9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
9 CFR 113.31 - Detection of avian lymphoid leukosis.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., shall be done in chick embryo cell cultures. (1) Each vaccine virus, cytopathic to chick embryo...) Uninoculated chick embryo fibroblast cell cultures shall act as negative controls. One set of chick fibroblast...
Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.
Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng
2016-10-15
The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.
2011-01-01
In this study, the relative acetylation levels of histone 3 in lysine 9 (H3K9ac) in cultured and cryopreserved bovine fibroblasts was measured and we determined the influence of the epigenetic status of three cultured (C1, C2 and C3) donor cell lines on the in vitro development of reconstructed bovine embryos. Results showed that cryopreservation did not alter the overall acetylation levels of H3K9 in bovine fibroblasts analysed immediately after thawing (frozen/thawed) compared with fibroblasts cultured for a period of time after thawing. However, reduced cleavage rates were noted in embryos reconstructed with fibroblasts used immediately after thawing. Cell passage affects the levels of H3K9ac in bovine fibroblasts, decreasing after P1 and donor cells with lower H3K9ac produced a greater frequency of embryo development to the blastocyst stage. Cryopreservation did not influence the total cell and ICM numbers, or the ICM/TPD ratios of reconstructed embryos. However, the genetic source of donor cells did influence the total number of cells and the trophectoderm cell numbers, and the cell passage influenced the total ICM cell numbers. ?? Copyright Cambridge University Press 2010.
Xiong, Xianrong; Lan, Daoliang; Li, Jian; Zhong, Jincheng; Zi, Xiangdong; Ma, Li; Wang, Yong
2013-08-01
Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.
Yoo, Jae-Gyu; Kim, Byeong-Woo; Park, Mi-Rung; Kwon, Deug-Nam; Choi, Yun-Jung; Shin, Teak-Soon; Cho, Byung-Wook; Seo, Jakyeom; Kim, Jin-Hoi; Cho, Seong-Keun
2017-01-01
Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8) was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT) groups (31.4±8.3 to 33.4±11.1). After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05) between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell. PMID:27764913
The Stil protein regulates centrosome integrity and mitosis through suppression of Chfr
Castiel, Asher; Danieli, Michal Mark; David, Ahuvit; Moshkovitz, Sharon; Aplan, Peter D.; Kirsch, Ilan R.; Brandeis, Michael; Krämer, Alwin; Izraeli, Shai
2011-01-01
Stil (Sil, SCL/TAL1 interrupting locus) is a cytosolic and centrosomal protein expressed in proliferating cells that is required for mouse and zebrafish neural development and is mutated in familial microcephaly. Recently the Drosophila melanogaster ortholog of Stil was found to be important for centriole duplication. Consistent with this finding, we report here that mouse embryonic fibroblasts lacking Stil are characterized by slow growth, low mitotic index and absence of clear centrosomes. We hypothesized that Stil regulates mitosis through the tumor suppressor Chfr, an E3 ligase that blocks mitotic entry in response to mitotic stress. Mouse fibroblasts lacking Stil by genomic or RNA interference approaches, as well as E9.5 Stil−/− embryos, express high levels of the Chfr protein and reduced levels of the Chfr substrate Plk1. Exogenous expression of Stil, knockdown of Chfr or overexpression of Plk1 reverse the abnormal mitotic phenotypes of fibroblasts lacking Stil. We further demonstrate that Stil increases Chfr auto-ubiquitination and reduces its protein stability. Thus, Stil is required for centrosome organization, entry into mitosis and cell proliferation, and these functions are at least partially mediated by Chfr and its targets. This is the first identification of a negative regulator of the Chfr mitotic checkpoint. PMID:21245198
Dutta, Rahul; Malakar, Dhruba; Khate, Keviletsu; Sahu, Shailendra; Akshey, Yogesh; Mukesh, Manishi
2011-09-15
The main purpose of the experiment was to compare the efficiency of three cell types, namely adult fibroblast, putative embryonic stem (ES) cell, and lymphocyte, as donor cells for somatic cell nuclear transfer by handmade cloning in goats. The outcome clearly shows that putative embryonic stem cells, with a cleavage and blastocyst production rate of 74.69% ± 3.92 and 39.75% ± 3.86, respectively, performs better in comparison to adult fibroblast cell and lymphocyte. Between adult fibroblast cell and lymphocyte no statistically significant difference exists at P < 0.05. An overall cleavage and blastocyst formation rate of 67.41% ± 3.92 and 26.96% ± 3.86 was obtained using adult fibroblast donor cells. The study establishes beyond doubt the reprogrammability of lymphocyte by handmade cloning (HMC) protocol with a cleavage and blastocyst production rate of 56.47% ± 3.92 and 24.70% ± 3.86, respectively. PCR analysis of highly polymorphic 286 bp fragment of MHC II DRB genes of cloned embryos and three donor cells were performed to verify the cloned embryos. The amplified PCR products were subjected to SSCP to confirm their genetic identity. The karyotyping of the cloned embryos showed normal chromosomal status as expected in goat. Significantly, in the second stage of the experiment, the produced cloned embryos were successfully used to derive ntES-like cells. The rate of primary colony formation rate was 62.50% ± 4.62 for fibroblast donor cell derived embryos. The same was 60.60% ± 4.62 for putative ES donor cell derived embryos and 66.66% ± 4.62 for lymphocyte donor cell derived embryos, respectively. The putative ntES colonies were positively characterized for alkaline phosphatase, Oct-4, TRA-1-60, TRA-1-81, Sox-2, and Nanog by Immunocytochemistry and Reverse Transcription PCR. To further validate the stem ness, the produced putative ntES colonies were differentiated to embryoid bodies. Immunocytochemistry revealed that embryoid bodies expressed NESTIN specific for ectodermal lineage; GATA-4 for endodermal lineage and smooth muscle actin-I, and troponin-I specific for mesodermal lineage. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. It could be of substantial significance as patient specific ntES cells have proven therapeutic significance. Copyright © 2011 Elsevier Inc. All rights reserved.
Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang
2013-02-01
Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a significantly higher birth rate of healthy clones (0.5009% vs. 0.3362% and 0.2433%) than that resulting from P,D,L,Y-AFBs and P,D,L,Y-FFBs. This suggests that using LW-AFBs as donor cells results in a higher cloning efficiency in pigs, compared with the other two donor fibroblast cell types. The birth rate of healthy clones was significantly improved when the number of transferred cloned embryos was increased from 150-199 to 200-450 per recipient. However, increase of the number of transferred embryos from 200-249 to 250-450 per surrogate did not change the birth rate of healthy clones. This suggests that transfer of excessive (250-450) cloned embryos to an individual surrogate is not necessary for increasing the cloning efficiency in pigs, and the relatively optimal number of reconstructed embryos transferred to individual recipient is 200-249. Furthermore, our results indicated that the numbers of total born clones, clones born alive, and clones born healthy per litter have a significantly high positive correlation with each other. The present study provides useful information for improving SCNT efficiency in pigs.
Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan
2013-01-01
Abstract Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150–199, 200–249, 250–299, 300–349, or 350–450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53±0.34) was similar with that associated with P,D,L,Y-FFBs (2.72±0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47±0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a significantly higher birth rate of healthy clones (0.5009% vs. 0.3362% and 0.2433%) than that resulting from P,D,L,Y-AFBs and P,D,L,Y-FFBs. This suggests that using LW-AFBs as donor cells results in a higher cloning efficiency in pigs, compared with the other two donor fibroblast cell types. The birth rate of healthy clones was significantly improved when the number of transferred cloned embryos was increased from 150–199 to 200–450 per recipient. However, increase of the number of transferred embryos from 200–249 to 250–450 per surrogate did not change the birth rate of healthy clones. This suggests that transfer of excessive (250–450) cloned embryos to an individual surrogate is not necessary for increasing the cloning efficiency in pigs, and the relatively optimal number of reconstructed embryos transferred to individual recipient is 200–249. Furthermore, our results indicated that the numbers of total born clones, clones born alive, and clones born healthy per litter have a significantly high positive correlation with each other. The present study provides useful information for improving SCNT efficiency in pigs. PMID:23256540
Yu, Dawei; Zhang, Shoufeng; Du, Weihua; Zhang, Jinxia; Fan, Zongxing; Hao, Haisheng; Liu, Yan; Zhao, Xueming; Qin, Tong; Zhu, Huabin
2014-01-01
Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α) (without secretory signal sequence) gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT). Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9%) became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR) and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS), which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.
Himaki, Takehiro; Mizobe, Yamato; Tsuda, Kenichirou; Suetomo, Masashi; Yamakuchi, Hiroshi; Miyoshi, Kazuchika; Takao, Sonshin; Yoshida, Mitsutoshi
2012-01-01
The objective of this study was to examine the effect of postactivation treatment with latrunculin A (LatA), an actin polymerization inhibitor, on in vitro and in vivo development of somatic cell nuclear transfer (SCNT) embryos derived from kidney fibroblasts of an aged Clawn miniature boar (12 years old). After electric activation, SCNT embryos were treated with 0, 0.5 or 1 μM LatA and cultured in vitro. The rate of blastocyst formation was significantly higher (P<0.05) in SCNT embryos treated with 0.5 μM LatA (38%) than those in control (14%). When cloned embryos treated with 0.5 μM LatA were transferred into the oviducts of two recipient miniature gilts to assess their development in vivo, both recipients became pregnant; one maintained pregnancy to term, and a live piglet (weighing 220 g) was delivered by Caesarean section. The results of this study indicated that the postactivation treatment with LatA was effective in improving in vitro developmental capacity of SCNT miniature pig embryos derived from kidney fibroblasts of an aged animal and that miniature pig cloned embryos treated with LatA had the ability to develop to term.
Sugawara, Atsushi; Sugimura, Satoshi; Hoshino, Yumi; Sato, Eimei
2009-08-01
Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.
Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua; Liu, Dewu; Wu, Zhenfang
2013-10-01
The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.
Preliminary studies of primary ostrich fibroblasts for the isolation of ratite viruses.
Rodgers, S J; Vanhooser, S L; Welsh, R D; Silkwood, T G
1994-01-01
An ostrich egg at 21 days of development was used to propagate primary embryo cell cultures. Primary cultures of skeletal muscle cells (for fibroblasts) were prepared by routine typsinization techniques. The ostrich embryo fibroblasts were tested for their ability to propagate stock avian viruses of infectious bronchitis virus, paramyxiovirus-1 (PMV-1), PMV-2, PMV-3, infectious bursal disease virus, quail bronchitis virus, avian reovirus, turkey coronavirus, and two ostrich-originating specimens (one of which was a possible coronavirus identified by electron microscopy). Cytopathic effects were seen by light microscopy in cell cultures inoculated with PMV-1, turkey coronavirus, and the two ostrich specimens. Hemaglutinating titers of 4 or more were determined for PMV-1, turkey coronavrius, and the two ostrich specimens after inoculation onto monolayers of ostrich embryo fibroblasts. Hemagglutination-inhibition tests confirmed the identification of PMV-1 when homologous antisera were used as the specific inhibitor. Bovine coronavirus antisera inhibited the hemagglutination of one of the cultured ostrich specimens.
1975-01-01
Intercellular invasion is the active migration of cells on one type into the interiors of tissues composed of cells of dissimilar cell types. Contact paralysis of locomotion is the cessation of forward extension of the pseudopods of a cell as a result of its collision with another cell. One hypothesis to account for intercellular invasion proposes that a necessary condition for a cell type to be invasive to a given host tissue is that it lack contact paralysis of locomotion during collision with cells of that host tissue. The hypothesis has been tested using rabbit peritoneal neutrophil granulocytes (PMNs) as the invasive cell type and chick embryo fibroblasts as the host tissue. In organ culture, PMNs rapidly invade aggregates of fibroblasts. The behavior of the pseudopods of PMNs during collision with fibroblasts was analyzed for contact paralysis by a study of time-lapse films of cells in mixed monolayer culture. In monolayer culture, PMNs show little sign of paralysis of the pseudopods upon collision with fibroblasts and thus conform in their behavior to that predicted by the hypothesis. PMID:1092702
Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua
2013-01-01
Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142
Laboratory Aspects of Biological Warfare Agents
2016-01-01
Embryonated chicken egg yolk sacs have typically been the method of choice for culture. They are inoculated when the embryos are 5-7 days old. The... chicken or mouse embryo fibroblasts, J774.16 mouse macrophages, L929 murine fibroblasts, HEL (human embryonic lung) or vero cells are more commonly...the family, Poxviridae, is a legacy of the original grouping of viruses associated with diseases that produced poxes in the skin, however, if
EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS
Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...
Chinese hamster ovary, rabbit alveolar macrophage, Syrian Hamster embryo, mouse, and human neonatal fibroblast cells were employed in a statistical evaluation of the relative sensitivity of the cells to toxic substances. The cells were exposed to 1,2,4-trichlorobenzene, 2,4-dimet...
Golla, K; Selokar, N L; Saini, M; Chauhan, M S; Manik, R S; Palta, P; Singla, S K
2012-10-01
Somatic cells in milk are a potential source of nuclei for nuclear transfer to produce genetically identical animals; this is especially important in animals that are susceptible to risks of bacterial infection on biopsy collection. In this study, a minimum of 10 milk samples were collected from each of the three buffaloes representing Murrah breed. All the samples were processed immediately and cell colonies were obtained. Cell colonies from one buffalo (MU-442) survived beyond 10 passages and were evaluated by fluorescence microscopy and used in nuclear transfer experiments. In culture, these cells expressed vimentin, indicating they were of fibroblast origin similar to ear cells. We compared the effectiveness of cloning using those milk-derived fibroblast (MDF) cells and fibroblast cells derived from the ear derived fibroblast (EDF). Fusion and cleavage rates of MDF-NT and EDF-NT embryos were found to be similar (92.43 ± 1.28% vs 94.98 ± 1.24%, and 80.27 ± 1.75% vs 84.56 ± 3.73%, respectively; p > 0.01); however, development to blastocyst stage and total cell number was higher for EDF-NT embryos (50.24 ± 2.54%, 227.14 ± 13.04, respectively, p < 0.01), than for MDF-NT embryos (16.44 ± 0.75%, 170.57 ± 4.50 respectively). We conclude that somatic cells from milk can be cultured effectively and used as nucleus donor to produce cloned blastocyst-stage embryos. © 2012 Blackwell Verlag GmbH.
Ideta, Atsushi; Urakawa, Manami; Aoyagi, Yoshito; Saeki, Kazuhiro
2005-04-01
We examined morphological nuclear events during the first cell cycle of bovine embryos reconstructed with somatic cells at the M and G1 phases (M-embryos and G1-embryos, respectively) by intracytoplasmic nuclear injection, and the subsequent development of these embryos in vitro and in vivo. Bovine fetal fibroblasts (BFFs) at the M or G1 phase were directly injected into enucleated oocytes, and activated immediately. Only half (48%) of the M-embryos extruded polar body-like cells (PBCs) at 6 h post injection (hpi). At 15 to 19 hpi, 54% of the M-embryos formed a single pronucleus-like nucleus. Nuclear envelope-breakdown, premature chromosome condensation and single nuclear clusters were observed in most of the G1-embryos (88%) within 30 min following the nuclear injection. At 15 to 19 hpi, single pronucleus-like nuclei were formed in most G1-embryos (83%). The potential of G1-embryos to develop to blastocysts was significantly higher than that of M-embryos (31% vs 16%). Three of five recipients following transfer of blastocysts derived from the G1-embryos became pregnant on Day 30, and one recipient delivered a calf. Our results indicate that almost a half of the M-embryos failed to extrude PBCs and that the G1-embryos developed to blastocysts at a higher rate than the M-embryos.
Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong
2009-05-01
In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.
Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice
Davila, Juanmahel; Kannan, Athilakshmi; Flaws, Jodi A.; Bagchi, Milan K.
2016-01-01
Environmental and occupational exposure to bisphenol A (BPA), a chemical widely used in polycarbonate plastics and epoxy resins, has received much attention in female reproductive health due to its widespread toxic effects. Although BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In this study, we addressed the effect of prolonged exposure to an environmental relevant dose of BPA on embryo implantation and establishment of pregnancy. Our studies revealed that treatment of mice with BPA led to improper endometrial epithelial and stromal functions thus affecting embryo implantation and establishment of pregnancy. Upon further analyses, we found that the expression of progesterone receptor (PGR) and its downstream target gene, HAND2 (heart and neural crest derivatives expressed 2), was markedly suppressed in BPA-exposed uterine tissues. Previous studies have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor and the MAPK signaling pathways and inhibiting epithelial proliferation. Interestingly, we observed that down-regulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with enhanced activation of fibroblast growth factor and MAPK signaling in the epithelium, thus contributing to aberrant proliferation and lack of uterine receptivity. Further, the differentiation of endometrial stromal cells to decidual cells, an event critical for the establishment and maintenance of pregnancy, was severely compromised in response to BPA. In summary, our studies revealed that chronic exposure to BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy. PMID:27022677
Conover, Cheryl A; Bale, Laurie K; Overgaard, Michael T; Johnstone, Edward W; Laursen, Ulla H; Füchtbauer, Ernst-Martin; Oxvig, Claus; van Deursen, Jan
2004-03-01
Pregnancy-associated plasma protein A (PAPPA) is a metzincin superfamily metalloproteinase in the insulin-like growth factor (IGF) system. PAPPA increases IGF bioavailability and mitogenic effectiveness in vitro through regulated cleavage of IGF-binding protein 4 (IGFBP4). To determine its function in vivo, we generated PAPPA-null mice by gene targeting. Mice homozygous for targeted disruption of the PAPPA gene were viable but 60% the size of wild-type littermates at birth. The impact of the mutation was exerted during the early embryonic period prior to organogenesis, resulting in proportional dwarfism. PAPPA, IGF2 and IGFBP4 transcripts co-localized in wild-type embryos, and expression of IGF2 and IGFBP4 mRNA was not altered in PAPPA-deficient embryos. However, IGFBP4 proteolytic activity was completely lacking in fibroblasts derived from PAPPA-deficient embryos, and IGFBP4 effectively inhibited IGF-stimulated mitogenesis in these cells. These results provide the first direct evidence that PAPPA is an essential growth regulatory factor in vivo, and suggest a novel mechanism for regulated IGF bioavailability during early fetal development.
Connective tissue fibroblasts and Tcf4 regulate myogenesis
Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle
2011-01-01
Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349
Liu, Haijun; Peng, Hui; Liu, Fang; Ma, Qun; Zhang, Wenchang
2016-05-01
The present study aimed to detect the expression of β-galactosidase during long-term cultured goat skin fibroblasts and investigate the effects of donor goat age, sex, and cell passage on senescence and the effects of donor cell passage on in vitro development of nuclear transfer embryos. The results showed that, in the same cell passage, more β-galactosidase-positive cells were detected in cells from older donors than younger donors. Irrespective of the donor age, the number of positive cells was higher in later passages from passages 20 to 50. In the same passage from 20 to 50, the β-galactosidase-positive rate was higher in cells from 5-yr female goat than 5-yr male goat. Using fibroblasts from male goats at various passages as donor cells, reconstructed embryos had similar fusion and cleavage rates, but the blastocyst rate was higher for cells at passages 10 and 20 than passage 30. In conclusion, donor goat age and cell passage had significant effects on the β-galactosidase-positive rate; also, cells from 5-yr female goat had a higher β-galactosidase-positive rate than those from 5-yr male goat, and the donor cell passage affected the developmental potential of nuclear transfer embryos.
Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong
2006-02-01
One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P < 0.05), and from 59 to 88% (P < 0.05) with cumulus cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P < 0.05). The cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.
Use of muscovy duck embryo fibroblasts for the isolation of viruses from wild birds
Docherty, D.E.; Slota, Paul G.
1988-01-01
Techniques are described for the preparation, cryopreservation, and inoculation of Muscovy duck embryo cell cultures. The procedure yields a susceptible reproducible cell culture system for the isolation and cultivation of viruses from wild birds.
Production of the first cloned camel by somatic cell nuclear transfer.
Wani, Nisar A; Wernery, U; Hassan, F A H; Wernery, R; Skidmore, J A
2010-02-01
In this study, we demonstrate the use of somatic cell nuclear transfer to produce the first cloned camelid, a dromedary camel (Camelus dromedarius) belonging to the family Camelidae. Donor karyoplasts were obtained from adult skin fibroblasts, cumulus cells, or fetal fibroblasts, and in vivo-matured oocytes, obtained from preovulatory follicles of superstimulated female camels by transvaginal ultrasound guided ovum pick-up, were used as cytoplasts. Reconstructed embryos were cultured in vitro for 7 days up to the hatching/hatched blastocyst stage before they were transferred to synchronized recipients on Day 6 after ovulation. Pregnancies were achieved from the embryos reconstructed from all cell types, and a healthy calf, named Injaz, was born from the pregnancy by an embryo reconstructed with cumulus cells. Genotype analyses, using 25 dromedary camel microsatellite markers, confirmed that the cloned calf was derived from the donor cell line and the ovarian tissue. In conclusion, the present study reports, for the first time, establishment of pregnancies and birth of the first cloned camelid, a dromedary camel (C. dromedarius), by use of somatic cell nuclear transfer. This has opened doors for the amelioration and preservation of genetically valuable animals like high milk producers, racing champions, and males of high genetic merit in camelids. We also demonstrated, for the first time, that adult and fetal fibroblasts can be cultured, expanded, and frozen without losing their ability to support the development of nuclear transfer embryos, a technology that may potentially be used to modify fibroblast genome by homologous recombination so as to generate genetically altered cloned animals.
Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Wang, Ziyu; Wang, Feng
2016-02-01
Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.
Liu, Tianbin; Dou, Hongwei; Xiang, Xi; Li, Yong; Pang, Xinzhi; Zhang, Yijie; Chen, Yu; Luan, Jing; Xu, Ying; Yang, Zhenzhen; Yang, Wenxian; Liu, Huan; Li, Feida; Wang, Hui; Yang, Huanming; Bolund, Lars; Vajta, Gabor
2015-01-01
Abstract Data analysis in somatic cell nuclear transfer (SCNT) research is usually limited to several hundreds or thousands of reconstructed embryos. Here, we report mass results obtained with an established and consistent porcine SCNT system (handmade cloning [HMC]). During the experimental period, 228,230 reconstructed embryos and 82,969 blastocysts were produced. After being transferred into 656 recipients, 1070 piglets were obtained. First, the effects of different types of donor cells, including fetal fibroblasts (FFs), adult fibroblasts (AFs), adult preadipocytes (APs), and adult blood mesenchymal (BM) cells, were investigated on the further in vitro and in vivo development. Compared to adult donor cells (AFs, APs, BM cells, respectively), FF cells resulted in a lower blastocyst/reconstructed embryo rate (30.38% vs. 37.94%, 34.65%, and 34.87%, respectively), but a higher overall efficiency on the number of piglets born alive per total blastocysts transferred (1.50% vs. 0.86%, 1.03%, and 0.91%, respectively) and a lower rate of developmental abnormalities (10.87% vs. 56.57%, 24.39%, and 51.85%, respectively). Second, recloning was performed with cloned adult fibroblasts (CAFs) and cloned fetal fibroblasts (CFFs). When CAFs were used as the nuclear donor, fewer developmental abnormalities and higher overall efficiency were observed compared to AFs (56.57% vs. 28.13% and 0.86% vs. 1.59%, respectively). However, CFFs had an opposite effect on these parameters when compared with CAFs (94.12% vs. 10.87% and 0.31% vs. 1.50%, respectively). Third, effects of genetic modification on the efficiency of SCNT were investigated with transgenic fetal fibroblasts (TFFs) and gene knockout fetal fibroblasts (KOFFs). Genetic modification of FFs increased developmental abnormalities (38.96% and 25.24% vs. 10.87% for KOFFs, TFFs, and FFs, respectively). KOFFs resulted in lower overall efficiency compared to TFFs and FFs (0.68% vs. 1.62% and 1.50%, respectively). In conclusion, this is the first report of large-scale analysis of porcine cell nuclear transfer that provides important data for potential industrialization of HMC technology. PMID:26655078
Correction of β-thalassemia mutant by base editor in human embryos.
Liang, Puping; Ding, Chenhui; Sun, Hongwei; Xie, Xiaowei; Xu, Yanwen; Zhang, Xiya; Sun, Ying; Xiong, Yuanyan; Ma, Wenbin; Liu, Yongxiang; Wang, Yali; Fang, Jianpei; Liu, Dan; Songyang, Zhou; Zhou, Canquan; Huang, Junjiu
2017-11-01
β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB -28 (A>G) mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE) system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB -28 (A>G) mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB -28 (A>G) homozygous mutation. Data showed that base editor could precisely correct HBB -28 (A>G) mutation in the patient's primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM) oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB -28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.
Chen, Jun; Liang, Xiu; Chen, Pei-fu
2011-04-01
Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.
Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.
2015-01-01
Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121
Zhang, Ai Min; Chen, Jian Quan; Sha, Hong Ying; Chen, Juan; Xu, Xu Jun; Wu, You Bin; Ge, Lai Xiang; Da, Hu Wei; Cheng, Guo Xiang
2007-10-01
The aim of this study was to investigate whether ova of Sannen goat could support the pre-implantation development of interspecies embryos constructed through somatic cell nucleus transfer (SCNT) embryos and whether secondary SCNT (SSCNT) could improve the pre-implantation development of those embryos. The primary SCNT (PSCNT) embryos were produced by using Sannen goat ovum cytoplasts as recipients and fibroblast cells, derived from human, rabbit and Boer goat skins, as nucleus donors. The blastomeres of 8 to 16 cells stage of PSCNT embryos were subsequently used as nucleus donor cells and Sannen goat ovum cytoplasts as recipients to evaluate the effect of SSCNT on the pre-implantation development rate of these reconstructed interspecies embryos. Our results indicate that the pre-implantation development rates of SSCNT embryos reconstructed using these three different blastomeres are almost twice of that of corresponding PSCNT embryos (human, 15.8% vs. 7.8%; rabbit, 27.9% vs. 12.5%; Boer goat 55.3% vs. 24.5%; P < 0.05 in all three cases). The time durations that embryos need for the serial events of remodeling and reprogramming to take place vary, depending on the animal species of nucleus donors. These data suggest that remodeling and reprogramming of donor nucleus may be enhanced by prolonged exposure of donor nucleus to maternal cytoplast. We conclude that Sannen goat cytoplast can support the pre-implantation development of embryos constructed with nuclei from various donors, including fibroblasts of human, rabbit and Boer goat; and the somatic nucleus derived from different species requires more time to achieve its reprogramming necessary for pre-implantation development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, G.; Bartholomew, J.A.; Blssell, M.J.
1980-07-01
We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states).more » When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.« less
Gap junction communications influence upon fibroblast synthesis of Type I collagen and fibronectin.
Ehrlich, H Paul; Sun, Bonnie; Saggers, Gregory C; Kromath, Fatuma
2006-07-01
In rats polyvinyl alcohol sponge subcutaneous implants treated with gap junctional intercellular communications (GJIC) uncouplers showed reduced deposition of connective tissue. Do uncouplers inhibit the synthesis and deposition of a new connective tissue by fibroblasts? Confluent human dermal fibroblasts in serum-free medium received either endosulfan or oleamide, GJIC uncouplers. Collected media were subjected to Dot Blot analysis for native Type I collagen and fibronectin. Uncoupler-treated fibroblasts released less Type I collagen, while there was no change in fibronectin release. Collagen synthesis was restored to normal, when the uncouplers were removed, showing that these uncouplers were reversible and not toxic to cells. Northern blot analysis revealed procollagen alpha1 (I) mRNA was minimally affected by endosulfan. Oleamide-treated 17-day chick embryo calvaria explants were incubated with Type I collagen antibody, frozen, cryosectioned, and then subjected to rhodamine (Rh) tagged anti-mouse-IgG antibody, to detect newly deposited Type I collagen. Fluorescent antibody-collagen complexes were localized on the periphery of cells in control calvaria, but absent around cells in oleamide-treated calvaria. GJIC optimize collagen synthesis but not fibronectin synthesis. The lack of connective tissue deposited in granulation tissues treated with uncouplers appears related to the inhibition of collagen synthesis. These findings suggest that altering GJIC might control collagen deposition in scarring. 2006 Wiley-Liss, Inc.
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Wen, Duan-Cheng; Bi, Chun-Ming; Xu, Ying; Yang, Cai-Xia; Zhu, Zi-Yu; Sun, Qing-Yuan; Chen, Da-Yuan
2005-08-01
The developmental potential of hybrid embryos produced by transferring panda or cat fibroblasts into nucleated rabbit oocytes was assessed. Both the panda-rabbit and the cat-rabbit hybrid embryos were able to form blastocysts in vitro. However, the rates of attaining the two-cell, four-cell, eight-cell, morula, or blastocyst stages for panda-rabbit hybrids were significantly greater than those of cat-rabbit hybrids (P<0.05). Transferring the rabbit fibroblasts into nucleated rabbit oocytes, 31.0% of the blastocyst rate was obtained, which was significantly higher than that of both the panda-rabbit and the cat-rabbit hybrid embryos (P<0.05). Whether or not the second polar body (PB2) was extruded from the one-cell hybrid embryos (both panda-rabbit and cat-rabbit hybrids) significantly affected their developmental capacity. Embryos without an extruded PB2 showed a higher capacity to develop into blastocysts (panda-rabbit: 19.2%; cat-rabbit: 4.3%), while embryos with extruded PB2 could only develop to the morula stage. The hybrid embryos formed pronucleus-like structures (PN) in 2-4 hr after activation, and the number of PN in one-cell embryos varied from one to five. Tracking of the nucleus in the egg after fusion revealed that the somatic nucleus could approach and aggregate with the oocyte nucleus spontaneously. Chromosome analysis of the panda-rabbit blastocysts showed that the karyotype of the hybrid embryos (2n=86) consisted of chromosomes from both the panda (2n=42) and the rabbit (2n=44). The results demonstrate that (1) it is possible to produce genetic hybrid embryos by interspecies nuclear transfer; (2) the developmental potential of the hybrid embryos is highly correlated to the donor nucleus species; and (3) the hybrid genome is able to support the complete preimplantation embryonic development of the hybrids. Copyright (c) 2005 Wiley-Liss, Inc.
Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith
In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of themore » TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.« less
Son, Yeo-Jin; Lee, Seung-Eun; Park, Yun-Gwi; Jeong, Sang-Gi; Shin, Min-Young; Kim, Eun-Young; Park, Se-Pill
2018-06-01
Somatic cell nuclear transfer (SCNT) is required for the generation of transgenic animals as disease models. During the in vitro development of SCNT embryos, the quality of matured oocytes is one of the major factors regulating the developmental potential of embryos. Time-lapse monitoring systems are new tools that assess the developmental capacity of embryos for use in embryo transfer. In this study, we investigated the effect of fibroblast growth factor 10 (FGF 10) on the developmental potential of SCNT embryos. After the in vitro maturation (IVM) of oocytes in IVM medium containing 10 ng/mL FGF 10 (10 F), the polar body extrusion rate was significantly higher than in the control. However, there was no difference in the percentage of fused embryos between the groups. The cleavage and blastocyst formation rates of embryos were significantly increased in the 10 F compared with the control. In addition, the total cell number was higher and the apoptotic index was lower in the 10 F than control at day 7. The messenger RNA (mRNA) expression of genes involved in apoptosis (baculoviral inhibitor of apoptosis repeat containing 5 [BIRC5] and caspase 3 [CASP3]) and development (octamer-binding transcription factor 4 [POU5F1] and sex determining region Y box 2 [SOX2]) increased after 10 F treatment. Furthermore, the kinetics of the first cleavage was faster and the percentage of embryos at cell block was significantly lower in the 10 F group than in the control. These results demonstrate that exposure of oocytes to FGF 10 during IVM promotes developmental competence.
Kwong, P J; Nam, H Y; Wan Khadijah, W E; Kamarul, T; Abdullah, R B
2014-04-01
The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs. © 2014 Blackwell Verlag GmbH.
Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs.
Kim, Geon A; Lee, Eun Mi; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Hwang, Jong Ik; Alam, Zahid; Ahn, Curie; Lee, Byeong Chun
2017-08-01
As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG 1 -Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/hHO-1 that will be suitable for xenotransplantation by overcoming hyperacute, acute and anti-inflammatory rejection.
USDA-ARS?s Scientific Manuscript database
The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek’s disease (MD) in the chicken is yet to be elucidated. Chicken embryo fi...
NASA Technical Reports Server (NTRS)
Smilenov, L. B.; Brenner, D. J.; Hall, E. J.
2001-01-01
Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.
Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets
Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S.; Chen, Juan; Zhang, Yulong; Welsh, Michael J.; Leno, Gregory H.; Engelhardt, John F.
2008-01-01
Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene–deficient model in the domestic ferret using recombinant adeno-associated virus–mediated gene targeting in fibroblasts, followed by nuclear transfer cloning. As part of this approach, we developed a somatic cell rejuvenation protocol using serial nuclear transfer to produce live CFTR-deficient clones from senescent gene-targeted fibroblasts. We transferred 472 reconstructed embryos into 11 recipient jills and obtained 8 healthy male ferret clones heterozygous for a disruption in exon 10 of the CFTR gene. To our knowledge, this study represents the first description of genetically engineered ferrets and describes an approach that may be of substantial utility in modeling not only CF, but also other genetic diseases. PMID:18324338
Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin
2011-12-01
Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.
Development of mice without Cip/Kip CDK inhibitors.
Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu; Hara, Eiji; Nakayama, Keiko; Nakayama, Keiichi I
2012-10-19
Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largely unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G(0) to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in normal development (although it is thought to be a key player in the response to DNA damage). Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang
Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, amore » putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. - Highlights: • Mouse embryo fibroblasts (MEFs) lacking SWAP-70 do not cause spontaneous transform. • Adding back of SWAP-70 to SWAP-70-deficient MEFs induces spontaneous transformation. • SWAP-70 is required for spontaneous transformation of MEFs.« less
Regular Article Macroautophagy is Defective in Mucolipin 1-Deficient Mouse Neurons
Curcio-Morelli, Cyntia; Charles, Florie A.; Micsenyi, Matthew C.; Cao, Yi; Venugopal, Bhuvarahamurthy; Browning, Marsha F.; Dobrenis, Kostantin; Cotman, Susan L.; Walkley, Steven U.; Slaugenhaupt, Susan A.
2013-01-01
Mucolipidosis Type IV is a neurodegenerative lysosomal disease clinically characterized by psychomotor retardation, visual impairment, and achlorhydria. In this study we report the development of a neuronal cell model generated from cerebrum of Mcoln1-/- embryos. Prior functional characterization of MLIV cells has been limited to fibroblast cultures gleaned from patients. The current availability of the mucolipin-1 knockout mouse model Mcoln1-/- allows the study of mucolipin1-defective neurons, which is important since the disease is characterized by severe neurological impairment. Electron microscopy studies reveal significant membranous intracytoplasmic storage bodies, which correlate with the storage morphology observed in cerebral cortex of Mcoln1-/- P7 pups and E17 embryos. The Mcoln1-/- neuronal cultures show an increase in size of LysoTracker and Lamp1 positive-vesicles. Using this neuronal model system, we show that macroautophagy is defective in mucolipin-1 deficient neurons and that LC3-II levels are significantly elevated. Treatment with rapamycin plus protease inhibitors did not increase levels of LC3-II in Mcoln1-/- neuronal cultures, indicating that the lack of mucolipin-1 affects LC3-II clearance. P62/SQSTM1 and ubiquitin levels were also increased in Mcoln1-/- neuronal cultures, suggesting an accumulation of protein aggregates and a defect in macroautophagy which could help explain the neurodegeneration observed in MLIV. This study describes, for the first time, a defect in macroautophagy in mucolipin-1 deficient neurons, which corroborates recent findings in MLIV fibroblasts and provides new insight into the neuronal pathogenesis of this disease. PMID:20600908
A novel platform for in situ investigation of cells and tissues under mechanical strain
Ahmed, Wylie W.; Kural, Mehmet H.; Saif, Taher A.
2010-01-01
The mechanical micro-environment influences cellular responses such as migration, proliferation, differentiation, and apoptosis. Cells are subjected to mechanical stretching in vivo, e.g., epithelial cells during embryogenesis. Current methodologies do not allow high resolution in situ observation of cells and tissues under applied strain, which may reveal intracellular dynamics and the origin of cell mechanosensitivity. We have developed a novel polydimethylsiloxane (PDMS) substrate capable of applying tensile and compressive strain (up to 45%) to cells and tissues while allowing in situ observation with high resolution optics. The strain field of the substrate was characterized experimentally using digital image correlation (DIC) and the deformation was modeled with finite element method (FEM) using a Mooney-Rivlin hyperelastic constitutive relation. The substrate strain was found to be uniform for greater than 95% of the substrate area. As a demonstration of our system, we applied mechanical strain to single fibroblasts transfected with GFP-Actin and whole transgenic Drosophila embryos expressing GFP in all neurons during live imaging. We report three observations of biological responses due to applied strain: (1) dynamic rotation of intact actin stress fibers in fibroblasts; (2) lamellipodia activity and actin polymerization in fibroblasts; (3) active axonal contraction in Drosophila embryo motor neurons. Our novel platform may serve as an important tool in studying the mechanoresponse of cells and tissues including whole embryos. PMID:20188869
De Castro, Sandra CP; Leung, Kit-yi; Savery, Dawn; Burren, Katie; Rozen, Rima; Copp, Andrew J.; Greene, Nicholas D.E.
2013-01-01
Background Folate one-carbon metabolism has been implicated as a determinant of susceptibility to neural tube defects (NTDs), owing to the preventive effect of maternal folic acid supplementation and the higher risk associated with markers of diminished folate status. Methods Folate one-carbon metabolism was compared in curly tail (ct/ct) and genetically matched congenic (+ct/+ct) mouse strains using the deoxyuridine suppression test in embryonic fibroblast cells and by quantifying s-adenosylmethionine (SAM) and s-adenosylhomocysteine (SAH) in embryos using liquid chromatography tandem mass spectrometry. A possible genetic interaction between curly tail and a null allele of 5,10-methylenetetrahydrofolate reductase (MTHFR) was investigated by generation of compound mutant embryos. Results There was no deficit in thymidylate biosynthesis in ct/ct cells but incorporation of exogenous thymidine was lower than in +ct/+ct cells. In +ct/+ct embryos the SAM/SAH ratio was diminished by dietary folate deficiency and normalised by folic acid or myor-inositol treatment, in association with prevention of NTDs. In contrast, folate deficiency caused a significant increase in SAM/SAH ratio in ct/ct embryos. Loss of MTHFR function in curly tail embryos significantly reduced the SAM/SAH ratio but did not cause cranial NTDs or alter the frequency of caudal NTDs. Conclusions Curly tail fibroblasts and embryos, in which Grhl3 expression is reduced, display alterations in one-carbon metabolism, particularly in the response to folate deficiency, compared with genetically-matched congenic controls in which Grhl3 is unaffected. However, unlike folate deficiency, diminished methylation potential appears to be insufficient to cause cranial NTDs in the curly tail strain, and neither does it increase the frequency of caudal NTDs. PMID:20589880
Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan
2012-01-01
Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952
Use of peripheral blood for production of buffalo (Bubalus bubalis) embryos by handmade cloning.
Jyotsana, Basanti; Sahare, Amol A; Raja, Anuj K; Singh, Karn P; Nala, Narendra; Singla, S K; Chauhan, M S; Manik, R S; Palta, P
2016-09-15
Buffalo embryos were produced by handmade cloning using peripheral blood-derived lymphocytes as donor cells. Although the blastocyst rate was lower (P < 0.01) for lymphocyte- than control skin fibroblast-derived embryos (6.6 ± 0.84% vs. 31.15 ± 2.97%), the total cell number (152.6 ± 23.06 vs. 160.1 ± 13.25) and apoptotic index (6.54 ± 0.95 vs. 8.45 ± 1.32) were similar. The global level of H3K9ac was higher (P < 0.05) in lymphocyte- than that in skin-derived blastocysts; whereas in IVF blastocysts, the level was not significantly different from the two cloned groups. The level of H3K27me3 was similar among the three groups. The expression level of DNMT1, DNMT3a, HDAC1, and IGF-1R was higher (P < 0.01) in lymphocytes than that in skin fibroblasts. The expression level of CDX2 was higher (P < 0.05) than that of DNMT3a, IGF-1R, OCT4, and NANOG was lower (P < 0.05) in lymphocyte-derived than in IVF blastocysts; that of DNMT1 and HDAC1 was similar in the two groups. The expression level of all these genes, except that of NANOG, was lower (P < 0.05) in lymphocyte- than in skin fibroblast-derived blastocysts. It is concluded that, peripheral blood-derived lymphocytes can be used for producing handmade cloning embryos in bubaline buffaloes. Copyright © 2016 Elsevier Inc. All rights reserved.
Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira
2011-02-01
Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.
The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA
Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.
2014-01-01
Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137
The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.
Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A
2014-11-20
The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris
2016-01-01
Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that it is an independent circadian rhythm-competent equivalence group poised to signal its environment, defend against maternal immune rejection, and begin the rapid commitment events of early embryogenesis. PMID:26493868
Pig cloning by microinjection of fetal fibroblast nuclei.
Onishi, A; Iwamoto, M; Akita, T; Mikawa, S; Takeda, K; Awata, T; Hanada, H; Perry, A C
2000-08-18
Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.
Development of mice without Cip/Kip CDK inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu
2012-10-19
Highlights: Black-Right-Pointing-Pointer Mice lacking Cip/Kip CKIs (p21, p27, and p57) survive until embryonic day 13.5. Black-Right-Pointing-Pointer Proliferation of MEFs lacking all three Cip/Kip CKIs appears unexpectedly normal. Black-Right-Pointing-Pointer CDK2 kinase activity of the triple mutant MEFs is increased in G0 phase. -- Abstract: Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largelymore » unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G{sub 0} to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in normal development (although it is thought to be a key player in the response to DNA damage).« less
Nikaido, Masataka; Doi, Kazunao; Shimizu, Takashi; Hibi, Masahiko; Kikuchi, Yutaka; Yamasu, Kyo
2007-02-01
In vertebrates, cranial sensory ganglia are mainly derived from ectodermal placodes, which are focal thickenings at characteristic positions in the embryonic head. Here, we provide the first description of the early development of the epibranchial placode in zebrafish embryos using sox3 as a molecular marker. By the one-somite stage, we saw a pair of single sox3-expressing domains appear lateral to the future hindbrain. The sox3 domain, which is referred to here as the early lateral placode, is segregated during the early phase of segmentation to form a pax2a-positive medial area and a pax2a-negative lateral area. The medial area subsequently developed to form the otic placode, while the lateral area was further segregated along the anteroposterior axis, giving rise to four sox3-positive subdomains by 26 hr postfertilization. Given their spatial relationship with the expression of the markers for the epibranchial ganglion, as well as their positions and temporal changes, we propose that these four domains correspond to the facial, glossopharyngeal, vagal, and posterior lateral line placodes in an anterior-to-posterior order. The expression of sox3 in the early lateral placode was absent in mutants lacking functional fgf8, while implantation of fibroblast growth factor (FGF) beads restored the sox3 expression. Using SU5402, which inhibits the FGF signal, we were able to demonstrate that formation of both the early lateral domains and later epibranchial placodes depends on the FGF signal operating at the beginning of somitogenesis. Together, these data provide evidence for the essential role of FGF signals in the development of the epibranchial placodes.
Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik
2009-06-01
Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.
Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo
2013-10-01
Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.
Wani, Nisar Ahmad; Vettical, Binoy S; Hong, Seung B
2017-01-01
Studies were conducted to explore the possibility of employing dromedary camel (Camelus dromedarius) oocytes as recipient cytoplasts for the development of interspecies somatic cell nuclear transfer (iSCNT) embryos using skin fibroblast cells of an adult Bactrian camel (Camelus bactrianus) and Llama (Llama glama) as donor nuclei. Also, the embryos reconstructed with Bactrian cells were transferred into the uterus of synchronized dromedary camel recipients to explore the possibility of using them as surrogate mothers. Serum-starved skin fibroblast cells were injected into the perivitelline space of enucleated mature oocytes, collected from super-stimulated dromedary camels, and fused using an Eppendorf electroporator. After activation with 5μM ionomycin and 6-dimethylaminopurine, they were cultured at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 in air. In experiment 1, Day 7 blastocysts were stained with Hoechst to count their cell numbers, while in experiment 2, they were transferred to synchronized dromedary recipients. A lower number (P < 0.05) of blastocysts were obtained from reconstructs utilizing fibroblast cells from Llama when compared with those reconstructed with dromedary and Bactrian fibroblast cells. However, no difference was observed in their cell numbers. In experiment 2, a higher (P < 0.05) proportion of blastocysts were obtained from the cleaved embryos reconstructed with Bactrian fibroblast cells when compared to those reconstructed with dromedary cells. Twenty-six Day 7 blastocysts reconstructed with Bactrian cells were transferred to 23 synchronized dromedary recipients with 5 pregnancies established on Day 30, however, only one of the pregnancies developed to term and a healthy calf weighing 33 kgs was born after completing 392 days of gestation. Unfortunately, the calf died on day 7 due to acute septicemia. In conclusion, the present study reports, for the first time, birth of a cloned Bactrian calf by iSCNT using dromedary camel as a source for oocytes as well as a surrogate for carrying the pregnancy to term.
Vettical, Binoy S.; Hong, Seung B.
2017-01-01
Studies were conducted to explore the possibility of employing dromedary camel (Camelus dromedarius) oocytes as recipient cytoplasts for the development of interspecies somatic cell nuclear transfer (iSCNT) embryos using skin fibroblast cells of an adult Bactrian camel (Camelus bactrianus) and Llama (Llama glama) as donor nuclei. Also, the embryos reconstructed with Bactrian cells were transferred into the uterus of synchronized dromedary camel recipients to explore the possibility of using them as surrogate mothers. Serum-starved skin fibroblast cells were injected into the perivitelline space of enucleated mature oocytes, collected from super-stimulated dromedary camels, and fused using an Eppendorf electroporator. After activation with 5μM ionomycin and 6-dimethylaminopurine, they were cultured at 38.5°C in an atmosphere of 5% CO2, 5% O2, and 90% N2 in air. In experiment 1, Day 7 blastocysts were stained with Hoechst to count their cell numbers, while in experiment 2, they were transferred to synchronized dromedary recipients. A lower number (P < 0.05) of blastocysts were obtained from reconstructs utilizing fibroblast cells from Llama when compared with those reconstructed with dromedary and Bactrian fibroblast cells. However, no difference was observed in their cell numbers. In experiment 2, a higher (P < 0.05) proportion of blastocysts were obtained from the cleaved embryos reconstructed with Bactrian fibroblast cells when compared to those reconstructed with dromedary cells. Twenty-six Day 7 blastocysts reconstructed with Bactrian cells were transferred to 23 synchronized dromedary recipients with 5 pregnancies established on Day 30, however, only one of the pregnancies developed to term and a healthy calf weighing 33 kgs was born after completing 392 days of gestation. Unfortunately, the calf died on day 7 due to acute septicemia. In conclusion, the present study reports, for the first time, birth of a cloned Bactrian calf by iSCNT using dromedary camel as a source for oocytes as well as a surrogate for carrying the pregnancy to term. PMID:28545049
Hanif, Zahid; Ahmed, Farrukh R; Shin, Seung Won; Kim, Young-Kee; Um, Soong Ho
2014-07-01
A controlled preparation of cellulose nanocrystals of different sizes and shapes has been carried out by acid hydrolysis of microcrystalline cellulose. The size- and concentration-dependent toxicity effects of the resulting cellulose nanocrystals were evaluated against two different cell lines, NIH3T3 murine embryo fibroblasts and HCT116 colon adenocarcinoma. It could serve as a therapeutic platform for cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Studies on Typhus and Spotted Fever.
1980-02-01
prowazekii-infected human somatic (fibroblast, endothelia)), but not chick, mouse or monkey , cells in culture: (a) intracellular antirickettsial action...that of the controls. No such effect on growth was apparent in CE cells, Nu E % o0 M Ŕ ZOO - .0 E 00 (1 CI - 4D W = .) C ~ o r- -!NBI Go !N 21501,,o o...human origin transformed or malignant cells, monkey primary or diploid and primary mouse embryo fibroblasts will permit expression of these effects to
Wang, Yuanyuan; Chen, Chen; Deng, Ziyu; Bian, Erbao; Huang, Cheng; Lei, Ting; Lv, Xiongwen; Liu, Liping; Li, Jun
2017-03-01
Pulmonary fibrosis (PF) is a severe inflammatory disease with limited effective treatments. It is known that the transdifferentiation of human embryo lung fibroblast (HELF) cells from pulmonary fibroblasts into myofibroblasts, contributes to the progression of pulmonary fibrogenesis. The tuberous sclerosis proteins TSC1 and TSC2 are two key signaling factors which can suppress cell growth and proliferation. However, the roles of TSC1 and TSC2 in lung fibroblast are unclear. Here, we developed a PF model with bleomycin (BLM) in mice and conducted several simulation experiments in HELF cells. Our study shows that the expression of TSC1 and TSC2 in fibrotic mice lung was reduced and stimulation of HELF cells with TGF-β1 resulted in a down-regulation of TSC1 and TSC2. In addition, overexpression of TSC1 or TSC2 decreased cell proliferation and differentiation. Furthermore, we found that reduced expression of TSC1 and TSC2 caused by TGF-β1 is associated with the promoter methylation status of TSC1 and TSC2. MeCP2, controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. We found that expression of TSC1 and TSC2 can be repressed by MeCP2, which regulates HELF cell differentiation and proliferation as myofibroblasts and lead to PF ultimately. Copyright © 2016. Published by Elsevier B.V.
Yelisetti, Uma Mahesh; Komjeti, Suman; Katari, Venu Charan; Sisinthy, Shivaji; Brahmasani, Sambasiva Rao
2016-06-01
Skin fibroblast cells were obtained from a small piece of an ear of leopard, lion, and tiger collected postmortem and attempts were made to synchronize the skin fibroblasts at G0/G1 of cell cycle using three different approaches. Efficiency of the approaches was tested following interspecies nuclear transfer with rabbit oocytes as recipient cytoplasm. Fluorescence-activated cell sorting revealed that the proportion of G0/G1 cells increased significantly (P < 0.05) when cells subjected to serum starvation, contact inhibition, and 3 mM sodium butyrate (NaBu) treatment when compared with cycling cells. However, 3 mM NaBu treatment caused alterations in cell morphology and increase in dead cells. Thus, interspecies nuclear transfer was carried out using fibroblast cells subjected to contact inhibition for 72 h, serum starvation for 48 h, and cells treated with 1.0 mM NaBu for 48 h. The fusion rates, the proportion of fused couplets that cleaved to two-cell and developed to blastocyst, were highest in all three species when the donor cells were treated with 1.0 mM NaBu for 48 h. But, the blastocyst percentage of interspecies nuclear embryos (5-6%) was significantly lower when compared with rabbit-rabbit nuclear transfer embryos (22.9%). In conclusion, fibroblast cells of leopard, lion, and tiger were successfully synchronized and used for the development of blastocysts using rabbit oocytes as recipient cytoplasm.
NASA Astrophysics Data System (ADS)
Lau, Jeffrey M. C.; Muslin, Anthony J.
The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.
Lagutina, Irina; Lazzari, Giovanna; Duchi, Roberto; Colleoni, Silvia; Ponderato, Nunzia; Turini, Paola; Crotti, Gabriella; Galli, Cesare
2005-10-01
The objective of the present work was to investigate and clarify the factors affecting the efficiency of somatic cell nuclear transfer (NT) in the horse, including embryo reconstruction, in vitro culture to the blastocyst stage, embryo transfer, pregnancy monitoring and production of offspring. Matured oocytes, with zona pellucida or after zona removal, were fused to cumulus cells, granulosa cells, and fetal and adult fibroblasts, and fused couplets were cultured in vitro. Blastocyst development to Day 8 varied significantly among donor cells (from 1.3% to 16%, P < 0.05). In total, 137 nuclear transfer-embryos were transferred nonsurgically to 58 recipient mares. Pregnancy rate after transfer of NT-embryos derived from adult fibroblasts from three donor animals was 24.3% (9/37 mares transferred corresponding to 9/101 blastocysts transferred), while only 1/18 (5.6%) of NT-blastocysts derived from one fetal cell line gave rise to a pregnancy (corresponding to 1/33 blastocysts transferred). Overall, seven pregnancies were confirmed at 35 days, and two went to term delivering two live foals. One foal died 40 h after birth of acute septicemia while the other foal was healthy and is currently 2 months old. These results indicate that (a) the zona-free method allows high fusion rate and optimal use of equine oocytes, (b) different donor cell cultures have different abilities to support blastocyst development, (c) blastocyst formation rate does not correlate with pregnancy fate and (d) healthy offspring can be obtained by somatic cell nuclear transfer in the horse.
Kitiyanant, Y; Saikhun, J; Chaisalee, B; White, K L; Pavasuthipaisit, K
2001-01-01
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.
Plasminogen activator: analysis of enzyme induction by ultraviolet irradiation mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskin, R.; Reich, E.; Dixon, K.
1981-10-01
Ultraviolet irradiation mapping techniques have previously been used to study the organization of eucaryotic gene classes and transcription units. We used the same method to probe some regulatory phenomena observed in the induction of plasminogen activator (PA) biosynthesis: PA synthesis in chicken embryo fibroblasts is induced by tumor-promoting phorbol esters and by retinoic acid; furthermore, PA induction by phorbol esters is synergistic with transformation, being 10- to 20-fold greater in virus-transformed cells than in normal cells. We found that the ultraviolet irradiation inactivation cross sections for PA induction by phorbol esters and by retinoate differed significantly, suggesting that these agentsmore » induce PA biosynthesis by different mechanisms. On the other hand, the ultraviolet irradiation sensitivity of phorbol ester induction in normal chicken embryo fibroblasts was the same as in transformed cells, indicating that the synergism of transformation and phorbol esters is probably not due to different pathways of PA induction.« less
Six cloned calves produced from adult fibroblast cells after long-term culture
Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong
2000-01-01
Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472
Lun, Z R; Burri, C; Menzinger, M; Kaminsky, R
1994-03-01
Garlic (Allium sativum L.) and one of its major components, allicin, have been known to have antibacterial and antifungal activity for a long time. Diallyl trisulfide is a chemically stable final transformation product of allicin which was synthesized in 1981 in China and used for treatment of bacterial, fungal and parasitic infections in man. The activity of diallyl trisulfide was investigated in several important protozoan parasites in vitro. The IC50 (concentration which inhibits metabolism or growth of parasites by 50%) for Trypanosoma brucei brucei, T.b. rhodesiense, T.b. gambiense, T. evansi, T. congolense and T. equiperdum was in the range of 0.8-5.5 micrograms/ml. IC50 values were 59 micrograms/ml for Entamoeba histolytica and 14 micrograms/ml for Giardia lamblia. The cytotoxicity of the compound was evaluated on two fibroblast cell lines (MASEF, Mastomys natalensis embryo fibroblast and HEFL-12, human embryo fibroblast) in vitro. The maximum tolerated concentration for both cell lines was 25 micrograms/ml. The results indicate that the compound has potential to be used for treatment of several human and animal parasitic diseases.
GROWTH REGULATION IN RSV INFECTED CHECKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, G.; Bartholomew, J.C.; Bissell, M.J.
1980-03-01
The relationship between growth regulation and cell transformation has been studied in many cultured cell lines transformed by a range of oncogenic agents. The main conclusion derived from these investigations is that the nature of the growth regulatory lesion in transformed cells is a function of the agent used to induce transformation. For example, when 3T3 fibroblasts are rendered stationary by serum deprivation, normal cells accumulate in G{sub 1} but SV40 transformed cells are arrested at all stages of the cell cycle. In contrast, 3T3 cells transformed with Rous sarcoma virus B77, accumulate in G{sub 1} upon serum deprivation. Thismore » is also true when mouse sarcoma virus (MSV) is used as the transforming agent. MSV-transformed cells accumulate in G{sub 1}, just as do normal cells. In this letter we report a detailed study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in the process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. Two principal findings have emerged: (a) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts has two distinct compartments, (for simplicity referred to as G{sub 1} and G{sub 0} states), (b) when rendered stationary at 41.5{sup o} by serum deprivation, normal cells enter a G{sub 0}-like state, but cells infected with the ts-mutant occupy a G{sub 1} state, even though a known src gene product, a kinase, should be inactive at this temperature. The possibility is discussed that viral factors other than the active src protein kinase influence growth control.« less
No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon
2015-01-01
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.
Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng
2013-01-01
Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972
Urakawa, Manami; Ideta, Atsushi; Sawada, Tokihiko; Aoyagi, Yoshito
2004-08-01
Somatic cell nuclear transfer has a low success rate, due to a high incidence of fetal loss and increased perinatal morbidity/mortality. One factor that may affect the successful development of nuclear transfer embryos is the cell cycle stage of the donor cell. In order to establish a cell cycle synchronization method that can consistently produce cloned embryos and offspring, we examined the effects of different combinations of three cell treatments on the recovery rate of mitotic phase cells using bovine fetal fibroblasts. In the first experiment, we examined the recovery rate of mitotic phase cells by a combination of treatment with a metaphase arrestant (1 microM 2-methoxyestradiol), shaking the plate and selecting cells with a diameter of 20 microns. As a result, 99% of mitotic phase cells were recovered by repeating the combined treatment of metaphase arrestant and shaking, and collection of cells with a specific diameter. In the second experiment, nuclear transfer was carried out using early G1 phase cells by choosing pairs of bridged cells derived from mitotic phase cells recovered by the combined treatment of 1 microM 2-methoxyestradiol and shaking, and collection of cells with a diameter of 20 microns. The reconstructed embryos were transferred to recipient heifers to determine post-implantation development. Development of embryos reconstructed from early G1 phase cells from the >/=6 cells stage on Day 3 to the morula-blastocyst stage on Day 6 was 100%. Ten blastocysts constructed from two cell lines were transferred into 10 recipient heifers. Nine of the 10 recipients delivered single live calves. In conclusion, mitotic phase bovine fibroblast cells were easily recovered by the combined treatments of 1 microM 2-methoxyestradiol, shaking, and selecting cells of the appropriate diameter. Furthermore, nuclear transfer using cells in the early G1 phase as donor cells gave a high rate of offspring production.
Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C
1998-05-01
Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.
Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.
Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao
2016-08-01
Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding.
Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.
Gómez, Martha C; Pope, C Earle
2015-01-01
In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.
Lu, F; Jiang, J; Li, N; Zhang, S; Sun, H; Luo, C; Wei, Y; Shi, D
2011-09-15
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik
2014-08-01
In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.
Factors affecting the electrofusion of mouse and ferret oocytes with ferret somatic cells.
Li, Ziyi; Sun, Xingshen; Chen, Juan; Leno, Gregory H; Engelhardt, John F
2005-09-01
The domestic ferret, Mustela putorius furos, holds great promise as a genetic model for human lung disease, provided that key technologies for somatic cell nuclear transfer (SCNT) are developed. In this report, we extend our understanding of SCNT in this species by defining conditions for efficient cell fusion by electrical pulse. Two experimental systems were employed in this study. First, in vivo-matured mouse oocytes and ferret somatic cells were used to establish general parameters for fusion. One fibroblast, or cumulus cell, was agglutinated to nucleate, zona pellucida-free, mouse oocytes, and subjected to an electrical pulse. Similar electrical pulse conditions were also tested with 1 or 2 somatic cells inserted into the perivitelline space (PVS) of intact mouse oocytes. The fusion rate for a single fibroblast with a zona-free oocyte was 80.2%, significantly higher (P < 0.05) than that observed for 1, or 2, fibroblasts placed in the PVS (52.0% and 63.8%, respectively). The fusion rate (44.1%) following insertion of two cumulus cells was significantly higher (P < 0.05) than that following insertion of one cumulus cell (25.1%). Second, in vitro-matured ferret oocytes were enucleated, and one to three fibroblasts or cumulus cells were inserted into the PVS. Zona pellucida-free ferret oocytes were fragile and excluded from the study. The fusion rates with two or three fibroblasts were 71.4% and 76.8%, respectively; significantly higher (P < 0.05) than that for one fibroblast (48.6%). This cell number-dependent difference in fusion efficiency was also observed with cumulus cells. Fusion-derived (ferret-ferret) NT embryos cleaved, formed blastocysts in vitro, and underwent early-stage fetal development following embryo transfer. The rate of development was cell type-independent, in contrast to the cell type-dependent differences observed in fusion efficiency. In conclusion, fibroblasts fused more efficiently than cumulus cells and the efficiency of single cell fusions was improved when two or more cells were inserted into the PVS. These studies define conditions for efficient cell fusion with ferret oocytes and should facilitate SCNT and the development of genetically defined animal models in this species.
Micro-Raman spectroscopy study of ALVAC virus infected chicken embryo cells
NASA Astrophysics Data System (ADS)
Misra, Anupam K.; Kamemoto, Lori E.; Hu, Ningjie; Dykes, Ava C.; Yu, Qigui; Zinin, Pavel V.; Sharma, Shiv K.
2011-05-01
Micro- Raman spectroscopic investigation of ALVAC virus and of normal chicken embryo fibroblast cells and the cells infected with ALVAC virus labeled with green fluorescence protein (GFP) were performed with a 785 nm laser. Good quality Micro-Raman spectra of the Alvac II virus were obtained. These spectra show that the ALVAC II virus contains buried tyrosine residues and the coat protein of the virus has α-helical structure. A comparison of Raman spectra of normal and virus infected chicken embryo fibroblast cells revealed that the virus infected cells show additional bands at 535, 928, and 1091 cm-1, respectively, corresponding to δ(C-O-C) glycosidic ring, protein α-helix, and DNA (O-P-O) modes. In addition, the tyrosine resonance double (833 and 855 cm-1) shows reversal in the intensity of the higher-frequency band as compared to the normal cells that can be used to identify the infected cells. In the C-H stretching region, the infected cells show bands with higher intensity as compared to that of the corresponding bands in the normal cells. We also found that the presence of GFP does not affect the Raman spectra of samples when using a 785 nm micro-Raman system because the green fluorescence wavelength of GFP is well below the Stokes-Raman shifted spectral region.
Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V
2013-10-17
Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.
The comparative genotoxic effects of racemic trans-8,9dihydroxy-8,9-dihydrodibenzo[a,l]pyrene (trans- DB[a,l]P8,9-diol), the metabolic K-region dihydrodiol of dibenzo[a,l] pyrene (DB[a,l]P) (dibenzo[def,p]chrysene) and DB[a,l]P in transformable mouse embryo C3HIOT1/2C18 (C3HIOT1/...
Do, Ltk; Wittayarat, M; Terazono, T; Sato, Y; Taniguchi, M; Tanihara, F; Takemoto, T; Kazuki, Y; Kazuki, K; Oshimura, M; Otoi, T
2016-12-01
The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells. © 2016 Blackwell Verlag GmbH.
Effects of donor cells' sex on nuclear transfer efficiency and telomere lengths of cloned goats.
Liu, H-J; Peng, H; Hu, C-C; Li, X-Y; Zhang, J-L; Zheng, Z; Zhang, W-C
2016-10-01
The aim of this study was to investigate the effects of donor cells' sex on nuclear transfer efficiency and telomere length of cloned goats from adult skin fibroblast cells. The telomere length of somatic cell cloned goats and their offspring was determined by measuring their mean terminal restriction fragment (TRF) length. The result showed that (i) reconstructed embryos with fibroblast cells from males Boer goats obtained significantly higher kids rate and rate of live kids than those of female embryos and (ii) the telomere lengths of four female cloned goats were shorter compared to their donor cells, but five male cloned goats had the same telomere length with their donor cells, mainly due to great variation existed among them. The offspring from female cloned goats had the same telomere length with their age-matched counterparts. In conclusion, the donor cells' sex had significant effects on nuclear transfer efficiency and telomere lengths of cloned goats. © 2016 Blackwell Verlag GmbH.
Pozzatti, R; Vogel, J; Jay, G
1990-01-01
Epidemiologic studies have linked infection by the human T-lymphotropic virus type I (HTLV-I) with the development of adult T-cell leukemia. The low penetrance of the virus and the long latency for disease manifestation are factors that obscure the role of HTLV-I infection in oncogenesis. We have used an in vitro transformation assay system to determine directly whether the HTLV-I tax gene has transformation potential. Transfection of the tax gene alone into early-passage rat embryo fibroblasts did not induce morphological alterations. However, cotransfection of tax with the selectable marker plasmid pRSVneo gave rise to G418-resistant colonies that could be established as immortalized cell lines. Cotransfection of tax with the ras oncogene into rat embryo fibroblasts gave rise to foci of transformed cells that were highly tumorigenic in nude mice. These data represent a direct demonstration of the oncogenic potential of the tax gene in nonlymphoid cells and establish HTLV-I as a transforming virus.
Ermakova, M P; Zemlianitskaia, E P
1975-11-01
There were revealed morphological peculiarities of the action of C1. perfringens toxins, types B, C, D, E and F on the cultures of fibroblasts of chick embryo, amniotic cells and intestinal tissue. The toxin type B was characterized by a marked vocuolization of the cell cytoplasm; the action of the toxin of type C was expressed in the swelling of the nuclei and the lysis of the chromatine substance, the toxin of type E casued kariorhexis, and the toxin of type F--hyperchromatosis of the nuclei. All the cultures proved to be insensitive to the toxin of type D. Peculiarity of the morphological affection of the cells permitted to differentiate toxin of type B in the cultures of the fibroblasts of chick embryo, whereas the toxins of types C, E and F--in the cultures of the amniotic cells under control of the reaction of neutralization with the homologous antitoxic sera.
Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos.
Wang, Yingchun; Wang, Fangfei; Sun, Tong; Trostinskaia, Anna; Wygle, Dana; Puscheck, Elizabeth; Rappolee, Daniel A
2004-09-01
To understand how mitogenic signals are transduced into the trophoblasts in preimplantation embryos, the expression of mitogen-activated protein kinase (MAPK) pathway molecules was tested. We used immunocytochemical means and reverse transcriptase-polymerase chain reaction to test whether MAPK pathway molecule gene products exist at the protein and phosphoprotein level in the zygote and the RNA level in the egg and zygote. In addition, all antibodies detected the correct-sized major band in Westerns of placental cell lines representing the most prevalent cell type in preimplantation embryos. A majority of mRNA transcripts of MAPK pathway genes were detected in unfertilized eggs, and all were expressed in the zygote. We found that the MAPK pathway protein set consisting of the following gene products was present: FRS2 alpha, GRB2, GAB1, SOS1, Ha-ras, Raf1/RafB, MEK1,2,5, MAPK/ERK1,2, MAPK/ERK5, and RSK1,2,3 (see abbreviations). These proteins were detected in trophoblasts in embryonic day (E) 3.5 embryos when they could mediate mitogenic fibroblast growth factor signals from the embryo or colony stimulating factor-1 signals from the uterus. The phosphorylation state and position of the phosphoproteins in the cells suggested that they might function in mediating mitogenic signals. Interestingly, a subtle transition from maternal MAPK function to zygotic function was suggested by the localization for three MAPK pathway enzymes between E2.5 and E3.5, Raf1 phospho is largely cell membrane-localized at E2.5 and E3.5, and MEK1,2 phospho accumulates in the nucleus on E2.5 and E3.5. However, MAPK phospho shifts from nuclear accumulation at E2.5 to cytoplasmic accumulation at E3.5. This finding is similar to the cytoplasmic MAPK phospho localization reported in fibroblast growth factor signaling fields in postimplantation embryos (Corson et al. [2003] Development 130:4527-4537). This spatial and temporal expression study lays a foundation to plan and analyze perturbation studies aimed at understanding the role of the major mitogenic pathway in preimplantation mouse embryos.
Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián
2015-09-01
Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.
An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull
McCarthy, Neil; Sidik, Alfire; Bertrand, Julien Y.; Eberhart, Johann K.
2016-01-01
The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure. PMID:27060628
Panda, Sudeepta K; George, Aman; Saha, Ambika P; Sharma, Ruchi; Manik, Radhey S; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K
2011-06-01
This study examined the effects of cytoplasmic volume on the developmental competence of hand-made cloned buffalo embryos. Two different cell types, that is, buffalo fetal fibroblast (BFF) and buffalo embryonic stem (ES) cell-like cells were taken as donor cell and fused with one, two, or three demicytoplasts to generate embryos with decreased, normal (control), and increased cytoplasmic volume. Using BFF as a nuclear donor, the cleavage rate was similar in all the groups (p > 0.05), but the blastocysts rate was significantly lower (p < 0.05) for embryos generated with decreased cytoplasmic volume. Using ES cell-like cells, the cleavage and blastocyst rate with increased cytoplasmic volume was significantly higher (p < 0.05) compared that with reduced cytoplasmic volume. Blastocysts produced from embryos having increased cytoplasmic volume had significantly higher (p < 0.05) cell number than normal (control) embryos in both BFF and ES cell-like cells groups. Pregnancies were established in all the groups except for the embryos reconstructed with decreased cytoplasmic volume. The pregnancy rate was almost double for embryos reconstructed using increased cytoplasmic volume compared to that with the controls. Most of the pregnancies aborted in the first trimester and one live calf was delivered through Caesarean, which died 4 h after birth.
Anomalous oxygen consumption in porcine somatic cell nuclear transfer embryos.
Sugimura, Satoshi; Yokoo, Masaki; Yamanaka, Ken-ichi; Kawahara, Manabu; Moriyasu, Satoru; Wakai, Takuya; Nagai, Takashi; Abe, Hiroyuki; Sato, Eimei
2010-08-01
Oxygen consumption reflects overall metabolic activity of mammalian embryos. We measured oxygen consumption in individual porcine somatic cell nuclear transfer (SCNT) and in vitro-fertilized (IVF) embryos by modified scanning electrochemical microscopy. Oxygen consumption in IVF embryos rapidly increased at day 5 of the blastocyst stage (D5BL). IVF embryos that consumed >0.81 x 10(14)/mol sec(-1) of oxygen at D5BL exhibited significantly higher hatching and hatched rates at D7BL, whereas D5BL SCNT embryos using porcine fetal fibroblasts did not show an increase in oxygen consumption until D7BL. The numbers of inner cell mass and trophectoderm (TE) cells and incidence of apoptosis did not significantly differ between IVF and SCNT embryos at D5BL. At D7BL, a significant lower number of TE cell and higher incidence of apoptosis were observed in SCNT than in IVF embryos; this significantly correlated with their oxygen consumption at D5BL. Use of cumulus cells as donor cells neutralized the low oxygen consumption in SCNT embryos at D5BL, regardless of the difference between the recipient cytoplasm and donor nucleus. Some of SCNT embryos at D7BL were retrieved the hatching completion and were improved the number of TE cell and apoptosis incidence by using cumulus cells. Thus, anomalous oxygen consumption in porcine SCNT embryos at D5BL could be sign of limited hatchability, which may be responsible for the low TE cell number and high apoptosis incidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua
2008-03-10
Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less
Transformation of primary chick embryo fibroblasts by Marek's disease virus.
Buranathai, C; Rodriguez, J; Grose, C
1997-12-08
Marek's disease virus (MDV) is an alphaherpesvirus, which can mediate the malignant transformation of lymphocytes to form lymphomas in chickens. In this study, we demonstrate that MDV can transform primary chick embryo fibroblasts (CEF). The cell line derived from primary CEF infected with the GA strain of MDV was called CEM(MDV). The fibroblast nature of CEM(MDV) was verified by absence of cytokeratin type II. The CEM(MDV) phenotype differed from either primary CEF or MDV-infected CEF. CEM(MDV) were extensively vacuolated, with unusual multilamellar structures in the cytoplasm, The nuclei were considerably larger than those in primary CEF and were uniformly positive for proliferating cell nuclear antigen. The cell line was subcultured for more than 10 generations; however, CEM(MDV) did not support a fully productive MDV infection, because complete nucleocapsids were not detected and infectivity assays showed that cell line produced no infectious virus. PCR analyses demonstrated that this cell line carried both polypeptide 38 (pp38) and Meq DNA, MDV-specific genes associated with transformation. In addition, examination by laser scanning confocal microscopy revealed that CEM(MDV) constitutively produced MDV MEQ protein in nuclei and pp38 as well as glycoprotein B in the cytoplasm and on the plasma membrane. Growth in soft agar assay demonstrated that CEM(MDV) formed colonies, similar to HeLa and human melanoma cells. Retroviral insertion was not detected in DNA from the CEM(MDV) line.
Zhao, Ruozhi; Le, Khuong; Moghadasian, Mohammed H; Shen, Garry X
2013-08-01
Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelin, S.; Varlet, I.; Sarasin, A.
1991-10-01
Human Xeroderma pigmentosum normal' fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental normal' AS16 cells and a revertant clone (ASKXAmore » Cl 1.1 G). The results lead to the conclusion that the XP fibroblasts are phenotypically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.« less
USDA-ARS?s Scientific Manuscript database
This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The ...
Ozawa, Manabu; Yang, Qi-En; Ealy, Alan D
2013-02-01
The overall aim of this work was to examine the expression profiles for fibroblast growth factor receptors (FGFRs) and describe their biological importance during bovine pre- and peri-implantation conceptus development. FGFR1 and FGFR2 mRNAs were detected at 1-, 2-, 8-cell, morula and blastocyst stages whereas FGFR3 and FGFR4 mRNAs were detected after the 8-cell stage but not earlier. The abundance of FGFR1, FGFR3, and FGFR4 mRNAs increased at the morula and blastocyst stages. Immunofluorescence microscopy detected FGFR2 and FGFR4 exclusively in trophoblast cells whereas FGFR1 and FGFR3 were detected in both trophoblast cells and inner cell mass in blastocysts. Neither transcripts for FGF10 nor its receptor (FGFR2b) were temporally related to interferon τ (IFNT) transcript profile during peri- and postimplantation bovine conceptus development. A series of studies used a chemical inhibitor of FGFR kinase function (PD173074) to examine FGFR activation requirements during bovine embryo development. Exposing embryos to the inhibitor (1 μM) beginning on day 5 post-fertilization did not alter the percentage of embryos that developed into blastocysts or blastocyst cell numbers. The inhibitor did not alter the abundance of CDX2 mRNA but decreased (P<0.05) the relative abundance of IFNT mRNA in blastocysts. Exposing blastocysts to the inhibitor from days 8 to 11 post-fertilization reduced (P<0.05) the percentage of blastocysts that formed outgrowths after transfer to Matrigel-coated plates. In conclusion, each FGFR was detected in bovine embryos, and FGFR activation is needed to maximize IFNT expression and permit outgrowth formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boothman, D.A.
Transformed Chinese hamster embryo fibroblasts (CHEF), which gradually increase in tumor-forming ability in nude mice, were isolated from normal diploid CHEF/18 cells. Transformed CHEF cells (i.e., T30-4 > 21-2M3 > 21-2 > normal CHEF/18) showed gradual increases in potentially lethal damage (PLD) survival recovery. {beta}-Lapachone and camptothecin, modulators of topoisomerase I (Topo I) activity, not only prevented survival recovery in normal as well as in tumor cells, but enhanced unscheduled DNA synthesis. These seemingly conflicting results are due to the fact that Topo I activity can be modulated by inhibitors to convert single-stranded DNA lesions into double-stranded breaks. Increases inmore » unscheduled DNA synthesis may result from a continual supply of free ends, on which DNA repair processes may act. Altering Topo I activity with modulators appears to increase X-ray lethality via a DNA lesion modification suicide pathway. Cells down-regulate Topo I immediately after ionizing radiation to prevent Topo I-mediated lesion modification and to enhance survival recovery. 16 refs., 3 figs., 1 tab.« less
Xiaona, Zhao; Jianzhu, Liu
2014-03-15
To select the antiviral active site of Scutellaria polysaccharide (SPS), safe concentrations of crude total Scutellaria polysaccharide (SPS(t)) and fractional polysaccharide SPS₅₀, SPS₆₀, SPS₇₀ and SPS₈₀ on chicken embryo fibroblast (CEF) were first compared using the MTT method. Then, SPS(t), SPS₅₀, SPS₆₀, SPS₇₀, and SPS₈₀ at five concentrations within the safe concentration, together with Newcastle disease virus (NDV), were added to the cultivating system of CEF in three models: pre-addition of polysaccharide, post-addition of polysaccharide, and simultaneous addition of polysaccharides and NDV after mixing. The effects of SPS on the cellular infectivity of NDV (A₅₇₀ value and the highest viral inhibitory rate) were compared using the MTT method. At appropriate concentrations, the five polysaccharides could significantly inhibit the infectivity of NDV on CEF. Among the five polysaccharide groups, the SPS₈₀ group exhibited the highest viral inhibitory rate in the three sample-addition modes. This finding indicates that SPS₈₀ possesses the best efficacy as a component of antiviral polysaccharide drug. © 2013 Society of Chemical Industry.
Xu, Haixu; Song, Qingqing; Zhu, Jie; Liu, Jiajia; Cheng, Xin; Hu, Shunlin; Wu, Shuang; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan
2016-07-01
Pigeon paramyxovirus type 1 (PPMV-1) is considered an antigenic and variant of avian paramyxovirus type 1 (APMV-1) that has adapted to pigeons as hosts. However, how this host-specific adaption of PPMV-1 is related to its biological characteristics is unknown. In this study, seven unique amino acids in PPMV-1 that are not present in other APMV-1 strains (n = 39 versus n = 106) were identified. R36 of the M protein was found to be not only a unique amino acid but also a positive-selection site. To investigate the role of R36 in host adaptation, a recombinant PPMV-1 with R36Q mutation was constructed. Our results indicated that the an R36Q mutation significantly attenuates pathogenicity in chickens, viral growth in both chicken embryo fibroblasts (CEFs) and pigeon embryo fibroblasts (PEFs), and virus replication and shedding in pigeons in comparison with the wild-type virus, suggesting that R36 is a key residue that evolved during the adaptation of PPMV-1 in pigeons.
Dengue Virus Modulates the Unfolded Protein Response in a Time-dependent Manner*
Peña, José; Harris, Eva
2011-01-01
Flaviviruses, such as dengue virus (DENV), depend on the host endoplasmic reticulum for translation, replication, and packaging of their genomes. Here we report that DENV-2 infection modulates the unfolded protein response in a time-dependent manner. We show that early DENV-2 infection triggers and then suppresses PERK-mediated eIF2α phosphorylation and that in mid and late DENV-2 infection, the IRE1-XBP1 and ATF6 pathways are activated, respectively. Activation of IRE1-XBP1 correlated with induction of downstream targets GRP78, CHOP, and GADD34. Furthermore, induction of CHOP did not induce apoptotic markers, such as suppression of anti-apoptotic protein Bcl-2, activation of caspase-9 or caspase-3, and cleavage of poly(ADP-ribose) polymerase. Finally, we show that DENV-2 replication is affected in PERK−/− and IRE1−/− mouse embryo fibroblasts when compared with wild-type mouse embryo fibroblasts. These results demonstrate that time-dependent activation of the unfolded protein response by DENV-2 can override inhibition of translation, prevent apoptosis, and prolong the viral life cycle. PMID:21385877
Effects of chromium picolinate on the viability of chick embryo fibroblast.
Bai, Y; Zhao, X; Qi, C; Wang, L; Cheng, Z; Liu, M; Liu, J; Yang, D; Wang, S; Chai, T
2014-04-01
Chromium picolinate (CrPic), which is used as a nutritional supplement and to treat type 2 diabetes, has gained much attention because of its cytotoxicity. This study evaluated the effects of CrPic on the viability of the chick embryo fibroblast (CEF) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, morphological detection, and flow cytometry. The results show that lower concentrations of CrPic (8 and 16 μM) did not damage CEF viability (p > 0.05). However, higher CrPic concentrations (400 and 600 μM) indicated a highly significant effect on the production of intracellular reactive oxygen species, alteration of mitochondrial membrane potential, intracellular calcium ion concentration, and the apoptosis rate (p < 0.01), contrary to lower CrPic concentrations (8 and 16 μM) and control group. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrPic was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress-induced mitochondrial dysfunction was apoptotic death.
From fibroblasts and stem cells: implications for cell therapies and somatic cloning.
Kues, Wilfried A; Carnwath, Joseph W; Niemann, Heiner
2005-01-01
Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.
Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun
2014-03-01
To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.
Manipulating the Mitochondrial Genome To Enhance Cattle Embryo Development
Srirattana, Kanokwan; St. John, Justin C.
2017-01-01
The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein (Bos taurus) fibroblasts were depleted of their mtDNA, and oocytes derived from Angus (Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA. PMID:28500053
Overexpression of c-jun, junB, or junD affects cell growth differently.
Castellazzi, M; Spyrou, G; La Vista, N; Dangy, J P; Piu, F; Yaniv, M; Brun, G
1991-10-15
The coding sequences of murine c-jun, junB, or junD, which code for proteins with practically identical dimerization and DNA binding properties, were introduced into a nondefective retroviral vector, and the phenotype of primary avian fibroblasts chronically infected with each of these viruses was studied. Cells expressing c-jun grew in low-serum medium and developed into colonies in agar, two properties characteristic of in vitro transformation. Cells expressing junB grew in agar, with a reduced efficiency as compared to c-jun, but did not grow in low-serum medium. Finally, no effect of junD expression on cell growth was observed. These different phenotypes suggest that these three closely related transcription factors play distinct roles during normal cell growth. Analysis of c-jun deletion mutants and of c-jun/junB and c-jun/junD chimeric genes showed that the N-terminal portion (amino acids 2-168) of the c-Jun protein that is involved in transcriptional activation is required for efficient transformation. On the contrary, cells expressing a truncated mouse c-Jun lacking this N-terminal domain grew slower than normal embryo fibroblasts. The reduced growth rate may be related to the finding that expression of the intact or the truncated mouse c-jun repressed the endogenous avian c-Jun homologue, suggesting that functional c-Jun product is required for normal cell growth.
Overexpression of c-jun, junB, or junD affects cell growth differently.
Castellazzi, M; Spyrou, G; La Vista, N; Dangy, J P; Piu, F; Yaniv, M; Brun, G
1991-01-01
The coding sequences of murine c-jun, junB, or junD, which code for proteins with practically identical dimerization and DNA binding properties, were introduced into a nondefective retroviral vector, and the phenotype of primary avian fibroblasts chronically infected with each of these viruses was studied. Cells expressing c-jun grew in low-serum medium and developed into colonies in agar, two properties characteristic of in vitro transformation. Cells expressing junB grew in agar, with a reduced efficiency as compared to c-jun, but did not grow in low-serum medium. Finally, no effect of junD expression on cell growth was observed. These different phenotypes suggest that these three closely related transcription factors play distinct roles during normal cell growth. Analysis of c-jun deletion mutants and of c-jun/junB and c-jun/junD chimeric genes showed that the N-terminal portion (amino acids 2-168) of the c-Jun protein that is involved in transcriptional activation is required for efficient transformation. On the contrary, cells expressing a truncated mouse c-Jun lacking this N-terminal domain grew slower than normal embryo fibroblasts. The reduced growth rate may be related to the finding that expression of the intact or the truncated mouse c-jun repressed the endogenous avian c-Jun homologue, suggesting that functional c-Jun product is required for normal cell growth. Images PMID:1924349
Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.
Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio
2014-01-01
UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.
Zaret, K S; Watts, J; Xu, J; Wandzioch, E; Smale, S T; Sekiya, T
2008-01-01
The endoderm is a multipotent progenitor cell population in the embryo that gives rise to the liver, pancreas, and other cell types and provides paradigms for understanding cell-type specification. Studies of isolated embryo tissue cells and genetic approaches in vivo have defined fibroblast growth factor/mitogen-activated protein kinase (FGF/MAPK) and bone morphogenetic protein (BMP) signaling pathways that induce liver and pancreatic fates in the endoderm. In undifferentiated endoderm cells, the FoxA and GATA transcription factors are among the first to engage silent genes, helping to endow competence for cell-type specification. FoxA proteins can bind their target sites in highly compacted chromatin and open up the local region for other factors to bind; hence, they have been termed "pioneer factors." We recently found that FoxA proteins remain bound to chromatin in mitosis, as an epigenetic mark. In embryonic stem cells, which lack FoxA, FoxA target sites can be occupied by FoxD3, which in turn helps to maintain a local demethylation of chromatin. By these means, a cascade of Fox factors helps to endow progenitor cells with the competence to activate genes in response to tissue-inductive signals. Understanding such epigenetic mechanisms for transcriptional competence coupled with knowledge of the relevant signals for cell-type specification should greatly facilitate efforts to predictably differentiate stem cells to liver and pancreatic fates.
Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin
2016-10-22
Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.
Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.
Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C
2007-02-01
Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.
Nesnow, S; Davis, C; Padgett, W T; Adams, L; Yacopucci, M; King, L C
2000-06-01
The comparative genotoxic effects of racemic trans-8,9-dihydroxy-8, 9-dihydrodibenzo[a,l]pyrene (trans-DB[a,l]P-8,9-diol), the metabolic K-region dihydrodiol of dibenzo[a,l] pyrene (DB[a,l]P) (dibenzo[def, p]chrysene) and DB[a,l]P in transformable mouse embryo C3H10T(1)/(2)Cl8 (C3H10T(1)/(2)) fibroblasts was investigated. The C3H10T(1)/(2) mouse embryo morphological cell-transforming activities of these polycyclic aromatic hydrocarbons (PAHs) were assayed using concentration-response studies. At concentrations of 33 nM and above both trans-DB[a,l]P-8,9-diol and DB[a,l]P produced significant (and similar) numbers of type II and III foci per dish and numbers of dishes with type II and II foci. Concomitant cytotoxicity studies revealed a reduction in colony survival of approximately 25% up to 198 nM for both PAHs. DNA adducts of trans-DB[a,l]P-8,9-diol and DB[a,l]P in C3H10T(1)/(2) cells were analyzed by a (32)P-post-labeling TLC/HPLC method. No adducts were observed in the DNA of C3H10T(1)/(2) cells treated with trans-DB[a, l]P-8,9-diol at concentrations that induced morphological cell transformation. Under the same exposure and chromatographic conditions, DNA adducts of deoxyadenosine and deoxyguanosine derived from the fjord region anti-DB[a,l]P-11,12-diol-13,14-epoxide and syn-DB[a,l]P-11,12-diol-13,14-epoxide were observed in the DNA of DB[a,l]P-treated cells. These results indicate that trans-DB[a,l]P-8, 9-diol has intrinsic genotoxic activity equal to that of DB[a,l]P, based on morphological cell transformation of mouse embryo fibroblasts. The activity of trans-DB[a,l]P-8,9-diol is apparently not associated with the formation of observable stable covalent DNA adducts. These results suggest that under appropriate conditions, trans-DB[a,l]P-8,9-diol may serve as an intermediate in the genotoxicity of DB[a,l]P.
Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan
2015-01-01
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only ’non-immune’ genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria. PMID:26046914
Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan
2015-01-01
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.
Studies of defined mixtures of carcinogenic polycyclic aromatic hydrocarbons (PAH) have shown three major categories of interactions: antagonism, synergism, and additivity depending on the biological model, tissue, route of exposure, and specific PAH. To understand the bases of t...
GENOTOXICITY AND IDENTIFICATION OF THE MAJOR DNA-ADDUCTS OF ACEANTHRYLENE
Aceanthrylene (ACE), a cyclopenta-fused polycyclic aromatic hydrocarbon (CP-PAH) derivative of anthracene has been shown to be highly mutagenic in Salmonella typhimurium strain TA98 (1). C3H10T1/2CL8 (C3H10T1/2) mouse embryo fibroblasts have been used to study the metabolism and ...
Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts
NASA Technical Reports Server (NTRS)
Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.;
1998-01-01
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull.
McCarthy, Neil; Sidik, Alfire; Bertrand, Julien Y; Eberhart, Johann K
2016-07-15
The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Srirattana, Kanokwan; Ketudat-Cairns, Mariena; Nagai, Takashi; Kaneda, Masahiro; Parnpai, Rangsun
2014-01-01
Trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to improve the cloning efficiency in several species. This brings our attention to investigation of the effects of TSA on developmental potential of swamp buffalo cloned embryos. Swamp buffalo cloned embryos were produced by electrical pulse fusion of male swamp buffalo fibroblasts with swamp buffalo enucleated oocytes. After fusion, reconstructed oocytes were treated with 0, 25 or 50 nM TSA for 10 h. The results showed that there was no significant difference in the rates of fusion (82-85%), cleavage (79-84%) and development to the 8-cell stage (59-65%) among treatment groups. The highest developmental rates to the morula and blastocyst stages of embryos were found in the 25 nM TSA-treated group (42.7 and 30.1%, respectively). We also analyzed the DNA methylation level in the satellite I region of donor cells and in in vitro fertilized (IVF) and cloned embryos using the bisulfite DNA sequencing method. The results indicated that the DNA methylation levels in cloned embryos were significantly higher than those of IVF embryos but approximately similar to those of donor cells. Moreover, there was no significant difference in the methylation level among TSA-treated and untreated cloned embryos. Thus, TSA treatments at 25 nM for 10 h could enhance the in vitro developmental potential of swamp buffalo cloned embryos, but no beneficial effect on the DNA methylation level was observed.
SRIRATTANA, Kanokwan; KETUDAT-CAIRNS, Mariena; NAGAI, Takashi; KANEDA, Masahiro; PARNPAI, Rangsun
2014-01-01
Trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to improve the cloning efficiency in several species. This brings our attention to investigation of the effects of TSA on developmental potential of swamp buffalo cloned embryos. Swamp buffalo cloned embryos were produced by electrical pulse fusion of male swamp buffalo fibroblasts with swamp buffalo enucleated oocytes. After fusion, reconstructed oocytes were treated with 0, 25 or 50 nM TSA for 10 h. The results showed that there was no significant difference in the rates of fusion (82–85%), cleavage (79–84%) and development to the 8-cell stage (59–65%) among treatment groups. The highest developmental rates to the morula and blastocyst stages of embryos were found in the 25 nM TSA-treated group (42.7 and 30.1%, respectively). We also analyzed the DNA methylation level in the satellite I region of donor cells and in in vitro fertilized (IVF) and cloned embryos using the bisulfite DNA sequencing method. The results indicated that the DNA methylation levels in cloned embryos were significantly higher than those of IVF embryos but approximately similar to those of donor cells. Moreover, there was no significant difference in the methylation level among TSA-treated and untreated cloned embryos. Thus, TSA treatments at 25 nM for 10 h could enhance the in vitro developmental potential of swamp buffalo cloned embryos, but no beneficial effect on the DNA methylation level was observed. PMID:24909601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.
Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less
Developmental kinetics of pig embryos by parthenogenetic activation or by handmade cloning.
Li, J; Li, R; Liu, Y; Villemoes, K; Purup, S; Callesen, H
2013-10-01
The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time-lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time-lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non-viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro-handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre-implantation developmental kinetics should be observed. © 2013 Blackwell Verlag GmbH.
Development of a chick embryo heart cell for the cultivation of poliovirus.
PRIER, J E; SULLIVAN, R
1959-04-17
An epithelial-like cell has been developed in line culture that apparently is stable. Although initially isolated cells were incapable of supporting the growth of poliovirus, the cells of the sixth and later passages allowed virus to propagate. The early, nonsusceptible cells were fibroblastic in appearance, in contrast to the epithelial type, poliovirussusceptible, derived cell of later passages.
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. ...
Haunshi, Santosh; Cheng, Hans H
2014-03-01
The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.
Qi, Xuefeng; Xu, Jiamin; Wang, Zugui; Wang, Xueping; Wang, Jingyu
2017-10-01
Although extensive efforts have been made to understand adenovirus infection in human cells, little is known for egg drop syndrome virus (EDSV) infection in the avian-derived cells. In this study, the effects of EDSV infection as well as the possible role hexon protein, the main building block of the EDSV capsid, on apoptosis induction in duck embryo fibroblast (DEF) cells was examined. Flow cytometry analysis and TUNEL assay revealed that EDSV infection induced significant apoptosis in DEF cells compared with mock infected cells. Interestingly, the increase of the apoptosis rate detected in EDSV infected DEF cells were accompanied by an increased virus load in cells in a time-dependent manner. Furthermore, a time-dependent decrease in hexon protein expression levels in hexon transfected DEF cells in parallel with a gradual decrease in TUNEL-labeling cells was also observed in the current study. In addition, caspase activity detection and western blot analysis indicates that either EDSV infection or EDSV hexon transfection both induced apoptosis of DEF cells via activating both the exogenous and the mitochondrial pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos
Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C. E. P.; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo
2015-01-01
The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system. PMID:26371874
Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos.
Manso, Pedro Paulo de Abreu; Dias de Oliveira, Barbara C E P; de Sequeira, Patrícia Carvalho; Maia de Souza, Yuli Rodrigues; Ferro, Jessica Maria dos Santos; da Silva, Igor José; Caputo, Luzia Fátima Gonçalves; Guedes, Priscila Tavares; dos Santos, Alexandre Araujo Cunha; Freire, Marcos da Silva; Bonaldo, Myrna Cristina; Pelajo-Machado, Marcelo
2015-01-01
The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.
A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting
Lindeman, Geoffrey J.; Dagnino, Lina; Gaubatz, Stefan; Xu, Yuhui; Bronson, Roderick T.; Warren, Henry B.; Livingston, David M.
1998-01-01
Homozygous E2F-5 knockout embryos and mice have been generated. Although embryonic development appeared normal, newborn mice developed nonobstructive hydrocephalus, suggesting excessive cerebrospinal fluid (CSF) production. Although the CSF-producing choroid plexus displayed normal cellular organization, it contained abundant electron-lucent epithelial cells, consistent with excessive CSF secretory activity. Moreover, E2F-5 CNS expression in normal animals was largely confined to the choroid plexus. Cell cycle kinetics were not perturbed in homozygous knockout embryo fibroblasts. Thus, E2F-5 is not essential for cell proliferation. Rather, it affects the secretory behavior of a differentiated neural tissue. PMID:9553039
Găldean, D; Petraşincu, D; Stoicescu, D
1992-01-01
The association of p-methoxyphenol phosphate (10(-5)M) to benzo(a)pyrene treatment (10(-6)M) reduced significantly the anchorage independent growth and the number of transformed foci of the human embryo lung fibroblasts, after six passages from treatment application. Results from cytogenetic analysis show that p-methoxyphenol phosphate induced the decrease of numerical and structural chromosome aberration after the first passage of the treated cells. In terms of the results obtained by cytogenetic analysis the reduction of genetic instability seems to remain constant from the first to the sixth passage in the cell cultures treated with p-methoxyphenol phosphate associated to benzo(a)pyrene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao Li; Bryantsev, Anton L.; Chechenova, Maria B.
Hsp27 is a small heat shock protein (shsp) regulating stress tolerance and increasingly thought to play roles in tissue homeostasis and differentiation. The zebrafish Danio rerio is an important model for the study of developmental processes, but little is known regarding shsps in this animal. Here, we report the sequence, expression, regulation, and function of a zebrafish protein (zfHsp27) homologous to human Hsp27. zfHsp27 contains three conserved phosphorylatable serines and a cysteine important for regulation of apoptosis, but it lacks much of a C-terminal tail domain and shows low homology in two putative actin interacting domains that are features ofmore » mammalian Hsp27. zfHsp27 mRNA is most abundant in adult skeletal muscle and heart and is upregulated during early embryogenesis. zfHsp27 expressed in mammalian fibroblasts was phosphorylated in response to heat stress and anisomycin, and this phosphorylation was prevented by treatment with SB202190, an inhibitor of p38 MAPK. Expression of zfHsp27 and human Hsp27 in mammalian fibroblasts promoted a similar degree of tolerance to heat stress. zfHsp27 fusion proteins entered the nucleus and associated with the cytoskeleton of heat stressed cells in vitro and in zebrafish embryos. These results reveal conservation in regulation and function of mammalian and teleost Hsp27 proteins and define zebrafish as a new model for the study of Hsp27 function.« less
Experimental embryology of mammals at the Jastrzebiec Institute of Genetics and Animal Breeding.
Karasiewicz, Jolanta; Andrzej-Modlinski, Jacek
2008-01-01
Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).
Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan
2016-08-25
Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.
MRG15 Regulates Embryonic Development and Cell Proliferation
Tominaga, Kaoru; Kirtane, Bhakti; Jackson, James G.; Ikeno, Yuji; Ikeda, Takayoshi; Hawks, Christina; Smith, James R.; Matzuk, Martin M.; Pereira-Smith, Olivia M.
2005-01-01
MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15−/− embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15−/− mouse embryonic fibroblasts. The hearts of the Mrg15−/− embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15−/− embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation. PMID:15798182
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Secher, Jan O; Liu, Ying; Petkov, Stoyan; Luo, Yonglun; Li, Dong; Hall, Vanessa J; Schmidt, Mette; Callesen, Henrik; Bentzon, Jacob F; Sørensen, Charlotte B; Freude, Kristine K; Hyttel, Poul
2017-03-01
Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui
2013-05-01
This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata
2013-06-07
Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.
Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells
Rittelmeyer, Ina; Sharma, Amar Deep; Sgodda, Malte; Zaehres, Holm; Bleidißel, Martina; Greber, Boris; Gentile, Luca; Han, Dong Wook; Rudolph, Cornelia; Steinemann, Doris; Schambach, Axel; Ott, Michael; Schöler, Hans R.; Cantz, Tobias
2011-01-01
Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH −/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH −/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH −/− iPS cell lines, we aggregated FAH −/−-iPS cells with tetraploid embryos and obtained entirely FAH −/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH −/− mice. Then, we transduced FAH cDNA into the FAH −/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models. PMID:21765802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flick, Burkhard; Talsness, Chris E.; Jaeckh, Rudolf
2009-06-01
N-methyl-2-pyrrolidone (NMP), which undergoes extensive biotransformation, has been shown in vivo to cause developmental toxicity and, especially after oral treatment, malformations in rats and rabbits. Data are lacking as to whether the original compound or one of its main metabolites is responsible for the toxic effects observed. Therefore, the relative embryotoxicity of the parent compound and its metabolites was evaluated using rat whole embryo culture (WEC) and the balb/c 3T3 cytotoxicity test. The resulting data were evaluated using two strategies; namely, one based on using all endpoints determined in the WEC and the other including endpoints from both the WECmore » and the cytotoxicity test. On basis of the first analysis, the substance with the highest embryotoxic potential is NMP, followed by 5-hydroxy-N-methyl-pyrrolidone (5-HNMP), 2-hydroxy-N-methylsuccinimide (2-HMSI) and N-methylsuccinimide (MSI). Specific dysmorphogeneses induced by NMP and 5-HNMP were aberrations in the head region of the embryos, abnormal development of the second visceral arches and open neural pores. The second evaluation strategy used only two endpoints of the WEC, i.e. the no observed adverse effect concentration (NOAEC{sub WEC}) and the lowest concentration leading to dysmorphogenesis in 100% of the cultured embryos (IC{sub MaxWEC}). In addition to these WEC endpoints the IC{sub 503T3} from the cytotoxicity test (balb/c 3T3 fibroblasts) was included in the evaluation scheme. These three endpoints were applied to a prediction model developed during a validation study of the European Centre for the Validation of Alternative Methods (ECVAM) allowing the classification of the embryotoxic potential of each compound into three classes (non-, weakly- and strongly embryotoxic). Consistent results from both evaluation strategies were observed, whereby NMP and its metabolites revealed a direct embryotoxic potential. Hereby, only NMP and 5-HNMP induced specific embryotoxic effects and were classified as weakly embryotoxic, whereas the other two metabolites, 2-HMSI and MSI, were determined to be non-embryotoxic.« less
USDA-ARS?s Scientific Manuscript database
FTY720 (fingolimod) is an FDA-approved drug to treat relapsing remitting multiple sclerosis. FTY720 treatment in pregnant inbred LM/Bc mice results in approximately 60% of embryos having a neural tube defect (NTD). Sphingosine kinases (Sphk1, Sphk2) phosphorylate FTY720 in vivo to form the bioactive...
USDA-ARS?s Scientific Manuscript database
Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspe...
Role of the FGF and MEK signaling pathway in the ascidian embryo.
Kim, G J; Nishida, H
2001-10-01
In the ascidian embryo, a fibroblast growth factor (FGF)-like signal from presumptive endoderm blastomeres between the 32-cell and early 64-cell stages induces the formation of notochord and mesenchyme cells. However, it has not been known whether endogenous FGF signaling is involved in the process. Here it is shown that 64-cell embryos exhibit a marked increase in endogenous extracellular signal-regulated kinase (ERK/MAPK) activity. The increase in ERK activity was reduced by treatment with an FGF receptor 1 inhibitor, SU5402, and a MEK (ERK kinase/MAPKK) inhibitor, U0126. Both drugs blocked the formation of notochord and mesenchyme when embryos were treated at the 32-cell stage, but not at the 2- or 110-cell stages. The dominant-negative form of Ras also suppressed notochord and mesenchyme formation. Both inhibitors suppressed induction by exogenous basic FGF. These results suggest that the FGF signaling cascade is indeed necessary for the formation of notochord and mesenchyme cells during ascidian embryogenesis. It is also shown that FGF signaling is required for formation of the secondary notochord, secondary muscle and neural tissues, and at least ERK activity is necessary for the formation of trunk lateral cells and posterior endoderm. Therefore, FGF and MEK signaling are required for the formation of various tissues in the ascidian embryo.
Epigenetic analysis of bovine parthenogenetic embryonic fibroblasts.
Kaneda, Masahiro; Takahashi, Masashi; Yamanaka, Ken-Ichi; Saito, Koji; Taniguchi, Masanori; Akagi, Satoshi; Watanabe, Shinya; Nagai, Takashi
2017-08-19
Although more than 100 imprinted genes have already been identified in the mouse and human genomes, little is known about genomic imprinting in cattle. For a better understanding of these genes in cattle, parthenogenetically activated bovine blastocysts were transferred to recipient cows to obtain parthenotes, and fibroblasts derived from a Day 40 (Day 0 being the day of parthenogenetic activation) parthenogenetic embryo (BpEFs) were successfully obtained. Bovine embryonic fibroblasts (BEFs) were also isolated from a normal fertilized embryo obtained from an artificially inseminated cow. The expression of imprinted genes was analyzed by RT-PCR. Paternally expressed genes (PEGs) in mouse (viz., IGF2, PEG3, ZAC1, NDN, DLK1, SGCE, and PEG10) were expressed in BEFs, but not in BpEFs, suggesting that these genes are also imprinted in cattle. However, other PEGs in mouse (viz., IMPACT, MAGEL2, SNRPN, and PEG1/MEST) were expressed in both BEFs and BpEFs. These genes may not be imprinted in BEFs. The expression of seven maternally expressed genes in mouse was also analyzed, and only CDKN1C was not expressed in BpEFs. The DNA methylation patterns of repetitive elements (Satellite I, Satellite II, alpha-satellite, and Art2) were not different between the BEFs and BpEFs; however, the differentially methylated region (DMR) of paternally methylated H19 was hypomethylated, whereas those of maternally methylated PEG3 and PEG10 were hypermethylated in BpEFs, as expected. The methylation of the SNRPN DMR was not different between the BEFs and BpEFs, in accordance with the SNRPN expression levels in both cell types. The XIST gene, which is essential for X chromosome inactivation in females, was expressed in BpEFs, whereas its DMR was half-methylated, suggesting that X chromosome inactivation is normal in these cells. Microarray analysis was also applied to identify novel PEGs that should be expressed only in BEFs but not in BpEFs. More than 300 PEG candidate genes, including IGF2, PEG3, and PEG10, were obtained. These results illustrate the epigenetic characteristic of bovine parthenogenetic embryos and contribute to the identification of novel imprinted genes in cattle.
Olivera, Ramiro; Moro, Lucia Natalia; Jordan, Roberto; Luzzani, Carlos; Miriuka, Santiago; Radrizzani, Martin; Donadeu, F Xavier; Vichera, Gabriel
2016-01-01
The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs. adult fibroblasts (AF) fused to ooplasts injected with the pluripotency-inducing genes OCT4, SOX2, MYC and KLF4, vs. AF alone as controls; II) umbilical cord-derived mesenchymal stromal cells (UC-MSCs) vs. fetal fibroblasts derived from an unborn cloned foetus (FF) vs. AF from the original individual. In the first experiment, both blastocyst production and pregnancy rates were higher in the 2-3h group (11.5% and 9.5%, respectively), respect to <1h (5.2% and 2%, respectively) and 1-2h (5.6% and 4.7%, respectively) groups (P<0.05). However, percentages of born foals/pregnancies were similar when intervals of 2-3h (35.2%) or 1-2h (35.7%) were used. In contrast to AF, the iPSCs did not generate any blastocyst-stage embryos. Moreover, injection of oocytes with the pluripotency-inducing genes did not improve blastocyst production nor pregnancy rates respect to AF controls. Finally, higher blastocyst production was obtained using UC-MSC (15.6%) than using FF (8.9%) or AF (9.3%), (P<0.05). Despite pregnancy rates were similar for these 3 groups (17.6%, 18.2% and 22%, respectively), viable foals (two) were obtained only by using FF. In summary, optimum blastocyst production rates can be obtained using a 2-3h interval between cell fusion and activation as well as using UC-MSCs as nuclear donors. Moreover, FF line can improve the efficiency of an inefficient AF line. Overall, 24 healthy foals were obtained from a total of 29 born foals.
Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement.
Brachmann, Saskia M; Yballe, Claudine M; Innocenti, Metello; Deane, Jonathan A; Fruman, David A; Thomas, Sheila M; Cantley, Lewis C
2005-04-01
Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta gene (p85beta-/-) (D. A. Fruman, F. Mauvais-Jarvis, D. A. Pollard, C. M. Yballe, D. Brazil, R. T. Bronson, C. R. Kahn, and L. C. Cantley, Nat Genet. 26:379-382, 2000; K. Ueki, C. M. Yballe, S. M. Brachmann, D. Vicent, J. M. Watt, C. R. Kahn, and L. C. Cantley, Proc. Natl. Acad. Sci. USA 99:419-424, 2002), we show here that loss of both genes results in lethality at embryonic day 12.5 (E12.5). The phenotypes of these embryos, including subepidermal blebs flanking the neural tube at E8 and bleeding into the blebs during the turning process, are similar to defects observed in platelet-derived growth factor receptor alpha null (PDGFRalpha-/-) mice (P. Soriano, Development 124:2691-2700, 1997), suggesting that PI3K is an essential mediator of PDGFRalpha signaling at this developmental stage. p85alpha-/- p55alpha+/+ p50alpha+/+ p85beta-/- mice had similar but less severe defects, indicating that p85alpha and p85beta have a critical and redundant function in development. Mouse embryo fibroblasts deficient in all p85alpha and p85beta gene products (p85alpha-/- p55alpha-/- p50alpha-/- p85beta-/-) are defective in PDGF-induced membrane ruffling. Overexpression of the Rac-specific GDP-GTP exchange factor Vav2 or reintroduction of p85alpha or p85beta rescues the membrane ruffling defect. Surprisingly, reintroduction of p50alpha also restored PDGF-dependent membrane ruffling. These results indicate that class Ia PI3K is critical for PDGF-dependent actin rearrangement but that the SH3 domain and the Rho/Rac/Cdc42-interacting domain of p85, which lacks p50alpha, are not required for this response.
Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri
2007-01-01
The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.
de Oña, M; Melón, S; de la Iglesia, P; Hidalgo, F; Verdugo, A F
1995-01-01
Ninety-four pharyngeal swab samples corresponding to 94 patients with suspected influenza virus infection were inoculated in Madin-Darby canine kidney (MDCK) cells, the conventional cell system for the isolation of influenza virus, and in fibroblastic human embryo lung (MRC-5) cells, a cell system less commonly used for this purpose but one frequently used in clinical virology laboratories. Both cell preparations were treated with trypsin. Influenza virus was recovered from 15% of the samples inoculated in MDCK cells and from 18% of those inoculated in MRC-5 cells. The use of MRC-5 cells can simplify the search for respiratory viruses and would assist in the rapid detection of influenza virus during new epidemics. PMID:7665680
Drosophila Heartless Acts with Heartbroken/Dof in Muscle Founder Differentiation
Dutta, Devkanya; Shaw, Sanjeev; Maqbool, Tariq; Pandya, Hetal
2005-01-01
The formation of a multi-nucleate myofibre is directed, in Drosophila, by a founder cell. In the embryo, founders are selected by Notch-mediated lateral inhibition, while during adult myogenesis this mechanism of selection does not appear to operate. We show, in the muscles of the adult abdomen, that the Fibroblast growth factor pathway mediates founder cell choice in a novel manner. We suggest that the developmental patterns of Heartbroken/Dof and Sprouty result in defining the domain and timing of activation of the Fibroblast growth factor receptor Heartless in specific myoblasts, thereby converting them into founder cells. Our results point to a way in which muscle differentiation could be initiated and define a critical developmental function for Heartbroken/Dof in myogenesis. PMID:16207075
Lipid profiling of parkin-mutant human skin fibroblasts.
Lobasso, Simona; Tanzarella, Paola; Vergara, Daniele; Maffia, Michele; Cocco, Tiziana; Corcelli, Angela
2017-12-01
Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD. © 2017 Wiley Periodicals, Inc.
Cellular characteristics of primary and immortal canine embryonic fibroblast cells.
You, Seungkwon; Moon, Jai-Hee; Kim, Tae-Kyung; Kim, Sung-Chan; Kim, Jai-Woo; Yoon, Du-Hak; Kwak, Sungwook; Hong, Ki-Chang; Choi, Yun-Jaie; Kim, Hyunggee
2004-08-31
Using normal canine embryonic fibroblasts (CaEF) that were shown to be senescent at passages 7th-9th, we established two spontaneously immortalized CaEF cell lines (designated CGFR-Ca-1 and -2) from normal senescent CaEF cells, and an immortal CaEF cell line by exogenous introduction of a catalytic telomerase subunit (designated CGFR-Ca-3). Immortal CGFR- Ca-1, -2 and -3 cell lines grew faster than primary CaEF counterpart in the presence of either 0.1% or 10% FBS. Cell cycle analysis demonstrated that all three immortal CaEF cell lines contained a significantly high proportion of S-phase cells compared to primary CaEF cells. CGFR-Ca-1 and -3 cell lines showed a loss of p53 mRNA and protein expression leading to inactivation of p53 regulatory function, while the CGFR-Ca-2 cell line was found to have the inactive mutant p53. Unlike the CGFR-Ca-3 cell line that down-regulated p16INK4a mRNA due to its promoter methylation but had an intact p16INK4a regulatory function, CGFR-Ca-1 and -2 cell lines expressed p16INK4a mRNA but had a functionally inactive p16INK4a regulatory pathway as judged by the lack of obvious differences in cell growth and phenotype when reconstituted with wild-type p16INK4a. All CGFR-Ca-1, -2 and -3 cell lines were shown to be untransformed but immortal as determined by anchorage-dependent assay, while these cell lines were fully transformed when overexpressed oncogenic H-rasG12V. Taken together, similar to the nature of murine embryo fibroblasts, the present study suggests that normal primary CaEF cells have relatively short in vitro lifespans and should be spontaneously immortalized at high frequency.
The Use of "Kryptolebias marmoratus" Eggs as an Educational Tool for Embryology Education
ERIC Educational Resources Information Center
Genade, Tyrone
2016-01-01
Plastic embryological models lack the excitement of seeing real, live embryos. Chick embryos are often used to demonstrate embryological development and blood circulation to students but this necessitates the death of the organism. "Kryptolebias marmoratus" embryos are large and can be viewed by means of a light microscope without need…
Inoue, Kimiko; Ogura, Atsuo
2013-01-01
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866
Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E
2009-09-01
Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (P<0.05). The use of donor cells of any type in later passages decreased the rate of blastocyst formation. Treatment with trichostatin-A did not improve the rate of blastocyst formation from cleaved dewclaw cell-derived embryos but did so in the embryos derived from the tail-tip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.
Wang, Zhongde
2011-01-01
Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.
Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yongye; Tang, Xiaochun; Xie, Wanhua
Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin Cmore » treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.« less
Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S
2002-02-07
P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.
Coenzyme Q{sub 10} and alpha-tocopherol protect against amitriptyline toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Mario D.; Dpto. Citologia e Histologia Normal y Patologica, Facultad de Medicina. Universidad de Sevilla. 41009 Sevilla; Moreno-Fernandez, Ana Maria
Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q{sub 10} and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q{sub 10},more » decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q{sub 10} and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity.« less
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-05-27
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-01-01
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells. PMID:24866481
Santhakumar, Diwakar; Rohaim, Mohammed Abdel Mohsen Shahaat; Hussein, Hussein A; Hawes, Pippa; Ferreira, Helena Lage; Behboudi, Shahriar; Iqbal, Munir; Nair, Venugopal; Arns, Clarice W; Munir, Muhammad
2018-05-01
The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFITs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFIT5) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFIT5 protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFIT5-stable chicken fibroblasts whereas CRISPR/Cas9-edited chIFIT5 gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFIT5 protein or knocked-down for endogenous chIFIT5 gene. Replication kinetics of RNA viruses in these transgenic chicken embryos demonstrated the antiviral potential of chIFIT5 in ovo. Taken together, these findings propose that IFIT5 specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health significance.
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
Kim, H; You, S; Kong, B W; Foster, L K; Farris, J; Foster, D N
2001-08-22
The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.
Maternal aldehyde elimination during pregnancy preserves the fetal genome.
Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P; Patel, Ketan J
2014-09-18
Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Maternal Aldehyde Elimination during Pregnancy Preserves the Fetal Genome
Oberbeck, Nina; Langevin, Frédéric; King, Gareth; de Wind, Niels; Crossan, Gerry P.; Patel, Ketan J.
2014-01-01
Summary Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2−/−Fanca−/− embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2. PMID:25155611
A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.
Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru
2012-01-01
To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.
A Cytogenetic Study of Repeat-breeder Heifers and Their Embryos
King, W. A.; Linares, T.
1983-01-01
Twenty-three Swedish Red and White, Swedish Friesian and crossbred repeat-breeder heifers and 15 day 7 embryos produced by 11 of these heifers were subjected to cytogenetic analysis. Three heifers were found to have abnormal karyotypes; two were heterozygous for the 1/29 translocation, and one was an X-trisomy. Chromosomal anomalies which might account for embryonic death and subsequent repeat-breeding could not be detected in the embryos, however, seven out of the 15 could not be karyotyped due to the lack of cells in metaphase. The possibility of chromosomal anomalies in these embryos could not be ruled out. Three embryos produced by the heifers carrying the translocation were among those which lacked cells in mitosis. Two unfertilized ova were recovered from the X-trisomy heifer suggesting that fertilization failure rather than embryonic death was the cause of repeat-breeding. In the light of this study and similar studies in other species, it is suggested that investigations at earlier stages of development are needed. ImagesFigure 1.Figure 2. PMID:17422244
Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL.
Fresco, Victor M; Kern, Christine B; Mohammadi, Moosa; Twal, Waleed O
2016-09-02
Fibulin-1 (FBLN1) is a member of a growing family of extracellular matrix glycoproteins that includes eight members and is involved in cellular functions such as adhesion, migration, and differentiation. FBLN1 has also been implicated in embryonic heart and valve development and in the formation of neural crest-derived structures, including aortic arch, thymus, and cranial nerves. Fibroblast growth factor 8 (FGF8) is a member of a large family of growth factors, and its functions include neural crest cell (NCC) maintenance, specifically NCC migration as well as patterning of structures formed from NCC such as outflow tract and cranial nerves. In this report, we sought to investigate whether FBLN1 and FGF8 have cooperative roles in vivo given their influence on the development of the same NCC-derived structures. Surface plasmon resonance binding data showed that FBLN1 binds tightly to FGF8 and prevents its enzymatic degradation by ADAM17. Moreover, overexpression of FBLN1 up-regulates FGF8 gene expression, and down-regulation of FBLN1 by siRNA inhibits FGF8 expression. The generation of a double mutant Fbln1 and Fgf8 mice (Fbln1(-/-) and Fgf8(-/-)) showed that haplo-insufficiency (Fbln1(+/-) and Fgf8(+/-)) resulted in increased embryonic mortality compared with single heterozygote crosses. The mortality of the FGF8/Fbln1 double heterozygote embryos occurred between 14.5 and 16.5 days post-coitus. In conclusion, FBLN1/FGF8 interaction plays a role in survival of vertebrate embryos, and reduced levels of both proteins resulted in added mortality in utero The FBLN1/FGF8 interaction may also be involved in the survival of neural crest cell population during development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong
2008-10-14
To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.
Tada, Tatsuya; Suzuki, Koutaro; Sakurai, Yu; Kubo, Masanori; Okada, Hironao; Itoh, Toshihiro; Tsukamoto, Kenji
2011-01-01
To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP I109T). By analyzing viruses constructed by the reverse-genetic method, we established that the NP I109T substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP I109T substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP I109T substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP I109T mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains. PMID:21795332
Epidermal regulation of dermal fibroblast activity.
Garner, W L
1998-07-01
Although the association between delayed burn wound healing and subsequent hypertrophic scar formation is well-established, the mechanism for this relationship is unknown. Unhealed burn wounds lack an epidermis, suggesting a possible regulatory role for the epidermis in controlling dermal fibroblast matrix synthesis. Therefore, we examined the effect of epidermal cells and media conditioned by epidermal cells on fibroblast collagen synthesis and replication. Purified fibroblast and keratinocyte cell strains were developed from discarded normal adult human skin. Conditioned media were created by incubation of cytokine-free and serum-free medium with either confluent fibroblast or keratinocyte cultures for 18 hours (n = 3). Nearly confluent fibroblast cultures were exposed for 48 hours to graded concentrations of either unconditioned medium (control), conditioned medium, or varying numbers of keratinocytes. Replication was quantified by the incorporation of 3H-thymidine. Collagen synthesis was measured by the incorporation of 3H-proline into collagenase-sensitive protein. Data were compared using analysis of variance (ANOVA) and linear regression. Keratinocyte conditioned medium induced a significant increase in replication (n = 3) (p = 0.004) and a decrease in collagen synthesis (n = 6) (p < 0.001). In contrast, neither fibroblast conditioned medium nor control medium had an effect on fibroblast replication or collagen synthesis. Co-culture of fibroblast with a graded number of keratinocytes similarly decreased collagen synthesis (n = 6) (p < 0.001). Dermal fibroblast collagen synthesis appears to be regulated by a soluble keratinocyte product. This result suggests a mechanism for the clinical observation that unhealed burn wounds, which lack the epidermis, demonstrate excess collagen production and scar. Clinical strategies to decrease hypertrophic scar should include an attempt at early wound closure with skin grafting or the application of cultured epithelial autografts.
Lee, Jai-Wei; Li, Hung; Wu, Hung-Yi; Liu, Shyh-Shyan; Shen, Perng-Chin
2016-03-01
The objective of this study was to compare the thermotolerance of ear fibroblasts derived from various SCNT cattle. Specimens were produced from cloned embryos that had been reconstructed using donor cells (d) from the same Holstein cow (Hd) and the ooplasm (o) from Holstein cattle (Ho) or Taiwan yellow cattle (Yo). Polymorphism in the D-loop region of mitochondrial DNA in ear fibroblasts derived from SCNT cattle reconstructed with the Y ooplasm and H donor cells (SCNT-Yo-Hd) indicates that the cytoplasm originated from Bos indicus. The rates of apoptosis in heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle (1.9%) and purebred Y cattle (1.5%) were significantly (P < 0.05) lower than those of cells derived from SCNT cattle reconstructed with the H ooplasm (SCNT-Ho-Hd: 3.4%), donor cells (4.0%), and purebred Holstein (4.1%) cattle. At the protein level, the relative abundances of apoptosis-inducing factor, B cell lymphoma 2-associated X protein, endonuclease G, cytochrome c, cysteinyl aspartate-specific proteinases 3, 8 and 9 in ear fibroblasts derived from SCNT-Yo-Hd cattle were significantly (P < 0.05) lower than those of cells derived from SCNT-Ho-Hd cattle after heat shock. In contrast, the relative abundances of heat shock proteins 27, 70 and B cell lymphoma 2 in ear fibroblasts derived from SCNT-Yo-Hd cattle were higher (P < 0.05) than those of fibroblasts derived from SCNT-Ho-Hd cattle. Moreover, heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle have a significantly (P < 0.05) lower percentage of apoptosis-inducing factor-positive nuclei than do heat-shocked ear fibroblasts derived from SCNT-Ho-Hd cattle (11.1% vs. 18.5%). Taken together, these results report that ear fibroblasts derived from SCNT cattle reconstructed using the Y ooplasm are more thermotolerant than ear fibroblasts derived from SCNT cattle reconstructed using the H ooplasm. This is an indication that the cytoplasm may be a major determinant of thermal sensitivity in bovine ear fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
Induction of pluripotent stem cells from fibroblast cultures.
Takahashi, Kazutoshi; Okita, Keisuke; Nakagawa, Masato; Yamanaka, Shinya
2007-01-01
Clinical application of embryonic stem (ES) cells faces difficulties regarding use of embryos, as well as tissue rejection after implantation. One way to circumvent these issues is to generate pluripotent stem cells directly from somatic cells. Somatic cells can be reprogrammed to an embryonic-like state by the injection of a nucleus into an enucleated oocyte or by fusion with ES cells. However, little is known about the mechanisms underlying these processes. We have recently shown that the combination of four transcription factors can generate ES-like pluripotent stem cells directly from mouse fibroblast cultures. The cells, named induced pluripotent stem (iPS) cells, can be differentiated into three germ layers and committed to chimeric mice. Here we describe detailed methods and tips for the generation of iPS cells.
Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.).
Goswami, M; Lakra, W S; Yadav, Kamalendra; Jena, J K
2012-12-01
An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.
Robust measurement of telomere length in single cells
Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.
2013-01-01
Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059
Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W
2012-01-01
Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.
Turbulence, cleavage, and the naked embryo: a case for coral clones.
Heyward, A J; Negri, A P
2012-03-02
After mass spawning events, coral embryos, lacking the protective capsule of other metazoans, are directly exposed to the environment at the ocean surface. Here, we present evidence that modest turbulence disrupts the integrity of these embryos, which fragment into totipotent cells that develop into proportionately smaller functional larvae. The level of turbulence required to fragment coral embryos can be generated from small wind-generated waves, which occur frequently during coral spawning on the Great Barrier Reef. The formation of planktonic coral clones, through natural embryo fragmentation of broadcast spawn, is a previously unknown mode of reproduction in the animal kingdom.
Xiong, X R; Li, J; Fu, M; Gao, C; Wang, Y; Zhong, J C
2013-02-01
The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
rRNA Genes Are Not Fully Activated in Mouse Somatic Cell Nuclear Transfer Embryos*
Zheng, Zhong; Jia, Jia-Lin; Bou, Gerelchimeg; Hu, Li-Li; Wang, Zhen-Dong; Shen, Xing-Hui; Shan, Zhi-Yan; Shen, Jing-Ling; Liu, Zhong-Hua; Lei, Lei
2012-01-01
The well known and most important function of nucleoli is ribosome biogenesis. However, the nucleolus showed delayed development and malfunction in somatic cell nuclear transfer (NT) embryos. Previous studies indicated that nearly half rRNA genes (rDNA) in somatic cells were inactive and not transcribed. We compared the rDNA methylation level, active nucleolar organizer region (NORs) numbers, nucleolar proteins (upstream binding factor (UBF), nucleophosmin (B23)) distribution, and nucleolar-related gene expression in three different donor cells and NT embryos. The results showed embryonic stem cells (ESCs) had the most active NORs and lowest rDNA methylation level (7.66 and 6.76%), whereas mouse embryonic fibroblasts (MEFs) were the opposite (4.70 and 22.57%). After the donor cells were injected into enucleated MII oocytes, cumulus cells and MEFs nuclei lost B23 and UBF signals in 20 min, whereas in ESC-NT embryos, B23 and UBF signals could still be detected at 60 min post-NT. The embryos derived from ESCs, cumulus cells, and MEFs showed the same trend in active NORs numbers (7.19 versus 6.68 versus 5.77, p < 0.05) and rDNA methylation levels (6.36 versus 9.67% versus 15.52%) at the 4-cell stage as that in donor cells. However, the MEF-NT embryos displayed low rRNA synthesis/processing potential at morula stage and had an obvious decrease in blastocyst developmental rate. The results presented clear evidences that the rDNA reprogramming efficiency in NT embryos was determined by the rDNA activity in donor cells from which they derived. PMID:22467869
Differential developmental ability of embryos cloned from tissue-specific stem cells.
Inoue, Kimiko; Noda, Shinichi; Ogonuki, Narumi; Miki, Hiromi; Inoue, Shinichi; Katayama, Kazufumi; Mekada, Kazuyuki; Miyoshi, Hiroyuki; Ogura, Atsuo
2007-05-01
Although cloning animals by somatic cell nuclear transfer is generally inefficient, the use of certain nuclear donor cell types may significantly improve or deteriorate outcomes. We evaluated whether two multipotent stem cell lines produced in vitro--neural stem cells (NSCs) and mesenchymal stem cells (MSCs)--could serve as nuclear donors for nuclear transfer cloning. Most (76%) NSC-derived embryos survived the two-cell-to-four-cell transition, the stage when the major zygotic gene activation occurs. Consistent with this observation, the expression patterns of zygotically active genes were better in NSC-derived embryos than in fibroblast clone embryos, which arrested at the two-cell stage more frequently. Embryo transfer experiments demonstrated that at least some of these NSC embryos had the ability to develop to term fetuses (1.6%, 3/189). In contrast, embryos reconstructed using MSCs showed a low rate of in vitro development and never underwent implantation in vivo. Chromosomal analysis of the donor MSCs revealed very frequent aneuploidy, which probably impaired the potential for development of their derived clones. This is the first demonstration that tissue-specific multipotent stem cells produced in vitro can serve as donors of nuclei for cloning mice; however, these cells may be prone to chromosomal aberrations, leading to high embryonic death rates. We found previously that hematopoietic stem cells (HSCs) are very inefficient donor cells because of their failure to activate the genes essential for embryonic development. Taken together, our data led us to conclude that tissue-specific stem cells in mice, namely NSCs, MSCs, and HSCs, exhibited marked variations in the ability to produce cloned offspring and that this ability varies according to both the epigenetic and genetic status of the original genomes. Disclosure of potential conflicts of interest is found at the end of this article.
Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung Mi; Min, Bon Hong; Lee, Kee Ho; Park, Gil Hong
2011-10-31
Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.
Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung-Mi; Min, Bon Hong
2011-01-01
Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21Cip/WAF1 activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway. PMID:21778808
Wäster, Petra; Orfanidis, Kyriakos; Eriksson, Ida; Rosdahl, Inger; Seifert, Oliver; Öllinger, Karin
2017-08-08
Ultraviolet radiation (UVR) is the major risk factor for development of malignant melanoma. Fibroblast activation protein (FAP)-α is a serine protease expressed on the surface of activated fibroblasts, promoting tumour invasion through extracellular matrix (ECM) degradation. The signalling mechanism behind the upregulation of FAP-α is not yet completely revealed. Expression of FAP-α was analysed after UVR exposure in in vitro co-culture systems, gene expression arrays and artificial skin constructs. Cell migration and invasion was studied in relation to cathepsin activity and secretion of transforming growth factor (TGF)-β1. Fibroblast activation protein-α expression was induced by UVR in melanocytes of human skin. The FAP-α expression was regulated by UVR-induced release of TGF-β1 and cathepsin inhibitors prevented such secretion. In melanoma cell culture models and in a xenograft tumour model of zebrafish embryos, FAP-α mediated ECM degradation and facilitated tumour cell dissemination. Our results provide evidence for a sequential reaction axis from UVR via cathepsins, TGF-β1 and FAP-α expression, promoting cancer cell dissemination and melanoma metastatic spread.
Patients' Attitudes towards the Surplus Frozen Embryos in China
Jin, Xuan; Wang, GongXian; Liu, SiSun; Liu, Ming; Zhang, Jing; Shi, YuFa
2013-01-01
Background. Assisted reproductive techniques have been used in China for more than 20 years. This study investigates the attitudes of surplus embryo holders towards embryos storage and donation for medical research. Methods. A total of 363 couples who had completed in vitro fertilization (IVF) treatment and had already had biological children but who still had frozen embryos in storage were invited to participate. Interviews were conducted by clinics in a narrative style. Results. Family size was the major reason for participants' (dis)continuation of embryo storage; moreover, the moral status of embryos was an important factor for couples choosing embryo storage, while the storage fee was an important factor for couples choosing embryo disposal. Most couples discontinued the storage of their embryos once their children were older than 3 years. In our study, 58.8% of the couples preferred to dispose of surplus embryos rather than donate them to research, citing a lack of information and distrust in science as significant reasons for their decision. Conclusions. Interviews regarding frozen embryos, including patients' expectations for embryo storage and information to assist them with decisions regarding embryo disposal, are beneficial for policies addressing embryo disposition and embryo donation in China. PMID:23509811
Qu, Yajin; Liu, Litao; Niu, Yujuan; Qu, Yue; Li, Ning; Sun, Wei; Lv, Chuanwei; Wang, Pengfei; Zhang, Guihua; Liu, Sidang
2016-10-01
Subgroup J avian leukosis virus (ALV-J) causes a neoplastic disease in infected chickens. The ALV-J strain NX0101, which was isolated from broiler breeders in 2001, mainly induced formation of myeloid cell tumors. However, strain HN10PY01, which was recently isolated from laying hens, mainly induces formation of myeloid cell tumors and hemangioma. To identify the molecular pathological mechanism underlying changes in host susceptibility and tumor classification induced by these two types of ALV-J strains, chicken embryo fibroblasts derived from chickens with different genetic backgrounds (broiler breeders and laying hens) and an immortalized chicken embryo fibroblasts (DF-1) were prepared and infected with strain NX0101 or HN10PY01, respectively. The 50% tissue culture infective dose (TCID50) and levels of ALV group-specific antigen p27 and heat shock protein 70 in the supernatant collected from the ALV-J infected cells were detected. Moreover, mRNA expression levels of tumor-related genes p53, c-myc, and Bcl-2 in ALV-J-infected cells were quantified. The results indicated that the infection of ALV-J could significantly increase mRNA expression levels of p53, c-myc, and Bcl-2 Strain HN10PY01 exhibited a greater influence on the three tumor-related genes in each of the three types of cells when compared with strain NX0101, and the TCID50 and p27 levels in the supernatant collected from HN10PY01-infected cells were higher than those collected from NX0101-infected cells. These results indicate that the infection of the two ALV-J strains influenced the gene expression levels in the infected cells, while the newly isolated strain HN10PY01 showed higher replication ability in cells and induced higher expression levels of tumor-related genes in infected cells. Furthermore, virus titers and expression levels of tumor-related genes and cellular stress responses of cells with different genetic backgrounds when infected with each of the two ALV-J strain were different, indicating that genetic backgrounds influenced the capabilities of the virus to infect and proliferate. The findings of this study provide useful data to further elucidate the mechanism underlying host susceptibility and tumor classification in ALV-J-infected chickens and cells. © 2016 Poultry Science Association Inc.
Behavioral thermoregulation by turtle embryos
Du, Wei-Guo; Zhao, Bo; Chen, Ye; Shine, Richard
2011-01-01
Mobile ectothermic animals can control their body temperatures by selecting specific thermal conditions in the environment, but embryos—trapped within an immobile egg and lacking locomotor structures—have been assumed to lack that ability. Falsifying that assumption, our experimental studies show that even early stage turtle embryos move within the egg to exploit small-scale spatial thermal heterogeneity. Behavioral thermoregulation is not restricted to posthatching life and instead may be an important tactic in every life-history stage. PMID:21606350
Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.
Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka
2016-11-01
To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi
2004-01-01
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.
Modulation of oxidative stress by beta-carotene in chicken embryo fibroblasts.
Lawlor, S M; O'Brien, N M
1995-06-01
The ability of beta-carotene to protect against oxidative stress in vitro was assessed. Primary cultures of chicken embryo fibroblasts (CEF) were oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GSH-Px; EC 1.11.19) were measured as indices of oxidative stress. CEF incubated with 0.25 mM-PQ for 18 h exhibited increased SOD and CAT activities and decreased GSH-Px activity compared with the control (P < 0.001). Incorporation of added beta-carotene (0.1 microM) into 0.25 mM-PQ-treated CEF returned SOD activity to that seen in non-PQ-treated cells. beta-Carotene (0.1 microM) reduced the CAT activity from that seen in PQ-treated cells and returned the GSH-Px activity to its control value thus protecting the cells against PQ-induced oxidative stress. However, at higher concentrations of beta-carotene (10 microM), SOD and CAT activities increased significantly (P < 0.001) relative to non-PQ-treated cells and GSH-Px activity decreased relative to its control value. Similar trends were observed when CEF grown in beta-carotene-enriched media (0.1-10 microM) were oxidatively stressed by exposure to 0.25 mM-PQ for 18 h.
Lawlor, S M; O'Brien, N M
1997-01-01
The efficiency with which beta-carotene protects against oxidative stress in chicken embryo fibroblasts (CEF) at low O2 partial pressures was assessed. Primary cultures of CEF were grown at low O2 partial pressures and oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (EC 1.15.1.1; SOD), catalase (EC 1.11.1.6; CAT) and glutathione peroxidase (EC 1.11.1.9; GSH-Px) were measured as indices of oxidative stress. CEF incubated with 0.25-1.0 mM-PQ for 18 h exhibited increased SOD and CAT activities compared with non-PQ-treated control cells (P < 0.001). No cytotoxicity as indicated by lactate dehydrogenase (EC 1.1.1.27; LDH) release was observed at PQ concentrations below 2.0 mM. Incorporation of added beta-carotene into 0.25 mM-PQ-treated cells prevented the PQ-induced increases in SOD and CAT, and activities were similar to those seen in non-PQ-treated control cells. GSH-Px activity decreased relative to its control value on exposure to 0.25 mM-PQ and beta-carotene prevented this decrease in a dose-dependent manner. The proportion of LDH released from the CEF treated with beta-carotene remained below the control value of 2.5% at all times.
Production of Prnp-/- goats by gene targeting in adult fibroblasts.
Zhu, Caihong; Li, Bei; Yu, Guohua; Chen, Jianquan; Yu, Huiqing; Chen, Juan; Xu, Xujun; Wu, Youbing; Zhang, Aimin; Cheng, Guoxiang
2009-04-01
Homozygous mice devoid of functional Prnp are resistant to scrapie and prion propagation, but heterozygous mice for Prnp disruption still suffer from prion disease and prion deposition. We have previously generated heterozygous cloned goats with one allele of Prnp functional disruption. To obtain goats with both alleles of Prnp be disrupted which would be resistant to scrapie completely, a second-round gene targeting was applied to disrupt the wild type allele of Prnp in the heterozygous goats. By second-round gene targeting, we successfully disrupted the wild type allele of Prnp in primary Prnp (+/-) goat skin fibroblasts and obtained a Prnp (-/-) cell line without Prnp expression. This is the first report on successful targeting modification in primary adult somatic cells of animals. These cells were used as nuclear donors for somatic cell cloning to produce Prnp (-/-) goats. A total of 57 morulae or blastocytes developed from the reconstructed embryos were transferred to 31 recipients, which produced 7 pregnancies at day 35. At 73 days of gestation, we obtained one cloned fetus with Prnp (-/-) genotype. Our research not only indicated that multiple genetic modifications could be accomplished by multi-round gene targeting in primary somatic cells, but also provided strong evidence that gene targeting in adult cells other than fetal cells could be applied to introduce precise genetic modifications in animals without destroying the embryos.
Giotis, Efstathios S; Robey, Rebecca C; Skinner, Natalie G; Tomlinson, Christopher D; Goodbourn, Stephen; Skinner, Michael A
2016-08-05
Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies.
Inversin modulates the cortical actin network during mitosis
Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.
2013-01-01
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530
The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.
Kim, H; You, S; Foster, L K; Farris, J; Foster, D N
2001-08-23
The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.
Kaplan, Ayse; Benkli, Kadriye; Koparal, Ayse Tansu
2018-01-08
Purpose The aim of this study is to detect apoptotic and cytotoxic/antiproliferative effects of a ligand substance and its metal derivatives. The substances were investigated by using an h-ras oncogene transformed rat embryo fibroblast cell line (5RP7). Methods The cytotoxic influences of dipyrido[3,2-a:2',3'c]phenazine ligand, dipyrido[3,2-a:2',3'c] phenazine-platinum(II) complex ([Pt(dppz)Cl 2 ]) and dipyrido[3,2-a:2',3'c] phenazine-gold(III) complex ([Au(dppz)Cl 2 ]Cl) were determined with MTT (3[4,5-dimetiltiyazol2-yl]-2,5-difeniltetrazolyum bromid) assay on 5RP7 cells. Results Dipyrido[3,2-a:2',3'c] phenazine, dipyrido[3,2-a:2',3'c] phenazine-platinum(II) complex ([Pt(dppz)Cl 2 ]) and dipyrido[3,2-a:2',3'c] phenazine-gold(III) complexes ([Au(dppz)Cl 2 ]Cl) caused significant increase in cytotoxicity in a dose and time dependent manner. The effects of dipyridophenazine ligand (dppz) and its metal derivatives on apoptosis were monitorized using cytotoxic dose (10 μM) DAPI fluorescent staining. It was shown that dppz and its compounds induced apoptosis. Conclusions These findings show that dpzz and its complexes can be studied as novel alternative chemotherapeutics in cancer treatment.
Sex determination of duck embryos: observations on syrinx development
Wilson, Robert E.; Sonsthagen, Sarah A.; Franson, J. Christian
2013-01-01
Ducks exhibit sexual dimorphism in vocal anatomy. Asymmetrical ossification of the syrinx (bulla syringealis) is discernable at about 10 days of age in male Pekin duck (Anas platyrhynchos domestica) embryos, but information is lacking on the early development of the bulla in wild ducks. To evaluate the reliability of this characteristic for sexing developing embryos, we examined the syrinx of dead embryos and compared results with molecular sexing techniques in high arctic nesting Common Eiders (Somateria mollissima). Embryos 8 days or older were accurately (100%) sexed based on the presence/absence of a bulla, 2 days earlier than Pekin duck. The use of the tracheal bulla can be a valuable technique when sex identification of embryos or young ducklings is required.
Generation of a transgenic cashmere goat using the piggyBac transposition system.
Bai, Ding-Ping; Yang, Ming-Ming; Qu, Lei; Chen, Yu-Lin
2017-04-15
The development of transgenic technologies in the Cashmere goat (Capra hircus) has the potential to improve the quality of the meat and wool. The piggyBac (PB) transposon system is highly efficient and can be used to transpose specific target genes into the genome. Here, we developed a PB transposon system to produce transgenic Cashmere goat fetal fibroblasts (GFFs) with the enhanced green fluorescent protein (EGFP). We then used the genetically modified GFFs as nuclear donors to generate transgenic embryos by somatic cell nuclear transfer (SCNT). The embryos (n = 40) were implanted into female goats (n = 20). One transgenic kid that expressed EGFP throughout the surface features of its body was born. This result demonstrated the usefulness of PB transposon system in generating transgenic Cashmere goats. Copyright © 2017 Elsevier Inc. All rights reserved.
Matveeva, Natalia M; Kizilova, Elena A; Serov, Oleg L
2015-01-01
The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.
Chester, N; Kuo, F; Kozak, C; O'Hara, C D; Leder, P
1998-11-01
Bloom's syndrome is a human autosomal genetic disorder characterized at the cellular level by genome instability and increased sister chomatid exchanges (SCEs). Clinical features of the disease include proportional dwarfism and a predisposition to develop a wide variety of malignancies. The human BLM gene has been cloned recently and encodes a DNA helicase. Mouse embryos homozygous for a targeted mutation in the murine Bloom's syndrome gene (Blm) are developmentally delayed and die by embryonic day 13.5. The fact that the interrupted gene is the homolog of the human BLM gene was confirmed by its homologous sequence, its chromosomal location, and by demonstrating high numbers of SCEs in cultured murine Blm-/- fibroblasts. The proportional dwarfism seen in the human is consistent with the small size and developmental delay (12-24 hr) seen during mid-gestation in murine Blm-/- embryos. Interestingly, the growth retardation in mutant embryos can be accounted for by a wave of increased apoptosis in the epiblast restricted to early post-implantation embryogenesis. Mutant embryos do not survive past day 13.5, and at this time exhibit severe anemia. Red blood cells and their precursors from Blm-/- embryos are heterogeneous in appearance and have increased numbers of macrocytes and micronuclei. Both the apoptotic wave and the appearance of micronuclei in red blood cells are likely cellular consequences of damaged DNA caused by effects on replicating or segregating chromosomes.
YEON, Ji-Yeong; MIN, Sung-Hun; PARK, Hyo-Jin; KIM, Jin-Woo; LEE, Yong-Hee; PARK, Soo-Yong; JEONG, Pil-Soo; PARK, Humdai; LEE, Dong-Seok; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon
2014-01-01
Mitochondria are highly dynamic organelles that undergo constant fusion/fission as well as activities orchestrated by large dynamin-related GTPases. These dynamic mitochondrial processes influence mitochondrial morphology, size and function. Therefore, this study was conducted to evaluate the effects of mitochondrial fission inhibitor, mdivi-1, on developmental competence and mitochondrial function of porcine embryos and primary cells. Presumptive porcine embryos were cultured in PZM-3 medium supplemented with mdivi-1 (0, 10 and 50 μM) for 6 days. Porcine fibroblast cells were cultured in growth medium with mdivi-1 (0 and 50 μM) for 2 days. Our results showed that the rate of blastocyst production and cell growth in the mdivi-1 (50 μM) treated group was lower than that of the control group (P < 0.05). Moreover, loss of mitochondrial membrane potential in the mdivi-1 (50 μM) treated group was increased relative to the control group (P < 0.05). Subsequent evaluation revealed that the intracellular levels of reactive oxygen species (ROS) and the apoptotic index were increased by mdivi-1 (50 μM) treatment (P < 0.05). Finally, the expression of mitochondrial fission-related protein (Drp 1) was lower in the embryos and cells in the mdivi-1-treated group than the control group. Taken together, these results indicate that mdivi-1 treatment may inhibit developmental competence and mitochondrial function in porcine embryos and primary cells. PMID:25501014
Jeong, Young-Hee; Kim, Yeong Ji; Kim, Eun Young; Kim, Se Eun; Kim, Jiwoo; Park, Min Jee; Lee, Hong-Gu; Park, Se Pill; Kang, Man-Jong
2016-06-01
Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.
Microfluidics for mammalian embryo culture and selection: where do we stand now?
Le Gac, Séverine; Nordhoff, Verena
2017-04-01
The optimization of in-vitro culture conditions and the selection of the embryo(s) with the highest developmental competence are essential components in an ART program. Culture conditions are manifold and they underlie not always evidence-based research but also trends entering the IVF laboratory. At the moment, the idea of using sequential media according to the embryo requirements has been given up in favor of the use of single step media in an uninterrupted manner due to practical issues such as time-lapse incubators. The selection of the best embryo is performed using morphological and, recently, also morphokinetic criteria. In this review, we aim to demonstrate how the ART field may benefit from the use of microfluidic technology, with a particular focus on specific steps, namely the embryo in-vitro culture, embryo scoring and selection, and embryo cryopreservation. We first provide an overview of microfluidic and microfabricated devices, which have been developed for embryo culture, characterization of pre-implantation embryos (or in some instances a combination of both steps) and embryo cryopreservation. Building upon these existing platforms and the various capabilities offered by microfluidics, we discuss how this technology could provide integrated and automated systems, not only for real-time and multi-parametric monitoring of embryo development, but also for performing the entire ART procedure. Although microfluidic technology has been around for a couple of decades already, it has still not made its way into the clinics and IVF laboratories, which we discuss in terms of: (i) a lack of user-friendliness and automation of the microfluidic platforms, (ii) a lack of robust and convincing validation using human embryos and (iii) some psychological threshold for embryologists and practitioners to test and use microfluidic technology. In spite of these limitations, we envision that microfluidics is likely to have a significant impact in the field of ART, for fundamental research in the near future and, in the longer term, for providing a novel generation of clinical tools. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.
Saito, Yusuke; Ono, Tetsuya; Takeda, Naoki; Nohmi, Takehiko; Seki, Masayuki; Enomoto, Takemi; Noda, Tetsuo; Uehara, Yoshihiko
2012-01-01
Thymine DNA glycosylase (TDG) is involved in the repair of G:T and G:U mismatches caused by hydrolytic deamination of 5-methylcytosine and cytosine, respectively. Recent studies have shown that TDG not only has G-T/U glycosylase activities but also acts in the maintaining proper epigenetic status. In order to investigate the function of TDG in vivo, mice lacking Tdg, Tdg (-/-), were generated. Tdg mutant mice died in utero by 11.5 days post coitum (dpc), although there were no significant differences in the spontaneous mutant frequencies between wild type and Tdg (-/-) embryos. On the other hand, the levels of noradrenaline in 10.5 dpc whole embryos, which is necessary for normal embryogenesis, were dramatically reduced in Tdg (-/-) embryos. Consequently, we tested the effect of D, L-threo-3, 4-dihydroxyphenylserine (DOPS), a synthetic precursor of noradrenaline, on the survival of the Tdg (-/-) embryos. DOPS was given to pregnant Tdg (+/-) mice from 6.5 dpc through drinking water. Most of the Tdg (-/-) embryos were alive at 11.5 dpc, and they were partially rescued up to 14.5 dpc by the administration of DOPS. In contrast, the administration of L-3, 4-dihydroxyphenylalanine (L-DOPA) had marginal effects on Tdg (-/-) embryonic lethality. No embryo was alive without DOPS beyond 11.5 dpc, suggesting that the lethality in (-/-) embryos is partially due to the reduction of noradrenaline. These results suggest that embryonic lethality in Tdg (-/-) embryos is due, in part, to the reduction of noradrenaline levels.
Benz[j]aceanthrylene (B[j]A), a cyclopenta-fused polycyclic aromatic hydrocarbon (CP-PAH) related to 3-methylcholanthrene, has been studied to identify the major routes of metabolic activation in transformable C3H1OT1/2CLB (C3H1OT1/2) mouse embryo fibroblasts in culture. he morph...
Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms.
Ries, Jonas; Yu, Shuizi Rachel; Burkhardt, Markus; Brand, Michael; Schwille, Petra
2009-09-01
Analysis of receptor-ligand interactions in vivo is key to biology but poses a considerable challenge to quantitative microscopy. Here we combine static-volume, two-focus and dual-color scanning fluorescence correlation spectroscopy to solve this task at cellular resolution in complex biological environments. We quantified the mobility of fibroblast growth factor receptors Fgfr1 and Fgfr4 in cell membranes of living zebrafish embryos and determined their in vivo binding affinities to their ligand Fgf8.
Tanaka, Tetsuya S; Ikenishi, Kohji
2002-02-01
An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.
Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong
2015-01-01
Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4− cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4– derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle. PMID:25602959
Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong
2015-01-01
Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4(+) cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4(+) cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4(+) cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4(+) cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4(-) cells. Moreover, blastocysts derived from SSEA-4(+) cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4(-) derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4(+) cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle.
Barny, Iris; Perrault, Isabelle; Michel, Christel; Soussan, Mickael; Goudin, Nicolas; Rio, Marlène; Thomas, Sophie; Attié-Bitach, Tania; Hamel, Christian; Dollfus, Hélène; Kaplan, Josseline; Rozet, Jean-Michel; Gerard, Xavier
2018-05-16
CEP290 mutations cause a spectrum of ciliopathies from Leber congenital amaurosis type 10 (LCA10) to embryo-lethal Meckel syndrome (MKS). Using panel-based molecular diagnosis testing for inherited retinal diseases, we identified two individuals with some preserved vision despite biallelism for presumably truncating CEP290 mutations. The first one carried a homozygous 1 base-pair deletion in exon 17, introducing a premature termination codon (PTC) in exon 18 (c.1666del; p.Ile556Phefs*17). mRNA analysis revealed a basal exon skipping (BES) of exon 18, providing mutant cells with the ability to escape protein truncation, while disrupting the reading frame in controls. The second individual harbored compound heterozygous nonsense mutations in exon 8 (c.508A>T, p.Lys170*) and exon 32 (c.4090G>T, p.Glu1364*), respectively. Some CEP290 lacking exon 8 were detected in mutant fibroblasts but not in controls whereas some skipping of exon 32 occurred in both lines, but with higher amplitude in the mutant. Considering that the deletion of either exon maintains the reading frame in either line, skipping in mutant cells likely involves nonsense-associated altered splicing (NAS) alone (exon 8), or with BES (exon 32). Skipping of PTC-containing exons in mutant cells allowed production of CEP290 isoforms with preserved ability to assemble into a high molecular weight complex and to interact efficiently with proteins important for cilia formation and intraflagellar trafficking. In contrast, studying LCA10 and MKS fibroblasts we show moderate to severe cilia alterations, providing support for a correlation between disease severity and the ability of cells to express shortened, yet functional, CEP290 isoforms.
Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.
Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat
2014-05-01
Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.
Li, Quanxi; Davila, Juanmahel; Bagchi, Milan K.; Bagchi, Indrani C.
2016-01-01
Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy. PMID:28239613
Yuan, Ye; Lee, Kiho; Park, Kwang-Wook; Spate, Lee D; Prather, Randall S; Wells, Kevin D; Roberts, R Michael
2014-01-01
Nuclear transfer (NT) from porcine iPSC to create cloned piglets is unusually inefficient. Here we examined whether such failure might be related to the cell cycle stage of donor nuclei. Porcine iPSC, derived here from the inner cell mass of blastocysts, have a prolonged S phase and are highly sensitive to drugs normally used for synchronization. However, a double-blocking procedure with 0.3 μM aphidicolin for 10 h followed by 20 ng/ml nocodazole for 4 h arrested 94.3% of the cells at G2/M and, after release from the block, provided 70.1% cells in the subsequent G1 phase without causing any significant loss of cell viability or pluripotent phenotype. Nuclei from different cell cycle stages were used as donors for NT to in vitro-matured metaphase II oocytes. G2/M nuclei were more efficient than either G1 and S stage nuclei in undergoing first cleavage and in producing blastocysts, but all groups had a high incidence of chromosomal/nuclear abnormalities at 2 h and 6 h compared with non-synchronized NT controls from fetal fibroblasts. Many G2 embryos extruded a pseudo-second polar body soon after NT and, at blastocyst, tended to be either polyploid or diploid. By contrast, the few G1 blastocysts that developed were usually mosaic or aneuploid. The poor developmental potential of G1 nuclei may relate to lack of a G1/S check point, as the cells become active in DNA synthesis shortly after exit from mitosis. Together, these data provide at least a partial explanation for the almost complete failure to produce cloned piglets from piPSC.
Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025
Lee, Peter C. W.; Dodart, Jean-Cosme; Aron, Liviu; Finley, Lydia W.; Bronson, Roderick T.; Haigis, Marcia C.; Yankner, Bruce A.; Harper, J. Wade
2013-01-01
The Uba6 (E1)-Use1 (E2) ubiquitin transfer cascade is a poorly understood alternative arm of the ubiquitin proteasome system (UPS) required for mouse embryonic development, independent of the canonical Uba1-E2-E3 pathway. Loss of neuronal Uba6 during embryonic development results in altered patterning of neurons in the hippocampus and the amygdala, decreased dendritic spine density, and numerous behavioral disorders. The levels of the E3 ubiquitin ligase Ube3a (E6-AP) and Shank3, both linked with dendritic spine function, are elevated in the amygdala of Uba6-deficient mice, while levels of the Ube3a substrate Arc are reduced. Uba6 and Use1 promote proteasomal turnover of Ube3a in mouse embryo fibroblasts (MEFs) and catalyze Ube3a ubiquitylation in vitro. These activities occur in parallel with an independent pathway involving Uba1-UbcH7, but in a spatially distinct manner in MEFs. These data reveal an unanticipated role for Uba6 in neuronal development, spine architecture, mouse behavior, and turnover of Ube3a. PMID:23499007
Parental genomes mix in mule and human cell nuclei.
Hepperger, Claudia; Mayer, Andreas; Merz, Julia; Vanderwall, Dirk K; Dietzel, Steffen
2009-06-01
Whether chromosome sets inherited from father and mother occupy separate spaces in the cell nucleus is a question first asked over 110 years ago. Recently, the nuclear organization of the genome has come increasingly into focus as an important level of epigenetic regulation. In this context, it is indispensable to know whether or not parental genomes are spatially separated. Genome separation had been demonstrated for plant hybrids and for the early mammalian embryo. Conclusive studies for somatic mammalian cell nuclei are lacking because homologous chromosomes from the two parents cannot be distinguished within a species. We circumvented this problem by investigating the three-dimensional distribution of chromosomes in mule lymphocytes and fibroblasts. Genomic DNA of horse and donkey was used as probes in fluorescence in situ hybridization under conditions where only tandem repetitive sequences were detected. We thus could determine the distribution of maternal and paternal chromosome sets in structurally preserved interphase nuclei for the first time. In addition, we investigated the distribution of several pairs of chromosomes in human bilobed granulocytes. Qualitative and quantitative image evaluation did not reveal any evidence for the separation of parental genomes. On the contrary, we observed mixing of maternal and paternal chromosome sets.
Yin, Yongjun; Wang, Fen; Ornitz, David M.
2011-01-01
Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling. PMID:21750028
Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C
2014-01-01
The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.
Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter
2004-01-01
Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.
2012-01-01
Backgrounds Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Methods Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. Results At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. Conclusions In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors. PMID:22546201
Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation
Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie
2016-01-01
Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. PMID:26967905
Andrade, Rosa M.; Chaparro, Juan D.; Capparelli, Edmund; Reed, Sharon L.
2014-01-01
Background The mainstay of toxoplasmosis treatment targets the folate biosynthetic pathways and has not changed for the last 50 years. The activity of these chemotherapeutic agents is restricted to one lifecycle stage of Toxoplasma gondii, they have significant toxicity, and the impending threat of emerging resistance to these agents makes the discovery of new therapies a priority. We now demonstrate that auranofin, an orally administered gold containing compound that was FDA approved for treatment of rheumatoid arthritis, has activity against Toxoplasma gondii in vitro (IC50 = 0.28 µM) and in vivo (1 mg/kg). Methods/Principal Findings Replication within human foreskin fibroblasts of RH tachyzoites was inhibited by auranofin. At 0.4 µM, auranofin inhibited replication, as measured by percent infected fibroblasts at 24 hrs, (10.94% vs. 24.66% of controls; p = 0.0003) with no effect on parasite invasion (16.95% vs. 12.91% p = 0.4331). After 18 hrs, 62% of extracellular parasites treated with auranofin were non-viable compared to control using an ATP viability assay (p = 0.0003). In vivo, a previously standardized chicken embryo model of acute toxoplasmosis was used. Fourteen day old chicken embryos were injected through the chorioallantoic vein with 1×104 tachyzoites of the virulent RH strain. The treatment group received one dose of auranofin at the time of inoculation (1 mg/kg estimated body weight). On day 5, auranofin-treated chicken embryos were 100% protected against death (p = 0.0002) and had a significantly reduced parasite load as determined by histopathology, immunohistochemistry and by the number of parasites quantified by real-time PCR. Conclusions These results reveal in vitro and in vivo activity of auranofin against T. gondii, suggesting that it may be an effective alternative treatment for toxoplasmosis. PMID:25079790
Andrade, Rosa M; Chaparro, Juan D; Capparelli, Edmund; Reed, Sharon L
2014-01-01
The mainstay of toxoplasmosis treatment targets the folate biosynthetic pathways and has not changed for the last 50 years. The activity of these chemotherapeutic agents is restricted to one lifecycle stage of Toxoplasma gondii, they have significant toxicity, and the impending threat of emerging resistance to these agents makes the discovery of new therapies a priority. We now demonstrate that auranofin, an orally administered gold containing compound that was FDA approved for treatment of rheumatoid arthritis, has activity against Toxoplasma gondii in vitro (IC50 = 0.28 µM) and in vivo (1 mg/kg). Replication within human foreskin fibroblasts of RH tachyzoites was inhibited by auranofin. At 0.4 µM, auranofin inhibited replication, as measured by percent infected fibroblasts at 24 hrs, (10.94% vs. 24.66% of controls; p = 0.0003) with no effect on parasite invasion (16.95% vs. 12.91% p = 0.4331). After 18 hrs, 62% of extracellular parasites treated with auranofin were non-viable compared to control using an ATP viability assay (p = 0.0003). In vivo, a previously standardized chicken embryo model of acute toxoplasmosis was used. Fourteen day old chicken embryos were injected through the chorioallantoic vein with 1×104 tachyzoites of the virulent RH strain. The treatment group received one dose of auranofin at the time of inoculation (1 mg/kg estimated body weight). On day 5, auranofin-treated chicken embryos were 100% protected against death (p = 0.0002) and had a significantly reduced parasite load as determined by histopathology, immunohistochemistry and by the number of parasites quantified by real-time PCR. These results reveal in vitro and in vivo activity of auranofin against T. gondii, suggesting that it may be an effective alternative treatment for toxoplasmosis.
Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair
Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.
2014-01-01
Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916
Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.
Gandhi, Shashank; Piacentino, Michael L; Vieceli, Felipe M; Bronner, Marianne E
2017-12-01
The advent of CRISPR/Cas9 has made genome editing possible in virtually any organism, including those not previously amenable to genetic manipulations. Here, we present an optimization of CRISPR/Cas9 for application to early avian embryos with improved efficiency via a three-fold strategy. First, we employed Cas9 protein flanked with two nuclear localization signal sequences for improved nuclear localization. Second, we used a modified guide RNA (gRNA) scaffold that obviates premature termination of transcription and unstable Cas9-gRNA interactions. Third, we used a chick-specific U6 promoter that yields 4-fold higher gRNA expression than the previously utilized human U6. For rapid screening of gRNAs for in vivo applications, we also generated a chicken fibroblast cell line that constitutively expresses Cas9. As proof of principle, we performed electroporation-based loss-of-function studies in the early chick embryo to knock out Pax7 and Sox10, key transcription factors with known functions in neural crest development. The results show that CRISPR/Cas9-mediated deletion causes loss of their respective proteins and transcripts, as well as predicted downstream targets. Taken together, the results reveal the utility of this optimized CRISPR/Cas9 method for targeted gene knockout in chicken embryos in a manner that is reproducible, robust and specific. Copyright © 2017 Elsevier Inc. All rights reserved.
The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*
You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao
2015-01-01
With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539
Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S
2014-10-01
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.
Tohma, Y; Yamashima, T; Yamashita, J
1992-04-01
Cadherins are a family of intercellular glycoproteins responsible for calcium-dependent cell adhesion and are currently divided into four types: epithelial (E), neuronal (N), placental (P), and vascular (V). Since cadherins are known to be indispensable for not only morphogenesis in the embryo but also maintenance of tumor cell nest, we examined the expression of E-cadherin in 31 meningiomas (11 syncytial, 12 transitional, 8 fibroblastic) and 3 arachnoid villi by immunoblot and immunohistochemical analyses. In the immunoblot analysis, E-cadherin was detected at the main band of Mr 124,000 in all of the arachnoid villi, as well as syncytial and transitional types of meningiomas, but not in the fibroblastic type. The immunohistochemical examination showed that E-cadherin was expressed at the cell borders of syncytial and transitional types, but the expression was absent in the fibroblastic type. Immunoelectron microscopy showed that E-cadherin was localized at the intermediate junctions in arachnoid villi, while it was detected diffusely at the cell surface in meningiomas. It is suggested from these data that the expression of E-cadherin might be closely related to the differentiation and organogenesis of meningioma cells.
Toxicity hazard of organophosphate insecticide malathion identified by in vitro methods.
Jira, David; Janousek, Stanislav; Pikula, Jiri; Vitula, Frantisek; Kejlova, Kristina
2012-01-01
Malathion is generally not classified as toxic. However, the toxicity seems to be species-dependent. Local and systemic toxicity data for birds are rare, but a decrease of wild bird densities in areas where malathion was applied was reported. Aim of the study was to extend knowledge on malathion toxicity on cellular and organ level and to evaluate embryotoxicity and genotoxicity for birds using the chick embryo model HET-CAM. Skin and eye irritation was determined using reconstructed skin and eye cornea tissues and the chorioallantoic membrane of chick embryo to simulate conjunctiva. Cytotoxicity in 3T3 Balb/c fibroblast culture was determined to estimate acute systemic toxicity. Chick embryo model was further employed to evaluate acute embryotoxicity for birds (mortality and genotoxicity). Data were analysed by means of general linear models. Malathion is not a skin and eye irritant. Cytotoxicity in vitro test provided LD50 value of 616 mg/kg suggesting higher toxic potential than is generally published based on in vivo tests on laboratory rodents. Embryotoxicity studies revealed dose and age dependent mortality of chick embryos. Genotoxicity was identified by means of micronucleus test in erythroid cells isolated from chorioallantois vascular system of chick embryos. Using in vitro alternative toxicological methods, a higher toxic potential of malathion was demonstrated than is generally declared. An increased health and environmental hazard may occur in areas with intensive agricultural production. The environmental consequences of delayed effects and embryotoxicity for bird populations in areas exposed to organophosphate insecticides, such as malathion, are obvious.
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.
Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I
2011-03-01
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.
FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium.
Sharma, Rahul; Beermann, Anke; Schröder, Reinhard
2013-09-01
Fibroblast growth factor (FGF) signalling plays a key role in early embryonic development and cell migration in vertebrates and in invertebrates. To gain novel insights into FGF signalling in an arthropod, we characterized the fgf1b ortholog in the beetle Tribolium that is not represented in the Drosophila genome. We found that FGF1b dependent signalling organizes the anterior to posterior axis of the early embryo. The loss of Tc-fgf1b function in Tribolium by RNA interference resulted in the reduction of the anteriormost extraembryonic fate, in an anterior shift of embryonic fate and in the loss or malformation of anterior embryonic structures. Without intact extraembryonic membranes the serosa and the amnion, Tc-fgf1b(RNAi) embryos did not undergo morphogenetic movements and remained posteriorly localized throughout embryogenesis. Only weakly affected embryos developed into a cuticle that show dorsally curved bodies with head defects and a dorsal opening. Except for the posterior dorsal amnion, the overall topology of the dorsal-ventral axis seemed unaffected. Moreover, FGF signalling was not required for the onset of mesoderm formation but for fine-tuning this tissue during later development. We also show that in affected embryos the dorsal epidermis was expanded and expressed Tc-dpp at a higher level. We conclude that in the Tribolium blastoderm embryo, FGF1-signalling organizes patterning along the AP-axis and also balances the expression level of Dpp in the dorsal epidermis, a tissue critically involved in dorsal closure. Copyright © 2013 Elsevier Inc. All rights reserved.
Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.
Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C
1990-12-01
We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.
Efficient TALEN-mediated gene knockout in livestock
Carlson, Daniel F.; Tan, Wenfang; Lillico, Simon G.; Stverakova, Dana; Proudfoot, Chris; Christian, Michelle; Voytas, Daniel F.; Long, Charles R.; Whitelaw, C. Bruce A.; Fahrenkrug, Scott C.
2012-01-01
Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications. PMID:23027955
Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line
2011-01-01
Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699
Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J
2010-06-01
As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.
Chevalier, Benoit; Puisségur, Marie-Pierre; Lebrigand, Kevin; Robbe-Sermesant, Karine; Bertero, Thomas; Lino Cardenas, Christian L.; Courcot, Elisabeth; Rios, Géraldine; Fourre, Sandra; Lo-Guidice, Jean-Marc; Marcet, Brice; Cardinaud, Bruno; Barbry, Pascal; Mari, Bernard
2009-01-01
Background Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-α, IL-1β and TGF-β. Methodology/Principal Findings MiR-155 was significantly induced by inflammatory cytokines TNF-α and IL-1β while it was down-regulated by TGF-β. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to “cell to cell signalling”, “cell morphology” and “cellular movement”. This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3′-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. Conclusions/Significance Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury. PMID:19701459
JPRS Report, Soviet Union, Kommunist, No. 10, July 1987.
1987-09-23
head of Embryo Transplant Laboratory: If we speak of restructuring, from the viewpoint of our problems we must above all firmly emphasize what is...What does 100 this mean in terms of practical work? This kolkhoz alone had 181 embryo transplants last year but was forced to reject about 200...We purchased such embryos at 1,500 rubles each. You can estimate how much has been lost due to the lack of a freezing system. I am raising this
Strojny, Barbara; Grodzik, Marta; Sawosz, Ewa; Winnicka, Anna; Kurantowicz, Natalia; Jaworski, Sławomir; Kutwin, Marta; Urbańska, Kaja; Hotowy, Anna; Wierzbicki, Mateusz; Chwalibog, André
2016-01-01
Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN). They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent. PMID:27736939
Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer.
Inoue, Kimiko; Ogonuki, Narumi; Miki, Hiromi; Hirose, Michiko; Noda, Shinichi; Kim, Jin-Moon; Aoki, Fugaku; Miyoshi, Hiroyuki; Ogura, Atsuo
2006-05-15
In general, cloning undifferentiated preimplantation embryos (blastomeres) or embryonic stem cells is more efficient than cloning differentiated somatic cells. Therefore, there has been an assumption that tissue-specific stem cells might serve as efficient donors for nuclear transfer because of the undifferentiated state of their genome. Here, we show that this is not the case with adult hematopoietic stem cells (HSCs). Although we have demonstrated for the first time that mouse HSCs can be cloned to generate offspring, the birth rates (0-0.7%) were lowest among the clones tested (cumulus, immature Sertoli and fibroblast cells). Only 6% of reconstructed embryos reached the morula or blastocyst stage in vitro (versus 46% for cumulus clones; P < 5 x 10(-10)). Transcription and gene expression analyses of HSC clone embryos revealed that they initiated zygotic gene activation (ZGA) at the appropriate timing, but failed to activate five out of six important embryonic genes examined, including Hdac1 (encoding histone deacetylase 1), a key regulator of subsequent ZGA. These results suggest that the HSC genome has less plasticity than we imagined, at least in terms of reprogrammability in the ooplasm after nuclear transfer.
Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming
2010-01-01
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277
Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming
2010-04-30
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.
Strojny, Barbara; Grodzik, Marta; Sawosz, Ewa; Winnicka, Anna; Kurantowicz, Natalia; Jaworski, Sławomir; Kutwin, Marta; Urbańska, Kaja; Hotowy, Anna; Wierzbicki, Mateusz; Chwalibog, André
2016-01-01
Curcumin has been studied broadly for its wide range of biological activities, including anticancer properties. The major problem with curcumin is its poor bioavailability, which can be improved by the addition of carriers, such as diamond nanoparticles (DN). They are carbon allotropes, and are therefore biocompatible and easily taken up by cells. DN are non-toxic and have antiangiogenic properties with potential applications in cancer therapy. Their large surface makes them promising compounds in a drug delivery system for bioactive agents, as DN create bio-complexes in a fast and simple process of self-organisation. We investigated the cytotoxicity of such bio-complexes against liver cancer cells and normal fibroblasts, revealing that conjugation of curcumin with DN significantly improves its activity. The experiment performed in a chicken embryo model demonstrated that neither curcumin nor DN nor bio-complexes affect embryo development, even though DN can form deposits in tissues. Preliminary results confirmed the applicability of DN as an efficient carrier of curcumin, which improves its performance against cancer cells in vitro, yet is not toxic to an organism, which makes the bio-complex a promising anticancer agent.
Kisary, J; Derzsy, D; Meszaros, J
1978-07-01
Serial transfer of the goose parvovirus strain B, causal agent of Derzsy's gosling disease, in cultured goose-embryo fibroblast (GEF) resulted in a mutant (designated as Bav) apathogenic for both goose embryos and susceptible goslings. Goose embryos inoculated with the 38th or higher passages of strain B survived the infection, although the virus replicated in their organs. Susceptible goslings survived challenge with the Bav strain without showing symptoms, and developed normally. Only 4.2% of gosling progeny of parents vaccinated twice with strain Bav died after challenge with the virulent strain B goose parvovirus compared with 95% of gosling progeny of unvaccinated parents. Progeny of vaccinated and unvaccinated geese were placed on a farm on which Derzsy's disease was present. During the first month of life mortality was 7.7% in the progeny of vaccinated geese compared with 59.8% in the progeny of the unvaccinated geese. At 8 weeks of age the mean weight of the vaccinated goslings was 20% greater than for the unvaccinated goslings. These results indicate that the attenuated apathogenic Bav mutant is suitable for the immunisation of layers to protect their progeny by passive immunisation against Derzsy's disease.
Chen, Shilong; Wang, Shao; Cheng, Xiaoxia; Xiao, Shifeng; Zhu, Xiaoli; Lin, Fengqiang; Wu, Nanyang; Wang, Jinxiang; Huang, Meiqing; Zheng, Min; Chen, Shaoying; Yu, Fusong
2016-09-01
Many mule duck and Cherry Valley duck flocks in different duck-producing regions of China have shown signs of an apparently new disease designated "short beak and dwarfism syndrome" (SBDS) since 2015. The disease is characterized by dyspraxia, weight loss, a protruding tongue, and high morbidity and low mortality rates. In order to characterize the etiological agent, a virus designated SBDSV M15 was isolated from allantoic fluid of dead embryos following serial passage in duck embryos. This virus causes a cytopathic effect in duck embryo fibroblast (DEF) cells. Using monoclonal antibody diagnostic assays, the SBDSV M15 isolate was positive for the antigen of goose parvovirus but not Muscovy duck parvovirus. A 348-bp (2604-2951) VP1gene fragment was amplified, and its sequence indicated that the virus was most closely related to a Hungarian GPV strain that was also isolated from mule ducks with SBDS disease. A similar disease was reproduced by inoculating birds with SBDSV M15. Together, these data indicate that SBDSV M15 is a GPV-related parvovirus causing SBDS disease and that it is divergent from classical GPV isolates.
[The Evans case and the right not to be forced to reproduce].
Alkorta Idiakez, Itziar
2006-01-01
The article analyses the ruling of the European Court of Human Rights, Evans v. United Kingdom, of March 7, 2006 (application no. 6339/05) from the perspective of the nature and the effects of a consent together with the conservation and disposal of cryopreserved embryos. Several prevailing normative models are studied in order to look at the disposal of embryos and to test its legal consistency. As a conclusion and basing it on the Evans case, there is a proposition to distinguish between the acts of disposal of spare embryos from IVF programs and the deposit of embryos as a way to prevent lack of fertility.
Can reptile embryos influence their own rates of heating and cooling?
Du, Wei-Guo; Tu, Ming-Chung; Radder, Rajkumar S; Shine, Richard
2013-01-01
Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars) cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo's effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.
Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels.
Kobayashi, Tetsu; Kim, HuiJung; Liu, Xiangde; Sugiura, Hisatoshi; Kohyama, Tadashi; Fang, Qiuhong; Wen, Fu-Qiang; Abe, Shinji; Wang, Xingqi; Atkinson, Jeffrey J; Shipley, James M; Senior, Robert M; Rennard, Stephen I
2014-06-01
Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts. Copyright © 2014 the American Physiological Society.
Automated image-based phenotypic analysis in zebrafish embryos
Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.
2009-01-01
Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725
Druyan, S; Levi, E
2012-01-01
Hypoxia during embryogenesis may induce changes in the development of some physiological regulatory systems, thereby causing permanent phenotypic changes in the embryo. Various levels of hypoxia at different time points during embryogenesis were found to affect both anatomical and physiological morphogenesis. These changes and adaptations depended on the timing, intensity, and duration of the hypoxic exposure and, moreover, were regulated by differential expression of developmentally important genes, mostly expressed in a stage- and time-dependent manner. Eggs incubated in a 17%-oxygen atmosphere for 12 h/d from E5 through E12 exhibited a clear and significant increase in the vascular area of the chorioallantoic membrane (CAM); an increase that was already significant within 12 h after the end of the 1st hypoxic exposures (E6). We used the combination of the genes, β-actin, RPLP0 and HPRT as a reference for gene expression profiling, in studying the expression levels of hypoxia-inducible factor 1-alpha (HIF1α), vascular endothelial growth factor alpha-2 (VEGF α 2), vascular endothelial growth factor receptor 2 (KDR), matrix metalloproteinase-2 (MMP2), and fibroblast growth factor 2 (FGF2), under normal and hypoxic conditions. In general, expression of all five investigated genes throughout the embryonic day of development had similar patterns of hypoxia-induced alterations. In E5.5 embryos, expression of HIF1α, MMP2, VEGFα2, and KDR was significantly higher in hypoxic embryos than in controls. In E6 embryos expression of HIF1α, VEGFα2, and FGF2 was significantly higher in hypoxic embryos than in controls. From E6.5 onward expression levels of the examined genes did not show any differences between hypoxic and control embryos. It can be concluded that in this experimental model, exposing broiler embryos to 17% O(2) from E5 to E7 induced significant angiogenesis, as expressed by the above genes. Further studies to examine whether this early exposure to hypoxic condition affects the chick's ability to withstand a post-hatch hypoxic environment is still required. Copyright © 2012 Elsevier B.V. All rights reserved.
Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells prog...
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo
Bazzi, Hisham; Anderson, Kathryn V.
2014-01-01
Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806
Sleeboom-Faulkner, Margaret
2010-01-01
This article explores the reasons for the lack of a broad discussion on bioethical regulation of human embryonic stem cell research (hESR) in Japan and asks why scientists experience difficulties accessing resources for hESR despite the acclaimed indifference of dominant Japanese culture to embryo research. The article shows how various social actors express their views on the embryo and oocyte donation in terms of dominant Japanese culture, foiled against what is regarded as Western culture. Second, it shows how the lack of concern with hESR should be understood in the context of public health policies and communications and bioethics decision making in Japan. Finally, it interprets the meaning of the embryo in the context of Japan as an aging modern welfare society, explaining how policymakers have come to emphasize the urgency of infertility problems over issues around abortion and embryonic life.
Zhao, Jianguo; Ross, Jason W.; Hao, Yanhong; Spate, Lee D.; Walters, Eric M.; Samuel, Melissa S.; Rieke, August; Murphy, Clifton N.; Prather, Randall S.
2009-01-01
The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns. PMID:19386991
Zhao, Jianguo; Ross, Jason W; Hao, Yanhong; Spate, Lee D; Walters, Eric M; Samuel, Melissa S; Rieke, August; Murphy, Clifton N; Prather, Randall S
2009-09-01
The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns.
How the embryo makes a limb: determination, polarity and identity
Tickle, Cheryll
2015-01-01
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity – wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions – the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity – determined by Pitx1 in hindlimbs – and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk – with Hox gene activity inhibiting the formation of forelimbs in the interlimb region – and also along the dorso-ventral axis. PMID:26249743
How the embryo makes a limb: determination, polarity and identity.
Tickle, Cheryll
2015-10-01
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis. © 2015 Anatomical Society.
Saha, Ambikaprasanna; Panda, Sudeepta K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K
2013-01-01
The availability of techniques for the vitrification of cloned blastocysts can improve their effective use. The present study compared the developmental competence of buffalo cloned embryos derived from adult (BAF), newborn (BNF) and fetal fibroblast (BFF) before and after vitrification. Despite similar cleavage rates among the three groups, the blastocyst rate was lower for BAF- than BNF- and BFF-derived embryos (30.2±2.2% vs 41.7±1.7% and 39.1±2.1%, respectively; P<0.01). The total cell number of BNF-derived blastocysts was significantly higher (P<0.01) than that of BFF-derived blastocysts, which, in turn, was higher (P<0.01) than that of BAF-derived blastocysts. Following transfer of vitrified-warmed blastocysts to recipients, no pregnancy was obtained with fresh (n=8) or vitrified-warmed (n=18) BAF-derived blastocysts, whereas transfer of fresh BNF- (n=53) and BFF-derived (n=32) blastocysts resulted in four and three pregnancies, respectively, which aborted within 90 days of gestation. The transfer of vitrified-warmed BNF-derived blastocysts (n=39) resulted in the live birth of a calf weighing 41kg, which is now 23 months old and has no apparent abnormality, whereas the transfer of vitrified-warmed BFF-derived blastocysts (n=18) resulted in one live birth of a calf that died within 6h. These results demonstrate that cloned buffalo embryos cryopreserved by vitrification can be used to obtain live offspring.
Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition
Hattori, Noriko; Carrino, David A.; Lauer, Mark E.; Vasanji, Amit; Wylie, James D.; Nelson, Courtney M.; Apte, Suneel S.
2011-01-01
The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5−/− mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5−/− cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcanhdf/+) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5−/− cells resulted from increased PCM versican content, we generated Adamts5−/−;Vcanhdf/+ mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5−/− mice. In Adamts5−/− fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates. PMID:21828051
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parola, A.H.; Porat, N.; Kiesow, L.A.
1993-01-01
Chicken embryo fibroblasts (CEF) exposed to a sinusoidally varying magnetic field (SVMF) (100 Hz, 700 microT, for 24 h) showed a remarkable rise of segmental rotational relaxation rate of adenosine deaminase (ADA, EC 3.5.4.4) as determined by multifrequency phase fluorometry. Pyrene-labeled, small subunit ADA was applied to cultured (normal) CEF, which have available and abundant ADA complexing protein (ADCP) on their plasma membranes. Sine-wave-modulated fluorometry of the pyrene yielded a profile of phase angle vs. modulation frequency. In SVMF-treated cells and in Rous-sarcoma-virus (RSV) transformed cells the differential phase values at low modulation frequencies of the excitation are remarkably reduced.more » This effect is magnetic rather than thermal, because the temperature was carefully controlled and monitored; nevertheless to further check this matter we studied CEF, infected by the RSV-Ts68 temperature-sensitive mutant (36 degrees C transformed, 41 degrees C revertant). When grown at 36 degrees C in the SVMF, cells did not show the slightest trend towards reversion, as would be expected had there been local heating. Concomitant with the increased segmental rotational relaxation rate of ADA, there was a decrease in fluorescence lifetime and a slight, yet significant, increase in membrane lipid microfluidity. These biophysical observations prompted us to examine the effect of SVMF on cell proliferation and ADA activity (a malignancy marker): higher rates of cell proliferation and reduced specific activity of ADA were observed.« less
Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.
German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro
2015-02-01
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Heparin-binding growth factor isolated from human prostatic extracts.
Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R
1988-01-01
Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.
Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice.
Beaudin, Anna E; Abarinov, Elena V; Malysheva, Olga; Perry, Cheryll A; Caudill, Marie; Stover, Patrick J
2012-01-01
Low dietary choline intake has been proposed to increase the risk of neural tube defects (NTDs) in human populations. Mice with reduced Shmt1 expression exhibit a higher frequency of NTDs when placed on a folate- and choline-deficient diet and may represent a model of human NTDs. The individual contribution of dietary folate and choline deficiency to NTD incidence in this mouse model is not known. To dissociate the effects of dietary folate and choline deficiency on Shmt1-related NTD sensitivity, we determined NTD incidence in embryos from Shmt1-null dams fed diets deficient in either folate or choline. Shmt1(+/+) and Shmt1(-/-) dams were maintained on a standard AIN93G diet (Dyets), an AIN93G diet lacking folate (FD), or an AIN93G diet lacking choline (CD). Virgin Shmt1(+/+) and Shmt1(-/-) dams were crossed with Shmt1(+/-) males, and embryos were examined for the presence of NTDs at embryonic day (E) 11.5 or E12.5. Exencephaly was observed only in Shmt1(-/-) embryos isolated from dams maintained on the FD diet (P = 0.004). Approximately 33% of Shmt1(-/-)embryos (n = 18) isolated from dams maintained on the FD diet exhibited exencephaly. NTDs were not observed in any embryos isolated from dams maintained on the CD (n = 100) or control (n = 152) diets or in any Shmt1(+/+) (n = 78) or Shmt1(+/-) embryos (n = 182). Maternal folate deficiency alone is sufficient to induce NTDs in response to embryonic Shmt1 disruption.
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-07-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-01-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037
Dai, Xiangpeng; Hao, Jie; Zhou, Qi
2009-08-01
Many strategies have been established to improve the efficiency of somatic cell nuclear transfer (SCNT), but relatively few focused on improving culture conditions. The effect of different culture media on preimplantation development of mouse nuclear transfer embryos was investigated. A modified sequential media method, named D media (M16/KSOM and CZB-EG/KSOM), was successfully established that significantly improves SCNT embryo development. Our result demonstrated that while lacking any adverse effect on in vivo fertilized embryos, the D media dramatically improves the blastocyst development of SCNT embryos compared with other commonly used media, including KSOM, M16, CZB, and alphaMEM. Specifically, the rate of blastocyst formation was 62.3% for D1 (M16/KSOM) versus 10-30% for the other media. An analysis of media components indicated that removing EDTA and glutamine from the media can be beneficial for early SCNT embryo development. Our results suggest that in vitro culture environment plays an important role in somatic cell reprogramming, and D media represent the most efficient culture method reported to date to support mouse SCNT early embryo development in vitro.
Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer.
Liu, Zhen; Cai, Yijun; Wang, Yan; Nie, Yanhong; Zhang, Chenchen; Xu, Yuting; Zhang, Xiaotong; Lu, Yong; Wang, Zhanyang; Poo, Muming; Sun, Qiang
2018-02-08
Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.
[Effect of colcemid on the radial spreading of fibroblasts in culture].
Ivanova, O Iu; Komm, S G; Vasil'ev, Iu M; Gel'fand, I M
1977-02-01
Effect of colcemide upon the spreading of mouse embryo fibroblast-like cells on the substrate was studied with the aid of time-lapse microcinematography and scanning electron microscopy. On the glass, colcemide did not prevent the transition of cells into a well-attached state, however, the time needed for this transition was seen considerably increased as compared with the control cultures. Intermediate stages of spreading on flat glass had the following abnormal features in colcemide-containing medium: a) shapes of cytoplasmic outgrowths formed by the cell were altered and their distribution along the cell border appeared less regular; b) partial detachments of the attached parts of cells occurred very frequently; c) the spreading of various parts of the cells was not correlated. Possible mechanisms of colcemide action on the cell spreading are discussed, and it is suggested that intracellular structures sensitive to colcemide are essential for coordination of reactions that occur in various parts of the cell in the course of spreading.
Guo, Rongxian; Li, Zhuoyang; Jiao, Yang; Geng, Shizhong; Pan, Zhiming; Chen, Xiang; Li, Qiuchun; Jiao, Xinan
2017-10-01
The pathogen Salmonella Pullorum is the causative agent of persistent systemic infection of poultry, leading to economic losses in developing countries due to morbidity, mortality and reduction in egg production. These infections may result in vertical transmission to eggs or progeny. Limited information is available regarding the mechanisms involved in the survival of Salmonella Pullorum in egg albumen and developing chicken embryos. Hence, we investigated the role of O-polysaccharide in the contamination of eggs and the colonization of chicken embryos. Compared with the wild-type strain, the isogenic waaL mutant exhibited an O-antigen-deficient rough phenotype, and increased sensitivity to egg albumen and chicken serum, as well as reduced adherence to DF-1 cells. Infection with Salmonella Pullorum lacking O-polysaccharide resulted in significantly reduced embryo lethality and bacterial colonization. These results suggest that O-polysaccharide is essential for Salmonella Pullorum colonization in eggs, both post-lay and developing embryos. The chicken embryo infection model could be used to characterize the interaction between Salmonella Pullorum and developing embryos, and it will also contribute to the development of more rational vaccines to protect laying hens and embryos.
White, K L; Bunch, T D; Mitalipov, S; Reed, W A
1999-01-01
Cloning mammalian species from cell lines of adult animals has been demonstrated. Aside from its importance for cloning multiple copies of genetically valuable livestock, cloning now has the potential to salvage endangered or even extinct species. The aim of this study was to investigate the effect of the bovine and domestic (Ovis aries) ovine oocyte cytoplasm on the nucleus of an established cell line from an endangered argali wild sheep (Ovis ammon) after nuclear transplantation. A fibroblast cell line was established from skin biopsies from an adult argali ram from the People's Republic of China. Early karyotype analysis of cells between 3-6 passages revealed a normal diploid chromosome number of 56. The argali karyotype consisted of 2 pairs of biarmed and 25 pairs of acrocentric autosomes, a large acrocentric and minute biarmed Y. Bovine ovaries were collected from a local abattoir, oocytes aspirated, and immediately placed in maturation medium consisting of M-199 containing 10% fetal bovine serum, 100 IU/mL penicillin, 100 microg/mL streptomycin, 0.5 microg/mL follicle-stimulating hormone (FSH), 5.0 microg/mL luetinizing hormone (LH) and 1.0 microg/mL estradiol. Ovine (O. aries) oocytes were collected at surgery 25 hours postonset of estrus from the oviducts of superovulated donor animals. All cultures were carried out at 39 degrees C in a humidified atmosphere of 5% CO2 and air. In vitro matured MII bovine oocytes were enucleated 16-20 hours after onset of maturation and ovine oocytes within 2-3 hours after collection. Enucleation was confirmed using Hoechst 33342 and UV light. The donor argali cells were synchronized in G0-G1 phase by culturing in Dulbecco's modified Eagle's medium (DMEM) plus 0.5% fetal bovine serum for 5-10 days. Fusion of nuclear donor cell to an enucleated oocyte (cytoplast) to produce nuclear transfer (NT) embryos was induced by 2 electric pulses of 1.4 kV/cm for 30 microsc. Fused NT embryos were activated after 24 hours of maturation by exposure to ionomycin (5 microM, 4 minutes) followed by incubation in 6-dimethylaminopurine (0.2 mM, 4 hours) and cultured in microdrops of CR1aa medium. From a total of 166 constructed nuclear donor cell-bovine cytoplasm NT couples, 128 (77%) successfully fused, 100 (78%) developed to 8-16 cell stage, and 2 (1.56%) developed to the blastocyst stage. The presence of argali nuclei in 8-16 cell stage embryo clones was confirmed after observation of Hoechst 33342 stained embryos under UV light and chromosome analysis of metaphase spreads from blastomeres. A total of 127 constructed nuclear donor cell-ovine cytoplasm NT couples were produced, 101 (80%) successfully fused, 81 (80% of fused) developed to the 16- to 32-cell stage. A total of 28 hybrid (argali-sheep) and 21 sheep-sheep NT embryos were transferred into 6 recipients and 4 recipients, respectively. Two of these recipients, 1 carrying argali-sheep and 1 sheep-sheep, were confirmed pregnant at 49 days by ultrasound, but both pregnancies terminated by 59 days. The results of this study demonstrate the possibility of using xenogenic oocytes to produce early-stage embryos and pregnancies from an established fibroblast cell line of an endangered species.
Yaundong, Lv; Dongyan, Wang; Lijun, Hao; Zhibo, Xiao
2014-01-01
Uncontrolled growth and lack of apoptosis in fibroblasts derived from a hypertrophic scar play an important role in pathology. The authors explore the contribution of S100A8 overexpression to the phenotype of cells and discuss how the downregulation of S100A8 could inhibit the growth and induce apoptosis of fibroblasts derived from hypertrophic scars. Fibroblasts were harvested from hypertrophic scar tissue in 8 patients treated with small interfering RNA against S100A8 in an in vitro culture. The effects of silencing S100A8 were analyzed by Western blot. Cellular proliferation and apoptosis were detected by flow cytometry. Fibroblasts treated with small interfering RNA targeting S100A8 showed a significant decrease in S100A8 protein 48 hours after treatment. They also proliferated significantly slower and showed more apoptosis than control fibroblasts. Inhibition of S100A8 resulted in significant growth reduction and apoptosis acceleration in fibroblasts derived from hypertrophic scars. Manipulation of S100A8 protein expression by gene silencing may represent something new in the treatment of hypertrophic scarring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Yuri, E-mail: saito-yu@bldon.med.osaka-u.ac.jp; Shibayama, Hirohiko; Tanaka, Hirokazu
Research highlights: {yields} Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. {yields} Biological mechanisms of AM functions have not been elucidated yet. {yields} PKC{theta} , PKC{delta} and p38MAPK were more phosphorylated in AM deficient MEF cells. {yields} AM may negatively regulates PKCs and p38MAPK in MEF cells. -- Abstract: Anamorsin (AM) plays crucial roles in hematopoiesis and embryogenesis. AM deficient (AM KO) mice die during late gestation; AM KO embryos are anemic and very small compared to wild type (WT) embryos. To determine which signaling pathways AM utilizes for these functions, we used murine embryonic fibroblast (MEF) cells generatedmore » from E-14.5 AM KO or WT embryos. Proliferation of AM KO MEF cells was markedly retarded, and PKC{theta}, PKC{delta}, and p38MAPK were more highly phosphorylated in AM KO MEF cells. Expression of cyclinD1, the target molecule of p38MAPK, was down-regulated in AM KO MEF cells. p38MAPK inhibitor as well as PKC inhibitor restored expression of cyclinD1 and cell growth in AM KO MEF cells. These data suggest that PKC{theta}, PKC{delta}, and p38MAPK activation lead to cell cycle retardation in AM KO MEF cells, and that AM may negatively regulate novel PKCs and p38MAPK in MEF cells.« less
Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K; Bagchi, Indrani C
2012-01-01
The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2(d/d)), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2(d/d) mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy.
Distribution of attenuated goose parvoviruses in Muscovy ducklings.
Takehara, K; Saitoh, M; Kiyono, M; Nakamura, M
1998-03-01
With a polymerase chain reaction (PCR) method, goose parvovirus (GPV) DNA was detected in Muscovy ducklings inoculated with attenuated GPV strains, IH and IHC. Strain IH that had been passed 20 times in Muscovy duck embryos could be detected in ducklings at 2- to 28-days after oral inoculation by PCR, however, a cell culture adapted strain IHC that had been passed 15 times in Muscovy duck embryos and then successively 50 times in Muscovy duck embryo fibroblasts could not be detected by 6 days postinoculation by the oral route, but via intramuscular inoculation the virus was detected from 6 dpi. With both strains Muscovy ducklings produced neutralizing antibodies against GPV, but GPV could be recovered from heart muscles even in birds that had high titer of neutralizing antibody. This means that GPV remains in birds for a long period under the presence of high titer of neutralizing antibody in the serum. Recovery of the virus was consistent with PCR results with one exception in which the bird had a neutralizing antibody titer of more than 100,000. After inoculation of these strains, no clinical signs were detected in ducklings. These results suggest that strains IH and IHC can be candidates for live attenuated vaccine for GPV infection.
Nakatsuji, N; Johnson, K E
1984-06-01
Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.
Soriano, Mercedes; Li, Hui; Jacquard, Cédric; Angenent, Gerco C.; Krochko, Joan; Offringa, Remko; Boutilier, Kim
2014-01-01
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport. PMID:24951481
Perlecan and syndecan-4 in uterine tissues during the early pregnancy in mice.
San Martin, S; Soto-Suazo, M; Zorn, T M T
2004-07-01
During early pregnancy in mice, there is recruitment of specific immune cells, remodeling of the endometrium, cell differentiation and synthesis of new molecules. Immunohistochemistry was used to determine the distribution of perlecan and syndecan-4 in the uteri before and after embryo implantation. During pre-implantation, perlecan was identified in basement membranes and extracellular spaces of the endometrial stroma. In contrast, expression of syndecan-4 was quite weak. In the peri-implantation period, perlecan remained in the basement membranes, and it was no longer observed in the stroma and it was identified in the embryonic cells. On day 4 of pregnancy, syndecan-4 increased in the fibroblasts of the subepithelial stroma. After implantation, syndecan-4 was pronounced in pre-decidual and mature decidual cells. The coordinate balance between the pre- and post-implantation periods suggests a role of these two molecules in the adaptive modification of the uterine microenvironment to receive and implant the embryo.
Warshawsky, D; Kerns, E; Bissell, M J; Calvin, M
1977-01-01
A common impurity of 7,12-dimethylbenz[alpha]anthracene was more effective than 7,12-dimethylbenz[alpha]anthracene in inducing morphological alterations, and in causing an increase in glucose uptake, DNA synthesis and cell number in chick-embryo fibroblasts. Gradual morphological transformation follows the increase in DNA synthesis after 2 days when either primary or secondary cultures are treated with 3 microgram of the compound/ml. The compound, isolated from 7,12-dimethylbenz[alpha]anthracene by alumina column chromatography, was characterized by t.l.c., mass spectroscopy, carbon-hydrogen analysis, u.v. and nuclear-magnetic-resonance spectroscopy and thermal decomposition. It was the photo-oxidation product of 7,12-dimethylbenz[alpha]anthracene, 7,12-epidioxy-7,12-dimethylbenz[alpha]anthracene. It is suggested that some of the biological effects observed after treatment of cultures with 7,12-dimethylbenz[alpha]anthracene may be due in part to the presence of the photo-oxidation product. PMID:407902
Gui, Tao; Zhang, Meiling; Chen, Jianwen; Zhang, Yuanliang; Zhou, Naru; Zhang, Yu; Tao, Jia; Sui, Liucai; Li, Yunsheng; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2012-08-01
A vector expressing human lysozyme (pBC1-hLYZ-GFP-Neo) was evaluated for gene and protein expression following liposome-mediated transformation of C-127 mouse mammary cancer cells. Cultures of G418-resistant clones were harvested 24-72 h after induction with prolactin, insulin and hydrocortisone. Target gene expression was analyzed by RT-PCR and Western blot and recombinant human lysozyme (rhLYZ) bacteriostatic activity was also evaluated. The hLYZ gene was correctly transcribed and translated in C-127 cells and hLYZ inhibited gram-positive bacterial growth, indicating the potential of this expression vector for development of a mammary gland bioreactor in goats. Guanzhong dairy goat skin fibroblasts transfected with pBC1-hLYZ-GFP-Neo were used to construct a goat embryo transgenically expressing rhLYZ by somatic nuclear transplantation with a blastocyst rate of 9.0 ± 2.8 %. These data establish the basis for cultivation of mastitis-resistant hLYZ transgenic goats.
ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2.
Kee, Anthony J; Bryce, Nicole S; Yang, Lingyan; Polishchuk, Elena; Schevzov, Galina; Weigert, Roberto; Polishchuk, Roman; Gunning, Peter W; Hardeman, Edna C
2017-10-01
We have identified novel actin filaments defined by tropomyosin Tpm4.2 at the ER. EM analysis of mouse embryo fibroblasts (MEFs) isolated from mice expressing a mutant Tpm4.2 (Tpm4 Plt53/Plt53 ), incapable of incorporating into actin filaments, revealed swollen ER structures compared with wild-type (WT) MEFs (Tpm4 +/+ ). ER-to-Golgi, but not Golgi-to-ER trafficking was altered in the Tpm4 Plt53/Plt53 MEFs following the transfection of the temperature sensitive ER-associated ts045-VSVg construct. Exogenous Tpm4.2 was able to rescue the ER-to-Golgi trafficking defect in the Tpm4 Plt53/Plt53 cells. The treatment of WT MEFs with the myosin II inhibitor, blebbistatin, blocked the Tpm4.2-dependent ER-to-Golgi trafficking. The lack of an effect on ER-to-Golgi trafficking following treatment of MEFs with CK666 indicates that branched Arp2/3-containing actin filaments are not involved in anterograde vesicle trafficking. We propose that unbranched, Tpm4.2-containing filaments have an important role in maintaining ER/Golgi structure and that these structures, in conjunction with myosin II motors, mediate ER-to-Golgi trafficking. © 2017 Wiley Periodicals, Inc.
The role of stromal cells in the persistence of chronic inflammation
Naylor, A J; Filer, A; Buckley, C D
2013-01-01
Inflammation is an unstable state; it either resolves or persists. Inflammatory reactions often have a propensity for specific anatomical sites. Why inflammation persists with specific tissue tropism remains obscure. Increasing evidence suggests that stromal cells which define tissue architecture are the key cells involved, and therefore make attractive therapeutic targets. Research on stromal cells in general and fibroblasts in particular has so far been hampered by a lack of fibroblast-specific cell markers. This review highlights our increasing understanding of the role of fibroblasts in inflammation, and suggests that these cells provide the cellular basis for site specific chronic inflammation. PMID:23199320
A zebrafish sox9 gene required for cartilage morphogenesis.
Yan, Yi-Lin; Miller, Craig T; Nissen, Robert M; Singer, Amy; Liu, Dong; Kirn, Anette; Draper, Bruce; Willoughby, John; Morcos, Paul A; Amsterdam, Adam; Chung, Bon-Chu; Westerfield, Monte; Haffter, Pascal; Hopkins, Nancy; Kimmel, Charles; Postlethwait, John H; Nissen, Robert
2002-11-01
The molecular genetic mechanisms of cartilage construction are incompletely understood. Zebrafish embryos homozygous for jellyfish (jef) mutations show craniofacial defects and lack cartilage elements of the neurocranium, pharyngeal arches, and pectoral girdle similar to humans with campomelic dysplasia. We show that two alleles of jef contain mutations in sox9a, one of two zebrafish orthologs of the human transcription factor SOX9. A mutation induced by ethyl nitrosourea changed a conserved nucleotide at a splice junction and severely reduced splicing of sox9a transcript. A retrovirus insertion into sox9a disrupted its DNA-binding domain. Inhibiting splicing of the sox9a transcript in wild-type embryos with splice site-directed morpholino antisense oligonucleotides produced a phenotype like jef mutant larvae, and caused sox9a transcript to accumulate in the nucleus; this accumulation can serve as an assay for the efficacy of a morpholino independent of phenotype. RNase-protection assays showed that in morpholino-injected animals, the percent of splicing inhibition decreased from 80% at 28 hours post fertilization to 45% by 4 days. Homozygous mutant embryos had greatly reduced quantities of col2a1 message, the major collagen of cartilage. Analysis of dlx2 expression showed that neural crest specification and migration was normal in jef (sox9a) embryos. Confocal images of living embryos stained with BODIPY-ceramide revealed at single-cell resolution the formation of precartilage condensations in mutant embryos. Besides the lack of overt cartilage differentiation, pharyngeal arch condensations in jef (sox9a) mutants lacked three specific morphogenetic behaviors: the stacking of chondrocytes into orderly arrays, the individuation of pharyngeal cartilage organs and the proper shaping of individual cartilages. Despite the severe reduction of cartilages, analysis of titin expression showed normal muscle patterning in jef (sox9a) mutants. Likewise, calcein labeling revealed that early bone formation was largely unaffected in jef (sox9a) mutants. These studies show that jef (sox9a) is essential for both morphogenesis of condensations and overt cartilage differentiation.
Photodynamic treatment of herpes simplex virus during its replicative cycle.
Khan, N C; Melnick, J L; Biswal, N
1977-01-01
Photodynamic treatment of herpes simplex virus type 1-infected hamster embryo fibroblasts (LSH strain) with a low concentration of proflavine (0.08 mug/10(5) cells per ml), a 3-9-diamine acridine dye, inhibited production not only of infectious progeny but also of virion particles. However, there was no appreciable inhibition of viral or cellular DNA synthesis, even when the infected cells were repeatedly exposed to this low concentration of dye and light during the replication cycle of the virus. It thus appears that photodynamic treatment of infected cells interferes with the processes involved in virus maturation. PMID:189063
Novelli, B; Otero Ferrer, F; Socorro, J A; Molina Domínguez, L
2018-06-01
Fertilized and unfertilized eggs and embryos of the longsnout seahorse Hippocampus reidi were collected at different stages of development and provided the basis for a description of morphological development from fertilization until release from the paternal pouch. Images of fertilized eggs, as well as their rupture after a few minutes in seawater are reported for the first time. The yolk sac transitioned from ovoid to spherical shape and was reabsorbed progressively until release. The tail began rising from the surface of the deuteroplasm while embryos were in the egg envelope. Embryos lacked a primordial fin fold and developed some species characteristics, such as rays in the dorsal fin, before resorption of the yolk sac. At release, juvenile seahorses were in an advanced stage of development even if they lacked important adult characteristics, such as ring plates and coronet. The tail was not prehensile in juveniles at release; a small caudal fin was present, although this fin is lost in adults. © 2018 The Fisheries Society of the British Isles.
Ponomareva, Larissa V.; Athippozhy, Antony; Thorson, Jon S.; Voss, S. Randal
2015-01-01
Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7 days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. PMID:26092703
Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum.
Watanabe, Masahito; Kobayashi, Mirina; Nagaya, Masaki; Matsunari, Hitomi; Nakano, Kazuaki; Maehara, Miki; Hayashida, Gota; Takayanagi, Shuko; Sakai, Rieko; Umeyama, Kazuhiro; Watanabe, Nobuyuki; Onodera, Masafumi; Nagashima, Hiroshi
2015-01-01
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.
A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis
Carmel, Michal Shoshkes; Kahane, Nitza; Oberman, Froma; Miloslavski, Rachel; Sela-Donenfeld, Dalit; Kalcheim, Chaya; Yisraeli, Joel K.
2015-01-01
Background VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos. Results and Conclusions Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity. PMID:26317350
Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su
2011-02-18
TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.
Characteristics of the uridine uptake system in normal and polyoma transformed hamster embryo cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemkin, J.A.
1973-01-01
The lability of the uridine uptake system in the normal and polyoma transformed hamster embryo fibroblast was studied. The major areas investigated were: the kinetic parameters of uridine transport, a comparison of changes in cellular ATP content by factors which modulate uridine uptake, and a comparison of the qualitative and quantitative effects of the same modulating agent on uridine transport, cell growth, and cellular ATP content. Uridine uptake into cells in vitro was examined using tritiated uridine as a tracer to measure the amount of uridine incorporated into the acid soluble and acid-insoluble fractions of the cells studied. The ATPmore » content of the cells was determined by the firefly bioluminescence method. It was found that the K/sub t/ for uridine uptake into the normal hamster embryo cell and two polyoma transformed hamster embryo cell lines was identical. However, the V/sub max/ for uridine transport was higher in both polyoma transformed cell lines. Furthermore, the K/sub t/ in both the normal and transformed cell cultured in serum-less or serum-containing media was identical, although the V/sub max/ was higher in the serum-stimulated cell in both the normal and transformed cell. Stimulation of the normal cell with adenosine produced a different K/sub t/ for uridine transport. Preliminary investigations have demonstrated that treatment of the polyoma transformed with adenosine also induces a different K/sub t/ (not shown). The K/sub i/ for phloretin inhibition in serum-less and serum-stimulated normal and polyoma transformed cells was found to be identical in each case.« less
George, Aman; Sharma, Ruchi; Singh, Karn P; Panda, Sudeepta K; Singla, Suresh K; Palta, Prabhat; Manik, Radhaysham; Chauhan, Manmohan S
2011-06-01
Here, we report the isolation and characterization of embryonic stem (ES) cell-like cells from cloned blastocysts, generated using fibroblasts derived from an adult buffalo (BAF). These nuclear transfer embryonic stem cell-like cells (NT-ES) grew in well-defined and dome-shaped colonies. The expression pattern of pluripotency marker genes was similar in both NT-ES and in vitro fertilization (IVF) embryo-derived embryonic stem cell-like cells (F-ES). Upon spontaneous differentiation via embryoid body formation, cells of different morphology were observed, among which predominant were endodermal-like and epithelial-like cell types. The ES cell-like cells could be passaged only mechanically and did not form colonies when plated as single cell suspension at different concentrations. When F-ES cell-like, NT-ES cell-like, and BAF cells of same genotype were used for hand-made cloning (HMC), no significant difference (p > 0.05) was observed in cleavage and blastocyst rate. Following transfer of HMC embryos to synchronized recipients, pregnancies were established only with F-ES cell-like and BAF cell-derived embryos, and one live calf was born from F-ES cell-like cells. Further, when transfected NT-ES cell-like cells and BAF were used for HMC, no significant difference (p > 0.05) was observed between cleavage and blastocyst rate. In conclusion, here we report for the first time the derivation of ES cell-like cells from an adult buffalo, and its genetic modification. We also report the birth of a live cloned calf from buffalo ES cell-like cells.
Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a
Kim, Gene H.; Samant, Sadhana A.; Earley, Judy U.; Svensson, Eric C.
2009-01-01
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development. PMID:19582148
Where does New Zealand stand on permitting research on human embryos?
Jones, D Gareth
2014-08-01
In many respects New Zealand has responded to the assisted reproductive technologies (ARTs) as positively as many comparable societies, such as Australia and the UK. Consequently, in vitro fertilisation (IVF) and pre-implantation genetic diagnosis (PGD) are widely available, as is non-commercial surrogacy utilising IVF. These developments have been made possible by the Human Assisted Reproductive Technology (HART) Act 2004, overseen by its two committees, the Advisory Committee on Assisted Reproductive Technology (ACART) and the Ethics Committee (ECART). However, New Zealand stands apart from many of these other societies by the lack of permission for scientists to conduct research using human embryos. There is no doubt this reflects strongly held viewpoints on the part of some that embryos should be protected and not exploited. Legitimate as this stance is, the resulting situation is problematic when IVF is already designated as an established procedure. This is because the development of IVF involved embryo research, and continuing improvements in procedures depend upon ongoing embryo research. While prohibition of research on human embryos gives the impression of protecting embryos, it fails to do this and also fails to enhance the health and wellbeing of children born using IVF. This situation will not be rectified until research is allowed on human embryos.
Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong
2015-01-01
Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893
Precision matters for position decoding in the early fly embryo
NASA Astrophysics Data System (ADS)
Petkova, Mariela D.; Tkacik, Gasper; Wieschaus, Eric F.; Bialek, William; Gregor, Thomas
Genetic networks can determine cell fates in multicellular organisms with precision that often reaches the physical limits of the system. However, it is unclear how the organism uses this precision and whether it has biological content. Here we address this question in the developing fly embryo, in which a genetic network of patterning genes reaches 1% precision in positioning cells along the embryo axis. The network consists of three interconnected layers: an input layer of maternal gradients, a processing layer of gap genes, and an output layer of pair-rule genes with seven-striped patterns. From measurements of gap gene protein expression in hundreds of wild-type embryos we construct a ``decoder'', which is a look-up table that determines cellular positions from the concentration means, variances and co-variances. When we apply the decoder to measurements in mutant embryos lacking various combinations of the maternal inputs, we predict quantitative changes in the output layer such as missing, altered or displaced stripes. We confirm these predictions by measuring pair-rule expression in the mutant embryos. Our results thereby show that the precision of the patterning network is biologically meaningful and a necessary feature for decoding cell positions in the early fly embryo.
Reversible neuronal and muscular toxicity of caffeine in developing vertebrates.
Rodriguez, Rufino S; Haugen, Rebecca; Rueber, Alexandra; Huang, Cheng-Chen
2014-06-01
This study utilizes zebrafish embryos to understand the cellular and molecular mechanisms of caffeine toxicity in developing vertebrate embryos. By using a high concentration of caffeine, we observed almost all the phenotypes that have been described in humans and/or in other animal models, including neural tube closure defect, jittery, touch insensitivity, and growth retardation as well as a drastic coiled body phenotype. Zebrafish embryos exposed to 5mM caffeine exhibited high frequent movement, 10 moves/min comparing with around 3 moves/min in control embryos, within half an hour post exposure (HPE). They later showed twitching, uncoordinated movement, and eventually severe body curvature by 6HPE. Exposure at later stages resulted in the same phenotypes but more posteriorly. Surprisingly, when caffeine was removed before 6HPE, the embryos were capable of recovering but still exhibited mild curvature and shorter bodies. Longer exposure caused irreversible body curvature and lethality. These results suggest that caffeine likely targets the neuro-muscular physiology in developing embryos. Immunohistochemistry revealed that the motorneurons in treated embryos developed shorter axons, abnormal branching, and excessive synaptic vesicles. Developing skeletal muscles also appeared smaller and lacked the well-defined boundaries seen in control embryos. Finally, caffeine increases the expression of genes involved in synaptic vesicle migration. In summary, our results provide molecular understanding of caffeine toxicity on developing vertebrate embryos. Published by Elsevier Inc.
Dmitrieva, E V
2015-01-01
Several series of experiments investigating the influence of dissolved oxygen concentrations on the growth rates and mortality in the embryogenesis of the common toad Bufo bufo were carried out. The experiments showed that, when the eggs develop singly, the lack of oxygen does not lead to an increase in mortality by the time of hatching and results only in a change in the dynamics of mortality: mortality occurs at an earlier stage of development than in the conditions of normal access to oxygen. Taking into account the combined effect of the density of eggs and the dissolved oxygen concentration, we increase the accuracy of analysis of the experimental results and improve the interpretation of the results. In the conditions of different initial density of eggs, the impact of the concentration of dissolved oxygen on mortality and rates of development of the common toad embryos is manifested in different ways. At high density, only a small percentage of embryos survives by the time of hatching, and the embryos are significantly behind in their development compared with the individuals that developed in normal oxygen conditions. The lack of oxygen dissolved in the water slows down the development of embryos of the common toad.
Cao, Huojun; Florez, Sergio; Amen, Melanie; Huynh, Tuong; Skobe, Ziedonis; Baldini, Antonio; Amendt, Brad A.
2012-01-01
Tbx1−/− mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1−/− embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1−/+/Pitx2−/+ double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients. PMID:20816801
Cao, Huojun; Florez, Sergio; Amen, Melanie; Huynh, Tuong; Skobe, Ziedonis; Baldini, Antonio; Amendt, Brad A
2010-11-15
Tbx1(-/-) mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1(-/-) embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1(-/+)/Pitx2(-/+) double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients. Copyright © 2010 Elsevier Inc. All rights reserved.
[Medical, ethical and legal issues in cryopreservation of human embryos].
Beca, Juan Pablo; Lecaros, Alberto; González, Patricio; Sanhueza, Pablo; Mandakovic, Borislava
2014-07-01
Embryo cryopreservation improves efficiency and security of assisted reproduction techniques. Nonetheless, it can be questionable, so it must be justified from technical, legal and ethical points of view. This article analyses these perspectives. Embryo cryopreservation maximizes the probability of pregnancy, avoids new ovary stimulations and reduces the occurrence of multiple gestations. There is consensus that the in vitro embryo deserves legal protection by its own, although not as a newborn. Very few countries prohibit embryo cryopreservation based on the legal duty to protect human life since fecundation. Those countries that allow it, privilege women's reproductive rights. In Chile and in Latin America, no laws have been promulgated to regulate human assisted reproduction. The moral status of the embryo depends on how it is considered. Some believe it is a potential person while others think it is just a group of cells, but all recognize that it requires some kind of respect and protection. There is lack of information about the number of frozen embryos and their final destination. As a conclusion the authors propose that women or couples should have the right to decide autonomously, while institutions ought to be clear in their regulations. And the legislation must establish the legal status of the embryo before its implantation, the couples' rights and the regulation of the embryo cryopreservation. Personal, institutional or legal decisions must assume a concept about the moral status of the human embryo and try to avoid their destruction or indefinite storage.
[Cloning: applications in humans 2. Ethical considerations].
de Wert, G M; Geraedts, J P
2001-05-01
Reproductive cloning in adults/children evokes unfavourable reactions. Direct objections are that cloning is unnatural, that it affects human dignity and violates the individual's right to genetic uniqueness. Consequential objections concern unjustified health risks for the progeny, unjustified psychosocial risks for the clone child and the risk of cloning for eugenetic purposes. There is consensus that reproductive cloning of existing persons is unjustify as yet because of the health risks for the offspring. Reproductive cloning of embryos is possible by means of nucleus transplantation and of embryo splitting. The ethical analysis of reproductive cloning of embryos depends on the purposes and applications. At least some of the moral objections against cloning of adults/children are not or not completely applicable to reproductive cloning of embryos. Conditions to be put to reproductive cloning of embryos are efficacy, safety and, at least for the time being, avoidance of asynchrony in transferring identical embryos. The ethical aspects of its application in the context of genetical reproductive techniques must be evaluated separately. Therapeutic cloning may be acceptable if alternatives are lacking.
[Cloning: applications in humans. II. Ethical considerations].
de Wert, G M; Geraedts, J P
2000-05-13
Reproductive cloning in adults/children evokes unfavourable reactions. Direct objections are that cloning is unnatural, that it affects human dignity and violates the individual's right to genetic uniqueness. Consequential objections concern unjustified health risks for the progeny, unjustified psychosocial risks for the clone child and the risk of cloning for eugenetic purposes. There is consensus that reproductive cloning of existing persons is unjustifiable as yet because of the health risks for the offspring. Reproductive cloning of embryos is possible by means of nucleus transplantation and of embryo splitting. The ethical analysis of reproductive cloning of embryos depends on the purposes and applications. At least some of the moral objections against cloning of adults/children are not or not completely applicable to reproductive cloning of embryos. Conditions to be put to reproductive cloning of embryos are efficacy, safety and, at least for the time being, avoidance of asynchrony in transferring identical embryos. The ethical aspects of its application in the context of genetical reproductive techniques must be evaluated separately. Therapeutic cloning may be acceptable if alternatives are lacking.
Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.
Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P
2015-01-01
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.
Patterning in time and space: HoxB cluster gene expression in the developing chick embryo
Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P
2015-01-01
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space. PMID:25602523
Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.
Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu
2010-09-01
The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.
2009-01-01
Summary Usually, fibroblasts are frozen in dimethyl sulphoxide (DMSO, 10% v/v) at a cooling rate of 1 C/min in a low-temperature (80 C) freezer (LTF) before storage in liquid nitrogen (LN2); however, a LTF is not always available. The purpose of the present study was to evaluate apoptosis and viability of bovine fibroblasts frozen in a LTF or conventional freezer (CF; 20 C) and their subsequent ability for development to blastocyst stage after fusion with enucleated bovine oocytes. Percentages of live cells frozen in LTF (49.5%) and CF (50.6%) were similar, but significantly less than non-frozen control (88%). In both CF and LTF, percentages of live apoptotic cells exposed to LN2 after freezing were lower (4% and 5%, respectively) as compared with unexposed cells (10% and 18%, respectively). Cells frozen in a CF had fewer cell doublings/24 h (0.45) and required more days (9.1) to reach 100% confluence at the first passage (P) after thawing and plating as compared with cells frozen in a LTF (0.96 and 4.0 days, respectively). Hypoploidy at P12 was higher than at P4 in cells frozen in either a CF (37.5% vs. 19.2%) or in a LTF (30.0% vs. 15.4%). A second-generation cryo-solution reduced the incidence of necrosis (29.4%) at 0 h after thawing as compared with that of a first generation cryo-solution (DMEM + DMSO, 60.2%). The percentage of apoptosis in live cells was affected by cooling rate (CF = 1.9% vs. LFT = 0.7%). Development of bovine cloned embryos to the blastocyst stage was not affected by cooling rate or freezer type. ?? 2009 Cambridge University Press.
Chen, Shun; Zhang, Wei; Zhou, Qin; Wang, Anqi; Sun, Lipei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun
2017-06-01
Duck plague virus (DPV) is a virus of the Herpesviridae family that leads to acute disease with a high mortality rate in ducks. Control of the disease contributes to the development of poultry breeding. Type III IFN family (IFN-λs) is a novel member of the IFN family, and goose IFN-λ (goIFN-λ) is a newly identified gene whose antiviral function has only been investigated to a limited extent. Here, the cross-species antiviral activity of goIFN-λ against DPV in duck embryo fibroblasts (DEFs) was studied. We found that pre-treatment with goIFN-λ greatly increased the expression of IFN-λ in both heterologous DEFs and homologous goose embryo fibroblasts (GEFs), while differentially inducing IFNα- and IFN-stimulated genes. Additionally, a positive self-regulatory feedback loop of goIFN-λ was blocked by a mouse anti-goIFN-λ polyclonal antibody, which was confirmed in both homologous GEFs and goose peripheral blood mononuclear cells (PBMCs). The suppression of the BAC-DPV-EGFP by goIFN-λ in DEFs was confirmed by fluorescence microscopy, flow cytometry (FCM) analysis, viral copies and titre detection, which can be rescued by mouse anti-goIFN-λ polyclonal antibody incubation. Finally, reporter gene assays indicated that the cross-species antiviral activity of goIFN-λ against BAC-DPV-EGFP is related to its positive self-regulatory feedback loop and subsequent ISG induction. Our data shed light on the fundamental mechanisms of goIFN-λ antiviral function in vitro and extend the considerable range of therapeutic applications in multiple-poultry disease.
NASA Astrophysics Data System (ADS)
Parola, Abraham H.; Porat, Nurith; Caiolfa, Valeria R.; Gill, David; Kiesow, Lutz A.; Weisman, Mathew; Nemschitz, S.; Yaron, Dahlia; Singer, Karen; Solomon, Ethel
1990-05-01
The role of membrane lipid-protein interactions in malignant cell transformation was examined with adenosine deaminase (ADA) as a representative membrane protein. ADA's activity changes dramatically in transformed cells and accordingly it is a malignancy marker. Yet, the mechanisms controlling its variable activity are unknown. We undertook the spectroscopic deciphering of its interactions with its lipidic environment in normal and malignant cells. ADA exists in two interconvertible forms, small (45 KD) and large (21OKD). The large form consists of two small catalytic subunits (55-ADA) and a dimeric complexing protein ADCP. The physiological role of ADCP was not known either. Our studies were carried out at three levels.: 1. Solution enzyme kinetics, 2. The interaction of 55-ADA with ADCP reconstituted in liposomes: Effect of cholesterol and 3. Multifrequency phase modulation spectrofluorometry of pyrene-labeled 55-ADA bound to ADCP on the membranes of normal and RSV or RSV Ts68 transformed chick embryo fibroblasts. We found: 1. ADCP has an allosteric regulatory role on 55-ADA, which may be of physiological relevance: It inhibits 55-ADA activity at low physiological adenosine concentrations but accelerates deamination at high substrate concentration. 2. When reconstituted in DMPC liposomes, it retains 55-ADA activity (in its absence the activity is lost) and upon rigidification with cholesterol, a three fold increase in 55-ADA activity is attained, contrary to ADCP's regulatory activity when free of lipids. 3. The reduced ADA activity in transformed chick embryo fibroblasts is associated with increased membrane lipid fluidity (reduced order parameter), reduced accessibility of ADCP and increase rotational dynamics of the complex. We thus obtained spectroscopic deciphering of the vertical motion of ADCP, controlled by lipid-protein interaction, resulting in variable activity of this malignancy marker.
Shimatsu, Yoshiki; Yamada, Kazuhiko; Horii, Wataru; Hirakata, Atsushi; Sakamoto, Yuji; Waki, Shiori; Sano, Junichi; Saitoh, Toshiki; Sahara, Hisashi; Shimizu, Akira; Yazawa, Hajime; Sachs, David H; Nunoya, Tetsuo
2013-01-01
Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice. © 2013 John Wiley & Sons A/S.
Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss
Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E
2005-01-01
The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077
Liu, Ben; Zhong, Mintao; Lun, Yongzhi; Wang, Xiaoli; Sun, Wenchang; Li, Xingyun; Ning, Anhong; Cao, Jing; Zhang, Wei; Liu, Lei; Huang, Min
2012-01-01
An apoptosis correlated molecule-protein Latcripin-1 of Lentinula edodes C(91-3)-was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C(91-3). According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3'-Full Rapid Amplification of cDNA Ends (RACE) and 5'-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE) and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05). There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05). At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins.
Liu, Ben; Zhong, Mintao; Lun, Yongzhi; Wang, Xiaoli; Sun, Wenchang; Li, Xingyun; Ning, Anhong; Cao, Jing; Zhang, Wei; Liu, Lei; Huang, Min
2012-01-01
An apoptosis correlated molecule—protein Latcripin-1 of Lentinula edodes C91–3—was expressed and characterized in Pichia pastoris GS115. The total RNA was obtained from Lentinula edodes C91–3. According to the transcriptome, the full-length gene of Latcripin-1 was isolated with 3′-Full Rapid Amplification of cDNA Ends (RACE) and 5′-Full RACE methods. The full-length gene was inserted into the secretory expression vector pPIC9K. The protein Latcripin-1 was expressed in Pichia pastoris GS115 and analyzed by Sodium Dodecylsulfonate Polyacrylate Gel Electrophoresis (SDS-PAGE) and Western blot. The Western blot showed that the protein was expressed successfully. The biological function of protein Latcripin-1 on A549 cells was studied with flow cytometry and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) method. The toxic effect of protein Latcripin-1 was detected with the MTT method by co-culturing the characterized protein with chick embryo fibroblasts. The MTT assay results showed that there was a great difference between protein Latcripin-1 groups and the control group (p < 0.05). There was no toxic effect of the characterized protein on chick embryo fibroblasts. The flow cytometry showed that there was a significant difference between the protein groups of interest and the control group according to apoptosis function (p < 0.05). At the same time, cell ultrastructure observed by transmission electron microscopy supported the results of flow cytometry. The work demonstrates that protein Latcripin-1 can induce apoptosis of human lung cancer cells A549 and brings new insights into and advantages to finding anti-tumor proteins. PMID:22754362
Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2016-09-01
Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia.
[Telomere lengthening by trichostatin A treatment in cloned pigs].
Xie, Bing-Teng; Ji, Guang-Zhen; Kong, Qing-Ran; Mao, Jian; Shi, Yong-Qian; Liu, Shi-Chao; Wu, Mei-Ling; Wang, Juan; Liu, Lin; Liu, Zhong-Hua
2012-12-01
Telomeres are repeated GC rich sequences at the end of chromosomes, and shorten with each cell division due to DNA end replication problem. Previously, reprogrammed somatic cells of cloned animals display variable telomere elongation. However, it was reported that the cloned animals including Dolly do not reset telomeres and show premature aging. In this study, we investigated telomere function in cloned or transgenic cloned pigs, including the cloned Northeast Min pigs, eGFP, Mx, and PGC1α transgenic cloned pigs, and found that the telomere lengths of cloned pigs were significantly shorter than the nuclear donor adult fibroblasts and age-matched noncloned pigs (P<0.05), indicating that nuclear reprogramming did not restore cellular age of donor cells after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA), an inhibitor of histone deacetylase, has proven to enhance the efficiency of nuclear reprogramming in several species. In order to test whether TSA also can effectively enhance reprogramming of telomeres, TSA (40 nmol/L) was used to treat porcine cloned embryos at 1-cell stage for 24 h. Consistent with previous reports, the developmental rate of SCNT embryos to the blastocyst stage was significantly increased compared with those of the control group (16.35% vs. 27.09%, 21.60% vs. 34.90%, P<0.05). Notably, the telomere length of cloned porcine blastocysts was also significantly elongated (P<0.05). Although TSA did not improve the cloning efficiency (1.3% vs. 1.7%, TSA vs. control), the telomere lengths of cloned pig-lets were significantly longer compared with those of the control group and the donor fibroblasts (P<0.05). In conclusion, telomeres have not been effectively restored by SCNT in pigs but TSA can effectively lengthen the telomere lengths of cloned pigs.
He, Jun; Tegen, Sarah B; Krawitz, Ariel R; Martin, G Steven; Luo, Kunxin
2003-08-15
The regulation of cell growth and differentiation by transforming growth factor-beta (TGF-beta) is mediated by the Smad proteins. In the nucleus, the Smad proteins are negatively regulated by two closely related nuclear proto-oncoproteins, Ski and SnoN. When overexpressed, Ski and SnoN induce oncogenic transformation of chicken embryo fibroblasts. However, the mechanism of transformation by Ski and SnoN has not been defined. We have previously reported that Ski and SnoN interact directly with Smad2, Smad3, and Smad4 and repress their ability to activate TGF-beta target genes through multiple mechanisms. Because Smad proteins are tumor suppressors, we hypothesized that the ability of Ski and SnoN to inactivate Smad function may be responsible for their transforming activity. Here, we show that the receptor regulated Smad proteins (Smad2 and Smad3) and common mediator Smad (Smad4) bind to different regions in Ski and SnoN. Mutation of both regions, but not each region alone, markedly impaired the ability of Ski and SnoN to repress TGF-beta-induced transcriptional activation and cell cycle arrest. Moreover, when expressed in chicken embryo fibroblasts, mutant Ski or SnoN defective in binding to the Smad proteins failed to induce oncogenic transformation. These results suggest that the ability of Ski and SnoN to repress the growth inhibitory function of the Smad proteins is required for their transforming activity. This may account for the resistance to TGF-beta-induced growth arrest in some human cancer cell lines that express high levels of Ski or SnoN.
Gilhare, Varsha Rani; Hirpurkar, S. D.; Kumar, Ashish; Naik, Surendra Kumar; Sahu, Tarini
2015-01-01
Aim: The objective of the present study was to examine pock forming ability of field strain and vaccine strain of fowl pox virus (FPV) in chorioallantoic membrane (CAM) of embryonated chicken eggs and its adaptation in chicken embryo fibroblast (CEF) cell culture. Materials and Methods: Dry scabs were collected from 25 affected birds in glycerin-saline and preserved at 4°C until processed. Virus was isolated in 10-day-old embryonated chicken eggs by dropped CAM method. The identity of the virus is confirmed by clinical findings of affected birds, pock morphology and histopathology of infected CAM. In addition one field isolate and vaccine strain of FPV was adapted to CEF cell culture. CEF cell culture was prepared from 9-day-old embryonated chicken eggs. Result: Clinical symptoms observed in affected birds include pox lesion on comb, wattle, eyelids and legs, no internal lesions were observed. All field isolates produced similar findings in CAM. Pocks produced by field isolates ranged from 3 mm to 5 mm at the third passage while initial passages edematous thickening and necrosis of CAM was observed. Pocks formed by lyophilized strain were ranges from 0.5 mm to 2.5 mm in diameter scattered all over the membrane at the first passage. Intra-cytoplasmic inclusion bodies are found on histopathology of CAM. At third passage level, the CEF inoculated with FPV showed characteristic cytopathic effect (CPE) included aggregation of cells, syncytia and plaque formation. Conclusion: FPV field isolates and vaccine strain produced distinct pock lesions on CAMs. Infected CAM showed intracytoplasmic inclusion bodies. The CEF inoculated with FPV field isolate as well as a vaccine strain showed characteristic CPE at third passage level. PMID:27047081
Gilhare, Varsha Rani; Hirpurkar, S D; Kumar, Ashish; Naik, Surendra Kumar; Sahu, Tarini
2015-03-01
The objective of the present study was to examine pock forming ability of field strain and vaccine strain of fowl pox virus (FPV) in chorioallantoic membrane (CAM) of embryonated chicken eggs and its adaptation in chicken embryo fibroblast (CEF) cell culture. Dry scabs were collected from 25 affected birds in glycerin-saline and preserved at 4°C until processed. Virus was isolated in 10-day-old embryonated chicken eggs by dropped CAM method. The identity of the virus is confirmed by clinical findings of affected birds, pock morphology and histopathology of infected CAM. In addition one field isolate and vaccine strain of FPV was adapted to CEF cell culture. CEF cell culture was prepared from 9-day-old embryonated chicken eggs. Clinical symptoms observed in affected birds include pox lesion on comb, wattle, eyelids and legs, no internal lesions were observed. All field isolates produced similar findings in CAM. Pocks produced by field isolates ranged from 3 mm to 5 mm at the third passage while initial passages edematous thickening and necrosis of CAM was observed. Pocks formed by lyophilized strain were ranges from 0.5 mm to 2.5 mm in diameter scattered all over the membrane at the first passage. Intra-cytoplasmic inclusion bodies are found on histopathology of CAM. At third passage level, the CEF inoculated with FPV showed characteristic cytopathic effect (CPE) included aggregation of cells, syncytia and plaque formation. FPV field isolates and vaccine strain produced distinct pock lesions on CAMs. Infected CAM showed intracytoplasmic inclusion bodies. The CEF inoculated with FPV field isolate as well as a vaccine strain showed characteristic CPE at third passage level.
Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer.
Feng, Xiujing; Cao, Shaoxian; Wang, Huili; Meng, Chunhua; Li, Jingxin; Jiang, Jin; Qian, Yong; Su, Lei; He, Qiang; Zhang, Qingxiao
2015-02-01
Production of human α-lactalbumin (hα-LA) transgenic cloned dairy goats has great potential in improving the nutritional value and perhaps increasing the yield of dairy goat milk. Here, a mammary-specific expression vector 5A, harboring goat β-lactoglobulin (βLG) promoter, the hα-LA gene, neo(r) and EGFP dual markers, was constructed. Then, it was effectively transfected into goat mammary epithelial cells (GMECs) and the expression of hα-LA was investigated. Both the hα-LA transcript and protein were detected in the transfected GMECs after the induction of hormonal signals. In addition, the 5A vector was introduced into dairy goat fetal fibroblasts (transfection efficiency ≈60-70%) to prepare competent transgenic donor cells. A total of 121 transgenic fibroblast clones were isolated by 96-well cell culture plates and screened with nested-PCR amplification and EGFP fluorescence. After being frozen for 8 months, the transgenic cells still showed high viabilities, verifying their ability as donor cells. Dairy goat cloned embryos were produced from these hα-LA transgenic donor cells by somatic cell nuclear transfer (SCNT), and the rates of fusion, cleavage, and the development to blastocyst stages were 81.8, 84.4, and 20.0%, respectively. A total of 726 reconstructed embryos derived from the transgenic cells were transferred to 74 recipients and pregnancy was confirmed at 90 days in 12 goats. Of six female kids born, two carried hα-LA and the hα-LA protein was detected in their milk. This study provides an effective system to prepare SCNT donor cells and transgenic animals for human recombinant proteins.
Akshey, Yogesh S; Malakar, Dhruba; De, Arun K; Jena, Manoj K; Garg, Shweta; Dutta, Rahul; Pawar, Sachin Kumar; Mukesh, Manisha
2010-10-01
Nuclear transfer is a very effective method for propagation of valuable, extinct, and endangered animals. Hand-made cloning (HMC) is an efficient alternative to the conventional micromanipulator-based technique in some domestic species. The present study was carried out for the selection of suitable somatic cells as a nuclear donor and development of an optimum culture system for in vitro culture of zona-free goat cloned embryos. Cleavage and blastocyst rates were observed 72.06 ± 2.94% and 0% for fresh cumulus cells, 81.95 ± 3.40% and 12.74 ± 2.12% for cultured cumulus cells, and 92.94 ± 0.91% and 23.78 ± 3.33% for fetal fibroblast cells, respectively. There was a significant (p < 0.05) increase in blastocyst production in goats when cultured on a flat surface (FS) (23.78 ± 3.33 %) than well of wells (WOW) (15.84 ± 2.12 %) and microdrops (MD) (0.7 ± 0.7%). Furthermore, cleavage and blastocyst production rates were significantly (p < 0.05) more in the WOW (15.84 ± 2.12%) than the MD (0.7 ± 0.7%) system. The quality of HMC blastocysts was studied by differential staining. Genetic similarity was confirmed by polymerase chain reaction (PCR)-based amplification of the second exon of the MHC class II DRB gene, which gave similar bands in electrophoresis (286 bp) both in cloned embryos and donor cells. In conclusion, the present study describes that the fetal fibroblast cell is a suitable candidate as nuclear donor, and the flat surface culture system is suitable for zona-free blastocyst development by the hand-made cloning technique in the goat.
Landolph, J R
1994-01-01
Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells. The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcinogenic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thioguanine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance, and might induce Al by base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induction of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical attack upon DNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7843085
Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro.
Zhang, Kun; Hansen, Peter J; Ealy, Alan D
2010-12-01
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.
Shimatsu, Yoshiki; Yamada, Kazuhiko; Horii, Wataru; Hirakata, Atsushi; Sakamoto, Yuji; Waki, Shiori; Sano, Junichi; Saitoh, Toshiki; Sahara, Hisashi; Shimizu, Akira; Yazawa, Hajime; Sachs, David H.; Nunoya, Tetsuo
2013-01-01
Background Nuclear transfer (NT) technologies offer a means for producing the genetically modified pigs necessary to develop swine models for mechanistic studies of disease processes as well as to serve as organ donors for xenotransplantation. Most previous studies have used commercial pigs as surrogates. Method and Results In this study, we established a cloning technique for miniature pigs by somatic cell nuclear transfer (SCNT) using Nippon Institute for Biological Science (NIBS) miniature pigs as surrogates. Moreover, utilizing this technique, we have successfully produced an α-1, 3-galactosyltransferase knockout (GalT-KO) miniature swine. Fibroblasts procured from a NIBS miniature pig fetus were injected into 1312 enucleated oocytes. The cloned embryos were transferred to 11 surrogates of which five successfully delivered 13 cloned offspring; the production efficiency was 1.0% (13/1312). In a second experiment, lung fibroblasts obtained from neonatal GalT-KO MGH miniature swine were used as donor cells and 1953 cloned embryos were transferred to 12 surrogates. Six cloned offspring were born from five surrogates, a production efficiency of 0.3% (6/1953). Conclusions These results demonstrate successful establishment of a miniature pig cloning technique by SCNT using NIBS miniature pigs as surrogates. To our knowledge, this is the first demonstration of successful production of GalT-KO miniature swine using miniature swine surrogates. This technique could help to ensure a stable supply of the cloned pigs through the use of miniature pig surrogates and could expand production in countries with limited space or in facilities with special regulations such as specific pathogen-free or good laboratory practice. PMID:23581451
Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.
Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin
2018-02-15
Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). With the increasing number of MCC diagnoses, there is a need to better understand the virus and its oncogenic potential. However, studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. To pinpoint the best candidate for developing an MCPyV infection animal model, we examined MCPyV's ability to infect dermal fibroblasts isolated from various established model animals. Of the animal cell types we tested, chimpanzee dermal fibroblasts were the only isolates that supported the full MCPyV infectious cycle. To overcome the infection blockade in the other model animals, we constructed chimeric viruses that achieved robust MCPyV entry and oncogene expression in rat fibroblasts. Our results suggest that the rat may serve as an in vivo model to study MCV oncogenesis. Copyright © 2018 American Society for Microbiology.
Joosen, Ronny; Cordewener, Jan; Supena, Ence Darmo Jaya; Vorst, Oscar; Lammers, Michiel; Maliepaard, Chris; Zeilmaker, Tieme; Miki, Brian; America, Twan; Custers, Jan; Boutilier, Kim
2007-01-01
Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning. An MDE culture cDNA array and two-dimensional gel electrophoresis and protein sequencing were used to compile global and specific expression profiles for the two types of MDE cultures. Analysis of the identities of 220 candidate embryo markers, as well as the identities of 32 sequenced embryo up-regulated protein spots, indicate general roles for protein synthesis, glycolysis, and ascorbate metabolism in the establishment of MDE development. A collection of 135 robust markers for the transition to MDE development was identified, a number of which may be coregulated at the gene and protein expression level. Comparison of the expression profiles of preglobular-stage conventional MDEs and suspensor-bearing MDEs identified genes whose differential expression may reflect improved histodifferentiation of suspensor-bearing embryos. This collection of early embryo-expressed genes and proteins serves as a starting point for future marker development and gene function studies aimed at understanding the molecular regulation of cell totipotency and early embryo development in plants. PMID:17384159
Occludin confers adhesiveness when expressed in fibroblasts.
Van Itallie, C M; Anderson, J M
1997-05-01
Occludin is an integral membrane protein specifically associated with tight junctions. Previous studies suggest it is likely to function in forming the intercellular seal. In the present study, we expressed occludin under an inducible promotor in occludin-null fibroblasts to determine whether this protein confers intercellular adhesion. When human occludin is stably expressed in NRK and Rat-1 fibroblasts, which lack endogenous occludin and tight junctions but do have well developed ZO-1-containing adherens-like junctions, occludin colocalizes with ZO-1 to points of cell-cell contact. In contrast, L-cell fibroblasts which lack cadherin-based adherens junctions, target neither ZO-1 nor occludin to sites of cell contact. Occludin-induced adhesion was next quantified using a suspended cell assay. In NRK and Rat-1 cells, occludin expression induces adhesion in the absence of calcium, thus independent of cadherin-cadherin contacts. In contrast, L-cells are nonadhesive in this assay and show no increase in adhesion after induction of occludin expression. Binding of an antibody to the first of the putative extracellular loops of occludin confirmed that this sequence was exposed on the cell surface, and synthetic peptides containing the amino acid sequence of this loop inhibit adhesion induced by occludin expression. These results suggest that the extracellular surface of occludin is directly involved in cell-cell adhesion and the ability to confer adhesiveness correlates with the ability to colocalize with its cytoplasmic binding protein, ZO-1.
Cryopreservation of animal oocytes and embryos: Current progress and future prospects.
Mandawala, A A; Harvey, S C; Roy, T K; Fowler, K E
2016-10-15
Cryopreservation describes techniques that permit freezing and subsequent warming of biological samples without loss of viability. The application of cryopreservation in assisted reproductive technology encompasses the freezing of gametes, embryos, and primordial germ cells. Whilst some protocols still rely on slow-freezing techniques, most now use vitrification, or ultra-rapid freezing, for both oocytes and embryos due to an associated decreased risk of damage caused by the lack of ice crystal formation, unlike in slow-freezing techniques. Vitrification has demonstrated its use in many applications, not only following IVF procedures in human embryology clinics but also following in vitro production of embryos in agriculturally important, or endangered animal species, before embryo transfer. Here, we review the various cryopreservation and vitrification technologies that are used in both humans and other animals and discuss the most recent innovations in vitrification with a particular emphasis on their applicability to animal embryology. Copyright © 2016 Elsevier Inc. All rights reserved.
Can Reptile Embryos Influence Their Own Rates of Heating and Cooling?
Du, Wei-Guo; Tu, Ming-Chung; Shine, Richard
2013-01-01
Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars) cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo’s effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling. PMID:23826200
Li, Xin; Young, Nathan M.; Tropp, Stephen; Hu, Diane; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.
2013-01-01
Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with replication-competent avian sarcoma virus expressing either FgfR2C278F, a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis. PMID:23906837
Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V
2013-02-28
Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.
Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres.
Fong, Chui-Yee; Richards, Mark; Bongso, Ariff
2006-08-01
Human embryonic stem cells (hESC) that differentiate into all three primordial germ layers have been established. Differentiation of these cells into desirable lineages offers hope for future transplantation therapies. Currently, hESC lines are derived from the inner cell mass (ICM) of blastocysts, leading to destruction of the embryo, and thus the process is ethically controversial. Successful attempts at deriving hESC lines from blastomeres without destruction of the ensuing embryo have not been reported. One or two blastomeres are routinely biopsied from 8-cell embryos for preimplantation genetic diagnosis. In this study it was therefore attempted to derive hESC lines from paired blastomeres. Of 66 pairs of 8-cell stage blastomeres, four pairs produced two morula and two blastocyst-like structures. When plated on mitomycin-C-treated mouse embryonic fibroblasts, one morula and one blastocyst-like structure separately produced small colonies containing hESC-like cells with prominent nucleoli and high nuclear-cytoplasmic ratios. When these colonies were detached and plated onto fresh feeders, there was no further colony formation or ensuing hESC lines. The results showed that it might not be possible to derive hESC lines directly from paired blastomeres. A minimum number of blastomeres in close contact with one another may be required to successfully generate an hESC line as blastomeres, like ICM and hESC cells, may be 'social' cells.
Nallasamy, Shanmugasundaram; Li, Quanxi; Bagchi, Milan K.; Bagchi, Indrani C.
2012-01-01
The mammalian Msx homeobox genes, Msx1 and Msx2, encode transcription factors that control organogenesis and tissue interactions during embryonic development. We observed overlapping expression of these factors in uterine epithelial and stromal compartments of pregnant mice prior to embryo implantation. Conditional ablation of both Msx1 and Msx2 in the uterus resulted in female infertility due to a failure in implantation. In these mutant mice (Msx1/2 d/d), the uterine epithelium exhibited persistent proliferative activity and failed to attach to the embryos. Gene expression profiling of uterine epithelium and stroma of Msx1/2 d/d mice revealed an elevated expression of several members of the Wnt gene family in the preimplantation uterus. Increased canonical Wnt signaling in the stromal cells activated β-catenin, stimulating the production of a subset of fibroblast growth factors (FGFs) in these cells. The secreted FGFs acted in a paracrine manner via the FGF receptors in the epithelium to promote epithelial proliferation, thereby preventing differentiation of this tissue and creating a non-receptive uterus refractory to implantation. Collectively, these findings delineate a unique signaling network, involving Msx1/2, Wnts, and FGFs, which operate in the uterus at the time of implantation to control the mesenchymal-epithelial dialogue critical for successful establishment of pregnancy. PMID:22383889
PED/PEA-15 Controls Fibroblast Motility and Wound Closure by ERK1/2-Dependent Mechanisms
Buonomo, Roberta; Giacco, Ferdinando; Vasaturo, Angela; Caserta, Sergio; Guido, Stefano; Pagliara, Valentina; Garbi, Corrado; Mansueto, Gelsomina; Cassese, Angela; Perruolo, Giuseppe; Oriente, Francesco; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro
2012-01-01
Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2. J. Cell. Physiol. 227: 2106–2116, 2012. © 2011 Wiley Periodicals, Inc. PMID:21780113
Galli, C; Colleoni, S; Duchi, R; Lagutina, I; Lazzari, G
2007-03-01
Development of assisted reproductive technologies in horses has been relatively slow compared to other domestic species, namely ruminants and pigs. The scarce availability of abattoir ovaries and the lack of interest from horse breeders and breed associations have been the main reasons for this delay. Progressively though, the technology of oocyte maturation in vitro has been established followed by the application of ICSI to achieve fertilization in vitro. Embryo culture was initially performed in vivo, in the mare oviduct or in the surrogate sheep oviduct, to achieve the highest embryo development, in the range of 18-36% of the fertilised oocytes. Subsequently, the parallel improvement of in vitro oocyte maturation conditions and embryo culture media has permitted high rates of embryo development from in vitro matured and in vitro cultured ICSI embryos, ranging from 5 to 10% in the early studies to up to 38% in the latest ones. From 2003, with the birth of the first cloned equids, the technology of somatic cell nuclear transfer has also become established due to improvement of the basic steps of embryo production in vitro, including cryopreservation. Pregnancy and foaling rates are still estimated based on a small number of in vitro produced equine embryos transferred to recipients. The largest set of data on non-surgical embryo transfer of in vitro produced embryos, from ICSI of both abattoir and in vitro-matured Ovum Pick Up (OPU) oocytes, and from somatic cell nuclear transfer, has been obtained in our laboratory. The data demonstrate that equine embryos produced by OPU and then cryopreserved can achieve up to 69% pregnancy rate with a foaling rate of 83%. These percentages are reduced to 11 and 23%, respectively, for cloned embryos. In conclusion, extensive evidence exists that in vitro matured equine oocytes can efficiently develop into viable embryos and offspring.
Blakqori, Gjon; Delhaye, Sophie; Habjan, Matthias; Blair, Carol D; Sánchez-Vargas, Irma; Olson, Ken E; Attarzadeh-Yazdi, Ghassem; Fragkoudis, Rennos; Kohl, Alain; Kalinke, Ulrich; Weiss, Siegfried; Michiels, Thomas; Staeheli, Peter; Weber, Friedemann
2007-05-01
La Crosse virus (LACV) is a mosquito-transmitted member of the Bunyaviridae family that causes severe encephalitis in children. For the LACV nonstructural protein NSs, previous overexpression studies with mammalian cells had suggested two different functions, namely induction of apoptosis and inhibition of RNA interference (RNAi). Here, we demonstrate that mosquito cells persistently infected with LACV do not undergo apoptosis and mount a specific RNAi response. Recombinant viruses that either express (rLACV) or lack (rLACVdelNSs) the NSs gene similarly persisted and were prone to the RNAi-mediated resistance to superinfection. Furthermore, in mosquito cells overexpressed LACV NSs was unable to inhibit RNAi against Semliki Forest virus. In mammalian cells, however, the rLACVdelNSs mutant virus strongly activated the antiviral type I interferon (IFN) system, whereas rLACV as well as overexpressed NSs suppressed IFN induction. Consequently, rLACVdelNSs was attenuated in IFN-competent mouse embryo fibroblasts and animals but not in systems lacking the type I IFN receptor. In situ analyses of mouse brains demonstrated that wild-type and mutant LACV mainly infect neuronal cells and that NSs is able to suppress IFN induction in the central nervous system. Thus, our data suggest little relevance of the NSs-induced apoptosis or RNAi inhibition for growth or pathogenesis of LACV in the mammalian host and indicate that NSs has no function in the insect vector. Since deletion of the viral NSs gene can be fully complemented by inactivation of the host's IFN system, we propose that the major biological function of NSs is suppression of the mammalian innate immune response.
TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.
Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R
2014-01-01
Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.
Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.
Xin, Jige; Yang, Huaqiang; Fan, Nana; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Zhao, Yu; Li, Xiaoping; Song, Jun; Yang, Yi; Zou, Qingjian; Yan, Quanmei; Zeng, Yangzhi; Lai, Liangxue
2013-01-01
Inbred mini-pigs are ideal organ donors for future human xenotransplantations because of their clear genetic background, high homozygosity, and high inbreeding endurance. In this study, we chose fibroblast cells from a highly inbred pig line called Banna mini-pig inbred line (BMI) as donor nuclei for nuclear transfer, combining with transcription activator-like effector nucleases (TALENs) and successfully generated α-1,3-galactosyltransferase (GGTA1) gene biallelic knockout (KO) pigs. To validate the efficiency of TALEN vectors, in vitro-transcribed TALEN mRNAs were microinjected into one-cell stage parthenogenetically activated porcine embryos. The efficiency of indel mutations at the GGTA1-targeting loci was as high as 73.1% (19/26) among the parthenogenetic blastocysts. TALENs were co-transfected into porcine fetal fibroblasts of BMI with a plasmid containing neomycin gene. The targeting efficiency reached 89.5% (187/209) among the survived cell clones after a 10 d selection. More remarkably 27.8% (58/209) of colonies were biallelic KO. Five fibroblast cell lines with biallelic KO were chosen as nuclear donors for somatic cell nuclear transfer (SCNT). Three miniature piglets with biallelic mutations of the GGTA1 gene were achieved. Gal epitopes on the surface of cells from all the three biallelic KO piglets were completely absent. The fibroblasts from the GGTA1 null piglets were more resistant to lysis by pooled complement-preserved normal human serum than those from wild-type pigs. These results indicate that a combination of TALENs technology with SCNT can generate biallelic KO pigs directly with high efficiency. The GGTA1 null piglets with inbred features created in this study can provide a new organ source for xenotransplantation research.
Cohen, Sivan; Tchorsh-Yutsis, Dalit; Aronovich, Anna; Tal, Orna; Eventov-Friedman, Smadar; Katchman, Helena; Klionsky, Yael; Shezen, Elias; Reisner, Yair
2010-05-27
We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.
Lee, Y L; Lee, K F; Xu, J S; Kwok, K L; Luk, J M; Lee, W M; Yeung, W S B
2003-02-01
Our previous results showed that embryotrophic factor-3 (ETF-3) from human oviductal cells increased the size and hatching rate of mouse blastocysts in vitro. The present study investigated the production of ETF-3 by an immortalized human oviductal cell line (OE-E6/E7) and the effects of ETF-3 on the mRNA expression of mouse embryos. The ETF-3 was purified from primary oviductal cell conditioned media using sequential liquid chromatographic systems, and antiserum against ETF-3 was raised. The ETF-3-supplemented Chatot-Ziomek-Bavister medium was used to culture Day 1 MF1 x BALB/c mouse embryos for 4 days. The ETF-3 treatment significantly enhanced the mouse embryo blastulation and hatching rate. The antiserum, at concentrations of 0.03-3%, abolished the embryotrophic effect of ETF-3. Positive ETF-3 immunoreactivity was detected in the primary oviductal cells, OE-E6/E7, and blastocysts derived from ETF-3 treatment. Vero cells (African Green Monkey kidney cell line), fibroblasts, and embryos cultured in control medium did not possess ETF-3 immunoreactivity. The mRNA expression patterns of the treated embryos were studied at the blastocyst stage by mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The DDRT-PCR showed that some of the mRNAs were differentially expressed after ETF-3 treatment. Twelve of the differentially expressed mRNAs that had high homology with cDNA sequences in the GenBank were selected for further characterization. The differential expression of seven of these mRNAs (ezrin, heat shock 70-kDa protein, cytochrome c oxidase subunit VIIa-L precursor, proteinase-activated receptor 2, eukaryotic translation initiation factor 2beta, cullin 1, and proliferating cell nuclear antigen) was confirmed by semiquantitative RT-PCR. In conclusion, immortalized oviductal cells produce ETF-3, which influences mRNA expression of mouse blastocyst.
Lazzari, Giovanna; Wrenzycki, Christine; Herrmann, Doris; Duchi, Roberto; Kruip, Theo; Niemann, Heiner; Galli, Cesare
2002-09-01
The large offspring syndrome (LOS) is observed in bovine and ovine offspring following transfer of in vitro-produced (IVP) or cloned embryos and is characterized by a multitude of pathologic changes, of which extended gestation length and increased birthweight are predominant features. In the present study, we used bovine blastocysts to analyze cellular parameters, i.e., the number of cells in Day 7 blastocysts and the size of Day 12 elongating blastocysts, and molecular parameters, i.e., the relative abundance of developmentally important genes: glucose transporter (Glut) 1, Glut-2, Glut-3, Glut-4, heat shock protein (Hsp) 70.1, Cu/Zn-superoxide dismutase (SOD), histone H4.1, basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF) I receptor (R), and IGFII-R. Some blastocysts were produced by in vitro maturation and fertilization followed by in vitro culture in synthetic oviduct fluid medium supplemented with BSA or human serum or by in vivo culture in the sheep oviduct. Other blastocysts were derived in vivo from the uterine horns of superovulated donors. The findings made in the early embryos were related to a representative number of calves obtained from each production system and from artificial insemination (AI). In vitro culture of bovine embryos in the presence of high concentrations of serum or BSA significantly increased the number of cells in Day 7 blastocysts, the size of blastocysts on Day 12, and the relative abundance of the transcripts for Hsp70.1, Cu/Zn-SOD, Glut-3, Glut-4, bFGF, and IGFI-R when compared with embryos from the in vivo production groups. Birthweights of calves derived from IVP embryos were significantly higher than those of calves derived from sheep oviduct culture, superovulation, or AI. The results support the hypothesis that persistence of early deviations in development is causally involved in the incidence of LOS, in particular in increased birthweights. The cellular and molecular parameters analyzed in this study can be considered early markers of LOS in cattle.
Neira, J A; Tainturier, D; Peña, M A; Martal, J
2010-03-15
This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.
Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.
Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J
2016-07-01
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching.
Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk
2013-01-01
Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P<0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.
Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki
2014-01-01
Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.
Yang, Jing; Zhang, Dan; Yu, Ying; Zhang, Run-Ju; Hu, Xiao-Ling; Huang, He-Feng; Lu, Yong-Chao
2015-01-01
Fibroblast growth factors (FGF1, FGF2 and FGF4) and fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3 and FGFR4) have been reported to be expressed in preimplantation embryos and be required for their development. However, the functions of these molecules in trophectoderm cells (TEs) that lead to the formation of the blastocyst as well as the underlying mechanism have not been elucidated. The present study has demonstrated for the first time that endogenous FGF2 secreted by TEs can regulate protein expression and distribution in TEs via the FGFR2-mediated activation of PKC and p38, which are important for the development of expanded blastocysts. This finding provides the first explanation for the long-observed phenomenon that only high concentrations of exogenous FGFs have effects on embryonic development, but in vivo the amount of endogenous FGFs are trace. Besides, the present results suggest that FGF2/FGFR2 may act in an autocrine fashion and activate the downstream PKC/p38 pathway in TEs during expanded blastocyst formation.
Antibacterial activity of head-to-head bis-benzimidazoles.
Moreira, Joao B; Mann, John; Neidle, Stephen; McHugh, Timothy D; Taylor, Peter W
2013-10-01
Symmetric bis-benzimidazole (BBZ) conjugates were profiled for activity against a range of Gram-positive and Gram-negative bacteria. para-Substituted ethoxy, amino and methoxy derivatives displayed potent bacteriostatic activity against meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, streptococci and Listeria monocytogenes. Moderate to good activity was also found against mycobacteria; two compounds were strongly active against logarithmic phase and hypoxia-induced latent Mycobacterium tuberculosis. No compound displayed significant activity towards Gram-negative bacteria. Only high concentrations of antibacterial BBZs showed cytotoxic effects towards fibroblasts, and the most active compound was well tolerated by zebrafish embryos. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Isolation and characterization of avipoxviruses from wild birds in Western Australia.
Annuar, B O; Mackenzie, J S; Lalor, P A
1983-01-01
Avipoxviruses were isolated from wart-like lesions in an Australian magpie (Gymnorhina tibicen) and a silvereye (Zosterops lateralis), and the poxvirus aetiology of wart-like lesions in a magpie-lark (Grallina cyanoleuca) was confirmed. The three viruses produced typical pock lesions on the chorioallantoic membrane of embryonated eggs and were able to replicate in trypsin-dispersed chick embryo fibroblast cultures but not confluent monolayer cultures. Pock neutralization and immunodiffusion studies showed that the three wild bird isolates were distinct from fowlpox, although antigenically closer to fowlpox than pigeonpox. The magpie and silvereye isolates were more closely related to each other than to the magpie-lark isolate.
Huang, Bo; Li, Zhou; Ren, Xinling; Ai, Jihui; Zhu, Lixia; Jin, Lei
2017-06-01
The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.
Kulkeaw, Kasem; Inoue, Tomoko; Ishitani, Tohru; Nakanishi, Yoichi; Zon, Leonard I; Sugiyama, Daisuke
2018-02-01
Zebrafish embryos are useful to study haematopoietic gene function in vertebrates, although lack of antibodies to zebrafish proteins has limited the purification of specific cell populations. Here, we purified primitive zebrafish erythrocytes using 1, 5-bis{[2-(di-methylamino)ethyl]amino}-4, 8-dihydroxyanthracene-9, 10-dione (DRAQ5 TM ), a DNA-staining fluorescent dye. At 48-h post-fertilization, we sorted small-sized cells from embryos using forward scatter and found that they consisted of DRAQ5 high and DRAQ5 low populations. DRAQ5 high cells contained haemoglobin, lacked myeloperoxidase activity and expressed high levels of embryonic globin (hbae3 and hbbe1.1) mRNA, all characteristics of primitive erythrocytes. Following DRAQ5 TM analysis of gata1:dsRed transgenic embryos, we purified primitive DRAQ5 high dsRed+ erythrocytes from haematopoietic progenitor cells. Using this method, we identified docking protein 2 (Dok2) as functioning in differentiation of primitive erythrocytes. We conclude that DRAQ5 TM -based flow cytometry enables purification of primitive zebrafish erythrocytes. © 2017 John Wiley & Sons Ltd.
Chandrakanthan, Vashe; Li, Aiqing; Chami, Omar; O'Neill, Christopher
2006-11-21
In the mouse, embryo culture results in a characteristic phenotype of retarded embryo preimplantation development and reduced numbers of cells within embryos. The expression of TRP53 is central to the regulation of the cell's capacity to proliferate and survive. In this study we found that Trp53 mRNA is expressed throughout the preimplantation stage of development. Levels of TRP53 protein expression were low during the cleavage stages and increased at the morula and blastocyst stages in B6 embryos collected from the reproductive tract. Embryos collected at the zygote stage and cultured for 96 h also showed low levels of TRP53 expression at precompaction stages. There were higher levels of TRP53 in cultured morula and the level in cultured blastocysts was clearly increased above blastocysts collected directly from the uterus. Immunolocalization of TRP53 showed that its increased expression in cultured blastocysts corresponded with a marked accumulation of TRP53 within the nuclei of embryonic cells. This pattern of expression was enhanced in embryos produced by in vitro fertilization and subjected to culture. The TRP53 was transcriptionally active since culture also induced increased expression of Bax, yet this did not occur in embryos lacking Trp53 (Trp53-/-). The rate of development of Trp53-/- zygotes to the blastocyst stage was not different to wildtype controls when embryos were cultured in groups of ten but was significantly faster when cultured individually. The results show that zygote culture resulted in the accumulation of transcription activity of TRP53 in the resulting blastocysts. This accounts for the adverse effects of culture of embryos individually, but does not appear to be the sole cause of the retarded preimplantation stage growth phenotype associated with culture in vitro.
Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.
Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K
2015-05-20
In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.
Development of a new live attenuated mumps virus vaccine in human diploid cells.
Sassani, A; Mirchamsy, H; Shafyi, A; Ahourai, P; Razavi, J; Gholami, M R; Mohammadi, A; Ezzi, A; Rahmani, M; Fateh, G
1991-07-01
A new live attenuated mumps vaccine was developed in human diploid cells. The S-12 virus was isolated from a 10-year-old girl showing typical symptoms of mumps infection, the diagnosis was confirmed by a pediatrician. The virus was isolated in green monkey kidney cells, without passage in chick embryo cavity or chick embryo fibroblasts. Attenuation of the wild virus was performed by serial passages in human diploid cells (MRC-5). The attenuated virus was characterized by identity tests, as well as by a reduction in plaque size, as marker tests. The virus was free from adventitious agents and safe for laboratory animals as well as for monkeys. The reactogenicity and immunogenicity of the S-12 virus for man was investigated by administration of a monovalent vaccine to 20 seronegative adult male volunteers and 30 children aged 1 to 5 years without history of mumps infection or vaccination. Seroconversion was obtained in 95% of the vaccinees. The new vaccine has the advantage of not requiring specific pathogen-free eggs, and being free from avian proteins and therefore can be used in sensitized patients.
Alternative sources of pluripotency: science, ethics, and stem cells.
Kastenberg, Zachary J; Odorico, Jon S
2008-07-01
Despite many advances in human embryonic stem cell (hESC) technology the ethical dilemma involving the destruction of a human embryo is one factor that has limited the development of hESC based clinical therapies. Two recent reports describing the production of pluripotent stem cells following the in vitro reprogramming of human somatic cells with certain defined factors illustrate one potential method of bypassing the ethical debate surrounding hESCs (Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec;318(5858):1917-1920; Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov;131(5): 861-872.). Other alternative methods include nuclear transfer, altered nuclear transfer, and parthenogenesis; each with its own set of advantages and disadvantages. This review discusses recent advances in these technologies with specific focus on the issues of embryo destruction, oocyte recovery, and the potential of each technology to produce large scale, patient specific cell transplantation therapies that would require little or no immunosuppression.
Chigurupati, Srinivasulu; Mughal, Mohamed R.; Okun, Eitan; Das, Soumen; Kumar, Amit; McCaffery, Michael; Seal, Sudipta; Mattson, Mark P.
2012-01-01
Rapid and effective wound healing requires a coordinated cellular response involving fibroblasts, keratinocytes and vascular endothelial cells (VECs). Impaired wound healing can result in multiple adverse health outcomes and, although antibiotics can forestall infection, treatments that accelerate wound healing are lacking. We now report that topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs. The Nanoceria penetrated into the wound tissue and reduced oxidative damage to cellular membranes and proteins, suggesting a therapeutic potential for topical treatment of wounds with antioxidant nanoparticles. PMID:23266256
Ponomareva, Larissa V; Athippozhy, Antony; Thorson, Jon S; Voss, S Randal
2015-12-01
Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.
Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies
2014-08-01
The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation
Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.
2014-01-01
As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547
We wanted to choose us: how embryo donors choose recipients for their surplus embryos.
Goedeke, S; Daniels, K
2018-04-01
This study aimed to explore factors affecting donors' choice of recipients for their surplus embryos in the New Zealand context of conditional, known donations. Internationally, embryo donation has a low uptake in spite of large numbers of cryopreserved embryos. Possible reasons include a lack of knowledge about and concern for the future welfare of the resultant offspring. In New Zealand, donors and recipients meet prior to donation and legislation supports disclosure and access to genetic knowledge. Twenty-two embryo donors (10 couples, two individuals) were interviewed between March 2012 and February 2013 about their experiences of donation and factors affecting their donation. Interview data were analysed thematically. In the interests of the welfare of the child resulting from donation, donors were invested in choosing recipients who would make suitable parents. They attempted to choose recipients similar to themselves, as well as those that they trusted to disclose the manner of conception and facilitate agreed-upon information exchange and contact. The interest of donors in ensuring offspring well-being may lend support to conditional forms of open donation, allowing for assessment of recipients' suitability to parent, and for negotiation around information exchange and contact.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-09-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology.
Fossil embryos from the Middle and Late Cambrian period of Hunan, south China.
Dong, Xi-Ping; Donoghue, Philip C J; Cheng, Hong; Liu, Jian-Bo
2004-01-15
Comparative embryology is integral to uncovering the pattern and process of metazoan phylogeny, but it relies on the assumption that life histories of living taxa are representative of their antecedents. Fossil embryos provide a crucial test of this assumption and, potentially, insight into the evolution of development, but because discoveries so far lack phylogenetic constraint, their significance is moot. Here we describe a collection of embryos from the Middle and Late Cambrian period (500 million years ago) of Hunan, south China, that preserves stages of development from cleavage to the pre-hatching embryo of a direct-developing animal comparable to living Scalidophora (phyla Priapulida, Kinorhyncha, Loricifera). The latest-stage embryos show affinity to the Lower Cambrian embryo Markuelia, whose life-history strategy contrasts both with the primitive condition inferred for metazoan phyla and with many proposed hypotheses of affinity, all of which prescribe indirect development. Phylogenetic tests based on these embryological data suggest a stem Scalidophora affinity. These discoveries corroborate, rather than contradict, the predictions of comparative embryology, providing direct historical support for the view that the life-history strategies of living taxa are representative of their stem lineages.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-01-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology. PMID:19895102
Egg accumulation with 3D embryos provides insight into the life history of a pterosaur.
Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Cheng, Xin; Wang, Qiang; Ma, Yingxia; Paidoula, Yahefujiang; Rodrigues, Taissa; Chen, He; Sayão, Juliana M; Li, Ning; Zhang, Jialiang; Bantim, Renan A M; Meng, Xi; Zhang, Xinjun; Qiu, Rui; Zhou, Zhonghe
2017-12-01
Fossil eggs and embryos that provide unique information about the reproduction and early growth of vertebrates are exceedingly rare, particularly for pterosaurs. Here we report on hundreds of three-dimensional (3D) eggs of the species Hamipterus tianshanensis from a Lower Cretaceous site in China, 16 of which contain embryonic remains. Computed tomography scanning, osteohistology, and micropreparation reveal that some bones lack extensive ossification in potentially late-term embryos, suggesting that hatchlings might have been flightless and less precocious than previously assumed. The geological context, including at least four levels with embryos and eggs, indicates that this deposit was formed by a rare combination of events, with storms acting on a nesting ground. This discovery supports colonial nesting behavior and potential nesting site fidelity in the Pterosauria. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Acuna, J R; de Pena, M
1991-09-01
Coffee plants were regenerated from protoplasts isolated from embryogenic cell suspension cultures derived from somatic embryos of Coffea arabica L. cv. caturra. Yields of viable protoplasts ranged from 1×10(5) to 6×10(5) protoplast/g fresh weight. Protoplast preparations usually contained no contaminating cells, and when present, the number of cells never exceeded 0.1% of the total. Plating efficiencies of protoplast ranged from 1 to 10%. Embryogenic protocolonies obtained after several subcultures in a medium supplemented with 0.5 mg/l each of benzylaminopurine, 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid, were transferred to a medium lacking plant growth regulators. Well differentiated embryos were formed in selected protocolonies that contained many embryos-like structures. Approximately 70% of the somatic embryos developed into green rooted plantlets which were succesfully transferred to vessels containing sterilized scoria. Plants grown for two months in scoria were finally transferred to greenhouse.
Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan
2013-01-01
Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.
Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.
2016-01-01
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296
Maximova, Siela N; Florez, Sergio; Shen, Xiangling; Niemenak, Nicolas; Zhang, Yufan; Curtis, Wayne; Guiltinan, Mark J
2014-07-16
Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene transcript levels associated with critical processes during seed development are consistent with the fact that somatic embryos do not fully develop the large storage cotyledons found in zygotic embryos. These results provide insight towards design of improved protocols for cacao somatic embryogenesis.
2014-01-01
Background Theobroma cacao L. is a tropical fruit tree, the seeds of which are used to create chocolate. In vitro somatic embryogenesis (SE) of cacao is a propagation system useful for rapid mass-multiplication to accelerate breeding programs and to provide plants directly to farmers. Two major limitations of cacao SE remain: the efficiency of embryo production is highly genotype dependent and the lack of full cotyledon development results in low embryo to plant conversion rates. With the goal to better understand SE development and to improve the efficiency of SE conversion we examined gene expression differences between zygotic and somatic embryos using a whole genome microarray. Results The expression of 28,752 genes was determined at 4 developmental time points during zygotic embryogenesis (ZE) and 2 time points during cacao somatic embryogenesis (SE). Within the ZE time course, 10,288 differentially expressed genes were enriched for functions related to responses to abiotic and biotic stimulus, metabolic and cellular processes. A comparison ZE and SE expression profiles identified 10,175 differentially expressed genes. Many TF genes, putatively involved in ethylene metabolism and response, were more strongly expressed in SEs as compared to ZEs. Expression levels of genes involved in fatty acid metabolism, flavonoid biosynthesis and seed storage protein genes were also differentially expressed in the two types of embryos. Conclusions Large numbers of genes were differentially regulated during various stages of both ZE and SE development in cacao. The relatively higher expression of ethylene and flavonoid related genes during SE suggests that the developing tissues may be experiencing high levels of stress during SE maturation caused by the in vitro environment. The expression of genes involved in the synthesis of auxin, polyunsaturated fatty acids and secondary metabolites was higher in SEs relative to ZEs despite lack of lipid and metabolite accumulation. These differences in gene transcript levels associated with critical processes during seed development are consistent with the fact that somatic embryos do not fully develop the large storage cotyledons found in zygotic embryos. These results provide insight towards design of improved protocols for cacao somatic embryogenesis. PMID:25030026
Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K
2016-10-01
Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Nugitrangson, Pongvit; Puthong, Songchan; Iempridee, Tawin; Pimtong, Wittaya; Chanchao, Chanpen
2015-01-01
Tetragonula laeviceps cerumen was sequentially extracted with 80% (v/v) methanol, dichloromethane, and hexane and also in the reverse order. By the MTT assay and the respective 50% inhibition concentration value, the most active fraction was further purified to apparent homogeneity by bioassay-guided silica gel column chromatography. α-Mangostin was identified by high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses. It had a potent cytotoxicity against the BT474, Chago, Hep-G2, KATO-III, and SW620 cell lines (IC50 values of 1.22 ± 0.03, 2.25 ± 0.20, 0.94 ± 0.01, 0.88 ± 0.16, and 1.50 ± 0.39 µmol/L, respectively). The in vitro cytotoxicity of α-mangostin against the five human cancer cell lines and primary fibroblasts was further characterized by real-time impedance-based analysis. Interestingly, α-mangostin was more cytotoxic against the cancer-derived cell lines than against the primary fibroblasts. Later, the migration assay was performed by continuously measuring the attachment of cells to the plate electrodes at the bottom of the transwell membrane. The combined caspase-3 and -7 activities were assayed by the Caspase-Glo® 3/7 kit. It showed that the cytotoxic mechanism involved caspase-independent apoptosis, while at low (non-toxic) concentrations α-mangostin did not significantly alter cell migration. Furthermore, the in vivo cytotoxicity and angiogenesis were determined by alkaline phosphatase staining in zebrafish embryos along with monitoring changes in the transcript expression level of two genes involved in angiogenesis (vegfaa and vegfr2) by quantitative real-time reverse transcriptase- polymerase chain reaction. It was found that the in vivo cytotoxicity of α-mangostin against zebrafish embryos had a 50% lethal concentration of 9.4 µM, but no anti-angiogenic properties were observed in zebrafish embryos at 9 and 12 µM even though it downregulated the expression of vegfaa and vegfr2 transcripts. Thus, α-mangostin is a major active compound with a potential anticancer activity in T. laeviceps cerumen in Thailand. PMID:26290139
Nugitrangson, Pongvit; Puthong, Songchan; Iempridee, Tawin; Pimtong, Wittaya; Pornpakakul, Surachai; Chanchao, Chanpen
2016-01-01
Tetragonula laeviceps cerumen was sequentially extracted with 80% (v/v) methanol, dichloromethane, and hexane and also in the reverse order. By the MTT assay and the respective 50% inhibition concentration value, the most active fraction was further purified to apparent homogeneity by bioassay-guided silica gel column chromatography. α-Mangostin was identified by high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses. It had a potent cytotoxicity against the BT474, Chago, Hep-G2, KATO-III, and SW620 cell lines (IC50 values of 1.22 ± 0.03, 2.25 ± 0.20, 0.94 ± 0.01, 0.88 ± 0.16, and 1.50 ± 0.39 µmol/L, respectively). The in vitro cytotoxicity of α-mangostin against the five human cancer cell lines and primary fibroblasts was further characterized by real-time impedance-based analysis. Interestingly, α-mangostin was more cytotoxic against the cancer-derived cell lines than against the primary fibroblasts. Later, the migration assay was performed by continuously measuring the attachment of cells to the plate electrodes at the bottom of the transwell membrane. The combined caspase-3 and -7 activities were assayed by the Caspase-Glo® 3/7 kit. It showed that the cytotoxic mechanism involved caspase-independent apoptosis, while at low (non-toxic) concentrations α-mangostin did not significantly alter cell migration. Furthermore, the in vivo cytotoxicity and angiogenesis were determined by alkaline phosphatase staining in zebrafish embryos along with monitoring changes in the transcript expression level of two genes involved in angiogenesis (vegfaa and vegfr2) by quantitative real-time reverse transcriptase- polymerase chain reaction. It was found that the in vivo cytotoxicity of α-mangostin against zebrafish embryos had a 50% lethal concentration of 9.4 µM, but no anti-angiogenic properties were observed in zebrafish embryos at 9 and 12 µM even though it downregulated the expression of vegfaa and vegfr2 transcripts. Thus, α-mangostin is a major active compound with a potential anticancer activity in T. laeviceps cerumen in Thailand. © 2015 by the Society for Experimental Biology and Medicine.
HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.
Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W
2015-03-01
Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.
Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A
2012-09-01
The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also discussed.
Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek
2016-01-01
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.
Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek
2016-01-01
Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235
Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes
Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.
2003-01-01
The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei were synchronized by serum starvation (83.0%) than after roscovitine (80.0%) or contact-inhibition (80.0%). The fusion efficiency of in vivo and in vitro matured oocytes used as recipient cytoplasts of AWC donor nuclei (86.6% vs. 85.2%) was similar to the rates obtained with DSH donor nuclei, 83.7% vs. 73.0%, respectively. The only significant effect of source of donor nucleus (AWC vs. DSH) was on the rate of blastocyst formation in vitro. A higher percentage of the embryos derived from AWC nuclei developed to the blastocyst stage than did embryos produced from DSH nuclei, 24.2% vs. 3.3%, respectively (P < 0.05). In experiment 4, the effect of calcium in the fusion medium on induction of oocyte activation and development of AWC-DSH-cloned embryos was determined. The presence of calcium in the fusion medium induced a high incidence of cleavage of DSH oocytes (54.3%), while oocyte cleavage frequency was much lower in the absence of calcium (16.6%). The presence or absence of calcium in the fusion medium did not affect the fusion, cleavage, and blastocyst development of AWC-DSH-cloned embryos. In experiment 5, AWC-DSH-cloned embryos were transferred to the uteri of 11 synchronized domestic cat recipients on Day 6 or 7 after oocyte aspiration. Recipients were assessed by ultrasonography on Day 21 postovulation, but no pregnancies were observed. In the present study, after NT, AWC donor nuclei were able to dedifferentiate in DSH cytoplasts and support high rates of blastocyst development in vitro. Incomplete reprogramming of the differentiated nucleus may be a major constraint to the in vivo developmental potential of the embryos.
EGR-1 regulates Ho-1 expression induced by cigarette smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huaqun, E-mail: chenhuaqun@njnu.edu.cn; Wang, Lijuan; Gong, Tao
2010-05-28
As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1more » deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.« less
Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu
2016-03-24
Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.
Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.
2010-01-01
Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA conjugated with branched cationic polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knockdown led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules was observed. Observed siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. PMID:20727922
Edvardsen, Rolf B; Leininger, Sven; Kleppe, Lene; Skaftnesmo, Kai Ove; Wargelius, Anna
2014-01-01
Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45, member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used for functional studies in Atlantic salmon.
Persson, Camilla; Sävenhed, Catrine; Bourdeau, Annie; Tremblay, Michel L.; Markova, Boyka; Böhmer, Frank D.; Haj, Fawaz G.; Neel, Benjamin G.; Elson, Ari; Heldin, Carl-Henrik; Rönnstrand, Lars; Östman, Arne; Hellberg, Carina
2004-01-01
The platelet-derived growth factor (PDGF) β receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF β receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF β receptor, we compared PDGF β receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF β receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cγ1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cγ1 activity and migratory hyperresponsiveness to PDGF. PDGF β receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPɛ ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF β receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors. PMID:14966296
Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S.
2008-01-01
We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 hours after infection (~HH22) and observed that Shh expression was reduced or absent. In the mesenchyme we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 hours after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway. PMID:18028903
Dasdia, T; Bazzaco, S; Bottero, L; Buffa, R; Ferrero, S; Campanelli, G; Dolfini, E
1998-01-01
A new in vitro method to evaluate the early critical interactions between synthetic prosthetic materials and growing tissues is reported. The correct spatial organization and proper cell to cell interaction required to mimic the in vivo environment was obtained in a 3-dimensional (3-D) embryo organ culture. The clot formed by plasma and chick-embryo extract provided a natural 3-D extracellular matrix that was able to support the growth and differentiation of intestinal tissue dissected from 12-day-old chick embryos. Different materials used for the repair of abdominal wall defects were taken as standards; all the prosthetic materials were devoid of any evident cytotoxic potential over a 10-day culture period, so they did not interfere with the organogenesis process. A polyglactin mesh (Vicryl) was fully incorporated into the growing tissue, but early signs of its degradation were detectable. The biologically inert materials polyethylene terephthalate (Mersilene) and polypropylene (Marlex, Prolene, and Herniamesh) retained their structural integrity when incubated with cultured tissue at 37 degrees C, and they did not hinder cellular proliferation or fibroblast migration. However, the outgrowth behavior was very different while the connective tissue invaded the interstices of the polyethylene terephthalate mesh; the explants and the migrating cells were repelled by hydrophobic polypropylene meshes. These findings are in agreement with other reported results in in vivo studies. Therefore, this method can be considered as reliable and predictable for the evaluation of biopolymers.
Tissue distribution and developmental expression of type XVI collagen in the mouse.
Lai, C H; Chu, M L
1996-04-01
The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.
Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.
Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi
2009-08-01
Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.
Lu, Zhi Hong; Books, Jason T.; Ley, Timothy J.
2005-01-01
Proteins containing “cold shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known among bacteria, plants, and animals. One of these proteins, YB-1, is widely expressed throughout development and has been implicated as a cell survival factor that regulates the transcription and/or translation of many cellular growth and death-related genes. For these reasons, YB-1 deficiency has been predicted to be incompatible with cell survival. However, the majority of YB-1−/− embryos develop normally up to embryonic day 13.5 (E13.5). After E13.5, YB-1−/− embryos exhibit severe growth retardation and progressive mortality, revealing a nonredundant role of YB-1 in late embryonic development. Fibroblasts derived from YB-1−/− embryos displayed a normal rate of protein synthesis and minimal alterations in the transcriptome and proteome but demonstrated reduced abilities to respond to oxidative, genotoxic, and oncogene-induced stresses. YB-1−/− cells under oxidative stress expressed high levels of the G1-specific CDK inhibitors p16Ink4a and p21Cip1 and senesced prematurely; this defect was corrected by knocking down CDK inhibitor levels with specific small interfering RNAs. These data suggest that YB-1 normally represses the transcription of CDK inhibitors, making it an important component of the cellular stress response signaling pathway. PMID:15899865
Developmental Toxicity of Diclofenac and Elucidation of Gene Regulation in zebrafish (Danio rerio)
NASA Astrophysics Data System (ADS)
Chen, Jia-Bin; Gao, Hong-Wen; Zhang, Ya-Lei; Zhang, Yong; Zhou, Xue-Fei; Li, Chun-Qi; Gao, Hai-Ping
2014-05-01
Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.
Parry, Jean M.; Velarde, Nathalie V.; Lefkovith, Ariel J.; Zegarek, Matthew H.; Hang, Julie S.; Ohm, Jonathan; Klancer, Richard; Maruyama, Rika; Druzhinina, Marina K.; Grant, Barth D.; Piano, Fabio; Singson, Andrew
2009-01-01
Summary The molecular underpinnings of the oocyte-to-embryo transition are poorly understood. Here we show that two protein tyrosine phosphatase-like (PTPL) family proteins, EGG-4 and EGG-5, are required for key events of the oocyte-to-embryo transition in Caenorhabditis elegans. The predicted EGG-4 and EGG-5 amino acid sequences are 99% identical and their functions are redundant. In embryos lacking EGG-4 and EGG-5 we observe defects in meiosis, polar body formation, the block to polyspermy, F-actin dynamics, and eggshell deposition. During oogenesis, EGG-4 and EGG-5 assemble at the oocyte cortex with the previously identified regulators or effectors of the oocyte-to-embryo transition EGG-3, CHS-1 and MBK-2 [1, 2]. All of these molecules share a complex interdependence with regards to their dynamics and subcellular localization. Shortly after fertilization, EGG-4 and EGG-5 are required to properly coordinate a redistribution of CHS-1 and EGG-3 away from the cortex during meiotic anaphase I. Therefore EGG-4 and EGG-5 are not only required for critical events of the oocyte-to-embryo transition but also link the dynamics of the regulatory machinery with the advancing cell cycle. PMID:19879147
Embryos of non-native anoles are robust to urban thermal environments.
Tiatragul, Sarin; Kurniawan, Audeline; Kolbe, Jason J; Warner, Daniel A
2017-04-01
The transformation of natural habitats into urban landscapes dramatically alters thermal environments, which in turn, can impact local biota. Ectothermic organisms that are oviparous are particularly sensitive to these altered environments because their embryos cannot behaviorally thermoregulate and the surrounding environment determines the temperature experienced during development. We studied the effects of urban and forested thermal environments on embryo development and hatchling phenotypes in two non-native lizards (Anolis sagrei and A. cristatellus) in metropolitan Miami, Florida. To determine if embryos from urban and forested sites are adapted to their respective thermal environments, we incubated eggs from each site using temperatures that simulate likely nest conditions in both urban and forested environments. For both species, urban thermal environments accelerated embryonic development, but had no impact on egg survival or any of the phenotypic traits that were measured (e.g., body size, running performance, and locomotor behavior). Our results provide no evidence that embryos from urban and forested sites are adapted to their respective thermal environments. Instead, the lack of any major effects suggest that embryos of both species are physiologically robust with respect to novel environments, which could have facilitated their success in establishing in non-native ranges and in human-modified landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.
Tapia, Olga; Gerace, Larry
2016-01-01
We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.
Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.
Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N
2015-03-01
As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.
Early embryo mortality in natural human reproduction: What the data say
Jarvis, Gavin E.
2017-01-01
How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in The Lancet is widely cited but has no practical quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig’s data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data. PMID:28580126
D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M
2013-01-01
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa
2016-12-01
Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
Mellerick, Dervla M; Liu, Heather
2004-09-05
Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.
Gauthier-Rouvière, C; Basset, M; Blanchard, J M; Cavadore, J C; Fernandez, A; Lamb, N J
1991-01-01
Elevation of intracellular casein kinase II (CKII) levels through microinjection of purified CKII results in the rapid and transient induction of c-fos in quiescent rat embryo fibroblasts, and activation of quiescent cells by serum is accompanied by the nuclear relocation of endogenous CKII. The induction of c-fos by CKII is inhibited by coinjection of oligonucleotides corresponding to the sequence of the serum response element (SRE) present in the c-fos promoter, indicating that competitive displacement of positive factors from the endogenous c-fos SRE prevents c-fos induction by CKII. Furthermore, the expression of c-fos induced by either CKII injection or serum activation is also inhibited by microinjection of antibodies against the 67 kDa serum response factor (p67SRF) indicating the absolute requirement of p67SRF in this process. Finally, we show the specific phosphorylation of p67SRF in vivo following microinjection of CKII into quiescent cells. Together, these data strongly support that CKII induces c-fos expression through binding/activation of the phosphorylated p67SRF at the SRE sequence. Images PMID:1915270
Commentary: "re-programming or selecting adult stem cells?".
Trosko, James E
2008-01-01
The recent observations that embryonic stemness-associated genes could assist in the "de-differentiation" of adult skin fibroblast cells to "embryonic-like stem cells", using the "somatic cell nuclear transfer" techniques, have been interpreted as indicating a "re-programming" of genes. These reports have demonstrated a "proof of principle" approach to by-pass many, but not all, of the ethical, scientific and medical limitations of the "therapeutic cloning" of embryonic stem cells from embryos. However, while the interpretation that real "re-programming" of all those somatic fibroblastic differentiation genes might be correct, there does exists an alternative hypothesis of these exciting results. Based on the fact that multipotent adult stem cells exist in most, if not all, adult organs, the possibility exists that all these recent "re-programming" results, using the somatic nuclear transfer techniques, actually were the results of transferred rare nuclear material from the adult stem cells residing in the skin of the mouse, monkey and human samples. An examination of the rationale for this challenging hypothesis has been drawn from the hypothesis of the "stem cell theory of cancer", as well as from the field of human adult stem cells research.
Reeder, Amy L; Botham, Robert A; Franco, Marta; Zaremba, Krzysztof M; Nichol, Peter F
2012-09-01
The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh), which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and used the fibroblast growth factor receptor 2IIIb homozygous mutant (Fgfr2IIIb-/-) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Wild-type and Fgfr2IIIb-/- mouse embryos were harvested at embryonic day (E) 10.5, E11.5, E12.5, and E13.5. Whole-mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for hematoxylin-eosin staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb-/- embryos at E10.5, then cultured for 48 hours in Matrigel with FGF10 in the presence or absence of exogenous Shh protein. Explants were harvested, fixed in formalin, and photographed. Fgfr2IIIb-/- mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb-/- intestines developed atresias of the colon in either the presence or absence of Shh protein. Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb-/- genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. Copyright © 2012 Elsevier Inc. All rights reserved.
Reader, Amy L.; Botham, Robert A.; Franco, Marta; Zaremba, Krzysztof M.; Nichol, Peter F.
2012-01-01
Purpose The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacological animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh) which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and utilized the Fibroblast Growth Factor Receptor 2IIIb homozygous mutant (Fgfr2IIIb−/−) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Methods Wild-type and Fgfr2IIIb−/− mouse embryos were harvested at E10.5, E11.5, E12.5 and E13.5. Whole mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for H&E staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb−/− embryos at E10.5, then cultured for 48 hours in matrigel with FGF10 in the presence or absence of exogenous SHH protein. Explants were harvested, fixed in formalin and photographed. Results Fgfr2IIIb−/− mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb−/− intestines developed atresias of the colon in either the presence, or absence, of Shh protein. Conclusions Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb−/− genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. PMID:22572615
Braaten, P.J.; Fuller, D.B.; Lott, R.D.; Ruggles, M.P.; Brandt, T.F.; Legare, R.G.; Holm, R.J.
2012-01-01
Free embryos of wild pallid sturgeon Scaphirhynchus albus were released in the Missouri River and captured at downstream sites through a 180-km reach of the river to examine ontogenetic drift and dispersal processes. Free embryos drifted primarily in the fastest portion of the river channel, and initial drift velocities for all age groups (mean = 0.66–0.70 m s−1) were only slightly slower than mean water column velocity (0.72 m s−1). During the multi-day long-distance drift period, drift velocities of all age groups declined an average of 9.7% day−1. Younger free embryos remained in the drift upon termination of the study; whereas, older age groups transitioned from drifting to settling during the study. Models based on growth of free embryos, drift behavior, size-related variations in drift rates, and channel hydraulic characteristics were developed to estimate cumulative distance drifted during ontogenetic development through a range of simulated water temperatures and velocity conditions. Those models indicated that the average free embryo would be expected to drift several hundred km during ontogenetic development. Empirical data and model results highlight the long-duration, long-distance drift and dispersal processes for pallid sturgeon early life stages. In addition, results provide a likely mechanism for lack of pallid sturgeon recruitment in fragmented river reaches where dams and reservoirs reduce the length of free-flowing river available for pallid sturgeon free embryos during ontogenetic development.
Takahashi, Hironobu; Wang, Yuwei; Grainger, David W
2010-11-01
Fibrous encapsulation of surgically implanted devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering RNA (siRNA) conjugated with branched polyethylenimine (bPEI) in fibroblastic lineage cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knock-down led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR expression in the foreign body capsules were observed. The siRNA inefficacy in this in vivo implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to produce clinically relevant effects on fibrotic encapsulation around implants. Copyright © 2010 Elsevier B.V. All rights reserved.
Hale, Alexander James
2017-01-01
ABSTRACT Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a−/− ptpn11b−/− zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functional signaling role, requiring its catalytic activity and SH2 domains but not the two C-terminal tyrosine phosphorylation sites. Surprisingly, expression of Shp2a variants with increased and reduced catalytic activity, respectively, rescued caudal fin fold regeneration to similar extents. Expression of mmp9 and junbb, indicative of formation of the wound epidermis and distal blastema, respectively, suggested that these processes occurred in ptpn11a−/− ptpn11b−/− zebrafish embryos. However, cell proliferation and MAPK phosphorylation were reduced. Pharmacological inhibition of MEK1 in wild-type zebrafish embryos phenocopied loss of Shp2. Our results suggest an essential role for Shp2a–mitogen-activated protein kinase (MAPK) signaling in promoting cell proliferation during zebrafish embryo caudal fin fold regeneration. PMID:29203641
Apoptosis regulates notochord development in Xenopus.
Malikova, Marina A; Van Stry, Melanie; Symes, Karen
2007-11-15
The notochord is the defining characteristic of the chordate embryo and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos, however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that, by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirrors that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed.
Determination of the reactivity of cytotoxic immune cells with preimplantation mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewoldsen, M.A.
1987-01-01
Cytotoxic immune cells were used in an assay, MELIA (mixed embryo leukocyte interaction assay) to test the ability of the cells to kill blastocyst stage embryos. The cytotoxic immune cells generated for use in this study, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and lymphokine activated killer (LAK) cells were shown to have phenotypic and cytolytic characteristics similar to those reported by other investigators. The lysis of the blastocysts in the MELIA was determined by measuring the inhibition of blastocoel retention and/or by the inhibition of incorporation of tritiated thymidine (/sup 3/H-TdR) into embryonic DNA. Blastocysts which possess ormore » lack their zonae pellucidae were tested to determine whether the zona pellucida plays an immunoprotective role in preimplantation development. The results indicated that CTLs only lysed embryonic cells when the zona pellucida was absent, but NK and LAK cells lysed embryonic cells whether the zona pellucida was present or absent. The results suggest that the zona pellucida may protect the preimplantation mouse embryo from lysis by CTLs but what protects the embryo from lysis by NK and LAK cells is unclear.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinheng; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642
This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The results of the analyses were in conformity with AdV properties. The full genome sequence was determined and analyzed. The new isolate (named CH-GD-12-2014) shared over 91% sequence identity with duck AdV-2 representing the species Duck aviadenovirus B. The most important distinguishing feature between the two DAdV strains was the presence of a second fiber gene in themore » Chinese isolate. Phylogeny reconstruction confirmed the affiliation of the virus with goose and duck AdVs in the genus Aviadenovirus. Experimental infection resulted in embryo death, and intramuscular inoculation provoked morbidity and mortality among ducks and chickens. - Highlights: • A duck adenovirus type 3 was isolated and the complete genome of DAdV-3 was obtained. • Physicochemical properties and electron microscopy were researched. • Pathogenicity of duck adenovirus type 3 was researched.« less
Cloning of non-human primates: the road “less traveled by”
SPARMAN, MICHELLE L.; TACHIBANA, MASAHITO; MITALIPOV, SHOUKHRAT M.
2011-01-01
Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model. PMID:21404187
Chiu, H C; Chang, C H; Jee, S H; Chang, C C; Wu, Y C
1994-09-01
Human scalp specimens were incubated in 5 U/ml dispase solution at 4 degrees C overnight before the isolation of dermal papillae and follicle epithelium. This pretreatment not only facilitated the attachment and cell outgrowth of dermal papillae but also made it easier to pluck out hairs with intact follicle epithelium. The outer root sheath cells were released from the follicle epithelium and grown on a feeder layer of mitomycin C-treated human dermal fibroblasts. The subcultured outer root sheath cells were grown in a serum-free medium. When the mixtures of early-passage dermal papilla cells and outer root sheath cells were injected into the subcutis of nude mice, an epidermal cyst surrounded by layers of fibrous tissue was found in three weeks. No hair follicles were found when the mixtures were implanted onto the chorioallantoic membrane of nine-day-old chicken embryos. A keratinized mass lying on the chorionic epithelium with or without smaller similar masses in the chorioallantoic membrane was found in eight days. No hair follicle-like structure could be found. Possible factors contributing to the failure to undergo follicular differentiation in this study are discussed.
Cloning of non-human primates: the road "less traveled by".
Sparman, Michelle L; Tachibana, Masahito; Mitalipov, Shoukhrat M
2010-01-01
Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model.
Kwiatkowski, David J; Zhang, Hongbing; Bandura, Jennifer L; Heiberger, Kristina M; Glogauer, Michael; el-Hashemite, Nisreen; Onda, Hiroaki
2002-03-01
Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver hemangiomas at high frequency, but the incidence of kidney tumors is somewhat lower than in Tsc2 heterozygote mice. Liver hemangiomas were more common, more severe and caused higher mortality in female than in male Tsc1 heterozygotes. Tsc1 null embryo fibroblast lines have persistent phosphorylation of the p70S6K (S6K) and its substrate S6, that is sensitive to treatment with rapamycin, indicating constitutive activation of the mTOR-S6K pathway due to loss of the Tsc1 protein, hamartin. Hyperphosphorylation of S6 is also seen in kidney tumors in the heterozygote mice, suggesting that inhibition of this pathway may have benefit in control of TSC hamartomas.
Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony
2003-07-01
Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.
Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon
2016-04-27
Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus.
Role of glucose in mouse preimplantation embryo development.
Martin, K L; Leese, H J
1995-04-01
Mouse preimplantation embryos consume pyruvate preferentially during the early developmental stages, before glucose becomes the predominant energy substrate in the blastocyst. To investigate the importance of the switch to glucose utilization at the later developmental stages, mouse embryos from F1 hybrid mice (CBA/Ca x C57BL/6) were cultured from the one- and two-cell stages (22 and 46 h post hCG, respectively) for 5 days in a modified medium, M16, containing 0.33 mM pyruvate and 5 or 23 mM D + L-lactate, in the presence and absence of 1 mM glucose (M16 + G and M16 - G, respectively). Nutrient uptakes were also determined over this time. Some embryos cultured in M16 - G were transferred to M16 + G at 94 or 118 h post hCG. Embryos cultured from the two-cell stage in M16 + G exhibited the characteristic fall in pyruvate consumption between the morula and the blastocyst stage; those cultured from the two-cell stage in M16 - G compensated for the lack of glucose by consuming increasing amounts of pyruvate, from 2.78 pmol/embryo/h at 58 h post hCG to 5.21 pmol/embryo/h at 154 h post hCG. However, the percentage of embryos developing to the blastocyst stage, the hatching rate, and blastocyst cell numbers (50.6 +/- 2.5 [28] vs. 105 +/- 3.8 [37]) were all lower in this group. When exposed to glucose at 94 or 118 h post hCG, embryos cultured from the two-cell stage in M16 - G readily consumed glucose in preference to pyruvate, although the characteristic fall in pyruvate consumption was not observed. One-cell embryos cultured continuously in M16 - G were only able to develop to the morula stage, after which time they degenerated. In these embryos pyruvate was readily consumed between 22 and 94 h post hCG, before falling from 2.77 pmol/embryo/h at 83 h post hCG to 0.045 pmol/embryo/h at 130 h post hCG. Transfer of these embryos to M16 + G at 94 and 118 h post hCG did not support development to the hatching blastocyst stage.(ABSTRACT TRUNCATED AT 250 WORDS)
The RNA-editing deaminase ADAR is involved in stress resistance of Artemia diapause embryos.
Dai, Li; Liu, Xue-Chen; Ye, Sen; Li, Hua-Wei; Chen, Dian-Fu; Yu, Xiao-Jian; Huang, Xue-Ting; Zhang, Li; Yang, Fan; Yang, Jin-Shu; Yang, Wei-Jun
2016-11-01
The most widespread type of RNA editing, conversion of adenosine to inosine (A→I), is catalyzed by two members of the adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2. These enzymes edit transcripts for neurotransmitter receptors and ion channels during adaption to changes in the physical environment. In the primitive crustacean Artemia, when maternal adults are exposed to unfavorable conditions, they release diapause embryos to withstand harsh environments. The aim of the current study was therefore to elucidate the role of ADAR of Artemia diapause embryos in resistance to stress. Here, we identified Artemia ADAR (Ar-ADAR), which harbors a putative nuclear localization sequence (NLS) and two double-stranded RNA-binding motifs (dsRBMs) in the amino-terminal region and an adenosine deaminase (AD) domain in the carboxyl-terminal region. Western blot and immunofluorescence analysis revealed that Ar-ADAR is expressed abundantly in post-diapause embryos. Artemia (n = 200, three replicates) were tested under basal and stress conditions. We found that Ar-ADAR was significantly induced in response to the stresses of salinity and heat-shock. Furthermore, in vivo knockdown of Ar-ADAR (n = 100, three replicates) by RNA interference induced formation of pseudo-diapause embryos, which lack resistance to the stresses and exhibit high levels of apoptosis. These results indicate that Ar-ADAR contributes to resistance to stress in Artemia diapause embryos.
Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.
Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M
1993-02-01
Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.
Criteria to assess human oocyte quality after cryopreservation.
Coticchio, G; Bonu, M A; Bianchi, V; Flamigni, C; Borini, A
2005-10-01
Oocyte cryopreservation certainly represents one of the most attractive developments in the field of assisted reproduction, with the aim of preserving female fertility and circumventing the ethical and legal drawbacks associated with embryo freezing. Despite the achievement of the first pregnancy from frozen oocytes dating back as early as 1987, since then fewer than 150 pregnancies have been reported. Over a long period of time, application of oocyte storage on a large scale has been prevented by various factors, namely poor post-thaw survival. Fertilization rates remained low even after the introduction of intracytoplasmic sperm injection. Modifications of slow-freezing protocols, mainly based on the increase of the concentration of sucrose used as non-penetrating cryoprotectant (CPA) and the replacement of sodium with choline, appear to have decisively improved survival rates to over 80%. Investigations at the cellular level on thawed oocytes are largely lacking. Fertilization rates have also benefited from protocol modifications, reaching values indistinguishable from those normally obtained with fresh material. Vitrification protocols have also been tested, giving rise to improvements whose reproducibility is still uncertain. Data on the dynamics of fertilization and preimplantation development of embryos derived from frozen oocytes are extremely scarce. At the moment, clinical efficiency of oocyte cryopreservation cannot be precisely assessed because of the lack of controlled studies, although it appears to be considerably lower than that achieved with embryo freezing. In summary, encouraging advances have been made in the field of oocyte cryopreservation, but presently no protocol can ensure standards of success and safety comparable to those guaranteed by embryo storage.
O'Shaughnessy-Kirwan, Aoife; Signolet, Jason; Costello, Ita; Gharbi, Sarah; Hendrich, Brian
2015-01-01
Chromatin remodelling proteins are essential for different aspects of metazoan biology, yet functional details of why these proteins are important are lacking. Although it is possible to describe the biochemistry of how they remodel chromatin, their chromatin-binding profiles in cell lines, and gene expression changes upon loss of a given protein, in very few cases can this easily translate into an understanding of how the function of that protein actually influences a developmental process. Here, we investigate how the chromatin remodelling protein CHD4 facilitates the first lineage decision in mammalian embryogenesis. Embryos lacking CHD4 can form a morphologically normal early blastocyst, but are unable to successfully complete the first lineage decision and form functional trophectoderm (TE). In the absence of a functional TE, Chd4 mutant blastocysts do not implant and are hence not viable. By measuring transcript levels in single cells from early embryos, we show that CHD4 influences the frequency at which unspecified cells in preimplantation stage embryos express lineage markers prior to the execution of this first lineage decision. In the absence of CHD4, this frequency is increased in 16-cell embryos, and by the blastocyst stage cells fail to properly adopt a TE gene expression programme. We propose that CHD4 allows cells to undertake lineage commitment in vivo by modulating the frequency with which lineage-specification genes are expressed. This provides novel insight into both how lineage decisions are made in mammalian cells, and how a chromatin remodelling protein functions to facilitate lineage commitment. PMID:26116663
Developmental age strengthens barriers to ethanol accumulation in zebrafish.
Lovely, C Ben; Nobles, Regina D; Eberhart, Johann K
2014-09-01
Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of phenotypic defects affecting facial and neurological development associated with ethanol teratogenicity. It affects approximately 1 in 100 children born in the United States each year. Genetic predisposition along with timing and dosage of ethanol exposure are critical in understanding the prevalence and variability of FASD. The zebrafish attributes of external fertilization, genetic tractability, and high fecundity make it a powerful tool for FASD studies. However, a lack of consensus of ethanol treatment paradigms has limited the interpretation of these various studies. Here we address this concern by examining ethanol tissue concentrations across timing and genetic background. We utilize headspace gas chromatography to determine ethanol concentration in the AB, fli1:EGFP, and Tu backgrounds. In addition, we treated these embryos with ethanol over two different developmental time windows, 6-24 h post fertilization (hpf) and 24-48 hpf. Our analysis demonstrates that embryos rapidly equilibrate to a sub-media level of ethanol. Embryos then maintain this level of ethanol for the duration of exposure. The ethanol tissue concentration level is independent of genetic background, but is timing-dependent. Embryos exposed from 6 to 24 hpf were 2.7-4.2-fold lower than media levels, while embryos were 5.7-6.2-fold lower at 48 hpf. This suggests that embryos strengthen one or more barriers to ethanol as they develop. In addition, both the embryo and, to a lesser extent, the chorion, surrounding the embryo are barriers to ethanol. Overall, this work will help tighten ethanol treatment regimens and strengthen zebrafish as a model of FASD. Copyright © 2014 Elsevier Inc. All rights reserved.
A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI
Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa
2018-01-01
Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369
Taylor, H H; Seneviratna, Deepani
2005-04-01
The adults of Hemigrapsus edwardsii and Hemigrapsus crenulatus are euryhaline crabs and strong hyper-osmoregulators. Their embryos are carried externally attached to the abdominal pleopods of female crabs, where they are exposed to temporal and spatial changes in salinity associated with their intertidal and estuarine habitats. Although embryos lack the branchial and excretory organs responsible for adult osmoregulation, post-gastrula embryos were highly tolerant of exposure to hypo-osmotic sea water. Detached eggs (embryos+envelopes), of both species, at all developmental stages between gastrulation and hatching, exhibited 80-100% survival for periods up to 96 h in sea water (osmolality, 1050 mmol kg(-1)) and in dilutions to 50%, 10%, and 1%. Cleavage stages were less tolerant of dilution; H. edwardsii, <50% survived 24 h in 10% sea water; H. crenulatus <50% survived 6 h in 10% sea water. Post-gastrulation stages strongly hyper-osmoregulated but cleavage stages were hyper-osmoconformers (maintaining internal osmolality approximately 150 mmol kg(-1) above external). Osmoregulatory capacity was reduced just prior hatching, particularly in H. crenulatus, although salinity tolerance remained high. Gastrulation therefore marks a critical stage in the ontogeny of osmoregulation and salinity tolerance. Total Na+/K(+)-ATPase activity increased greatly during embryogenesis of H. crenulatus (undetectable in blastulae; gastrulae 0.31+/-0.05 pmol P(i) embryo(-1) min(-1); pre-hatching 16.4+/-1.0 pmol P(i) embryo(-1) min(-1)). Na+/K(+)-ATPase activity increased in embryos exposed to dilute sea water for 24 h implicating regulation of this transporter in a short-term acclimation response.
Sandhu, Anjit; Mohapatra, Sushil K; Agrawal, Himanshu; Singh, Manoj K; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S
2016-10-01
Buffalo embryos were produced by hand-made cloning using skin fibroblasts from male and female buffaloes (n = 4 each) as donor cells for examining the effect of sex. Although the rate of blastocyst formation (43.8% ± 1.31% vs. 42.2% ± 1.22%) was similar, the total cell number (333 ± 10.4 vs. 270 ± 10.9) was higher (p < 0.05) whereas the apoptotic index (6.39 ± 0.25 vs. 8.52 ± 0.38) was lower (p < 0.05) for male than for female blastocysts. In the blastocysts, the global level of H3K18ac was found to be in the following order: male>female>IVF (in vitro fertilization) blastocysts (p < 0.05). The global level of H3K9me2 was not significantly different between male and female blastocysts and was higher (p < 0.05) compared with that in their IVF counterparts. The relative mRNA abundance of X-chromosome-linked (XIST, HPRT, PGK, and G6PD), apoptosis- (CASPASE3) and pregnancy-related genes (IFN-τ) was significantly higher (p < 0.05) whereas that of DNMT1 was significantly lower (p < 0.05) in female than in male blastocysts; however, in the case of apoptosis- (BCL-XL) and developmental competence-related genes (IGF1R and OCT4), the expression level was similar between the two groups. The gene expression level of OCT4 and IFN-τ but not of IGF1R was significantly lower (p < 0.05) in cloned than in IVF blastocysts. This study demonstrates that the epigenetic status, quality, and expression level of several genes but not the developmental competence are affected by the sex of cloned embryos.
Agrawal, Himanshu; Selokar, Naresh Lalaji; Saini, Monika; Singh, Manoj Kumar; Chauhan, Manmohan Singh; Palta, Prabhat; Singla, Suresh Kumar; Manik, Radhey Sham
2018-02-01
Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.
Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui
2011-04-01
Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.
Establishment of an immortal chicken embryo liver-derived cell line.
Lee, Jeongyoon; Foster, Douglas N; Bottje, Walter G; Jang, Hyeon-Min; Chandra, Yohanna G; Gentles, Lauren E; Kong, Byung-Whi
2013-06-01
A continuously growing immortal cell substrate can be used for virus propagation, diagnostic purposes, and vaccine production. The aim of this study was to develop an immortal chicken cell line for efficient propagation of avian infectious viruses. From the various chicken embryo cells that were tested for life span extension, an immortalized chicken embryo liver (CEL) cell line, named CEL-im, was derived spontaneously without either oncogenic viruses or carcinogenic chemical treatment. Currently, CEL-im cells are growing 0.8 to 1.1 population doublings per day and have reached 120 passages. The CEL-im cell line is permissive for poultry infectious viruses, including avian metapneumovirus (AMPV), Marek's disease virus serotype 1 (MDV-1), and infectious laryngotracheitis virus. The CEL-im cells produced high AMPV titer (>10(5) pfu/mL), whereas very low titers (~10 pfu/mL) for MDV-1 and infectious laryngotracheitis virus were produced. To identify genetic alterations in the immortal CEL-im cell line, telomerase activity and mRNA expression for major cell cycle regulatory genes were determined during the immortalizing process. The CEL-im cell line has negative telomerase activity, and when compared with the primary passage 2 CEL cell counterpart, mRNA expression of tumor suppressor protein p53, mouse double minute 2 (Mdm2), cyclin dependent kinase (CDK) inhibitor p21 (p21(WAF)), and CDK inhibitor p16 (p16(INK4)) were downregulated in the CEL-im cell line, whereas retinoblastoma (Rb), transcription factor E2F, member 1 (E2F-1), and alternative reading frame of p16(INK4) (ARF) were upregulated. These results are similar to genetic alterations found previously in immortal chicken embryo fibroblast (CEF) cell lines that showed efficient propagation of MDV-1. Therefore, this newly established CEL-im cell line can serve as an alternative cell substrate for the propagation of poultry viruses, such as AMPV.
Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Suh, Han Na; Jo, Young Kwang; Choi, Yoo Bin; Kim, Dong Hoon; Han, Ho Jae; Lee, Byeong Chun
2015-10-15
Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos. Copyright © 2015 Elsevier Inc. All rights reserved.
The role of growth factors in embryonic induction in Xenopus laevis.
Dawid, I B; Taira, M; Good, P J; Rebagliati, M R
1992-06-01
Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)
Hashimoto, Hidehiko; Enomoto, Takashi; Enomoto, Atsushi; Kumano, Gaku; Nishida, Hiroki
2011-06-01
In embryos of the ascidian Halocynthia roretzi, the competence of isolated presumptive notochord blastomeres to respond to fibroblast growth factor (FGF) for induction of the primary notochord decays by 1 hour after cleavage from the 32- to 64-cell stage. This study analyzes the molecular mechanisms responsible for this loss of competence and provides evidence for a novel mechanism. A forkhead family transcription factor, FoxB, plays a role in competence decay by preventing the induction of notochord-specific Brachyury (Bra) gene expression by the FGF/MAPK signaling pathway. Unlike the mechanisms reported previously in other animals, no component in the FGF signal transduction cascade appeared to be lost or inactivated at the time of competence loss. Knockdown of FoxB functions allowed the isolated cells to retain their competence for a longer period, and to respond to FGF with expression of Bra beyond the stage at which competence was normally lost. FoxB acts as a transcription repressor by directly binding to the cis-regulatory element of the Bra gene. Our results suggest that FoxB prevents ectopic induction of the notochord fate within the cells that assume a default nerve cord fate, after the stage when notochord induction has been completed. The merit of this system is that embryos can use the same FGF signaling cascade again for another purpose in the same cell lineage at later stages by keeping the signaling cascade itself available. Temporally and spatially regulated FoxB expression in nerve cord cells was promoted by the ZicN transcription factor and absence of FGF/MAPK signaling.
Four simple rules that are sufficient to generate the mammalian blastocyst
Nissen, Silas Boye; Perera, Marta; Gonzalez, Javier Martin; Morgani, Sophie M.; Jensen, Mogens H.; Sneppen, Kim; Brickman, Joshua M.
2017-01-01
Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs in the absence of maternal information and in the presence of transcriptional stochasticity. How does the preimplantation embryo ensure robust, reproducible development in this context? It utilizes a versatile toolbox that includes complex intracellular networks coupled to cell—cell communication, segregation by differential adhesion, and apoptosis. Here, we ask whether a minimal set of developmental rules based on this toolbox is sufficient for successful blastocyst development, and to what extent these rules can explain mutant and experimental phenotypes. We implemented experimentally reported mechanisms for polarity, cell—cell signaling, adhesion, and apoptosis as a set of developmental rules in an agent-based in silico model of physically interacting cells. We find that this model quantitatively reproduces specific mutant phenotypes and provides an explanation for the emergence of heterogeneity without requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells’ competence of fibroblast growth factor (FGF)/extracellular signal—regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively by manipulating embryos in vitro. Based on these observations, we conclude that the minimal set of rules enables the embryo to experiment with stochastic gene expression and could provide the robustness necessary for the evolutionary diversification of the preimplantation gene regulatory network. PMID:28700688
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis.
Ishimura, Akihiko; Terashima, Minoru; Tange, Shoichiro; Suzuki, Takeshi
2016-03-01
Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307
[Stem cells--cloning, plasticity, bioethic].
Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas
2008-01-01
Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.
Isolation of poxvirus from debilitating cutaneous lesions on four immature grackles (Quiscalus sp.)
Docherty, D.E.; Long, R.I.; Flickinger, Edward L.; Locke, L.N.
1991-01-01
Poxvirus was isolated from nodules on four immature grackles (Quiscalus sp.) collected in two residential areas of Victoria, Texas. All of the birds were emaciated and had nodules on the eyelids, bill, legs, toes, and areas of the skin on the wings, neck, and ventral abdomen. These pox nodules were extensive and probably interfered with both sight and flight. The preliminary diagnosis was confirmed by virus isolation, histopathology, and electron microscopy. Poxvirus was isolated on the chorioallantoic membrane of embryonated hen's eggs and in Muscovy duck embryo fibroblast cell culture. Phaenicia calliphoridae (blowfly) larvae were found in one of the pox nodules, raising the possibility of mechanical transmission of the virus by contaminated adult blowflies.
Highly multiplexed subcellular RNA sequencing in situ
Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Yang, Joyce L.; Terry, Richard; Jeanty, Sauveur S. F.; Li, Chao; Amamoto, Ryoji; Peters, Derek T.; Turczyk, Brian M.; Marblestone, Adam H.; Inverso, Samuel A.; Bernard, Amy; Mali, Prashant; Rios, Xavier; Aach, John; Church, George M.
2014-01-01
Understanding the spatial organization of gene expression with single nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked cDNA amplicons are sequenced within a biological sample. Using 30-base reads from 8,742 genes in situ, we examined RNA expression and localization in human primary fibroblasts using a simulated wound healing assay. FISSEQ is compatible with tissue sections and whole mount embryos, and reduces the limitations of optical resolution and noisy signals on single molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ. PMID:24578530
Parveen, Shagufta; Panicker, M M; Gupta, Pawan Kumar
2017-03-01
A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Possibilities and limitations of fibroblast cultures in the study of animal aging].
Van Gansen, P; Van Lerberghe, N
1987-01-01
INTRODUCTION. Aging--the effect of time--occurs in every living organism. Senescence is the last period of the lifespan, leading to death. It happens in all animals, with the exception of a few didermic species (Hydras) having a stock of embryonic cells and being immortal. The causes of animal senescence are badly known. They depend both on genetic characters (maximal lifespan of a species) and on medium factors (mean expectation of life of the animals of a species). Animal senescence could depend on cell aging: 1) by senescence and death of the differentiated cells, 2) by modified proliferation and differentiation of the stem cells of differentiated tissues, 3) by alterations in the extracellular matrices, 4) by interactions between factors 1) 2) and 3) in each tissue, 5) by interactions between the several tissues of an organism. This complexity badly impedes the experimental study of animal senescence. Normal mammal cells are aging when they are cultivated (in vitro ageing): their phenotype varies and depends on the cell generation (in vitro differentiation); the last cell-generation doesn't divide anymore and declines until death of the culture (in vitro senescence). Analysis of these artificial but well controlled systems allows an experimental approach of the proliferation, differentiation, senescence and death of the cells and of the extracellular matrix functions. Present literature upon in vitro aging of cultivated human cells is essentially made of papers where proliferation and differentiation characteristics are compared between early ("young") and late ("old") cell-generations of the cultures. FIBROBLASTIC CELLS OF THE MOUSE SKIN. This cell type has been studied in our laboratory, using different systems: 1) Primary cultures isolated from peeled skins of 19 day old mouse embryos, 2) Mouse dermis analyzed in the animals, 3) Cultivated explants of skins, 4) Serial sub-cultures of fibroblasts isolated from these explants, 5) Cells cultivated comparably on plane substrates (glass, plastic, collagen films) and on tridimensional matrices (collagen fibres). Systems 2), 3), 4) and 5) have been obtained either from 19 day old embryos or from 6 groups of animals of different ages (from 1/2 till 25 month). In primary cultures (system 1) all the cell generations have been analyzed, including the last one until death of the culture. We have shown that many characters are varying with cell-generation: cell form and cell mass, rate of DNA replication and cell division, rate of RNA transcription, nature of the accumulated and of the synthetized proteins, organization of the cytoskeletal elements, organization of the extracellular matrix, type of cell death.(ABSTRACT TRUNCATED AT 400 WORDS)
Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes
Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.
2015-01-01
Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061
Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.
Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F
2016-04-01
Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.
Graubner, Felix R.; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R.; Boos, Alois
2017-01-01
Abstract In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. PMID:28651344
Zhou, H C; Jin, L; Li, J; Wang, X J
2016-06-03
Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion.
Research ethics in Canada: experience of a group operating a human embryo and fetal tissue bank.
Milos, N; Bamforth, S; Bagnall, K
1999-04-01
A Canadian research group is establishing a human embryo and fetal tissue bank. Its purpose is to provide researchers with frozen or fixed tissue specimens for use in protein and gene expression studies. Several legal and ethical issues have arisen, including questions about consent, use of these rare tissues, cost recovery, and profit-making. These issues are discussed here in light of the present lack of legislation in Canada. We make recommendations in these areas, and suggest that the bank's operations could legally fall under the jurisdiction of the Human Tissue Gift Act.
Mahabir, E; Bulian, D; Needham, J; Schmidt, J
2009-09-01
The risk of transmission of mouse minute virus (MMV) to recipients of murine embryos arising from in vitro fertilization (IVF) of cumulus-enclosed oocytes (CEOs) or without cumulus cells (CDOs) in the presence of MMV-exposed (10(4) TCID(50) [mean tissue culture infective dose]/ml MMVp [prototype strain of MMV]) spermatozoa was evaluated. Also, the time after embryo transfer to detection of MMV antibody and the presence of MMV DNA in the mesenteric lymph nodes of recipients and pups were investigated. All mice were MMV free, but two seropositive recipients and four seropositive pups were found in the group with CDOs. With regard to the CEOs, two of 11 holding drops and five of 11 groups of embryos were MMV positive using PCR, while neither holding drops nor embryos carried infectious MMVp, as evidenced by the in vitro infectivity assay. From IVF with CDOs, five of 14 holding drops and four of nine groups of embryos were MMV positive, while one of 14 holding drops and no embryos carried infectious MMVp. When 10(5) cumulus cells were analyzed 5 h after exposure to 10(4) TCID(50)/ml MMVp, cells had an average titer of 10(4) TCID(50)/ml MMVp. The present data show that, in contrast to CDOs, 2-cell embryos from CEOs did not transmit infectious MMVp to the holding drops and to recipients. This observation is due to the presence of cumulus cells during the IVF process that reduce entry of MMV into the zona pellucida and absorb some of the virus. These data further confirm the efficacy of the IVF procedure in producing embryos that are free of infectious virus, leading to virus-free seronegative recipients and rederived pups.
A descriptive study of culture media in Brazilian assisted reproduction clinics.
Bartmann, Ana; Amaral, Amanda Turato Barbosa do; Gonçalves, Letícia
2016-08-01
The present study aimed to draw a profile of the most commonly used media and protocol characteristics from assisted reproduction technology (ART) facilities in Brazil. To obtain an overview of ART methods and culture media, a questionnaire was given to embryologists from ART clinics in Brazil. Further research in scientific papers and journals was carried out for describing the processes around Brazil, USA and Europe. From the questionnaire, we found that the embryo medium mostly used is CSCMTM from Irvine Scientific, represented 37.04% in Brazilian ART clinics; interestingly, 70.37% of clinics exchange the embryo media bath; however, 70.37% do not change the media type. Transfers in Brazilian clinics were variable, but day 3 transfer was a procedure seen in 37.04%. The remaining embryos are habitually maintained in prolonged cultivation in 51.85% of the clinics interviewed. Although there are numerous studies trying to better understand embryo culture media influences, there is a lack of evidence for choosing one as the most appropriate. In short, it is a random decision for such an essential stage of In Vitro Fertilization.
A descriptive study of culture media in Brazilian assisted reproduction clinics
Bartmann, Ana; do Amaral, Amanda Turato Barbosa; Gonçalves, Letícia
2016-01-01
Objective The present study aimed to draw a profile of the most commonly used media and protocol characteristics from assisted reproduction technology (ART) facilities in Brazil. Methods To obtain an overview of ART methods and culture media, a questionnaire was given to embryologists from ART clinics in Brazil. Further research in scientific papers and journals was carried out for describing the processes around Brazil, USA and Europe. Results From the questionnaire, we found that the embryo medium mostly used is CSCMTM from Irvine Scientific, represented 37.04% in Brazilian ART clinics; interestingly, 70.37% of clinics exchange the embryo media bath; however, 70.37% do not change the media type. Transfers in Brazilian clinics were variable, but day 3 transfer was a procedure seen in 37.04%. The remaining embryos are habitually maintained in prolonged cultivation in 51.85% of the clinics interviewed. Conclusion Although there are numerous studies trying to better understand embryo culture media influences, there is a lack of evidence for choosing one as the most appropriate. In short, it is a random decision for such an essential stage of In Vitro Fertilization. PMID:27584601
Effects of cranberry components on human aggressive periodontitis gingival fibroblasts.
Tipton, D A; Babu, J P; Dabbous, M Kh
2013-08-01
Aggressive periodontitis (AgP) causes rapid periodontal breakdown involving AgP gingival fibroblast production of cytokines [i.e. interleukin (IL)-6, a bone metabolism regulator], and matrix metalloproteinase (MMP)-3. Lipopolysaccharide upregulates fibroblast IL-6 and MMP-3, via transcription factors (i.e. NF-κB). Cranberry (Vaccinium macrocarpon) inhibits lipopolysaccharide-stimulated macrophage and normal gingival fibroblast activities, but little is known of its effects on AgP fibroblasts. Objectives of this study are to use AgP fibroblasts, to determine cytotoxicity of cranberry components or periodontopathogen (Fusobacterium nucleatum, Porphyromonas gingivalis) lipopolysaccharide ± cranberry components, and effects of cranberry components on lipopolysaccharide-stimulated NF-κB activation and IL-6 and MMP-3 production. AgP fibroblasts were incubated ≤ 6 d with high molecular weight non-dialyzable material (NDM) (derived from cranberry juice (1-500 μg/mL) or lipopolysaccharide (1 μg/mL) ± NDM. Membrane damage and viability were assessed by enzyme activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Secreted IL-6 and MMP-3 were measured by ELISA. NF-κB p65 was measured via binding to an oligonucleotide containing the NF-κB consensus site. Data were analyzed using analysis of variance and Scheffe's F procedure for post hoc comparisons. Short-term exposure to NDM, or lipopolysaccharide ± NDM caused no membrane damage. NDM (≤ 100 μg/mL) or lipopolysaccharide ± NDM had no effect on viability ≤ 7 d exposure. NDM (50 μg/mL) inhibited lipopolysaccharide-stimulated p65 (P ≤ 0.003) and constitutive or lipopolysaccharide-stimulated MMP-3 (P ≤ 0.02). NDM increased AgP fibroblast constitutive or lipopolysaccharide-stimulated IL-6 (P ≤ 0.0001), but inhibited normal human gingival fibroblast IL-6 (P ≤ 0.01). Lack of toxicity of low NDM concentrations, and its inhibition of NF-κB and MMP-3, suggest that cranberry components may regulate AgP fibroblast inflammatory responses. Distinct effects of NDM on AgP and gingival fibroblast production of IL-6 (which can have both positive and negative effects on bone metabolism) may reflect phenotypic differences in IL-6 regulation in the two cell types. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wu, Tong; Yu, Gui-Yuan; Xiao, Jia; Yan, Chang; Kurihara, Hiroshi; Li, Yi-Fang; So, Kwok-Fai; He, Rong-Rong
2018-04-19
Efficacy and safety assessments are essential thresholds for drug candidates from preclinical to clinical research. Conventional mammalian in vivo models cannot offer rapid pharmacological and toxicological screening, whereas cell-based or cell-free in vitro systems often lead to inaccurate results because of the lack of physiological environment. Within the avian species, gallus gallus is the first bird to have its genome sequencing. Meantime, chick embryo is an easily operating, relatively transparent and extensively accessible model, whose physiological and pathological alterations can be visualized by egg candler, staining and image technologies. These features facilitate chick embryo as a high-throughput screening platform bridging in vivo and in vitro gaps in the pharmaceutical research. Due to the complicated ingredients and multiple-targets natures of traditional Chinese medicine (TCM), testing the efficacy and safety of TCM by in vitro methods are laborious and inaccurate, while testing in mammalian models consume massive cost and time. As such, the productive living organism chick embryo serves as an ideal biological system for pharmacodynamics studies of TCM. Herein, we comprehensively update recent progresses on the specialty of chick embryo in evaluation of efficacy and toxicity of drugs, with special concerns of TCM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanisms for the development of esophageal atresia.
Orford, J; Manglick, P; Cass, D T; Tam, P P
2001-07-01
There is no universally accepted theory to explain esophageal embryology and the abnormal development that produces esophageal atresia. The impact of Adriamycin administration on the pathogenesis of esophageal atresia was studied in the rat model of VATER association, from embryonic day (ED) 10 to ED 13. Tissues in the ED10 Adriamycin-exposed embryos displayed less cell proliferation as shown by the reduced population of MIB-5-labelled cells. Cell apoptosis that is characteristic of the normal ED 12 lateral epithelial folds of the foregut (the prospective site of tracheoesophageal septation) was absent in the foregut of the Adriamycin-exposed embryo. Histologic examination of the ED 11-exposed embryo showed the presence of abnormal notochord that was stretched, split, or tethered to the foregut. This contrasts with the normal embryo in which the notochord was localized in close vicinity of the ventral part of the neural tube and separated from the foregut by ample amount of mesenchyme. The abnormal localization of the notochord was accompanied by the lack of down-regulation of the sonic hedgehog (Shh) activity in the prospective site of future tracheoesophageal separation in the exposed ED 12 embryo. The authors proposed that the ectopic location of the notochord leads to the disruption in Shh signalling that may underpin the development of esophageal atresia. Copyright 2001 by W.B. Saunders Company.
Cnidarian-like embryos associated with the first shelly fossils in Siberia
NASA Astrophysics Data System (ADS)
Kouchinsky, Artem; Bengtson, Stefan; Gershwin, Lisa-Ann
1999-07-01
Phosphatized spheroids, ˜0.5 mm in diameter, in the Lower Cambrian Manykay Formation at the Bol'shaya Kuonamka River in northern Sakha (Yakutia) are interpreted as cnidarian embryos of late developmental stages. One of the poles has a double cross-like structure, consisting of two sets of four bands each. The bands of the upper set radiate at 90° from each other; those of the lower set also radiate at about right angles from each other, but the set is rotated 45° in respect to the upper set. Although there is a resemblance to the cross-like arrangements of cells in pregastrulation spiralian eggs, in particular those of annelids, the combined evidence favors an interpretation of the bands as incipient tentacles of a cnidarian actinula larva. The embryos occur with one of the first assemblages of shelly fossils in northern Siberia, that of the Angustiochrea lata zone. The co-occurring shelly fossils, anabaritids, probably also represent the phylum Cnidaria, but because their tubes have a consistent triradial symmetry, the connection with the tetraradially symmetrical embryos is problematic. The size of the embryos suggests that they are nonplanktotrophic, and the presence of actinula-like features suggests the lack of a free planula stage.
The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells.
Tocco, Vincent J; Li, Yuan; Christopher, Keith G; Matthews, James H; Aggarwal, Varun; Paschall, Lauren; Luesch, Hendrik; Licht, Jonathan D; Dickinson, Richard B; Lele, Tanmay P
2018-02-01
Actomyosin stress fibers impinge on the nucleus and can exert compressive forces on it. These compressive forces have been proposed to elongate nuclei in fibroblasts, and lead to abnormally shaped nuclei in cancer cells. In these models, the elongated or flattened nuclear shape is proposed to store elastic energy. However, we found that deformed shapes of nuclei are unchanged even after removal of the cell with micro-dissection, both for smooth, elongated nuclei in fibroblasts and abnormally shaped nuclei in breast cancer cells. The lack of shape relaxation implies that the nuclear shape in spread cells does not store any elastic energy, and the cellular stresses that deform the nucleus are dissipative, not static. During cell spreading, the deviation of the nucleus from a convex shape increased in MDA-MB-231 cancer cells, but decreased in MCF-10A cells. Tracking changes of nuclear and cellular shape on micropatterned substrata revealed that fibroblast nuclei deform only during deformations in cell shape and only in the direction of nearby moving cell boundaries. We propose that motion of cell boundaries exert a stress on the nucleus, which allows the nucleus to mimic cell shape. The lack of elastic energy in the nuclear shape suggests that nuclear shape changes in cells occur at constant surface area and volume. © 2017 Wiley Periodicals, Inc.
Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation.
Zhao, Haotian; Yang, Tianyu; Madakashira, Bhavani P; Thiels, Cornelius A; Bechtle, Chad A; Garcia, Claudia M; Zhang, Huiming; Yu, Kai; Ornitz, David M; Beebe, David C; Robinson, Michael L
2008-06-15
The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.
Cascales-Miñana, Borja; Muñoz-Bertomeu, Jesús; Flores-Tornero, María; Anoman, Armand Djoro; Pertusa, José; Alaiz, Manuel; Osorio, Sonia; Fernie, Alisdair R.; Segura, Juan; Ros, Roc
2013-01-01
This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular development. The expression of PSP1 in the tapetum at critical stages of microspore development suggests that PSP1 activity in this cell layer is essential in pollen development. In addition to embryo death and male sterility, conditional psp1 mutants displayed a short-root phenotype, which was reverted in the presence of Ser. A metabolomic study demonstrated that the PPSB plays a crucial role in plant metabolism by affecting glycolysis, the tricarboxylic acid cycle, and the biosynthesis of amino acids. We provide evidence of the crucial role of the PPSB in embryo, pollen, and root development and suggest that this pathway is an important link connecting primary metabolism with development. PMID:23771893
Application of microfluidic technologies to human assisted reproduction
Takayama, Shuichi
2017-01-01
Abstract Microfluidics can be considered both a science and a technology. It is defined as the study of fluid behavior at a sub-microliter level and the investigation into its application to cell biology, chemistry, genetics, molecular biology and medicine. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. The mechanical and biochemical characteristics of microfluidics may also have practical and/or technical application(s) to assisted reproductive technologies (ART) in rodents, domestic species, endangered species and humans. This review will consider data in mammals, and when available humans, addressing the potential application(s) of microfluidics to assisted reproduction. There are numerous sequential steps in the clinical assisted reproductive laboratory process that work, yet could be improved. Cause and effect relations of procedural inefficiencies can be difficult to identify and/or remedy. Data will be presented that consider microfluidic applications to sperm isolation, oocyte cumulus complex isolation, oocyte denuding, oocyte mechanical manipulation, conventional insemination, intracytoplasmic sperm injection, embryo culture, embryo analysis and oocyte and embryo cryopreservation. While these studies have progressed in animal models, data with human gametes and embryos are significantly lacking. These data from clinical trials are requisite for making future evidence-based decisions regarding the application of microfluidics in human ART. PMID:28130394
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
The importance of perivitelline fluid convection to oxygen uptake of Pseudophryne bibronii eggs.
Mueller, Casey A; Seymour, Roger S
2011-01-01
The ciliated epithelium of amphibian embryos produces a current within the perivitelline fluid of the egg that is important in the convective transfer of oxygen to the embryo's surface. The effects of convection on oxygen uptake and the immediate oxygen environment of the embryo were investigated in Pseudophryne bibronii. Gelatin was injected into the eggs, setting the perivitelline fluid and preventing convective flow. Oxygen consumption rate (M(.)o₂) and the oxygen partial pressure (Po₂) of the perivitelline fluid were measured in eggs with and without this treatment. M(.)o₂ decreased in eggs without convection at Gosner stages 17-19 under normoxia. The lack of convection also shifted embryos from regulators to conformers as environmental Po₂ decreased. A strong Po₂ gradient formed within the eggs when convection was absent, demonstrating that the loss of convection is equivalent to decreasing the inner radius of the capsule, an important factor in gas exchange, by 25%. M(.)o₂ also declined in stage 26-27 embryos without cilia-driven convection, although not to the extent of younger stages, because of muscular movements and a greater skin surface area in direct contact with the inner capsule wall. This study demonstrates the importance of convective flow within the perivitelline fluid to gas exchange. Convection is especially important in the middle of embryonic development, when the perivitelline space has formed, creating a barrier to gas exchange, but the embryos have yet to develop muscular movements or have a large surface area exposed directly to the jelly capsule.
On the mechanism for PPAR agonists to enhance ABCA1 gene expression
Ogata, Masaki; Tsujita, Maki; Hossain, Mohammad Anwar; Akita, Nobukatsu; Gonzalez, Frank J.; Staels, Bart; Suzuki, Shogo; Fukutomi, Tatsuya; Kimura, Genjiro; Yokoyama, Shinji
2009-01-01
Expression of ATP binding cassette transporter A1 (ABCA1), a major regulator of high density lipoprotein (HDL) biogenesis, is known to be up-regulated by the transcription factor liver X receptor (LXR) α, and expression is further enhanced by activation of the peroxisome proliferator activated receptors (PPARs). We investigated this complex regulatory network using specific PPAR agonists: four fibrates (fenofibrate, bezafibrate, gemfibrozil and LY518674), a PPAR δ agonist (GW501516) and a PPAR γ agonist (pioglitazone). All of these compounds increased the expression of LXRs, PPARs and ABCA1 mRNAs, and associated apoA-I-mediated lipid release in THP-1 macrophage, WI38 fibroblast and mouse fibroblast. When mouse fibroblasts lacking expression of PPAR α were examined, the effects of fenofibrate and LY518674 were markedly diminished while induction by other ligands were retained. The PPAR α promoter was activated by all of these compounds in an LXR α-dependent manner, and partially in a PPAR α-dependent manner, in mouse fibroblast. The LXR responsive element (LXRE)-luciferase activity was enhanced by all the compounds in an LXR α-dependent manner in mouse fibroblast. This activation was exclusively PPAR α-dependent by fenofibrate and LY518674, but nonexclusively by the others. We conclude that PPARs and LXRs are involved in the regulation of ABCA1 expression and HDL biogenesis in a cooperative signal transduction pathway. PMID:19201410
IL-11 is a crucial determinant of cardiovascular fibrosis
Schafer, Sebastian; Viswanathan, Sivakumar; Widjaja, Anissa A.; Lim, Wei-Wen; Moreno-Moral, Aida; DeLaughter, Daniel M.; Ng, Benjamin; Patone, Giannino; Chow, Kingsley; Khin, Ester; Tan, Jessie; Chothani, Sonia P.; Ye, Lei; Rackham, Owen J. L.; Ko, Nicole S. J.; Sahib, Norliza E.; Pua, Chee Jian; Zhen, Nicole T. G.; Xie, Chen; Wang, Mao; Maatz, Henrike; Lim, Shiqi; Saar, Kathrin; Blachut, Susanne; Petretto, Enrico; Schmidt, Sabine; Putoczki, Tracy; Guimarães-Camboa, Nuno; Wakimoto, Hiroko; van Heesch, Sebastiaan; Sigmundsson, Kristmundur; Lim, See L.; Soon, Jia L.; Chao, Victor T. T.; Chua, Yeow L.; Tan, Teing E.; Evans, Sylvia M.; Loh, Yee J.; Jamal, Muhammad H.; Ong, Kim K.; Chua, Kim C.; Ong, Boon-Hean; Chakaramakkil, Mathew J.; Seidman, Jonathan G.; Seidman, Christine E.; Hubner, Norbert; Sin, Kenny Y. K.; Cook, Stuart A.
2018-01-01
Fibrosis is a common pathology in cardiovascular disease1. In the heart, fibrosis causes mechanical and electrical dysfunction1,2 and in the kidney, it predicts the onset of renal failure3. Transforming growth factor β1 (TGFβ1) is the principal pro-fibrotic factor4,5, but its inhibition is associated with side effects due to its pleiotropic roles6,7. We hypothesized that downstream effectors of TGFβ1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging–genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFβ1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases. PMID:29160304
Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher A M; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D
2015-11-01
Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.
Sullivan, Kelly G.; Levin, Michael
2016-01-01
Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alahuhta, Ilkka; Medical Research Center, Oulu University Hospital, Oulu; Aikio, Mari
The turnover of extracellular matrix liberates various cryptic molecules with novel biological activities. Endostatin is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of collagen XVIII. Although there are a large number of studies on its anti-tumor effects, the molecular mechanisms are not yet completely understood, and the reasons why endostatin has not been successful in clinical trials are unclear. Research has mostly focused on its anti-angiogenic effect in tumors. Here, we aimed to elucidate how endostatin affects the behavior of aggressive tongue HSC-3 carcinoma cells that were transfected to overproduce endostatin. Endostatin inhibited the invasion ofmore » HSC-3 cells in a 3D collagen–fibroblast model. However, it had no effect on invasion in a human myoma organotypic model, which lacks vital fibroblasts. Recombinant endostatin was able to reduce the Transwell migration of normal fibroblasts, but had no effect on carcinoma associated fibroblasts. Surprisingly, endostatin increased the proliferation and decreased the apoptosis of cancer cells in organotypic models. Also subcutaneous tumors overproducing endostatin grew bigger, but showed less local invasion in nude mice xenografts. We conclude that endostatin affects directly to HSC-3 cells increasing their proliferation, but its net effect on cancer invasion seem to depend on the cellular composition and interactions of tumor microenvironment. - Highlights: • Endostatin affects not only angiogenesis, but also carcinoma cells and fibroblasts. • Endostatin increased carcinoma cell proliferation, but decreased 3D invasion. • The invasion inhibitory effect was sensitive to the microenvironment composition. • Fibroblasts may be a factor regulating the fluctuating roles of endostatin.« less
Triptonide inhibits the pathological functions of gastric cancer-associated fibroblasts.
Wang, Zhenfei; Ma, Daguang; Wang, Changshan; Zhu, Zhe; Yang, Yongyan; Zeng, Fenfang; Yuan, Jianlong; Liu, Xia; Gao, Yue; Chen, Yongxia; Jia, Yongfeng
2017-12-01
Direct attacks on tumour cells with chemotherapeutic drugs have the drawbacks of accelerating tumour metastasis and inducing tumour stem cell phenotypes. Inhibition of tumour-associated fibroblasts, which provide nourishment and support to tumour cells, is a novel and promising anti-tumour strategy. However, effective drugs against tumour-associated fibroblasts are currently lacking. In the present study, we explored the possibility of inhibiting the pathological functions of tumour-associated fibroblasts with triptonide. Paired gastric normal fibroblasts (GNFs) and gastric cancer-associated fibroblasts (GCAFs) were obtained from resected tissues. GCAFs showed higher capacities to induce colony formation, migration, and invasion of gastric cancer cells than GNFs. Triptonide treatment strongly inhibited the colony formation-, migration-, and invasion-promoting capacities of GCAFs. The expression of microRNA-301a was higher and that of microRNA-149 was lower in GCAFs than in GNFs. Triptonide treatment significantly down-regulated microRNA-301a expression and up-regulated microRNA-149 expression in GCAFs. Re-establishment of microRNA expression balance increased the production and secretion of tissue inhibitor of metalloproteinase 2, a tumour suppressive factor, and suppressed the production and secretion of IL-6, an oncogenic factor, in GCAFs. Moreover, triptonide treatment abolished the ability of GCAFs to induce epithelial-mesenchymal transition in gastric cancer cells. These results indicate that triptonide inhibits the malignancy-promoting capacity of GCAFs by correcting abnormalities in microRNA expression. Thus, triptonide is a promisingly therapeutic agent for gastric cancer treatment, and traditional herbs may be a valuable source for developing new drugs that can regulate the tumour microenvironment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gao, Beixue; Calhoun, Karen; Fang, Deyu
2006-01-01
The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.
Gao, Beixue; Calhoun, Karen; Fang, Deyu
2006-01-01
The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1β activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1β-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1β-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1β and TNF-α induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA. PMID:17105652
Hall, Vanessa Jane; Hyttel, Poul
2014-09-01
To date, it has been difficult to establish bona fide porcine embryonic stem cells (pESC) and stable induced pluripotent stem cells. Reasons for this remain unclear, but they may depend on inappropriate culture conditions. This study reports the most insights to date on genes expressed in the pluripotent cells of the porcine embryo, namely the inner cell mass (ICM), the trophectoderm-covered epiblast (EPI), and the embryonic disc epiblast (ED). Specifically, we reveal that the early porcine ICM represents a premature state of pluripotency due to lack of translation of key pluripotent proteins, and the late ICM enters a transient, reticent pluripotent state which lacks expression of most genes associated with pluripotency. We describe a unique expression profile of the porcine EPI, reflecting the naive stem cell state, including expression of OCT4, NANOG, CRIPTO, and SSEA-1; weak expression of NrOB1 and REX1; but very limited expression of genes in classical pathways involved in regulating pluripotency. The porcine ED, reflecting the primed stem cell state, can be characterized by the expression of OCT4, NANOG, SOX2, KLF4, cMYC, REX1, CRIPTO, and KLF2. Further cell culture experiments using inhibitors against FGF, JAK/STAT, BMP, WNT, and NODAL pathways on cell cultures derived from day 5 and 10 embryos reveal the importance of FGF, JAK/STAT, and BMP signaling in maintaining cell proliferation of pESCs in vitro. Together, this article provides new insights into the regulation of pluripotency, revealing unique stem cell states in the different porcine stem cell populations derived from the early developing embryo.
Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M
2017-07-01
Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L -1 . GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L -1 , 21.8 μg naphthalene L -1 , and 34.1 μg chrysene L -1 . This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maione, Anna G.; Brudno, Yevgeny; Stojadinovic, Olivera; Park, Lara K.; Smith, Avi; Tellechea, Ana; Leal, Ermelindo C.; Kearney, Cathal J.; Veves, Aristidis; Tomic-Canic, Marjana; Mooney, David J.
2015-01-01
Diabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing. To address this need for realistic wound-healing models, we established patient-derived fibroblasts from DFUs and site-matched controls and used them to construct three-dimensional (3D) models of chronic wound healing. Incorporation of DFU-derived fibroblasts into these models accurately recapitulated the following key aspects of chronic ulcers: reduced stimulation of angiogenesis, increased keratinocyte proliferation, decreased re-epithelialization, and impaired extracellular matrix deposition. In addition to reflecting clinical attributes of DFUs, the wound-healing potential of DFU fibroblasts demonstrated in this suite of models correlated with in vivo wound closure in mice. Thus, the reported panel of 3D DFU models provides a more biologically relevant platform for elucidating the cell–cell and cell–matrix-related mechanisms responsible for chronic wound pathogenesis and may improve translation of in vitro findings into efficacious clinical applications. PMID:25343343
Creating and Selling Embryos for “Donation”: Ethical Challenges
Klitzman, Robert; Sauer, Mark V.
2015-01-01
The commercial creation and sale of embryos has begun, posing a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, firstly, regarding the rights of the unborn children – their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring will thus never learn that their parents are not their biological parents. Yet, such disclosures – regarding not only one, but both of these biological parents – may be important for these individuals; and lack of this knowledge may impede their physical and psychological health. Secondly, questions surface regarding the fees that providers should charge for embryos, and whether these amounts should vary based on the traits of one or both of the gamete donors. Some prospective parents may seek specific traits in a baby (e.g., height or eye/hair coloring), prompting creation of embryos from two gamete donors who possess these characteristics. Thirdly, ownership of embryos created without an advanced directive by patients poses dilemmas – e.g., disposition of any remaining embryos. Fourthly, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married and procreate. This discussion has several critical implications for future practice, and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists and other physicians about these techniques and practices. Clinicians can refer such patients to Assisted Reproductive Technology specialists, but familiarity with the basic aspects of the issues and complexities involved could aid themselves and their patients Several of these issues can be relatively easily addressed through guidelines from professional associations (e.g., limiting the number of embryos sold from each pair of gamete donors). As creation and sales of embryos will likely spread, consideration of appropriate responses is critical in order to establish standards of care to help the future offspring, and ensure ongoing public trust. PMID:25448512
Creating and selling embryos for "donation": ethical challenges.
Klitzman, Robert; Sauer, Mark V
2015-02-01
The commercial creation and sale of embryos has begun, which poses a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, first, regarding the rights of the unborn children and their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring thus will never learn that their parents are not their biologic parents. Yet, such disclosures, regarding not only one but both of these biologic parents, may be important for these individuals; and a lack of this knowledge may impede their physical and psychological health. Second, questions surface regarding the fees that providers should charge for embryos and whether these amounts should vary based on the traits of 1 or both of the gamete donors. Some prospective parents may seek specific traits in a baby (eg, height or eye/hair coloring), which prompts the creation of embryos from 2 gamete donors who possess these characteristics. Third, ownership of embryos created without an advanced directive by patients poses dilemmas (eg, disposition of any remaining embryos). Fourth, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married, and procreate. This discussion has several critical implications for future practice and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists, and other physicians about these techniques and practices. Clinicians can refer such patients to assisted reproductive technology specialists; however, familiarity with the basic aspects of the issues and complexities involved could aid these providers and their patients Several of these issues can be addressed relatively easily through guidelines from professional associations (eg, limiting the number of embryos sold from each pair of gamete donors). Because creation and sales of embryos will likely spread, consideration of appropriate responses is critical to establish standards of care to help the future offspring, and ensure ongoing public trust. Copyright © 2015 Elsevier Inc. All rights reserved.
Efficient and high yield isolation of myoblasts from skeletal muscle.
Shahini, Aref; Vydiam, Kalyan; Choudhury, Debanik; Rajabian, Nika; Nguyen, Thy; Lei, Pedro; Andreadis, Stelios T
2018-05-24
Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system
Wang, Xiaolong; Yu, Honghao; Lei, Anmin; Zhou, Jiankui; Zeng, Wenxian; Zhu, Haijing; Dong, Zhiming; Niu, Yiyuan; Shi, Bingbo; Cai, Bei; Liu, Jinwang; Huang, Shuai; Yan, Hailong; Zhao, Xiaoe; Zhou, Guangxian; He, Xiaoling; Chen, Xiaoxu; Yang, Yuxin; Jiang, Yu; Shi, Lei; Tian, Xiue; Wang, Yongjun; Ma, Baohua; Huang, Xingxu; Qu, Lei; Chen, Yulin
2015-01-01
Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding. PMID:26354037
Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe
2015-01-01
In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP+) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP+ I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP+ and AP− I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP+ I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP+ I-MEFs. Together with sestrin 1 upregulation, we found that AP+ I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP+ I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP+ phenotype and achieve a quiescent state characterized by a new transcriptional network. PMID:26740745
Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe
2015-01-01
In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP(+)) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP(+) I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP(+) and AP(-) I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP(+) I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP(+) I-MEFs. Together with sestrin 1 upregulation, we found that AP(+) I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP(+) I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP(+) phenotype and achieve a quiescent state characterized by a new transcriptional network.
Filant, Justyna; DeMayo, Franco J; Pru, James K; Lydon, John P; Spencer, Thomas E
2014-01-01
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate luminal epithelial (LE) cell proliferation in the adult mouse uterus. This study tested the hypothesis that FGFR2 has a biological role in postnatal development and function of the uterus by conditionally deleting Fgfr2 after birth using progesterone receptor (Pgr)-Cre mice. Adult Fgfr2 mutant female mice were initially subfertile and became infertile with increasing parity. No defects in uterine gland development were observed in conditional Fgfr2 mutant mice. In the adult, Fgfr2 mutant mice possessed a histologically normal reproductive tract with the exception of the uterus. The LE of the Fgfr2 mutant uterus was stratified, but no obvious histological differences were observed in the glandular epithelium, stroma, or myometrium. Within the stratified LE, cuboidal basal cells were present and positive for basal cell markers (KRT14 and TRP63). Nulliparous bred Fgfr2 mutants contained normal numbers of blastocysts on Day 3.5 postmating, but the number of embryo implantation sites was substantially reduced on Day 5.5 postmating. These results support the idea that loss of FGFR2 in the uterus after birth alters its development, resulting in LE stratification and peri-implantation pregnancy loss.
Graubner, Felix R; Gram, Aykut; Kautz, Ewa; Bauersachs, Stefan; Aslan, Selim; Agaoglu, Ali R; Boos, Alois; Kowalewski, Mariusz P
2017-08-01
In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.
Evans, Roger G.; Manolis, S. Charlie; Webb, Grahame J.; Reina, Richard D.
2017-01-01
Hypoxia within the oviducts maintains embryonic arrest in turtles at the pre-ovipositional stage, which expands the timeframe over which nesting can occur without compromising embryo survival. The arrest can be extended post-oviposition through incubation of eggs in hypoxia. We determined whether crocodilian embryos have this same capacity. We also tested whether increased oxygen availability during incubation alters hatching success. We incubated freshly laid saltwater crocodile (Crocodylus porosus) eggs (N = 83) at 32°C in one of five treatments; control (normoxia; 21% O2), 3-day and 6-day hypoxia (1% O2), or 3-day and 6-day hyperoxia (42% O2). Incubation (approx. 82 days) was then completed in normoxia. There was a significant effect of treatment on survival of embryos through to hatching (p < 0.001). The hypoxic treatments resulted in almost no hatching (6.7% and 0% survival for the 3- and 6-day treatments, respectively), while the hyperoxic and control treatments resulted in normal to high hatching success (86.6%, 100% and 64.2% for the control, 3- and 6-day hyperoxic treatments, respectively). Unlike turtles, hypoxic incubation of crocodile eggs failed to delay development. Our results provide the first experimental evidence that, unlike turtles, crocodiles do not exhibit embryonic arrest when incubated under hypoxic conditions immediately following oviposition. An absence of embryonic arrest is of ecological and evolutionary significance, as it implies that crocodilians lack an ability to avoid adverse environmental conditions through delayed nesting and that, unlike turtles, embryonic arrest may not be a potential explanation for the lack of viviparity in the order Crocodylia. PMID:29308266
Vascular endothelium-specific overexpression of human catalase in cloned pigs
Samuel, M.; Mahan, E.; Padilla, J.; Simmons, G. H.; Arce-Esquivel, A. A.; Bender, S. B.; Whitworth, K. M.; Hao, Y. H.; Murphy, C. N.; Walters, E. M.; Prather, R. S.; Laughlin, M. H.
2012-01-01
The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H2O2), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H2O2 would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT–PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H2O2 in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H2O2 in vasodilation and in the mechanisms underlying vascular health and disease. PMID:21170678
[BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs].
Song, Shaozheng; Zhu, Mengmin; Yuan, Yuguo; Rong, Yao; Xu, Sheng; Chen, Si; Mei, Junyan; Cheng, Yong
2016-03-01
To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.
Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells
Choi, WooJae; Kim, Eunji; Yum, Soo-Young; Lee, ChoongIl; Lee, JiHyun; Moon, JoonHo; Ramachandra, Sisitha; Malaweera, Buddika Oshadi; Cho, JongKi; Kim, Jin-Soo; Kim, SeokJoong; Jang, Goo
2015-01-01
abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle. PMID:26217959
Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning.
Kurome, Mayuko; Fujimura, Tatsuya; Murakami, Hiroshi; Takahagi, Yoichi; Wako, Naohiro; Ochiai, Takashi; Miyazaki, Koji; Nagashima, Hiroshi
2003-01-01
This paper methodologically compares the electro-fusion (EF) and intracytoplasmic injection (ICI) methods, as well as simultaneous fusion/activation (SA) and delayed activation (DA), in somatic nuclear transfer in pigs using fetal fibroblast cells. Comparison of the remodeling pattern of donor nuclei after nuclear transfer by ICI or EF showed that a high rate (80-100%) of premature chromosome condensation occurred in both cases whether or not Ca2+ was present in the fusion medium. Formation of pseudo-pronuclei tended to be lower for nuclear transfer performed by the ICI method (65% vs. 85-97%, p < 0.05). In vitro developmental potential of nuclear transfer embryos reconstructed with IVM oocytes using the EF method was higher than that of those produced by the ICI method (blastocyst formation: 19 vs. 5%, p < 0.05), and it was not improved using in vivo-matured oocytes as recipient cytoplasts. Embryos produced using SA protocol developed to blastocysts with the same degree of efficiency as those produced under the DA protocol (11 vs. 12%). Use of the EF method in conjunction with SA was shown to be an efficient method for producing cloned pigs based on producing a cloned normal pig fetus. However, subtle differences in nuclear remodeling patterns between the SA and DA protocols may imply variations in their nuclear reprogramming efficiency.
Kim, Jae-Yong; Kim, Hak Hyeon; Cho, Kyung-Hyun
2013-06-01
In 2011, dozens of children and pregnant women in Korea died by exposure to sterilizer for household humidifier, such as Oxy(®) and Cefu(®). Until now, however, it remains unknown how the sterilizer affect the human health to cause the acute deaths. To find its toxicity for organ, we investigated the putative toxicity of the sterilizer in the cardiovascular system. The sterilizers, polyhexamethylene guanidine phosphate (PHMG, Cefu(®)), and oligo-[2-(2-ethoxy)-ethoxyethyl)-guanidinium-chloride (PGH, Oxy(®)) were treated to human lipoproteins, macrophages, and dermal fibroblast cells. The PGH and PHMG at normal dosages caused severe atherogenic process in human macrophages, cytotoxic effect, and aging in human dermal cell. Zebrafish embryos, which were exposed to the sterilizer, showed early death with acute inflammation and attenuated developmental speed. All zebrafish exposed to the working concentration of PHMG (final 0.3 %) and PGH (final 10 mM) died within 70 min and displayed acute increases in serum triacylglycerol level and fatty liver induction. The dead zebrafish showed severe accumulation of fibrous collagen in the bulbous artery of the heart with elevation of reactive oxygen species. In conclusion, the sterilizers showed acute toxic effect in blood circulation system, causing by severe inflammation, atherogenesis, and aging, with embryo toxicity.
Miao, Guangxia; Hayashi, Shigeo
2015-03-01
Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.
Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A.; Nash, Piers; Tafuri, Anna; Gertler, Frank B.; Pawson, Tony
2003-01-01
Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated β-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1−/− Nck2−/− embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization. PMID:12808099
Cloning of the short-tailed Gyeongju Donggyeong dog via SCNT: conserving phenotypic inheritance.
Choi, Yoo Bin; Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Setyawan, Erif Maha Nugraha; Lee, Seok Hee; Lee, Byeong Chun
2016-02-01
Somatic cell nuclear transfer is a useful tool to maintain genetic information of animals. The Gyeongju Donggyeong dog is a breed registered as natural monument in Korea. The unique feature of the Donggyeong dog is its tail, as the Donggyeong dog can be classified as either short tailed or tailless. The aim of this study was to preserve the Donggyeong dog's unique feature by cloning. Fibroblasts were obtained from a short-tailed Donggyeong dog. In vivo matured oocytes were enucleated, microinjected with a donor cell and fused electrically. Reconstructed embryos were transferred to six recipient dogs. One surrogate became pregnant, and one short-tailed Donggyeong dog was delivered. This study demonstrated that the phenotype of the Donggyeong dog could be conserved by somatic cell nuclear transfer.
The mammalian homologue of mago nashi encodes a serum-inducible protein.
Zhao, X F; Colaizzo-Anas, T; Nowak, N J; Shows, T B; Elliott, R W; Aplan, P D
1998-01-15
The products of at least 11 maternal effect genes have been shown to be essential for proper germ plasm assembly in Drosophila melanogaster embryos. Here we report the isolation and characterization of the mammalian counterpart for one of these genes (named MAGOH for mago nashi homologue). The predicted amino acid sequence of mouse and human MAGOH are completely identical; MAGOH homologues from the nematode Caenorhabditis elegans and rice grain Oryza sativa also show a remarkable degree of amino acid conservation. MAGOH was mapped to chromosome 1p33-p34 in the human and a syntenic region of chromosome 4 in the mouse. Of note, MAGOH mRNA expression is not limited to germ plasm, but is expressed ubiquitously in adult tissues and can be induced by serum stimulation of quiescent fibroblasts.
[Nuclear transfer of goat somatic cells transgenic for human lactoferrin].
Li, Lan; Shen, Wei; Pan, Qing-Yu; Min, Ling-Jiang; Sun, Yu-Jiang; Fang, Yong-Wei; Deng, Ji-Xian; Pan, Qing-Jie
2006-12-01
Transgenic animal mammary gland bioreactors are being used to produce recombinant proteins with appropriate post-translational modifications, and nuclear transfer of transgenic somatic cells is a more powerful method to produce mammary gland bioreactor. Here we describe efficient gene transfer and nuclear transfer in goat somatic cells. Gene targeting vector pGBC2LF was constructed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene, and the endogenous start condon was replaced by that of human LF gene. Goat fetal fibroblasts were transfected with linearized pGBC2LF and 14 cell lines were positive according to PCR and Southern blot. The transgenic cells were used as donor cells of nuclear transfer, and some of reconstructed embryos could develop to blastocyst in vitro.
An avian cell line designed for production of highly attenuated viruses.
Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker
2009-01-29
Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.
Angiogenic response induced by acellular femoral matrix in vivo
Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico
2005-01-01
We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546
Mesenchymal Cells of the Intestinal Lamina Propria
Powell, D.W.; Pinchuk, I.V.; Saada, J.I.; Chen, Xin; Mifflin, R.C.
2013-01-01
The mesenchymal elements of the intestinal lamina propria reviewed here are the myofibroblasts, fibroblasts, mural cells (pericytes) of the vasculature, bone marrow–derived stromal stem cells, smooth muscle of the muscularis mucosae, and smooth muscle surrounding the lymphatic lacteals. These cells share similar marker molecules, origins, and coordinated biological functions previously ascribed solely to subepithelial myofibroblasts. We review the functional anatomy of intestinal mesenchymal cells and describe what is known about their origin in the embryo and their replacement in adults. As part of their putative role in intestinal mucosal morphogenesis, we consider the intestinal stem cell niche. Lastly, we review emerging information about myofibroblasts as nonprofessional immune cells that may be important as an alarm system for the gut and as a participant in peripheral immune tolerance. PMID:21054163
Cultivation of animal cells in a reticulated vitreous carbon foam.
Kent, B L; Mutharasan, R
1992-02-01
A reticulated vitreous carbon foam (RVCF) was used as a surface to cultivate a model anchorage-dependent animal cell line, 3T6 (mouse embryo fibroblast). This fixed-surface bioreactor provided a low-shear, chemically-inert, and reusable environment for cell growth. An external medium recirculation loop allowed aeration, nutrient monitoring, and medium replacement without disturbing the cells. Optimal flow rates for the attachment and growth phases were determined. Growth rates comparable to static (T-flask and petri dish) cultures and agitated microcarrier cultures were achieved with appropriately high medium recirculation rates. Metabolic parameters were shown to be useful indicators of cell mass, although specific glucose consumption rates were considerably higher for cultures in the RVCF reactor. Oxygen supply was shown to be the most likely limiting factor for scaleup.
The transcriptional landscape of hematopoietic stem cell ontogeny
McKinney-Freeman, Shannon; Cahan, Patrick; Li, Hu; Lacadie, Scott A.; Huang, Hsuan-Ting; Curran, Matthew; Loewer, Sabine; Naveiras, Olaia; Kathrein, Katie L.; Konantz, Martina; Langdon, Erin M.; Lengerke, Claudia; Zon, Leonard I.; Collins, James J.; Daley, George Q.
2012-01-01
Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSC purified from >2500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSC, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource (http://hsc.hms.harvard.edu) will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification. PMID:23122293
Suspended animation in C. elegans requires the spindle checkpoint.
Nystul, Todd G; Goldmark, Jesse P; Padilla, Pamela A; Roth, Mark B
2003-11-07
In response to environmental signals such as anoxia, many organisms enter a state of suspended animation, an extreme form of quiescence in which microscopically visible movement ceases. We have identified a gene, san-1, that is required for suspended animation in Caenorhabditis elegans embryos. We show that san-1 functions as a spindle checkpoint component in C. elegans. During anoxia-induced suspended animation, embryos lacking functional SAN-1 or a second spindle checkpoint component, MDF-2, failed to arrest the cell cycle, exhibited chromosome missegregation, and showed reduced viability. These data provide a model for how a dynamic biological process is arrested in suspended animation.
Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S
2011-06-01
The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.
Friedland-Little, Joshua M; Hoffmann, Andrew D; Ocbina, Polloneal Jymmiel R; Peterson, Mike A; Bosman, Joshua D; Chen, Yan; Cheng, Steven Y; Anderson, Kathryn V; Moskowitz, Ivan P
2011-10-01
The primary cilium is emerging as a crucial regulator of signaling pathways central to vertebrate development and human disease. We identified atrioventricular canal 1 (avc1), a mouse mutation that caused VACTERL association with hydrocephalus, or VACTERL-H. We showed that avc1 is a hypomorphic mutation of intraflagellar transport protein 172 (Ift172), required for ciliogenesis and Hedgehog (Hh) signaling. Phenotypically, avc1 caused VACTERL-H but not abnormalities in left-right (L-R) axis formation. Avc1 resulted in structural cilia defects, including truncated cilia in vivo and in vitro. We observed a dose-dependent requirement for Ift172 in ciliogenesis using an allelic series generated with Ift172(avc1) and Ift172(wim), an Ift172 null allele: cilia were present on 42% of avc1 mouse embryonic fibroblast (MEF) and 28% of avc1/wim MEFs, in contrast to >90% of wild-type MEFs. Furthermore, quantitative cilium length analysis identified two specific cilium populations in mutant MEFS: a normal population with normal IFT and a truncated population, 50% of normal length, with disrupted IFT. Cells from wild-type embryos had predominantly full-length cilia, avc1 embryos, with Hh signaling abnormalities but not L-R abnormalities, had cilia equally divided between full-length and truncated, and avc1/wim embryos, with both Hh signaling and L-R abnormalities, were primarily truncated. Truncated Ift172 mutant cilia showed defects of the distal ciliary axoneme, including disrupted IFT88 localization and Hh-dependent Gli2 localization. We propose a model in which mutation of Ift172 results in a specific class of abnormal cilia, causing disrupted Hh signaling while maintaining L-R axis determination, and resulting in the VACTERL-H phenotype.
Guo, Yong; Li, Hejuan; Wang, Ying; Yan, Xingrong; Sheng, Xihui; Chang, Di; Qi, Xiaolong; Wang, Xiangguo; Liu, Yunhai; Li, Junya; Ni, Hemin
2017-02-01
Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species. First, we optimized the cloning parameters to produce bovine embryos integrated with A-FABP by SCNT, such as applied voltage field strength and pulse duration for electrofusion, morphology and size of donor cells, and number of donor cells passages. Then, bovine fibroblast cells from Qinchuan cattle were transfected with A-FABP and used as donor cells for SCNT. Hybrids of Simmental and Luxi local cattle were selected as the recipient females for A-FABP transgenic SCNT-derived embryos. The results showed that a field strength of 2.5 kV/cm with two 10-μs duration electrical pulses was ideal for electrofusion, and 4-6th generation circular smooth type donor cells with diameters of 15-25 μm were optimal for producing transgenic bovine embryos by SCNT, and resulted in higher fusion (80%), cleavage (73%), and blastocyst (27%) rates. In addition, we obtained two transgenic cloned calves that expressed additional bovine A-FABP gene copies, as detected by PCR-amplified cDNA sequencing. We proposed a set of optimal protocols to produce transgenic SCNT-derived cattle with intragenomic integration of ectopic A-FABP-inherited exon sequences.