDNA clone of the L1 isolate of Pea seed-borne mosaic potyvirus.

    PubMed

    Olsen, B S; Johansen, I E

    2001-01-01

    The complete nucleotide sequence of Pea seed-borne mosaic potyvirus isolate L1 has been determined from cloned virus cDNA. The PSbMV L1 genome is 9895 nucleotides in length excluding the poly(A) tail. Computer analysis of the sequence revealed a single long open reading frame (ORF) of 9594 nucleotides. The ORF potentially encodes a polyprotein of 3198 amino acids with a deduced Mr of 363537. Nine putative proteolytic cleavage sites were identified by analogy to consensus sequences and genome arrangement in other potyviruses. Two full-length cDNA clones, p35S-L1-4 and p35S-L1-5, were assembled under control of an enhanced 35S promoter and nopaline synthase terminator. Clone p35S-L1-4 was constructed with four introns and p35S-L1-5 with five introns inserted in the cDNA. Clone p35S-L1-4 was unstable in Escherichia coli often resulting in amplification of plasmids with deletions. Clone p35S-L1-5 was stable and apparently less toxic to Escherichia coli resulting in larger bacterial colonies and higher plasmid yield. Both clones were infectious upon mechanical inoculation of plasmid DNA on susceptible pea cultivars Fjord, Scout, and Brutus. Eight pea genotypes resistant to L1 virus were also resistant to the cDNA derived L1 virus. Both native PSbMV L1 and the cDNA derived virus infected Chenopodium quinoa systemically giving rise to characteristic necrotic lesions on uninoculated leaves.

  12. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A. ); Haces, A.; Shih, P.J.; Harding, J.D. )

    1993-01-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  13. DNA sequencing by a single molecule detection of labeled nucleotides sequentially cleaved from a single strand of DNA

    SciTech Connect

    Goodwin, P.M.; Schecker, J.A.; Wilkerson, C.W.; Hammond, M.L.; Ambrose, W.P.; Jett, J.H.; Martin, J.C.; Marrone, B.L.; Keller, R.A.; Haces, A.; Shih, P.J.; Harding, J.D.

    1993-02-01

    We are developing a laser-based technique for the rapid sequencing of large DNA fragments (several kb in size) at a rate of 100 to 1000 bases per second. Our approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA into a flowing sample stream, sequential cleavage of the end nucleotide from the DNA fragment with an exonuclease, and detection of the individual fluorescently labeled bases by laser-induced fluorescence.

  14. Nucleotide sequence analysis of pRS2 and pRS3, two small cryptic plasmids from Oenococcus oeni.

    PubMed

    Mesas, J M; Rodríguez, M C; Alegre, M T

    2001-09-01

    Nucleotide sequence analysis of two cryptic plasmids, pRS2 (2544 bp) and pRS3 (3948 bp), from Oenococcus oeni revealed the presence in both of three major open reading frames with significant similarity to other small cryptic plasmids from O. oeni. The results suggest that those plasmids could be separated into two subfamilies, one represented by pLo13 and pRS3, the other represented by pOg32, pRS1, and pRS2.

  15. Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA

    PubMed Central

    Yamada, Tetsuji; Palm, Curtis J.; Brooks, Bob; Kosuge, Tsune

    1985-01-01

    We report the nucleotide sequences of iaaM and iaaH, the genetic determinants for, respectively, tryptophan 2-monooxygenase and indoleacetamide hydrolase, the enzymes that catalyze the conversion of L-tryptophan to indoleacetic acid in the tumor-forming bacterium Pseudomonas syringae pv. savastanoi. The sequence analysis indicates that the iaaM locus contains an open reading frame encoding 557 amino acids that would comprise a protein with a molecular weight of 61,783; the iaaH locus contains an open reading frame of 455 amino acids that would comprise a protein with a molecular weight of 48,515. Significant amino acid sequence homology was found between the predicted sequence of the tryptophan monooxygenase of P. savastanoi and the deduced product of the T-DNA tms-1 gene of the octopine-type plasmid pTiA6NC from Agrobacterium tumefaciens. Strong homology was found in the 25 amino acid sequence in the putative FAD-binding region of tryptophan monooxygenase. Homology was also found in the amino acid sequences representing the central regions of the putative products of iaaH and tms-2 T-DNA. The results suggest a strong similarity in the pathways for indoleacetic acid synthesis encoded by genes in P. savastanoi and in A. tumefaciens T-DNA. Images PMID:16593610

  16. PerPlot & PerScan: tools for analysis of DNA curvature-related periodicity in genomic nucleotide sequences

    PubMed Central

    2011-01-01

    Background Periodic spacing of short adenine or thymine runs phased with DNA helical period of ~10.5 bp is associated with intrinsic DNA curvature and deformability, which play important roles in DNA-protein interactions and in the organization of chromosomes in both eukaryotes and prokaryotes. Local differences in DNA sequence periodicity have been linked to differences in gene expression in some organisms. Despite the significance of these periodic patterns, there are virtually no publicly accessible tools for their analysis. Results We present novel tools suitable for assessments of DNA curvature-related sequence periodicity in nucleotide sequences at the genome scale. Utility of the present software is demonstrated on a comparison of sequence periodicities in the genomes of Haemophilus influenzae, Methanocaldococcus jannaschii, Saccharomyces cerevisiae, and Arabidopsis thaliana. The software can be accessed through a web interface and the programs are also available for download. Conclusions The present software is suitable for comparing DNA curvature-related sequence periodicity among different genomes as well as for analysis of intrachromosomal heterogeneity of the sequence periodicity. It provides a quick and convenient way to detect anomalous regions of chromosomes that could have unusual structural and functional properties and/or distinct evolutionary history. PMID:22587738

  17. Nucleotide sequence of polypyrimidines from cloned mouse DNA as determined by base-specific blockage of exonuclease action

    SciTech Connect

    Deugau, K.V.; Mitchel, R.E.J.; Birnboim, H.C.

    1983-01-01

    Cloned fragments of mouse DNA have been screened for the presence of long polypyrimidine/polypurine segments. The polypyrimidine portion of one such segment (about 2000 nucleotides in length) has been isolated by acidic depurination of the entire cloned fragment and plasmid vector followed by selective precipitation and 5'-/sup 32/P labeling. This polypyrimidine has been used to demonstrate a new procedure for sequencing. Covalent modification of thymine with a water-soluble carbodiimide, or cytosine with glutaric anhydride, at low levels blocked in the action of snake venom exonuclease. After deblocking, separation of the products of digestion by polyacrylamide gel electrophoresis yields a sequence ladder which can be used to determine the position of C and T residues as in other sequencing methods. A sequence of 72 residues adjacent to the 5' end had been established, consisting principally of the repeating tetranucleotide (CCTT)n. A low ratio of endonuclease to exonuclease is essential for application of this method to sequences of this size. Accordingly, a very sensitive modification of a fluorometric endonuclease assay was developed and used to optimize pH and Mg/sup 2 +/ conditions to favor exonuclease activity over the accompanying endonuclease activity. The results clearly indicate that long polypyrimidine tracts can be efficiently prepared and their sequences determined with this method using commercially available exonuclease preparations without additional purification. 26 references, 5 figures.

  18. Nucleotide sequence of the FNR-regulated fumarase gene (fumB) of Escherichia coli K-12.

    PubMed Central

    Bell, P J; Andrews, S C; Sivak, M N; Guest, J R

    1989-01-01

    The nucleotide sequence of a 3,162-base-pair (bp) segment of DNA containing the FNR-regulated fumB gene, which encodes the anaerobic class I fumarase (FUMB) of Escherichia coli, was determined. The structural gene was found to comprise 1,641 bp, 547 codons (excluding the initiation and termination codons), and the gene product had a predicted Mr of 59,956. The amino acid sequence of FUMB contained the same number of residues as did that of the aerobic class I fumarase (FUMA), and there were identical amino acids at all but 56 positions (89.8% identity). There was no significant similarity between the class I fumarases and the class II enzyme (FUMC) except in one region containing the following consensus: Gly-Ser-Xxx-Ile-Met-Xxx-Xxx-Lys-Xxx-Asn. Some of the 56 amino acid substitutions must be responsible for the functional preferences of the enzymes for malate dehydration (FUMB) and fumarate hydration (FUMA). Significant similarities between the cysteine-containing sequence of the class I fumarases (FUMA and FUMB) and the mammalian aconitases were detected, and this finding further supports the view that these enzymes are all members of a family of iron-containing hydrolyases. The nucleotide sequence of a 1,142-bp distal sequence of an unidentified gene (genF) located upstream of fumB was also defined and found to encode a product that is homologous to the product of another unidentified gene (genA), located downstream of the neighboring aspartase gene (aspA). PMID:2656658

  19. Molecular cloning, nucleotide sequence, and expression in Escherichia coli of a hemolytic toxin (aerolysin) gene from Aeromonas trota

    SciTech Connect

    Khan, A.A.; Kim, E.; Cerniglia, C.E.

    1998-07-01

    Aeromonas trota AK2, which was derived from ATCC 49659 and produces the extracellular pore-forming hemolytic toxin aerolysin, was mutagenized with the transposon mini-Tn5Km1 to generate a hemolysin-deficient mutant, designated strain AK253. Southern blotting data indicated that an 8.7-kb NotI fragment of the genomic DNA of strain AK253 contained the kanamycin resistance gene of mini-Tn5Km1. The 8.7-kb NotI DNA fragment was cloned into the vector pGEM5Zf({minus}) by selecting for kanamycin resistance, and the resultant clone, pAK71, showed aerolysin activity in Escherichia coli JM109. The nucleotide sequence of the aerA gene, located on the 1.8-kb ApaI-EcoRI fragment, was determined to consist of 1,479 bp and to have an ATG initiation codon and a TAA termination codon. An in vitro coupled transcription-translation analysis of the 1.8-kb region suggested that the aerA gene codes for a 54-kDa protein, in agreement with nucleotide sequence data. The deduced amino acid sequence of the aerA gene product of A. trota exhibited 99% homology with the amino acid sequence of the aerA product of Aeromonas sobria AB3 and 57% homology with the amino acid sequences of the products of the aerA genes of Aeromonas salmonicida 17-2 and A. sobria 33.

  20. Complete nucleotide sequence of a gene encoding a functional human class I histocompatibility antigen (HLA-CW3).

    PubMed Central

    Sodoyer, R; Damotte, M; Delovitch, T L; Trucy, J; Jordan, B R; Strachan, T

    1984-01-01

    The HLA-CW3 gene contained in a cosmid clone identified by transfection expression experiments has been completely sequenced. This provides, for the first time, data on the structure of HLA-C locus products and constitutes, together with that of the gene coding for HLA-A3, the first complete nucleotide sequences of genes coding for serologically defined class I HLA molecules. In contrast to the organisation of the two class I HLA pseudogenes whose sequences have previously been determined, the sequence of the HLA-CW3 gene reveals an additional cytoplasmic encoding domain, making the organisation of this gene very similar to that of known H-2 class I genes and also the HLA-A3 gene. The deduced amino acid sequences of HLA-CW3 and HLA-A3 now allow a systematic comparison of such sequences of HLA class I molecules from the three classical transplantation antigen loci A, B, C. The compared sequences include the previously determined partial amino acid sequences of HLA-B7, HLA-B40, HLA-A2 and HLA-A28. The comparisons confirm the extreme polymorphism of HLA classical class I molecules, and permit a study of the level of diversity and the location of sequence differences. The distribution of differences is not uniform, most of them being located in the first and second extracellular domains, the third extracellular domain is extremely conserved, and the cytoplasmic domain is also a variable region. Although it is difficult to determine locus-specific regions, we have identified several candidate positions which may be C locus-specific. PMID:6609813

  1. Rapid DNA Sequencing by Direct Nanoscale Reading of Nucleotide Bases on Individual DNA Chains

    SciTech Connect

    Lee, James Weifu; Meller, Amit

    2007-01-01

    Since the independent invention of DNA sequencing by Sanger and by Gilbert 30 years ago, it has grown from a small scale technique capable of reading several kilobase-pair of sequence per day into today's multibillion dollar industry. This growth has spurred the development of new sequencing technologies that do not involve either electrophoresis or Sanger sequencing chemistries. Sequencing by Synthesis (SBS) involves multiple parallel micro-sequencing addition events occurring on a surface, where data from each round is detected by imaging. New High Throughput Technologies for DNA Sequencing and Genomics is the second volume in the Perspectives in Bioanalysis series, which looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century. Reviews of complementary developments in Sanger and SBS sequencing chemistries, capillary electrophoresis and microdevice integration, MS sequencing and applications set the framework for the book.

  2. [Classification of nucleotide sequences over their frequency dictionaries reveals a relation between the structure of sequences and taxonomy of their bearers].

    PubMed

    Gorban', A N; Popova, T G; Sadovskiĭ, M G

    2003-01-01

    Classification of 16S RNA sequences over their frequency dictionaries, both real ones, and transformed ones was studied. Two entities were considered to be close each other from the point of view of their structure, if their frequency dictionaries were close, in Eucledian metric. A transformation procedure of a frequency dictionary has been implemented that reveals the peculiarities of information structure of a nucleotide sequence. A comparative study of two classification developed over the real frequency dictionary vs. that one developed over the transformed frequency dictionary was carried out. The strong correlation is revealed between the classification and the taxonomy of 16S RNA bearer. For the classes isolated, the information valuable words were identified. These words are the main factors of a difference between the classes. The frequency dictionaries containing the words of the length 3 exhibit the best correlation between a class and a genus. A genus, as a rule, is included into the same class, and the exclusion are sporadic. A development of hierarchy classification over the transformed frequency dictionaries separated one or two taxonomy groups, as each stage of classification. The unexpectedly frequent, or contrary, unexpectedly rare occurred of words (of the length 3) in entities under consideration make the structure difference between the classes of the nucleotide sequences.

  3. The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple mosaic virus (TSAMV) was first identified in tropical soda apple (Solanum viarum), a noxious weed, in Florida in 2002. This report provides the first full genome sequence of TSAMV. The full genome sequence of this virus will enable research scientists to develop additional spec...

  4. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain.

    PubMed

    Studentova, V; Dobiasova, H; Hedlova, D; Dolejska, M; Papagiannitsis, C C; Hrabak, J

    2015-02-01

    The sequence type 11 Klebsiella pneumoniae strain Kpn-3002cz was confirmed to harbor two NDM-1-encoding plasmids, pB-3002cz and pS-3002cz. pB-3002cz (97,649 bp) displayed extensive sequence similarity with the blaNDM-1-carrying plasmid pKPX-1. pS-3002cz (73,581 bp) was found to consist of an IncR-related sequence (13,535 bp) and a mosaic region (60,046 bp). A 40,233-bp sequence of pS-3002cz was identical to the mosaic region of pB-3002cz, indicating the en bloc acquisition of the NDM-1-encoding region from one plasmid by the other.

  5. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences

    PubMed Central

    Siebert, Matthias; Söding, Johannes

    2016-01-01

    Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs. In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that account for dependencies need many parameters and are prone to overfitting. We have developed a Bayesian approach for motif discovery using Markov models in which conditional probabilities of order k − 1 act as priors for those of order k. This Bayesian Markov model (BaMM) training automatically adapts model complexity to the amount of available data. We also derive an EM algorithm for de-novo discovery of enriched motifs. For transcription factor binding, BaMMs achieve significantly (P    =  1/16) higher cross-validated partial AUC than PWMs in 97% of 446 ChIP-seq ENCODE datasets and improve performance by 36% on average. BaMMs also learn complex multipartite motifs, improving predictions of transcription start sites, polyadenylation sites, bacterial pause sites, and RNA binding sites by 26–101%. BaMMs never performed worse than PWMs. These robust improvements argue in favour of generally replacing PWMs by BaMMs. PMID:27288444

  6. Development of single-nucleotide polymorphism markers for Bromus tectorum (Poaceae) from a partially sequenced transcriptome1

    PubMed Central

    Merrill, Keith R.; Coleman, Craig E.; Meyer, Susan E.; Leger, Elizabeth A.; Collins, Katherine A.

    2016-01-01

    Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the mechanisms behind its successful invasion. Methods and Results: Normalized cDNA libraries from six diverse B. tectorum individuals were pooled and sequenced using 454 sequencing. Ninety-five SNP assays were developed for use on 96.96 arrays with the Fluidigm EP1 genotyping platform. Verification of the 95 SNPs by genotyping 251 individuals from 12 populations is reported, along with amplification data from four related Bromus species. Conclusions: These SNP markers are polymorphic across populations of B. tectorum, are optimized for high-throughput applications, and may be applicable to other, related Bromus species. PMID:27843723

  7. Mitochondrial DNA in the sea urchin Arbacia lixula: nucleotide sequence differences between two polymorphic molecules indicate asymmetry of mutations.

    PubMed

    De Giorgi, C; De Luca, F; Saccone, C

    1991-07-22

    Two polymorphic forms of mitochondrial DNA (mtDNA) extracted from Arbacia lixula eggs were cloned and the nucleotide sequences of specific regions determined. A comparison of the sequences of the sense strand of the two molecules demonstrates that all the differences are transitions and only of the A----G type. A change such as G----A (or A----G) on the sense mtDNA strand results from either a direct G----A (or A----G) mutation on that strand or a C----T (or T----C) on the complementary strand. None of the C----T (or T----C) changes were detected on the sense strand, which implies that the A----G mutation bias on the sense strand is not reversed for the other strand. Our observation indicates the existence of mechanisms acting asymmetrically on the two mtDNA strands, possibly during mtDNA replication.

  8. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  9. Complete nucleotide sequence of the Hsd plasmid pECO29 and identification of its functional regions.

    PubMed

    Zakharova, M V; Pertzev, A V; Kravetz, A N; Beletskaya, I V; Shlyapnikov, M G; Solonin, A S

    1998-06-16

    The complete nucleotide sequence of the Hsd plasmid pECO29 has been determined. The plasmid DNA consists of 3895 base pairs. These include 4 genes and 5 sites. Two genes encoding the proteins (restriction endonuclease and DNA methyltransferase) have been fully characterized. The pECO29 comprises a Co1El-type replication system coding for untranslated genes RNAI and RNAII, the emr recombination site containing palindromic sequences and involved in stable maintenance of the plasmid, two pseudo oriT sites homologous to the oriT site of R64 and F plasmids, as well as the bom locus of a Co1El-like plasmid. There are no genes involved in the mobilization of pECO29 plasmid.

  10. The nucleotide sequence of the putative transcription initiation site of a cloned ribosomal RNA gene of the mouse.

    PubMed Central

    Urano, Y; Kominami, R; Mishima, Y; Muramatsu, M

    1980-01-01

    Approximately one kilobase pairs surrounding and upstream the transcription initiation site of a cloned ribosomal DNA (rDNA) of the mouse were sequenced. The putative transcription initiation site was determined by two independent methods: one nuclease S1 protection and the other reverse transcriptase elongation mapping using isolated 45S ribosomal RNA precursor (45S RNA) and appropriate restriction fragments of rDNA. Both methods gave an identical result; 45S RNA had a structure starting from ACTCTTAG---. Characteristically, mouse rDNA had many T clusters (greater than or equal to 5) upstream the initiation site, the longest being 21 consecutive T's. A pentadecanucleotide, TGCCTCCCGAGTGCA, appeared twice within 260 nucleotides upstream the putative initiation site. No such characteristic sequences were found downstream this site. Little similarity was found in the upstream of the transcription initiation site between the mouse, Xenopus laevis and Saccharomyces cerevisiae rDNA. Images PMID:6162156

  11. Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data.

    PubMed

    Wu, Mengmeng; Wu, Jiaxin; Chen, Ting; Jiang, Rui

    2015-10-13

    The rapid advancement of next generation sequencing technology has greatly accelerated the progress for understanding human inherited diseases via such innovations as exome sequencing. Nevertheless, the identification of causative variants from sequencing data remains a great challenge. Traditional statistical genetics approaches such as linkage analysis and association studies have limited power in analyzing exome sequencing data, while relying on simply filtration strategies and predicted functional implications of mutations to pinpoint pathogenic variants are prone to produce false positives. To overcome these limitations, we herein propose a supervised learning approach, termed snvForest, to prioritize candidate nonsynonymous single nucleotide variants for a specific type of disease by integrating 11 functional scores at the variant level and 8 association scores at the gene level. We conduct a series of large-scale in silico validation experiments, demonstrating the effectiveness of snvForest across 2,511 diseases of different inheritance styles and the superiority of our approach over two state-of-the-art methods. We further apply snvForest to three real exome sequencing data sets of epileptic encephalophathies and intellectual disability to show the ability of our approach to identify causative de novo mutations for these complex diseases. The online service and standalone software of snvForest are found at http://bioinfo.au.tsinghua.edu.cn/jianglab/snvforest.

  12. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae.

    PubMed

    Xu, D-L; Zhou, G-H; Xie, Y-J; Mock, R; Li, R

    2010-06-01

    The complete genomic sequence of a Pakistani isolate of Sugarcane streak mosaic virus (SCSMV-PAK) is determined to be 9782 nucleotides in length, excluding the 3' poly(A) tail, and it comprises a large open reading frame encoding a polyprotein of 3130 amino acid residues. The deduced polyprotein is likely to be cleaved at nine putative protease sites by three viral proteases to ten mature proteins. Conserved motifs of orthologous proteins of other potyviruses are identified in corresponding positions of SCSMV-PAK. The genomic organization is virtually identical to the genera Ipomovirus, Potyvirus, Rymovirus, and Tritimovirus in the family Potyviridae. Sequence analyses indicate that the SCSMV-PAK genomic sequence is different from those of Sugarcane mosaic virus and Sorghum mosaic virus, two viruses with very similar symptoms and host range to SCSMV-PAK. SCSMV-PAK shares 52.7% identity with Triticum mosaic virus (TriMV) and 26.4-31.5% identities with species of the existing genera and unassigned viruses in the Potyviridae at the polyprotein sequence level. Phylogenetic analyses of the polyprotein and deduced mature protein amino acid sequences reveal that SCSMV, together with TriMV, forms a distinct group in the family at the genus level. Therefore, SCSMV should represent a new genus, Susmovirus, in the Potyviridae.

  13. The genomic nucleotide sequences of two differentially expressed actin-coding genes from the sea star Pisaster ochraceus.

    PubMed

    Kowbel, D J; Smith, M J

    1989-04-30

    The genomic sequences of two differentially expressed actin genes from the sea star Pisaster ochraceus are reported. The cytoplasmic actin gene (Cy) is expressed in eggs and early development. The muscle actin gene (M) is expressed in tube feet and testes. Both genes contain an 1125-nucleotide coding region interrupted by three introns at codons 41, 121 and 204. Gene M contains two additional introns at codons 150 and 267. The intron position at codon 150, although present in higher vertebrate actins, has not been reported in actin genes from invertebrates. The M gene coding region has 89.5% nucleotide homology to the Cy gene, and differs from the Cy actin gene in 13 of 375 amino acids (aa), 11 of which are found in the C-terminal half of the gene. The C-terminal half of the M gene contains a significant number of muscle isotype codons. Even though there is only 1 aa change in the first 150 codons, there have been limited substitutions at many four-fold degenerate sites which may indicate selection pressure upon the secondary structure of the mRNA and/or a biased codon usage. Variant CCAAT, TATA, and poly(A)-addition signals have been identified in the 5' and 3' flanking regions. The presence of 5' and 3' splice junction sequences in the 5' flanking region of the Cy gene suggests the potential for an intron there.

  14. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    SciTech Connect

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.; Jones, W.A.; Kirby, R.; Woods, D.R.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.

  15. Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database

    PubMed Central

    2017-01-01

    Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799

  16. The complete nucleotide sequence of white Amur bream (Parabramis pekinensis) mitochondrial genome.

    PubMed

    Zhang, Xiujie; Song, Wen; Wang, Yizhou; Du, Rui; Wang, Weimin

    2014-10-01

    White Amur bream, Parabramis pekinensis (Cypriniformes: Cyprinidae), a freshwater cyprinid fish, is an important economic fish in several countries, especially in China. The complete sequence of P. pekinensis mitochondrial genome has been determined. The genome is 16,622 bp in length, and consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and the noncoding control region, with the genomic organization being identical to that of typical vertebrates. Three conserved sequence blocks (CSB1 to CSB3) were identified in the control region. The complete mitochondrial genome sequence is useful for phylogenetic analysis and studies of population genetics of P. pekinensis.

  17. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    NASA Technical Reports Server (NTRS)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  18. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    SciTech Connect

    Doerk, T.; Wulbrand, U.; Tuemmler, B. )

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compound heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.

  19. Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic cat.

    PubMed

    Yuhki, Naoya; Mullikin, James C; Beck, Thomas; Stephens, Robert; O'Brien, Stephen J

    2008-07-16

    Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were separated by an ancient chromosome break (55-80 MYA) and followed by a chromosomal inversion were annotated in detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues, possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs. The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens) lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC homozygous 1.9x WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate observed in human MHC (0.00337 SNP per bp).

  20. Nucleotide sequence of cloned cDNA for human pancreatic kallikrein.

    PubMed

    Fukushima, D; Kitamura, N; Nakanishi, S

    1985-12-31

    Cloned cDNA sequences for human pancreatic kallikrein have been isolated and determined by molecular cloning and sequence analysis. The identity between human pancreatic and urinary kallikreins is indicated by the complete coincidence between the amino acid sequence deduced from the cloned cDNA sequence and that reported partially for urinary kallikrein. The active enzyme form of the human pancreatic kallikrein consists of 238 amino acids and is preceded by a signal peptide and a profragment of 24 amino acids. A sequence comparison of this with other mammalian kallikreins indicates that key amino acid residues required for both serine protease activity and kallikrein-like cleavage specificity are retained in the human sequence, and residues corresponding to some external loops of the kallikrein diverge from other kallikreins. Analyses by RNA blot hybridization, primer extension, and S1 nuclease mapping indicate that the pancreatic kallikrein mRNA is also expressed in the kidney and sublingual gland, suggesting the active synthesis of urinary kallikrein in these tissues. Furthermore, the tissue-specific regulation of the expression of the members of the human kallikrein gene family has been discussed.

  1. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    PubMed

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  2. Novel technologies applied to the nucleotide sequencing and comparative sequence analysis of the genomes of infectious agents in veterinary medicine.

    PubMed

    Granberg, F; Bálint, Á; Belák, S

    2016-04-01

    Next-generation sequencing (NGS), also referred to as deep, high-throughput or massively parallel sequencing, is a powerful new tool that can be used for the complex diagnosis and intensive monitoring of infectious disease in veterinary medicine. NGS technologies are also being increasingly used to study the aetiology, genomics, evolution and epidemiology of infectious disease, as well as host-pathogen interactions and other aspects of infection biology. This review briefly summarises recent progress and achievements in this field by first introducing a range of novel techniques and then presenting examples of NGS applications in veterinary infection biology. Various work steps and processes for sampling and sample preparation, sequence analysis and comparative genomics, and improving the accuracy of genomic prediction are discussed, as are bioinformatics requirements. Examples of sequencing-based applications and comparative genomics in veterinary medicine are then provided. This review is based on novel references selected from the literature and on experiences of the World Organisation for Animal Health (OIE) Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine, Uppsala, Sweden.

  3. SureChEMBL: a large-scale, chemically annotated patent document database

    PubMed Central

    Papadatos, George; Davies, Mark; Dedman, Nathan; Chambers, Jon; Gaulton, Anna; Siddle, James; Koks, Richard; Irvine, Sean A.; Pettersson, Joe; Goncharoff, Nicko; Hersey, Anne; Overington, John P.

    2016-01-01

    SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/. PMID:26582922

  4. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene.

    PubMed Central

    Rapp, W D; Stern, D B

    1992-01-01

    To determine the structure of a functional plant mitochondrial promoter, we have partially purified an RNA polymerase activity that correctly initiates transcription at the maize mitochondrial atp1 promoter in vitro. Using a series of 5' deletion constructs, we found that essential sequences are located within--19 nucleotides (nt) of the transcription initiation site. The region surrounding the initiation site includes conserved sequence motifs previously proposed to be maize mitochondrial promoter elements. Deletion of a conserved 11 nt sequence showed that it is critical for promoter function, but deletion or alteration of conserved upstream G(A/T)3-4 repeats had no effect. When the atp1 11 nt sequence was inserted into different plasmids lacking mitochondrial promoter activity, transcription was only observed for one of these constructs. We infer from these data that the functional promoter extends beyond this motif, most likely in the 5' direction. The maize mitochondrial cox3 and atp6 promoters also direct transcription initiation in this in vitro system, suggesting that it may be widely applicable for studies of mitochondrial transcription in this species. Images PMID:1372246

  5. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-)

    SciTech Connect

    Hirono, A.; Beutler, E. )

    1988-06-01

    Glucose-6-phosphate dehydrogenase A(-) is a common variant in Blacks that causes sensitivity to drug- and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3{prime} end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C{sup 33} {yields} G, G{sup 202} {yields} A, and A{sup 376} {yields} G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The findings of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein.

  6. Nucleotide sequence of the rrnG ribosomal RNA promoter region of Escherichia coli.

    PubMed Central

    Shen, W F; Squires, C; Squires, C L

    1982-01-01

    The primary structure of the promoter region for a ribosomal RNA transcription unit (rrnG) of Escherichia coli K12 has been determined. The sequence was obtained from 1 1.5 kbp EcoRI fragment derived from the hybrid plasmid pLC23-30. This fragment contains 455 bp preceding P1 of the rrnG promoter region and 674 bp of the rrnG 16S RNA gene. The sequence before the rrnG promoter region contains an open reading frame (ORF-BG) followed by a possible hairpin structure that resembles other known transcription terminators. The sequence of the rrnG promoter region is similar but not identical to that of rrnA and rrnB. Several minor differences between the sequences of the 16S RNA genes of rrnG and rrnB were also noted. In addition, sequences were found that could generate special structures involving the promoter regions of rrn loci. Such structures are described and their possible involvement in the regulation of ribosomal RNA synthesis is discussed. PMID:6285294

  7. Biological characterization and complete nucleotide sequence of a Tunisian isolate of Moroccan watermelon mosaic virus.

    PubMed

    Yakoubi, S; Desbiez, C; Fakhfakh, H; Wipf-Scheibel, C; Marrakchi, M; Lecoq, H

    2008-01-01

    During a survey conducted in October 2005, cucurbit leaf samples showing virus-like symptoms were collected from the major cucurbit-growing areas in Tunisia. DAS-ELISA showed the presence of Moroccan watermelon mosaic virus (MWMV, Potyvirus), detected for the first time in Tunisia, in samples from the region of Cap Bon (Northern Tunisia). MWMV isolate TN05-76 (MWMV-Tn) was characterized biologically and its full-length genome sequence was established. MWMV-Tn was found to have biological properties similar to those reported for the MWMV type strain from Morocco. Phylogenetic analysis including the comparison of complete amino-acid sequences of 42 potyviruses confirmed that MWMV-Tn is related (65% amino-acid sequence identity) to Papaya ringspot virus (PRSV) isolates but is a member of a distinct virus species. Sequence analysis on parts of the CP gene of MWMV isolates from different geographical origins revealed some geographic structure of MWMV variability, with three different clusters: one cluster including isolates from the Mediterranean region, a second including isolates from western and central Africa, and a third one including isolates from the southern part of Africa. A significant correlation was observed between geographic and genetic distances between isolates. Isolates from countries in the Mediterranean region where MWMV has recently emerged (France, Spain, Portugal) have highly conserved sequences, suggesting that they may have a common and recent origin. MWMV from Sudan, a highly divergent variant, may be considered an evolutionary intermediate between MWMV and PRSV.

  8. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12.

    PubMed

    Hansen, E B; Hansen, F G; von Meyenburg, K

    1982-11-25

    The nucleotide sequence of the dnaA gene and the first 10% of the dnaN gene was determined. From the nucleotide sequence the amino acid sequence of the dnaA gene product was derived. It is a basic protein of 467 amino acid residues with a molecular weight of 52.5 kD. The expression of the dnaA gene is in the counterclockwise direction like the one of the dnaN gene, for which potential startsites were found.

  9. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12.

    PubMed Central

    Hansen, E B; Hansen, F G; von Meyenburg, K

    1982-01-01

    The nucleotide sequence of the dnaA gene and the first 10% of the dnaN gene was determined. From the nucleotide sequence the amino acid sequence of the dnaA gene product was derived. It is a basic protein of 467 amino acid residues with a molecular weight of 52.5 kD. The expression of the dnaA gene is in the counterclockwise direction like the one of the dnaN gene, for which potential startsites were found. PMID:6296774

  10. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... submissions in computer readable form. (a) The computer readable form required by § 1.821(e) shall meet the following requirements: (1) The computer readable form shall contain a single “Sequence Listing” as either...

  11. Nucleotide and deduced amino acid sequences of a new subtilisin from an alkaliphilic Bacillus isolate.

    PubMed

    Saeki, Katsuhisa; Magallones, Marietta V; Takimura, Yasushi; Hatada, Yuji; Kobayashi, Tohru; Kawai, Shuji; Ito, Susumu

    2003-10-01

    The gene for a new subtilisin from the alkaliphilic Bacillus sp. KSM-LD1 was cloned and sequenced. The open reading frame of the gene encoded a 97 amino-acid prepro-peptide plus a 307 amino-acid mature enzyme that contained a possible catalytic triad of residues, Asp32, His66, and Ser224. The deduced amino acid sequence of the mature enzyme (LD1) showed approximately 65% identity to those of subtilisins SprC and SprD from alkaliphilic Bacillus sp. LG12. The amino acid sequence identities of LD1 to those of previously reported true subtilisins and high-alkaline proteases were below 60%. LD1 was characteristically stable during incubation with surfactants and chemical oxidants. Interestingly, an oxidizable Met residue is located next to the catalytic Ser224 of the enzyme as in the cases of the oxidation-susceptible subtilisins reported to date.

  12. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites.

    PubMed

    Sidell, Neil; Mathad, Raveendra I; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B; Yang, Danzhou

    2011-04-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D (1)H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes.

  13. Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis.

    PubMed Central

    Gold, B; Carrillo, N; Tewari, K K; Bogorad, L

    1987-01-01

    Maize chloroplast DNA sequences representing 94% of the chromosome have been surveyed for their activity as autonomously replicating sequences in yeast and as templates for DNA synthesis in vitro by a partially purified chloroplast DNA polymerase. A maize chloroplast DNA region extending over about 9 kilobase pairs is especially active as a template for the DNA synthesis reaction. Fragments from within this region are much more active than DNA from elsewhere in the chromosome and 50- to 100-fold more active than DNA of the cloning vector pBR322. The smallest of the strongly active subfragments that we have studied, the 1368-base-pair EcoRI fragment x, has been sequenced and found to contain the coding region of chloroplast ribosomal protein L16. EcoRI fragment x shows sequence homology with a portion of the Chlamydomonas reinhardtii chloroplast chromosome that forms a displacement loop [Wang, X.-M., Chang, C.H., Waddell, J. & Wu, M. (1984) Nucleic Acids Res. 12, 3857-3872]. Maize chloroplast DNA fragments that permit autonomous replication of DNA in yeast are not active as templates for DNA synthesis in the in vitro assay. The template active region we have identified may represent one of the origins of replication of maize chloroplast DNA. Images PMID:3025853

  14. Pyruvate carboxylase from Rhizobium etli: mutant characterization, nucleotide sequence, and physiological role.

    PubMed Central

    Dunn, M F; Encarnación, S; Araíza, G; Vargas, M C; Dávalos, A; Peralta, H; Mora, Y; Mora, J

    1996-01-01

    Pyruvate carboxylase (PYC), a biotin-dependent enzyme which catalyzes the conversion of pyruvate to oxaloacetate, was hypothesized to play an important anaplerotic role in the growth of Rhizobium etli during serial subcultivation in minimal media containing succinate (S. Encarnación, M. Dunn, K. Willms, and J. Mora, J. Bacteriol. 177:3058-3066, 1995). R. etli and R. tropici pyc::Tn5-mob mutants were selected for their inability to grow in minimal medium with pyruvate as a sole carbon source. During serial subcultivation in minimal medium containing 30 mM succinate, the R. etli parent and pyc mutant strains exhibited similar decreases in growth rate with each subculture. Supplementation of the medium with biotin prevented the growth decrease of the parent but not the mutant strain, indicating that PYC was necessary for the growth of R. etli under these conditions. The R. tropici pyc mutant grew normally in subcultures regardless of biotin supplementation. The symbiotic phenotypes of the pyc mutants from both species were similar to those of the parent strains. The R. etli pyc was cloned, sequenced, and found to encode a 126-kDa protein of 1,154 amino acids. The deduced amino acid sequence is highly homologous to other PYC sequences, and the catalytic domains involved in carboxylation, pyruvate binding, and biotinylation are conserved. The sequence and biochemical data show that the R. etli PYC is a member of the alpha4, homotetrameric, acetyl coenzyme A-activated class of PYCs. PMID:8830693

  15. Symbolic complexity for nucleotide sequences: a sign of the genome structure

    NASA Astrophysics Data System (ADS)

    Salgado-García, R.; Ugalde, E.

    2016-11-01

    We introduce a method for estimating the complexity function (which counts the number of observable words of a given length) of a finite symbolic sequence, which we use to estimate the complexity function of coding DNA sequences for several species of the Hominidae family. In all cases, the obtained symbolic complexities show the same characteristic behavior: exponential growth for small word lengths, followed by linear growth for larger word lengths. The symbolic complexities of the species we consider exhibit a systematic trend in correspondence with the phylogenetic tree. Using our method, we estimate the complexity function of sequences obtained by some known evolution models, and in some cases we observe the characteristic exponential-linear growth of the Hominidae coding DNA complexity. Analysis of the symbolic complexity of sequences obtained from a specific evolution model points to the following conclusion: linear growth arises from the random duplication of large segments during the evolution of the genome, while the decrease in the overall complexity from one species to another is due to a difference in the speed of accumulation of point mutations.

  16. Phylogenetic analysis of Rutaceous plants based on single nucleotide polymorphism in chloroplast and nuclear gene sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Rutaceae encompasses several genera including the economically important genus Citrus. In this study, we selected 22 citrus relatives belonging to the various sub groups of Rutaceae and compared the sequences of three gene fragments. The accessions selected belong to the subfamily Rutoide...

  17. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    SciTech Connect

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  18. Genomic structure and nucleotide sequence of the p55 gene of the puffer fish Fugu rubripes

    SciTech Connect

    Elgar, G.; Rattray, F.; Greystrong, J.; Brenner, S.

    1995-06-10

    The p55 gene, which codes for a 55-kDa erythrocyte membrane protein, has been cloned and sequenced from the genome of the Japanese puffer fish Fugu rubripes (Fugu). This organism has the smallest recorded vertebrate genome and therefore provides an efficient way to sequence genes at the genomic level. The gene encoding p55 covers 5.5 kb from the beginning to the end of the coding sequence, four to six times smaller than the estimated size of the human gene, and is encoded by 12 exons. The structure of this gene has not been previously elucidated, but from this and other data we would predict a similar or identical structure in mammals. The predicted amino acid sequence of this gene in Fugu, coding for a polypeptide of 467 amino acids, is very similar to that of the human gene with the exception of the first two exons, which differ considerably. The predicted Fugu protein has a molecular weight (52.6 kDa compared with 52.3 kDa) and an isoelectric point very similar to those of human p55. In human, the p55 gene lies in the gene-dense Xq28 region, just 30 kb 3{prime} to the Factor VIII gene, and is estimated to cover 20-30 kb. Its 5{prime} end is associated with a CpG island, although there is no evidence that this is the case in Fugu. The small size of genes in Fugu and the high coding homology that they share with their mammalian equivalents, both in structure and sequence, make this compact vertebrate genome an ideal model for genomic studies. 23 refs., 3 figs.

  19. Nucleotide sequence of the LuxC gene and the upstream DNA from the bioluminescent system of Vibrio harveyi.

    PubMed Central

    Miyamoto, C M; Graham, A F; Meighen, E A

    1988-01-01

    The nucleotide sequence of the luxC gene (1431 bp) and the upstream DNA (1049 bp) of the luminescent bacterium Vibrio harveyi has been determined. The luxC gene can be translated into a polypeptide of 55 kDa in excellent agreement with the molecular mass of the reductase polypeptide required for synthesis of the aldehyde substrate for the bioluminescent reaction. Analyses of codon usage showed a high frequency (1.9%) of the isoleucine codon, AUA, in the luxC gene compared to that found in Escherichia coli genes (0.2%) and its absence in the luxA, B and D genes. The low G/C content of the luxC gene and upstream DNA (38-39%) compared to that found in the other lux genes of V. harveyi (45%) was primarily due to a stretch of 500 nucleotides with only a 24% G/C content, extending from 200 bp inside lux C to 300 bp upstream. Moreover, an open reading frame did not extend for more than 48 codons between the luxC gene and 600 bp upstream at which point a gene transcribed in the opposite direction started. As the lux system in the luminescent bacterium, V. fischeri, contains a regulatory gene immediately upstream of luxC transcribed in the same direction, these results show that the organization and regulation of the lux genes have diverged in different luminescent bacteria. PMID:3347497

  20. Phylogenetic analyses of nucleotide sequences confirm a unique plant intercontinental disjunction between tropical Africa, the Caribbean, and the Hawaiian Islands.

    PubMed

    Namoff, Sandra; Luke, Quentin; Jiménez, Francisco; Veloz, Alberto; Lewis, Carl E; Sosa, Victoria; Maunder, Mike; Francisco-Ortega, Javier

    2010-01-01

    Phylogenetic analyses of nucleotide sequences of the internal transcribed spacers and 5.8 regions of the nuclear ribosomal DNA and of the trnH-psbA spacer of the chloroplast genome confirm that the three taxa of the Jacquemontia ovalifolia (Choicy) Hallier f. complex (Convolvulaceae) form a monophyletic group. Levels of nucleotide divergence and morphological differentiation among these taxa support the view that each should be recognized as distinct species. These three species display unique intercontinental disjunction, with one species endemic to Hawaii (Jacquemontia sandwicensis A. Gray.), another restricted to eastern Mexico and the Antilles [Jacquemontia obcordata (Millspaugh) House], and the third confined to East and West Africa (J. ovalifolia). The Caribbean and Hawaiian species are sister taxa and are another example of a biogeographical link between the Caribbean Basin and Polynesia. We provide a brief conservation review of the three taxa based on our collective field work and investigations; it is apparent that J. obcordata is highly threatened and declining in the Caribbean.

  1. Cloning, Nucleotide Sequencing, and Analysis of the Gene Encoding an AmpC β-Lactamase in Acinetobacter baumannii

    PubMed Central

    Bou, Germán; Martínez-Beltrán, Jesús

    2000-01-01

    A clinical strain of Acinetobacter baumannii (strain Ab RYC 52763/97) that was isolated during an outbreak in our hospital and that was resistant to all β-lactam antibiotics tested produced three β-lactamases: a TEM-1-type (pI, 5.4) plasmid-mediated β-lactamase, a chromosomally mediated OXA-derived (pI, 9.0) β-lactamase, and a presumptive chromosomal cephalosporinase (pI, 9.4). The nucleotide sequence of the chromosomal cephalosporinase gene shows for the first time the gene encoding an AmpC β-lactamase in A. baumannii. In addition, we report here the biochemical properties of this A. baumannii AmpC β-lactamase. PMID:10639377

  2. Complete nucleotide sequences of okra isolates of Cotton leaf curl Gezira virus and their associated DNA-beta from Niger.

    PubMed

    Shih, S L; Kumar, S; Tsai, W S; Lee, L M; Green, S K

    2009-01-01

    Okra (Abelmoschus esculentus) is a major crop in Niger. In the fall of 2007, okra leaf curl disease was observed in Niger and the begomovirus and DNA-beta satellite were found associated with the disease. The complete nucleotide sequences of DNA-A (FJ469626 and FJ469627) and associated DNA-beta satellites (FJ469628 and FJ469629) were determined from two samples. This is the first report of molecular characterization of okra-infecting begomovirus and their associated DNA-beta from Niger. The begomovirus and DNA-beta have been identified as Cotton leaf curl Gezira virus and Cotton leaf curl Gezira betasatellite, respectively, which are reported to also infect okra in Egypt, Mali and Sudan.

  3. Genetic identification of horse mackerel and related species in seafood products by means of forensically informative nucleotide sequencing methodology.

    PubMed

    Lago, Fátima C; Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat

    2011-03-23

    In the present study, a methodology based on the amplification of a fragment of mitochondrial cytochrome b and subsequent phylogenetic analysis (FINS: forensically informative nucleotide sequencing) to genetically identify horse mackerels have been developed. This methodology makes possible the identification of more than 20 species belonging to the families Carangidae, Mullidae, and Scombridae. The main novelty of this work lies in the longest number of different horse mackerel species included and in the applicability of the developed methods to all kinds of processed products that can be found by consumers in markets around the world, including those that have undergone intensive processes of transformation, as for instance canned foods. Finally, the methods were applied to 15 commercial samples, all of them canned products. Therefore, these methods are useful for checking the fulfillment of labeling regulations for horse mackerels and horse mackerel products, verifying the correct traceability in commercial trade, and fisheries control.

  4. Expression and nucleotide sequence of the Clostridium acetobutylicum beta-galactosidase gene cloned in Escherichia coli.

    PubMed Central

    Hancock, K R; Rockman, E; Young, C A; Pearce, L; Maddox, I S; Scott, D B

    1991-01-01

    A gene library for Clostridium acetobutylicum NCIB 2951 was constructed in the broad-host-range cosmid pLAFR1, and cosmids containing the beta-galactosidase gene were isolated by direct selection for enzyme activity on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactoside) plates after conjugal transfer of the library to a lac deletion derivative of Escherichia coli. Analysis of various pSUP202 subclones of the lac cosmids on X-Gal plates localized the beta-galactosidase gene to a 5.1-kb EcoRI fragment. Expression of the Clostridium beta-galactosidase gene in E. coli was not subject to glucose repression. By using transposon Tn5 mutagenesis, two gene loci, cbgA (locus I) and cbgR (locus II), were identified as necessary for beta-galactosidase expression in E. coli. DNA sequence analysis of the entire 5.1-kb fragment identified open reading frames of 2,691 and 303 bp, corresponding to locus I and locus II, respectively, and in addition a third truncated open reading frame of 825 bp. The predicted gene product of locus I, CbgA (molecular size, 105 kDa), showed extensive amino acid sequence homology with E. coli LacZ, E. coli EbgA, and Klebsiella pneumoniae LacZ and was in agreement with the size of a polypeptide synthesized in maxicells containing the cloned 5.1-kb fragment. The predicted gene product of locus II, CbgR (molecular size, 11 kDa) shares no significant homology with any other sequence in the current DNA and protein sequence data bases, but Tn5 insertions in this gene prevent the synthesis of CbgA. Complementation experiments indicate that the gene product of cbgR is required in cis with cbgA for expression of beta-galactosidase in E. coli. Images PMID:1850729

  5. LINE-1 elements: analysis by fluorescence in-situ hybridization and nucleotide sequences.

    PubMed

    Waters, Paul D; Dobigny, Gauthier; Waddell, Peter J; Robinson, Terence J

    2008-01-01

    Long-interspersed nuclear element-1 (LINE-1) is a non-terminal repeat transposon that constitutes a major component of the mammalian genome. LINE-1 has a dynamic evolutionary history characterized by the rise, fall, and replacement of subfamilies. The distribution of LINE-1 elements can be viewed from a chromosomal perspective using fluorescence in-situ hybridization (FISH), as well as at the sequence level. We have designed LINE-1 primers from regions conserved among mouse, rat, rabbit, and human L1, which were able to amplify part of ORF2 from all eutherian (placental) mammals tested thus far. The product generated can be used as a FISH painting probe to examine the genomic distribution of L1 in different species. It can also be cloned and sequenced for phylogenetic analysis. Although FISH patterns resulting from LINE-1 chromosome painting and bioinformatic analyses have shown that this element accumulates in AT-rich regions of the genomes of mouse and human, our PCR amplified LINE-1 probe suggests that this is not a universal phenomenon, and that the patterns displayed in laurasiatherian, afrotherian and xenarthran species are less prominent. The "banding" like distribution of LINE-1 observed in human and mouse, therefore, appears to reflect aspects of genome architecture unique to Euarchontoglires (Supraprimates), the superordinal clade to which they belong. By sequencing the cloned amplicons used for FISH experiments and supplementing these with L1 sequences obtained from public databases, analysis by parsimony, distance-based, maximum likelihood, and "hierarchical Bayesian" or "marginal likelihood" methods provides a powerful adjunct to the FISH data. Using this approach, relatively intact LINE-1 from most placental orders tend to reflect accepted eutherian evolutionary relationships. This suggests that there were often only closely related copies active near branch points in the tree, that inactive copies tended to become extinct quite readily, and that for

  6. The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases.

    PubMed

    Montgomery, Jesse L; Rejali, Nick; Wittwer, Carl T

    2014-05-01

    Extension rates of a thermostable, deletion-mutant polymerase were measured from 50°C to 90°C using a fluorescence activity assay adapted for real-time PCR instruments. Substrates with a common hairpin (6-base loop and a 14-bp stem) were synthesized with different 10-base homopolymer tails. Rates for A, C, G, T, and 7-deaza-G incorporation at 75°C were 81, 150, 214, 46, and 120 seconds(-1). Rates for U were half as fast as T and did not increase with increasing concentration. Hairpin substrates with 25-base tails from 0% to 100% GC content had maximal extension rates near 60% GC and were predicted from the template sequence and mononucleotide incorporation rates to within 30% for most sequences. Addition of dimethyl sulfoxide at 7.5% increased rates to within 1% to 17% of prediction for templates with 40% to 90% GC. When secondary structure was designed into the template region, extension rates decreased. Oligonucleotide probes reduced extension rates by 65% (5'-3' exo-) and 70% (5'-3' exo+). When using a separate primer and a linear template to form a polymerase substrate, rates were dependent on both the primer melting temperature (Tm) and the annealing/extension temperature. Maximum rates were observed from Tm to Tm - 5°C with little extension by Tm + 5°C. Defining the influence of sequence and temperature on polymerase extension will enable more rapid and efficient PCR.

  7. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates.

    PubMed Central

    Tzeng, C S; Hui, C F; Shen, S C; Huang, P C

    1992-01-01

    The complete mitochondrial (mt) genome of Crossostoma lacustre, a freshwater loach from mountain stream of Taiwan, has been cloned and sequenced. This fish mt genome, consisting of 16558 base-pairs, encodes genes for 13 proteins, two rRNAs, and 22 tRNAs, in addition to a regulatory sequence for replication and transcription (D-loop), is similar to those of the other vertebrates in both the order and orientation of these genes. The protein-coding and ribosomal RNA genes are highly homologous both in size and composition, to their counterparts in mammals, birds, amphibians, and invertebrates, and using essentially the same set of codons, including both the initiation and termination signals, and the tRNAs. Differences do exist, however, in the lengths and sequences of the D-loop regions, and in space between genes, which account for the variations in total lengths of the genomes. Our observations provide evidence for the first time for the conservation of genetic information in the fish mitochondrial genome, especially among the vertebrates. PMID:1408800

  8. Differential repair of DNA damage in specific nucleotide sequences in monkey cells.

    PubMed Central

    Leadon, S A

    1986-01-01

    An immunological method was developed that isolates DNA fragments containing bromouracil in repair patches from unrepaired DNA using a monoclonal antibody that recognizes bromouracil. Cultured monkey cells were exposed to either UV light or the activated carcinogen aflatoxin B1 and excision repair of damage in DNA fragments containing the integrated and transcribed E. coli gpt gene was compared to that in the genome overall. A more rapid repair, of both UV and AFB1 damage was observed in the DNA fragments containing the E. coli gpt genes. The more efficient repair of UV damage was not due to a difference in the initial level of pyrimidine dimers as determined with a specific UV endonuclease. Consistent with previous observations using different methodology, repair of UV damage in the alpha sequences was found to occur at the same rate as that in the genome overall, while repair of AFB1 damage was deficient in alpha DNA. The preferential repair of damage in the gpt gene may be related to the functional state of the sequence and/or to alterations produced in the chromatin conformation by the integration of plasmid sequences carrying the gene. Images PMID:3786142

  9. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    PubMed

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  10. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR.

    PubMed

    Burns, Cara C; Kilpatrick, David R; Iber, Jane C; Chen, Qi; Kew, Olen M

    2016-01-01

    Virologic surveillance is essential to the success of the World Health Organization initiative to eradicate poliomyelitis. Molecular methods have been used to detect polioviruses in tissue culture isolates derived from stool samples obtained through surveillance for acute flaccid paralysis. This chapter describes the use of realtime PCR assays to identify and serotype polioviruses. In particular, a degenerate, inosine-containing, panpoliovirus (panPV) PCR primer set is used to distinguish polioviruses from NPEVs. The high degree of nucleotide sequence diversity among polioviruses presents a challenge to the systematic design of nucleic acid-based reagents. To accommodate the wide variability and rapid evolution of poliovirus genomes, degenerate codon positions on the template were matched to mixed-base or deoxyinosine residues on both the primers and the TaqMan™ probes. Additional assays distinguish between Sabin vaccine strains and non-Sabin strains. This chapter also describes the use of generic poliovirus specific primers, along with degenerate and inosine-containing primers, for routine VP1 sequencing of poliovirus isolates. These primers, along with nondegenerate serotype-specific Sabin primers, can also be used to sequence individual polioviruses in mixtures.

  11. Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia malayi from Northeast Borneo and Thailand.

    PubMed

    Fong, Mun-Yik; Noordin, Rahmah; Lau, Yee-Ling; Cheong, Fei-Wen; Yunus, Muhammad Hafiznur; Idris, Zulkarnain Md

    2013-01-01

    Brugia malayi is one of the parasitic worms which causes lymphatic filariasis in humans. Its geographical distribution includes a large part of Asia. Despite its wide distribution, very little is known about the genetic variation and molecular epidemiology of this species. In this study, the internal transcribed spacer 1 (ITS1) nucleotide sequences of B. malayi from microfilaria-positive human blood samples in Northeast Borneo Island were determined, and compared with published ITS1 sequences of B. malayi isolated from cats and humans in Thailand. Multiple alignment analysis revealed that B. malayi ITS1 sequences from Northeast Borneo were more similar to each other than to those from Thailand. Phylogenetic trees inferred using Neighbour-Joining and Maximum Parsimony methods showed similar topology, with 2 distinct B. malayi clusters. The first cluster consisted of Northeast Borneo B. malayi isolates, whereas the second consisted of the Thailand isolates. The findings of this study suggest that B. malayi in Borneo Island has diverged significantly from those of mainland Asia, and this has implications for the diagnosis of B. malayi infection across the region using ITS1-based molecular techniques.

  12. Single nucleotide repeat analysis of B. anthracis isolates in Canada through comparison of pyrosequencing and Sanger sequencing.

    PubMed

    Hahn, Kristen R; Janzen, Timothy W; Thomas, Matthew C; Shields, Michael J; Goji, Noriko; Valle, Edith; Amoako, Kingsley K

    2014-03-14

    Several technology platforms have been developed to resolve the phylogenetic placement of B. anthracis. However, these methods lack the resolution to identify differences between closely related strains within an outbreak due to the highly clonal nature of B. anthracis. Single Nucleotide Repeats (SNRs) are a type of rapidly evolving genetic marker that can be used to track epidemiological distribution in the event of an outbreak. Four SNR targets were used to detect and type 35 B. anthracis isolates in our collection; 18 from across Canada obtained between 1972 and 2005 and 17 from the 2006 Anthrax outbreak in north eastern Saskatchewan. A control sequence was developed for pyrosequencing which yielded consistent and accurate reads of SNRs. However, when DNA from the isolates was tested using pyrosequencing the results were inconsistent and did not reflect the number of SNRs obtained by Sanger sequencing. The SNR numbers derived from the Sanger sequencing show two of the four SNR loci could provide information on subtype, whereas the other two were not discriminatory. There is variation in SNRs between strains isolated from different outbreaks, the subset of 2006 outbreak strains showed very little difference in SNR number, and thus suggests low diversity among the strains sampled from the same outbreak.

  13. InPhaDel: integrative shotgun and proximity-ligation sequencing to phase deletions with single nucleotide polymorphisms

    PubMed Central

    Patel, Anand; Edge, Peter; Selvaraj, Siddarth; Bansal, Vikas; Bafna, Vineet

    2016-01-01

    Phasing of single nucleotide (SNV), and structural variations into chromosome-wide haplotypes in humans has been challenging, and required either trio sequencing or restricting phasing to population-based haplotypes. Selvaraj et al. demonstrated single individual SNV phasing is possible with proximity ligated (HiC) sequencing. Here, we demonstrate HiC can phase structural variants into phased scaffolds of SNVs. Since HiC data is noisy, and SV calling is challenging, we applied a range of supervised classification techniques, including Support Vector Machines and Random Forest, to phase deletions. Our approach was demonstrated on deletion calls and phasings on the NA12878 human genome. We used three NA12878 chromosomes and simulated chromosomes to train model parameters. The remaining NA12878 chromosomes withheld from training were used to evaluate phasing accuracy. Random Forest had the highest accuracy and correctly phased 86% of the deletions with allele-specific read evidence. Allele-specific read evidence was found for 76% of the deletions. HiC provides significant read evidence for accurately phasing 33% of the deletions. Also, eight of eight top ranked deletions phased by only HiC were validated using long range polymerase chain reaction and Sanger. Thus, deletions from a single individual can be accurately phased using a combination of shotgun and proximity ligation sequencing. InPhaDel software is available at: http://l337x911.github.io/inphadel/. PMID:27105843

  14. Cloning and nucleotide sequence of the gene (citA) encoding a citrate carrier from Salmonella typhimurium.

    PubMed

    Shimamoto, T; Izawa, H; Daimon, H; Ishiguro, N; Shinagawa, M; Sakano, Y; Tsuda, M; Tsuchiya, T

    1991-07-01

    A cryptic citrate transport gene (citA) from Salmonella typhimurium chromosome was cloned and its nucleotide sequence was determined. The cloned plasmid conferred citrate-utilizing ability on wild-type Escherichia coli, which cannot grow on citrate as the sole source of carbon. The resultant E. coli transformant was able to transport citrate. A 1,302-base-pair open reading frame with a preceding ribosomal binding site was found in the cloned DNA fragment. The 434-amino-acid protein that could be translated from this open reading frame is highly hydrophobic (69% nonpolar amino acid residues), consistent with the fact that the transport protein is an intrinsic membrane protein. The molecular weight of this protein was calculated to be 47,188. The gene sequence determined is highly homologous to those of Cit+ plasmid-mediated citrate transport gene, citA, from E. coli, the chromosomal citA gene from Citrobacter amalonaticus and the chromosomal cit+ gene from Klebsiella pneumoniae. The hydropathy profile of the deduced amino acid sequence suggests that this carrier has 12 hydrophobic segments, which may span the membrane lipid bilayer.

  15. Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates.

    PubMed

    Fountain, Emily D; Pauli, Jonathan N; Reid, Brendan N; Palsbøll, Per J; Peery, M Zachariah

    2016-07-01

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo-assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference-aligned and de novo-assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference-aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo-assembled data sets. We observed approximately 10- and 13-fold declines in the number of loci sampled in the reference-aligned and de novo-assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade-off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction-enzyme-based SNP studies.

  16. A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences.

    PubMed

    Guo, Juan; Wang, Yunsheng; Song, Chi; Zhou, Jianfeng; Qiu, Lijuan; Huang, Hongwen; Wang, Ying

    2010-09-01

    Background and Aims It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean. Methods The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck. Key Results Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K' = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years. Conclusions As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be approximately 2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in

  17. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity.

    PubMed Central

    Labigne, A; Cussac, V; Courcoux, P

    1991-01-01

    Production of a potent urease has been described as a trait common to all Helicobacter pylori so far isolated from humans with gastritis as well as peptic ulceration. The detection of urease activity from genes cloned from H. pylori was made possible by use of a shuttle cosmid vector, allowing replication and movement of cloned DNA sequences in either Escherichia coli or Campylobacter jejuni. With this approach, we cloned a 44-kb portion of H. pylori chromosomal DNA which did not lead to urease activity when introduced into E. coli but permitted, although temporarily, biosynthesis of the urease when transferred by conjugation to C. jejuni. The recombinant cosmid (pILL585) expressing the urease phenotype was mapped and used to subclone an 8.1-kb fragment (pILL590) able to confer the same property to C. jejuni recipient strains. By a series of deletions and subclonings, the urease genes were localized to a 4.2-kb region of DNA and were sequenced by the dideoxy method. Four open reading frames were found, encoding polypeptides with predicted molecular weights of 26,500 (ureA), 61,600 (ureB), 49,200 (ureC), and 15,000 (ureD). The predicted UreA and UreB polypeptides correspond to the two structural subunits of the urease enzyme; they exhibit a high degree of homology with the three structural subunits of Proteus mirabilis (56% exact matches) as well as with the unique structural subunit of jack bean urease (55.5% exact matches). Although the UreD-predicted polypeptide has domains relevant to transmembrane proteins, no precise role could be attributed to this polypeptide or to the UreC polypeptide, which both mapped to a DNA sequence shown to be required to confer urease activity to a C. jejuni recipient strain. Images PMID:2001995

  18. Nucleotide Sequence and Gene Organization of the Starfish Asterina Pectinifera Mitochondrial Genome

    PubMed Central

    Asakawa, S.; Himeno, H.; Miura, K. I.; Watanabe, K.

    1995-01-01

    The 16,260-bp mitochondrial DNA (mtDNA) from the starfish Asterina pectinifera has been sequenced. The genes for 13 proteins, two rRNAs and 22 tRNAs are organized in an extremely economical fashion, similar to those of other animal mtDNAs, with some of the genes overlapping each other. The gene organization is the same as that for another echinoderm, sea urchin, except for the inversion of a 4.6-kb segment that contains genes for two proteins, 13 tRNAs and the 16S rRNA. Judging from the organization of the protein coding genes, mammalian mtDNAs resemble the sea urchin mtDNA more than that of the starfish. The region around the 3' end of the 12S rRNA gene of the starfish shows a high similarity with those for vertebrates. This region encodes a possible stem and loop structure; similar potential structures occur in this region of vertebrate mtDNAs and also in nonmitochondrial small subunit rRNA. A similar stem and loop structure is also found at the 3' end of the 16S rRNA genes in A. pectinifera, in another starfish Pisaster ochraceus, in vertebrates and in Drosophila, but not in sea urchins. The full sequence data confirm the presumption that AGA/AGG, AUA and AAA codons, respectively, code for serine, isoleucine, and asparagine in the starfish mitochondria, and that AGA/AGG codons are read by tRNA(GCU)(Ser), which possesses a truncated dihydrouridine arm, that was previously suggested from a partial mtDNA sequence. The structural characteristics of tRNAs and possible mechanisms for the change in the mitochondrial genetic code are also discussed. PMID:7672576

  19. Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis.

    PubMed

    Guo, Chang-Hong; Terachi, Toru

    2005-08-01

    The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.5kb), B2m (10.2kb), B2 (9.6kb) and B2s (9.4kb). In order to gain a better understanding of the molecular nature of the variations in length and explain unexpected identity among B2 of Ae. ovata, Ae. speltoides and common wheat (T. aestivum), the nucleotide sequence between a stop codon of rbcL and a HindIII site in cemA in the hotspot was determined for Ae. ovata, Ae. speltoides, Ae. caudata and Ae. mutica. The total number of nucleotides in the region was 2808, 2810, 3302, and 3594 bp, for Ae. speltoides, Ae. ovata, Ae. caudata and Ae. mutica, respectively, and the sequences were compared with the corresponding ones of Ae. crassa 4x, T. aestivum and Ae. squarrosa. Compared with the largest B2l fragment of Ae. mutica, a 791bp and a 793 bp deletion were found in Ae. speltoides and Ae. ovata, respectively, and the possible site of deletion in the two species is the same as that of T. aestivum. However, a deleted segment in Ae. ovata is 2 bp longer than that of Ae. speltoides (and T. aestivum), demonstrating that recurrent deletions had occurred in the chloroplast genomes of both species. Comparison of the sequences from Ae. caudata and Ae. crassa 4x with that of Ae. mutica revealed a 289 bp and a 61 bp deletion at the same site in Ae. caudata and Ae. crassa 4x, respectively. Sequence comparison using wild Aegilops plants showed that the large length variations in a hotspot are fixed to each species. A considerable number of polymorphisms are observed in a loop in the 3' of rbcL. The study reveals the relative importance of the large and small indels and minute inversions to account for variations in the chloroplast genomes among closely related species.

  20. Distant neighbor base sequence context effects in human nucleotide excision repair of a benzo[a]pyrene-derived DNA lesion.

    PubMed

    Cai, Yuqin; Kropachev, Konstantin; Xu, Rong; Tang, Yijin; Kolbanovskii, Marina; Kolbanovskii, Alexander; Amin, Shantu; Patel, Dinshaw J; Broyde, Suse; Geacintov, Nicholas E

    2010-06-11

    The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N(2)-dG (G*) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5'-C-C-A-T-C-G*-C-T-A-C-C-3' (CG*C-I), and 5'-C-A-C3-A4-C5-G*-C-A-C-A-C-3' (CG*C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(+/-0.2)-fold greater in the case of the CG*C-II than the CG*C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG*C-II duplex is more bent than the CG*C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG*C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG*C-II than in CG*C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG*C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N(2)-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.

  1. Molecular cloning, nucleotide sequence and expression of a Sulfolobus solfataricus gene encoding a class II fumarase.

    PubMed

    Colombo, S; Grisa, M; Tortora, P; Vanoni, M

    1994-01-03

    Fumarase catalyzes the interconversion of L-malate and fumarate. A Sulfolobus solfataricus fumarase gene (fumC) was cloned and sequenced. Typical archaebacterial regulatory sites were identified in the region flanking the fumC open reading frame. The fumC gene encodes a protein of 438 amino acids (47,899 Da) which shows several significant similarities with class II fumarases from both eubacterial and eukariotic sources as well as with aspartases. S. solfataricus fumarase expressed in Escherichia coli retains enzymatic activity and its thermostability is comparable to that of S. solfataricus purified enzyme despite a 11 amino acid C-terminal deletion.

  2. Role of base sequence context in conformational equilibria and nucleotide excision repair of benzo[a]pyrene diol epoxide-adenine adducts.

    PubMed

    Yan, Shixiang; Wu, Min; Buterin, Tonko; Naegeli, Hanspeter; Geacintov, Nicholas E; Broyde, Suse

    2003-03-04

    We investigate the influence of base sequence context on the conformations of the 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts through molecular dynamics (MD) simulations with free energy calculations, and relate the structural findings to results of nucleotide excision repair (NER) assays in human cell extracts. In previous studies, these adducts were studied in the CA*A sequence context, and here we report results for the CA*C sequence. Our simulations indicate that the base sequence context affects the syn-anti conformational equilibrium in the 10S (+) adduct by modulating the barrier heights between these states on the energy surface, with a higher barrier in the CA*C case. Our nucleotide excision repair assay finds greater NER susceptibilities in the 10S (+) adduct for the CA*C sequence context. A structural rationale ties together these results. A sequence specific hydrogen bond, accompanied by a significantly increased roll and consequent bending in the 10S (+) adduct, has been found in our simulations for the CA*C sequence, which could account for the enhanced nucleotide excision repair as well as the syn-anti equilibrium difference we observe in this isomer and sequence. Such sequence specific differential repair could contribute to the existence of mutational hotspots and thereby contribute to the complexity of cancer initiation.

  3. Purification of histidase from Streptomyces griseus and nucleotide sequence of the hutH structural gene.

    PubMed Central

    Wu, P C; Kroening, T A; White, P J; Kendrick, K E

    1992-01-01

    Histidine ammonia-lyase (histidase) was purified to homogeneity from vegetative mycelia of Streptomyces griseus. The enzyme was specific for L-histidine and showed no activity against the substrate analog, D-histidine. Histidinol phosphate was a potent competitive inhibitor. Histidase displayed saturation kinetics with no detectable sigmoidal response. Neither thiol reagents nor a variety of divalent cations had any effect on the activity of the purified enzyme. High concentrations of potassium cyanide inactivated histidase in the absence of its substrate or histidinol phosphate, suggesting that, as in other histidases, dehydroalanine plays an important role in catalysis. The N-terminal amino acid sequence of histidase was used to construct a mixed oligonucleotide probe to identify and clone the histidase structural gene, hutH, from genomic DNA of the wild-type strain of S. griseus. The cloned DNA restored the ability of a histidase structural gene mutant to grow on L-histidine as the sole nitrogen source. The deduced amino acid sequence of hutH shows significant relatedness with histidase from bacteria and a mammal as well as phenylalanine ammonia-lyase from plants and fungi. Images PMID:1537807

  4. Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus.

    PubMed

    Schmutzer, Thomas; Samans, Birgit; Dyrszka, Emmanuelle; Ulpinnis, Chris; Weise, Stephan; Stengel, Doreen; Colmsee, Christian; Lespinasse, Denis; Micic, Zeljko; Abel, Stefan; Duchscherer, Peter; Breuer, Frank; Abbadi, Amine; Leckband, Gunhild; Snowdon, Rod; Scholz, Uwe

    2015-12-08

    Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.

  5. Mutational and nucleotide sequence analysis of S-adenosyl-L-homocysteine hydrolase from Rhodobacter capsulatus.

    PubMed Central

    Sganga, M W; Aksamit, R R; Cantoni, G L; Bauer, C E

    1992-01-01

    The genetic locus ahcY, encoding the enzyme S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) from the bacterium Rhodobacter capsulatus, has been mapped by mutational analysis to within a cluster of genes involved in regulating the induction and maintenance of the bacterial photosynthetic apparatus. Sequence analysis demonstrates that ahcY encodes a 51-kDa polypeptide that displays 64% sequence identity to its human homolog. Insertion mutants in ahcY lack detectable S-adenosyl-L-homocysteine hydrolase activity and, as a consequence, S-adenosyl-L-homocysteine accumulates in the cells, resulting in a 16-fold decrease in the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine as compared to wild-type cells. The ahcY disrupted strain fails to grow in minimal medium; however, growth is restored in minimal medium supplemented with methionine or homocysteine or in a complex medium, thereby indicating that the hydrolysis of S-adenosyl-L-homocysteine plays a key role in the metabolism of sulfur-containing amino acids. The ahcY mutant, when grown in supplemented medium, synthesizes significantly reduced levels of bacteriochlorophyll, indicating that modulation of the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine may be an important factor in regulating bacteriochlorophyll biosynthesis. PMID:1631127

  6. Nucleotide Sequence of the Envelope Gene of Gardner-Arnstein Feline Leukemia Virus B Reveals Unique Sequence Homologies with a Murine Mink Cell Focus-Forming Virus †

    PubMed Central

    Elder, John H.; Mullins, James I.

    1983-01-01

    The nucleotide sequence of the envelope gene and the adjacent 3′ long terminal repeat (LTR) of Gardner-Arnstein feline leukemia virus of subgroup B (GA-FeLV-B) has been determined. Comparison of the derived amino acid sequence of the gp70-p15E polyprotein to those of several previously reported murine retroviruses revealed striking homologies between GA-FeLV-B gp70 and the gp70 of a Moloney virus-derived mink cell focus-forming virus. These homologies were located within the substituted (presumably xenotropic) portion of the mink cell focus-forming virus envelope gene and comprised amino acid sequences not present in three ecotropic virus gp70s. In addition, areas of insertions and deletions, in general, were the same between GA-FeLV-B and Moloney mink cell focus-forming virus, although the sizes of the insertions and deletions differed. Homologies between GA-FeLV-B and mink cell focus-forming virus gp70s is functionally significant in that they both possess expanded host ranges, a property dictated by gp70. The amino acid sequence of FeLV-B contains 12 Asn-X-Ser/Thr sequences, indicating 12 possible sites of N-linked glycosylation as compared with 7 or 8 for its murine counterparts. Comparison of the 3′ LTR of GA-FeLV-B to AKR and Moloney virus LTRs revealed extensive conservation in several regions including the “CCAAT” and Goldberg-Hogness (TATA) boxes thought to be involved in promotion of transcription and in the repeat region of the LTR. The inverted repeats that flanked the LTR of GA-FeLV-B were identical to the murine inverted repeats, but were one base longer than the latter. The region of U3 corresponding to the approximately 75-nucleotide “enhancer sequence” is present in GA-FeLV-B, but contains deletions relative to AKR and Moloney virus and is not repeated. An interesting pallindrome in the repeat region immediately 3′ to the U3 region was noted in all the LTRs, but was particularly pronounced in GA-FeLV-B. Possible roles for this

  7. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats.

    PubMed

    Goula, Agathi-Vasiliki; Pearson, Christopher E; Della Maria, Julie; Trottier, Yvon; Tomkinson, Alan E; Wilson, David M; Merienne, Karine

    2012-05-08

    Expansion of CAG/CTG repeats is the underlying cause of >14 genetic disorders, including Huntington's disease (HD) and myotonic dystrophy. The mutational process is ongoing, with increases in repeat size enhancing the toxicity of the expansion in specific tissues. In many repeat diseases, the repeats exhibit high instability in the striatum, whereas instability is minimal in the cerebellum. We provide molecular insights into how base excision repair (BER) protein stoichiometry may contribute to the tissue-selective instability of CAG/CTG repeats by using specific repair assays. Oligonucleotide substrates with an abasic site were mixed with either reconstituted BER protein stoichiometries mimicking the levels present in HD mouse striatum or cerebellum, or with protein extracts prepared from HD mouse striatum or cerebellum. In both cases, the repair efficiency at CAG/CTG repeats and at control DNA sequences was markedly reduced under the striatal conditions, likely because of the lower level of APE1, FEN1, and LIG1. Damage located toward the 5' end of the repeat tract was poorly repaired, with the accumulation of incompletely processed intermediates as compared to an AP lesion in the center or at the 3' end of the repeats or within control sequences. Moreover, repair of lesions at the 5' end of CAG or CTG repeats involved multinucleotide synthesis, particularly at the cerebellar stoichiometry, suggesting that long-patch BER processes lesions at sequences susceptible to hairpin formation. Our results show that the BER stoichiometry, nucleotide sequence, and DNA damage position modulate repair outcome and suggest that a suboptimal long-patch BER activity promotes CAG/CTG repeat instability.

  8. Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence.

    PubMed

    Chang, Sungyul; Hartman, Glen L; Singh, Ram J; Lambert, Kris N; Hobbs, Houston A; Domier, Leslie L

    2013-06-01

    Like many widely cultivated crops, soybean [Glycine max (L.) Merr.] has a relatively narrow genetic base, while its perennial distant relatives in the subgenus Glycine Willd. are more genetically diverse and display desirable traits not present in cultivated soybean. To identify single-nucleotide polymorphisms (SNPs) between a pair of G. latifolia accessions that were resistant or susceptible to Sclerotinia sclerotiorum (Lib.) de Bary, reduced-representations of DNAs from each accession were sequenced. Approximately 30 % of the 36 million 100-nt reads produced from each of the two G. latifolia accessions aligned primarily to gene-rich euchromatic regions on the distal arms of G. max chromosomes. Because a genome sequence was not available for G. latifolia, the G. max genome sequence was used as a reference to identify 9,303 G. latifolia SNPs that aligned to unique positions in the G. max genome with at least 98 % identity and no insertions and deletions. To validate a subset of the SNPs, nine TaqMan and 384 GoldenGate allele-specific G. latifolia SNP assays were designed and analyzed in F2 G. latifolia populations derived from G. latifolia plant introductions (PI) 559298 and 559300. All nine TaqMan markers and 91 % of the 291 polymorphic GoldenGate markers segregated in a 1:2:1 ratio. Genetic linkage maps were assembled for G. latifolia, nine of which were uninterrupted and nearly collinear with the homoeologous G. max chromosomes. These results made use of a heterologous reference genome sequence to identify more than 9,000 informative high-quality SNPs for G. latifolia, a subset of which was used to generate the first genetic maps for any perennial Glycine species.

  9. Nucleotide sequence of the large double-stranded RNA segment of bacteriophage phi 6: genes specifying the viral replicase and transcriptase.

    PubMed Central

    Mindich, L; Nemhauser, I; Gottlieb, P; Romantschuk, M; Carton, J; Frucht, S; Strassman, J; Bamford, D H; Kalkkinen, N

    1988-01-01

    The genome of the lipid-containing bacteriophage phi 6 contains three segments of double-stranded RNA. We determined the nucleotide sequence of cDNA derived from the largest RNA segment (L). This segment specifies the procapsid proteins necessary for transcription and replication of the phi 6 genome. The coding sequences of the four proteins on this segment were identified on the basis of size and the correlation of predicted N-terminal amino acid sequences with those found through analysis of isolated proteins. This report completes the sequence analysis of phi 6. This constitutes the first complete sequence of a double-stranded RNA genome virus. PMID:3346944

  10. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.

    PubMed Central

    Garcia, G E; Stadtman, T C

    1991-01-01

    The gene encoding the selenoprotein A component of glycine reductase was isolated from Clostridium purinolyticum. The nucleotide sequence of this gene (grdA) was determined. The opal termination codon (TGA) was found in-frame at the position corresponding to the location of the selenocysteine residue in the gene product. A comparison of the nucleotide sequences and secondary mRNA structures corresponding to the selenoprotein A gene and the fdhF gene of Escherichia coli formate dehydrogenase shows that there is a similar potential for regulation of the specific insertion of selenocysteine at the UGA codon. PMID:1825826

  11. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.

    PubMed

    Garcia, G E; Stadtman, T C

    1991-03-01

    The gene encoding the selenoprotein A component of glycine reductase was isolated from Clostridium purinolyticum. The nucleotide sequence of this gene (grdA) was determined. The opal termination codon (TGA) was found in-frame at the position corresponding to the location of the selenocysteine residue in the gene product. A comparison of the nucleotide sequences and secondary mRNA structures corresponding to the selenoprotein A gene and the fdhF gene of Escherichia coli formate dehydrogenase shows that there is a similar potential for regulation of the specific insertion of selenocysteine at the UGA codon.

  12. Assessment of the labelling accuracy of spanish semipreserved anchovies products by FINS (forensically informative nucleotide sequencing).

    PubMed

    Velasco, Amaya; Aldrey, Anxela; Pérez-Martín, Ricardo I; Sotelo, Carmen G

    2016-06-01

    Anchovies have been traditionally captured and processed for human consumption for millennia. In the case of Spain, ripened and salted anchovies are a delicacy, which, in some cases, can reach high commercial values. Although there have been a number of studies presenting DNA methodologies for the identification of anchovies, this is one of the first studies investigating the level of mislabelling in this kind of products in Europe. Sixty-three commercial semipreserved anchovy products were collected in different types of food markets in four Spanish cities to check labelling accuracy. Species determination in these commercial products was performed by sequencing two different cyt-b mitochondrial DNA fragments. Results revealed mislabelling levels higher than 15%, what authors consider relatively high considering the importance of the product. The most frequent substitute species was the Argentine anchovy, Engraulis anchoita, which can be interpreted as an economic fraud.

  13. [A densovirus of German cockroach Blatella germanica: detection, nucleotide sequence and genome organization].

    PubMed

    Mukha, D V; Schal, K

    2003-01-01

    A new Blattella germanica densovirus (BgDNV, Parvoviridae: Densovirinae, Densovirus) was found. Virus DNA and cockroach tissues infected with BgDNV were examined by electron microscopy. Virus particles about 20 nm in diameter were observed both in the nucleus and in the cytoplasm of infected cells. Virus DNA proved to be a linear molecule sized about 1.2 microns. The complete BgDNV genome was sequenced and analyzed. Five ORF were detected: two coded for structural capsid proteins and were on one DNA strand, and three coded for regulatory proteins and were on the other strand. Potential promoters and polyadenylation signals were identified. Structural analysis was performed for terminal inverted repeats containing extended palindromes. The genome structure of BgDNV was compared with that of other Parvoviridae.

  14. The nucleotide sequence of the sheep MHC class II DNA gene

    SciTech Connect

    Wright, H.; Redmond, J.; Ballingall, K.T.; Wright, F.

    1995-01-11

    The human MHC class II DNA gene was identified and sequenced by Trowsdale and Kelly. When a molecular map of the HLA-D region became available, it was shown that the HLA-DNA gene was unusual in not having a B gene partner situated within a few kilobases (kb), the nearest B gene being HLA-DPB1. The nearest unpaired B gene is HLA-DOB which is approximately 160 kb telomeric of HLA-DNA. More recently, the mouse MHC class II genes H-20A and H-20B were shown to be equivalent to the HLA-DNA and HLA-DOB genes. Moreover, the mouse genes expressed an MHC class II protein whose tissue distribution was restricted to B cells and epithelial cell of the thymic medulla. No corresponding HLA-DN protein has been reported. 21 refs., 3 figs.

  15. Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16.

    PubMed Central

    Tran-Betcke, A; Warnecke, U; Böcker, C; Zaborosch, C; Friedrich, B

    1990-01-01

    The genes hoxF, -U, -Y, and -H which encode the four subunit polypeptides alpha, gamma, delta, and beta of the NAD-reducing hydrogenase (HoxS) of Alcaligenes eutrophus H16, were cloned, expressed in Pseudomonas facilis, and sequenced. On the basis of the nucleotide sequence, the predicted amino acid sequences, and the N-terminal amino acid sequences, it was concluded that the structural genes are tightly linked and presumably organized as an operon, denoted hoxS. Two pairs of -24 and -12 consensus sequences resembling RpoN-activatable promoters lie upstream of hoxF, the first of the four genes. Primer extension experiments indicate that the second promoter is responsible for hoxS transcription. hoxF and hoxU code for the flavin-containing dimer (alpha and gamma subunits) of HoxS which exhibits NADH:oxidoreductase activity. A putative flavin-binding region is discussed. The 26.0-kilodalton (kDa) gamma subunit contains two cysteine clusters which may participate in the coordination of two [4F3-4S]centers. The genes hoxY and hoxH code for the small 22.9-kDa delta subunit and the nickel-containing 54.8-kDa beta subunit, respectively, of the hydrogenase dimer of HoxS. The latter dimer exhibits several conserved regions found in all nickel-containing hydrogenases. The roles of these regions in coordinating iron and nickel are discussed. Although the deduced amino acid sequences of the delta and beta subunits share some conserved regions with the corresponding polypeptides of other [NiFe] hydrogenases, the overall amino acid homology is marginal. Nevertheless, significant sequence homology (35%) to the corresponding polypeptides of the soluble methylviologen-reducing hydrogenase of Methanobacterium thermoautotrophicum was found. Unlike the small subunits of the membrane-bound and soluble periplasmic hydrogenases, the HoxS protein does not appear to be synthesized with an N-terminal leader peptide. Images PMID:2188945

  16. The Bryopsis hypnoides Plastid Genome: Multimeric Forms and Complete Nucleotide Sequence

    PubMed Central

    Tian, Chao; Wang, Guangce; Niu, Jiangfeng; Pan, Guanghua; Hu, Songnian

    2011-01-01

    Background Bryopsis hypnoides Lamouroux is a siphonous green alga, and its extruded protoplasm can aggregate spontaneously in seawater and develop into mature individuals. The chloroplast of B. hypnoides is the biggest organelle in the cell and shows strong autonomy. To better understand this organelle, we sequenced and analyzed the chloroplast genome of this green alga. Principal Findings A total of 111 functional genes, including 69 potential protein-coding genes, 5 ribosomal RNA genes, and 37 tRNA genes were identified. The genome size (153,429 bp), arrangement, and inverted-repeat (IR)-lacking structure of the B. hypnoides chloroplast DNA (cpDNA) closely resembles that of Chlorella vulgaris. Furthermore, our cytogenomic investigations using pulsed-field gel electrophoresis (PFGE) and southern blotting methods showed that the B. hypnoides cpDNA had multimeric forms, including monomer, dimer, trimer, tetramer, and even higher multimers, which is similar to the higher order organization observed previously for higher plant cpDNA. The relative amounts of the four multimeric cpDNA forms were estimated to be about 1, 1/2, 1/4, and 1/8 based on molecular hybridization analysis. Phylogenetic analyses based on a concatenated alignment of chloroplast protein sequences suggested that B. hypnoides is sister to all Chlorophyceae and this placement received moderate support. Conclusion All of the results suggest that the autonomy of the chloroplasts of B. hypnoides has little to do with the size and gene content of the cpDNA, and the IR-lacking structure of the chloroplasts indirectly demonstrated that the multimeric molecules might result from the random cleavage and fusion of replication intermediates instead of recombinational events. PMID:21339817

  17. Human parainfluenza type 3 virus hemagglutinin-neuraminidase glycoprotein: nucleotide sequence of mRNA and limited amino acid sequence of the purified protein.

    PubMed Central

    Elango, N; Coligan, J E; Jambou, R C; Venkatesan, S

    1986-01-01

    The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5. Images PMID:3003381

  18. DNA and RNA from Uninfected Vertebrate Cells Contain Nucleotide Sequences Related to the Putative Transforming Gene of Avian Myelocytomatosis Virus

    PubMed Central

    Sheiness, Diana; Bishop, J. Michael

    1979-01-01

    The avian carcinoma virus MC29 (MC29V) contains a sequence of approximately 1,500 nucleotides which may represent a gene responsible for tumorigenesis by MC29V. We present evidence that MC29V has acquired this nucleotide sequence from the DNA of its host. The host sequence which has been incorporated by MC29V is transcribed into RNA in uninfected chicken cells and thus probably encodes a cellular gene. We have prepared radioactive DNA complementary to the putative MC29V transforming gene (cDNAmc29) and have found that sequences homologous to cDNAmc29 are present in the genomes of several uninfected vertebrate species. The DNA of chicken, the natural host for MC29V, contains at least 90% of the sequences represented by cDNAmc29. DNAs from other animals show significant but decreasing amounts of complementarity to cDNAmc29 in accordance with their evolutionary divergence from chickens; the thermal stabilities of duplexes formed between cDNAmc29 and avian DNAs also reflect phylogenetic divergence. Sequences complementary to cDNAmc29 are transcribed into approximately 10 copies per cell of polyadenylated RNA in uninfected chicken fibroblasts. Thus, the vertebrate homolog of cDNAmc29 may be a gene which has been conserved throughout vertebrate evolution and which served as a progenitor for the putative transforming gene of MC29V. Recent experiments suggest that the putative transforming gene of avian erythroblastosis virus, like that of MC29V, may have arisen by incorporation of a host gene (Stehelin et al., personal communication). These findings for avian erythroblastosis virus and MC29V closely parallel previous results, suggesting a host origin for src (D. H. Spector, B. Baker, H. E. Varmus, and J. M. Bishop, Cell 13:381-386, 1978; D. H. Spector, K. Smith, T. Padgett, P. McCombe, D. Roulland-Dussoix, C. Moscovici, H. E. Varmus, and J. M. Bishop, Cell 13:371-379, 1978; D. H. Spector, H. E. Varmus, and J. M. Bishop, Proc. Natl. Acad. Sci. U.S.A. 75:4102-4106, 1978; D

  19. Molecular cloning of the Clostridium botulinum structural gene encoding the type B neurotoxin and determination of its entire nucleotide sequence.

    PubMed Central

    Whelan, S M; Elmore, M J; Bodsworth, N J; Brehm, J K; Atkinson, T; Minton, N P

    1992-01-01

    DNA fragments derived from the Clostridium botulinum type A neurotoxin (BoNT/A) gene (botA) were used in DNA-DNA hybridization reactions to derive a restriction map of the region of the C. botulinum type B strain Danish chromosome encoding botB. As the one probe encoded part of the BoNT/A heavy (H) chain and the other encoded part of the light (L) chain, the position and orientation of botB relative to this map were established. The temperature at which hybridization occurred indicated that a higher degree of DNA homology occurred between the two genes in the H-chain-encoding region. By using the derived restriction map data, a 2.1-kb BglII-XbaI fragment encoding the entire BoNT/B L chain and 108 amino acids of the H chain was cloned and characterized by nucleotide sequencing. A contiguous 1.8-kb XbaI fragment encoding a further 623 amino acids of the H chain was also cloned. The 3' end of the gene was obtained by cloning a 1.6-kb fragment amplified from genomic DNA by inverse polymerase chain reaction. Translation of the nucleotide sequence derived from all three clones demonstrated that BoNT/B was composed of 1,291 amino acids. Comparative alignment of its sequence with all currently characterized BoNTs (A, C, D, and E) and tetanus toxin (TeTx) showed that a wide variation in percent homology occurred dependent on which component of the dichain was compared. Thus, the L chain of BoNT/B exhibits the greatest degree of homology (50% identity) with the TeTx L chain, whereas its H chain is most homologous (48% identity) with the BoNT/A H chain. Overall, the six neurotoxins were shown to be composed of highly conserved amino acid domains interceded with amino acid tracts exhibiting little overall similarity. In total, 68 amino acids of an average of 442 are absolutely conserved between L chains and 110 of 845 amino acids are conserved between H chains. Conservation of Trp residues (one in the L chain and nine in the H chain) was particularly striking. The most

  20. Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny.

    PubMed

    Yokobori, Shin-ichi; Iseto, Tohru; Asakawa, Shuichi; Sasaki, Takashi; Shimizu, Nobuyoshi; Yamagishi, Akihiko; Oshima, Tairo; Hirose, Euichi

    2008-05-01

    The complete nucleotide sequences of the mitochondrial (mt) genomes of the entoprocts Loxocorone allax and Loxosomella aloxiata were determined. Both species carry the typical gene set of metazoan mt genomes and have similar organizations of their mt genes. However, they show differences in the positions of two tRNA(Leu) genes. Additionally, the tRNA(Val) gene, and half of the long non-coding region, is duplicated and inverted in the Loxos. aloxiata mt genome. The initiation codon of the Loxos. aloxiata cytochrome oxidase subunit I gene is expected to be ACG rather than AUG. The mt gene organizations in these two entoproct species most closely resemble those of mollusks such as Katharina tunicata and Octopus vulgaris, which have the most evolutionarily conserved mt gene organization reported to date in mollusks. Analyses of the mt gene organization in the lophotrochozoan phyla (Annelida, Brachiopoda, Echiura, Entoprocta, Mollusca, Nemertea, and Phoronida) suggested a close phylogenetic relationship between Brachiopoda, Annelida, and Echiura. However, Phoronida was excluded from this grouping. Molecular phylogenetic analyses based on the sequences of mt protein-coding genes suggested a possible close relationship between Entoprocta and Phoronida, and a close relationship among Brachiopoda, Annelida, and Echiura.

  1. Organization of the lexA gene of Escherichia coli and nucleotide sequence of the regulatory region.

    PubMed Central

    Miki, T; Ebina, Y; Kishi, F; Nakazawa, A

    1981-01-01

    The product of the lexA gene of Escherichia coli has been shown to regulate expression of the several cellular functions (SOS functions) induced by treatments which abruptly inhibit DNA synthesis. We have cloned and mapped the lexA gene on a small segment of approximately 600 base pairs. The lexA promotor was located by transcription R-loop analysis, and the lexA product of 22,000 daltons was identified by protein synthesis in vitro. An unknown gene was found which directed the synthesis of a protein of 35,000 daltons in a region downstream from the lexA gene. Nucleotide sequence of the regulatory region of the lexA gene was determined. The sequence contained inverted repeats homologous to that of the recA regulatory region. These inverted repeats may be recognized by the lexA protein, because the protein is considered to repress both the genes as a common repressor. Images PMID:6261224

  2. Nucleotide sequence and functional analysis of regulatory region of the lumP and the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Chao, Y F; Weng, S F

    1995-05-25

    The lumP gene is linked to the lux operon, but runs in the opposite direction in Photobacterium leiognathi PL741. The gene order of the lumP and the lux operon is < -lumP-R & R-luxC-luxD-luxA-luxB-luxN-luxE- > (R & R: regulatory region). The nucleotide sequence of the regulatory region (827-bp) between the lumP and the lux operon was determined. Sequence analysis illustrates that the regulatory region includes two divergent promoter systems, PR-promoter system for the lux operon (R-operon) and PL-promoter system for the lumP or lum operon (L-operon). Functional analysis of the regulatory region shows that the PR- and PL-promoter systems both are able to lead the gene expression. The deletion experiment result elicits that the PR- and PL-promoter are coordinatively and negatively regulated; the PR- and PL-promoter might be competing for recognition by RNA polymerase to initiate transcription. The fact of the LumP responsible for the spectral blue shift in P. leiognathi implied that the lumP gene closedly linked to the lux operon is for coordinative regulation with the lux operon. In addition, the glucose repression on the PR-promoter system shows that the expression of the lux operon is regulated by cAMP-CRP induction in E. coli.

  3. Nucleotide sequence of the wild-type RAD4 gene of Saccharomyces cerevisiae and characterization of mutant rad4 alleles.

    PubMed Central

    Couto, L B; Friedberg, E C

    1989-01-01

    Shuttle plasmids carrying the wild-type RAD4 gene of Saccharomyces cerevisiae cannot be propagated in Escherichia coli (R. Fleer, W. Siede, and E. C. Friedberg, J. Bacteriol. 169:4884-4892, 1987). In order to determine the nucleotide sequence of the cloned gene, we used a plasmid carrying a mutant allele that allows plasmid propagation in E. coli. The wild-type sequence in the region of this mutation was determined from a second plasmid carrying a different mutant rad4 allele. We established the locations and characteristics of a number of spontaneously generated plasmid-borne RAD4 mutations that alleviate the toxicity of the wild-type gene in E. coli and of several mutagen-induced chromosomal mutations that inactivate the excision repair function of RAD4. These mutations are situated in very close proximity to each other, and all are expected to result in the expression of truncated polypeptides missing the carboxy-terminal one-third of the Rad4 polypeptide. This region of the gene may be important both for the toxic effect of the Rad4 protein in E. coli and for its role in DNA repair in S. cerevisiae. PMID:2649477

  4. Identification and characterization of nucleotide variations in the genome of Ziziphus jujuba (Rhamnaceae) by next generation sequencing.

    PubMed

    Ma, Qiuyue; Feng, Kai; Yang, Wanxu; Chen, Yingnan; Yu, Faxin; Yin, Tongming

    2014-05-01

    In this study, single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) in the genome of Ziziphus jujuba were identified using sequences generated by the Roche 454 GS-FLX sequencer. A total of, 573,141 reads were produced with an average read length of 360 bp. After quality control, 258,754 of the filtered reads were assembled into 23,864 contigs, and 293,458 remained as singletons. Using the contig assemblies as a reference, 17,160 SNPs and 478 InDels were identified. Among the SNPs, transitions occurred three times more frequently than transversions. In transitions, the number of C/T and G/A transitions was similar. Among the transversions, A/T was the most abundant, and C/G was much rarer than any of the other types of transversions, accounting for only about half the numbers of A/C, A/T and G/T transversions. For the InDels, mononucleotide changes amounted to 64.4% of the total number of InDels. In general, the frequency of detected InDels decreased as the length of the InDels increased. This study provides valuable marker resources for future genetic studies of Ziziphus spp.

  5. Nucleotide sequence and spatial expression pattern of a drought- and abscisic Acid-induced gene of tomato.

    PubMed

    Plant, A L; Cohen, A; Moses, M S; Bray, E A

    1991-11-01

    The nucleotide sequence of le16, a tomato (Lycopersicon esculentum Mill.) gene induced by drought stress and regulated by abscisic acid specifically in aerial vegetative tissue, is presented. The single open reading frame contained within the gene has the capacity to encode a polypeptide of 12.7 kilodaltons and is interrupted by a small intron. The predicted polypeptide is rich in leucine, glycine, and alanine and has an isoelectric point of 8.7. The amino terminus is hydrophobic and characteristic of signal sequences that target polypeptides for export from the cytoplasm. There is homology (47.2% identity) between the amino terminus of the LE 16 polypeptide and the corresponding amino terminal domain of the maize phospholipid transfer protein. le16 was expressed in drought-stressed leaf, petiole, and stem tissue and to a much lower extent in the pericarp of mature green tomato fruit and developing seeds. No expression was detected in the pericarp of red fruit or in drought-stressed roots. Expression of le16 was also induced in leaf tissue by a variety of other abiotic stresses including polyethylene glycol-mediated water deficit, salinity, cold stress, and heat stress. None of these stresses or direct applications of abscisic acid induced the expression of le16 in the roots of the same plants. The unique expression characteristics of this gene indicates that novel regulatory mechanisms, in addition to endogenous abscisic acid, are involved in controlling gene expression.

  6. Nucleotide and protein sequences for dog masticatory tropomyosin identify a novel Tpm4 gene product

    PubMed Central

    Reiser, Peter J.

    2016-01-01

    Jaw-closing muscles of several vertebrate species, including members of Carnivora, express a unique, “masticatory”, isoform of myosin heavy chain, along with isoforms of other myofibrillar proteins that are not expressed in most other muscles. It is generally believed that the complement of myofibrillar isoforms in these muscles serves high force generation for capturing live prey, breaking down tough plant material and defensive biting. A unique isoform of tropomyosin (Tpm) was reported to be expressed in cat jaw-closing muscle, based upon two-dimensional gel mobility, peptide mapping, and immunohistochemistry. The objective of this study was to obtain protein and gene sequence information for this unique Tpm isoform. Samples of masseter (also a jaw-closing muscle), tibialis (with predominantly fast-twitch fibers), and the deep lateral gastrocnemius (predominantly slow-twitch fibers) were obtained from adult dogs. Expressed Tpm isoforms were cloned and sequencing yielded cDNAs that were identical to genomic predicted striated muscle Tpm1.1St(a,b,b,a) (historically referred to as αTpm), Tpm2.2St(a,b,b,a) (βTpm) and Tpm3.12St(a,b,b,a) (cTpm) isoforms (nomenclature reflects predominant tissue expression (“St”—striated muscle) and exon splicing pattern), as well as a novel 284 amino acid isoform observed in jaw-closing muscle that is identical to a genomic predicted product of the Tpm4 gene (δTpm) family. The novel isoform is designated as Tpm4.3St(a,b,b,a). The myofibrillar Tpm isoform expressed in dog masseter exhibits a unique electrophoretic mobility on gels containing 6 M urea, compared to other skeletal Tpm isoforms. To validate that the cloned Tpm4.3 isoform is the Tpm expressed in dog masseter, E. coli-expressed Tpm4.3 was electrophoresed in the presence of urea. Results demonstrate that Tpm4.3 has identical electrophoretic mobility to the unique dog masseter Tpm isoform and is of different mobility from that of muscle Tpm1.1, Tpm2.2 and Tpm3

  7. Comparison of Two Massively Parallel Sequencing Platforms using 83 Single Nucleotide Polymorphisms for Human Identification.

    PubMed

    Apaga, Dame Loveliness T; Dennis, Sheila E; Salvador, Jazelyn M; Calacal, Gayvelline C; De Ungria, Maria Corazon A

    2017-03-24

    The potential of Massively Parallel Sequencing (MPS) technology to vastly expand the capabilities of human identification led to the emergence of different MPS platforms that use forensically relevant genetic markers. Two of the MPS platforms that are currently available are the MiSeq(®) FGx™ Forensic Genomics System (Illumina) and the HID-Ion Personal Genome Machine (PGM)™ (Thermo Fisher Scientific). These are coupled with the ForenSeq™ DNA Signature Prep kit (Illumina) and the HID-Ion AmpliSeq™ Identity Panel (Thermo Fisher Scientific), respectively. In this study, we compared the genotyping performance of the two MPS systems based on 83 SNP markers that are present in both MPS marker panels. Results show that MiSeq(®) FGx™ has greater sample-to-sample variation than the HID-Ion PGM™ in terms of read counts for all the 83 SNP markers. Allele coverage ratio (ACR) values show generally balanced heterozygous reads for both platforms. Two and four SNP markers from the MiSeq(®) FGx™ and HID-Ion PGM™, respectively, have average ACR values lower than the recommended value of 0.67. Comparison of genotype calls showed 99.7% concordance between the two platforms.

  8. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter

    PubMed Central

    Wang, Meng; Banerjee, Kasturi; Baker, Harriet; Cave, John W.

    2015-01-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter ( < 1 kb upstream from the transcription start site) is essential for regulating transcription in both the developing and adult nervous systems. Several putative regulatory elements within the TH proximal promoter have been reported, but evolutionary conservation of these elements has not been thoroughly investigated. Since many vertebrate species are used to model development, function and disorders of human catecholaminergic neurons, identifying evolutionarily conserved transcription regulatory mechanisms is a high priority. In this study, we align TH proximal promoter nucleotide sequences from several vertebrate species to identify evolutionarily conserved motifs. This analysis identified three elements (a TATA box, cyclic AMP response element (CRE) and a 5′-GGTGG-3′ site) that constitute the core of an ancient vertebrate TH promoter. Focusing on only eutherian mammals, two regions of high conservation within the proximal promoter were identified: a ∼250 bp region adjacent to the transcription start site and a ∼85 bp region located approximately 350 bp further upstream. Within both regions, conservation of previously reported cis-regulatory motifs and human single nucleotide variants was evaluated. Transcription reporter assays in a TH -expressing cell line demonstrated the functionality of highly conserved motifs in the proximal promoter regions and electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals. PMID:25774193

  9. Longitudinal study of a heteroplasmic 3460 Leber hereditary optic neuropathy family by multiplexed primer-extension analysis and nucleotide sequencing

    SciTech Connect

    Ghosh, S.S.; Fahy, E.; Bodis-Wollner, I.

    1996-02-01

    Nucleotide-sequencing and multiplexed primer-extension assays have been used to quantitate the mutant-allele frequency in 14 maternal relatives, spanning three generations, from a family that is heteroplasmic for the primary Leber hereditary optic neuropathy (LHON) mutation at nucleotide 3460 of the mitochondrial genome. There was excellent agreement between the values that were obtained with the two different methods. The longitudinal study shows that the mutant-allele frequency was constant within individual family members over a sampling period of 3.5 years. Second, although there was an overall increase in the mutant-allele frequency in successive generations, segregation in the direction of the mutant allele was not invariant, and there was one instance in which there was a significant decrease in the frequency from parent to offspring. From these two sets of results, and from previous studies of heteroplasmic LHON families, we conclude that there is no evidence for a marked selective pressure that determines the replication, segregation, or transmission of primary LHON mutations to white blood cells and platelets. Instead, the mtDNA molecules are most likely to replicate and segregate under conditions of random drift at the cellular level. Finally, the pattern of transmission in this maternal lineage is compatible with a developmental bottleneck model in which the number of mitochondrial units of segregation in the female germ line is relatively small in relation to the number of mtDNA molecules within a cell. However, this is not an invariant pattern for humans, and simple models of mitochondrial gene transmission are inappropriate at the present time. 37 refs., 4 figs., 1 tab.

  10. Nucleotide sequence analysis of the 3' terminal region of a wasabi strain of crucifer tobamovirus genomic RNA: subgrouping of crucifer tobamoviruses.

    PubMed

    Shimamoto, I; Sonoda, S; Vazquez, P; Minaka, N; Nishiguchi, M

    1998-01-01

    The 3' terminal 2378 nucleotides of a wasabi strain of crucifer tobamovirus (CTMV-W) infectious to crucifer plants was determined. This includes the 3' non-coding region of 235 nucleotides, coat protein (CP) gene (468 nucleotides), movement protein (MP) gene (798 nucleotides) and C-terminal partial readthrough portion of 180 K protein gene (940 nucleotides). Comparison of the sequence with homologous regions of thirteen other tobamovirus genomes showed that it had much higher identity to those of four other crucifer tobamoviruses, 85.2% to cr-TMV and turnip vein-clearing virus (TVCV), 87.4% to oilseed rape mosaic virus (ORMV) and 87.1% to TMV-Cg, than to those of other tobamoviruses. Thus CTMV-W was most similar to ORMV and TMV-Cg in sequence, but only marginally so, whereas the location and size of its MP gene was the same as cr-TMV amd TVCV. These results, together with other analyses, show that CTMV-W is a new crucifer tobamovirus, that the five crucifer tobamoviruses can be classified into two subgroups based on MP gene organization, and that the rate of sequence change is not the same in all lineages.

  11. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression.

    PubMed

    Sá-Nogueira, I; Nogueira, T V; Soares, S; de Lencastre, H

    1997-03-01

    The Bacillus subtilis L-arabinose metabolic genes araA, araB and araD, encoding L-arabinose isomerase, L-ribulokinase and L-ribulose-5-phosphate 4-epimerase, respectively, have been cloned previously and the products of araB and araD were shown to be functionally homologous to their Escherichia coli counterparts by complementation experiments. Here we report that araA, araB and araD, whose inactivation leads to an Ara- phenotype, are the first three ORFs of a nine cistron transcriptional unit with a total length of 11 kb. This operon, called ara, is located at about 256 degrees on the B. subtilis genetic map and contains six new genes named araL, araM, araN, araP, araQ and abfA. Expression of the ara operon is directed by a strong sigma A-like promoter identified within a 150 bp DNA fragment upstream from the translation start site of araA. Analysis of the sequence of the ara operon showed that the putative products of araN, araP and araQ are homologous to bacterial components of binding-protein-dependent transport systems and abfA most probably encodes an alpha-L-arabinofuranosidase. The functions of araL and araM are unknown. An in vitro-constructed insertion-deletion mutation in the region downstream from araD allowed us to demonstrate that araL, araM, araN, araP, araQ and abfA are not essential for L-arabinose utilization. Studies with strains bearing transcriptional fusions of the operon to the E. coli lacZ gene revealed that expression from the ara promoter is induced by L-arabinose and repressed by glucose.

  12. Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing.

    PubMed

    Christie, Andrew E; Chi, Megan; Lameyer, Tess J; Pascual, Micah G; Shea, Devlin N; Stanhope, Meredith E; Schulz, David J; Dickinson, Patsy S

    2015-01-01

    Peptides are the largest and most diverse class of molecules used for neurochemical communication, playing key roles in the control of essentially all aspects of physiology and behavior. The American lobster, Homarus americanus, is a crustacean of commercial and biomedical importance; lobster growth and reproduction are under neuropeptidergic control, and portions of the lobster nervous system serve as models for understanding the general principles underlying rhythmic motor behavior (including peptidergic neuromodulation). While a number of neuropeptides have been identified from H. americanus, and the effects of some have been investigated at the cellular/systems levels, little is currently known about the molecular components of neuropeptidergic signaling in the lobster. Here, a H. americanus neural transcriptome was generated and mined for sequences encoding putative peptide precursors and receptors; 35 precursor- and 41 receptor-encoding transcripts were identified. We predicted 194 distinct neuropeptides from the deduced precursor proteins, including members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FLRFamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin-related peptide families. While some of the predicted peptides are known H. americanus isoforms, most are novel identifications, more than doubling the extant lobster neuropeptidome. The deduced receptor proteins are the first descriptions of H. americanus neuropeptide receptors, and include ones for most of the peptide groups mentioned earlier, as well as those for ecdysis-triggering hormone, red pigment concentrating hormone

  13. Molecular cloning, nucleotide sequence, and abscisic acid induction of a suberization-associated highly anionic peroxidase.

    PubMed

    Roberts, E; Kolattukudy, P E

    1989-06-01

    A highly anionic peroxidase induced in suberizing cells was suggested to be the key enzyme involved in polymerization of phenolic monomers to generate the aromatic matrix of suberin. The enzyme encoded by a potato cDNA was found to be highly homologous to the anionic peroxidase induced in suberizing tomato fruit. A tomato genomic library was screened using the potato anionic peroxidase cDNA and one genomic clone was isolated that contained two tandemly oriented anionic peroxidase genes. These genes were sequenced and were 96% and 87% identical to the mRNA for potato anionic peroxidase. Both genes consist of three exons with the relative positions of their two introns being conserved between the two genes. Primer extension analysis showed that only one of the genes is expressed in the periderm of 3 day wound-healed tomato fruits. Southern blot analyses suggested that there are two copies each of the two highly homologous genes per haploid genome in both potato and tomato. Abscisic acid (ABA) induced the accumulation of the anionic peroxidase transcripts in potato and tomato callus tissues. Northern blots showed that peroxidase mRNA was detectable at 2 days and was maximal at 8 days after transfer of potato callus to solid agar media containing 10(-4) M ABA. The transcripts induced by ABA in both potato and tomato callus were identical in size to those induced in wound-healing potato tuber and tomato fruit. The anionic peroxidase peptide was detected in extracts of potato callus grown on the ABA-containing media by western blot analysis. The results support the suggestion that stimulation of suberization by ABA involves the induction of the highly anionic peroxidase.

  14. Neuropeptidergic Signaling in the American Lobster Homarus americanus: New Insights from High-Throughput Nucleotide Sequencing

    PubMed Central

    Christie, Andrew E.; Chi, Megan; Lameyer, Tess J.; Pascual, Micah G.; Shea, Devlin N.; Stanhope, Meredith E.; Schulz, David J.; Dickinson, Patsy S.

    2015-01-01

    Peptides are the largest and most diverse class of molecules used for neurochemical communication, playing key roles in the control of essentially all aspects of physiology and behavior. The American lobster, Homarus americanus, is a crustacean of commercial and biomedical importance; lobster growth and reproduction are under neuropeptidergic control, and portions of the lobster nervous system serve as models for understanding the general principles underlying rhythmic motor behavior (including peptidergic neuromodulation). While a number of neuropeptides have been identified from H. americanus, and the effects of some have been investigated at the cellular/systems levels, little is currently known about the molecular components of neuropeptidergic signaling in the lobster. Here, a H. americanus neural transcriptome was generated and mined for sequences encoding putative peptide precursors and receptors; 35 precursor- and 41 receptor-encoding transcripts were identified. We predicted 194 distinct neuropeptides from the deduced precursor proteins, including members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, FLRFamide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, proctolin, pyrokinin, SIFamide, sulfakinin and tachykinin-related peptide families. While some of the predicted peptides are known H. americanus isoforms, most are novel identifications, more than doubling the extant lobster neuropeptidome. The deduced receptor proteins are the first descriptions of H. americanus neuropeptide receptors, and include ones for most of the peptide groups mentioned earlier, as well as those for ecdysis-triggering hormone, red pigment concentrating hormone

  15. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family.

    PubMed Central

    Kraig, E; Dailey, T; Kolodrubetz, D

    1990-01-01

    The leukotoxin produced by Actinobacillus actinomycetemcomitans has been implicated in the etiology of localized juvenile periodontitis. To initiate a genetic analysis into the role of this protein in disease, we have cloned its gene, lktA. We now present the complete nucleotide sequence of the lktA gene from A. actinomycetemcomitans. When the deduced amino acid sequence of the leukotoxin protein was compared with those of other proteins, it was found to be homologous to the leukotoxin from Pasteurella haemolytica and to the alpha-hemolysins from Escherichia coli and Actinobacillus pleuropneumoniae. Each alignment showed at least 42% identity. As in the other organisms, the lktA gene of A. actinomycetemcomitans was linked to another gene, lktC, which is thought to be involved in the activation of the leukotoxin. The predicted LktC protein was related to the leukotoxin/hemolysin C proteins from the other bacteria, since they shared a minimum of 49% amino acid identity. Surprisingly, although actinobacillus species are more closely related to pasteurellae than to members of the family Enterobacteriaciae, LktA and LktC from A. actinomycetemcomitans shared significantly greater sequence identity with the E. coli alpha-hemolysin proteins than with the P. haemolytica leukotoxin proteins. Despite the overall homology to the other leukotoxin/hemolysin proteins, the LktA protein from A. actinomycetemcomitans has several unique properties. Most strikingly, it is a very basic protein with a calculated pI of 9.7; the other toxins have estimated pIs around 6.2. The unusual features of the A. actinomycetemcomitans protein are discussed in light of the different species and target-cell specificities of the hemolysins and the leukotoxins. Images PMID:2318535

  16. The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data.

    PubMed

    Tang, Xiaojia; Baheti, Saurabh; Shameer, Khader; Thompson, Kevin J; Wills, Quin; Niu, Nifang; Holcomb, Ilona N; Boutet, Stephane C; Ramakrishnan, Ramesh; Kachergus, Jennifer M; Kocher, Jean-Pierre A; Weinshilboum, Richard M; Wang, Liewei; Thompson, E Aubrey; Kalari, Krishna R

    2014-12-16

    Rapid development of next generation sequencing technology has enabled the identification of genomic alterations from short sequencing reads. There are a number of software pipelines available for calling single nucleotide variants from genomic DNA but, no comprehensive pipelines to identify, annotate and prioritize expressed SNVs (eSNVs) from non-directional paired-end RNA-Seq data. We have developed the eSNV-Detect, a novel computational system, which utilizes data from multiple aligners to call, even at low read depths, and rank variants from RNA-Seq. Multi-platform comparisons with the eSNV-Detect variant candidates were performed. The method was first applied to RNA-Seq from a lymphoblastoid cell-line, achieving 99.7% precision and 91.0% sensitivity in the expressed SNPs for the matching HumanOmni2.5 BeadChip data. Comparison of RNA-Seq eSNV candidates from 25 ER+ breast tumors from The Cancer Genome Atlas (TCGA) project with whole exome coding data showed 90.6-96.8% precision and 91.6-95.7% sensitivity. Contrasting single-cell mRNA-Seq variants with matching traditional multicellular RNA-Seq data for the MD-MB231 breast cancer cell-line delineated variant heterogeneity among the single-cells. Further, Sanger sequencing validation was performed for an ER+ breast tumor with paired normal adjacent tissue validating 29 out of 31 candidate eSNVs. The source code and user manuals of the eSNV-Detect pipeline for Sun Grid Engine and virtual machine are available at http://bioinformaticstools.mayo.edu/research/esnv-detect/.

  17. Complete nucleotide sequence of a South African isolate of Grapevine fanleaf virus and its associated satellite RNA.

    PubMed

    Lamprecht, Renate L; Spaltman, Monique; Stephan, Dirk; Wetzel, Thierry; Burger, Johan T

    2013-07-17

    The complete sequences of RNA1, RNA2 and satellite RNA have been determined for a South African isolate of Grapevine fanleaf virus (GFLV-SACH44). The two RNAs of GFLV-SACH44 are 7,341 nucleotides (nt) and 3,816 nt in length, respectively, and its satellite RNA (satRNA) is 1,104 nt in length, all excluding the poly(A) tail. Multiple sequence alignment of these sequences showed that GFLV-SACH44 RNA1 and RNA2 were the closest to the South African isolate, GFLV-SAPCS3 (98.2% and 98.6% nt identity, respectively), followed by the French isolate, GFLV-F13 (87.3% and 90.1% nt identity, respectively). Interestingly, the GFLV-SACH44 satRNA is more similar to three Arabis mosaic virus satRNAs (85%-87.4% nt identity) than to the satRNA of GFLV-F13 (81.8% nt identity) and was most distantly related to the satRNA of GFLV-R2 (71.0% nt identity). Full-length infectious clones of GFLV-SACH44 satRNA were constructed. The infectivity of the clones was tested with three nepovirus isolates, GFLV-NW, Arabis mosaic virus (ArMV)-NW and GFLV-SAPCS3. The clones were mechanically inoculated in Chenopodium quinoa and were infectious when co-inoculated with the two GFLV helper viruses, but not when co-inoculated with ArMV-NW.

  18. Complete nucleotide sequence and construction of an infectious clone of Chinese yam necrotic mosaic virus suggest that macluraviruses have the smallest genome among members of the family Potyviridae.

    PubMed

    Kondo, Toru; Fujita, Takashi

    2012-12-01

    The complete nucleotide sequence of Chinese yam necrotic mosaic virus (CYNMV) was determined from cloned virus cDNA. The CYNMV genomic RNA is 8224 nucleotides in length, excluding the poly(A) tail, and contains one long open reading frame encoding a large polyprotein of 2620 amino acids. CYNMV has no counterpart to the P1 cistron and a short HC-Pro cistron located at the 5' side of the potyvirus genome. A full-length cDNA clone, pCYNMV, was assembled under the control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator. Biolistic inoculation of Nagaimo plants with cDNA resulted in systemic necrotic mosaic symptoms typical of CYNMV infection. To our knowledge, this is the first report of the complete nucleotide sequence and construction of an infectious cDNA clone of a member of the genus Macluravirus.

  19. Nucleotide sequence of the coat protein genes of alstroemeria mosaic virus and amazon lily mosaic virus, a tentative species of genus potyvirus.

    PubMed

    Fuji, S; Terami, F; Furuya, H; Naito, H; Fukumoto, F

    2004-09-01

    The nucleotide sequences of the 3' terminal region of the genomes of Alstroemeria mosaic virus (AlsMV) and the Amazon lily mosaic virus (ALiMV) have been determined. These sequences contain the complete coding region of the viral coat protein (CP) gene followed by a 3'-untranslated region (3'-UTR). AlsMV and ALiMV share 74.9% identity in the amino acid sequence of the CP, and 55.6% identity in the nucleotide sequence of the 3'-UTR. Phylogenetic analysis of these CP genes and 3'-UTRs in relation to those of 79 potyvirus species revealed that AlsMV and ALiMV should be assigned to the Potato virus Y (PVY) subgroup. AlsMV and ALiMV were concluded to have arisen independently within the PVY subgroup.

  20. SNP Profile within the Human Major Histocompatibility Complex Reveals an Extreme and Interrupted Level of Nucleotide Diversity

    PubMed Central

    Gaudieri, Silvana; Dawkins, Roger L.; Habara, Kaori; Kulski, Jerzy K.; Gojobori, Takashi

    2000-01-01

    The human major histocompatibility complex (MHC) is characterized by polymorphic multicopy gene families, such as HLA and MIC (PERB11); duplications; insertions and deletions (indels); and uneven rates of recombination. Polymorphisms at the antigen recognition sites of the HLA class I and II genes and at associated neutral sites have been attributed to balancing selection and a hitchhiking effect, respectively. We, and others, have previously shown that nucleotide diversity between MHC haplotypes at non-HLA sites is unusually high (>10%) and up to several times greater than elsewhere in the genome (0.08%–0.2%). We report here the most extensive analysis of nucleotide diversity within a continuous sequence in the genome. We constructed a single nucleotide polymorphism (SNP) profile that reveals a pattern of extreme but interrupted levels of nucleotide diversity by comparing a continuous sequence within haplotypes in three genomic subregions of the MHC. A comparison of several haplotypes within one of the genomic subregions containing the HLA-B and -C loci suggests that positive selection is operating over the whole subgenomic region, including HLA and non-HLA genes. [The sequence data for the multiple haplotype comparisons within the class I region have been submitted to DDBJ/EMBL/GenBank under accession nos. AF029061, AF029062, and AB031005–AB031010. Additional sequence data have been submitted to the DDBJ data library under accession nos. AB031005–AB03101 and AF029061–AF029062.] PMID:11042155

  1. Correlation of the 5'untranslated region (5'UTR) and non-structural 5B (NS5B) nucleotide sequences in hepatitis C virus subtyping.

    PubMed

    Baclig, Michael O; Chan, Veronica F; Ramos, John Donnie A; Gopez-Cervantes, Juliet; Natividad, Filipinas F

    2010-07-07

    The 5'untranslated region (5'UTR) is often targeted to detect major genotypes in hepatitis C virus (HCV) but its insufficient sequence variation limits its usefulness for differentiating HCV subtypes. Subtyping has important implications to epidemiologic studies, clinical management, and vaccine development. Analysis of the nucleotide sequence of variable regions such as the non-structural 5B (NS5B) is considered the reference method for identifying HCV subtypes. We evaluated the accuracy of subtyping of HCV genotype 1 (HCV-1) samples from the Philippines by 5'UTR sequencing as compared with the NS5B sequence. A total of 30 patients infected with HCV-1 previously confirmed by PCR-RFLP and clinically diagnosed with chronic hepatitis C were analyzed. Nucleotide sequencing of the 5'UTR showed that 15 (50%) were identified as 1a and 15 (50%) were identified as 1b. Sequence analysis of the NS5B revealed that 13 (43%) belonged to subtype 1a while 17 (57%) belonged to subtype 1b. The most predominant subtype was 1b by NS5B sequencing. The predictive value of 5'UTR sequencing to subtype 1a was 73% while for subtype 1b, predictive value was 87%. Overall concordance between 5'UTR and NS5B sequencing was 80%. NS5B sequence and phylogenetic analysis is still the reference method for identifying HCV-1a and 1b subtypes.

  2. Correlation of the 5′untranslated region (5′UTR) and non-structural 5B (NS5B) nucleotide sequences in hepatitis C virus subtyping

    PubMed Central

    Baclig, Michael O; Chan, Veronica F; Ramos, John Donnie A; Gopez-Cervantes, Juliet; Natividad, Filipinas F

    2010-01-01

    The 5′untranslated region (5′UTR) is often targeted to detect major genotypes in hepatitis C virus (HCV) but its insufficient sequence variation limits its usefulness for differentiating HCV subtypes. Subtyping has important implications to epidemiologic studies, clinical management, and vaccine development. Analysis of the nucleotide sequence of variable regions such as the non-structural 5B (NS5B) is considered the reference method for identifying HCV subtypes. We evaluated the accuracy of subtyping of HCV genotype 1 (HCV-1) samples from the Philippines by 5′UTR sequencing as compared with the NS5B sequence. A total of 30 patients infected with HCV-1 previously confirmed by PCR-RFLP and clinically diagnosed with chronic hepatitis C were analyzed. Nucleotide sequencing of the 5′UTR showed that 15 (50%) were identified as 1a and 15 (50%) were identified as 1b. Sequence analysis of the NS5B revealed that 13 (43%) belonged to subtype 1a while 17 (57%) belonged to subtype 1b. The most predominant subtype was 1b by NS5B sequencing. The predictive value of 5′UTR sequencing to subtype 1a was 73% while for subtype 1b, predictive value was 87%. Overall concordance between 5′UTR and NS5B sequencing was 80%. NS5B sequence and phylogenetic analysis is still the reference method for identifying HCV-1a and 1b subtypes. PMID:21537395

  3. Development of Single Nucleotide Polymorphism markers in Theobroma cacao and comparison to Simple Sequence Repeat markers for genotyping of Cameroon clones.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single Nucleotide Polymorphism (SNP) markers are increasingly being used in crop breeding programs, slowly replacing Simple Sequence Repeats (SSR) and other markers. SNPs provide many benefits over SSRs, including ease of analysis and unambiguous results across various platforms. We have identifie...

  4. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  5. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... readable form may be created by any means, such as word processors, nucleotide/amino acid sequence editors... which the data were recorded on the computer readable form, the operating system used, a reference... Line Feed. (3) 8mm Data Cartridge: Format: Unix tar command; specify blocking factor (not “block...

  6. Nucleotide sequencing of an apparent proviral copy of env mRNA defines determinants of expression of the mouse mammary tumor virus env gene.

    PubMed Central

    Majors, J E; Varmus, H E

    1983-01-01

    To extend our understanding of the organization and expression of the mouse mammary tumor virus genome, we determined the nucleotide sequence of large regions of a cloned mouse mammary tumor virus strain C3H provirus that appears to be a DNA copy of env mRNA. In conjunction with analysis of several additional clones of integrated and unintegrated mouse mammary tumor virus DNAs, we came to the following conclusions: (i) the mRNA for env is generated by splicing mechanisms that recognize conventional eucaryotic signals at donor and acceptor sites with a leader of at least 289 bases in length; (ii) the first of three possible initiation codons for translation of env follows the splice junction by a single nucleotide and produces a signal peptide of 98 amino acids; (iii) the amino terminal sequence of the major virion glycoprotein gp52env is confirmed by nucleotide sequencing and is encoded by a sequence beginning 584 nucleotides from the 5' end of env mRNA; (iv) the final 17 amino acids at the carboxyl terminus of the primary product of env are encoded within the long terminal repeat by the 51 bases at the 5' end of the U3 domain; and (v) bases 2 through 4 at the 5' end of the long terminal repeat constitute an initiation codon that commences an open reading frame capable of directing the synthesis of a 36-kilodalton protein. PMID:6312081

  7. A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration.

    PubMed

    Konràd, Csaba; Kiss, Gergely; Töröcsik, Beata; Lábár, János L; Gerencser, Akos A; Mándi, Miklós; Adam-Vizi, Vera; Chinopoulos, Christos

    2011-03-01

    Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate.

  8. Complete Nucleotide Sequence and Organization of the Atrazine Catabolic Plasmid pADP-1 from Pseudomonas sp. Strain ADP

    PubMed Central

    Martinez, Betsy; Tomkins, Jeffrey; Wackett, Lawrence P.; Wing, Rod; Sadowsky, Michael J.

    2001-01-01

    The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPβ plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how

  9. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome

    PubMed Central

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948

  10. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    PubMed

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  11. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides.

    PubMed Central

    Gibson, J L; Tabita, F R

    1993-01-01

    Structural genes encoding Calvin cycle enzymes in Rhodobacter sphaeroides are duplicated and organized within two physically distinct transcriptional units, the form I and form II cbb operons. Nucleotide sequence determination of the region upstream of the form I operon revealed a divergently transcribed open reading frame, cbbR, that showed significant similarity to the LysR family of transcriptional regulatory proteins. Mutants containing an insertionally inactivated cbbR gene were impaired in photoheterotrophic growth and completely unable to grow photolithoautotrophically with CO2 as the sole carbon source. In the cbbR strain, expression of genes within the form I operon was completely abolished and that of the form II operon was reduced to about 30% of the wild-type level. The cloned cbbR gene complemented the mutant for wild-type growth characteristics, and normal levels of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) were observed. However, rocket immunoelectrophoresis revealed that the wild-type level of RubisCO was due to overexpression of the form II enzyme, whereas expression of the form I RubisCO was 10% of that of the wild-type strain. The cbbR insertional inactivation did not appear to affect aerobic expression of either CO2 fixation operon, but preliminary evidence suggests that the constitutive expression of the form II operon observed in the cbbR strain may be subject to repression during aerobic growth. PMID:8376325

  12. Complete nucleotide sequence and genome organization of an endornavirus from bottle gourd (Lagenaria siceraria) in California, U.S.A.

    PubMed

    Kwon, Sun-Jung; Tan, Shih-Hua; Vidalakis, Georgios

    2014-08-01

    The full-length nucleotide sequence and genome organization of an Endornavirus isolated from ornamental hard shell bottle gourd plants (Lagenaria siceraria (Molina) Standl.) in California (CA), USA tentatively named L. siceraria endornavirus-California (LsEV-CA) was determined. The LsEV-CA genome was 15088 bp in length, with a G + C content of 36.55 %. The lengths of the 5' and 3' untranslated regions were 111 and 52 bp, respectively. The genome of LsEV-CA contained one large ORF encoding a 576 kDa polyprotein. The predicted protein contains two glycosyltransferase motifs, as well as RNA-dependent RNA polymerase and helicase domains. LsEV-CA was detected in healthy-looking field-grown gourd plants, as well as plants expressing yellows symptoms. It was also detected in non-symptomatic greenhouse-grown gourd seedlings grown from seed obtained from the same field sites. These preliminary data indicate that LsEV-CA is likely not associated with the gourd-yellows syndrome observed in the field.

  13. Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae

    PubMed Central

    Ardisson-Araújo, Daniel M. P.; Lima, Rayane Nunes; Melo, Fernando L.; Clem, Rollie J.; Huang, Ning; Báo, Sônia Nair; Sosa-Gómez, Daniel R.; Ribeiro, Bergmann M.

    2016-01-01

    The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation. PMID:27273152

  14. [Variability of nucleotide sequences of the mitochondrial DNA cytochrome c gene in dolly varden and taranetz char].

    PubMed

    Radchenko, O A; Derenko, M V; Maliarchuk, B A

    2000-07-01

    Nucleotide sequence of the 307-bp fragment of the mitochondrial DNA cytochrome b gene was determined in representatives of the three species of the Salvelinus genus, specifically, dolly varden char (S. malma), taranetz char (S. taranetzi), and white-spotted char (S. leucomaenis). These results pointed to a high level of mitochondrial DNA (mtDNA) divergence between white-spotted char and dolly varden char, on the one hand, and taranetz char, on the other (the mean d value was 5.45%). However, the divergence between the dolly varden char and taranetz char was only 0.81%, which is comparable with the level of intraspecific divergence in the dolly varden char (d = 0.87%). It was shown that the dolly varden char mitochondrial gene pool contained DNA lineages differing from the main mtDNA pool at least in the taranetz char-specific mitochondrial lineages. One of these dolly varden char mtDNA lineages was characterized by the presence of the restriction endonuclease MspI-D variant of the cytochrome b gene. This lineage was widely distributed in the Chukotka populations but it was not detected in the Yana River (Okhotsk sea) populations. These findings suggest that dolly varden char has a more ancient evolutionary lineage, diverging from the common ancestor earlier than did taranetz char.

  15. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    PubMed

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases.

  16. BRDT gene sequence in human testicular pathologies and the implication of its single nucleotide polymorphism (rs3088232) on fertility.

    PubMed

    Barda, S; Yogev, L; Paz, G; Yavetz, H; Lehavi, O; Hauser, R; Doniger, T; Breitbart, H; Kleiman, S E

    2014-07-01

    Bromodomain testis-specific (BRDT) protein is essential for the normal process of spermatogenesis. Mutant mice that expressed truncated BRDT had impaired testicular histology with severely reduced sperm concentration and abnormal sperm morphology, while a model of knockout Brdt mice with no BRDT protein had complete meiotic arrest. A BRDT single nucleotide polymorphism (SNP) (rs3088232) was reported as being associated with infertility in men. We assessed testicular specimens of 276 azoospermic men who underwent testicular sperm extraction to search for specimens that showed spermatogenic impairments similar to those of mutant BRDT mice. Ten similar specimens were selected for BRDT gene sequencing and they revealed three NCBI-reported SNPs (rs10783071, rs3088232 and rs10747493) variously distributed among them. Bioinformatics analysis predicted that they would not affect protein activity. Further assessment of rs3088232 frequency in a large group of non-obstructive azoospermia men and fertile controls demonstrated no significant difference between them (27.2 and 21.7% respectively; p = 0.122, Fisher's exact test). We conclude that the testicular impairments observed in the 10 specimens were not a consequence of BRDT gene mutation. The association between BRDT rs3088232 and infertility that had been reported in other studies was not supported.

  17. Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene.

    PubMed

    Okamoto, M; Bessho, Y; Kamiya, M; Kurosawa, T; Horii, T

    1995-01-01

    Nucleotide sequence variations in a region of the mitochondrial cytochrome c oxidase subunit I (COI) gene (391 bp) were examined within seven species of the genus Taenia and two species of the genus Echinococcus, including ten isolates of T. taeniaeformis and six isolates of E. multilocularis. More than a 12% rate of nucleotide differences between taeniid species was found, allowing the species to be distinguished. In E. multilocularis, no sequence variation was observed among isolates, regardless of the host (gray red-backed vole, tundra vole, pig, Norway rat) or area (Japan, Alaska) from which each metacestode had been isolated. In contrast, six distinct sequences were detected among the ten T. taeniaeformis isolates examined. The level of nucleotide variation in the COI gene within T. taeniaeformis isolates except for one isolate from the gray red-backed vole (TtACR), which has been proposed as a distinct strain or a different species, was about 0.3%-4.1%, whereas the COI gene sequence for TtACR differed from those of the other isolates, with levels being 9.0%-9.5%. Phylogenetic trees were then inferred from these sequence data using two different algorithms.

  18. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm.

    PubMed

    Norberg, Peter; Bergström, Maria; Hermansson, Malte

    2014-01-01

    The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp) and pMCBF6 (66 729 bp) have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are "res-site hunters" that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA) and the vegetative replication origin (oriV). One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb) has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND) system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.

  19. Penicillinase from Bacillus licheniformis: nucleotide sequence of the gene and implications for the biosynthesis of a secretory protein in a Gram-positive bacterium.

    PubMed Central

    Neugebauer, K; Sprengel, R; Schaller, H

    1981-01-01

    The gene for the penicillinase from B. licheniformis has been cloned in a functional stat on a 1.5 kb DNA fragment and its nucleotide sequence has been determined. A sequence of 307 amino acid residues is infered for the penicillinase precursor. Of these 34 amino acids precede the sequence of the secreted form of the enzyme. This peptide extension shows the features of a signal for secretion and also provides the hydrophobic anchor for the membrane-bound form of the enzyme. PMID:6269055

  20. Insertion sequence element single nucleotide polymorphism typing provides insights into the population structure and evolution of Mycobacterium ulcerans across Africa.

    PubMed

    Vandelannoote, Koen; Jordaens, Kurt; Bomans, Pieter; Leirs, Herwig; Durnez, Lies; Affolabi, Dissou; Sopoh, Ghislain; Aguiar, Julia; Phanzu, Delphin Mavinga; Kibadi, Kapay; Eyangoh, Sara; Manou, Louis Bayonne; Phillips, Richard Odame; Adjei, Ohene; Ablordey, Anthony; Rigouts, Leen; Portaels, Françoise; Eddyani, Miriam; de Jong, Bouke C

    2014-02-01

    Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.

  1. Insertion Sequence Element Single Nucleotide Polymorphism Typing Provides Insights into the Population Structure and Evolution of Mycobacterium ulcerans across Africa

    PubMed Central

    Jordaens, Kurt; Bomans, Pieter; Leirs, Herwig; Durnez, Lies; Affolabi, Dissou; Sopoh, Ghislain; Aguiar, Julia; Phanzu, Delphin Mavinga; Kibadi, Kapay; Eyangoh, Sara; Manou, Louis Bayonne; Phillips, Richard Odame; Adjei, Ohene; Ablordey, Anthony; Rigouts, Leen; Portaels, Françoise; Eddyani, Miriam; de Jong, Bouke C.

    2014-01-01

    Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the “pan-African clade” were found to be widespread throughout Africa, while the ISE-SNP types of the “Gabonese/Cameroonian clade” were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types. PMID:24296504

  2. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions.

    PubMed

    de la Bastide, Paul Y; Leung, Wai Lam; Hintz, William E

    2015-01-01

    The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data. This non-subjective approach to species identification does not rely upon transient morphological features. Phylogenetic analyses comparing our ITS sequences and species designations with data from previous studies generally supported the clade scheme of Diéguez-Uribeondo et al. (2007) and found agreement with the molecular taxonomic cluster system of Sandoval-Sierra et al. (2014). Our Canadian ITS sequence collection will thus contribute to the public database and assist the clarification of Saprolegnia spp. taxonomy. The analysis of ITS region sequence variability facilitated genus- and species-level identification of unknown samples from aquaculture facilities and provided useful information on species composition. A unique ITS-RFLP for the identification of S. parasitica was also described.

  3. Single nucleotide polymorphism discovery in cutthroat trout subspecies using genome reduction, barcoding, and 454 pyro-sequencing

    PubMed Central

    2012-01-01

    Background Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. Results Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. Conclusions Genomic and bioinformatic protocols were

  4. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences.

    PubMed Central

    Garcia, M I; Labigne, A; Le Bouguenec, C

    1994-01-01

    The afa gene clusters encode afimbrial adhesins (AFAs) that are expressed by uropathogenic and diarrhea-associated Escherichia coli strains. The plasmid-borne afa-3 gene cluster is responsible for the biosynthesis of the AFA-III adhesin that belongs to the Dr family of hemagglutinins. Reported in this work is the nucleotide sequence of the 9.2-kb insert of the recombinant plasmid pILL61, which contains the afa-3 gene cluster cloned from a cystitis-associated E. coli strain (A30). The afa-3 gene cluster was shown to contain six open reading frames, designated afaA to afaF. It was organized in two divergent transcriptional units. Five of the six Afa products showed marked homologies with proteins encoded by previously described adhesion systems that allowed us to attribute to each of them a putative function in the biogenesis of the AFA-III adhesin. AfaE was identified as the structural adhesin product, whereas AfaB and AfaC were recognized as periplasmic chaperone and outer membrane anchor proteins, respectively. The AfaA and AfaF products were shown to be homologous to the PapI-PapB transcriptional regulatory proteins. No function could be attributed to the AfaD product, the gene of which was previously shown to be dispensable for the synthesis of a functional adhesin. Upstream of the afa-3 gene cluster, a 1.2-kb region was found to be 96% identical to the RepFIB sequence of one of the enterotoxigenic E. coli plasmids (P307), suggesting a common ancestor plasmid. This region contains an integrase-like gene (int). Sequence analysis revealed the presence of an IS1 element between the int gene and the afa-3 gene cluster. Two other IS1 elements were detected and located in the vicinity of the afa-3 gene cluster by hybridization experiments. The afa-3 gene cluster was therefore found to be flanked by two IS1 elements in direct orientation and two in opposite orientations. The afa-3 gene cluster, flanked by two directly oriented IS1 elements, was shown to translocate

  5. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences.

    PubMed

    Garcia, M I; Labigne, A; Le Bouguenec, C

    1994-12-01

    The afa gene clusters encode afimbrial adhesins (AFAs) that are expressed by uropathogenic and diarrhea-associated Escherichia coli strains. The plasmid-borne afa-3 gene cluster is responsible for the biosynthesis of the AFA-III adhesin that belongs to the Dr family of hemagglutinins. Reported in this work is the nucleotide sequence of the 9.2-kb insert of the recombinant plasmid pILL61, which contains the afa-3 gene cluster cloned from a cystitis-associated E. coli strain (A30). The afa-3 gene cluster was shown to contain six open reading frames, designated afaA to afaF. It was organized in two divergent transcriptional units. Five of the six Afa products showed marked homologies with proteins encoded by previously described adhesion systems that allowed us to attribute to each of them a putative function in the biogenesis of the AFA-III adhesin. AfaE was identified as the structural adhesin product, whereas AfaB and AfaC were recognized as periplasmic chaperone and outer membrane anchor proteins, respectively. The AfaA and AfaF products were shown to be homologous to the PapI-PapB transcriptional regulatory proteins. No function could be attributed to the AfaD product, the gene of which was previously shown to be dispensable for the synthesis of a functional adhesin. Upstream of the afa-3 gene cluster, a 1.2-kb region was found to be 96% identical to the RepFIB sequence of one of the enterotoxigenic E. coli plasmids (P307), suggesting a common ancestor plasmid. This region contains an integrase-like gene (int). Sequence analysis revealed the presence of an IS1 element between the int gene and the afa-3 gene cluster. Two other IS1 elements were detected and located in the vicinity of the afa-3 gene cluster by hybridization experiments. The afa-3 gene cluster was therefore found to be flanked by two IS1 elements in direct orientation and two in opposite orientations. The afa-3 gene cluster, flanked by two directly oriented IS1 elements, was shown to translocate

  6. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  7. Cloning and partial nucleotide sequence of human immunoglobulin mu chain cDNA from B cells and mouse-human hybridomas.

    PubMed Central

    Dolby, T W; Devuono, J; Croce, C M

    1980-01-01

    Purified mRNAs coding for mu and kappa human immunoglobulin polypeptides were translated in vitro and their products were characterized. The mu-specific mRNAs, derived from both human lymphoblastoid cells (GM607) and from a mouse-human somatic cell hybrid secreting human mu chains (alpha D5-H11-BC11), were copied into cDNAs and inserted into the plasmid pBR322. Several recombinant cDNAs that were obtained were identified by a combination of colony hybridization with labeled probes, in vitro translation of plasmid-selected mu mRNAs, and DNA nucleotide sequence determination. One recombinant DNA, for which the sequence has been partially determined, contains the codons for part of the C3 constant region domain through the carboxy-terminal piece (155 amino acids total) as well as the entire 3' noncoding sequence up to the poly(A) site of the human mu mRNA. The sequence A-A-U-A-A occurs 12 nucleotides prior to the poly(A) addition site in the human mu mRNA. Considerable sequence homology is observed in the mouse and human mu mRNA 3' coding and noncoding sequences. Images PMID:6777778

  8. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel.

    PubMed

    Pujolar, J M; Jacobsen, M W; Frydenberg, J; Als, T D; Larsen, P F; Maes, G E; Zane, L; Jian, J B; Cheng, L; Hansen, M M

    2013-07-01

    Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome-wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome-wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19,703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long-term effective population size was estimated to range between 132,000 and 1,320,000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82,425 loci and 376,918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.

  9. Using EMBL-EBI services via Web interface and programmatically via Web Services

    PubMed Central

    Lopez, Rodrigo; Cowley, Andrew; Li, Weizhong; McWilliam, Hamish

    2015-01-01

    The European Bioinformatics Institute (EMBL-EBI) provides access to a wide range of databases and analysis tools that are of key importance in bioinformatics. As well as providing Web interfaces to these resources, Web Services are available using SOAP and REST protocols that enable programmatic access to our resources and allow their integration into other applications and analytical workflows. This unit describes the various options available to a typical researcher or bioinformatician who wishes to use our resources via Web interface or programmatically via a range of programming languages. PMID:25501941

  10. Next-Generation Sequencing and In Vitro Expression Study of ADAMTS13 Single Nucleotide Variants in Deep Vein Thrombosis

    PubMed Central

    Pagliari, Maria Teresa; Lotta, Luca A.; de Haan, Hugoline G.; Valsecchi, Carla; Casoli, Gloria; Pontiggia, Silvia; Martinelli, Ida; Passamonti, Serena M.; Rosendaal, Frits R.

    2016-01-01

    Background Deep vein thrombosis (DVT) genetic predisposition is partially known. Objectives This study aimed at assessing the functional impact of nine ADAMTS13 single nucleotide variants (SNVs) previously reported to be associated as a group with DVT in a burden test and the individual association of selected variants with DVT risk in two replication studies. Methods Wild-type and mutant recombinant ADAMTS13 were transiently expressed in HEK293 cells. Antigen and activity of recombinant ADAMTS13 were measured by ELISA and FRETS-VWF73 assays, respectively. The replication studies were performed in an Italian case-control study (Milan study; 298/298 patients/controls) using a next-generation sequencing approach and in a Dutch case-control study (MEGA study; 4306/4887 patients/controls) by TaqMan assays. Results In vitro results showed reduced ADAMTS13 activity for three SNVs (p.Val154Ile [15%; 95% confidence interval [CI] 14–16], p.Asp187His [19%; 95%[CI] 17–21], p.Arg421Cys [24%; 95%[CI] 22–26]) similar to reduced plasma ADAMTS13 levels of patients carriers for these SNVs. Therefore these three SNVs were interrogated for risk association. The first replication study identified 3 heterozygous carriers (2 cases, 1 control) of p.Arg421Cys (odds ratio [OR] 2, 95%[CI] 0.18–22.25). The second replication study identified 2 heterozygous carriers (1 case, 1 control) of p.Asp187His ([OR] 1.14, 95%[CI] 0.07–18.15) and 10 heterozygous carriers (4 cases, 6 controls) of p.Arg421Cys ([OR] 0.76, 95%[CI] 0.21–2.68). Conclusions Three SNVs (p.Val154Ile, p.Asp187His and p.Arg421Cys) showed reduced ex vivo and in vitro ADAMTS13 levels. However, the low frequency of these variants makes it difficult to confirm their association with DVT. PMID:27802307

  11. Structural gene for the phosphate-repressible phosphate-binding protein of Escherichia coli has its own promoter: complete nucleotide sequence of the phoS gene.

    PubMed Central

    Surin, B P; Jans, D A; Fimmel, A L; Shaw, D C; Cox, G B; Rosenberg, H

    1984-01-01

    The complete nucleotide sequence of the phoS gene, the structural gene for the phosphate-repressible, periplasmic phosphate-binding protein Escherichia coli K-12, was determined. The phosphate-binding protein is synthesized in a precursor form which includes an additional N-terminal segment containing 25 amino acid residues, with the general characteristics of a signal sequence. The amino acid sequence derived from the nucleotide sequence shows the mature protein to be composed of 321 amino acids with a calculated molecular weight of 34,427. The phoS gene is not part of an operon and is transcribed counterclockwise with respect to the E. coli genetic map. A promoter region has been identified on the basis of homology with the consensus sequence of other E. coli promoter regions. However, an alternative promoter region has been identified on the basis of homology with the promoter regions of the phoA and phoE genes, the structural genes for alkaline phosphatase and outer-membrane pore protein e, respectively. PMID:6321434

  12. Importance of purine and pyrimidine content of local nucleotide sequences (six bases long) for evolution of the human immunodeficiency virus type 1.

    PubMed Central

    Doi, H

    1991-01-01

    Human immunodeficiency virus type 1 evolves rapidly, and random base change is thought to act as a major factor in this evolution. However, segments of the viral genome differ in their variability: there is the highly variable env gene, particularly hypervariable regions located within env, and, in contrast, the conservative gag and pol genes. Computer analysis of the nucleotide sequences of human immunodeficiency virus type 1 isolates reveals that base substitution in this virus is nonrandom and affected by local nucleotide sequences. Certain local sequences 6 base pairs long are excessively frequent in the hypervariable regions. These sequences exhibit base-substitution hotspots at specific positions in their 6 bases. The hotspots tend to be nonsilent letters of codons in the hypervariable regions--thus leading to marked amino acid substitutions there. Conversely, in the conservative gag and pol genes the hotspots tend to be silent letters because of a difference in codon frame from the hypervariable regions. Furthermore, base substitutions in the local sequences that frequently appear in the conservative genes occurred at a low level, even within the variable env. Thus, despite the high variability of this virus, the conservative genes and their products could be conserved. These may be some of the strategies evolved in human immunodeficiency virus type 1 to allow for positive-selection pressures, such as the host immune system, and negative-selection pressures on the conservative gene products. Images PMID:1924392

  13. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus.

    PubMed Central

    Voordouw, G; Menon, N K; LeGall, J; Choi, E S; Peck, H D; Przybyla, A E

    1989-01-01

    The nucleotide sequences encoding the [NiFe] hydrogenase from Desulfovibrio gigas and the [NiFeSe] hydrogenase from Desulfovibrio baculatus (N.K. Menon, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, J. Bacteriol. 169:5401-5407, 1987; C. Li, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, DNA 6:539-551, 1987) were analyzed by the codon usage method of Staden and McLachlan. The reported reading frames were found to contain regions of low codon probability which are matched by more probable sequences in other frames. Renewed nucleotide sequencing showed the probable frames to be correct. The corrected sequences of the two small and large subunits share a significant degree of sequence homology. The small subunit, which contains 10 conserved cysteine residues, is likely to coordinate at least 2 iron-sulfur clusters, while the finding of a selenocysteine codon (TGA) near the 3' end of the [NiFeSe] large-subunit gene matched by a regular cysteine codon (TGC) in the [NiFe] large-subunit gene indicates the presence of some of the ligands to the active-site nickel in the large subunit. PMID:2651421

  14. Large-scale similarity search profiling of ChEMBL compound data sets.

    PubMed

    Heikamp, Kathrin; Bajorath, Jürgen

    2011-08-22

    A large-scale similarity search investigation has been carried out on 266 well-defined compound activity classes extracted from the ChEMBL database. The analysis was performed using two widely applied two-dimensional (2D) fingerprints that mark opposite ends of the current performance spectrum of these types of fingerprints, i.e., MACCS structural keys and the extended connectivity fingerprint with bond diameter four (ECFP4). For each fingerprint, three nearest neighbor search strategies were applied. On the basis of these search calculations, a similarity search profile of the ChEMBL database was generated. Overall, the fingerprint search campaign was surprisingly successful. In 203 of 266 test cases (∼76%), a compound recovery rate of at least 50% was observed with at least the better performing fingerprint and one search strategy. The similarity search profile also revealed several general trends. For example, fingerprint searching was often characterized by an early enrichment of active compounds in database selection sets. In addition, compound activity classes have been categorized according to different similarity search performance levels, which helps to put the results of benchmark calculations into perspective. Therefore, a compendium of activity classes falling into different search performance categories is provided. On the basis of our large-scale investigation, the performance range of state-of-the-art 2D fingerprinting has been delineated for compound data sets directed against a wide spectrum of pharmaceutical targets.

  15. The 1-Particle-per-k-Nucleotides (1PkN) Elastic Network Model of DNA Dynamics with Sequence-Dependent Geometry.

    PubMed

    Kameda, Takeru; Isami, Shuhei; Togashi, Yuichi; Nishimori, Hiraku; Sakamoto, Naoaki; Awazu, Akinori

    2017-01-01

    Coarse-grained models of DNA have made important contributions to the determination of the physical properties of genomic DNA, working as a molecular machine for gene regulation. In this study, to analyze the global dynamics of long DNA sequences with consideration of sequence-dependent geometry, we propose elastic network models of DNA where each particle represents k nucleotides (1-particle-per-k-nucleotides, 1PkN). The models were adjusted according to profiles of the anisotropic fluctuations obtained from our previous 1-particle-per-1-nucleotide (1P1N) model, which was proven to reproduce such profiles of all-atom models. We confirmed that the 1P3N and 1P4N models are suitable for the analysis of detailed dynamics such as local twisting motion. The models are intended for the analysis of large structures, e.g., 10-nm fibers in the nucleus, and nucleoids of mitochondrial or phage DNA at low computational costs. As an example, we surveyed the physical characteristics of the whole mitochondrial human and Plasmodium falciparum genomes.

  16. Full-length cDNA nucleotide sequence of a serologically undetectable HLA-DQA1 allele: HLA-DQA1*"LA".

    PubMed

    Lardy, N M; Otting, N; van der Horst, A R; Bontrop, R E; de Waal, L P

    1997-10-01

    This study describes the characterization of a serological HLA-DQ"blank" specificity that segregates with the HLA-A2, -B7, -DR14, -DR52 haplotype. Although conventional serological typing techniques could not detect an HLA-DQ product on the haplotype positive for the HLA-DQ"blank" specificity, sequence-specific oligonucleotide (SSO) dot-blot analysis demonstrated the presence of the HLA-DQA1*01 and HLA-DQB1*05 alleles. Full-length cDNA nucleotide sequence analysis revealed that the HLA-DQB1 allele that segregated with the HLA-DQ"blank" specificity was identical to HLA-DQB1*05031. As for the HLA DQA1 allele, one nucleotide substitution distinguished the HLA-DQA1 "blank" allele from HLA-DQA1*0104. In exon 2 at nucleotide position 304 a C was substituted for a T (Arg-->Cys). Pending official recognition by the WHO Nomenclature Committee, this HLA-DQA1 "blank" allele is termed HLA-DQA1*"LA". Furthermore, it is postulated that the introduction of cysteine at amino acid position 102 abrogates the classical HLA-DQ1 specificity.

  17. The 1-Particle-per-k-Nucleotides (1PkN) Elastic Network Model of DNA Dynamics with Sequence-Dependent Geometry

    PubMed Central

    Kameda, Takeru; Isami, Shuhei; Togashi, Yuichi; Nishimori, Hiraku; Sakamoto, Naoaki; Awazu, Akinori

    2017-01-01

    Coarse-grained models of DNA have made important contributions to the determination of the physical properties of genomic DNA, working as a molecular machine for gene regulation. In this study, to analyze the global dynamics of long DNA sequences with consideration of sequence-dependent geometry, we propose elastic network models of DNA where each particle represents k nucleotides (1-particle-per-k-nucleotides, 1PkN). The models were adjusted according to profiles of the anisotropic fluctuations obtained from our previous 1-particle-per-1-nucleotide (1P1N) model, which was proven to reproduce such profiles of all-atom models. We confirmed that the 1P3N and 1P4N models are suitable for the analysis of detailed dynamics such as local twisting motion. The models are intended for the analysis of large structures, e.g., 10-nm fibers in the nucleus, and nucleoids of mitochondrial or phage DNA at low computational costs. As an example, we surveyed the physical characteristics of the whole mitochondrial human and Plasmodium falciparum genomes. PMID:28382002

  18. Complete Nucleotide Sequence of CTX-M-15-Plasmids from Clinical Escherichia coli Isolates: Insertional Events of Transposons and Insertion Sequences

    PubMed Central

    Smet, Annemieke; Martel, An; Deforce, Dieter; Butaye, Patrick; Haesebrouck, Freddy

    2010-01-01

    Background CTX-M-producing Escherichia coli strains are regarded as major global pathogens. Methodology/Principal Findings The nucleotide sequence of three plasmids (pEC_B24: 73801-bp; pEC_L8: 118525-bp and pEC_L46: 144871-bp) from Escherichia coli isolates obtained from patients with urinary tract infections and one plasmid (pEC_Bactec: 92970-bp) from an Escherichia coli strain isolated from the joint of a horse with arthritis were determined. Plasmid pEC_Bactec belongs to the IncI1 group and carries two resistance genes: blaTEM-1 and blaCTX-M-15. It shares more than 90% homology with a previously published blaCTX-M-plasmid from E. coli of human origin. Plasmid pEC_B24 belongs to the IncFII group whereas plasmids pEC_L8 and pEC_L46 represent a fusion of two replicons of type FII and FIA. On the pEC_B24 backbone, two resistance genes, blaTEM-1 and blaCTX-M-15, were found. Six resistance genes, blaTEM-1, blaCTX-M-15, blaOXA-1, aac6'-lb-cr, tetA and catB4, were detected on the pEC_L8 backbone. The same antimicrobial drug resistance genes, with the exception of tetA, were also identified on the pEC_L46 backbone. Genome analysis of all 4 plasmids studied provides evidence of a seemingly frequent transposition event of the blaCTX-M-15-ISEcp1 element. This element seems to have a preferred insertion site at the tnpA gene of a blaTEM-carrying Tn3-like transposon, the latter itself being inserted by a transposition event. The IS26-composite transposon, which contains the blaOXA-1, aac6'-lb-cr and catB4 genes, was inserted into plasmids pEC_L8 and pEC_L46 by homologous recombination rather than a transposition event. Results obtained for pEC_L46 indicated that IS26 also plays an important role in structural rearrangements of the plasmid backbone and seems to facilitate the mobilisation of fragments from other plasmids. Conclusions Collectively, these data suggests that IS26 together with ISEcp1 could play a critical role in the evolution of diverse multiresistant plasmids

  19. The nucleotide sequence of the nitrogen-regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved features in bacterial RNA polymerase sigma factors.

    PubMed Central

    Merrick, M J; Gibbins, J R

    1985-01-01

    The nucleotide sequence of the Klebsiella pneumoniae ntrA gene has been determined. NtrA encodes a 53,926 Dalton acidic polypeptide; a calculated molecular weight which is significantly lower than that determined by SDS polyacrylamide gel analysis. NtrA is followed by another open-reading frame (orf) of at least 75 amino acids. In the spacer region between ntrA and orf there are no apparent transcription termination or promoter sequences and therefore orf may be co-transcribed with ntrA. Previous authors have proposed that NtrA could act as an RNA polymerase sigma factor but the NtrA amino acid sequence does not show a high level of homology to any known sigma factor. However analysis of sequences of five sigma factors from E. coli and B. subtilis has identified two conserved sequences at the C-terminal end of all these polypeptides. These sequences resemble those found in known site-specific DNA-binding domains and may be involved in recognition of conserved -35 and -10 promoter sequences. A similar pair of sequences is present at the C-terminus of NtrA and could play a role in recognition of ntr-activatable promoters. Images PMID:2999700

  20. Cloning, nucleotide sequence and module structure of the gene encoding the cellulose-binding protein B (CBPB) of Eubacterium cellulosolvens 5.

    PubMed

    Toyoda, Atsushi; Yoshimatsu, Miho; Takano, Kazunori; Minato, Hajime

    2005-08-01

    The nucleotide sequence of the gene encoding the cellulose-binding protein B (CBPB) of Eubacterium cellulosolvens 5 was determined. The gene consists of an open reading frame of 3,429 nucleotides. The deduced amino acid sequence of CBPB contained one module highly similar to a catalytic module of glycosyl hydrolase family 9 (GHF9), one module partially similar to a family 3 carbohydrate-binding module (CBM3), two linkers, one module similar to a CBM of cellulose-binding protein A (CBPA) from E. cellulosolvens 5, and one module almost identical to a cell wall-binding module (CWBM) of CBPA. The module similar to GHF9 showed CMCase activity, and the modules similar to CBM3 and CBM of CBPA bound to cellulose. Moreover, the module highly similar to CWBM of CBPA bound to the cell walls prepared from E. cellulosolvens 5. The amino acid sequence of CBPB had a significant homology (64.15% sequence identity) with that of CBPA. These results suggest that cbpA and cbpB genes descended from the same ancestral cellulase gene.

  1. Determination of complete nucleotide sequence of Hibiscus latent Singapore virus: evidence for the presence of an internal poly(A) tract.

    PubMed

    Srinivasan, K G; Min, B E; Ryu, K H; Adkins, S; Wong, S M

    2005-01-01

    We have sequenced the complete genome of a hibiscus-infecting tobamovirus, Hibiscus latent Singapore virus (HLSV). The experimental host range of HLSV is similar to that of another distinct species of hibiscus infecting tobamovirus, Hibiscus latent Fort Pierce virus (HLFPV). The genomic structure of HLSV is similar to other tobamoviruses in general. It consists of a 5' untranslated region (UTR), followed by ORFs encoding for a 128 kDa protein and a 186 kDa readthrough protein, a 30 kDa movement protein (MP), 18 kDa coat protein (CP) and a 3' UTR. The unique feature of HLSV is the presence of a poly(A) tract within its 3' UTR. In our previous work, we have reported MP and CP sequences of HLSV and its phylogenetic analysis. Here we report the complete nucleotide sequence of HLSV, phylogenetic analysis of the nucleotide and amino acid sequences of 128/186 kDa ORFs and the presence of a uniquely located poly(A) tract within the 3' UTR.

  2. Psittacine beak and feather disease virus nucleotide sequence analysis and its relationship to porcine circovirus, plant circoviruses, and chicken anaemia virus.

    PubMed

    Bassami, M R; Berryman, D; Wilcox, G E; Raidal, S R

    1998-09-30

    Cloning and sequencing of the circular, single-stranded DNA of one isolate of psittacine beak and feather disease virus (BFDV) demonstrate a genome composed of a circular molecule of 1993 nucleotide bases. An analysis of the assembled replicative form demonstrated seven open reading frames (ORFs) (three in the virion strand and four in the complementary strand), potentially encoding seven viral proteins of >8.7 kDa. High amino acid sequence similarity was demonstrated between a potential 33.3-kDa protein product of ORF1 of BFDV and the replicase-associated protein of porcine circovirus (PCV), subterranean clover stunt virus, and faba bean necrotic yellows virus. However, significant similarity in nucleotide or amino acid sequences was not present between BFDV and chicken anaemia virus. A potential stem-loop structure similar to that found in PCV and plant circoviruses was present in the putative encapsidated strand of the BFDV genome. At the top of this structure, a nonanucleotide motif (TAGTATTAC) similar to that of PCV, plant circoviruses, and geminiviruses also was recognised. Comparison of the deduced amino acid sequences of ORF2 of BFDV and PCV demonstrated 29.1% identity, and in both viruses, ORF2 is located on the complementary strand, beginning close to or within the hairpin stem. Our findings provide further evidence of a close relationship among BFDV, PCV, and plant circoviruses but not chicken anaemia virus.

  3. Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a Multiplex PCR Developed from the Nucleotide Sequence of the Lipid A Gene lpxA

    PubMed Central

    Klena, John D.; Parker, Craig T.; Knibb, Krista; Ibbitt, J. Claire; Devane, Phillippa M. L.; Horn, Sharon T.; Miller, William G.; Konkel, Michael E.

    2004-01-01

    We describe a multiplex PCR assay to identify and discriminate between isolates of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis. The C. jejuni isolate F38011 lpxA gene, encoding a UDP-N-acetylglucosamine acyltransferase, was identified by sequence analysis of an expression plasmid that restored wild-type lipopolysaccharide levels in Escherichia coli strain SM105 [lpxA(Ts)]. With oligonucleotide primers developed to the C. jejuni lpxA gene, nearly full-length lpxA amplicons were amplified from an additional 11 isolates of C. jejuni, 20 isolates of C. coli, 16 isolates of C. lari, and five isolates of C. upsaliensis. The nucleotide sequence of each amplicon was determined, and sequence alignment revealed a high level of species discrimination. Oligonucleotide primers were constructed to exploit species differences, and a multiplex PCR assay was developed to positively identify isolates of C. coli, C. jejuni, C. lari, and C. upsaliensis. We characterized an additional set of 41 thermotolerant isolates by partial nucleotide sequence analysis to further demonstrate the uniqueness of each species-specific region. The multiplex PCR assay was validated with 105 genetically defined isolates of C. coli, C. jejuni, C. lari, and C. upsaliensis, 34 strains representing 12 additional Campylobacter species, and 24 strains representing 19 non-Campylobacter species. Application of the multiplex PCR method to whole-cell lysates obtained from 108 clinical and environmental thermotolerant Campylobacter isolates resulted in 100% correlation with biochemical typing methods. PMID:15583280

  4. The complete nucleotide sequence and genomic organization of a novel victorivirus with two non-overlapping ORFs, identified in the plant-pathogenic fungus Phomopsis vexans.

    PubMed

    Zhang, Ru Jia; Zhong, Jie; Shang, Hong Hong; Pan, Xian Ting; Zhu, Hong Jian; Gao, Bi Da

    2015-07-01

    In this study, a novel virus designated Phomopsis vexans RNA virus 1 (PvRV1) was identified in a strain of Phomopsis vexans. The complete genomic nucleotide sequence was determined and analyzed. Sequence analysis indicated that PvRV1 is closely related to viruses in the genus Victorivirus of the family Totiviridae. Two open reading frames (ORF1 and 2) were found in the PvRV1 sequence, and these showed significant similarity to the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), respectively, of members of the family Totiviridae. The two ORFs were spaced 98 nt apart, which is unique to PvRV1 and different from the overlapping arrangement in most victoriviruses. The expression strategies of the CP and RdRp are discussed based on in silico RNA secondary structure analysis.

  5. AFLP fragment isolation technique as a method to produce random sequences for single nucleotide polymorphism discovery in the green turtle, Chelonia mydas.

    PubMed

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-01-01

    The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.

  6. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers.

    PubMed

    Pan, Y B; Burner, D M; Legendre, B L

    2000-01-01

    5S rRNA intergenic spacers were amplified from two elite sugarcane (Saccharum hybrids) cultivars and their related taxa by polymerase chain reaction (PCR) with 5S rDNA consensus primers. Resulting PCR products were uniform in length from each accession but exhibited some degree of length variation among the sugarcane accessions and related taxa. These PCR products did not always cross hybridize in Southern blot hybridization experiments. These PCR products were cloned into a commercial plasmid vector PCR 2.1 and sequenced. Direct sequencing of cloned PCR products revealed spacer length of 231-237 bp for S. officinarum, 233-237 for sugarcane cultivars, 228-238 bp for S. spontaneum, 239-252 bp for S. giganteum, 385-410 bp for Erianthus spp., 226-230 bp for Miscanthus sinensis Zebra, 206-207 bp for M. sinensis IMP 3057, 207-209 bp for Sorghum bicolor, and 247-249 bp for Zea mays. Nucleotide sequence polymorphism were found at both the segment and single nucleotide level. A consensus sequence for each taxon was obtained by Align X. Multiple sequences were aligned and phylogenetic trees constructed using Align X. CLUSTAL and DNAMAN programs. In general, accessions of the following taxa tended to group together to form distinct clusters: S. giganteum, Erianthus spp., M. sinensis, S. bicolor, and Z. mays. However, the two S. officinarum clones and two sugarcane cultivars did not form distinct clusters but interrelated within the S. spontaneum cluster. The disclosure of these 5S rRNA intergenic spacer sequences will facilitate marker-assisted breeding in sugarcane.

  7. A hybrid next generation transcript sequencing-based approach to identify allelic and homeolog-specific single nucleotide polymorphisms in allotetraploid white clover

    PubMed Central

    2013-01-01

    Background White clover (Trifolium repens L.) is an allotetraploid species possessing two highly collinear ancestral sub-genomes. The apparent existence of highly similar homeolog copies for the majority of genes in white clover is problematic for the development of genome-based resources in the species. This is especially true for the development of genetic markers based on single nucleotide polymorphisms (SNPs), since it is difficult to distinguish between homeolog-specific and allelic variants. Robust methods for categorising single nucleotide variants as allelic or homeolog-specific in large transcript datasets are required. We illustrate one potential approach in this study. Results We used 454-pyrosequencing sequencing to generate ~760,000 transcript sequences from an 8th generation white clover inbred line. These were assembled and partially annotated to yield a reference transcript set comprising 71,545 sequences. We subsequently performed Illumina sequencing on three further white clover samples, generating 14 million transcript reads from a mixed sample comprising 24 divergent white clover genotypes, and 50 million reads on two further eighth generation white clover inbred lines. Mapping these reads to the reference transcript set allowed us to develop a significant SNP resource for white clover, and to partition the SNPs from the inbred lines into categories reflecting allelic or homeolog-specific variation. The potential for using haplotype reconstruction and progenitor genome comparison to assign haplotypes to specific ancestral sub-genomes of white clover is demonstrated for sequences corresponding to genes encoding dehydration responsive element binding protein and acyl-coA oxidase. Conclusions In total, 208,854 independent SNPs in 31,715 reference sequences were discovered, approximately three quarters of which were categorised as representing allelic or homeolog-specific variation using two inbred lines. This represents a significant resource for

  8. In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity.

    PubMed

    Khan, Imtiaz A; Mort, Matthew; Buckland, Paul R; O'Donovan, Michael C; Cooper, David N; Chuzhanova, Nadia A

    2006-01-01

    DNA sequence features were sought that could be used for the in silico ascertainment of the likely functional consequences of single nucleotide changes in human gene promoter regions. To identify relevant features of the local DNA sequence context, we transformed into consensus tables the nucleotide composition of sequences flanking 101 promoter SNPs of type C<-->T or A<-->G, defined empirically as being either 'functional' or 'non-functional' on the basis of a standardised reporter gene assay. The similarity of a given sequence to these consensus tables was then measured by means of the Shapiro-Senapathy score. A decision rule with the potential to discriminate between empirically ascertained functional and non-functional SNPs was proposed that potentiated discrimination between functional and non-functional SNPs with a sensitivity of 80% and a specificity of 20%. Two further datasets (viz. disease-associated SNPs of types A<-->G and C<-->T (N = 75) and pathological promoter mutations (transitions, N = 114)) were retrieved from the Human Gene Mutation Database (HGMD; http://www.hgmd.org/) and analyzed using consensus tables derived from the functional and non-functional promoter SNPs; approximately 70% were correctly recognized as being of probable functional significance. Complexity analysis was also used to quantify the regularity of the local DNA sequence environment. Functional SNPs/mutations of type C<-->T were found to occur in DNA regions characterized by lower average sequence complexity as measured with respect to symmetric elements; complexity values increased gradually from functional SNPs and pathological mutations to functional disease-associated SNPs and non-functional SNPs. This may reflect the internal axial symmetry that frequently characterizes transcription factor binding sites.

  9. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    PubMed

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  10. Genetic diversity of Histoplasma capsulatum strains isolated from Argentina based on nucleotide sequence variations in the internal transcribed spacer regions of rDNA.

    PubMed

    Landaburu, Fernanda; Cuestas, María Luján; Rubio, Andrea; Elías, Nahuel Alejandro; Daneri, Gabriela Lopez; Veciño, Cecilia; Iovannitti, Cristina A; Mujica, María Teresa

    2014-05-01

    The internal transcribed spacer (ITS) regions of rDNA genes of 49 Histoplasma capsulatum (48 from clinical samples and one from soil) isolates were examined. Nucleotide sequence heterogeneity within this region was useful for phylogenetic classification of H. capsulatum and species identification. Thus, in 45 of 49 isolates we observed higher percentages of identity in the nucleotide sequences of ITS regions when the isolates studied herein were compared with those reported in our country in the South America B clade. Phylogenetic analyses of rDNA sequences corresponding to the 537 bp of the ITS region obtained from H. capsulatum isolates assigned South America type B clade (45 isolates), North America type 1 and Asia clade (2 isolates each one). H. capsulatum strains isolated from soil and from patients living in Argentina (45 of 49) clustered together with the H. capsulatum isolates of the South America B clade. The high level of genetic similarity among our isolates suggests that almost one genetic population is present in the microenvironment. Isolates described as H. capsulatum var. capsulatum or var. farciminosum (2 isolates) did not form a monophyletic group and were found in the Asia clade. Subsequent studies are needed to properly identify these isolates.

  11. Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane.

    PubMed Central

    Stader, J; Matsumura, P; Vacante, D; Dean, G E; Macnab, R M

    1986-01-01

    The motB gene product of Escherichia coli is an integral membrane protein required for rotation of the flagellar motor. We have determined the nucleotide sequence of the motB region and find that it contains an open reading frame of 924 nucleotides which we ascribe to the motB gene. The predicted amino acid sequence of the gene product is 308 residues long and indicates an amphipathic protein with one major hydrophobic region, about 22 residues long, near the N terminus. There is no consensus signal sequence. We postulate that the protein has a short N-terminal region in the cytoplasm, an anchoring region in the membrane consisting of two spanning segments, and a large cytoplasmic C-terminal domain. By placing motB under control of the tryptophan operon promoter of Serratia marcescens, we have succeeded in overproducing the MotB protein. Under these conditions, the majority of MotB was found in the cytoplasm, indicating that the membrane has a limited capacity to incorporate the protein. We conclude that insertion of MotB into the membrane requires the presence of other more hydrophobic components, possibly including the MotA protein or other components of the flagellar motor. The results further reinforce the concept that the total flagellar motor consists of more than just the basal body. Images PMID:3007435

  12. Nucleotide sequence of the variable region of the heavy and light chains of a monoclonal IgG antibody reactive to herbicides, terbutryn and prometryn.

    PubMed

    Kreissig, S B; Ward, V K; Hammock, B D; Choudary, P V

    1995-01-01

    Members of the triazine family of herbicides are reliable indicators of contamination of the ground water or soil with pesticide residues. To facilitate better detection of the chemical residues using improved immunoassay procedures, several monoclonal antibodies against triazine herbicides have been developed. K1F4 is a hybridoma secreting monoclonal (IgG) antibody reactive to terbutryn and prometryn, two members of the triazine family. We have cloned the genes encoding the variable regions of the heavy and light chains of this monoclonal antibody and report the nucleotide sequence here.

  13. Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines.

    PubMed

    Meissner, J D

    1999-07-01

    The complete nucleotide sequences of the human papillomavirus type 16 (HPV-16) variants present in the CaSki and SiHa cervical carcinoma cell lines and the primary subgenomic HPV-18 variant present in the HeLa cervical carcinoma cell line were determined using overlapping bulk PCR products as templates. PCR-based methods were also used to characterize five previously unreported CaSki HPV-16 genomic disruptions and the 5' cellular-viral junction common to all HeLa HPV-18 subgenomic structures.

  14. Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas, Morocco.

    PubMed

    Hannou, Najat; Mondy, Samuel; Planamente, Sara; Moumni, Mohieddine; Llop, Pablo; López, María; Manceau, Charles; Barny, Marie-Anne; Faure, Denis

    2013-10-01

    Erwinia amylovora causes economic losses that affect pear and apple production in Morocco. Here, we report comparative genomics of four Moroccan E. amylovora strains with the European strain CFBP1430 and North-American strain ATCC49946. Analysis of single nucleotide polymorphisms (SNPs) revealed genetic homogeneity of Moroccan's strains and their proximity to the European strain CFBP1430. Moreover, the collected sequences allowed the assembly of a 65 kpb plasmid, which is highly similar to the plasmid pEI70 harbored by several European E. amylovora isolates. This plasmid was found in 33% of the 40 E. amylovora strains collected from several host plants in 2009 and 2010 in Morocco.

  15. Culture-negative brain abscess with Streptococcus intermedius infection with diagnosis established by direct nucleotide sequence analysis of the 16s ribosomal RNA gene.

    PubMed

    Saito, Naoko; Hida, Ayumi; Koide, Yuri; Ooka, Tadasuke; Ichikawa, Yaeko; Shimizu, Jun; Mukasa, Akitake; Nakatomi, Hirofumi; Hatakeyama, Shuji; Hayashi, Tetsuya; Tsuji, Shoji

    2012-01-01

    A 70-year-old woman developed a headache for a month followed by right upper limb weakness. CT scan and MRI showed multiple ring-enhancing lesions. An intracerebral aspiration of an abscess was performed, but culture results were negative. The nucleotide sequence analysis of the 16S rRNA gene from the specimens identified Streptococcus intermedius. Given this result, S. intermedius was cultured by enrichment culture, and its sensitivities to antibiotics were determined. The patient exhibited complete remission. Thus, 16S rRNA gene analysis was highly useful not only for pathogen identification with negative culture results but also for the appropriate selection of antibiotics.

  16. Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding blaIMI-3-Mediated Carbapenem Resistance, from River Sediment

    PubMed Central

    Dang, Bingjun; Mao, Daqing; Luo, Yi

    2016-01-01

    Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one blaIMI-3-containing region and one type VI secretion system region. The blaIMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the blaIMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of blaIMI carbapenemase genes. PMID:26941718

  17. Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae.

    PubMed

    Yeh, Ting Y

    2017-02-01

    Unlike Ff-like coliphages, certain filamentous Inoviridae phages integrate their genomes into the host chromosome and enter a prophage state in their infectious cycle. This lysogenic life cycle was first reported for Xanthomonas citri Cf phage. However, except for the X. citri phages Cf and XacF1, complete genome sequence information about lysogenic Xanthomonas phages is not available to date. A proviral sequence of Xf109 phage was identified in the genome of Xanthomonas oryzae, the rice bacterial blight pathogen, and revived as infectious virions to lysogenize its host de novo. The genome of Xf109 phage is 7190 nucleotides in size and contains 12 predicted open reading frames in an organization similar to that of the Cf phage genome. Seven of the Xf109 proteins show significant sequence similarity to Cf and XacF1 phage proteins, while its ORF4 shares 92 % identity with the major coat protein of X. phage oryzae Xf. Integration of Xf109 phage DNA into the host genome is site-specific, and the attP/attB sequence contains the dif core sequence 5'-TATACATTATGCGAA-3', which is identical to that of Cf, XacF1, and Xanthomonas campestris phage ϕLf. To my knowledge, this is the first complete genome sequence of a filamentous bacteriophage that infects X. oryzae.

  18. Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis.

    PubMed

    Aramori, I; Fukagawa, M; Tsumura, M; Iwami, M; Ono, H; Kojo, H; Kohsaka, M; Ueda, Y; Imanaka, H

    1991-12-01

    A strain of Bacillus species which produced an enzyme named glutaryl 7-ACA acylase which converts 7 beta-(4-carboxybutanamido)cephalosporanic acid (glutaryl 7-ACA) to 7-amino cephalosporanic acid (7-ACA) was isolated from soil. The gene for the glutaryl 7-ACA acylase was cloned with pHSG298 in Escherichia coli JM109, and the nucleotide sequence was determined by the M13 dideoxy chain termination method. The DNA sequence revealed only one large open reading frame composed of 1,902 bp corresponding to 634 amino acid residues. The deduced amino acid sequence contained a potential signal sequence in its amino-terminal region. Expression of the gene for glutaryl 7-ACA acylase was performed in both E. coli and Bacillus subtilis. The enzyme preparations purified from either recombinant strain of E. coli or B. subtilis were shown to be identical with each other as regards the profile of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were composed of a single peptide with the molecular size of 70 kDa. Determination of the amino-terminal sequence of the two enzyme preparations revealed that both amino-terminal sequences (the first nine amino acids) were identical and completely coincided with residues 28 to 36 of the open reading frame. Extracellular excretion of the enzyme was observed in a recombinant strain of B. subtilis.

  19. Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis.

    PubMed Central

    Aramori, I; Fukagawa, M; Tsumura, M; Iwami, M; Ono, H; Kojo, H; Kohsaka, M; Ueda, Y; Imanaka, H

    1991-01-01

    A strain of Bacillus species which produced an enzyme named glutaryl 7-ACA acylase which converts 7 beta-(4-carboxybutanamido)cephalosporanic acid (glutaryl 7-ACA) to 7-amino cephalosporanic acid (7-ACA) was isolated from soil. The gene for the glutaryl 7-ACA acylase was cloned with pHSG298 in Escherichia coli JM109, and the nucleotide sequence was determined by the M13 dideoxy chain termination method. The DNA sequence revealed only one large open reading frame composed of 1,902 bp corresponding to 634 amino acid residues. The deduced amino acid sequence contained a potential signal sequence in its amino-terminal region. Expression of the gene for glutaryl 7-ACA acylase was performed in both E. coli and Bacillus subtilis. The enzyme preparations purified from either recombinant strain of E. coli or B. subtilis were shown to be identical with each other as regards the profile of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were composed of a single peptide with the molecular size of 70 kDa. Determination of the amino-terminal sequence of the two enzyme preparations revealed that both amino-terminal sequences (the first nine amino acids) were identical and completely coincided with residues 28 to 36 of the open reading frame. Extracellular excretion of the enzyme was observed in a recombinant strain of B. subtilis. Images FIG. 2 FIG. 5 FIG. 6 PMID:1744041

  20. Analysis of the entire nucleotide sequence of hepatitis B virus genotype B in the Philippines reveals a new subgenotype of genotype B.

    PubMed

    Nagasaki, Futoshi; Niitsuma, Hirofumi; Cervantes, Julieta G; Chiba, Masanori; Hong, Shan; Ojima, Toshiaki; Ueno, Yoshiyuki; Bondoc, Edgardo; Kobayashi, Koju; Ishii, Motoyasu; Shimosegawa, Tooru

    2006-05-01

    The entire nucleotide sequences were determined for hepatitis B virus (HBV) genotype B (HBV/B) genomes extracted from five patients in the Philippines and designated GenBank AB219426, AB219427, AB219428, AB219429 and AB219430. The serotype of the first four isolates was ayw and that of GenBank AB219430 was adw. Divergences of entire sequences were 1.0-2.0 % between the first four isolates and 3.8-4.2 % between these four and GenBank AB219430. Phylogenetic-tree analysis revealed that, worldwide, HBV/B comprises five subgenotypes: B1, B2, B3, B4 and the new Philippines group, designated B5. Divergences of the entire genome sequences between four isolates in subgenotype B5 and isolates from other countries (subgenotypes) were 4.4-4.8 % with Vietnam (B4), 2.9-3.5 % with Indonesia (B3), 4.7-5.1 % with China (B2) and 5.4-6.0 % with Japan (B1). Similarly, GenBank AB219430 showed the lowest divergences: 3.4 % with the isolate from Indonesia (B3), 5.0 % with Vietnam (B4), 5.4 % with China (B2) and 6.1 % with Japan (B1). This is the first report of entire nucleotide sequences of HBV/B from the Philippines and the results show that these sequences belong to a new subgenotype, B5. The present study identified that HBV/B isolates throughout the world are divided genetically into five subgenotypes, the relationships between geographical distances and the genetic distances of HBV/B being well-correlated.

  1. The nucleotide sequence of metallothioneins (MT) in liver of the Kafue lechwe (Kobus leche kafuensis) and their potential as biomarkers of heavy metal pollution of the Kafue River.

    PubMed

    M'kandawire, Ethel; Syakalima, Michelo; Muzandu, Kaampwe; Pandey, Girja; Simuunza, Martin; Nakayama, Shouta M M; Kawai, Yusuke K; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2012-09-15

    The study determined heavy metal concentrations and MT1 nucleotide sequence [phylogeny] in liver of the Kafue lechwe. Applicability of MT1 as a biomarker of pollution was assessed. cDNA-encoding sequences for lechwe MT1 were amplified by RT-PCR to characterize the sequence of MT1 which was subjected to BLAST searching at NCBI. Phylogenetic relationships were based on pairwise matrix of sequence divergences calculated by Clustal W. Phylogenetic tree was constructed by NJ method using PHILLIP program. Metals were extracted by acid digestion and concentrations of Cr, Co, Cu, Zn, Cd, Pb, and Ni were determined using an AAS. MT1 mRNA expression levels were measured by quantitative comparative real-time RT-PCR. Lechwe MT1 has a length of 183bp, which encode for MT1 proteins of 61AA, which include 20 cysteines. Nucleotide sequence of lechwe MT1 showed identity with sheep MT (97%) and cattle MT1E (97%). Phylogenetic tree revealed that lechwe MT1 was clustered with sheep MT and cattle MT1E. Cu and Ni concentrations and MT1 mRNA expression levels of lechwe from Blue Lagoon were significantly higher than those from Lochinvar (p<0.05). Concentrations of Cd and Cu, Co and Cu, Co and Pb, Ni and Cu, and Ni and Cr were positively correlated. Spearman's rank correlations also showed positive correlations between Cu and Co concentrations and MT mRNA expression. PCA further suggested that MT mRNA expression was related to Zn and Cd concentrations. Hepatic MT1 mRNA expression in lechwe can be used as biomarker of heavy metal pollution.

  2. Complete nucleotide sequence of little cherry virus 1 (LChV-1) infecting sweet cherry in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little cherry virus 1 (LChV-1), associated with little cherry disease (LCD), has a significant impact on fruit quality of infected sweet cherry trees. We report the full genome sequence of an isolate of LChV-1 from China, detected by small RNA deep sequencing and amplified by overlapping RT-PCR. The...

  3. Comparative nucleotide sequences encoding the immunity proteins and the carboxyl-terminal peptides of colicins E2 and E3.

    PubMed Central

    Lau, P C; Rowsome, R W; Zuker, M; Visentin, L P

    1984-01-01

    Using the M13 dideoxy sequencing technique, we have established the DNA sequences of colicins E2 and E3 which encompass the receptor-binding and the catalytic domains of each of the nucleases, and their immunity (imm) genes. The imm gene of plasmid ColE2-P9 is 255 bp long and is separated from the end of the col gene by a dinucleotide. This gene pair is arranged similarly in plasmid ColE3-CA38 except that the intergenic space is 9 bp and the E3 imm gene is one codon shorter than its E2 counterpart. Comparisons of the E2 and E3 imm sequences indicate considerable divergence whereas the receptor-binding domains of both colicins are highly conserved. The two nuclease domains appear to share some sequence homology. A possible evolutionary relationship between colicin E3 and other microbial extracellular ribonucleases is also suggested from the sequence alignment analysis. PMID:6095211

  4. Species-diagnostic single-nucleotide polymorphism and sequence-tagged site markers for the parasitic wasp genus Nasonia (Hymenoptera: Pteromalidae).

    PubMed

    Niehuis, O; Judson, A K; Werren, J H; Hunter, W B; Dang, P M; Dowd, S E; Grillenberger, B; Beukeboom, L W; Gadau, J

    2007-08-01

    Wasps of the genus Nasonia are important biological control agents of house flies and related filth flies, which are major vectors of human pathogens. Species of Nasonia (Hymenoptera: Pteromalidae) are not easily differentiated from one another by morphological characters, and molecular markers for their reliable identification have been missing so far. Here, we report eight single-nucleotide polymorphism and three sequence-tagged site markers derived from expressed sequenced tag libraries for the two closely related and regionally sympatric species N. giraulti and N. vitripennis. We studied variation of these markers in natural populations of the two species, and we mapped them in the Nasonia genome. The markers are species-diagnostic and evenly spread over all five chromosomes. They are ideal for rapid species identification and hybrid recognition, and they can be used to map economically relevant quantitative trait loci in the Nasonia genome.

  5. Component A2 of methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum delta H: nucleotide sequence and functional expression by Escherichia coli.

    PubMed Central

    Kuhner, C H; Lindenbach, B D; Wolfe, R S

    1993-01-01

    The gene for component A2 of the methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum delta H was cloned, and its nucleotide sequence was determined. The gene for A2, designated atwA, encodes an acidic protein of 59,335 Da. Amino acid sequence analysis revealed partial homology of A2 to a number of eucaryotic and bacterial proteins in the ATP-binding cassette (ABC) family of transport systems. Component A2 possesses two ATP-binding domains. A 2.2-kb XmaI-BamHI fragment containing atwA and the surrounding open reading frames was cloned into pGEM-7Zf(+). A cell extract from this strain replaced purified A2 from M. thermoautotrophicum delta H in an in vitro methylreductase assay. Images PMID:8491734

  6. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-12-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria.

  7. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed Central

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-01-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860

  8. Complete Nucleotide Sequence of Artichoke latent virus Shows it to be a Member of the Genus Macluravirus in the Family Potyviridae.

    PubMed

    Minutillo, S A; Marais, A; Mascia, T; Faure, C; Svanella-Dumas, L; Theil, S; Payet, A; Perennec, S; Schoen, L; Gallitelli, D; Candresse, T

    2015-08-01

    Complete genomic sequences of Artichoke latent virus (ArLV) have been obtained by classical or high-throughput sequencing for an ArLV isolate from Italy (ITBr05) and for two isolates from France (FR37 and FR50). The genome is 8,278 to 8,291 nucleotides long and has a genomic organization comparable with that of Chinese yam necrotic mosaic virus (CYNMV), the only macluravirus fully sequenced to date. The cleavage sites of the viral polyprotein have been tentatively identified by comparison with CYNMV, confirming that macluraviruses are characterized by the absence of a P1 protein, a shorter and N-terminally truncated coat protein (CP). Sequence comparisons firmly place ArLV within the genus Macluravirus, and confirm previous results suggesting that Ranunculus latent virus (RALV), a previously described Macluravirus sp., is very closely related to ArLV. Serological relationships and comparisons of the CP gene and of the partial RaLV sequence available all indicate that RaLV should not be considered as a distinct species but as a strain of ArLV. The results obtained also suggest that the spectrum of currently used ArLV-specific molecular hybridization or polymerase chain reaction detection assays should be improved to cover all isolates and strains in the ArLV species.

  9. Complete nucleotide sequences of the genomes of two isolates of apple chlorotic leaf spot virus from peach (Prunus persica) in China.

    PubMed

    Niu, Feiqing; Pan, Song; Wu, Zujian; Jiang, Dongmei; Li, Shifang

    2012-04-01

    The complete nucleotide sequences of two isolates of apple chlorotic leaf spot virus (Z1 and Z3) collected from peach in Henan Province, China, were determined. The genomes of both Z1 and Z3 were found to contain three open reading frames (ORFs). Sequence analysis showed that genomic sequences of Z1 and Z3 isolates shared 67.4%-82.9% and 67.2%-82.6% identity, respectively, with the other eight isolates of ACLSV that have been reported previously. Based on the putative amino acid sequences of the products of the three ORFs, Z1 and Z3 isolates showed the greatest identity to isolate PBM1 (GenBank accession number AJ243438) from plum and the least identity with isolate Ta Tao5 (GenBank Accession Number: EU223295) from peach. Considering the low level of sequence identity between Z1/Z3 isolate and Ta Tao5 isolate, two types of ACLSV may exist in peach.

  10. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak.

    PubMed

    Makino, K; Ishii, K; Yasunaga, T; Hattori, M; Yokoyama, K; Yutsudo, C H; Kubota, Y; Yamaichi, Y; Iida, T; Yamamoto, K; Honda, T; Han, C G; Ohtsubo, E; Kasamatsu, M; Hayashi, T; Kuhara, S; Shinagawa, H

    1998-02-28

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7, derived from an outbreak in Sakai city, Japan in 1996, possesses two kinds of plasmids: a 93-kb plasmid termed pO157, found in clinical EHEC isolates world-wide and a 3.3-kb plasmid termed pOSAK1, prevalent in EHEC strains isolated in Japan. Complete nucleotide sequences of both plasmids have been determined, and the putative functions of the encoded proteins and the cis-acting DNA sequences have been analyzed. pO157 shares strikingly similar genes and DNA sequences with F-factor and the transmissible drug-resistant plasmid R100 for DNA replication, copy number control, plasmid segregation, conjugative functions and stable maintenance in the host, although it is defective in DNA transfer by conjugation due to the truncation and deletion of the required genes and DNA sequences. In addition, it encodes several proteins implicated in EHEC pathogenicity such as an EHEC hemolysin (HlyA), a catalase-peroxidase (KatP), a serine protease (EspP) and type II secretion system. pOSAK1 possesses a ColE1-like replication system, and the DNA sequence is extremely similar to that of a drug-resistant plasmid, NTP16, derived from Salmonella typhimurium except that it lacks drug resistance transposons.

  11. Nucleotide sequence of RNA2 of Lettuce big-vein virus and evidence for a possible transcription termination/initiation strategy similar to that of rhabdoviruses.

    PubMed

    Sasaya, Takahide; Kusaba, Shinnosuke; Ishikawa, Koichi; Koganezawa, Hiroki

    2004-09-01

    Lettuce big-vein virus (LBVV) is the type species of the genus Varicosavirus and is a two-segmented negative-sense single-stranded RNA virus. The larger LBVV genome segment (RNA1) consists of 6797 nt and encodes an L polymerase that resembles that of rhabdoviruses. Here, the nucleotide sequence of the second LBVV genome segment (RNA2) is reported. LBVV RNA2 consisted of 6081 nt and contained antisense information for five major ORFs: ORF1 (nt 210-1403 on the viral RNA), ORF2 (nt 1493-2494), ORF3 (nt 2617-3489), ORF4 (nt 3843-4337) and ORF5 (nt 4530-5636), which had coding capacities of 44, 36, 32, 19 and 41 kDa, respectively. The gene at the 3' end of the viral RNA encoded a coat protein, while the other four genes encoded proteins of unknown functions. The 3'-terminal 11 nt of LBVV RNA2 were identical to those of LBVV RNA1, and the 5'-terminal regions of LBVV RNA1 and RNA2 contained a long common nucleotide stretch of about 100 nt. Northern blot analysis using probes specific to the individual ORFs revealed that LBVV transcribes monocistronic RNAs. Analysis of the terminal sequences, and primer extension and RNase H digestion analysis of LBVV mRNAs, suggested that LBVV utilizes a transcription termination/initiation strategy comparable with that of rhabdoviruses.

  12. [Phylogenetic and taxonomic analysis of flatfish species (Teleostei, Pleuronectiformes) inferred from the primary nucleotide sequence of cytochrome oxidase 1 gene (Co-1)].

    PubMed

    Sharina, S N; Kartavtsev, Iu F

    2010-03-01

    Seventeen nucleotide sequences of Co-1 gene from 13 Pleuronectiformes species and 2 Perciformes species served as the outgroup were examined. For divergence comparison, the initial stage involved calculation of pairwise p-distances for all investigated sequences. This allowed to evaluate the nucleotide diversity on four phylogenetically different levels: (1) intraspecific, (2) intrageneric, (3) intrafamilial, and (4) intraordinal. The values of p-distances for the Co-1 gene for the four mentioned categories were (1) 0.93 +/- 0.73%, (2) 11.72 +/- 1.86%, (3) 12.10 +/- 1.10%, and (4) 20.20 +/- 0.22%, respectively. An increase in the level of genetic divergence along with an enhancement in taxon rank was previously reported for different species, which might be explained by prevalence of geographic speciation model in nature. Phylogenetic trees were constructed using four approaches: maximum parsimony, Bayesian, maximum likelihood, and neighbor-joining. These trees demonstrated similar results confirming the monophyletic origin of the families studied. The examined representatives of the flatfish species and genera were shown to be sufficiently divergent genetically.

  13. Molecular characterization and phylogenetic analysis of Explanatum explanatum in India based on nucleotide sequences of ribosomal ITS2 and the mitochondrial gene nad1

    PubMed Central

    HAYASHI, Kei; MOHANTA, Uday K.; OHARI, Yuma; NEERAJA, Tambireddy; SINGH, T. Shantikumar; SUGIYAMA, Hiromu; ITAGAKI, Tadashi

    2016-01-01

    The aim of this study was to analyze the phylogenetic relationship between Explanatum explanatum populations in India and other countries of the Indian subcontinent. Seventy liver amphistomes collected from four localities in India were identified as E. explanatum based on the nucleotide sequences of ribosomal ITS2. The flukes were then analyzed phylogenetically based on the nucleotide sequence of the mitochondrial gene nad1 in comparison with flukes from Bangladesh and Nepal. In the resulting phylogenetic tree, the nad1 haplotypes from India were divided into four clades, and the flukes showing the haplotypes of clades A and C were predominant in India. The haplotypes of the clades A and C have also been detected in Bangladesh and Nepal, and therefore, it seems they occur commonly throughout the Indian subcontinent. The results of AMOVA suggested that gene flow was likely to occur between E. explanatum populations in these countries. These countries are geographically close and have been historically and culturally connected to each other, and therefore, the movements of host ruminants among these countries might have been involved in the migration of the flukes and their gene flow. PMID:27523505

  14. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli.

    PubMed

    Lee, C Y; Szittner, R B; Meighen, E A

    1991-10-01

    The lux genes required for light expression in the luminescent bacterium Photobacterium leiognathi (ATCC 25521) have been cloned and expressed in Escherichia coli and their organization and nucleotide sequence determined. Transformation of a recombinant 9.5-kbp chromosomal DNA fragment of P. leiognathi into an E. coli mutant (43R) gave luminescent colonies that were as bright as those of the parental strain. Moreover, expression of the lux genes in the mutant E. coli was strong enough so that not only were high levels of luciferase detected in crude extracts, but the fatty-acid reductase activity responsible for synthesis of the aldehyde substrate for the luminescent reaction could readily be measured. Determination of the 7.3-kbp nucleotide sequence of P. leiognathi DNA, including the genes for luciferase (luxAB) and fatty-acid reductase (luxCDE) as well as a new lux gene (luxG) found recently in luminescent Vibrio species, showed that the order of the lux genes was luxCDABEG. Moreover, luxF, a gene homologous to luxB and located between luxB and luxE in Photobacterium but not Vibrio strains, was absent. In spite of this different lux gene organization, an intergenic stem-loop structure between luxB and luxE was discovered to be highly conserved in other Photobacterium species after luxF.

  15. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains.

    PubMed

    Bijlsma, I G; van Dijk, L; Kusters, J G; Gaastra, W

    1995-06-01

    Proteus mirabilis strains were isolated from dogs with urinary tract infection (UTI) and fimbriae were prepared from two strains. The N-terminal amino acid sequences of the major fimbrial subunits were determined and both sequences appeared identical to the N-terminal amino acid sequence of a urinary cell adhesin (UCA) (Wray, S. K., Hull, S. I., Cook, R. G., Barrish, J. & Hull, R. A., 1986, Infect Immun 54, 43-49). The genes of two different major fimbrial subunits were cloned using oligonucleotide probes that were designed on the basis of the N-terminal UCA sequence. Nucleotide sequencing revealed the complete ucaA gene of 540 bp (from strain IVB247) encoding a polypeptide of 180 amino acids, including a 22 amino acid signal sequence peptide, and the pmpA (P. mirabilis P-like pili) gene of 549 bp (from strain IVB219) encoding a polypeptide of 183 amino acids, including a 23 amino acid signal sequence. Hybridization experiments gave clear indications of the presence of both kinds of fimbriae in many UTI-related canine P. mirabilis isolates. However, the presence of these fimbriae could not be demonstrated in P. vulgaris or other Proteus-related species. Database analysis of amino acid sequences of major subunit proteins revealed that the UcaA protein shares about 56% amino acid identity with the F17A and F111A major fimbrial subunits from bovine enterotoxigenic Escherichia coli. In turn, the PmpA protein more closely resembled the pyelonephritis-associated pili (Pap)-like major subunit protein from UTI-related E. coli. The evolutionary relationship of UcaA, PmpA and various other fimbrial subunit proteins is presented in a phylogenetic tree.

  16. Biosynthesis of D-alanyl-lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme.

    PubMed Central

    Heaton, M P; Neuhaus, F C

    1992-01-01

    The D-alanine-activating enzyme (Dae; EC 6.3.2.4) encoded by the dae gene from Lactobacillus casei ATCC 7469 is a cytosolic protein essential for the formation of the D-alanyl esters of membrane-bound lipoteichoic acid. The gene has been cloned, sequenced, and expressed in Escherichia coli, an organism which does not possess Dae activity. The open reading frame is 1,518 nucleotides and codes for a protein of 55.867 kDa, a value in agreement with the 56 kDa obtained by electrophoresis. A putative promoter and ribosome-binding site immediately precede the dae gene. A second open reading frame contiguous with the dae gene has also been partially sequenced. The organization of these genetic elements suggests that more than one enzyme necessary for the biosynthesis of D-alanyl-lipoteichoic acid may be present in this operon. Analysis of the amino acid sequence deduced from the dae gene identified three regions with significant homology to proteins in the following groups of ATP-utilizing enzymes: (i) the acid-thiol ligases, (ii) the activating enzymes for the biosynthesis of enterobactin, and (iii) the synthetases for tyrocidine, gramicidin S, and penicillin. From these comparisons, a common motif (GXXGXPK) has been identified that is conserved in the 19 protein domains analyzed. This motif may represent the phosphate-binding loop of an ATP-binding site for this class of enzymes. A DNA fragment (1,568 nucleotides) containing the dae gene and its putative ribosome-binding site has been subcloned and expressed in E. coli. Approximately 0.5% of the total cell protein is active Dae, whereas 21% is in the form of inclusion bodies. The isolation of this minimal fragment without a native promoter sequence provides the basis for designing a genetic system for modulating the D-alanine ester content of lipoteichoic acid. PMID:1385594

  17. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Chao, Y F; Weng, S F

    1996-11-21

    Nucleotide sequence of the luxE gene GenBank Accession No. U66407 from Photobacterium leiognathi PL741 has been determined, and the amino acid sequence of acyl-protein synthetase encoded by the luxE gene is deduced. Nucleotide sequence reveals that the luxE gene encodes acyl-protein synthetase, which is a component of the fatty acid reductase complex that is responsible for converting fatty acid to aldehyde as substrate in the luciferase-catalyzed bioluminescence reaction. The acyl-protein synthetase encoded by the luxE gene has a calculated M, 43,128 and comprises 373 amino acid residues. Alignment and comparison of acyl-protein synthetases from P. leiognathi, P. phosphoreum, Vibrio fischeri, V. harveyi and Xenorhabdus luminescens shows that they are homologous; there is 75.5% homologous (44.2% identity and 31.3% similarity) among these species. Functional analysis illustrates that the specific segment sequence lying before or in the luxE gene might from potential loops omega o omega e1, omega e2 as mRNA stability loop and/or for sub-regulation by alternative modulation in the lux operon. The gene order of the luxE gene in the lux and the lum operons is<--ter-lumQ-lumP-R&R-luxC-luxD-luxA-luxB -luxN-luxE-->(R&R: regulatory region; ter; transcriptional terminator), whereas the R&R is the regulatory region for the lum and the lux operons, and ter is the transcriptional terminator for the lum operon.

  18. Characterization of the DNA binding protein encoded by the N-specific filamentous Escherichia coli phage IKe. Binding properties of the protein and nucleotide sequence of the gene.

    PubMed

    Peeters, B P; Konings, R N; Schoenmakers, J G

    1983-09-05

    A DNA binding protein encoded by the filamentous single-stranded DNA phage IKe has been isolated from IKe-infected Escherichia coli cells. Fluorescence and in vitro binding studies have shown that the protein binds co-operatively and with a high specificity to single-stranded but not to double-stranded DNA. From titration of the protein to poly(dA) it has been calculated that approximately four bases of the DNA are covered by one monomer of protein. These binding characteristics closely resemble those of gene V protein encoded by the F-specific filamentous phages M13 and fd. The nucleotide sequence of the gene specifying the IKe DNA binding protein has been established. When compared to the nucleotide sequence of gene V of phage M13 it shows an homology of 58%, indicating that these two phages are evolutionarily related. The IKe DNA binding protein is 88 amino acids long which is one amino acid residue larger than the gene V protein sequence. When the IKe DNA binding protein sequence is compared with that of gene V protein it was found that 39 amino acid residues have identical positions in both proteins. The positions of all five tyrosine residues, a number of which are known to be involved in DNA binding, are conserved. Secondary structure predictions indicate that the two proteins contain similar structural domains. It is proposed that the tyrosine residues which are involved in DNA binding are the ones in or next to a beta-turn, at positions 26, 41 and 56 in gene V protein and at positions 27, 42 and 57 in the IKe DNA binding protein.

  19. [Nucleotide sequence analysis of a species specific probe by an inserted fragment from recombinant plasmid pCX7 of L. interrogans sensu stricto serovar lai].

    PubMed

    Dai, B; Xiao, J; Yan, Z; Shen, C; Li, S; Fang, Z

    1998-12-01

    The etiological agents of leptospirosis are the pathogenic leptospires (L. interrogans sensu lato) which can be divided into 223 serovars organized into 23 serogroups. The serovar remains the basic taxon, but serotyping may now be accomplished and recognized by acceptable methods. Complementary molecular approaches are being used extensively to assess genetic relatedness amongst leptospires with restriction endonuclese analysis (REA), pulse field gel electrophoresis (PFGE) and DNA-DNA hybridization as well established tools. However, the method is cumbersome and unsuitable for routine application. To develop a sensitive and specific method for identification of pathogenic leptospires, a genomic library of L. interrogans sensu stricto serovar lai was constructed with the plasmid vector pUC9. A recombinant plasmid, designated pCX7 which has homologous fragment of pathogenic leptospires was screened from the bank. pCX7 could recognize pathogenic leptospiral DNA fragment 1.7 kb of strain 017 without cross hybridization to nonpathogenic leptospiral DNA. Inserted fragment of pCX7 DNA sequencing was performed by Dr. Yan Zhengxin (Max-Plank-Institut fur Biology, Tubingen, Germany). Insert fragment was cloned into pBluescript and sequenced by using ABI(Applied Bio. Systems, Model 373A). Nucleotide sequences were analyzed by Dr. Xiao Jianguo (Texas University Medical School and School of Public Health, Center for Infectious Diseases) using a suit of computer program (NIH). One open reading frame of 306 nucleotids were identified. There were identifiable initiation codons, terminators, pribnow box and sextama box within the sequenced regions. These results further confirmed that the little homology between L. interrogans sensu strito and L. borgpeterseni serovar javanica, L. inadai serovar ranarun and serovar manhao (L. genomospecies 2), L. biflexa serovar patoc, L. illini. pCX7 DNA probe could provide a base for identification and classification of leptospires.

  20. Comparison and analysis of the complete nucleotide sequence of foot-and-mouth disease viruses from animals in Korea and other PanAsia strains.

    PubMed

    Oem, Jae Ku; Lee, Kwang Nyeong; Cho, In Soo; Kye, Soo Jeong; Park, Jong Hyeon; Joo, Yi Seok

    2004-08-01

    During the last 3 years, foot-and-mouth disease virus serotype O, named PanAsia, caused two outbreaks in the Republic of Korea. To determine if there was an obvious genetic relationship between the virus isolated in 2002 (O/SKR/2002) and the O/SKR/2000, and to further analyze the epidemiological relationships between the PanAsia viruses and the viruses identified in Korea, the complete nucleotide sequence of the O/SKR/2002 and the O/SKR/2000 were determined by automatic cycling sequencing and primer walking. The nucleotides and the deduced amino acid (aa) sequences of the strains identified in Korea were compared with each other and also those enrolled in the GenBank database. In comparison and analysis of the viruses identified in Korea, any deletions or insertions in the specific fragment gene of both the O/SKR/2002 and O/SKR/2000 were not identified. However, comparison of the aa sequence of the identified virus in 2002 from pigs with those of other PanAsia strains revealed significant substitutions of 4 aa in the VPI region and 8 aa in the 3A region. In phylogenetic analysis based on the translated region, the identified virus in 2002 appeared to be the divergence of approximately 1% degree with other PanAsia viruses. Also, animal experiments indicated that O/SKR/2000 is not host-restricted and develop the clinical signs in the main susceptible livestock species (cattle and pigs). However, O/SKR/2002 did not develop the clinical signs in cattle and showed severe clinical signs only in pigs. These analytic data suggest that 2002 outbreaks in Korea is not re-occurred but re-introduced from nowhere.