Science.gov

Sample records for embryonic cortical cultures

  1. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    PubMed

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn(2+)), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn(2+) concentrations ([Zn(2+)]i) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn(2+)]i and the effect of [Zn(2+)]i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn(2+) chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn(2+)]i. PKA activators and NO generators directly increased [Zn(2+)]i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn(2+) following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn(2+)]i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High yield primary microglial cultures using granulocyte macrophage-colony stimulating factor from embryonic murine cerebral cortical tissue.

    PubMed

    Yu, Adam C; Neil, Sarah E; Quandt, Jacqueline A

    2017-06-15

    Microglia play vital roles in neurotrophic support and modulating immune or inflammatory responses to pathogens or damage/stressors during disease. This study describes the ability to establish large numbers of microglia from embryonic tissues with the addition of granulocyte-macrophage stimulating factor (GM-CSF) and characterizes their similarities to adult microglia examined ex vivo as well as their responses to inflammatory mediators. Microglia were seeded from a primary embryonic mixed cortical suspension with the addition of GM-CSF. Microglial expression of CD45, CD11b, CD11c, MHC class I and II, CD40, CD80, and CD86 was analyzed by flow cytometry and compared to those isolated using different culture methods and to the BV-2 cell line. GM-CSF microglia immunoreactivity and cytokine production was examined in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Our results demonstrate GM-CSF addition during microglial culture yields higher cell numbers with greater purity than conventionally cultured primary microglia. We found that the expression of immune markers by GM-CSF microglia more closely resemble adult microglia than other methods or an immortalized BV-2 cell line. Primary differences amongst the different groups were reflected in their levels of CD39, CD86 and MHC class I expression. GM-CSF microglia produce CCL2, tumor necrosis factor-α, IL-6 and IL-10 following exposure to LPS and alter costimulatory marker expression in response to LPS or IFN-γ. Notably, GM-CSF microglia were often more responsive than the commonly used BV-2 cell line which produced negligible IL-10. GM-CSF cultured microglia closely model the phenotype of adult microglia examined ex vivo. GM-CSF microglia are robust in their responses to inflammatory stimuli, altering immune markers including Iba-1 and expressing an array of cytokines characteristic of both pro-inflammatory and reparative processes. Consequently, the addition of GM-CSF for the culturing of primary

  3. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.

    PubMed

    Tyson, Jennifer A; Goldberg, Ethan M; Maroof, Asif M; Xu, Qing; Petros, Timothy J; Anderson, Stewart A

    2015-04-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.

  4. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells

    PubMed Central

    Tyson, Jennifer A.; Goldberg, Ethan M.; Maroof, Asif M.; Xu, Qing; Petros, Timothy J.; Anderson, Stewart A.

    2015-01-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups – those expressing somatostatin (SST) and those expressing parvalbumin (PV) – are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function. PMID:25804737

  5. Rat Cortical Oligodendrocyte–Embryonic Motoneuron Co-Culture: An In Vitro Axon-Oligodendrocyte Interaction Model

    PubMed Central

    Davis, Hedvika; Gonzalez, Mercedes; Bhargava, Neelima; Stancescu, Maria

    2013-01-01

    Mechanisms that control the differentiation and function of oligodendrocytes in the central nervous system are complex and involve multiple inputs from the surrounding environment, including localized concentrations of growth factors and the extracellular matrix. Dissection and analysis of these inputs are key to understanding the pathology of central nervous system demyelinating diseases such as multiple sclerosis, where the differentiation of myelinating oligodendrocytes from their precursors underlies the remission phase of the disease. In vitro co-culture models provide a mechanism for the study of factors that regulate differentiation of oligodendrocyte precursors but have been difficult to develop due to the complex nature of central nervous system myelination. This study describes development of an in vitro model that merges a defined medium with a chemically modified substrate to study aspects of myelination in the central nervous system. We demonstrate that oligodendrocyte precursors co-cultured with rat embryonic motoneurons on non-biological substrate (diethylenetriamine trimethoxy-silylpropyldiethylenetriamine), can be induced to differentiate into mature oligodendrocytes that express myelin basic protein, using a serum-free medium. This defined and reproducible model of in vitro myelination could be a valuable tool for the development of treatments for demyelinating diseases such as multiple sclerosis. PMID:23493660

  6. Mouse Embryonic Retina Delivers Information Controlling Cortical Neurogenesis

    PubMed Central

    Bonetti, Ciro; Surace, Enrico Maria

    2010-01-01

    The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development [1]. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded [2], the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs) during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal). Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system. PMID:21170332

  7. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  8. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  9. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  10. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  11. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-02

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  12. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells.

    PubMed

    Maroof, Asif M; Keros, Sotirios; Tyson, Jennifer A; Ying, Shui-Wang; Ganat, Yosif M; Merkle, Florian T; Liu, Becky; Goulburn, Adam; Stanley, Edouard G; Elefanty, Andrew G; Widmer, Hans Ruedi; Eggan, Kevin; Goldstein, Peter A; Anderson, Stewart A; Studer, Lorenz

    2013-05-02

    Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.

  13. Organotypic slice culture of embryonic brain tissue.

    PubMed

    Daza, Ray A M; Englund, Chris; Hevner, Robert F

    2007-12-01

    INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.

  14. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  15. FGF SIGNALING EXPANDS EMBRYONIC CORTICAL SURFACE AREA BY REGULATING NOTCH-DEPENDENT NEUROGENESIS

    PubMed Central

    Rash, Brian G.; Lim, H. David; Breunig, Joshua J.; Vaccarino, Flora M.

    2011-01-01

    The processes regulating cortical surface area expansion during development and evolution are unknown. We show that loss of function of all Fibroblast Growth Factor Receptors (FgfR) expressed at the earliest stages of cortical development causes severe deficits in surface area growth by embryonic day (E) 12.5 in the mouse. In FgfR mutants, accelerated production of neurons led to severe loss of radial progenitors and premature termination of neurogenesis. Nevertheless, these mutants showed remarkably little change in cortical layer structure. Birthdating experiments indicated that a greater proportion of layer fates was generated during early neurogenic stages, revealing that FgfR activity normally slows the temporal progression of cortical layer fates. Electroporation of a dominant negative FgfR at E11.5 increased cortical neurogenesis in normal mice—an effect that was blocked by simultaneous activation of the Notch pathway. Together with changes in the expression of Notch pathway genes in FgfR mutant embryos, these findings indicate that Notch lies downstream of FgfR signaling in the same pathway regulating cortical neurogenesis and begin to establish a mechanism for regulating cortical surface expansion. PMID:22031906

  16. Culturing murine embryonic organs: Pros, cons, tips and tricks.

    PubMed

    McClelland, Kathryn S; Bowles, Josephine

    2016-01-01

    There are three established techniques described for ex vivo culture of the early embryonic organs: filter culture, agar block culture and hanging drop culture. Each of these protocols has advantages and disadvantages; here we assess the merits of each approach. Agar block culture has a long history and has been well described. This method results in good embryonic organ morphology. Filter culture has been used to culture a number of different embryonic organs and there are a variety of filter choices available. The key disadvantage of agar-block and filter based culture is that the large amount of media required can make the approach expensive, especially if biologicals such as growth factors are necessary; in addition, using these methods it can be difficult to track particular samples. Hanging drop culture is most commonly used to enable the aggregation of embryonic stem cells into embryoid bodies but it has also been employed for ex vivo organ culture. This method requires only 40μL of media per drop and isolates every organ to a trackable unit. We describe each of these methods and the use of different medias and provide the user with a matrix to help determine the optimal culture method for their needs. Glass-based culture methods required for live imaging are not discussed here. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  18. Development of Scalable Culture Systems for Human Embryonic Stem Cells

    PubMed Central

    Azarin, Samira M.; Palecek, Sean P.

    2009-01-01

    The use of human pluripotent stem cells, including embryonic and induced pluripotent stem cells, in therapeutic applications will require the development of robust, scalable culture technologies for undifferentiated cells. Advances made in large-scale cultures of other mammalian cells will facilitate expansion of undifferentiated human embryonic stem cells (hESCs), but challenges specific to hESCs will also have to be addressed, including development of defined, humanized culture media and substrates, monitoring spontaneous differentiation and heterogeneity in the cultures, and maintaining karyotypic integrity in the cells. This review will describe our current understanding of environmental factors that regulate hESC self-renewal and efforts to provide these cues in various scalable bioreactor culture systems. PMID:20161686

  19. GABA(B) receptors mediate motility signals for migrating embryonic cortical cells.

    PubMed

    Behar, T N; Smith, S V; Kennedy, R T; McKenzie, J M; Maric, I; Barker, J L

    2001-08-01

    During development, postmitotic neurons migrate from germinal regions into the cortical plate (cp), where lamination occurs. In rats, GABA is transiently expressed in the cp, near target destinations for migrating neurons. In vitro GABA stimulates neuronal motility, suggesting cp cells release GABA, which acts as a chemoattractant during corticogenesis. Pharmacological studies indicate GABA stimulates migration via GABA(B)-receptor (GABA(B)-R) activation. Using immunohistochemistry, RT-PCR and Western blotting, we examined embryonic cortical cell expression of GABA(B)-Rs in vivo. At E17, GABA(B)-R1(+) cells were identified in the ventricular zone (vz) and cp. RT-PCR and Western blotting demonstrated the presence of GABA(B)-R1a and GABA(B)-R1b mRNA and proteins. Using immuno- cytochemistry, GABA(B)-R expression was examined in vz and cp cell dissociates before and after migration to GABA in an in vitro chemotaxis assay. GABA-induced migration resulted in an increase of GABA(B)-R(+) cells in the migrated population. While <20% of each starting dissociate was GABA(B)-R(+), >70% of migrated cells were immunopositive. We used a microchemotaxis assay to analyze cp cell release of diffusible chemotropic factor(s). In vitro, cp dissociates induced vz cell migration in a cell density-dependent manner that was blocked by micromolar saclofen (a GABA(B)-R antagonist). HPLC demonstrated cp cells release micromolar levels of GABA and taurine in several hours. Micromolar levels of both molecules stimulated cell migration that was blocked by micromolar saclofen. Thus, migratory cortical cells express GABA(B)-Rs, cp cells release GABA and taurine, and both molecules stimulate cortical cell movement. Together these findings suggest GABA and/or taurine act as chemoattractants for neurons during rat cortical histogenesis via mechanisms involving GABA(B)-Rs.

  20. Dissection and Culture of Mouse Embryonic Kidney.

    PubMed

    Aresh, Bejan; Peuckert, Christiane

    2017-05-17

    The goal of this protocol is to describe a method for the dissection, isolation, and culture of mouse metanephric rudiments. During mammalian kidney development, the two progenitor tissues, the ureteric bud and the metanephric mesenchyme, communicate and reciprocally induce cellular mechanisms to eventually form the collecting system and the nephrons of the kidney. As mammalian embryos grow intrauterine and therefore are inaccessible to the observer, an organ culture has been developed. With this method, it is possible to study epithelial-mesenchymal interactions and cellular behavior during kidney organogenesis. Furthermore, the origin of congenital kidney and urogenital tract malformations can be investigated. After careful dissection, the metanephric rudiments are transferred onto a filter that floats on culture medium and can be kept in a cell culture incubator for several days. However, one must be aware that the conditions are artificial and could influence the metabolism in the tissue. Also, the penetration of test substances could be limited due to the extracellular matrix and basal membrane present in the explant. One main advantage of organ culture is that the experimenter can gain direct access to the organ. This technology is cheap, simple, and allows a large number of modifications, such as the addition of biologically active substances, the study of genetic variants, and the application of advanced imaging techniques.

  1. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity.

    PubMed

    Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M; Dawson, Valina L

    2016-04-06

    Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells or human inducible pluripotent stem cells that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid to FOXG1(+) neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuronal cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and poly(ADP-ribose) polymerase (PARP) (a cell death pathway called parthanatos that is distinct from apoptosis, necroptosis, and other forms of cell death). Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons.

  2. Bilaminar Co-culture of Primary Rat Cortical Neurons and Glia

    PubMed Central

    Meucci, Olimpia

    2011-01-01

    This video will guide you through the process of culturing rat cortical neurons in the presence of a glial feeder layer, a system known as a bilaminar or co-culture model. This system is suitable for a variety of experimental needs requiring either a glass or plastic growth substrate and can also be used for culture of other types of neurons. Rat cortical neurons obtained from the late embryonic stage (E17) are plated on glass coverslips or tissue culture dishes facing a feeder layer of glia grown on dishes or plastic coverslips (known as Thermanox), respectively. The choice between the two configurations depends on the specific experimental technique used, which may require, or not, that neurons are grown on glass (e.g. calcium imaging versus Western blot). The glial feeder layer, an astroglia-enriched secondary culture of mixed glia, is separately prepared from the cortices of newborn rat pups (P2-4) prior to the neuronal dissection. A major advantage of this culture system as compared to a culture of neurons only is the support of neuronal growth, survival, and differentiation provided by trophic factors secreted from the glial feeder layer, which more accurately resembles the brain environment in vivo. Furthermore, the co-culture can be used to study neuronal-glial interactions1. At the same time, glia contamination in the neuronal layer is prevented by different means (low density culture, addition of mitotic inhibitors, lack of serum and use of optimized culture medium) leading to a virtually pure neuronal layer, comparable to other established methods1-3. Neurons can be easily separated from the glial layer at any time during culture and used for different experimental applications ranging from electrophysiology4, cellular and molecular biology5-8, biochemistry5, imaging and microscopy4,6,7,9,10. The primary neurons extend axons and dendrites to form functional synapses11, a process which is not observed in neuronal cell lines, although some cell lines do

  3. LIF-Free Embryonic Stem Cell Culture in Simulated Microgravity

    PubMed Central

    Kawahara, Yumi; Manabe, Tomotaka; Matsumoto, Masaya; Kajiume, Teruyuki; Matsumoto, Masayasu; Yuge, Louis

    2009-01-01

    Background Leukemia inhibitory factor (LIF) is an indispensable factor for maintaining mouse embryonic stem (ES) cell pluripotency. A feeder layer and serum are also needed to maintain an undifferentiated state, however, such animal derived materials need to be eliminated for clinical applications. Therefore, a more reliable ES cell culture technique is required. Methodology/Principal Findings We cultured mouse ES cells in simulated microgravity using a 3D-clinostat. We used feeder-free and serum-free media without LIF. Conclusions/Significance Here we show that simulated microgravity allows novel LIF-free and animal derived material-free culture methods for mouse ES cells. PMID:19626124

  4. Rat embryonic palatal shelves respond to TCDD in organ culture

    SciTech Connect

    Abbott, B.D.; Birnbaum, L.S. )

    1990-05-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specific TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in (3H)TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves.

  5. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells

    PubMed Central

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy. PMID:27904699

  6. Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons.

    PubMed

    Tang, Yunshuo; Stryker, Michael P; Alvarez-Buylla, Arturo; Espinosa, Juan Sebastian

    2014-12-23

    GABAergic inhibition has been shown to play an important role in the opening of critical periods of brain plasticity. We recently have shown that transplantation of GABAergic precursors from the embryonic medial ganglionic eminence (MGE), the source of neocortical parvalbumin- (PV(+)) and somatostatin-expressing (SST(+)) interneurons, can induce a new period of ocular dominance plasticity (ODP) after the endogenous period has closed. Among the diverse subtypes of GABAergic interneurons PV(+) cells have been thought to play the crucial role in ODP. Here we have used MGE transplantation carrying a conditional allele of diphtheria toxin alpha subunit and cell-specific expression of Cre recombinase to deplete PV(+) or SST(+) interneurons selectively and to investigate the contributions of each of these types of interneurons to ODP. As expected, robust plasticity was observed in transplants containing PV(+) cells but in which the majority of SST(+) interneurons were depleted. Surprisingly, transplants in which the majority of PV(+) cells were depleted induced plasticity as effectively as those containing PV(+) cells. In contrast, depleting both cell types blocked induction of plasticity. These findings reveal that PV(+) cells do not play an exclusive role in ODP; SST(+) interneurons also can drive cortical plasticity and contribute to the reshaping of neural networks. The ability of both PV(+) and SST(+) interneurons to induce de novo cortical plasticity could help develop new therapeutic approaches for brain repair.

  7. Dixdc1 is a critical regulator of DISC1 and embryonic cortical development

    PubMed Central

    Singh, Karun K.; Ge, Xuecai; Mao, Yingwei; Drane, Laurel; Meletis, Konstantinos; Samuels, Benjamin A.; Tsai, Li-Huei

    2010-01-01

    Summary The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development, however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discovered to contain a Disheveled-Axin (DIX) domain. We determined that Dixdc1 functionally interacts with DISC1 to regulate neural progenitor proliferation by co-modulating Wnt-GSK3β/β-catenin signaling. However, DISC1 and Dixdc1 do not regulate migration via this pathway. During neuronal migration, we discovered that phosphorylation of Dixdc1 by cyclin-dependent kinase 5 (Cdk5) facilitates its interaction with the DISC1-binding partner Ndel1. Furthermore, Dixdc1 phosphorylation and its interaction with DISC1/Ndel1 in vivo is required for neuronal migration. Together, these data reveal that Dixdc1 integrates DISC1 into Wnt-GSK3β/β-catenin-dependent and -independent signaling pathways during cortical development, and further delineate how DISC1 contributes to neuropsychiatric disorders. PMID:20624590

  8. Reduced Synaptic Vesicle Recycling during Hypoxia in Cultured Cortical Neurons

    PubMed Central

    Fedorovich, Sergei; Hofmeijer, Jeannette; van Putten, Michel J. A. M.; le Feber, Joost

    2017-01-01

    Improvement of neuronal recovery in the ischemic penumbra, an area around the core of a brain infarct with some remaining perfusion, has a large potential for the development of therapy against acute ischemic stroke. However, mechanisms that lead to either recovery or secondary damage in the penumbra largely remain unclear. Recent studies in cultured networks of cortical neurons showed that failure of synaptic transmission (referred to as synaptic failure) is a critical factor in the penumbral area, but the mechanisms that lead to synaptic failure are still under investigation. Here we used a Styryl dye, FM1-43, to quantify endocytosis and exocytosis in cultures of rat cortical neurons under normoxic and hypoxic conditions. Hypoxia in cultured cortical networks rapidly depressed endocytosis and, to a lesser extent, exocytosis. These findings support electrophysiological findings that synaptic failure occurs quickly after the induction of hypoxia, and confirms that the failing processes are at least in part presynaptic. PMID:28261063

  9. The embryonic kidney: isolation, organ culture, immunostaining and RNA interference.

    PubMed

    Davies, Jamie A

    2010-01-01

    Embryonic mouse kidneys develop well in organ culture. This, coupled with the fact that renal organogenesis includes a range of developmental processes, has made cultured kidney rudiments a popular model for the study of organogenesis. Although cultured kidneys do not replicate every event that takes place in vivo, they do allow close observation of events as they happen and they allow easy access for experiments that use drugs, antibodies, exogenous growth factors and interfering RNAs. Renal organ culture therefore offers a much quicker method to address certain problems than would the generation of transgenic mice. Requiring only material from freshly killed healthy animals, it also avoids some ethical problems connected with subjecting living animals to treatments (or the effect of mutations) that are harmful.

  10. Embryonic mouse pre-metatarsal development in organ culture

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.

  11. Embryonic mouse pre-metatarsal development in organ culture

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.

  12. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  13. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  14. Olesoxime protects embryonic cortical neurons from camptothecin intoxication by a mechanism distinct from BDNF

    PubMed Central

    Gouarné, Caroline; Giraudon-Paoli, Marc; Seimandi, Mathieu; Biscarrat, Clotilde; Tardif, Gwenaëlle; Pruss, Rebecca M; Bordet, Thierry

    2013-01-01

    Background and Purpose Olesoxime is a small cholesterol–oxime promoting rat embryonic motor neurons survival in the absence of trophic factors. Because olesoxime can substitute for neurotrophic factors in many situations, and to gain further understanding of its mechanism of action, we wondered if it could prevent neuronal death induced by camptothecin (CPT) and compared its effects with those of brain-derived neurotrophic factor (BDNF). Experimental Approach E17 rat embryonic cortical neurons were treated with olesoxime, BDNF or vehicle and intoxicated with CPT. Caspase-dependent and caspase-independent death pathways along with pro-survival pathways activation were explored. Key Results As previously reported for BDNF, olesoxime dose-dependently delayed CPT-induced cell death. Both compounds acted downstream of p53 activation preventing cytochrome c release and caspases activation. When caspase activation was blocked, both olesoxime and BDNF provided additional neuroprotective effect, potentially through the prevention of apoptosis-inducing factor release from mitochondria. While BDNF activates both the PI3K/Akt and the ERK pathway, olesoxime induced only a late activation of the ERK pathways, which did not seem to play a major role in its neuroprotection against CPT. Rather, our results favour preserved mitochondrial membrane integrity by olesoxime. Conclusions and Implications Albeit different, olesoxime and BDNF mechanisms for neuroprotection converge to preserve mitochondrial function. These findings emphasize the importance of targeting the mitochondria in the process of neurodegeneration. Importantly olesoxime, by mimicking neurotrophin pro-survival activities without impacting PI3K/Akt and ERK signalling, may have greater therapeutic potential in many diseases where neurotrophins were considered as a therapeutic solution. PMID:23278424

  15. Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain

    PubMed Central

    Alvarez-Dolado, Manuel; Calcagnotto, Maria Elisa; Karkar, Kameel M.; Southwell, Derek G.; Jones-Davis, Dorothy M.; Estrada, Rosanne C.; Rubenstein, John L. R.; Alvarez-Buylla, Arturo; Baraban, Scott C.

    2006-01-01

    Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders. PMID:16837585

  16. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  17. Mineralization and growth of cultured embryonic skeletal tissue in microgravity.

    PubMed

    Klement, B J; Spooner, B S

    1999-04-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  18. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  19. Isolation and Culture of Avian Embryonic Valvular Progenitor Cells

    PubMed Central

    Mahler, Gretchen; Gould, Russell; Butcher, Johnathan

    2010-01-01

    Proper formation and function of embryonic heart valves is critical for developmental progression. The early embryonic heart is a U-shaped tube of endocardium surrounded by myocardium. The myocardium secretes cardiac jelly, a hyaluronan-rich gelatinous matrix, into the atrioventricular (AV) junction and outflow tract (OFT) lumen. At stage HH14 valvulogenesis begins when a subset of endocardial cells receive signals from the myocardium, undergo endocardial to mesenchymal transformation (EMT), and invade the cardiac jelly. At stage HH25 the valvular cushions are fully mesenchymalized, and it is this mesenchyme that eventually forms the valvular and septal apparatus of the heart. Understanding the mechanisms that initiate and modulate the process of EMT and cell differentiation are important because of their connection to serious congenital heart defects. In this study we present methods to isolate pre-EMT endocardial and post-EMT mesenchymal cells, which are the two different cell phenotypes of the prevalvular cushion. Pre-EMT endocardial cells can be cultured with or without the myocardium. Post-EMT AV cushion mesenchymal cells can be cultured inside mechanically constrained or stress-free collagen gels. These 3D in vitro models mimic key valvular morphogenic events and are useful for deconstructing the mechanisms of early and late stage valvulogenesis. PMID:21085095

  20. The embryonic development of the cortical plate in reptiles: a comparative study in Emys orbicularis and Lacerta agilis.

    PubMed

    Goffinet, A M

    1983-04-20

    From the earliest stage of its ontogenesis, the mammalian cerebral cortex displays a remarkable cytoarchitectonic organization, with its neurons oriented radially within the cortical plate (CP). It is not known whether this radial organization of cortical neurons is characteristic of every cerebral cortex or whether it reflects a progressive phylogenetic acquisition. In order to study this question, the embryonic development of the cortex has been examined in reptiles, where it is the most primitive. Two species, Emys orbicularis and Lacerta agilis, representative of the two principal reptilian orders (chelonians and squamates), have been studied with histological methods. Golgi impregnation, and electron microscopy. Very similar patterns of cell proliferation, migration, maturation, and synaptogenesis have been observed. However, important species differences are present in the cellular organization of the cortical plate. Whereas in Emys the structure of the cortical plate is rudimentary, in Lacerta it appears well developed and quite reminiscent of its mammalian counterpart. Preliminary comparisons with embryological preparations of Sphenodon and Crocodilus niloticus show that the organization of the cortical plate displays significant variations among the different reptilian groups. The present results suggest that the radial organization of cortical neurons is not an all or nothing phenomenon but has been acquired independently and is thus a case of homoplasy, probably due to convergence (Northcutt, 81). Several possible implications of these findings are discussed and a working hypothesis based on the role of radial glial cells in the formation of cytoarchitectonic patterns (Rakic, '80) is presented.

  1. Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204

    PubMed Central

    Venø, Morten T.; Venø, Susanne T.; Rehberg, Kati; van Asperen, Jessy V.; Clausen, Bettina H.; Holm, Ida E.; Pasterkamp, R. Jeroen; Finsen, Bente; Kjems, Jørgen

    2017-01-01

    The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical folding. These miRNAs were found to target Doublecortin (DCX), known to be involved in neuron migration during cortical folding of gyrencephalic brains. In vivo modulation of miRNA expression in mouse embryos confirmed that miR-34c and miR-204 can control neuronal migration and cortical morphogenesis, presumably by posttranscriptional regulation of DCX. PMID:28232790

  2. BMP4 acts as a dorsal telencephalic morphogen in a mouse embryonic stem cell culture system.

    PubMed

    Watanabe, Momoko; Fung, Ernest S; Chan, Felicia B; Wong, Jessica S; Coutts, Margaret; Monuki, Edwin S

    2016-12-15

    The concept of a morphogen - a molecule that specifies two or more cell fates in a concentration-dependent manner - is paradigmatic in developmental biology. Much remains unknown, however, about the existence of morphogens in the developing vertebrate central nervous system (CNS), including the mouse dorsal telencephalic midline (DTM). Bone morphogenetic proteins (BMPs) are candidate DTM morphogens, and our previous work demonstrated BMP4 sufficiency to induce one DTM cell fate - that of choroid plexus epithelial cells (CPECs) - in a mouse embryonic stem cell (mESC) culture system. Here we used BMP4 in a modified mESC culture system to derive a second DTM fate, the cortical hem (CH). CH and CPEC markers were induced by BMP4 in a concentration-dependent manner consistent with in vivo development. BMP4 concentrations that led to CH fate also promoted markers for Cajal-Retzius neurons, which are known CH derivatives. Interestingly, single BMP4 administrations also sufficed for appropriate temporal regulation of CH, CPEC, and cortical genes, with initially broad and overlapping dose-response profiles that sharpened over time. BMP4 concentrations that yielded CH- or CPEC-enriched populations also had different steady-state levels of phospho-SMAD1/5/8, suggesting that differences in BMP signaling intensity underlie DTM fate choice. Surprisingly, inactivation of the cortical selector gene Lhx2 did not affect DTM expression levels, dose-response profiles, or timing in response to BMP4, although neural progenitor genes were downregulated. These data indicate that BMP4 can act as a classic morphogen to orchestrate both spatial and temporal aspects of DTM fate acquisition, and can do so in the absence of Lhx2.

  3. BMP4 acts as a dorsal telencephalic morphogen in a mouse embryonic stem cell culture system

    PubMed Central

    Watanabe, Momoko; Fung, Ernest S.; Chan, Felicia B.; Wong, Jessica S.; Coutts, Margaret

    2016-01-01

    ABSTRACT The concept of a morphogen – a molecule that specifies two or more cell fates in a concentration-dependent manner – is paradigmatic in developmental biology. Much remains unknown, however, about the existence of morphogens in the developing vertebrate central nervous system (CNS), including the mouse dorsal telencephalic midline (DTM). Bone morphogenetic proteins (BMPs) are candidate DTM morphogens, and our previous work demonstrated BMP4 sufficiency to induce one DTM cell fate – that of choroid plexus epithelial cells (CPECs) – in a mouse embryonic stem cell (mESC) culture system. Here we used BMP4 in a modified mESC culture system to derive a second DTM fate, the cortical hem (CH). CH and CPEC markers were induced by BMP4 in a concentration-dependent manner consistent with in vivo development. BMP4 concentrations that led to CH fate also promoted markers for Cajal–Retzius neurons, which are known CH derivatives. Interestingly, single BMP4 administrations also sufficed for appropriate temporal regulation of CH, CPEC, and cortical genes, with initially broad and overlapping dose-response profiles that sharpened over time. BMP4 concentrations that yielded CH- or CPEC-enriched populations also had different steady-state levels of phospho-SMAD1/5/8, suggesting that differences in BMP signaling intensity underlie DTM fate choice. Surprisingly, inactivation of the cortical selector gene Lhx2 did not affect DTM expression levels, dose-response profiles, or timing in response to BMP4, although neural progenitor genes were downregulated. These data indicate that BMP4 can act as a classic morphogen to orchestrate both spatial and temporal aspects of DTM fate acquisition, and can do so in the absence of Lhx2. PMID:27815243

  4. Stimulation triggers endogenous activity patterns in cultured cortical networks.

    PubMed

    Pasquale, Valentina; Martinoia, Sergio; Chiappalone, Michela

    2017-08-22

    Cultures of dissociated cortical neurons represent a powerful trade-off between more realistic experimental models and abstract modeling approaches, allowing to investigate mechanisms of synchronized activity generation. These networks spontaneously alternate periods of high activity (i.e. network bursts) with periods of quiescence in a dynamic state which recalls the fluctuation of in vivo UP and DOWN states. Network bursts can also be elicited by external stimulation and their spatial propagation patterns tracked by means of multi-channel micro-electrode arrays. In this study, we used rat cortical cultures coupled to micro-electrode arrays to investigate the similarity between spontaneous and evoked activity patterns. We performed experiments by applying electrical stimulation to different network locations and demonstrated that the rank orders of electrodes during evoked and spontaneous events are remarkably similar independently from the stimulation source. We linked this result to the capability of stimulation to evoke firing in highly active and "leader" sites of the network, reliably and rapidly recruited within both spontaneous and evoked bursts. Our study provides the first evidence that spontaneous and evoked activity similarity is reliably observed also in dissociated cortical networks.

  5. [Effects of different culture system of isolating and passage of sheep embryonic stem-like cells].

    PubMed

    Bai, Changming; Liu, Chousheng; Wang, Zhigang; Wang, Xinzhuang

    2008-07-01

    In this research, we use mouse embryonic fibroblasts as feeder layers. To eliminate the influence of serum and mouse embryonic stem cells (ESCs) conditioned medium (ESCCM) on self-renewal of sheep embryonic stem-like cells, knockout serum replacement (KSR) was used to replace serum, then supplanted with ESCCM for the isolation and cloning of sheep embryonic stem-like cells. We found when inner cell masses (ICMs) cultured in the control group with medium supplanted with fetal bovine serum (FBS), sheep ES-like cells could not survive for more than 3 passages. However, sheep embryonic stem-like cells could remain undifferentiated for 5 passages when cultured in the medium that FBS was substituted by KSR. The result indicates that KSR culture system was more suitable for the isolation and cloning of sheep embryonic stem-like cells compared to FBS culture system. Finally we applied medium with 15% KSR as basic medium supplanted with 40% ESCCM as a new culture system to isolate sheep embryonic stem-like cells, we found one embryonic stem-like cell line still maintained undifferentiating for 8 passages, which characterized with a normal and stable karyotype and high expression of alkaline phosphatase. These results suggest that it is suitable to culture sheep ICM in the new culture system with 15% KSR as basic medium and supplanted with 40% ESCCM, which indicated that mouse ES cells might secrete factors playing important roles in promoting sheep ES-like cells' self-renewal.

  6. (-) deprenyl attenuates aluminium induced neurotoxicity in primary cortical cultures.

    PubMed

    Munirathinam, S; Lakshmana, M K; Raju, T R

    1996-06-01

    The role of (-) deprenyl in offering neuroprotection to cortical neurons exposed to Aluminium chloride (AlCl3) was examined. Primary cortical cultures derived from newborn rats were exposed to AlCl3 on 6th day in vitro, at 100,200,400,600,800 and 1000 microM concentrations of AlCl3. After 48 h of AlCl3 exposure, many nerve cell bodies were swollen; a beading of neurites and a disruption of the neuritic network were also observed suggesting neurodegeneration. Lactate dehydrogenase (LDH) efflux increased in a dose-dependent manner (59-120%). (-) Deprenyl co-exposure at concentrations of 10(-7), 10(-8) and 10(-9) M significantly attenuated both the morphological alterations and the LDH efflux induced by AlCl3. This in vitro study has demonstrated that (-) deprenyl can protect neurons from aluminium induced neurotoxicity.

  7. The effects of simulated microgravity on cultured chicken embryonic chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, X. B.; Yang, S. Z.; Li, S. G.; Jiang, P. D.; Lin, Z. H.

    2003-10-01

    Using the cultured chicken embryonic chondrocytes as a model, the effects of simulated microgravity on the microtubular system of the cellular skeleton, extracellular matrix, alkaline phosphatase activity, intracellular free calcium concentration and mitochondrial ATP synthase activity with its oligomycin inhibition rate were studied with a clinostat. The microtubular content was measured by a flow cytometer. The decrease of microtubular content showed the impairment of the cellular skeleton system. Observation on the extracellualr matrix by the scanning electron microscopy showed that it decreased significantly after rotating, and the fibers in the extracellular matrix were more tiny and disorderly than that of the control group. It can be concluded that the simulated microgravity can affect the secreting and assembly of the extracellular matrix. In contrast to the control, there was a time course decrease in alkaline phosphatase activity of chondrocytes, a marker of matrix mineralization. Meanwhile a significant drop in the intracellular calcium concentration happened at the beginning of rotation. These results indicate that simulated microgravity can suppress matrix calcification of cultured chondrocytes, and intracellular free calcium may be involved in the regulation of matrix calcification as the second signal transmitter. No significant changes happened in the mitochondrial ATP synthase activity and its oligomycin inhibition rate. Perhaps the energy metabolism wasn't affected by the simulated microgravity. The possible mechanisms about them were discussed.

  8. Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons.

    PubMed

    Jossin, Yves; Gui, Lanrun; Goffinet, André M

    2007-04-18

    Reelin, the protein defective in reeler mutant mice, plays a key role during brain development. Reelin is processed proteolytically at two sites, and the central fragment mimics function in vitro. Here, we show that processing is functionally important in vivo, a question that could not be addressed in our previous study. New monoclonal antibodies directed against central Reelin block its binding to lipoprotein receptors and perturb cortical development in vitro, confirming the importance of the central fragment that is detected in tissue and body fluids. Processing occurs when Reelin is incubated with embryonic neurons in culture or with their supernatant, but inhibition of processing by a metalloproteinase blocker does not prevent Reelin signaling in neurons. Furthermore, neurons internalize similarly full-length or central Reelin. In contrast, inhibition of processing prevents signaling and perturbs cortical development in cultured embryonic brain slices. Moreover, in vivo, the concentration of central Reelin is dramatically and selectively increased in receptor-deficient tissue, suggesting its specific downregulation after binding to receptors and internalization. We propose that processing by end-migration neurons is required in tissue (where Reelin is likely anchored to the extracellular matrix) to release the central fragment that diffuses locally and signals to target cells, whereas, in vitro, all Reelin forms have indiscriminate access to cells, so that cleavage is not necessary for signaling.

  9. Potentiated necrosis of cultured cortical neurons by neurotrophins.

    PubMed

    Koh, J Y; Gwag, B J; Lobner, D; Choi, D W

    1995-04-28

    The effects of neurotrophins on several forms of neuronal degeneration in murine cortical cell cultures were examined. Consistent with other studies, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 all attenuated the apoptotic death induced by serum deprivation or exposure to the calcium channel antagonist nimodipine. Unexpectedly, however, 24-hour pretreatment with these same neurotrophins markedly potentiated the necrotic death induced by exposure to oxygen-glucose deprivation or N-methyl-D-aspartate. Thus, certain neurotrophins may have opposing effects on different types of death in the same neurons.

  10. Contested embryonic culture in Japan--public discussion, and human embryonic stem cell research in an aging welfare society.

    PubMed

    Sleeboom-Faulkner, Margaret

    2010-01-01

    This article explores the reasons for the lack of a broad discussion on bioethical regulation of human embryonic stem cell research (hESR) in Japan and asks why scientists experience difficulties accessing resources for hESR despite the acclaimed indifference of dominant Japanese culture to embryo research. The article shows how various social actors express their views on the embryo and oocyte donation in terms of dominant Japanese culture, foiled against what is regarded as Western culture. Second, it shows how the lack of concern with hESR should be understood in the context of public health policies and communications and bioethics decision making in Japan. Finally, it interprets the meaning of the embryo in the context of Japan as an aging modern welfare society, explaining how policymakers have come to emphasize the urgency of infertility problems over issues around abortion and embryonic life.

  11. In utero Electroporation followed by Primary Neuronal Culture for Studying Gene Function in Subset of Cortical Neurons

    PubMed Central

    Rice, Heather; Suth, Seiyam; Cavanaugh, William; Bai, Jilin; Young-Pearse, Tracy L.

    2010-01-01

    In vitro study of primary neuronal cultures allows for quantitative analyses of neurite outgrowth. In order to study how genetic alterations affect neuronal process outgrowth, shRNA or cDNA constructs can be introduced into primary neurons via chemical transfection or viral transduction. However, with primary cortical cells, a heterogeneous pool of cell types (glutamatergic neurons from different layers, inhibitory neurons, glial cells) are transfected using these methods. The use of in utero electroporation to introduce DNA constructs in the embryonic rodent cortex allows for certain subsets of cells to be targeted: while electroporation of early embryonic cortex targets deep layers of the cortex, electroporation at late embryonic timepoints targets more superficial layers. Further, differential placement of electrodes across the heads of individual embryos results in the targeting of dorsal-medial versus ventral-lateral regions of the cortex. Following electroporation, transfected cells can be dissected out, dissociated, and plated in vitro for quantitative analysis of neurite outgrowth. Here, we provide a step-by-step method to quantitatively measure neuronal process outgrowth in subsets of cortical cells. The basic protocol for in utero electroporation has been described in detail in two other JoVE articles from the Kriegstein lab 1, 2. We will provide an overview of our protocol for in utero electroporation, focusing on the most important details, followed by a description of our protocol that applies in utero electroporation to the study of gene function in neuronal process outgrowth. PMID:20972409

  12. Human embryonic stem cells: Derivation, culture, and differentiation: A review

    PubMed Central

    Vazin, Tandis; Freed, William J.

    2010-01-01

    The greatest therapeutic promise of human embryonic stem cells (hESC) is to generate specialized cells to replace damaged tissue in patients suffering from various degenerative diseases. However, the signaling mechanisms involved in lineage restriction of ESC to adopt various cellular phenotypes are still under investigation. Furthermore, for progression of hESC-based therapies towards clinical applications, appropriate culture conditions must be developed to generate genetically stable homogenous populations of cells, to hinder possible adverse effects following transplantation. Other critical challenges that must be addressed for successful cell implantation include problems related to survival and functional efficacy of the grafted cells. This review initially describes the derivation of hESC and focuses on recent advances in generation, characterization, and maintenance of these cells. We also give an overview of original and emerging differentiation strategies used to convert hESC to different cell types. Finally, we will discuss transplantation studies of hESC-derived cells with respect to safety and functional recovery. PMID:20714081

  13. Pharmacological Characterization of the Native Store-Operated Calcium Channels of Cortical Neurons from Embryonic Mouse Brain

    PubMed Central

    Chauvet, Sylvain; Jarvis, Louis; Chevallet, Mireille; Shrestha, Niroj; Groschner, Klaus; Bouron, Alexandre

    2016-01-01

    In the murine brain, the first post-mitotic cortical neurons formed during embryogenesis express store-operated channels (SOCs) sensitive to Pyr3, initially proposed as a blocker of the transient receptor potential channel of C type 3 (TRPC3 channel). However, Pyr3 does not discriminate between Orai and TRPC3 channels, questioning the contribution of TRPC3 in SOCs. This study was undertaken to clarify the molecular identity and the pharmacological profile of native SOCs from E13 cortical neurons. The mRNA expression of STIM1-2 and Orai1-3 was assessed by quantitative reverse transcription polymerase chain reaction. E13 cortical neurons expressed STIM1-2 mRNAs, with STIM2 being the predominant isoform. Only transcripts of Orai2 were found but no Orai1 and Orai3 mRNAs. Blockers of Orai and TRPC channels (Pyr6, Pyr10, EVP4593, SAR7334, and GSK-7975A) were used to further characterize the endogenous SOCs. Their activity was recorded using the fluorescent Ca2+ probe Fluo-4. Cortical SOCs were sensitive to the Orai blockers Pyr6 and GSK-7975A, as well as to EVP4593, zinc, copper, and gadolinium ions, the latter one being the most potent SOCs blocker tested (IC50 ∼10 nM). SOCs were insensitive to the TRPC channel blockers Pyr10 and SAR7334. In addition, preventing mitochondrial Ca2+ uptake inhibited SOCs which were unaffected by inhibitors of the Ca2+-independent phospholipase A2. Altogether, Orai2 channels are present at the beginning of the embryonic murine cortico-genesis and form the core component of native SOCs in the immature cortex. This Ca2+ route is likely to play a role in the formation of the brain cortex. PMID:28018223

  14. Signal transfer within a cultured asymmetric cortical neuron circuit

    NASA Astrophysics Data System (ADS)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  15. An efficient and reproducible method to culture Bergmann and cortical radial glia using textured PMMA.

    PubMed

    Álvarez, Zaida; Sena, Elena; Mattotti, Marta; Engel, Elisabeth; Alcántara, Soledad

    2014-07-30

    Radial glia cells comprise the principal population of neural stem cells (NSC) during development. Attempts to develop reproducible radial glia and NSC culture methods have met with variable results, yielding non-adherent cultures or requiring the addition of growth factors. Recent studies demonstrated that a 2-μm patterned poly-methyl methacrylate (ln2 PMMA) grooved scaffold, by mimicking the biophysical and microtopographic properties of the embryonic NSC niche, induces the de-differentiation of glial cells into functional radial glia cells. Here we describe a method for obtaining cultures of adherent Bergmann radial glia (BRG) and cortical radial glia (CRG). The growth substrate is ln2 PMMA and the addition of growth factors is not required. Postnatal glia obtained from mouse cerebellum or cerebral cortex and grown on ln2 PMMA adopted a BRG/CRG phenotype characterized by a bipolar shape, the up-regulation of progenitor markers such as nestin and Sox2, and the down-regulation of vimentin and GFAP. Neurons cultured over the BRG/CRG aligned their processes with those of the glial shafts, thus mimicking the behavior of migrating neuronal cells. The ln2 PMMA culture method offers an ideal system for analyzing both the biochemical factors controlling the neurogenic potential of BRG/CRG and neuronal migration. The ln2 PMMA method is a reproducible system to obtain immature BRG/CRG preparations in vitro. It can be used to study the properties of CNS progenitor cells as well as the interactions between radial glia and neurons, and supports cultured progenitors for use in different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Spaceflight effects on cultured embryonic chick bone cells

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  17. Spaceflight effects on cultured embryonic chick bone cells

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the

  18. [Derivation of germ cells from mouse embryonic stem cells in culture].

    PubMed

    Fuhrmann, G

    2005-10-01

    Mouse embryonic stem cells derive from the inner cell mass of the blastocyst and give rise to the three primitive embryonic layers, which later will form all the different tissue types of an adult. Embryonic stem cells are thus defined as totipotent cells. In vitro, these cells can give rise to all the somatic cells. Different laboratories have now shown that cultured embryonic stem cells can also differentiate into germline cells. By using the transcription factor Oct-4 as a tool for the visualization of germ cells, it has been shown the derivation of oocytes from mouse embryonic stem cells. These works should contribute to various areas, including therapeutic cloning which associates nuclear transfer and selective production of a specific cell type.

  19. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    EPA Science Inventory

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  20. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    EPA Science Inventory

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  1. Selective pharmacological manipulation of cortical-thalamic co-cultures in a dual-compartment device.

    PubMed

    Kanagasabapathi, Thirukumaran T; Franco, Maria; Barone, Rocco Andrea; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J

    2013-03-30

    In this study, we demonstrate capabilities to selectively manipulate dissociated co-cultures of neurons plated in dual-compartment devices. Synaptic receptor antagonists and tetrodotoxin solutions were used to selectively control and study the network-wide burst propagation and cell firing in cortical-cortical and cortical-thalamic co-culture systems. The results show that in cortical-thalamic dissociated co-cultures, burst events initiate in the cortical region and propagate to the thalamic region and the burst events in thalamic region can be controlled by blocking the synaptic receptors in the cortical region. Whereas, in cortical-cortical co-culture system, one of the region acts as a site of burst initiation and facilitate propagation of bursts in the entire network. Tetrodotoxin, a sodium channel blocker, when applied to either of the regions blocks the firing of neurons in that particular region with significant influence on the firing of neurons in the other region. The results demonstrate selective pharmacological manipulation capabilities of co-cultures in a dual compartment device and helps understand the effects of neuroactive compounds on networks derived from specific CNS tissues and the dynamic interaction between them. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Iron Accumulation and Neurotoxicity in Cortical Cultures Treated with Holotransferrin

    PubMed Central

    Chen-Roetling, Jing; Liu, Wenpei; Regan, Raymond F.

    2012-01-01

    Nonheme iron accumulates in CNS tissue after ischemic and hemorrhagic insults, and may contribute to cell loss. The source of this iron has not been precisely defined. After blood-brain barrier disruption, CNS cells may be exposed to plasma concentrations of transferrin-bound iron (TBI), which exceed that in CSF by over 50-fold. In this study, the hypothesis that these concentrations of TBI produce cell iron accumulation and neurotoxicity was tested in primary cortical cultures. Treatment with 0.5-3 mg/ml holotransferrin for 24 hours resulted in loss of 20-40% of neurons, associated with increases in malondialdehyde, ferritin, heme oxygenase-1 and iron; transferrin receptor-1 expression was reduced by about 50%. Deferoxamine, 2,2′-bipyridyl, Trolox, and ascorbate prevented all injury, but apotransferrin was ineffective. Cell TBI accumulation was significantly reduced by deferoxamine, 2,2′-bipyridyl, and apotransferrin, but not by ascorbate or Trolox. After treatment with 55Fe-transferrin, approximately 40% of cell iron was exported within 16 hours. Net export was increased by deferoxamine and 2,2′-bipyridyl, but not by apotransferrin. These results suggest that downregulation of transferrin receptor-1 expression is insufficient to prevent iron-mediated death when neurons are exposed to plasma concentrations of TBI. Chelator therapy may be beneficial for acute CNS injuries associated with loss of blood-brain barrier integrity. PMID:21939754

  3. Active cortical innervation protects striatal neurons from slow degeneration in culture.

    PubMed

    Fishbein, Ianai; Segal, Menahem

    2011-03-01

    Spiny striatal GABAergic neurons receive most of their excitatory input from the neocortex. In culture, striatal neurons form inhibitory connections, but the lack of intrinsic excitatory afferents prevents the development of spontaneous network activity. Addition of cortical neurons to the striatal culture provides the necessary excitatory input to the striatal neurons, and in the presence of these neurons, striatal cultures do express spontaneous network activity. We have confirmed that cortical neurons provide excitatory drive to striatal neurons in culture using paired recording from cortical and striatal neurons. In the presence of tetrodotoxin (TTX), which blocks action potential discharges, the connections between cortical and striatal neurons are still formed, and in fact synaptic currents generated between them when TTX is removed are far larger than in control, undrugged cultures. Interestingly, the continuous presence of TTX in the co-culture caused striatal cell death. These observations indicate that the mere presence of cortical neurons is not sufficient to preserve striatal neurons in culture, but their synchronous activity, triggered by cortical excitatory synapses, is critical for the maintenance of viability of striatal neurons. These results have important implications for understanding the role of activity in neurodegenerative diseases of the striatum.

  4. Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications.

    PubMed

    Lebkowski, J S; Gold, J; Xu, C; Funk, W; Chiu, C P; Carpenter, M K

    2001-01-01

    Human embryonic stem (hES) cells can proliferate extensively in culture and can differentiate into representatives of all three embryonic germ layers in vitro and in vivo. The undifferentiated hES cells have now been cultured for more than 50 passages in vitro, yet maintain a normal karyotype. The hES cells express a series of specific surface antigens, as well as OCT-4 and human telomerase, proteins associated with a pluripotent and immortal phenotype. On differentiation, OCT-4 and human telomerase expression decreases with the emergence of a maturing population of cells. During hES cell differentiation, modulation of the expression of many genes has been evaluated using microarray analysis. To improve the ease, reproducibility, and scalability of hES culture, methods have been developed to propagate the cells in the absence of mouse embryonic cell feeders. hES cells maintained in culture using extracellular matrix factors together with mouse embryonic cell conditioned medium proliferate indefinitely while maintaining a normal karyotype, proliferation rate, and complement of undifferentiated cell markers. hES cells cultured without feeder layers retain their capacity to differentiate into cells of all three germ layers in vitro and in teratomas. The hES cells can also be genetically modified transiently or stably using both plasmid and viral gene transfer agents. These analyses and technological developments will aid in the realization of the full potential of hES cells for both research and therapeutic applications.

  5. Lectin-based Isolation and Culture of Mouse Embryonic Motoneurons

    PubMed Central

    Conrad, Rebecca; Jablonka, Sibylle; Sczepan, Teresa; Sendtner, Michael; Wiese, Stefan; Klausmeyer, Alice

    2011-01-01

    Spinal motoneurons develop towards postmitotic stages through early embryonic nervous system development and subsequently grow out dendrites and axons. Neuroepithelial cells of the neural tube that express Nkx6.1 are the unique precursor cells for spinal motoneurons1. Though postmitotic motoneurons move towards their final position and organize themselves into columns along the spinal tract2,3. More than 90% of all these differentiated and positioned motoneurons express the transcription factors Islet 1/2. They innervate the muscles of the limbs as well as those of the body and the inner organs. Among others, motoneurons typically express the high affinity receptors for brain derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3), the tropomyosin-related kinase B and C (TrkB, TrkC). They do not express the tropomyosin-related kinase A (TrkA)4. Beside the two high affinity receptors, motoneurons do express the low affinity neurotrophin receptor p75NTR. The p75NTR can bind all neurotrophins with similar but lower affinity to all neurotrophins than the high affinity receptors would bind the mature neurotrophins. Within the embryonic spinal cord, the p75NTR is exclusively expressed by the spinal motoneurons5. This has been used to develop motoneuron isolation techniques to purify the cells from the vast majority of surrounding cells6. Isolating motoneurons with the help of specific antibodies (panning) against the extracellular domains of p75NTR has turned out to be an expensive method as the amount of antibody used for a single experiment is high due to the size of the plate used for panning. A much more economical alternative is the use of lectin. Lectin has been shown to specifically bind to p75NTR as well7. The following method describes an alternative technique using wheat germ agglutinin for a preplating procedure instead of the p75NTR antibody. The lectin is an extremely inexpensive alternative to the p75NTR antibody and the purification grades using

  6. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    NASA Astrophysics Data System (ADS)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  7. Genomic instability of human embryonic stem cell lines using different passaging culture methods.

    PubMed

    Tosca, Lucie; Feraud, Olivier; Magniez, Aurélie; Bas, Cécile; Griscelli, Frank; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2015-01-01

    Human embryonic stem cells exhibit genomic instability that can be related to culture duration or to the passaging methods used for cell dissociation. In order to study the impact of cell dissociation techniques on human embryonic stem cells genomic instability, we cultured H1 and H9 human embryonic stem cells lines using mechanical/manual or enzymatic/collagenase-IV dissociation methods. Genomic instability was evaluated at early (p60) passages by using oligonucleotide based array-comparative genomic hybridization 105 K with a mean resolution of 50 Kb. DNA variations were mainly located on subtelomeric and pericentromeric regions with sizes <100 Kb. In this study, 9 recurrent genomic variations were acquired during culture including the well known duplication 20q11.21. When comparing cell dissociation methods, we found no significant differences between DNA variations number and size, DNA gain or DNA loss frequencies, homozygous loss frequencies and no significant difference on the content of genes involved in development, cell cycle tumorigenesis and syndrome disease. In addition, we have never found any malignant tissue in 4 different teratoma representative of the two independent stem cell lines. These results show that the occurrence of genomic instability in human embryonic stem cells is similar using mechanical or collagenase IV-based enzymatic cell culture dissociation methods. All the observed genomic variations have no impact on the development of malignancy.

  8. Totipotent embryonic stem cells arise in ground-state culture conditions.

    PubMed

    Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer; Sharov, Alexei A; Migueles, Rosa Portero; Ko, Minoru S H; Brickman, Joshua M

    2013-06-27

    Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants.

  9. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    PubMed Central

    Morgani, Sophie M.; Canham, Maurice A.; Nichols, Jennifer; Sharov, Alexei A.; Migueles, Rosa Portero; Ko, Minoru S.H.; Brickman, Joshua M.

    2013-01-01

    Summary Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought to represent an embryonically restricted ground state. However, we observed heterogeneous expression of the extraembryonic endoderm marker Hex in 2i-cultured embryos, suggesting that 2i blocked development prior to epiblast commitment. Similarly, 2i ESC cultures were heterogeneous and contained a Hex-positive fraction primed to differentiate into trophoblast and extraembryonic endoderm. Single Hex-positive ESCs coexpressed epiblast and extraembryonic genes and contributed to all lineages in chimeras. The cytokine LIF, necessary for ESC self-renewal, supported the expansion of this population but did not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants. PMID:23746443

  10. Effects of ethanol on embryonic and neonatal rat testes in organ cultures.

    PubMed

    Li, Hui; Kim, Kwan Hee

    2003-01-01

    Ethanol exposure in adult animals and humans has shown to elicit significant inhibitory effects on the function of male reproduction, but consequences of ethanol exposure on the embryonic and early postnatal testis development are not known. The current study investigated the effect of ethanol on embryonic and neonatal testis development using an organ culture technique. In embryonic day 13 (E13) testis organ cultures, ethanol had no effect on the testicular cord formation, the expression of Müllerian-inhibiting substance (MIS) in Sertoli cells or the number of gonocytes. Similarly, in the ethanol-treated embryonic day 18 (E18) testes, both the number of gonocytes and the expression of GATA-4 and MIS were similar to those from the control testes. In contrast, in postnatal day 3 (P3) testes, ethanol at concentrations of 150 and 200 mM significantly decreased the number of gonocytes without affecting the expression of GATA-4 and MIS in Sertoli cells. This effect was shown to be resulting from the enhanced apoptosis of gonocytes. In addition, ethanol abnormally activated retinoic acid receptor alpha (RARalpha), as indicated by increased nuclear localization of RARalpha with increasing doses of ethanol treatment. These observations suggest that the effect of ethanol on testis varies at different stages during embryonic and neonatal testis development. Furthermore, germ cells may be the main target for the action of ethanol on the early postnatal testis.

  11. Maintenance of human embryonic stem cells in animal serum- and feeder layer-free culture conditions.

    PubMed

    Amit, Michal; Itskovitz-Eldor, Joseph

    2006-01-01

    The availability of human embryonic stem cells (hESCs) reflects their outstanding potential for research areas such as human developmental biology, teratology, and cell-based therapies. To allow their continuous growth as undifferentiated cells, isolation and culturing were traditionally conducted on mouse embryonic fibroblast feeder layers, using medium supplemented with fetal bovine serum. However, these conditions allow possible exposure of the cells to animal pathogens. Because both research and future clinical application require an animal-free and well-defined culture system for hESCs, these conventional conditions would prevent the use of hESCs in human therapy. This chapter describes optional culture conditions based on either animal-free or feeder-free culture methods for hESCs.

  12. Detection of teratogenic compounds using differentiating embryonic cells in culture.

    PubMed

    Wilk, A L; Greenberg, J H; Horigan, E A; Pratt, R M; Martin, G R

    1980-04-01

    Methods are described for screening for teratogenic compounds using differentiating neural crest and prechondrogenic limb bud mesenchyme cells in culture. Substances to be tested are either added directly to the culture medium or are combined in a dialysis bag with the postmitochondrial fraction from rat liver and certain cofactors. In the latter case, the compound and its metabolites are gradually released into the medium from the dialysis bag. The results obtained with 14 compounds demonstrate a positive relationship between teratogenicity in vivo and alterations in the growth or the differentiation of the cultured cells.

  13. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  14. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  15. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    PubMed Central

    Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512

  16. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells.

    PubMed

    Akopian, Veronika; Andrews, Peter W; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B; Ludwig, Tenneille E; McKay, Ronald D G; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K W; Pera, Martin F; Rossant, Janet; Stacey, Glyn N; Suemori, Hirofumi

    2010-04-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.

  17. Cortical region-specific engraftment of embryonic stem cell-derived neural progenitor cells restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic-ischemic brain injury.

    PubMed

    Shinoyama, Mizuya; Ideguchi, Makoto; Kida, Hiroyuki; Kajiwara, Koji; Kagawa, Yoshiteru; Maeda, Yoshihiko; Nomura, Sadahiro; Suzuki, Michiyasu

    2013-01-01

    Hypoxic-ischemic encephalopathy (HIE) at birth could cause cerebral palsy (CP), mental retardation, and epilepsy, which last throughout the individual's lifetime. However, few restorative treatments for ischemic tissue are currently available. Cell replacement therapy offers the potential to rescue brain damage caused by HI and to restore motor function. In the present study, we evaluated the ability of embryonic stem cell-derived neural progenitor cells (ES-NPCs) to become cortical deep layer neurons, to restore the neural network, and to repair brain damage in an HIE mouse model. ES cells stably expressing the reporter gene GFP are induced to a neural precursor state by stromal cell co-culture. Forty-hours after the induction of HIE, animals were grafted with ES-NPCs targeting the deep layer of the motor cortex in the ischemic brain. Motor function was evaluated 3 weeks after transplantation. Immunohistochemistry and neuroanatomical tracing with GFP were used to analyze neuronal differentiation and axonal sprouting. ES-NPCs could differentiate to cortical neurons with pyramidal morphology and expressed the deep layer-specific marker, Ctip2. The graft showed good survival and an appropriate innervation pattern via axonal sprouting from engrafted cells in the ischemic brain. The motor functions of the transplanted HIE mice also improved significantly compared to the sham-transplanted group. These findings suggest that cortical region specific engraftment of preconditioned cortical precursor cells could support motor functional recovery in the HIE model. It is not clear whether this is a direct effect of the engrafted cells or due to neurotrophic factors produced by these cells. These results suggest that cortical region-specific NPC engraftment is a promising therapeutic approach for brain repair.

  18. Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture.

    PubMed

    Cossu, G; Eusebi, F; Grassi, F; Wanke, E

    1987-09-01

    The expression and the physiological properties of acetylcholine receptors (AChRs) of mononucleated myogenic cells, isolated from either embryonic or adult muscle of the mouse, have been investigated using the gigaohm seal patch-clamp technique in combination with immunocytochemistry (with an anti-myosin antibody) and alpha-bungarotoxin binding techniques. Undifferentiated (myosin-negative) embryonic myoblasts, grown either in mass culture or under clonal conditions, were found to be unresponsive to ACh and did not bind alpha-bungarotoxin. On the contrary, undifferentiated satellite cells (from adult muscle) exhibited channels activated by ACh and alpha-bungarotoxin binding sites similar to those observed in differentiated (myosin-positive) embryonic myoblasts and myotubes. Two classes of ACh-activated channels with different opening frequencies were identified. The major class of channels had a conductance of about 42 pS and mean open time of 3.1-8.2 msec. The minor class of channels had smaller conductance (about 17 pS) and similar open time. During differentiation, the conductance of the two channels did not change significantly, while channel lifetime became shorter in myotubes derived from satellite cells but not in myotubes derived from embryonic myoblasts. The relative proportion of small over large channels was significantly larger in embryonic than in adult myogenic cells.

  19. Comparison of three embryo culture methods for derivation of human embryonic stem cells from discarded embryos.

    PubMed

    Liu, Ying; Li, Yang; Hwang, Andrew; Wang, Shu-yu; Jia, Chan-wei; Yu, Lan; Li, Jian

    2011-06-01

    Human embryonic stem cells (hESC) are self-renewing and pluripotent cells that hold great promise. Our objective was to compare the effect of three different embryo culture methods for derivation of human embryonic stem cells from discarded embryos. A prospective and randomized trial was conducted using 381 discarded human embryos at days 2-3 postfertilization in Beijing Obstetrics and Gynecology Hospital IVF center. After removal of the zona pellucida, discarded human embryos were cultured by three different methods as multiple embryo aggregates, single embryo, and blastomeres. Outgrowth of embryos and hESC derivation were observed. The outgrowth rate of embryos cultured as multiple embryo aggregates was higher than that of those cultured as single embryos or blastomeres (p < 0.05). Three propagating hESC lines were derived from poor quality day 2-3 postfertilization nonblastocyst embryos cultured as multiple embryo aggregates. Derived hESC lines expressed hESC-specific markers of pluripotency and had normal diploid karyotype. The cells were able to form derivatives of all three germ layers in vivo as teratomas. Our results demonstrate that culturing these discarded embryos as multiple embryo aggregates was more profitable for outgrowth and derivation of ESC line than culturing these as single embryo or blastomeres.

  20. Mouse embryonic stem cell-derived cardiac myocytes in a cell culture dish.

    PubMed

    Glass, Carley; Singla, Reetu; Arora, Anshu; Singla, Dinender K

    2015-01-01

    Embryonic stem (ES) cells are pluripotent stem cells capable of self-renewal and have broad differentiation potential yielding cell types from all three germ layers. In the absence of differentiation inhibitory factors, when cultured in suspension, ES cells spontaneously differentiate and form three-dimensional cell aggregates termed embryoid bodies (EBs). Although various methods exist for the generation of EBs, the hanging drop method offers reproducibility and homogeneity from a predetermined number of ES cells. Herein, we describe the in vitro differentiation of mouse embryonic stem cells into cardiac myocytes using the hanging drop method and immunocytochemistry to identify cardiomyogenic differentiation. In brief, ES cells, placed in droplets on the lid of culture dishes following a 2-day incubation, yield embryoid bodies, which are resuspended and plated. 1-2 weeks following plating of the EBs, spontaneous beating areas can be observed and staining for specific cardiac markers can be achieved.

  1. The role of preparation technique, culture media and incubation time for embryonation of Heterakis gallinarum eggs.

    PubMed

    Püllen, U; Cheat, Sophal; Moors, E; Gauly, M

    2008-01-01

    The importance of preparation technique, culture media and incubation time in the embryonation of the infective egg stages of the intestinal nematode parasite Heterakis gallinarum was studied. Mature H. gallinarum worms were isolated from the caeca of infected chickens and separated by sex. In a first experiment intact female worms were kept for the development of their eggs in four different media (0.5% formalin, 2% formalin, 0.1 N sulphuric acid, 0.1% potassium dichromate) and incubated under constant temperature (20-22 degrees C) for 2, 4, 6 or 8 weeks. Afterwards the body of the worms were ruptured and the numbers of unembryonated and embryonated eggs were determined using a McMaster egg counting chamber, and the percentage of embryonated eggs was calculated. After 8 weeks of incubation in 0.5% formalin, 0.1 N sulphuric acid or 0.1% potassium dichromate 27.6%, 26.7% and 29.4% of the eggs, respectively, embryonated into third stage larvae (p > 0.05). In contrast, incubation in 2% formalin resulted in an embryonation of 18.6% only (p < 0.05). In a second experiment H. gallinarum eggs were directly harvested from worm uteri and cultivated afterwards in different media (2% formalin, 0.1 N sulphuric acid, 0.1% potassium dichromate) at 20 to 22 degrees C for 6 weeks. An incubation of isolated eggs in 2.0% formalin or 0.1% potassium dichromate during 6 weeks resulted in a significantly higher percentage of embryonation in comparison to the incubation of intact worms (first experiment). The results suggest that preparation technique, media and time of incubation has an essential influence on the development rate of H. gallinarum eggs.

  2. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  3. Ghrelin accelerates synapse formation and activity development in cultured cortical networks

    PubMed Central

    2014-01-01

    Background While ghrelin was initially related to appetite stimulation and growth hormone secretion, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of those processes is related to synaptic efficacy and plasticity. Previous studies have shown that ghrelin not only stimulates synapse formation in cultured cortical neurons and hippocampal slices, but also alters some of the electrophysiological properties of neurons in the hypothalamus, amygdala and other subcortical areas. However, direct evidence for ghrelin’s ability to modulate the activity in cortical neurons is not available yet. In this study, we investigated the effect of acylated ghrelin on the development of the activity level and activity patterns in cortical neurons, in relation to its effect on synaptogenesis. Additionally, we quantitatively evaluated the expression of the receptor for acylated ghrelin – growth hormone secretagogue receptor-1a (GHSR-1a) during development. Results We performed electrophysiology and immunohistochemistry on dissociated cortical cultures from neonates, treated chronically with acylated ghrelin. On average 76 ± 4.6% of the cortical neurons expressed GHSR-1a. Synapse density was found to be much higher in ghrelin treated cultures than in controls across all age groups (1, 2 or 3 weeks). In all cultures (control and ghrelin treated), network activity gradually increased until it reached a maximum after approximately 3 weeks, followed by a slight decrease towards a plateau. During early developmental stages (1–2 weeks), the activity was much higher in ghrelin treated cultures and consequently, they reached the plateau value almost a week earlier than controls. Conclusions Acylated ghrelin leads to earlier network formation and activation in cultured cortical neuronal networks, the latter being a possibly consequence of accelerated synaptogenesis. PMID:24742241

  4. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography.

    PubMed

    Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C

    2012-10-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  5. A Novel Approach for Studying the Temporal Modulation of Embryonic Skeletal Development Using Organotypic Bone Cultures and Microcomputed Tomography

    PubMed Central

    Smith, Emma L.; Roberts, Carol A.

    2012-01-01

    Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal

  6. Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system

    PubMed Central

    Abraham, Sheena; Sheridan, Steven D.; Laurent, Louise C.; Albert, Kelsey; Stubban, Christopher; Ulitsky, Igor; Miller, Bradley; Loring, Jeanne F.; Rao, Raj R.

    2010-01-01

    We have developed and validated a microporous poly(ethylene terephthalate) membrane-based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, which allows real-time conditioning of the culture medium with human fibroblasts while maintaining the complete separation of the two cell types. The propagation and pluripotent characteristics of a human embryonic stem cell (hESC) line and a human induced pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder layer. Thus this co-culture system is a significant advance in hPSC culture methods, providing a facile stem cell expansion system with continuous medium conditioning while preventing mixing of hPSCs and feeder cells. This membrane culture method will enable testing of novel feeder cells and differentiation studies using co-culture with other cell types, and will simplify stepwise changes in culture conditions for staged differentiation protocols. PMID:20117095

  7. Establishment of an exogenous LIF-free culture system for mouse embryonic stem cells.

    PubMed

    Feng, Shumei; Mo, Lijuan; Wu, Rongrong; Chen, Xiaopan; Zhang, Ming

    2009-09-01

    Mouse embryonic stem cells (mESCs) have played a key role in the newly emerging fields of stem cell research. The traditional derivation and culture of mESCs have been based on the use of mouse embryonic fibroblasts (MEFs) treated with exogenous leukemia inhibitory factor (LIF). However, the rapid senescence of MEFs, coupled with the high cost of LIF, has significantly hampered the widespread use of mESCs in stem cell research. Thus, we present a novel exogenous LIF-free culture system for general mESCs applications, comprising fibroblast-like cells derived from the rabbit spleen (RSFs). We demonstrated that mESCs cultured on RSFs (mESCs-RSFs) maintained all mESC features after prolonged LIF-free culture, including alkaline phosphatase, cell surface markers (SSEA-1), molecular markers (OCT-4, NANOG, TERT, REX-1), karyotype, and pluripotency. The high expression level of both LIF and WNT3A in the RSFs may account for their ability to maintain mESCs without exogenous LIF. Moreover, this exogenous LIF-free culture system was verified to be of microbiological quality through analysis with electron transmission microscopy.

  8. Ketamine-induced apoptosis in cultured rat cortical neurons

    SciTech Connect

    Takadera, Tsuneo . E-mail: t-takadera@hokuriku-u.ac.jp; Ishida, Akira; Ohyashiki, Takao

    2006-01-15

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons.

  9. [Species and tissue differences of reparative DNA synthesis in embryonic cell cultures treated with carcinogens].

    PubMed

    Budunova, I V; Belitskiĭ, G A

    1982-01-01

    DNA repair synthesis (RS) was studied in embryonic cell cultures exposed to different carcinogenic factors: UV-light, N-methyl-N-nitro-N-nitrosoguanidine, 4-nitroquinoline-1-oxide, aflatoxin BI and 7,12-dimethylbenz(a)anthracene. DNA RS level was shown to be higher in human liver cells than in murine ones. Tissue-dependent differences in DNA RS of cells damaged by carcinogens were found, too. RS-activity was higher in human, mouse and rat fibroblast cultures than in liver cultures of the same species. RS level in human kidney cultures was similar to that in human fibroblasts. The said differences should be taken into account in the evaluation of the results of testing of chemical agents for carcinogenicity, using their ability to cause DNA repair synthesis.

  10. Robust, microfabricated culture devices with improved control over the soluble microenvironment for the culture of embryonic stem cells.

    PubMed

    Macown, Rhys J; Veraitch, Farlan S; Szita, Nicolas

    2014-06-01

    The commercial use of stem cells continues to be constrained by the difficulty and high cost of developing efficient and reliable production protocols. The use of microfabricated systems combines good control over the cellular microenvironment with reduced use of resources in process optimization. Our previously reported microfabricated culture device was shown to be suitable for the culture of embryonic stem cells but required improvements to robustness, ease of use, and dissolved gas control. In this report, we describe a number of improvements to the design of the microfabricated system to significantly improve the control over shear stress and soluble factors, particularly dissolved oxygen. These control improvements are investigated by finite element modeling. Design improvements also make the system easier to use and improve the robustness. The culture device could be applied to the optimization of pluripotent stem cell growth and differentiation, as well as the development of monitoring and control strategies and improved culture systems at various scales.

  11. Robust, microfabricated culture devices with improved control over the soluble microenvironment for the culture of embryonic stem cells

    PubMed Central

    Macown, Rhys J; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The commercial use of stem cells continues to be constrained by the difficulty and high cost of developing efficient and reliable production protocols. The use of microfabricated systems combines good control over the cellular microenvironment with reduced use of resources in process optimization. Our previously reported microfabricated culture device was shown to be suitable for the culture of embryonic stem cells but required improvements to robustness, ease of use, and dissolved gas control. In this report, we describe a number of improvements to the design of the microfabricated system to significantly improve the control over shear stress and soluble factors, particularly dissolved oxygen. These control improvements are investigated by finite element modeling. Design improvements also make the system easier to use and improve the robustness. The culture device could be applied to the optimization of pluripotent stem cell growth and differentiation, as well as the development of monitoring and control strategies and improved culture systems at various scales. PMID:24677785

  12. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model.

    PubMed

    Nguyen, Mai-Dung; Tinney, Joseph P; Ye, Fei; Elnakib, Ahmed A; Yuan, Fangping; El-Baz, Ayman; Sethu, Palaniappan; Keller, Bradley B; Giridharan, Guruprasad A

    2015-02-17

    Hemodynamic mechanical cues play a critical role in the early development and functional maturation of cardiomyocytes (CM). Therefore, tissue engineering approaches that incorporate immature CM into functional cardiac tissues capable of recovering or replacing damaged cardiac muscle require physiologically relevant environments to provide the appropriate mechanical cues. The goal of this work is to better understand the subcellular responses of immature cardiomyocytes using an in vitro cardiac cell culture model that realistically mimics in vivo mechanical conditions, including cyclical fluid flows, chamber pressures, and tissue strains that could be experienced by implanted cardiac tissues. Cardiomyocytes were cultured in a novel microfluidic cardiac cell culture model (CCCM) to achieve accurate replication of the mechanical cues experienced by ventricular CM. Day 10 chick embryonic ventricular CM (3.5 × 10(4) cell clusters per cell chamber) were cultured for 4 days in the CCCM under cyclic mechanical stimulation (10 mmHg, 8-15% stretch, 2 Hz frequency) and ventricular cells from the same embryo were cultured in a static condition for 4 days as controls. Additionally, ventricular cell suspensions and ventricular tissue from day 16 chick embryo were collected and analyzed for comparison with CCCM cultured CM. The gene expressions and protein synthesis of calcium handling proteins decreased significantly during the isolation process. Mechanical stimulation of the cultured CM using the CCCM resulted in an augmentation of gene expression and protein synthesis of calcium handling proteins compared to the 2D constructs cultured in the static conditions. Further, the CCCM conditioned 2D constructs have a higher beat rate and contractility response to isoproterenol. These results demonstrate that early mechanical stimulation of embryonic cardiac tissue is necessary for tissue proliferation and for protein synthesis of the calcium handling constituents required for tissue

  13. Non-invasive metabolomics for improved determination of embryonic sex markers in chemically defined culture medium.

    PubMed

    Gómez, E; Muñoz, M; Simó, C; Ibáñez, C; Carrocera, S; Martín-González, D; Cifuentes, A

    2016-11-25

    Metabolic differences between early male and female embryos can be reflected in culture medium (CM). We used a single bovine embryo culture step (24h) supporting improved birth rates under chemically defined conditions (CDC) to investigate biomarker detection of embryonic sex in contrast to classical BSA-containing medium. In vitro matured slaughterhouse oocytes were fertilized in vitro with a single bull. Embryos were initially cultured in synthetic oviduct fluid with BSA. On day-6, morulae were cultured individually in droplets with (BSA) or without protein (CDC). On day-7, expanded blastocysts were sexed (amelogenin gene amplification) and CM was stored at -145°C until metabolomic analysis by UHPLC-TOF MS. N=10 embryos per group (i.e. male-protein; female-protein; male-non-protein; female-non-protein) were produced. Statistical analysis revealed N=6 metabolites with different concentrations in CM, N=5 in male embryos (methionine, tryptophan, N-stearoyl-valine, biotin and pipecolic acid), N=1 in female embryos (threonine) (P<0.05 in BSA; P<10(-7) in CDC). Only the clear threshold between males and females in CDC allowed correct classification of 100% males and 91% females within 5 out of 6 biomarkers (one female outlier showing the male biomarker profile). The use of CDC represents a critical aspect in the efficient detection of embryonic sex biomarkers by metabolomics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation.

    PubMed

    Gokhale, Paul J; Au-Young, Janice K; Dadi, SriVidya; Keys, David N; Harrison, Neil J; Jones, Mark; Soneji, Shamit; Enver, Tariq; Sherlock, Jon K; Andrews, Peter W

    2015-01-01

    We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal ('Culture Adapted') human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.

  15. Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers

    PubMed Central

    Nie, Ying; Bergendahl, Veit; Hei, Derek J.; Jones, Jeffrey M.; Palecek, Sean P.

    2009-01-01

    As a result of their pluripotency and potential for unlimited self-renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large-scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor-intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel-coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF-microcarriers was less than that on MEF-plates, the doubling time of hESCs on Matrigel-microcarriers was indistinguishable from that of hESCs expanded on Matrigel-coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier-based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. PMID:19197994

  16. Single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method.

    PubMed

    Ellerström, Catharina; Hyllner, Johan; Strehl, Raimund

    2010-01-01

    The routine culture and expansion of human embryonic stem (hES) cells has been and is still posing a challenge to researchers wishing to take advantage of the cells' unique potential. In contrast to mouse embryonic stem cells, hES cells usually have to be expanded by tedious mechanical microdissection or by enzymatic dissociation to cell clusters of a very narrow size range.It is essential to use a culture system that allows the robust and reproducible enzymatic dissociation of viable hES cell cultures to single cells to allow the scale-up of hES cell cultures as well as the application of hES cells in various experiments, such as FACS, electroporation, and clonal selection.By the development of enzyme-based protocols, which are less labor intensive and less time consuming, much progress has been made over the recent years with regard to improved culture systems for hES cell. We have developed a culture system that is based on single cell enzymatic dissociation (SCED) in combination with a highly supportive feeder cell layer of human foreskin fibroblasts (hFFs). The culture system allows defined enzymatic propagation while maintaining the hES cell lines in an undifferentiated, pluripotent, and normal state.In this chapter, we will show how hES cells, which have been derived and passaged by traditional mechanical dissection, can be rapidly adjusted to propagation by enzymatic dissociation to single cells. The protocols we describe are widely applicable and should therefore be of general use for the reliable mass cultivation of hES cells for various experiments.

  17. Characterization of the calcification process modeled in rat embryonic calvarial culture.

    PubMed

    Kimura, Yasuko; Kikunaga, Shigeshi; Takahashi, Ichiro; Hatakeyama, Yuji; Fukumoto, Satoshi; Sasano, Yasuyuki

    2011-01-01

    An organ culture system to model the physiological calcification process was designed using rat embryonic calvaria as a device for analyzing its mechanism. Standardized calvarial explants were dissected from rat embryos aged 18 and 20 days (E18 and E20) and cultured for 1, 3 and 5 days. The calcium content of the cultured explants was quantified by atomic absorption spectrophotometry. Equivalent explants were fixed, embedded in paraffin, sectioned and stained with von Kossa stain combined with hematoxylin-eosin or processed for energy-dispersive X-ray spectroscopy to determine the concentrations of calcium, phosphorus and carbon in the tissue. The total calcium content increased significantly in E18 and E20 cultured calvaria (E18cc and E20cc) over 5 days of culture. All cultured calvaria were von Kossa-positive, whereas the staining was intensified, and sound osteoblasts and osteocytes were observed in the bone matrix only in E18cc during the 5-day culture period. Concentrations of calcium and carbon increased significantly in E18cc over 5 days, whereas E20 showed little increase. Physiological calcification proceeded in E18cc, but not in E20cc. These results indicate that the organ culture system using E18 calvaria is useful for modeling the physiological calcification process in vitro.

  18. Sulfite triggers sustained calcium overload in cultured cortical neurons via a redox-dependent mechanism.

    PubMed

    Wang, Xiao; Cao, Hui; Guan, Xin-Lei; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Fang; Chen, Jian-Guo; Wu, Peng-Fei

    2016-09-06

    Sulfite is a compound commonly used as preservative in foods and pharmaceuticals. Many studies have examined the neurotoxicity of sulfite, but its effect on neuronal calcium homeostasis has not yet been reported. Here, we observed the effect of sulfite on the cytosolic free calcium concentration ([Ca(2+)]i) in cultured cortical neurons using Fura-2/AM based calcium imaging technique. Sulfite (250-1000μM) caused a sustained increase in [Ca(2+)]i in the neurons via a dose-dependent manner. In Ca(2+)-free solution, sulfite failed to increase [Ca(2+)]i. After the depletion of the intracellular calcium store, the effect of sulfite on the [Ca(2+)]i was largely abolished. Pharmacological inhibition of phospholipase C (PLC)-inositol 1,4,5-triphosphate (IP3) signaling pathway blocked sulfite-induced increase of [Ca(2+)]i. Interestingly, antioxidants such as trolox and dithiothreitol, abolished the increase of [Ca(2+)]i induced by sulfite. Exposure to sulfite triggered generation of sulfur- and oxygen-centered free radicals in neurons and increased oxidative stress both in the cultured cortical neurons and the prefrontal cortex of rats. Furthemore, sulfite decreased cell viability in cultured cortical neurons via a calcium-dependent manner. Thus, our current study suggests that the redox-dependent calcium overload triggered by sulfite in cortical neuronsmay be involved in its neurotoxicity.

  19. Purothionin from wheat endosperm reversibly blocks myogenic differentiation of chick embryonic muscle cells in culture

    SciTech Connect

    Kyu Bong Kwak; Young Sup Lee; Se Won Suh; Doo Bong Ha; Chin Ha Chung ); Chin Sang Chung )

    1989-08-01

    Purothionin from wheat endosperm is a cysteine-rich, basic polypeptide of about 5,000 Da, which modifies membrane permeability of cultured mammalian cells. This peptide was found to block fusion of chick embryonic muscle cells in culture but allows proliferation and alignment. A purothionin concentration of 6 {mu}m/ml was necessary for the complete prevention of myotube formation. Under similar conditions, incorporation of ({sup 35}S) methionine occurred normally but the synthesis of muscle-specific proteins including creatin kinase and acetylcholine receptor was strongly inhibited. In addition, purothionin blocked the uptake of {sup 86}Rb{sup +}, immediately after its addition to the cultured myoblasts. These results suggest that purothionin exerts its regulatory effect on the transition from proliferative to differentiative myoblasts by interfering with membrane permeability or intercellular contact and recognition, which are necessary for the initiation of muscle differentiation.

  20. TOPICAL REVIEW: Artificial extracellular matrix for embryonic stem cell cultures: a new frontier of nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Amranul Haque, Md; Nagaoka, Masato; Hexig, Bayar; Akaike, Toshihiro

    2010-02-01

    Nanobiomaterials can play a central role in regenerative medicine and tissue engineering by facilitating cellular behavior and function, such as those where extracellular matrices (ECMs) direct embryonic stem (ES) cell morphogenesis, proliferation, differentiation and apoptosis. However, controlling ES cell proliferation and differentiation using matrices from natural sources is still challenging due to complex and heterogeneous culture conditions. Moreover, the systemic investigation of the regulation of self-renewal and differentiation to lineage specific cells depends on the use of defined and stress-free culture conditions. Both goals can be achieved by the development of biomaterial design targeting ECM or growth factors for ES cell culture. This targeted application will benefit from expansion of ES cells for transplantation, as well as the production of a specific differentiated cell type either by controlling the differentiation in a very specific pathway or by elimination of undesirable cell types.

  1. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  2. Controlled respiratory gas delivery to embryonic renal epithelial explants in perfusion culture.

    PubMed

    Strehl, R; Schumacher, K; Minuth, Will W

    2004-01-01

    During generation of artificial tissues high levels of oxygen are usually available whereas after implantation into a recipient's body the implant is not vascularized immediately, which leads to low oxygen partial pressures within the implanted tissue. Under these conditions cells will experience an oxygen shortage, contrasting with the abundance of oxygen during culture. It is uncertain whether tissues can be trained to tolerate such an acute hypoxic situation so that nonphysiological stress reactions and tissue necrosis can be avoided. To investigate the effects of varying oxygen levels on embryonic renal tissue in vitro we have been developing a model system combining continuous medium renewal with the ability to control levels of oxygen and carbon dioxide by gas equilibration through gas-permeable tubing. Renal embryonic tissue from neonatal rabbit was cultured in serum-free Iscove's modified Dulbecco's medium at 45, 90, 115, and 160 mmHg oxygen partial pressure for 14 days under continuous medium exchange in such a setup. After a 14-day culture period tissue sections were analyzed by cell biological methods and compared with fresh tissue histology. Surprisingly, embryonic renal explants survive and maintain good morphology for 14 days under all O(2) conditions tested. Expression of cytokeratin 19 within the established epithelium remains unchanged, indicating a structurally intact tissue. However, Na/K-ATPase is clearly downregulated under low O(2) conditions, whereas COX-2 expression increases drastically. An antiparallel effect of decreased O(2) concentrations on glycoprotein expression can be demonstrated with the lectin Dolichos biflorus agglutinin. Scanning electron microscopy reveals oxygen-dependent changes in cellular surface differentiation of developed collecting duct epithelium.

  3. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems.

    PubMed

    Desai, Nina; Rambhia, Pooja; Gishto, Arsela

    2015-02-22

    Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.

  4. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    SciTech Connect

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-03-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 {mu}M) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  5. Patenting, morality and human embryonic stem cell science: bioethics and cultural politics in Europe.

    PubMed

    Salter, Brian

    2007-05-01

    As the recent experience of the European Patent Office graphically demonstrates, there is an inherent political tension between the individual ownership rights necessary for the operation of an international market in human embryonic stem cell science and the communal values of the many cultures in which such markets operate. This report examines the basis of the conflict between patenting and morality at national and international levels, the manifestation of those tensions in European patenting policy, and the contribution of bioethics to the attempt by European institutions to develop a governance response.

  6. The Effects of Simulated Micro-gravity on Cultured Chicken Embryonic Chondrocytes

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, X.; Yang, S.; Li, S.; Peidong, J.; Lin, Z.

    T he effects of simulated microgravity on the microtubular system, extracellular matrix, alkaline phosphatase activity, intracellular free calcium concentration, mitochondrial ATP synthase activity and oligomycin inhibition rate of cultured chicken embryonic chondrocytes were studied with a clinostat. The microtubular content decreased. The extracellualr matrix decreased significantly after rotating, and the fibers in the extracellular matrix were more tiny and disorderly. There was a time course decrease in alkaline phosphatase activity of chondrocytes, a marker of matrix mineralization. Meanwhile a significant drop in the intracellular calcium concentration happened at the beginning of rotation. No significant changes happened in the mitochondrial ATP synthase activity and oligomycin inhibition rate. The possible mechanisms about them were discussed.

  7. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    PubMed

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  8. A Single-Cell and Feeder-Free Culture System for Monkey Embryonic Stem Cells

    PubMed Central

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application. PMID:24505480

  9. Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture.

    PubMed

    Pineda, Emma T; Nerem, Robert M; Ahsan, Tabassum

    2013-01-01

    Pluripotent stem cells are attractive candidates as a cell source for regenerative medicine and tissue engineering therapies. Current methods of differentiation result in low yields and impure populations of target phenotypes, with attempts for improved efficiency often comparing protocols that vary multiple parameters. This basic science study focused on a single variable to understand the effects of two-dimensional (2D) versus three-dimensional (3D) culture on directed differentiation. We compared mouse embryonic stem cells (ESCs) differentiated on collagen type I-coated surfaces (SLIDEs), embedded in collagen type I gels (GELs), and in suspension as embryoid bodies (EBs). For a systematic analysis in these studies, key parameters were kept identical to allow for direct comparison across culture configurations. We determined that all three configurations supported differentiation of ESCs and that the kinetics of differentiation differed greatly for cells cultured in 2D versus 3D. SLIDE cultures induced overall differentiation more quickly than 3D configurations, with earlier expression of cytoskeletal and extracellular matrix proteins. For 3D culture as GELs or EBs, cells clustered similarly, formed complex structures and promoted differentiation towards cardiovascular phenotypes. GEL culture, however, also allowed for contraction of the collagen matrix. For differentiation towards fibroblasts and smooth muscle cells which actively remodel their environment, GEL culture may be particularly beneficial. Overall, this study determined the effects of dimensionality on differentiation and helps in the rational design of protocols to generate phenotypes needed for tissue engineering and regenerative medicine. Copyright © 2013 S. Karger AG, Basel.

  10. Regulation of embryonic size in early mouse development in vitro culture system.

    PubMed

    Hisaki, Tomoka; Kawai, Ikuma; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2014-08-01

    Mammals self-regulate their body size throughout development. In the uterus, embryos are properly regulated to be a specific size at birth. Previously, size and cell number in aggregated embryos, which were made from two or more morulae, and half embryos, which were halved at the 2-cell stage, have been analysed in vivo in preimplantation and post-implantation development in mice. Here, we examined whether or not the mouse embryo has the capacity to self-regulate growth using an in vitro culture system. To elucidate embryonic histology, cells were counted in aggregated or half embryos in comparison with control embryos. Both double- and triple-aggregated embryos contained more cells than did control embryos during all culture periods, and the relative growth ratios showed no growth inhibition in an in vitro culture system. Meanwhile, half embryos contained fewer cells than control embryos, but the number grew throughout the culture period. Our data suggest that the growth of aggregated embryos is not affected and continues in an in vitro culture system. On the other hand, the growth of half embryos accelerates and continues in an in vitro culture system. This situation, in turn, implied that post-implantation mouse embryos might have some potential to regulate their own growth and size as seen by using an in vitro culture system without uterus factors. In conclusion, our results indicated that embryos have some ways in which to regulate their own size in mouse early development.

  11. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture.

    PubMed

    Perestrelo, Ana Rubina; Grenha, Ana; Rosa da Costa, Ana M; Belo, José António

    2014-07-01

    Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro

  12. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    NASA Astrophysics Data System (ADS)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  13. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    NASA Astrophysics Data System (ADS)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1

  14. Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures.

    PubMed

    Trinh, H-h; Reid, J; Shin, E; Liapi, A; Parnavelas, J G; Nadarajah, B

    2006-12-01

    It is widely believed that the pyramidal cells and interneurons of the cerebral cortex are distinct in their origin, lineage and genetic make up. In view of these findings, the current thesis is that the phenotype determination of cortical neurons is primarily directed by genetic mechanisms. Using in vitro assays, the present study demonstrates that secreted factors from ganglionic eminence (GE) of the ventral telencephalon have the potency to induce the differentiation of a subset of cortical neurons towards gamma-aminobutyric acid (GABA)ergic lineage. Characterization of cortical cultures that were exposed to medium derived from GE illustrated a significant increase in the number of GABA-, calretinin- and calbindin-positive neurons. Calcium imaging together with pharmacological studies showed that the application of exogenous medium significantly elevated the intracellular calcium transients in cortical neurons through the activation of ionotropic glutamate receptors. The increase in GABA+ neurons appeared to be associated with the elevated calcium activity; treatment with blockers specific for glutamate receptors abolished both the synchronized transients and reduced the differentiation of GABAergic neurons. Such studies demonstrate that although intrinsic mechanisms determine the fate of cortical interneurons, extrinsic factors have the potency to influence their neurochemical differentiation and contribute towards their molecular diversity.

  15. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    PubMed

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  16. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2016-07-01

    Cardiomyocytes are electrically coupled by gap junctions, defined as clusters of low-resistance multisubunit transmembrane channels composed of connexins (Cxs). The expression of Cx40, Cx43 and Cx45, which are present in cardiomyocytes, is known to be developmentally regulated. This study investigates the premise that alterations in gap junction proteins are one of the mechanisms by which teratogens may act. Specifically, those molecules known to be teratogenic in humans could cause their effects via disruption of cell-to-cell communication pathways, resulting in an inability to co-ordinate tissue development. Caffeine significantly inhibited contractile activity at concentrations above and including 1500 μm (P < 0.05), while not affecting cell viability and total protein, in the embryonic chick cardiomyocyte micromass culture system. The effects of caffeine on key cardiac gap junction protein (Cx40, Cx43 and Cx45) expression were analysed using immunocytochemistry and in-cell Western blotting. The results indicated that caffeine altered the expression pattern of Cx40, Cx43 and Cx45 at non-cytotoxic concentrations (≥2000 μm), i.e., at concentrations that did not affect total cell protein and cell viability. In addition the effects of caffeine on cardiomyocyte formation and function (contractile activity score) were correlated with modulation of Cxs (Cx40, Cx43 and Cx45) expression, at above and including 2000 μm caffeine concentrations (P < 0.05). These experiments provide evidence that embryonic chick cardiomyocyte micromass culture may be a useful in vitro method for mechanistic studies of perturbation of embryonic heart development. Copyright © 2015 John Wiley & Sons, Ltd.

  17. COMMUNICATION: Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    NASA Astrophysics Data System (ADS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Gilman, Vladimir; Shea, Thomas B.

    2008-12-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE-/- mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or -/-, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE-/- cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE-/- cultures, which may be a reflection of the reduced SAM levels in ApoE-/- mice. The differential impact of SAM on ApoE+/+ and -/- neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis.

  18. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  19. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  20. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    PubMed

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Human Immunodeficiency Virus Type 1 Coat Protein Neurotoxicity Mediated by Nitric Oxide in Primary Cortical Cultures

    NASA Astrophysics Data System (ADS)

    Dawson, Valina L.; Dawson, Ted M.; Uhl, George R.; Snyder, Solomon H.

    1993-04-01

    The human immunodeficiency virus type 1 coat protein, gp120, kills neurons in primary cortical cultures at low picomolar concentrations. The toxicity requires external glutamate and calcium and is blocked by glutamate receptor antagonists. Nitric oxide (NO) contributes to gp120 toxicity, since nitroarginine, an inhibitor of NO synthase, prevents toxicity as does deletion of arginine from the incubation medium and hemoglobin, which binds NO. Superoxide dismutase also attenuates toxicity, implying a role for superoxide anions.

  2. Formation of electrical coupling between embryonic Xenopus muscle cells in culture.

    PubMed Central

    Chow, I; Poo, M M

    1984-01-01

    Electrical coupling between embryonic Xenopus muscle cells in 1-5 day old cultures was studied after isolated cells were manipulated into contact for various periods. The coupling was examined by measuring the electrotonic spread of acetylcholine (ACh)-induced membrane depolarizations or of potential changes induced by intracellular current injection. In 1 day old culture, cells developed coupling rapidly after contact. Strong coupling was observed within 20 min after contact was made. The rate of coupling formation was age dependent. The percentage of cell pairs that established detectable coupling within 30 min of contact decreased from 66% in 1 day culture to 0% in 5 day culture. Older cells, when put into contact for prolonged periods, developed substantial coupling, suggesting that the age of the culture affects the rate of coupling formation rather than the final extent of coupling. Pre-treatment of older cells with colchicine, metabolic inhibitors, Ca2+ and Mg2+-free saline, or trypsin significantly increased the rate of coupling formation to a level close to that of younger cells. This suggests that the reduced rate of coupling was not due to a lack of membrane precursors for the intercellular channels, but was probably due to the appearance of extramembranous constraints for the channel assembly. PMID:6699773

  3. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    PubMed

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation. © 2014 Wiley Periodicals, Inc.

  4. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces.

    PubMed

    Ahmed, Ijaz; Ponery, Abdul S; Nur-E-Kamal, Alam; Kamal, Jabeen; Meshel, Adam S; Sheetz, Michael P; Schindler, Melvin; Meiners, Sally

    2007-07-01

    Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates.

  5. Benzodiazepine receptor turnover in embryonic chick brain and spinal cord cell cultures

    SciTech Connect

    Borden, L.A.

    1985-01-01

    The turnover (synthesis and degradation) of the benzodiazepine receptor (BZD-R) in embryonic chick brain and spinal cord cell cultures was monitored using flunitrazepam (GNZM) as a photoaffinity label. To measure BZD-R appearance, intact cell cultures were incubated with 100 nM RNZM and irradiated with ultraviolet light; this process, referred to as photoinactivation, resulted in a 75% decrease in the subsequent reversible binding of 5 nM (/sup 3/H)FNZM. Following photoinactivation, (/sup 3/H)FNZM binding sites reappeared at a rate of 6 +/- 1.5%/hour (n = 7) in brain cultures and at 8%/hour (n = 2) in spinal cord cultures. Reappearance reflects de novo receptors synthesis. To examine the degradation of existing receptors, cultures were photolabeled with 5 nM (/sup 3/H)FNZM, washed, and then the decrease in cell-associated radioactivity, or the efflux of radioactivity into the medium, was monitored. The released radioactivity did not comigrate with authentic FNZM on thin-layer-chromatographs, indicating that release did not represent dissociation of ligand from the photolabeled receptor. The BZD-R appears to be degraded by an energy-dependent, non-lysosomal pathway. These experiments represent the first direct examination of the turnover of a neurotransmitter receptor localized to the central nervous system; this information will be valuable in elucidating the mechanisms by which receptor levels are altered following chronic drug treatment.

  6. Cyclooxygenase-2 contributes to VX-induced cell death in cultured cortical neurons.

    PubMed

    Tenn, Catherine C; Weiss, M Tracy; Beaup, Claire; Peinnequin, Andre; Wang, Yushan; Dorandeu, Frederic

    2012-04-05

    The link between cell death and increased cyclooxygenases-2 (COX-2) activity has not been clearly established. In this study, we examined whether COX-2 activation contributed to the mechanism of neurotoxicity produced by an organophosphorous nerve agent in cultured rat cortical neurons. Exposure of neuronal cells to the nerve agent, VX resulted in an increase in COX enzyme activity in the culture media. A concentration dependent increase in the activity levels of COX-2 enzyme was observed while there was little to no effect on COX-1. In addition, COX-2 mRNA and protein levels increased several hours post-VX exposure. Pre-treatment of the cortical cells with the COX-2 selective inhibitor, NS 398 resulted in a decrease in both the enzyme activity and prostaglandin (PGE(2) and PGF(2α)) release, as well as in a reduction in cell death. These findings indicate that the increase in COX-2 activity may contribute to the mechanism of VX-induced neurotoxicity in cultured rat cortical neuron.

  7. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  8. Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform.

    PubMed

    Hussain, Waqar; Moens, Nathalie; Veraitch, Farlan S; Hernandez, Diana; Mason, Chris; Lye, Gary J

    2013-08-15

    The use of embryonic stem cells (ESCs) and their progeny in high throughput drug discovery and regenerative medicine will require production at scale of well characterized cells at an appropriate level of purity. The adoption of automated bioprocessing techniques offers the possibility to overcome the lack of consistency and high failure rates seen with current manual protocols. To build the case for increased use of automation this work addresses the key question: "can an automated system match the quality of a highly skilled and experienced person working manually?" To answer this we first describe an integrated automation platform designed for the 'hands-free' culture and differentiation of ESCs in microwell formats. Next we outline a framework for the systematic investigation and optimization of key bioprocess variables for the rapid establishment of validatable Standard Operating Procedures (SOPs). Finally the experimental comparison between manual and automated bioprocessing is exemplified by expansion of the murine Oct-4-GiP ESC line over eight sequential passages with their subsequent directed differentiation into neural precursors. Our results show that ESCs can be effectively maintained and differentiated in a highly reproducible manner by the automated system described. Statistical analysis of the results for cell growth over single and multiple passages shows up to a 3-fold improvement in the consistency of cell growth kinetics with automated passaging. The quality of the cells produced was evaluated using a panel of biological markers including cell growth rate and viability, nutrient and metabolite profiles, changes in gene expression and immunocytochemistry. Automated processing of the ESCs had no measurable negative effect on either their pluripotency or their ability to differentiate into the three embryonic germ layers. Equally important is that over a 6-month period of culture without antibiotics in the medium, we have not had any cases of

  9. Development of Ascorbate Transporters in Brain Cortical Capillary Endothelial Cells in Culture

    PubMed Central

    Qiao, Huan; May, James M.

    2008-01-01

    Ascorbic acid in its reduced form is not transported across the capillary endothelial cell blood-brain barrier. This is thought to be due to absence of the SVCT2, a specific transporter for ascorbate. To assess this directly we prepared primary cultures of mouse cortical microvascular endothelial cells. When still in the capillaries, these cells did not express the SVCT2 protein as assessed by immunocytochemistry and by immunoblotting. However, during several days in culture, they developed SVCT2 expression and showed ascorbate transport rates comparable to those in immortalized endothelial cell lines. SVCT2 expression was inversely proportional to cell density, was enhanced by culture at low physiologic plasma ascorbate concentrations, was inhibited by ascorbate concentrations expected in the brain interstitium, and was stimulated by cobalt ions. Expression of the SVCT2 was associated with ascorbate-dependent maturation and release of type IV collagen by the cells in culture. Although the SVCT2 is induced by culture of cortical capillary endothelial cells, its absence in vivo remains perplexing, given the need for intracellular ascorbate to facilitate type IV collagen maturation and release by endothelial cells. PMID:18394593

  10. Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation

    PubMed Central

    Wagenaar, Daniel A.; Madhavan, Radhika; Pine, Jerome; Potter, Steve M.

    2009-01-01

    One of the major modes of activity of high-density cultures of dissociated neurons is globally synchronized bursting. Unlike in vivo, neuronal ensembles in culture maintain activity patterns dominated by global bursts for the lifetime of the culture (up to 2 years). We hypothesize that persistence of bursting is caused by a lack of input from other brain areas. To study this hypothesis, we grew small but dense monolayer cultures of cortical neurons and glia from rat embryos on multi-electrode arrays and used electrical stimulation to substitute for afferents. We quantified the burstiness of the firing of the cultures in spontaneous activity and during several stimulation protocols. Although slow stimulation through individual electrodes increased burstiness as a result of burst entrainment, rapid stimulation reduced burstiness. Distributing stimuli across several electrodes, as well as continuously fine-tuning stimulus strength with closed-loop feedback, greatly enhanced burst control. We conclude that externally applied electrical stimulation can substitute for natural inputs to cortical neuronal ensembles in transforming burst-dominated activity to dispersed spiking, more reminiscent of the awake cortex in vivo. This nonpharmacological method of controlling bursts will be a critical tool for exploring the information processing capacities of neuronal ensembles in vitro and has potential applications for the treatment of epilepsy. PMID:15659605

  11. Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification

    PubMed Central

    MacRae, Vicky E.; Farquharson, Colin

    2016-01-01

    The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth. PMID:28060328

  12. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis

    PubMed Central

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform. PMID:23248613

  13. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis.

    PubMed

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  14. Emergence of flat cells from glia in stationary cultures of embryonic chick neural retina.

    PubMed

    Moyer, M; Bullrich, F; Sheffield, J B

    1990-11-01

    When embryonic retina is dissociated into a single cell suspension and maintained in stationary culture, a population of flat cells is found on the culture dish. We have carried out a morphologic and immunologic study of the emergence of this population in vitro. Ten- and fourteen-day-old chick embryo retinas were dissociated with trypsin, seeded on glass cover slips for various times, and prepared for scanning electron microscopy (SEM) and immunofluorescence (IF) for Vimentin, an intermediate filament protein. SEM indicates that the characteristic flat cell morphology is initiated in some cells in as little as 30 min after the start of the culture. Not all of the cells that attach flatten. As incubation proceeds, small clusters of cells that had formed in suspension attach to the substrate, and flat cells emerge from them. The flattened cells are positive for Vimentin by IF within 10 min of attachment. The percent of fluorescent cells found on the substrate is constant during the time in culture. This suggests that flat cells do not attach first, followed by neural cells, but that the neural cells and flat cells attach to the dish at the same rate. When aggregates that had formed in suspension attach to the substrate, they are anchored by flat cells that migrate out of the aggregate. Since Vimentin appears in the cultured cells within 10 min, it is unlikely that it has been newly synthesized. Thus, the same cells that contained Vimentin in the retina now express it as flat cells. This supports the hypothesis that flat cells derive from the same cells in the retina that give rise to Müller cells. We have also observed the emergence of a population of cells with short (0.5 micron) microvilli that appear within 8 h of culture. They seem to be a distinct subpopulation of the cells on the upper portion of attached clusters.

  15. Induction of osteogenic markers in differentially treated cultures of embryonic stem cells

    PubMed Central

    Handschel, Jörg; Berr, Karin; Depprich, Rita A; Kübler, Norbert R; Naujoks, Christian; Wiesmann, Hans-Peter; Ommerborn, Michelle A; Meyer, Ulrich

    2008-01-01

    Background Facial trauma or tumor surgery in the head and face area often lead to massive destruction of the facial skeleton. Cell-based bone reconstruction therapies promise to offer new therapeutic opportunities for the repair of bone damaged by disease or injury. Currently, embryonic stem cells (ESCs) are discussed to be a potential cell source for bone tissue engineering. The purpose of this study was to investigate various supplements in culture media with respect to the induction of osteogenic differentiation. Methods Murine ESCs were cultured in the presence of LIF (leukemia inhibitory factor), DAG (dexamethasone, ascorbic acid and β-glycerophosphate) or bone morphogenetic protein-2 (BMP-2). Microscopical analyses were performed using von Kossa staining, and expression of osteogenic marker genes was determined by real time PCR. Results ESCs cultured with DAG showed by far the largest deposition of calcium phosphate-containing minerals. Starting at day 9 of culture, a strong increase in collagen I mRNA expression was detected in the DAG-treated cells. In BMP-2-treated ESCs the collagen I mRNA induction was less increased. Expression of osteocalcin, a highly specific marker for osteogentic differentiation, showed a double-peaked curve in DAG-treated cells. ESCs cultured in the presence of DAG showed a strong increase in osteocalcin mRNA at day 9 followed by a second peak starting at day 17. Conclusion Supplementation of ESC cell cultures with DAG is effective in inducing osteogenic differentiation and appears to be more potent than stimulation with BMP-2 alone. Thus, DAG treatment can be recommended for generating ESC populations with osteogenic differentiation that are intended for use in bone tissue engineering. PMID:18544155

  16. Cardiac stem cell niche, MMP9, and culture and differentiation of embryonic stem cells.

    PubMed

    Mishra, Paras Kumar; Kuypers, Nicholas John; Singh, Shree Ram; Leiberh, Noel Diaz; Chavali, Vishalakshi; Tyagi, Suresh C

    2013-01-01

    Embryonic stem cells (ESC) are totipotent, self-renewing, and clonogenic, having potential to differentiate into a wide variety of cell types. Due to regenerative capability, it has tremendous potential for treating myocardial infarction (death of myocardial tissue) and type 1 diabetes (death of pancreatic beta cells). Understanding the components regulating ESC differentiation is the key to unlock the regenerative potential of ESC-based therapies. Both the stiffness of extracellular matrix (ECM) and surrounding niche/microenvironment play pivotal roles in ESC differentiation. Matrix metalloproteinase-9 (MMP9) induces fibrosis that causes stiffness of the ECM and impairs differentiation of cardiac stem cells into cardiomyocytes. Here, we describe the method of ESC culture and differentiation, and the expression of MMP9 and its inhibitor, tissue inhibitor of metalloproteinase-4 (TIMP4) in differentiating ESC.

  17. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  18. Characterization of integrin engagement during defined human embryonic stem cell culture

    PubMed Central

    Meng, Ying; Eshghi, Shawdee; Li, Ying J.; Schmidt, Ray; Schaffer, David V.; Healy, Kevin E.

    2010-01-01

    Human embryonic stem (hES) cells are pluripotent, capable of differentiating into any cell type of the body, and therefore have the ability to provide insights into mechanisms of human development and disease, as well as to provide a potentially unlimited supply of cells for cell-based therapy and diagnostics. Knowledge of the adhesion receptors that hES cells employ to engage extracellular matrix (ECM) proteins is of basic biological interest and can enhance the design of cell culture and implantation systems to enable these biomedical applications. Although hES cells express a variety of cell surface receptors, little is known about which integrins are involved during subculture and passage. Matrigel is broadly used as a cell adhesive matrix for hES cell culture. Here, we sought to identify which integrins hES cells exploit for adhesion to Matrigel-coated surfaces in defined medium conditions. Using RT-PCR, flow cytometry, and fluorescence immunochemistry, we found that numerous integrins were expressed by H1 hES cells; however, antibody blocking assays indicated that only αvβ3, α6, β1, and α2β1 played a significant role in the initial adhesion of the hES cells to Matrigel in defined medium conditions. We subsequently identified a cohort of synthetic peptides that, when adsorbed to the culture surface, promoted H1 hES cell attachment and proliferation, as well as maintained a pluripotent phenotype. Peptides designed to engage with αvβ3, α6, β1, and α2β1 integrins and syndecan-1 were tested both individually and in various combinations. A combination of two integrin-engaging peptides (AG-10, C-16) and one syndecan-engaging peptide (AG-73) was sufficient to promote hES cell adhesion, maintenance, and proliferation. We propose that a specific integrin “fingerprint” is necessary for maintenance of hES cell self-renewal, and synthetic culture systems must capture this engagement profile for hES cells to remain undifferentiated.—Meng, Y., Eshghi, S

  19. Ghrelin stimulates synaptic formation in cultured cortical networks in a dose-dependent manner.

    PubMed

    Stoyanova, Irina I; le Feber, Joost; Rutten, Wim L C

    2013-09-10

    Ghrelin was initially related to appetite stimulation and growth hormone secretion. However, it also has a neuroprotective effect in neurodegenerative diseases and regulates cognitive function. The cellular basis of these processes is related to synaptic efficacy and plasticity. Previous studies indicated that ghrelin has an excitatory effect on neuronal activity, and stimulates synaptic plasticity in vivo. Plasticity in the adult brain occurs in many different ways, including changes in synapse morphology and number. Therefore, we used in vitro neuronal cultures to investigate how ghrelin affects synaptogenesis. We used dissociated cortical cultures of newborn rats, chronically treated with different doses of ghrelin (0.5, 1, 1.5 and 2μM). After one-, two-, three- or four weeks cultures were immunostained for the presynaptic marker synaptophysin. In parallel, additional groups of non-treated cultures were immunostained for detection of ghrelin receptor (GHSR1). During development, GHSR1was increasingly expressed in all type of neurons, as well as the synaptophysin. Synaptic density depended on ghrelin concentration, and was much higher than in controls in all age groups. In conclusion, ghrelin leads to earlier network formation in dissociated cortical networks and an increase in number of synapses. The effect is probably mediated by GHSR1. These findings suggest that ghrelin may provide a novel therapeutic strategy for the treatment of disorders related to synaptic impairment.

  20. Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanisms.

    PubMed

    Masquelier, Timothée; Deco, Gustavo

    2013-01-01

    In the brain, synchronization among cells of an assembly is a common phenomenon, and thought to be functionally relevant. Here we used an in vitro experimental model of cell assemblies, cortical cultures, combined with numerical simulations of a spiking neural network (SNN) to investigate how and why spontaneous synchronization occurs. In order to deal with excitation only, we pharmacologically blocked GABAAergic transmission using bicuculline. Synchronous events in cortical cultures tend to involve almost every cell and to display relatively constant durations. We have thus named these "network spikes" (NS). The inter-NS-intervals (INSIs) proved to be a more interesting phenomenon. In most cortical cultures NSs typically come in series or bursts ("bursts of NSs", BNS), with short (~1 s) INSIs and separated by long silent intervals (tens of s), which leads to bimodal INSI distributions. This suggests that a facilitating mechanism is at work, presumably short-term synaptic facilitation, as well as two fatigue mechanisms: one with a short timescale, presumably short-term synaptic depression, and another one with a longer timescale, presumably cellular adaptation. We thus incorporated these three mechanisms into the SNN, which, indeed, produced realistic BNSs. Next, we systematically varied the recurrent excitation for various adaptation timescales. Strong excitability led to frequent, quasi-periodic BNSs (CV~0), and weak excitability led to rare BNSs, approaching a Poisson process (CV~1). Experimental cultures appear to operate within an intermediate weakly-synchronized regime (CV~0.5), with an adaptation timescale in the 2-8 s range, and well described by a Poisson-with-refractory-period model. Taken together, our results demonstrate that the INSI statistics are indeed informative: they allowed us to infer the mechanisms at work, and many parameters that we cannot access experimentally.

  1. Network Bursting Dynamics in Excitatory Cortical Neuron Cultures Results from the Combination of Different Adaptive Mechanism

    PubMed Central

    Masquelier, Timothée; Deco, Gustavo

    2013-01-01

    In the brain, synchronization among cells of an assembly is a common phenomenon, and thought to be functionally relevant. Here we used an in vitro experimental model of cell assemblies, cortical cultures, combined with numerical simulations of a spiking neural network (SNN) to investigate how and why spontaneous synchronization occurs. In order to deal with excitation only, we pharmacologically blocked GABAAergic transmission using bicuculline. Synchronous events in cortical cultures tend to involve almost every cell and to display relatively constant durations. We have thus named these “network spikes” (NS). The inter-NS-intervals (INSIs) proved to be a more interesting phenomenon. In most cortical cultures NSs typically come in series or bursts (“bursts of NSs”, BNS), with short (∼1 s) INSIs and separated by long silent intervals (tens of s), which leads to bimodal INSI distributions. This suggests that a facilitating mechanism is at work, presumably short-term synaptic facilitation, as well as two fatigue mechanisms: one with a short timescale, presumably short-term synaptic depression, and another one with a longer timescale, presumably cellular adaptation. We thus incorporated these three mechanisms into the SNN, which, indeed, produced realistic BNSs. Next, we systematically varied the recurrent excitation for various adaptation timescales. Strong excitability led to frequent, quasi-periodic BNSs (CV∼0), and weak excitability led to rare BNSs, approaching a Poisson process (CV∼1). Experimental cultures appear to operate within an intermediate weakly-synchronized regime (CV∼0.5), with an adaptation timescale in the 2–8 s range, and well described by a Poisson-with-refractory-period model. Taken together, our results demonstrate that the INSI statistics are indeed informative: they allowed us to infer the mechanisms at work, and many parameters that we cannot access experimentally. PMID:24146781

  2. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons.

    PubMed

    Ramachandran, Vinitha; Watts, Lora Talley; Maffi, Shivani Kaushal; Chen, Juanjuan; Schenker, Steven; Henderson, George

    2003-11-15

    In utero ethanol exposure elicits apoptotic cell death in the fetal brain, and this may be mediated by oxidative stress. Our studies utilize cultured fetal rat cortical neurons and illustrate that ethanol elicits a rapid onset of oxidative stress, which culminates in mitochondrially mediated apoptotic cell death. Cells exposed to ethanol (2.5 mg/ml) remained attached to their polylysine matrix during a 24-hr exposure, but they exhibited distinct signs of oxidative stress, decreased viability, and apoptosis. Confocal microscopy of live cortical neurons pretreated with dichlorodihydrofluorescein diacetate demonstrated an increase in reactive oxygen species (ROS) within 5 min of ethanol exposure. The levels of ROS further increased by 58% within 1 hr (P <.05) and by 82% within 2 hr (P <.05), accompanied by increases of mitochondrial 4-hydroxynonenal (HNE). These early events were followed by decreased trypan blue exclusion of 10% to 32% (P <.05) at the 6- to 24-hr time points, respectively. This culminates in apoptotic death, with increases of Annexin V binding of 43%, 89%, 123%, and 238%, at 2, 6, 12, and 24 hr of ethanol treatment, respectively, as well as DNA fragmentation increases of 50% and 65% by 12 and 24 hr, respectively. Release of cytochrome c by mitochondria increased by 53% at 6 hr of exposure (P <.05), concomitant with activation of caspase 3 (52% at 12 hr, P <.05). Pretreatment with N-acetylcysteine increased cellular glutathione and prevented apoptosis. These studies provide a time line illustrating that oxidative stress and formation of a proapoptotic lipid peroxidation product, HNE, precede a cascade of mitochondrially mediated events in cultured fetal cortical neurons, culminating in apoptotic death. The prevention of apoptosis by augmentation of glutathione stores also strongly supports a role for oxidative stress in ethanol-mediated apoptotic death of fetal cortical neurons.

  3. Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors.

    PubMed

    Cormier, Jaymi T; zur Nieden, Nicole I; Rancourt, Derrick E; Kallos, Michael S

    2006-11-01

    Pluripotent embryonic stem cells (ESCs) have recently been considered as a primary material for regenerating tissues lost to injuries and degenerative diseases. For clinical implementation of this technology, a quality controlled, reproducible culture system is necessary for the expansion and differentiation of the cells. Used in many bioprocess applications, suspension bioreactors have gained considerable attention for the regulated large-scale expansion of cells. The current study presents a bioreactor process for the large-scale expansion of undifferentiated murine ESCs as aggregates. In this system, the level of ESC aggregation and differentiation was effectively controlled by adjusting shear forces and inoculation density, achieving a 31-fold expansion in 5 days. Pluripotency markers Oct-4, Nanog, SSEA-1, ALP, and rex-1 were assessed using flow cytometry analysis and gene expression profiles and showed that the undifferentiated nature of the cells within the ESC aggregates was maintained. Colony-forming efficiencies and embryoid body formation tests of the expanded cultures demonstrated that characteristic functional attributes of undifferentiated cells were not lost. Overcoming a major impediment in the area of ESC expansion, this study describes a successful process for the controlled and reproducible largescale expansion of ESCs using suspension culture bioreactors.

  4. Interaction of zinc with cadmium and copper on ossification of embryonic chick bone in tissue culture.

    PubMed

    Kaji, T; Takata, M; Miyahara, T; Kozuka, H; Koizumi, F

    1990-01-01

    Histological changes are shown of ossification induced by a simultaneous exposure to zinc and cadmium or to zinc and copper using embryonic chick femur in a culture system. Cadmium caused an atrophic change of the osseous tissue in the absence of zinc but caused an osteomalacic change with a partial degenerative change in the presence of zinc after a 6-day culture. Copper caused an atrophic change in the absence or presence of zinc. These observations were partly supported by the fact that the diaphysial calcium content was significantly decreased by zinc alone, and the decrease was unaffected by cadmium or copper. Zinc significantly decreased cadmium accumulation but not copper accumulation in the diaphysis. Thus, in spite of the inhibitory effect on calcification, zinc prevented a decrease in bone matrix formation caused by cadmium but not that by copper. Exposure of chick femur culture to zinc and cadmium induced changes consistent with osteomalacia, i.e., decreased mineralization of bone, with or without suppression of matrix formation. Exposure to zinc and copper, however, induced changes consistent with osteoporosis, i.e., decreased mineralization and matrix formation.

  5. Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability

    PubMed Central

    Jacobs, Kurt; Zambelli, Filippo; Mertzanidou, Afroditi; Smolders, Ilse; Geens, Mieke; Nguyen, Ha Thi; Barbé, Lise; Sermon, Karen; Spits, Claudia

    2016-01-01

    Summary Human embryonic stem cells (hESC) show great promise for clinical and research applications, but their well-known proneness to genomic instability hampers the development to their full potential. Here, we demonstrate that medium acidification linked to culture density is the main cause of DNA damage and genomic alterations in hESC grown on feeder layers, and this even in the short time span of a single passage. In line with this, we show that increasing the frequency of the medium refreshments minimizes the levels of DNA damage and genetic instability. Also, we show that cells cultured on laminin-521 do not present this increase in DNA damage when grown at high density, although the (long-term) impact on their genomic stability remains to be elucidated. Our results explain the high levels of genome instability observed over the years by many laboratories worldwide, and show that the development of optimal culture conditions is key to solving this problem. PMID:26923824

  6. Short exposure to collagenase and coculture with mouse embryonic pancreas improve human dermal fibroblast culture.

    PubMed

    Pandamooz, Sareh; Hadipour, Abbas; Akhavan-Niaki, Haleh; Pourghasem, Mohsen; Abedian, Zeinab; Ardekani, Ali Motevallizadeh; Golpour, Monireh; Hassan, Zuhair Mohammad; Mostafazadeh, Amrollah

    2012-01-01

    The dermal fibroblast as a major component of connective tissue has attracted much attention in the past few years, and application of these very fast growing cells in several fields has been intensively studied. Isolating dermal fibroblasts is an appropriate way to expand these fast growing cells in vitro. Although using a dissociated fibroblast culture method is more convenient than skin explant culture, its enzymatic digestion is critical because a large number of cells can be lost over prolonged exposure to collagenase. This study was performed to increase the number of viable cells after digestion of fresh human foreskin of donors aged from 1 to 3 months with collagenase and also by to design a coculture system for resuscitation of the injured fibroblast. Our results demonstrate that we can maximize cell yield while maintaining cell viability by cutting the specimens into very small pieces (1-2 mm³) after removing the epidermal layer with dispase II and also by collecting released cells every 20 Min subsequent to digesting the dermal layer with collagenase. Moreover, our data strongly indicate that coculturing of isolated fibroblasts with embryonic pancreas explants can enhance the rate of proliferation in cultured fibroblasts.

  7. A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells

    PubMed Central

    Zhang, Wujie; Zhao, Shuting; Rao, Wei; Snyder, Jedidiah; Choi, Jung K.; Wang, Jifu; Khan, Iftheker A.; Saleh, Navid B.; Mohler, Peter J.; Yu, Jianhua; Hund, Thomas J.; Tang, Chuanbing; He, Xiaoming

    2013-01-01

    In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine. PMID:23505611

  8. Clonal analysis of individual human embryonic stem cell differentiation patterns in microfluidic cultures.

    PubMed

    Sikorski, Darek J; Caron, Nicolas J; VanInsberghe, Michael; Zahn, Hans; Eaves, Connie J; Piret, James M; Hansen, Carl L

    2015-10-01

    Heterogeneity in the clonal outputs of individual human embryonic stem cells (hESCs) confounds analysis of their properties in studies of bulk populations and how to manipulate them for clinical applications. To circumvent this problem we developed a microfluidic device that supports the robust generation of colonies derived from single ESCs. This microfluidic system contains 160 individually addressable chambers equipped for perfusion culture of individual hESCs that could be shown to match the growth rates, marker expression and colony morphologies obtained in conventional cultures. Use of this microfluidic device to analyze the clonal growth kinetics of multiple individual hESCs induced to differentiation revealed variable shifts in the growth rate, area per cell and expression of OCT4 in the progeny of individual hESCs. Interestingly, low OCT4 expression, a slower growth rate and low nuclear to cytoplasmic ratios were found to be correlated responses. This study demonstrates how microfluidic systems can be used to enable large scale live-cell imaging of isolated hESCs exposed to changing culture conditions, to examine how different aspects of their variable responses are correlated. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid

    PubMed Central

    Makoolati, Zohreh; Movahedin, Mansoureh; Forouzandeh-Moghadam, Mehdi

    2016-01-01

    An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0–5  μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh),  α6 integrin,  β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3  μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs. PMID:27834666

  10. Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays.

    PubMed

    Ito, D; Tamate, H; Nagayama, M; Uchida, T; Kudoh, S N; Gohara, K

    2010-11-24

    To investigate the minimum neuron and neurite densities required for synchronized bursts, we cultured rat cortical neurons on planar multi-electrode arrays (MEAs) at five plating densities (2500, 1000, 500, 250, and 100 cells/mm(2)) using two culture media: Neuron Culture Medium and Dulbecco's Modified Eagle Medium supplemented with serum (DMEM/serum). Long-term recording of spontaneous electrical activity clarified that the cultures exhibiting synchronized bursts required an initial plating density of at least 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum. Immediately after electrical recording, immunocytochemistry of microtubule-associated protein 2 (MAP2) and Neurofilament 200 kD (NF200) was performed directly on MEAs to investigate the actual densities of neurons and neurites forming the networks. Immunofluorescence observation revealed that the construction of complicated neuronal networks required the same initial plating density as for synchronized bursts, and that overly sparse cultures showed significant decreases of neurons and neurites. We also found that the final densities of surviving neurons at 1 month decreased greatly compared with the initial plating densities and became saturated in denser cultures. In addition, the area of neurites and the number of nuclei were saturated in denser cultures. By comparing both the results of electrophysiological recording and immunocytochemical observation, we revealed that there is a minimum threshold of neuron densities that must be met for the exhibition of synchronized bursts. Interestingly, these minimum densities of MAP2-positive final neurons did not differ between the two culture media; the density was approximately 50 neurons/mm(2). This value was obtained in the cultures with the initial plating densities of 250 cells/mm(2) for Neuron Culture Medium and 500 cells/mm(2) for DMEM/serum.

  11. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    PubMed

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer.

  12. Effects of phenytoin on [3H]diazepam binding in dissociated primary cortical cell culture.

    PubMed

    Gallager, D W; Mallorga, P; Swaiman, K F; Neale, E A; Nelson, P G

    1981-08-10

    The effects of chronic exposure of primary dissociated cerebral cortical cells in culture to the anticonvulsant drug phenytoin have been investigated using benzodiazepine binding techniques. By separating benzodiazepine binding into pharmacologically distinct subtypes, the data indicate that clonazepam-displaceable benzodiazepine binding (associated primarily with neuronal membranes) is significantly decreased by exposure to therapeutic and toxic doses of phenytoin while R05-4864-displaceable benzodiazepine binding (associated principally with non-neuronal elements) is enhanced. The ratio of clonazepam-displaceable to R05-4864-displaceable benzodiazepine binding appears to be the most sensitive indicator for these changes.

  13. Morphogenesis of human embryonic stem cells into mature neurons under in vitro culture conditions

    PubMed Central

    Shroff, Geeta

    2016-01-01

    AIM To describe the morphogenesis of different neuronal cells from the human embryonic stem cell (hESC) line, SCT-N, under in vitro culture conditions. METHODS The directed neuronal cell line was produced from a single, spare, pre-implantation stage fertilized ovum that was obtained during a natural in vitro fertilization process. The hESCs were cultured and maintained as per our proprietary in-house technology in a Good Manufacturing Practice, Good Laboratory Practice and Good Tissue Practice compliant laboratory. The cell line was derived and incubated in aerobic conditions. The cells were examined daily under a phase contrast microscope for their growth and differentiation. RESULTS Different neural progenitor cells (NPCs) and differentiating neurons were observed under the culture conditions. Multipotent NPCs differentiated into all three types of nervous system cells, i.e., neurons, oligodendrocytes and astrocytes. Small projections resembling neurites or dendrites, and protrusion coming out of the cells, were observed. Differentiating cells were observed at day 18 to 20. The differentiating neurons, neuronal bodies, axons, and neuronal tissue were observed on day 21 and day 30 of the culture. On day 25 and day 30, prominent neurons, axons and neuronal tissue were observed under phase contrast microscopy. 4’, 6-diamidino-2-phenylindole staining also indicated the pattern of differentiating neurons, axonal structure and neuronal tissue. CONCLUSION This study describes the generation of different neuronal cells from an hESC line derived from biopsy of blastomeres at the two-cell cleavage stage from a discarded embryo. PMID:27909687

  14. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes

    PubMed Central

    2011-01-01

    Background Embryonic stem cells (ESCs) can proliferate endlessly and are able to differentiate into all cell lineages that make up the adult organism. Under particular in vitro culture conditions, ESCs can be expanded and induced to differentiate into cardiomyocytes in stirred suspension bioreactors (SSBs). However, in using these systems we must be cognizant of the mechanical forces acting upon the cells. The effect of mechanical forces and shear stress on ESC pluripotency and differentiation has yet to be clarified. The purpose of this study was to investigate the impact of the suspension culture environment on ESC pluripotency during cardiomyocyte differentiation. Results Murine D3-MHC-neor ESCs formed embyroid bodies (EBs) and differentiated into cardiomyocytes over 25 days in static culture and suspension bioreactors. G418 (Geneticin) was used in both systems from day 10 to enrich for cardiomyocytes by eliminating non-resistant, undifferentiated cells. Treatment of EBs with 1 mM ascorbic acid and 0.5% dimethyl sulfoxide from day 3 markedly increased the number of beating EBs, which displayed spontaneous and cadenced contractile beating on day 11 in the bioreactor. Our results showed that the bioreactor differentiated cells displayed the characteristics of fully functional cardiomyocytes. Remarkably, however, our results demonstrated that the bioreactor differentiated ESCs retained their ability to express pluripotency markers, to form ESC-like colonies, and to generate teratomas upon transplantation, whereas the cells differentiated in adherent culture lost these characteristics. Conclusions This study demonstrates that although cardiomyocyte differentiation can be achieved in stirred suspension bioreactors, the addition of medium enhancers is not adequate to force complete differentiation as fluid shear forces appear to maintain a subpopulation of cells in a transient pluripotent state. The development of successful ESC differentiation protocols within

  15. Long-term culture of mouse embryonic stem cell-derived adherent neurospheres and functional neurons.

    PubMed

    Hayashi, Mirian A F; Guerreiro, Juliano R; Cassola, Antonio C; Lizier, Nelson F; Kerkis, Alexandre; Camargo, Antonio C M; Kerkis, Irina

    2010-12-01

    Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of

  16. Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures.

    PubMed

    Guo, Yingqiu; Chen, Yongxin; Carreon, Stephanie; Qiang, Mei

    2012-06-01

    Increasing evidence indicates that repeated exposure to and withdrawal from alcohol can result in persistent molecular and cellular adaptations. One molecular adaptation that occurs is the regulation of gene expression, which is thought to lead to the functional alterations that characterize addiction: tolerance, dependence, withdrawal, craving, and relapse. MicroRNAs (miRNAs) have been recently identified as master regulators of gene expression through post-transcriptional regulation. However, the role of miRNAs in the neuroadaptations after alcohol removal has not yet been directly addressed. We employed a chronic intermittent ethanol (CIE) model in primary cortical neuronal cultures to examine the global extent of differential miRNA expression using a TaqMan real-time PCR miRNA array. Sixty-two miRNAs were differentially expressed after 10 days of CIE (CIE10) treatment (n = 42 with false discovery rate [FDR] < 0.05 and fold change > 2) and 5 days post-CIE (P5) treatment (n = 26) compared with untreated control values. Compared to CIE10, ethanol (EtOH) removal experience in P5 induced a distinct expression pattern, including 20 differentially expressed miRNAs, which did not exhibit a significant change at CIE10. The predicted target molecules of EtOH removal-induced miRNAs function mainly in the regulation of gene transcription, but also function in neuron differentiation, embryonic development, protein phosphorylation, and synaptic plasticity. Interestingly, some of the miRNAs differentially expressed 5 days after CIE treatment were found to cluster on chromosomes near CpG islands, suggesting that they share functional similarity by targeting alcohol-related genes. Taken together, these results suggest a potential role of differentially expressed miRNAs in mediating EtOH removal-related phenotypes. Copyright © 2011 by the Research Society on Alcoholism.

  17. [Propagation of the HTV in primary human embryonic kidney and lung cell culture].

    PubMed

    Liu, B; Dai, J; Wang, X; Wang, X; Shen, G

    1994-08-01

    2 strains of Hantaan virus (HTV, 76-118, Hubei-114) have been propagated successfully in cultured primary human embryonic kidney (HEK) and lung (HEL) cells. Cytopathic effect (CPE) was observed in the two kind of cells on day 5 to 7 postinoculation which showed the cell became round and clustered, then detached. The replicating peak of the Hubei-114 in two kinds of cell cultures appeared on the 11th day and another strain on the 14th or 17th day after infection. The ultrastructure changes were observed with EM and IEM, which stained by ICGT before embedding. It was discovered that the mitochondia atrophied and decreased, and inclusion bodies in the cytoplasma of HEK and KEL cells. A large amount of gold granulae were found in the inclusion bodies and the virions were seen occasionally. Contamination with other agents have been ruled out. Our data suggest that the replicating characters of HTV in these cell systems might be possible for the pathogenicity of HFRS for human.

  18. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    PubMed

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  19. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  20. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    NASA Technical Reports Server (NTRS)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  1. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    NASA Technical Reports Server (NTRS)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  2. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems.

    PubMed

    Chen, Silvia S; Revoltella, Roberto P; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  4. [The features of postsynaptic currents in primary culture of rat cortical neurons].

    PubMed

    Sibarov, D A; Antonov, S M

    2013-06-01

    The generation features of postsynaptic currents were studied in primary culture of cortical neurons at 7-20 days in vitro (DIV). The use of specific blockers of postsynaptic ion channels after 10 DIV revealed all types of electrical activity found in adult cortex including miniature inhibitory (mIPSCs), excitatory (mEPSCs) and spontaneous giant excitatory currents and spikes. The frequency of mEPSCs increased exponentially from 7 to 20 DIV doubling every 2.2 days in parallel with changes in action potentials generation. The mEPSCs generated by NMDA and AMPA or by only AMPA receptor activation were found. The inhibition of NMDA receptors by magnesium ions or AP5 were shown to modulate the frequency and amplitude of mEPSCs, which differ primary culture from brain slices possibly because of the lack of glial control of synaptic transmission.

  5. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks

    PubMed Central

    McSweeney, K. Melodi; Gussow, Ayal B.; Bradrick, Shelton S.; Dugger, Sarah A.; Gelfman, Sahar; Wang, Quanli; Petrovski, Slavé; Frankel, Wayne N.; Boland, Michael J.; Goldstein, David B.

    2016-01-01

    Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated. PMID:27516621

  6. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks.

    PubMed

    McSweeney, K Melodi; Gussow, Ayal B; Bradrick, Shelton S; Dugger, Sarah A; Gelfman, Sahar; Wang, Quanli; Petrovski, Slavé; Frankel, Wayne N; Boland, Michael J; Goldstein, David B

    2016-10-01

    Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated.

  7. Dual effects of carnosine on energy metabolism of cultured cortical astrocytes under normal and ischemic conditions.

    PubMed

    Shen, Yao; Tian, Yueyang; Yang, Jianbo; Shi, Xiaojie; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-01-01

    The aim of this study was to investigate the effects of carnosine on the bioenergetic profile of cultured cortical astrocytes under normal and ischemic conditions. The Seahorse Bioscience XF96 Extracellular Flux Analyzer was used to measure the oxygen consumption rates (OCRs) and extracellular acidification rates (ECARs) of cultured cortical astrocytes treated with and without carnosine under normal and ischemic conditions. Under the normal growth condition, the basal OCRs and ECARs of astrocytes were 21.72±1.59 pmol/min/μg protein and 3.95±0.28 mpH/min/μg protein respectively. Mitochondrial respiration accounted for ~80% of the total cellular respiration and 85% of this coupled to ATP synthesis. Carnosine significantly reduced basal OCRs and ECARs and ATP-linked respiration, but it strikingly increased the spare respiratory capacity of astrocytes. The cellular ATP level in carnosine-treated astrocytes was reduced to ~42% of the control. However, under the ischemic condition, carnosine upregulated the mitochondrial respiratory and cellular ATP content of astrocytes exposed to 8h of oxygen-glucose deprivation (OGD) followed by 24 h of recovery under the normal growth condition. Carnosine may be an endogenous regulator of astrocyte energy metabolism and a clinically safe therapeutic agent for promoting brain energy metabolism recovery after ischemia/reperfusion injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential.

    PubMed

    Arya, A; Sethy, N K; Das, M; Singh, S K; Das, A; Ujjain, S K; Sharma, R K; Sharma, M; Bhargava, K

    2014-07-01

    Cerium oxide nanoparticles (CNPs) of spherical shape have unique antioxidant capacity primarily due to alternating + 3 and + 4 oxidation states and crystal defects. Several studies revealed the protective efficacies of CNPs in cells and tissues against the oxidative damage. However, its effect on mitochondrial functioning, downstream effectors of radical burst and apoptosis remains unknown. In this study, we investigated whether CNPs treatment could protect the primary cortical cells from loss of mitochondrial membrane potential (Δψm) and Δψm-dependent cell death. CNPs with spherical morphology and size range 7-10 nm were synthesized and utilized at a concentration of 25 nM on primary neuronal culture challenged with 50 μM of hydrogen peroxide (H2O2). We showed that optimal dose of CNPs minimized ROS content of the cells and also curbed related surge in cellular calcium flux. Importantly, CNPs treatment prevented apoptotic loss of cell viability. Reduction in the apoptosis could be successfully attributed to the maintenance of Δψm and restoration of major redox equivalents NADH/NAD(+) ratio and cellular ATP. These findings, therefore, suggest possible route of CNPs protective efficacies in primary cortical culture.

  9. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    SciTech Connect

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  10. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    PubMed

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced embryonic development with single embryo culture cannot be ameliorated by the WOW system.

  11. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    PubMed

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    PubMed

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  13. Involvement of transglutaminase in myofibril assembly of chick embryonic myoblasts in culture

    PubMed Central

    1995-01-01

    Involvement of transglutaminase in myofibrillogenesis of chick embryonic myoblasts has been investigated in vitro. Both the activity and protein level of transglutaminase initially decreased to a minimal level at the time of burst of myoblast fusion but gradually increased thereafter. The localization of transglutaminase underwent a dramatic change from the whole cytoplasm in a diffuse pattern to the cross- striated sarcomeric A band, being strictly colocalized with the myosin thick filaments. For a brief period prior to the appearance of cross- striation, transglutaminase was localized in nonstriated filamental structures that coincided with the stress fiber-like structures. When 12-o-tetradecanoyl phorbol acetate was added to muscle cell cultures to induce the sequential disassembly of thin and thick filaments, transglutaminase was strictly colocalized with the myosin thick filaments even in the myosacs, of which most of the thin filaments were disrupted. Moreover, monodansylcadaverine, a competitive inhibitor of transglutaminase, reversibly inhibited the myofibril maturation. In addition, myosin heavy chain behaved as one of the potential intracellular substrates for transglutaminase. The cross-linked myosin complex constituted approximately 5% of the total Triton X-100- insoluble pool of myosin molecules in developing muscle cells, and its level was reduced to below 1% upon treatment with monodansylcadaverine. These results suggest that transglutaminase plays a crucial role in myofibrillogenesis of developing chick skeletal muscle. PMID:7657697

  14. Improvement of adhesion and proliferation of mouse embryonic stem cells cultured on ozone/UV surface-modified substrates.

    PubMed

    Kasai, Kohei; Kimura, Yuka; Miyata, Shogo

    2017-09-01

    Culturing pluripotent stem cells effectively requires feeder cell layers or cell adhesion matrix coating. However, the feeder cell layers or animal-derived factors have to be removed to apply the pluripotent stem cells as resources for regenerative medicine. To enable xeno-free culture conditions, we focused on the UV/ozone surface treatment technique for polystyrene cell culture substrates to improve the adhesion and proliferation of pluripotent stem cells. In this study, as a fundamental research for the feeder- and matrix coating-free culture system for embryonic stem cells (ESCs), mouse ESCs were cultured on UV/ozone-modified polystyrene substrates without feeder layers. We observed that UV/ozone surface-modified polystyrene substrates made it possible to culture mESCs under feeder-free conditions without any chemical treatment for the substrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

    PubMed Central

    Jung, Juwon; Baek, Jin Ah; Seol, Hye Won; Choi, Young Min

    2016-01-01

    Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feederlayers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KOSR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xenofree conditions for clinical grade hESCs culture will be useful data in future clinical studies. PMID:27294211

  16. Neuronal differentiation of PC12 and embryonic stem cells in two- and three-dimensional in vitro culture.

    PubMed

    Sadri, Soheil; Khazaei, Mozafar; Ghanbari, Ali; Khazaei, Mohammad Rasool; Shah, Palak

    2014-04-01

    The quality of neuronal differentiation and reduction in apoptosis that occurred in two-dimensional (2D) and three-dimensional (3D) culture conditions is compared. PC12 and embryonic stem cells are two commonly utilized cell lines for the study of neuronal regeneration. These cells were induced to neuronally differentiate by adding NGF and retinoic acid respectively. Total neurite length and expression of neuronal markers (MAP-2 and beta-tubulin) was assessed by morphometry and immunocytochemistry. Also, TUNEL assay was used to detect apoptosis. Upon exposure to a differentiation media in the 3D fibrin gel, PC12 and embryonic stem cells stopped dividing, had increased adhesion to the substratum, extended neurite processes and expressed neuronal markers. The same results, however, were not observedwith the 2D culture. Also, the apoptosis index performed by TUNEL a ss ay demonstrated a reduction in th e degree of apoptosis in the 3D culture compared to 2D culture. Fibrin matrix supports growth and n euronal differentiation of PC12 andembryonic stem cells. In addition, the 3D culture enhanced cellular resistance to apoptosis when compared to the 2D culture. It appears as if a 3D culture system may offer a better technique for future neuronal tissue engineering investigations.

  17. Monitoring the Differentiation and Migration Patterns of Neural Cells Derived from Human Embryonic Stem Cells Using a Microfluidic Culture System

    PubMed Central

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-01-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells. PMID:24938227

  18. Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system.

    PubMed

    Lee, Nayeon; Park, Jae Woo; Kim, Hyung Joon; Yeon, Ju Hun; Kwon, Jihye; Ko, Jung Jae; Oh, Seung-Hun; Kim, Hyun Sook; Kim, Aeri; Han, Baek Soo; Lee, Sang Chul; Jeon, Noo Li; Song, Jihwan

    2014-06-01

    Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.

  19. The presence of cortical neurons in striatal-cortical co-cultures alters the effects of dopamine and BDNF on medium spiny neuron dendritic development

    PubMed Central

    Penrod, Rachel D.; Campagna, Justin; Panneck, Travis; Preese, Laura; Lanier, Lorene M.

    2015-01-01

    Medium spiny neurons (MSNs) are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine (DA) in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of DA on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF) has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment. PMID:26257605

  20. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia.

    PubMed

    Torii, Daisuke; Soeno, Yuuichi; Fujita, Kazuya; Sato, Kaori; Aoba, Takaaki; Taya, Yuji

    2016-01-01

    Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.

  1. Activity Changes Induced by Spatio-Temporally Correlated Stimuli in Cultured Cortical Networks

    NASA Astrophysics Data System (ADS)

    Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko

    Activity-dependent plasticity probably plays a key role in learning and memory in biological information processing systems. Though long-term potentiation and depression have been extensively studied in the filed of neuroscience, little is known on the mechanisms for integrating these modifications on network-wide activity changes. In this report, we studied effects of spatio-temporally correlated stimuli on the neuronal network activity. Rat cortical neurons were cultured on substrates with 64 embedded micro-electrodes and the evoked responses were extracellularly recorded and analyzed. We compared spatio-temporal patterns of the responses between before and after repetitive application of correlated stimuli. After the correlated stimuli, the networks showed significantly different responses from those in the initial states. The modified activity reflected structures of the repeatedly applied correlated stimuli. The results suggested that spatiotemporally correlated inputs systematically induced modification of synaptic strengths in neuronal networks, which could serve as an underlying mechanism of associative memory.

  2. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture.

    PubMed

    López, E; Arce, C; Oset-Gasque, M J; Cañadas, S; González, M P

    2006-03-15

    Cadmium is a toxic agent that it is also an environmental contaminant. Cadmium exposure may be implicated in some humans disorders related to hyperactivity and increased aggressiveness. This study presents data indicating that cadmium induces cellular death in cortical neurons in culture. This death could be mediated by an apoptotic and a necrotic mechanism. The apoptotic death may be mediated by oxidative stress with reactive oxygen species (ROS) formation which could be induced by mitochondrial membrane dysfunction since this cation produces: (a) depletion of mitochondrial membrane potential and (b) diminution of ATP levels with ATP release. Necrotic death could be mediated by lipid peroxidation induced by cadmium through an indirect mechanism (ROS formation). On the other hand, 40% of the cells survive cadmium action. This survival seems to be mediated by the ability of these cells to activate antioxidant defense systems, since cadmium reduced the intracellular glutathione levels and induced catalase and SOD activation in these cells.

  3. Identification of prothymosin-α1, the necrosis–apoptosis switch molecule in cortical neuronal cultures

    PubMed Central

    Ueda, Hiroshi; Fujita, Ryousuke; Yoshida, Akira; Matsunaga, Hayato; Ueda, Mutsumi

    2007-01-01

    We initially identified a nuclear protein, prothymosin-α1 (ProTα), as a key protein inhibiting necrosis by subjecting conditioned media from serum-free cultures of cortical neurons to a few chromatography steps. ProTα inhibited necrosis of cultured neurons by preventing rapid loss of cellular adenosine triphosphate levels by reversing the decreased membrane localization of glucose transporters but caused apoptosis through up-regulation of proapoptotic Bcl2-family proteins. The apoptosis caused by ProTα was further inhibited by growth factors, including brain-derived neurotrophic factor. The ProTα-induced cell death mode switch from necrosis to apoptosis was also reproduced in experimental ischemia-reperfusion culture experiments, although the apoptosis level was markedly reduced, possibly because of the presence of growth factors in the reperfused serum. Knock down of PKCβII expression prevented this cell death mode switch. Collectively, these results suggest that ProTα is an extracellular signal protein that acts as a cell death mode switch and could be a promising candidate for preventing brain strokes with the help of known apoptosis inhibitors. PMID:17353361

  4. Effects of inorganic lead on the differentiation and growth of cortical neurons in culture.

    PubMed

    Kern, M; Audesirk, T; Audesirk, G

    1993-01-01

    Lead exposure has devastating effects on the developing nervous system, producing morphological, cognitive, and behavioral deficits. To elucidate some of the mechanisms of lead neurotoxicity, we have examined its effects on the differentiation of several types of cultured neurons. Previously, we reported the effects of inorganic lead on several parameters of growth and differentiation of E18 rat hippocampal neurons and two types of neuroblastoma cells cultured in medium with 2% fetal calf serum (FCS) (Audesirk et al., 1991). In the present study, we report the effects of concentrations of lead ranging from 1nM to 1 mM on the differentiation of hippocampal neurons cultured in medium containing 10% FCS. In addition, we investigated lead effects on neurons isolated from the motor cortex region of the E18 rat embryo. Cortical neurons were exposed to lead in concentrations ranging from 0.1 nM to 1 mM in medium with either 10% FCS or 2% FCS for 48 hr. The effects of lead tended to be multimodal. Neurite initiation, which is highly sensitive to neurotoxic compounds, was inhibited by lead at both high and low concentrations, with no effects at intermediate levels. Medium with 10% FCS enhanced certain growth parameters and tended to reduce the effects of lead. There was an overall consistency in the effects of lead on motor cortex and hippocampal neurons.

  5. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures.

    PubMed

    Chen, Yongmei; Swanson, Raymond A

    2003-03-01

    Cysteine availability is normally the rate-limiting factor in glutathione synthesis. How neurons obtain cysteine from extracellular space is not well established. Here we used mouse cortical neuron cultures to examine the role of the excitatory amino acid transporters (EAATs) in neuronal cysteine uptake. The cultured neurons expressed both EAAT2 and EAAT3. Cysteine uptake was predominantly (> 85%) Na+-dependent, with an apparent Km of 37 microm. Cysteine uptake was reduced by the EAAT substrates l-glutamate and l-aspartate and by synthetic EAAT inhibitors. The non-selective EAAT inhibitor threo-beta-hydroxyaspartate had a significantly greater maximal inhibitory effect than did the EAAT2-selective inhibitor, dihydrokainate, indicating uptake by both EAAT2 and EAAT3. Serine, a substrate of ASC uptake system, had negligible effects on cysteine uptake at 10-fold excess concentrations. To assess the functional importance of EAAT-mediated cysteine uptake in neuronal glutathione synthesis, cultures were treated with diethylmaleate to deplete glutathione, then incubated with cysteine in the presence or absence of EAAT inhibitors. Threo-beta-benzyloxyaspartate and the non-transportable inhibitor threo-beta-hydroxyaspartate both inhibited the cysteine-dependent glutathione synthesis. The findings suggest that neuronal EAAT activity can be a rate-limiting step for neuronal glutathione synthesis and that the primary function of EAATs expressed by neurons in vivo may be to transport cysteine.

  6. Sphingosine-1-Phosphate Enhancement of Cortical Actomyosin Organization in Cultured Human Schlemm's Canal Endothelial Cell Monolayers

    PubMed Central

    Sumida, Grant M.

    2010-01-01

    Purpose. Perfusion of sphingosine-1-phosphate (S1P) in whole eye organ culture models decreases outflow facility, whereas S1P promotes stress fiber formation and contractility in cultured trabecular meshwork (TM) cells. Because of S1P's known effect of increasing barrier function in endothelial cells, the authors hypothesized that Schlemm's canal (SC) cells in culture respond to S1P by increasing actomyosin organization at the cell cortex. Methods. Using primary cultures of human SC cells, the authors determined S1P activation of the GTP-binding proteins, RhoA and Rac (1,2,3). Time- and dose-dependent myosin light chain (MLC) phosphorylation in response to S1P and total expression of MLC were determined. Immunocytochemistry after S1P treatment was used to monitor filamentous actin (F-actin) and phospho-MLC organization and the localization of β-catenin, a component of adherens junctions. TM and human umbilical vein endothelial cell monolayers were used as controls. Results. S1P (1 μM) activated RhoA and Rac after 5- and 30-minute treatments. S1P increased MLC phosphorylation with a similar time- and dose-dependent response in SC (EC50 = 0.83 μM) compared with TM (EC50 = 1.33 μM), though MLC expression was significantly greater in TM. In response to 1 μM S1P treatment, phospho-MLC concentrated in the SC cell periphery, coincident with cortical actin assembly and recruitment of β-catenin to the cell periphery. Conclusions. Results obtained in this study support the hypothesis that S1P increases actomyosin organization at the SC cell cortex and promotes intercellular junctions at the level of the inner wall of SC to increase transendothelial resistance and in part explains the S1P-induced decrease of outflow facility in organ culture. PMID:20592229

  7. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells.

    PubMed

    Hovatta, Outi; Mikkola, Milla; Gertow, Karin; Strömberg, Anne-Marie; Inzunza, José; Hreinsson, Julius; Rozell, Björn; Blennow, Elisabeth; Andäng, Michael; Ahrlund-Richter, Lars

    2003-07-01

    Human embryonic stem (hES) cell lines were first cultured using fetal mouse fibroblasts as feeder cells. To avoid feeders and to reduce the amount of xeno-components, Matrigel- and laminin-coated dishes, and conditioned mouse feeder cell medium have been used, and hES cells have also been cultured on human fetal muscle and skin, and adult Fallopian tube epithelial cells. We used post-natal, commercially available human foreskin fibroblasts as feeder cells. Inner cell masses (ICM) were isolated from five supernumerary blastocysts, obtained as donations from couples undergoing IVF treatment. Two ICM showed continuous growth. One line, HS181, has been in culture for 41 weeks with a doubling time of 24-36 h. It continues to express stem cell markers alkaline phosphatase, Oct-4, stage-specific embryonic antigen (SSEA)-4 and tumour-related antigen (TRA)-1-60. The karyotype is 46,XX. Pluripotency was demonstrated by teratoma formation in immunodeficient mice. In high-density cultures, spontaneous differentiation to beating cells and neuron-like cells was seen. The second line, HS207, was cultured for 9 weeks and cryopreserved, as were samples of line HS181. Both lines began to grow after thawing. We used successfully human foreskin fibroblasts as feeder cells for derivation and continued undifferentiated growth of hES cells. These feeder cells are convenient for IVF units, because no fetal human tissues or tissue from operations are needed.

  8. The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking.

    PubMed

    Englund, Mikael C O; Caisander, Gunilla; Noaksson, Karin; Emanuelsson, Katarina; Lundin, Kersti; Bergh, Christina; Hansson, Charles; Semb, Henrik; Strehl, Raimund; Hyllner, Johan

    2010-04-01

    This report summarises our efforts in deriving, characterising and banking of 20 different human embryonic stem cell lines. We have derived a large number of human embryonic stem cell lines between 2001 and 2005. One of these cell lines was established under totally xeno-free culture conditions. In addition, several subclones have been established, including a karyoptypical normal clone from a trisomic mother line. A master cell banking system has been utilised in concert with an extensive characterisation programme, ensuring a supply of high quality pluripotent stem cells for further research and development. In this report we also present the first data on a proprietary novel antibody, hES-Cellect, that exhibits high specificity for undifferentiated hES cells. In addition to the traditional manual dissection approach of propagating hES cells, we here also report on the successful approaches of feeder-free cultures as well as single cell cultures based on enzymatic digestion. All culture systems used as reported here have maintained the hES cells in a karyotypical normal and pluripotent state. These systems also have the advantage of being the principal springboards for further scale up of cultures for industrial or clinical applications that would require vastly more cells that can be produced by mechanical means.

  9. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture.

    PubMed

    Meng, Guoliang; Liu, Shiying; Krawetz, Roman; Chan, Michael; Chernos, Judy; Rancourt, Derrick E

    2008-06-01

    Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.

  10. Isolation and culture of neural crest cells from embryonic murine neural tube.

    PubMed

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  11. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle

    PubMed Central

    Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-01-01

    Blind source separation is the computation underlying the cocktail party effect––a partygoer can distinguish a particular talker’s voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes’ principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico) demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle. PMID:26690814

  12. Toxicity of organotin compounds in primary cultures of rat cortical astrocytes.

    PubMed

    Röhl, C; Gülden, M; Seibert, H

    2001-01-01

    The neurotoxic organotin compounds trimethyl (TMT) and triethyltin (TET) are known to induce astrogliosis in vivo, which is indicated by an increased synthesis of glial fibrillary acidic protein (GFAP) in astrocytes. In contrast, tributyltin (TBT) does not induce astrogliosis. The aim of this study was to investigate whether trialkyltin derivatives can induce an increased GFAP synthesis in astrocyte cultures in the absence of neurons and whether differences between the action of TMT, TET, and TBT can be detected. Primary cultures of rat cortical astrocytes from 2-day-old rats were grown in 96-well plates until confluency and then exposed to various concentrations of TMT, TET, and TBT for 40 h. Effects on basal cell functions were measured by colorimetric determination of cell protein contents and by assessment of viability by means of the MTT assay. An indirect sandwich ELISA for 96-well plates was used for quantitative measurements of the GFAP content of the cells. All three compounds induced a concentration-dependent cytotoxicity indicated by parallel decreases of protein contents and MTT reduction. Half-maximum cytotoxic concentrations were 3 micromol/L (TBT), 30 micromol/L (TET), and 800 micromol/L (TMT). Cellular GFAP contents were reduced in parallel to cytotoxic action but no increase in GFAP expression at subcytotoxic concentrations could be observed. Thus, the astrocytes were not able to respond to TMT or TET exposure by an increased synthesis of GFAP in the absence of neuronal signals.

  13. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle.

    PubMed

    Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Blind source separation is the computation underlying the cocktail party effect--a partygoer can distinguish a particular talker's voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes' principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico) demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle.

  14. Panaxydol and panaxynol protect cultured cortical neurons against Abeta25-35-induced toxicity.

    PubMed

    Nie, Bao-Ming; Jiang, Xiao-Yan; Cai, Jin-Xian; Fu, Sai-Li; Yang, Li-Min; Lin, Lin; Hang, Qin; Lu, Pei-Lua; Lu, Yang

    2008-04-01

    Amyloid beta protein (Abeta), the central constituent of senile plaques in Alzheimer's disease (AD), is known to exert toxic effects on cultured neurons. In the present study, the protective effect of panaxydol (PND) and panaxynol (PNN) on Abeta25-35-induced neuronal apoptosis and potential mechanisms were investigated in primary cultured rat cortical neurons. Pretreatment of the cells with PND or PNN prior to 10 microM Abeta25-35 exposure resulted significantly in elevation of cell survival determined by MTT assay, TUNEL/Hoechst staining and western blot. Furthermore, a marked increase in calcium influx and intracellular free radical generation was found after Abeta25-35 exposure, which could be almost completely reversed by pretreatment of PND or PNN. PND and PNN could also alleviate Abeta25-35-induced early-stage neuronal degeneration. These results indicated that inhibition of calcium influx and free radical generation is a mechanism of the anti-apoptotic action of PND and PNN. Since Abeta plays critical roles in the pathogenesis of AD, these findings raise the possibility that PND and PNN reduce neurodegeneration in AD.

  15. Astrocytes regulate developmental changes in the chloride ion gradient of embryonic rat ventral spinal cord neurons in culture

    PubMed Central

    Li, Yong-Xin; Schaffner, Anne E; Walton, Marc K; Barker, Jeffery L

    1998-01-01

    Embryonic rat ventral spinal cord neurons were dissociated at day 15 and grown on: (i) poly-D-lysine (PDL); (ii) a confluent monolayer of type I astrocytes; or (iii) PDL in astrocyte-conditioned medium (ACM) to examine the influence of astroglia on the regulation of GABAA receptor/Cl− channel properties. Potentiometric oxonol dye recordings of intact cells indicated that embryonic neurons were uniformly depolarized by muscimol. The depolarizing effects disappeared in cells dissociated during the early postnatal period and recovered in culture for 24 h. Similar recordings using the calcium-imaging dye fura-2 AM revealed that GABA or muscimol triggered a sustained rise in cytosolic Ca2+ (Cac2+) in embryonic neurons that was dependent on extracellular Ca2+, blocked by bicuculline and nifedipine and sensitive to changes in extracellular chloride. The incidence and amplitude of the Ca2+ response decreased with time in vitro and was accelerated in neurons cultured on astrocytes compared with those on PDL. Perforated patch-clamp recordings revealed that GABA depolarized neurons in a Cl−-dependent and bicuculline-sensitive manner. Both the resting membrane potential and the GABA equilibrium potential became more hyperpolarized with time in vitro. Astrocytes and ACM accelerated the transformation of GABAergic potential responses from depolarizing to hyperpolarizing. The change occurred over the first 4 days in co-culture or in ACM but took more than 2 weeks in neurons cultured on PDL alone. The intrinsic, elementary properties of GABAA receptor/Cl− channels including open time and unitary conductance changed independently of the presence of astrocytes or ACM. Mean open time of the dominant kinetic component decreased and conductance increased with time in vitro. In sum, astrocytes accelerate the developmental change in the Cl− ion gradient extrinsic to GABAA receptor/Cl− channels, which is critical for triggering Ca2+ entry, without influencing parallel changes in

  16. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    SciTech Connect

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  17. Effects of lidocaine, procaine, procainamide and quinidine on electrophysiological properties of cultured embryonic chick hearts.

    PubMed Central

    Riccioppo Neto, F. R.; Sperelakis, N.

    1985-01-01

    The effects of lidocaine, procaine, procainamide and quinidine were studied on organ-cultured embryonic chick (2-3 day-old) ventricular cells. Lidocaine (10(-5) - 10(-4)M), in a dose-dependent manner, reduced the rate of pacemaker discharge, the action potential amplitude (APA), the maximum rate of rise (Vmax) of the upstroke of the action potential and the action potential duration at 50% repolarization (APD50). These changes occurred without alterations in the maximum diastolic potential (MDP). Extracellular electrical field stimulation could still evoke action potentials in cells arrested by 10(-4)M lidocaine, but 10(-3)M lidocaine completely abolished electrical activity. Procaine, procainamide and quinidine, at 5 X 10(-5)M to 10(-3)M, depolarized the cells to around -30 mV and reduced APA and Vmax. Procaine and procainamide increased APD50, but quinidine shortened it. All the effects described disappeared completely in about 40 min of superfusion with drug-free Tyrode solution. Isoprenaline (5 X 10(-7)M) and adrenaline (10(-6)M) restored spontaneous firing of preparations arrested by any of the antiarrhythmic agents and repolarized ventricular cells depolarized by procaine, procainamide or quinidine. Propranolol (5 X 10(-7)M) did not affect the depolarization produced by procaine (5 X 10(-4)M), but antagonized its reversal by isoprenaline. In contrast, isoprenaline (10(-6)M) did not produce recovery of automaticity of preparations arrested by verapamil (10(-5)M). Histamine (10(-5)M) or strontium (10 mM) were not able to restore rhythmic activity in cells arrested procaine. Application of long (10-15 s duration) hyperpolarizing currents did not reverse the blocking effect of procaine, procainamide and quinidine. The input resistance increased during the procaine-induced depolarization. It is suggested that the four agents studied block the slow Na+ channels responsible for the upstroke of the action potential in young chick heart cells. A drug-induced decrease

  18. Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons.

    PubMed

    Domoki, Ferenc; Kis, Béla; Gáspár, Tamás; Snipes, James A; Parks, John S; Bari, Ferenc; Busija, David W

    2009-01-01

    We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean +/- SE, n = 24-96, P < 0.05) to 44 +/- 1%, but 3-day pretreatment with RST (5 microM) increased survival to 82 +/- 2% (P < 0.05). One-day RST treatment was not protective. RST-induced neuroprotection was abolished by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not by cholesterol coapplication. Furthermore, RST-induced decreases in neuronal cholesterol levels were abolished by mevalonate but not by GGPP. Reactive oxygen species (ROS) levels were reduced in RST-preconditioned neurons after OGD, and this effect was also reversed by both mevalonate and GGPP. These data suggested that GGPP, but not cholesterol depletion, were responsible for the induction of neuroprotection. Therefore, we tested whether 3-day treatments with perillic acid, a nonspecific inhibitor of both geranylgeranyl transferase (GGT) GGT 1 and Rab GGT, and the GGT 1-specific inhibitor GGTI-286 would reproduce the effects of RST. Perillic acid, but not GGTI-286, elicited robust neuronal preconditioning against OGD. RST, GGTI-286, and perillic acid all decreased mitochondrial membrane potential and lactate dehydrogenase activity in the cultured neurons, but only RST and perillic acid reduced neuronal ATP and membrane Rab3a protein levels. In conclusion, RST preconditions cultured neurons against OGD via depletion of GGPP, leading to decreased geranylgeranylation of proteins that are probably not isoprenylated by GGT 1. Reduced neuronal ATP levels and ROS production after OGD may be directly involved in the mechanism of neuroprotection.

  19. Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor.

    PubMed

    Roberts, Iwan; Baila, Stefano; Rice, R Brent; Janssens, Michiel Etienne; Nguyen, Kim; Moens, Nathalie; Ruban, Ludmila; Hernandez, Diana; Coffey, Pete; Mason, Chris

    2012-12-01

    The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.

  20. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single cell analysis

    PubMed Central

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2015-01-01

    Summary Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states; and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC priming pathway that initiates the exit from the naïve ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum free culture reduces cellular heterogeneity and transcriptome variation in ESCs. PMID:26804902

  1. Chondrogenesis of embryonic limb bud cells in micromass culture progresses rapidly to hypertrophy and is modulated by hydrostatic pressure.

    PubMed

    Saha, Anurati; Rolfe, Rebecca; Carroll, Simon; Kelly, Daniel J; Murphy, Paula

    2017-04-01

    Chondrogenesis in vivo is precisely controlled in time and space. The entire limb skeleton forms from cells at the core of the early limb bud that condense and undergo chondrogenic differentiation. Whether they form stable cartilage at the articular surface of the joint or transient cartilage that progresses to hypertrophy as endochondral bone, replacing the cartilage template of the skeletal rudiment, is spatially controlled over several days in the embryo. Here, we follow the differentiation of cells taken from the early limb bud (embryonic day 11.5), grown in high-density micromass culture and show that a self-organising pattern of evenly spaced cartilage nodules occurs spontaneously in growth medium. Although chondrogenesis is enhanced by addition of BMP6 to the medium, the spatial pattern of nodule formation is disrupted. We show rapid progression of the entire nodule to hypertrophy in culture and therefore loss of the local signals required to direct formation of stable cartilage. Dynamic hydrostatic pressure, which we have previously predicted to be a feature of the forming embryonic joint region, had a stabilising effect on chondrogenesis, reducing expression of hypertrophic marker genes. This demonstrates the use of micromass culture as a relatively simple assay to compare the effect of both biophysical and molecular signals on spatial and temporal control of chondrogenesis that could be used to examine the response of different types of progenitor cell, both adult- and embryo-derived.

  2. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation.

    PubMed

    Li, Ching-Wen; Pan, Wei-Ting; Ju, Jyh-Cherng; Wang, Gou-Jen

    2016-04-12

    In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation.

  3. Catenary cultures of embryonic gastrointestinal tract support organ morphogenesis, motility, neural crest cell migration, and cell differentiation.

    PubMed

    Hearn, C J; Young, H M; Ciampoli, D; Lomax, A E; Newgreen, D

    1999-03-01

    The embryonic gastrointestinal tract develops from a simple tube into a coiled, flexed, and regionalized structure. The changes in gut morphology coincide with the differentiation of multiple cell types in concentric layers, and include colonization by migratory neuron precursors, and the development of gastrointestinal motility. We describe a reliable method for growing embryonic mouse intestine in vitro by the attachment of segments of intestinal tract by their cut ends, with the intervening region suspended in the culture medium. These are termed "catenary cultures." E11-E11.5 mouse midgut, hindgut, or mid- plus hindgut segments were grown in catenary culture for up to 10 days and their growth, morphology, cell differentiation, ability to support neural precursor migration, and contractile activity were assessed. The increase in size of the cultured explants was not large, but morphogenesis proceeded, best exemplified by elongation of the caecum. Cell differentiation also proceeded. In the mucosa, goblet cells differentiated. Muscle layers, characterized by desmin expression, and kit-positive interstitial cells of Cajal differentiated in the correct positions. Where segments initially included neural precursors in a small sub-region, these migrated and proliferated to form uniform neuronal networks throughout the entire explant, and the cells expressed the neuron markers nitric oxide synthase and neuron specific enolase. Gut motility was attained 5-6 days into the culture period, and both contractile- and mixing-type movements were observed. Thus, cell types representative of all three germ layer contributions developed, and in addition, the gut, being mainly free, was able to elongate and bend (unlike on solid support cultures), while retaining its rostrocaudal identity.

  4. Organic Anion and Cation Transporter Expression and Function During Embryonic Kidney Development and in Organ Culture Model Systems

    PubMed Central

    Sweet, Douglas H.; Eraly, Satish A.; Bush, Kevin T.; Nigam, Sanjay K.

    2010-01-01

    Background Organic anion and cation transporters (OATs, OCTs and OCTNs) mediate the proximal tubular secretion of numerous clinically important compounds, including various commonly prescribed pharmaceuticals. Here, we examine the ontogeny of these transporters in rat embryonic kidney in detail, both in vivo and in two in vitro organ culture models of kidney development, whole embryonic kidney (WEK) culture and culture of induced metanephric mesenchyme (MM). Methods We used QPCR to determine expression levels of transporter genes in rat embryonic kidneys on each day of gestation from ed13 to ed18, in induced and un-induced MM, and on each day of one week of WEK culture. We also used uptake of fluorescein as a novel functional assay of organic anion transporter expression in WEK and MM. Results The developmental induction of the various organic anion and cation transporter genes does not occur uniformly: some genes are induced early (e.g., Oat1 and Oat3, potential early markers of proximal tubulogenesis), and others not till kidney development is relatively advanced (e.g., Oct1, a potential marker of terminal differentiation). We also find that the ontogeny of transporter genes in WEK and MM is similar to that observed in vivo, indicating that these organ culture systems may appropriately model the expression of OATs, OCTs and OCTNs. Conclusion We show that WEK and MM cultures may represent convenient in vitro models for study of the developmental induction of organic anion and cation transporters. Functional organic anion transport as measured by fluorescein uptake was evident by accumulation of the fluorescence in the developing tubule in these organ cultures. By demonstrating the mediated uptake of fluorescein in WEK and MM, we have established a novel in vitro functional assay of transporter function. We find that OATs, OCTs, and OCTNs are differentially expressed during proximal tubule development. Our findings on the renal ontogeny of organic anion and cation

  5. Isolation and Culture of Embryonic Stem Cells, Mesenchymal Stem Cells, and Dendritic Cells from Humans and Mice.

    PubMed

    Kar, Srabani; Mitra, Shinjini; Banerjee, Ena Ray

    2016-01-01

    Stem cells are cells capable of proliferation, self-renewal, and differentiation into specific phenotypes. They are an essential part of tissue engineering, which is used in regenerative medicine in case of degenerative diseases. In this chapter, we describe the methods of isolating and culturing various types of stem cells, like human embryonic stem cells (hESCs), human umbilical cord derived mesenchymal stem cells (hUC-MSCs), murine bone marrow derived mesenchymal stem cells (mBM-MSCs), murine adipose tissue derived mesenchymal stem cells (mAD-MSCs), and murine bone marrow derived dendritic cells (mBMDCs). All these cell types can be used in tissue engineering techniques.

  6. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  7. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    PubMed

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  8. Anesthetic actions of thiopental remain largely unaffected during cholinergic overstimulation in cultured cortical networks.

    PubMed

    Weimer, Isabel; Worek, Franz; Seeger, Thomas; Thiermann, Horst; Grasshoff, Christian; Antkowiak, Bernd; Balk, Monika

    2016-02-26

    In case of military or terrorist use of organophosphorus (OP) compounds victims are likely to suffer from not only intoxication but physical trauma as well. Appropriate emergency care may therefore include general anesthesia to allow life-saving surgical intervention. Since there is evidence that drug potency and efficacy of several anesthetics are attenuated by high concentrations of acetylcholine in the CNS, this study was designed to evaluate the anesthetic actions of thiopental during cholinergic overstimulation. Making use of organotypic slice cultures derived from the mouse neocortex, drug effects were assessed by extracellular voltage recordings of network activity at basal cholinergic tone and during simulated cholinergic crisis (high cholinergic tone). The latter was achieved by inhibition of acetylcholinesterases via soman and an ambient acetylcholine concentration of 10μM. The induction of cholinergic crisis in vitro increased the network activity of cortical neurons significantly. Surprisingly, differences in network activity between basal and high cholinergic tone became less pronounced with rising concentrations of thiopental and drug potency and efficacy were almost equivalent. These results clearly distinguish thiopental from previously tested general anesthetics and make it a promising candidate for in vivo studies to identify suitable anesthetics for victims of OP intoxication.

  9. Distinct regulation of activity-dependent transcription of immediate early genes in cultured rat cortical neurons.

    PubMed

    Fukuchi, Mamoru; Sanabe, Tomofumi; Watanabe, Toshifumi; Kubota, Takane; Tabuchi, Akiko; Tsuda, Masaaki

    2017-08-26

    The activity-regulated expression of immediate early genes (IEGs) contributes to long-lasting neuronal functions underlying long-term memory. However, their response properties following neuronal activity are unique and remain poorly understood. To address this knowledge gap, here we further investigated the response properties of two representative IEGs, c-fos and brain-derived neurotrophic factor (Bdnf). Treatment of cultured cortical cells with KCl produces a depolarization process that results in the increase of intracellular calcium concentration in a KCl concentration-dependent manner. Consistent with this increase, c-fos expression was induced in a KCl concentration-dependent manner. In contrast, however, Bdnf expression was optimally activated by both 25 and 50 mM concentration of KCl. Similar results were observed when the cells were treated with okadaic acid, which inhibits protein phosphatases and elicits the hyper-phosphorylation of signaling molecules. Thus, Bdnf expression is strictly regulated by a neuronal activity threshold in an all or nothing manner, whereas c-fos expression is activated in a neuronal activity-dependent manner. Our findings also suggest that these differential responses might be due to the presence or absence of a TATA box. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures.

    PubMed

    Gáspár, Tamás; Domoki, Ferenc; Lenti, Laura; Institoris, Adám; Snipes, James A; Bari, Ferenc; Busija, David W

    2009-05-13

    Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol. To induce catalase overexpression, cultured rat cortical neurons were infected with the adenoviral vector Ad5CMVcatalase and control cells were incubated with Ad5CMVntLacZ for 24 h. Gene transfer effectively increased catalase protein levels and activity, but did not influence other antioxidants tested. Ad5CMVcatalase, with up to 10 plaque forming units (pfu) per neuron, did not affect cell viability under control conditions and did not protect against glutamate excitotoxicity or oxygen-glucose deprivation. In contrast, catalase overexpression conferred a dose-dependent protection against exposure to hydrogen peroxide (viability: control, 33.02+/-1.09%; LacZ 10 pfu/cell, 32.85+/-1.51%; catalase 1 pfu/cell, 62.09+/-4.17%*; catalase 2 pfu/cell, 98.71+/-3.35%*; catalase 10 pfu/cell, 99.68+/-1.99%*; *p<0.05 vs. control; mean+/-SEM). Finally, the protection could be antagonized using the catalase inhibitor 3-aminotriazole. Our results support the view that enhancing cellular antioxidant capacity may play a crucial role in neuroprotective strategies.

  11. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.

    PubMed

    Berdondini, L; Massobrio, P; Chiappalone, M; Tedesco, M; Imfeld, K; Maccione, A; Gandolfo, M; Koudelka-Hep, M; Martinoia, S

    2009-03-15

    High-density microelectrode arrays (MEAs) enabled by recent developments of microelectronic circuits (CMOS-MEA) and providing spatial resolutions down to the cellular level open the perspective to access simultaneously local and overall neuronal network activities expressed by in vitro preparations. The short inter-electrode separation results in a gain of information on the micro-circuit neuronal dynamics and signal propagation, but requires the careful evaluation of the time resolution as well as the assessment of possible cross-talk artifacts. In this respect, we have realized and tested Pt high-density (HD)-MEAs featuring four local areas with 10microm inter-electrode spacing and providing a suitable noise level for the assessment of the high-density approach. First, simulated results show how possible artifacts (duplicated spikes) can be theoretically observed on nearby microelectrodes only for very high-shunt resistance values (e.g. R(sh)=50 kOmega generates up to 60% of false positives). This limiting condition is not compatible with typical experimental conditions (i.e. dense but not confluent cultures). Experiments performed on spontaneously active cortical neuronal networks show that spike synchronicity decreases by increasing the time resolution and analysis results show that the detected synchronous spikes on nearby electrodes are likely to be unresolved (in time) fast local propagations. Finally, functional connectivity analysis results show stronger local connections than long connections spread homogeneously over the whole network demonstrating the expected gain in detail provided by the spatial resolution.

  12. Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons.

    PubMed

    Aliaga, E; Silhol, M; Bonneau, N; Maurice, T; Arancibia, S; Tapia-Arancibia, L

    2010-01-01

    Beta-amyloid (Abeta) deposition is one important pathological hallmark in Alzheimer's disease (AD). However, low levels of Abeta may modify critical endogenous protection systems before neurodegeneration occurs. We examined the time-course effect of sublethal concentrations of Abeta on total BDNF (panBDNF), BDNF transcripts (I, II, IV and VI), trkB.FL, trkB.T1 and p75(NGFR) mRNA expression in cultured cortical neurons. We have shown that Abeta exhibited a dual response on BDNF mRNA, i.e. an increase at short times (3-5 h) and a dramatic decrease at longer times (24 or 48 h). The early increase in BDNF expression seems to be driven by increased expression of transcripts I and IV. The BDNF drop was specific since did not occur for other mRNAs examined. The BDNF protein content showed a similar profile but did not follow the dramatic reduction as its encoding mRNA. These observations may help to explain cognitive deficits observed at initial stages of AD.

  13. Latency-Related Development of Functional Connections in Cultured Cortical Networks

    PubMed Central

    le Feber, J.; van Pelt, J.; Rutten, W.L.C.

    2009-01-01

    Abstract To study plasticity, we cultured cortical networks on multielectrode arrays, enabling simultaneous recording from multiple neurons. We used conditional firing probabilities to describe functional network connections by their strength and latency. These are abstract representations of neuronal pathways and may arise from direct pathways between two neurons or from a common input. Functional connections based on direct pathways should reflect synaptic properties. Therefore, we searched for long-term potentiation (this mechanism occurs in vivo when presynaptic action potentials precede postsynaptic ones with interspike intervals up to ∼20 ms) in vitro. To investigate if the strength of functional connections showed a similar latency-related development, we selected periods of monotonously increasing or decreasing strength. We observed increased incidence of short latencies (5–30 ms) during strengthening, whereas these rarely occurred during weakening. Furthermore, we saw an increased incidence of 40–65 ms latencies during weakening. Conversely, functional connections tended to strengthen in periods with short latency, whereas strengthening was significantly less than average during long latency. Our data suggest that functional connections contain information about synaptic connections, that conditional firing probability analysis is sensitive enough to detect it and that a substantial fraction of all functional connections is based on direct pathways. PMID:19383487

  14. Concentration-Dependent Dual Role of Thrombin In Protection of Cultured Rat Cortical Neurons

    PubMed Central

    García, Paul S.; Ciavatta, Vincent T.; Fidler, Jonathan A.; Woodbury, Anna; Levy, Jerrold H.; Tyor, William R.

    2015-01-01

    Background Thrombin’s role in the nervous system is not well understood. Under conditions of blood-brain barrier compromise (e.g., neurosurgery or stroke), thrombin can result in neuroapoptosis and the formation of glial scars. Despite this, preconditioning with thrombin has been found to be neuroprotective in models of cerebral ischemia and intracerebral hemorrhage. Methods We investigated the effects of physiologically relevant concentrations of thrombin on cortical neurons using two culture-based assays. We examined thrombin’s effect on neurites by quantitative analysis of fluorescently labeled neurons. To characterize thrombin’s effects on neuron survival, we spectrophotometrically measured changes in enzymatic activity. Using receptor agonists and thrombin inhibitors, we separately examined the role of thrombin and its receptor in neuroprotection. Results We found that low concentrations of thrombin (1 nM) enhances neurite growth and branching, neuron viability, and protects against excitotoxic damage. In contrast, higher concentrations of thrombin (100 nM) are potentially detrimental to neuronal health as evidenced by inhibition of neurite growth. Lower concentrations of thrombin resulted in equivalent neuroprotection as the antifibrinolytic, aprotinin, and the direct thrombin inhibitor, argatroban. Interestingly, exogenous application of the species-specific thrombin inhibitor, antithrombin III, was detrimental to neuronal health; suggesting that some endogenous thrombin is necessary for optimal neuron health in our culture system. Activation of the thrombin receptor, protease-activated receptor - 1 (PAR-1), via micromolar concentrations of the thrombin receptor agonist peptide, TRAP, did not adversely affect neuronal viability. Conclusions An optimal concentration of thrombin exists to enhance neuronal health. Neurotoxic effects of thrombin do not involve activation of PAR receptors and thus separate pharmacologic manipulation of thrombin’s receptor

  15. Primary cultures of embryonic chick lens cells as a model system to study lens gap junctions and fiber cell differentiation.

    PubMed

    Musil, Linda S

    2012-07-01

    A major limitation in lens gap junction research has been the lack of experimentally tractable ex vivo systems to study the formation and regulation of fiber-type gap junctions. Although immortalized lens-derived cell lines are amenable to both gene transfection and siRNA-mediated knockdown, to our knowledge none are capable of undergoing appreciable epithelial-to-fiber differentiation. Lens central epithelial explants have the converse limitation. A key advance in the field was the development of a primary embryonic chick lens cell culture system by Drs. Sue Menko and Ross Johnson. Unlike central epithelial explants, these cultures also include cells from the peripheral (preequatorial and equatorial) epithelium, which is the most physiologically relevant population for the study of fiber-type gap junction formation. We have modified the Menko/Johnson system and refer to our cultures as dissociated cell-derived monolayer cultures (DCDMLs). We culture DCDMLs without serum to mimic the avascular lens environment and on laminin, the major matrix component of the lens capsule. Here, I review the features of the DCDML system and how we have used it to study lens gap junctions and fiber cell differentiation. Our results demonstrate the power of DCDMLs to generate new findings germane to the mammalian lens and how these cultures can be exploited to conduct experiments that would be impossible, prohibitively expensive and/or difficult to interpret using transgenic animals in vivo.

  16. Chromosomal Modification in Human Embryonic Stem Cells Cultured in a Feeder-Free Condition after Single Cell Dissociation using Accutase.

    PubMed

    Kim, Young-Eun; Park, Jeong-A; Ha, Yang-Wha; Park, Sang-Kyu; Kim, Hee Sun; Oh, Sun Kyung; Lee, Younghee

    2012-12-01

    Human embryonic stem (ES) cells are a potential source of cells for developmental studies and for a variety of applications in transplantation therapies and drug discovery. However, human ES cells are difficult to culture and maintain at a large scale, which is one of the most serious obstacles in human ES cell research. Culture of human ES cells on MEF cells after disassociation with accutase has previously been demonstrated by other research groups. Here, we confirmed that human ES cells (H9) can maintain stem cell properties when the cells are passaged as single cells under a feeder-free culture condition. Accutase-dissociated human ES cells showed normal karyotype, stem cell marker expression, and morphology. We prepared frozen stocks during the culture period, thawed two of the human ES cell stocks, and analyzed the cells after culture with the same method. Although the cells revealed normal expression of stem cell marker genes, they had abnormal karyotypes. Therefore, we suggest that accutase-dissociated single cells can be usefully expanded in a feeder-free condition but chromosomal modification should be considered in the culture after freeze-thawing.

  17. Chromosomal Modification in Human Embryonic Stem Cells Cultured in a Feeder-Free Condition after Single Cell Dissociation using Accutase

    PubMed Central

    Kim, Young-Eun; Park, Jeong-A; Ha, Yang-Wha; Park, Sang-Kyu; Kim, Hee Sun; Oh, Sun Kyung; Lee, Younghee

    2012-01-01

    Human embryonic stem (ES) cells are a potential source of cells for developmental studies and for a variety of applications in transplantation therapies and drug discovery. However, human ES cells are difficult to culture and maintain at a large scale, which is one of the most serious obstacles in human ES cell research. Culture of human ES cells on MEF cells after disassociation with accutase has previously been demonstrated by other research groups. Here, we confirmed that human ES cells (H9) can maintain stem cell properties when the cells are passaged as single cells under a feeder-free culture condition. Accutase-dissociated human ES cells showed normal karyotype, stem cell marker expression, and morphology. We prepared frozen stocks during the culture period, thawed two of the human ES cell stocks, and analyzed the cells after culture with the same method. Although the cells revealed normal expression of stem cell marker genes, they had abnormal karyotypes. Therefore, we suggest that accutase-dissociated single cells can be usefully expanded in a feeder-free condition but chromosomal modification should be considered in the culture after freeze-thawing. PMID:25949110

  18. Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture.

    PubMed

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2009-02-01

    The present study examines the use of automated periodic "flow-stop" perfusion systems for long-term culture of mammalian cells in a microchannel bioreactor. The method is used to culture Human Foreskin Fibroblasts (HFF) and Human Umbilical Vein Endothelial Cells (HUVEC) for long periods of time (>7 d) in a microchannel (height 100 mum). Design parameters, mass transport and shear stress issues are theoretically examined via numerical simulations. Cell growth and morphology are experimentally monitored and an enhanced growth rate was measured compared to constant perfusion micro-reactors and to traditional culture in Petri dishes. Moreover, we demonstrate the use of the method to co-culture undifferentiated colonies of human Embryonic Stem Cells (hESC) on HFF feeder cells in microchannels. The successful hESC-HFF co-culture in the microbioreactor is achieved due to two vital characteristics of the developed method-short temporal exposure to flow followed by long static incubation periods. The short pulsed exposure to shear enables shear sensitive cells (e.g., hESC) to withstand the medium renewal flow. The long static incubation period may enable secreted factors (e.g., feeder cells secreted factors) to accumulate locally. Thus the developed method may be suitable for long-term culture of sensitive multi-cellular complexes in microsystems.

  19. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.

  20. Pure populations of murine macrophages from cultured embryonic stem cells. Application to studies of chemotaxis and apoptotic cell clearance.

    PubMed

    Zhuang, Lihui; Pound, John D; Willems, Jorine J L P; Taylor, A Helen; Forrester, Lesley M; Gregory, Christopher D

    2012-11-30

    Embryonic stem cells provide a potentially convenient source of macrophages in the laboratory. Given the propensity of macrophages for plasticity in phenotype and function, standardised culture and differentiation protocols are required to ensure consistency in population output and activity in functional assays. Here we detail the development of an optimised culture protocol for the production of murine embryonic stem cell-derived macrophages (ESDM). This protocol provides improved yields of ESDM and we demonstrate that the cells are suitable for application to the study of macrophage responses to apoptotic cells. ESDM so produced were of higher purity than commonly used primary macrophage preparations and were functional in chemotaxis assays and in phagocytosis of apoptotic cells. Maturation of ESDM was found to be associated with reduced capacity for directed migration and increased capacity for phagocytic clearance of apoptotic cells. These results show ESDM to be functionally active in sequential phases of interaction with apoptotic cells and establish these macrophage populations as useful models for further study of molecular mechanisms underlying the recognition and removal of apoptotic cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. [Study on the effect of alcohol on embryonic development by using in vitro post-implantation rat whole embryo culture].

    PubMed

    Qu, W; Zhang, B; Wu, D; Wu, W

    2000-01-30

    In order to explore the effects of drinking alcohol during pregnancy on embryonic development and its mechanisms, a post-implantation whole embryo culture(WEC) technique was used. The 9.5 day rat embryos were explanted in rat serum medium(immediately centrifugal serum, ICS) with alcohol(0.0.4.1.0, 2.00 and 4.00 g/L), and cultured for 48 hours. The index of embryo development and morphological scores induced by alcohol were observed. The result showed that alcohol had obviously effects on the development and growth of embryos with a dose-response relationship. Embryonic development of 0.4 g/L group was not significantly different from the control group, whereas 1.0 g/L group could interfere with the development score of mid-brain, forebrain, neurotube, and visceral yolk sac(VYS) circle obviously. All scores of the 2.00 g/L group were significantly lower than that of control group (P < 0.05). Moreover, the rate of embryo lethality and teratogenecity were obvious increased. It is concluded that alcohol has developmental toxicity and teratogenicity. The target organ affected by alcohol is brain. The effects of alcohol on the developmental differentiation of visceral yolk sac and DNA synthesis are probably related to its developmental abnormalities.

  2. Ultrastructural identification of Ricinus communis agglutinin-1 positive cells in primary dissociated cell cultures of human embryonic brain.

    PubMed

    Bobryshev, Y; Ashwell, K

    1994-12-01

    While Ricinus communis agglutinin 1 (RCA-1) can be used as a specific marker to study the development and differentiation of microglial cells in human embryogenesis, little is known about the structural heterogeneity and nature of RCA-1+ cells. To analyse the structural peculiarities of RCA-1+ cells, we have used primary dissociated cultures of human embryonic brain. These have been used as models for investigating many of the aspects of central nervous system (CNS) HIV infection. We have shown that primary dissociated cultures from human embryos as young as 10 weeks gestation contain RCA-1+ cells. The RCA-1+ cells exist in two forms, those without (type I) and those with (type II) processes. The former have a poorly developed ultrastructure, while the latter have well developed ultrastructural features, such as rough endoplasmic reticulum with short cisternae, abundant ribosomes, mitochondria, lysosomes and vacuoles. Furthermore, some of these cells with processes have well developed cytoskeletal features. In this paper, the classification of RCA-1+ cells of embryonic human brain is considered and their morphology compared to microglia identified in rodent CNS.

  3. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures.

    PubMed

    Beggs, John M; Plenz, Dietmar

    2004-06-02

    A major goal of neuroscience is to elucidate mechanisms of cortical information processing and storage. Previous work from our laboratory (Beggs and Plenz, 2003) revealed that propagation of local field potentials (LFPs) in cortical circuits could be described by the same equations that govern avalanches. Whereas modeling studies suggested that these "neuronal avalanches" were optimal for information transmission, it was not clear what role they could play in information storage. Work from numerous other laboratories has shown that cortical structures can generate reproducible spatiotemporal patterns of activity that could be used as a substrate for memory. Here, we show that although neuronal avalanches lasted only a few milliseconds, their spatiotemporal patterns were also stable and significantly repeatable even many hours later. To investigate these issues, we cultured coronal slices of rat cortex for 4 weeks on 60-channel microelectrode arrays and recorded spontaneous extracellular LFPs continuously for 10 hr. Using correlation-based clustering and a global contrast function, we found that each cortical culture spontaneously produced 4736 +/- 2769 (mean +/- SD) neuronal avalanches per hour that clustered into 30 +/- 14 statistically significant families of spatiotemporal patterns. In 10 hr of recording, over 98% of the mutual information shared by these avalanche patterns were retained. Additionally, jittering analysis revealed that the correlations between avalanches were temporally precise to within +/-4 msec. The long-term stability, diversity, and temporal precision of these avalanches indicate that they fulfill many of the requirements expected of a substrate for memory and suggest that they play a central role in both information transmission and storage within cortical networks.

  4. Generation of viable embryos and embryonic stem cell-like cells from cultured primary follicles in mice.

    PubMed

    Choi, Jun Hee; Kim, Gil Ah; Park, Jong Heum; Song, Gwon Hwa; Park, Jun Won; Kim, Dae Yong; Lim, Jeong Mook

    2011-10-01

    Primary follicles retrieved from B6CBAF1 prepubertal mice were cultured in a stepwise manner in an alpha-minimum essential medium-based medium to generate viable embryos and embryonic stem cell (ESC)-like cells. A significant increase in follicle growth and oocyte maturation accompanied by increased secretion of 17beta-estradiol and progesterone was achieved by exposing primary follicles to 100 or 200 mIU of follicle-stimulating hormone (FSH) during culture. More oocytes developed into blastocysts following in vitro fertilization (IVF) or parthenogenetic activation after culture with 200 mIU of FSH during the entire culture period than with 100 mIU. Eleven ESC-like cell lines, consisting of four heterozygotic and seven homozygotic phenotypes, were established from 25 trials of primary follicle culture combined with IVF or parthenogenetic activation. In conclusion, primary follicles can potentially yield developmentally competent oocytes, which produce viable embryos and ESC-like cell lines following in vitro manipulation. We suggest a method to utilize immature follicles, which are most abundant in ovaries, to improve reproductive efficiency and for use in regenerative medicine.

  5. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures

    PubMed Central

    Gáspár, Tamás; Domoki, Ferenc; Lenti, Laura; Institoris, Ádám; Snipes, James A; Bari, Ferenc; Busija, David W

    2009-01-01

    Reduced availability of reactive oxygen species is a key component of neuroprotection against various toxic stimuli. Recently we showed that the hydrogen peroxide scavenger catalase plays a central role in delayed preconditioning induced by the mitochondrial ATP-sensitive potassium channel opener BMS-191095. The purpose of the experiments discussed here was to investigate the neuroprotective effect of catalase in vitro using a recombinant adenoviral catalase gene transfer protocol. To induce catalase overexpression, cultured rat cortical neurons were infected with the adenoviral vector Ad5CMVcatalase and control cells were incubated with Ad5CMVntLacZ for 24h. Gene transfer effectively increased catalase protein levels and activity, but did not influence other antioxidants tested. Ad5CMVcatalase, with up to 10 plaque forming units (pfu) per neuron, did not affect cell viability under control conditions and did not protect against glutamate excitotoxicity or oxygen-glucose deprivation. In contrast, catalase overexpression conferred a dose-dependent protection against exposure to hydrogen peroxide (viability: control, 33.02±1.09%; LacZ 10 pfu/cell, 32.85±1.51%; catalase 1 pfu/cell, 62.09±4.17%*; catalase 2 pfu/cell, 98.71±3.35%*; catalase 10 pfu/cell, 99.68±1.99%*; *p<0.05 vs. control; mean±SEM). Finally, the protection could be antagonized using the catalase inhibitor 3-aminotriazole. Our results support the view that enhancing cellular antioxidant capacity may play a crucial role in neuroprotective strategies. PMID:19302986

  7. Discrimination of cell types in mixed cortical culture using calcium imaging: a comparison to immunocytochemical labeling.

    PubMed

    Pickering, Mark; Pickering, Brian W; Murphy, Keith J; O'Connor, John J

    2008-08-15

    Neuronal-glial interactions in the central nervous system are important for both normal function and response to pathological states. Differences in calcium processing between these cell types may be exploited to allow dynamic differentiation using calcium-imaging protocols without the need to fix and immunostain the study population. Mixed rat primary cortical cultures were grown on coverslips, incubated for 30 min in 2 microM fluo-3 AM and mounted in a devised, low volume imaging chamber. Calcium influx was measured over the duration of a 50s exposure to 30 microM glutamate in all cells. Cells were then fixed in situ, and immunostained for NeuN and GFAP. Direct comparison between live calcium dynamics and cell type markers were made. Over the duration of the glutamate exposure, those cells that subsequently stained for NeuN exhibited a sustained increase in intracellular calcium, whereas GFAP positive and non-staining cells exhibited a decline over the duration of the glutamate exposure. We found that examining the average calcium fluorescence over the last 10s of glutamate exposure allowed the identification of cells as neuronal if the average was >85% of the maximal calcium change, or non-neuronal if the average was <85% of the maximal calcium change. This technique compares very favourably to the established technique of immunocytochemical labeling for the identification of cell types; both techniques agreed in their classification of cells as neuronal or non-neuronal 96.83% of the time. However, this technique cannot reliably distinguish between non-neuronal cell types.

  8. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture.

    PubMed

    Rush, Travis; Hjelmhaug, Julie; Lobner, Doug

    2009-01-01

    Chelation therapy for the treatment of acute, high dose exposure to heavy metals is accepted medical practice. However, a much wider use of metal chelators is by alternative health practitioners for so called "chelation therapy". Given this widespread and largely unregulated use of metal chelators it is important to understand the actions of these compounds. We tested the effects of four commonly used metal chelators, calcium disodium ethylenediaminetetraacetate (CaNa2EDTA), D-penicillamine (DPA), 2,3 dimercaptopropane-1-sulfonate (DMPS), and dimercaptosuccinic acid (DMSA) for their effects on heavy metal neurotoxicity in primary cortical cultures. We studied the toxicity of three forms of mercury, inorganic mercury (HgCl2), methyl mercury (MeHg), and ethyl mercury (thimerosal), as well as lead (PbCl2) and iron (Fe-citrate). DPA had the worst profile of effects, providing no protection while potentiating HgCl2, thimerosal, and Fe-citrate toxicity. DMPS and DMSA both attenuated HgCl2 toxicity and potentiated thimerosal and Fe toxicity, while DMPS also potentiated PbCl2 toxicity. CaNa2EDTA attenuated HgCl2 toxicity, but caused a severe potentiation of Fe-citrate toxicity. The ability of these chelators to attenuate the toxicity of various metals is quite restricted, and potentiation of toxicity is a serious concern. Specifically, protection is provided only against inorganic mercury, while it is lacking against the common form of mercury found in food, MeHg, and the form found in vaccines, thimerosal. The potentiation of Fe-citrate toxicity is of concern because of iron's role in oxidative stress in the body. Potentiation of iron toxicity could have serious health consequences when using chelation therapy.

  9. Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons.

    PubMed

    Regueiro, Jorge; Olguín, Nair; Simal-Gándara, Jesús; Suñol, Cristina

    2015-07-01

    Fungicides are crucial for food protection as well as for the production of crops of suitable quality and quantity to provide a viable economic return. Like other pesticides, fungicides are widely sprayed on agricultural land, especially in wine-growing areas, from where they can move-off after application. Furthermore, residues of these agrochemicals can remain on crops after harvest and even after some food processing operations, being a major exposure pathway. Although a relatively low toxicity has been claimed for this kind of compounds, information about their neurotoxicity is still scarce. In the present study, nine fungicides recently approved for agricultural uses in the EU - ametoctradin, boscalid, cyazofamid, dimethomorph, fenhexamid, kresoxim-methyl, mepanipyrim, metrafenone and pyraclostrobin - have been evaluated for their toxicity in primary cultured mouse cortical neurons. Exposure to 0.1-100µM for 7 days in vitro resulted in a dose-dependent toxicity in the MTT cell viability assay. Strobilurin fungicides kresoxim-methyl (KR) and pyraclostrobin (PY) were the most neurotoxic compounds (lethal concentration 50 were in the low micromolar and nanomolar levels, respectively) causing a rapid raise in intracellular calcium [Ca(2+)]i and strong depolarization of mitochondrial membrane potential. KR- and PY-induced cell death was reversed by the calcium channels blockers MK-801 and verapamil, suggesting that calcium entry through NMDA receptors and voltage-operated calcium channels are involved in KR- and PY-induced neurotoxicity. These results highlight the need for further evaluation of their neurotoxic effects in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation Is Essential for Functional Regeneration

    PubMed Central

    Tscherter, Anne; Heidemann, Martina; Kleinlogel, Sonja; Streit, Jürg

    2016-01-01

    Presently there exists no cure for spinal cord injury (SCI). However, transplantation of embryonic tissue into spinal cord (SC) lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated SC circuits. We tested the two hypotheses in an in vitro SC lesion model that is based on propagation of activity between two rat organotypic SC slices in culture. Transplantation of dissociated cells from E14 rat SC or forebrain (FB) re-established the relay of activity over the lesion site and thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays (MEAs) we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse FB cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated SC circuits. In contrast, transplantation of neurospheres (NS) induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated SC circuits. PMID:27708562

  11. Increased Risk of Genetic and Epigenetic Instability in Human Embryonic Stem Cells Associated with Specific Culture Conditions

    PubMed Central

    Garitaonandia, Ibon; Amir, Hadar; Boscolo, Francesca Sesillo; Wambua, Gerald K.; Schultheisz, Heather L.; Sabatini, Karen; Morey, Robert; Waltz, Shannon; Wang, Yu-Chieh; Tran, Ha; Leonardo, Trevor R.; Nazor, Kristopher; Slavin, Ileana; Lynch, Candace; Li, Yingchun; Coleman, Ronald; Gallego Romero, Irene; Altun, Gulsah; Reynolds, David; Dalton, Stephen; Parast, Mana; Loring, Jeanne F.; Laurent, Louise C.

    2015-01-01

    The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies. PMID:25714340

  12. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture.

    PubMed

    Hongisto, Heidi; Vuoristo, Sanna; Mikhailova, Alexandra; Suuronen, Riitta; Virtanen, Ismo; Otonkoski, Timo; Skottman, Heli

    2012-01-01

    Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  14. A low ethanol dose affects all types of cells in mixed long-term embryonic cultures of the cerebellum.

    PubMed

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi; Schiöth, Helgi B; Fex-Svenningsen, Asa

    2010-06-01

    The beneficial effect of the '1-drink-a-day' lifestyle is suggested by studies of cardiovascular health, and this recommendation is increasingly followed in many countries. The main objective of this study was to determine whether this pattern of ethanol use would be detrimental to a pregnant woman. We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative to control. By 11 days, a reduction in the number of viable cells was observed without an accompanying change in caspase-3 activity (marker of apoptotic cell death), suggesting changes in cell proliferation. As the proportion of nestin-positive cells was higher in the ethanol-treated cultures after 5 days, we hypothesized that an increase in differentiation to neurons would compensate for the ongoing neuronal death. However, there were limits to this compensatory ability as the relative proportion of nestin-positive cells was decreased after 11 days. To further illustrate the negative long-term effects of this ethanol dose, cultures were exposed for 30 days. After this period, virtually no neurons or myelinating oligodendrocytes were present in the ethanol-treated cultures. In conclusion, chronic exposure to ethanol, even at small doses, dramatically and persistently affects normal development.

  15. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    PubMed

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies.

  16. The effects of BmNPV on biochemical changes in primary cultures of Bombyx mori embryonic tissue.

    PubMed

    Matindoost, Leila; Sendi, Jalal Jalali; Soleimanjahi, Hoorieh; Etebari, Kayvan; Rahbarizade, Fateme

    2008-01-01

    The effect of Bombyx mori nuclear polyhedrosis virus (BmNPV) on biochemical changes of TC-100 medium containing 10% fetal bovine serum (FBS) in embryonic primary cultures of silkworm was investigated. The primary cultures that reached 60% confluence were infected by 0.5, 1, and 2-ml viral inoculums (diluted with TC-100 medium representing multiplicity of infection (MOI) of 0.25, 0.5, and 1). Glucose, uric acid, urea, total protein, cholesterol, and alkaline phosphatase were measured in the medium of BmNPV-infected primary cultures. All biochemical compounds showed significant changes. Glucose decreased considerably by about 55 mg/ml, while different concentrations of the virus inoculums did not demonstrate significant differences among them. Total protein had only increased in 2 ml concentration and there were no changes in other concentrations. Uric acid as a by-product accumulated dramatically in all concentrations, while the amount of urea reduced in all treatments and this reduction was more evident in lower concentrations. Cholesterol consumption was high in cultures postinfection, while alkaline phosphatase (ALP) activity decreased in infected cells.

  17. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    PubMed Central

    Sharma, Ruchi; Greenhough, Sebastian; Medine, Claire N.; Hay, David C.

    2010-01-01

    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays. PMID:20169088

  18. Fourier transform infrared microspectroscopy reveals that tissue culture conditions affect the macromolecular phenotype of human embryonic stem cells.

    PubMed

    Cao, Julie; Ng, Elizabeth S; McNaughton, Don; Stanley, Edouard G; Elefanty, Andrew G; Tobin, Mark J; Heraud, Philip

    2013-07-21

    We employed Fourier transform infrared (FTIR) microspectroscopy to investigate the effects of different tissue culture environments on the FTIR spectra of undifferentiated human embryonic stem cells (hESCs) and their differentiated progeny. First we tested whether there were any possible spectral artifacts resulting from the use of transflectance measurements by comparing them with transmission measurements and found no evidence of these concluding that the lack of any differences resulted from the homogeneity of the dried cytospun cellular monolayers. We found that hESCs that were enzymatically passaged onto mouse embryonic fibroblasts (MEFs) in KOSR based hESC medium, hESCs enzymatically passaged onto Matrigel in mTESR medium and hESCs mechanically passaged onto MEFs in KOSR-based hESC medium, possessed unique FTIR spectroscopic signatures that reflect differences in their macromolecular chemistry. Further, these spectroscopic differences persisted even upon differentiation towards mesendodermal lineages. Our results suggest that FTIR microspectroscopy is a powerful, objective, measurement modality that complements existing methods for studying the phenotype of hESCs and their progeny, particularly changes induced by the cellular environment.

  19. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons.

    PubMed

    Cong, Lin; Cao, Chang; Cheng, Yong; Qin, Xiao-Yan

    2016-01-01

    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  20. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos

    PubMed Central

    THONGKITTIDILOK, Chommanart; THARASANIT, Theerawat; SONGSASEN, Nucharin; SANANMUANG, Thanida; BUARPUNG, Sirirak; TECHAKUMPHU, Mongkol

    2015-01-01

    This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2–4-cell embryos, 8–16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages. PMID:25985792

  1. Epidermal growth factor improves developmental competence and embryonic quality of singly cultured domestic cat embryos.

    PubMed

    Thongkittidilok, Chommanart; Tharasanit, Theerawat; Songsasen, Nucharin; Sananmuang, Thanida; Buarpung, Sirirak; Techakumphu, Mongkol

    2015-01-01

    This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2-4-cell embryos, 8-16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages.

  2. Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factors.

    PubMed

    Gonzalez-Benito, M Elena; Prieto, Roberto-Moreno; Herradon, Esther; Martin, Carmen

    2002-01-01

    This study examines different factors included in the cryopreservation protocols for Quercus ilex and Q. suber embryonic axes. In vitro incubation temperature played an important role in the appropriate development of Q. ilex axes, as 15 degrees C was superior to 25 degrees C. Q. suber axes proved to be more sensitive to desiccation and cooling. Poor survival (35%) was observed when axes were included into cryovials and then in liquid nitrogen, and none when immersed in sub-cooled liquid nitrogen (-210 degrees C). Q. ilex axes showed poorly organised development in vitro (c. 50% of non-cooled axes showed shoot development). However, c. 80% survival was observed after cryopreservation (either in liquid nitrogen or sub-cooled liquid nitrogen at 0.34 g water / g dry weight), of which c. 15% showed shoot development.

  3. A simple slice culture system for the imaging of nerve development in embryonic mouse.

    PubMed

    Brachmann, Isabel; Jakubick, Vera Catherine; Shakèd, Maya; Unsicker, Klaus; Tucker, Kerry Lee

    2007-12-01

    Newborn neurons elaborate an axon that undertakes a complicated journey to find its ultimate target in the brain or periphery. Although major progress in the study of this process has been made by analysis of dissociated neurons in vitro, one would like to observe and manipulate axonal outgrowth and pathfinding as it occurs in situ, as fasciculated nerves growing within the tissue itself. Here, we present a simple technique to do this, through cultivation of embryonic mouse slices expressing enhanced green fluorescent protein (EGFP) specifically in newborn neurons. This system allows for imaging of outgrowth of peripheral nerves into structures such as the developing limb. We demonstrate a reproduction of normal innervation patterns by spinal nerves derived from spinal cord motor neurons and sensory neurons of the dorsal root ganglia. The slices can be manipulated pharmacologically as well as genetically, by crossing the EGFP-expressing line with lines containing targeted mutations in genes of interest.

  4. Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds.

    PubMed

    Kang, Xihai; Xie, Yubing; Powell, Heather M; James Lee, L; Belury, Martha A; Lannutti, John J; Kniss, Douglas A

    2007-01-01

    A mechanistic understanding of adipose tissue differentiation is critical for the treatment and prevention of obesity and type 2 diabetes. Conventional in vitro models of adipogenesis are preadipocytes or freshly isolated adipocytes grown in two-dimensional (2D) cultures. Optimal results using in vitro tissue culture models can be expected only when adipocyte models closely resemble adipose tissue in vivo. Thus the design of an in vitro three-dimensional (3D) model which faithfully mimics the in vivo environment is needed to effectively study adipogenesis. Pluripotent embryonic stem (ES) cells are a self-renewing cell type that can readily be differentiated into adipocytes. In this study, a 3D culture system was developed to mimic the geometry of adipose tissue in vivo. Murine ES cells were seeded into electrospun polycaprolactone scaffolds and differentiated into adipocytes in situ by hormone induction as demonstrated using a battery of gene and protein expression markers along with the accumulation of neutral lipid droplets. Insulin-responsive Akt phosphorylation, and beta-adrenergic stimulation of cyclic AMP synthesis were demonstrated in ES cell-derived adipocytes. Morphologically, ES cell-derived adipocytes resembled native fat cells by scanning electron and phase contrast microscopy. This tissue engineered ES cell-matrix model has potential uses in drug screening and other therapeutic developments.

  5. Induction of neural crest cells from mouse embryonic stem cells in a serum-free monolayer culture.

    PubMed

    Aihara, Yuko; Hayashi, Yohei; Hirata, Mitsuhi; Ariki, Nobutaka; Shibata, Shinsuke; Nagoshi, Narihito; Nakanishi, Mio; Ohnuma, Kiyoshi; Warashina, Masaki; Michiue, Tatsuo; Uchiyama, Hideho; Okano, Hideyuki; Asashima, Makoto; Furue, Miho Kusuda

    2010-01-01

    The neural crest (NC) is a group of cells located in the neural folds at the boundary between the neural and epidermal ectoderm. NC cells differentiate into a vast range of cells,including neural cells, smooth muscle cells, bone and cartilage cells of the maxillofacial region, and odontoblasts. The molecular mechanisms underlying NC induction during early development remain poorly understood. We previously established a defined serum-free culture condition for mouse embryonic stem (mES) cells without feeders. Here, using this defined condition, we have developed a protocol to promote mES cell differentiation into NC cells in an adherent monolayer culture. We found that adding bone morphogenetic protein (BMP)-4 together with fibroblast growth factor (FGF)-2 shifts mES cell differentiation into the NC lineage. Furthermore, we have established a cell line designated as P0-6 that is derived from the blastocysts of P0-Cre/Floxed-EGFP mice expressing EGFP in an NC-lineage-specific manner. P0-6 cells cultured using this protocol expressed EGFP. This protocol could be used to help clarify the mechanisms by which cells differentiate into the NC lineage and to assist the development of applications for clinical therapy.

  6. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium

    PubMed Central

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A.; De Vos, Ric C.H.; Todorović, Slađana; Banjanac, Tijana; Verpoorte, Rob; Johnson, Jeffrey A.

    2012-01-01

    Tanacetum parthenium (Asteraceae) produces biologically active sesquiterpene lactones (SL). Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate a series of genes termed the antioxidant response element (ARE). Activation of the Nrf2/ARE may be useful for the treatment of neurodegenerative disease. In this study we isolated 11 sesquiterpene lactones from T. parthenium with centrifugal partition chromatography and semi-preparative HPLC. Compounds were screened in-vitro for their ability to activate the ARE on primary mouse cortical cultures as well as for their toxicity towards the cultures. All sesquiterpene lactones containing the α-methylene-γ-lactone moiety were able to activate the ARE although a number of compounds displayed significant cellular toxicity towards the cultures. The structure activity relationship of the sesquiterpene lactones indicate that the guaianolides isolated were more active and less toxic then the germacranolides. PMID:22923197

  7. Assessment of 'one-step' versus 'sequential' embryo culture conditions through embryonic genome methylation and hydroxymethylation changes.

    PubMed

    Salvaing, J; Peynot, N; Bedhane, M N; Veniel, S; Pellier, E; Boulesteix, C; Beaujean, N; Daniel, N; Duranthon, V

    2016-11-01

    In comparison to in vivo development, how do different conditions of in vitro culture ('one step' versus 'sequential medium') impact DNA methylation and hydroxymethylation in preimplantation embryos? Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation. Three repeats were first done for all stages; then three additional repetitions were performed for those stages showing

  8. The Three-Dimensional Culture of Epithelial Organoids Derived from Embryonic Chicken Intestine.

    PubMed

    Pierzchalska, Malgorzata; Panek, Malgorzata; Czyrnek, Malgorzata; Grabacka, Maja

    2016-10-28

    The intestinal epithelium isolated from chicken embryos in last 3 days of development can be used to establish the 3D culture of intestinal organoids. When fragments of epithelial tissue released by incubation with EGTA (2.5 mM, 2 h) are embedded in Matrigel matrix on cell culture inserts the formation of empty spheres covered by epithelial cells is observed in first 24 h of culture. The growth and survival of organoids are supported by the addition of R-spondin 1, Noggin, and prostaglandin E2 to the culture medium. The organoids are accompanied by myofibroblasts which become visible in the next 2 days of culture. The intestinal enteroids (free of myofibroblasts) can be obtained from adult chicken intestine.

  9. Measurement of saturation processes in glutamatergic and GABAergic synapse densities during long-term development of cultured rat cortical networks.

    PubMed

    Ito, Daisuke; Komatsu, Takumi; Gohara, Kazutoshi

    2013-10-09

    The aim of this study was to clarify the saturation processes of excitatory and inhibitory synapse densities during the long-term development of cultured neuronal networks. For this purpose, we performed a long-term culture of rat cortical cells for 35 days in vitro (DIV). During this culture period, we labeled glutamatergic and GABAergic synapses separately using antibodies against vesicular glutamate transporter 1 (VGluT1) and vesicular transporter of γ-aminobutyric acid (VGAT). The densities and distributions of both types of synaptic terminals were measured simultaneously. Observations and subsequent measurements of immunofluorescence demonstrated that the densities of both types of antibody-labeled terminals increased gradually from 7 to 21-28 DIV. The densities did not show a further increase at 35 DIV and tended to become saturated. Triple staining with VGluT1, VGAT, and microtubule-associated protein 2 (MAP2) enabled analysis of the distribution of both types of synapses, and revealed that the densities of the two types of synaptic terminals on somata were not significantly different, but that glutamatergic synapses predominated on the dendrites during long-term culture. However, some neurons did not fall within this distribution, suggesting differences in synapse distribution on target neurons. The electrical activity also showed an initial increase and subsequent saturation of the firing rate and synchronized burst rate during long-term culture, and the number of days of culture to saturation from the initial increase followed the same pattern under this culture condition.

  10. Ethanol neuronotoxicity in the embryonic chick brain in ovo and in culture: interaction of the neural cell adhesion molecule (NCAM).

    PubMed

    Kentroti, S; Rahman, H; Grove, J; Vernadakis, A

    1995-12-01

    The present study was undertaken to investigate the involvement of NCAM in the neuroteratogenic effects of ethanol demonstrated by us and others. In the first experiment we examined the effect of in-ovo ethanol exposure on expression of NCAM in various regions of the embryonic CNS throughout development. Chick embryos received ethanol (10 mg/50 microliters/day) or saline (control) at days 1-3 of development (E1-E3), were sacrificed at various embryonic ages and whole brain (WB), cerebral hemispheres (CH) and cerebellum (CE) processed for SDS-polyacrylamide gel electrophoresis. The normal developmental profile of NCAM in the chick brain exhibited the same dynamics as previously reported by others. When compared to age-matched control brains, an increase was observed in expression of high molecular weight forms of NCAM in cerebral hemispheres between E8 and E10. These bands represented highly sialated (> 180 kDa) forms of NCAM. In fact, the NCAM hand from ethanol-treated embryos at E8 migrated at a higher molecular weight than did its control counterpart, indicating an increase in sialic acid content. In contrast, no clear change was observed in NCAM expression in cerebellum from E10 through E20 as a result of ethanol exposure. In the second experiment, we examined the involvement of NCAM in the alterations in neuronal growth patterns observed in ethanol-exposed cultures. Neuroblast-enriched cultures derived from three-day-old whole chick embryos (E3WE) were maintained on poly-L-lysine pre-coated Petri dishes in DMEM+5% fetal bovine serum with or without 50 mM ethanol. Cultures were fixed at 3, 6 or 9 DIV and co-stained for NCAM and neurofilament (160 kDa). E3WE cultures exhibited intense NCAM immunoreactivity at 3 and 6 DIV decreasing by 9 DIV.NCAM positive structures included all neuronal perikarya, neuritic processes and growth cones. Addition of 50 mM ethanol to the medium resulted in profound alterations in growth patterns of developing neurons which continued

  11. Functional down-regulation of volume-regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes.

    PubMed

    Benfenati, Valentina; Nicchia, Grazia Paola; Svelto, Maria; Rapisarda, Carmela; Frigeri, Antonio; Ferroni, Stefano

    2007-01-01

    In the brain, the astroglial syncytium is crucially involved in the regulation of water homeostasis. Accumulating evidence indicates that a dysregulation of the astrocytic processes controlling water homeostasis has a pathogenetic role in several brain injuries. Here, we have analysed by RNA interference technology the functional interactions occurring between the most abundant water channel in the brain, aquaporin-4 (AQP4), and the swelling-activated Cl(-) current expressed by cultured rat cortical astrocytes. We show that in primary cultured rat cortical astrocytes transfected with control small interfering RNA (siRNA), hypotonic shock promotes an increase in cellular volume accompanied by augmented membrane conductance mediated by volume-regulated anion channels (VRAC). Conversely, astroglia in which AQP4 was knocked down (AQP4 KD) by transfection with AQP4 siRNA changed their morphology from polygonal to process-bearing, and displayed normal cell swelling but reduced VRAC activity. Pharmacological manipulations of actin cytoskeleton in rat astrocytes, and functional analysis in mouse astroglial cells, which retain their morphology upon knockdown of AQP4, suggest that stellation of AQP4 KD rat cortical astrocytes was not causally linked to reduction of VRAC current. Molecular analysis of possible candidates of swelling-activated Cl(-) current provided evidence that in AQP4 KD astrocytes, there was a down-regulation of chloride channel-2 (CIC-2), which, however, was not involved in VRAC conductance. Inclusion of ATP in the intracellular saline restored VRAC activity upon hypotonicity. Collectively, these results support the view that in cultured astroglial cells, plasma membrane proteins involved in cell volume homeostasis are assembled in a functional platform.

  12. Isolation, culture and long-term maintenance of primary mesencephalic dopaminergic neurons from embryonic rodent brains.

    PubMed

    Weinert, Maria; Selvakumar, Tharakeswari; Tierney, Travis S; Alavian, Kambiz N

    2015-02-19

    Degeneration of mesencephalic dopaminergic (mesDA) neurons is the pathological hallmark of Parkinson's diseae. Study of the biological processes involved in physiological functions and vulnerability and death of these neurons is imparative to understanding the underlying causes and unraveling the cure for this common neurodegenerative disorder. Primary cultures of mesDA neurons provide a tool for investigation of the molecular, biochemical and electrophysiological properties, in order to understand the development, long-term survival and degeneration of these neurons during the course of disease. Here we present a detailed method for the isolation, culturing and maintenance of midbrain dopaminergic neurons from E12.5 mouse (or E14.5 rat) embryos. Optimized cell culture conditions in this protocol result in presence of axonal and dendritic projections, synaptic connections and other neuronal morphological properties, which make the cultures suitable for study of the physiological, cell biological and molecular characteristics of this neuronal population.

  13. Optimization of a serum-free culture medium for mouse embryonic stem cells using design of experiments (DoE) methodology.

    PubMed

    Knöspel, Fanny; Schindler, Rudolf K; Lübberstedt, Marc; Petzolt, Stephanie; Gerlach, Jörg C; Zeilinger, Katrin

    2010-12-01

    The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells, the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis according to Plackett-Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence on the proliferation activity of the cells, while zinc and L: -cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media for human embryonic stem cells (hESC).

  14. Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation*

    PubMed Central

    Meade, Kate A.; White, Kathryn J.; Pickford, Claire E.; Holley, Rebecca J.; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H.; Whittle, Jason D.; Day, Anthony J.; Merry, Catherine L. R.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells. PMID:23235146

  15. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery

    PubMed Central

    Kiprilov, Enko N.; Awan, Aashir; Desprat, Romain; Velho, Michelle; Clement, Christian A.; Byskov, Anne Grete; Andersen, Claus Y.; Satir, Peter; Bouhassira, Eric E.; Christensen, Søren T.; Hirsch, Rhoda Elison

    2008-01-01

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery. PMID:18332216

  16. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery.

    PubMed

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain; Velho, Michelle; Clement, Christian A; Byskov, Anne Grete; Andersen, Claus Y; Satir, Peter; Bouhassira, Eric E; Christensen, Søren T; Hirsch, Rhoda Elison

    2008-03-10

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery.

  17. Fabrication of Mouse Embryonic Stem Cell-Derived Layered Cardiac Cell Sheets Using a Bioreactor Culture System

    PubMed Central

    Matsuura, Katsuhisa; Wada, Masanori; Konishi, Kanako; Sato, Michi; Iwamoto, Ushio; Sato, Yuko; Tachibana, Aki; Kikuchi, Tetsutaro; Iwamiya, Takahiro; Shimizu, Tatsuya; Yamashita, Jun K.; Yamato, Masayuki; Hagiwara, Nobuhisa; Okano, Teruo

    2012-01-01

    Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1×108 cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5×108. Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue. PMID:23284924

  18. Fabrication of mouse embryonic stem cell-derived layered cardiac cell sheets using a bioreactor culture system.

    PubMed

    Matsuura, Katsuhisa; Wada, Masanori; Konishi, Kanako; Sato, Michi; Iwamoto, Ushio; Sato, Yuko; Tachibana, Aki; Kikuchi, Tetsutaro; Iwamiya, Takahiro; Shimizu, Tatsuya; Yamashita, Jun K; Yamato, Masayuki; Hagiwara, Nobuhisa; Okano, Teruo

    2012-01-01

    Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1 × 10(8) cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5 × 10(8). Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue.

  19. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    PubMed

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  20. Differential regulation of melatonin synthesis genes and phototransduction genes in embryonic chicken retina and cultured retinal precursor cells.

    PubMed

    Cailleau, Virginie; Bernard, Marianne; Morin, Fabrice; Guerlotte, Jerome; Voisin, Pierre

    2005-07-07

    Photoreceptor differentiation involves the activation of two specific sets of genes; those encoding the proteins of the phototransduction cascade and those encoding the enzymes of the melatonin synthesis pathway, arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole O-methyltransferase (HIOMT). The purpose of the present study was to examine the conditions of AANAT and HIOMT gene activation, relative to that of selected phototransduction markers (alpha-transducin and opsins), in both in vivo and in vitro differentiating photoreceptors of the chicken retina. Neural retina RNA was obtained between embryonic day 7 (E7) and posthatch day 8 (P8) and analyzed on northern blots with cDNA probes to AANAT, HIOMT, visinin, alpha-transducin, rhodopsin, and the four cone opsins. Cell cultures were prepared from E7 chicken neural retina and incubated for two to four days in vitro, either in basal medium or in serum-supplemented medium or in medium containing an insulin-based supplement. RNA from the cultured cells was analyzed on northern blots as above. Real time RT-PCR was used to confirm in vitro changes in HIOMT and red opsin mRNA levels. The cultured cells were transfected with promoter-reporter plasmids for direct analysis of HIOMT promoter regulation by the dual luciferase method. The different mRNAs composing the photoreceptor phenotype appeared at E7 (visinin), E10 (alpha-transducin), E14 (HIOMT), E15 (rhodopsin, red opsin, and green opsin), E16 (AANAT), E17 (blue opsin), and E18 (violet opsin). In the early differentiating cones of the central retina, HIOMT mRNA appeared two days earlier than red opsin and green opsin mRNAs (E12 rather than E14). In cultured embryonic neural retina cells, basal medium was sufficient to activate alpha-transducin gene transcription, an insulin-based supplement was sufficient to activate HIOMT gene transcription, whereas serum was required for red opsin gene transcription after two days in vitro. All serum batches were able to

  1. Assessing the impact of minimizing arginine conversion in fully defined SILAC culture medium in human embryonic stem cells

    PubMed Central

    Scheerlinck, Ellen; Van Steendam, Katleen; Daled, Simon; Govaert, Elisabeth; Vossaert, Liesbeth; Meert, Paulien; Van Nieuwerburgh, Filip; Van Soom, Ann; Peelman, Luc; De Sutter, Petra; Heindryckx, Björn; Dhaenens, Maarten

    2016-01-01

    We present a fully defined culture system (adapted Essential8TM [E8TM] medium in combination with vitronectin) for human embryonic stem cells that can be used for SILAC purposes. Although a complete incorporation of the labels was observed after 4 days in culture, over 90% of precursors showed at least 10% conversion. To reduce this arginine conversion, E8TM medium was modified by adding (1) l‐proline, (2) l‐ornithine, (3) Nω‐hydroxy‐nor‐l‐arginine acetate, or by (4) lowering the arginine concentration. Reduction of arginine conversion was best obtained by adding 5 mM l‐ornithine, followed by 3.5 mM l‐proline and by lowering the arginine concentration in the medium to 99.5 μM. No major changes in pluripotency and cell amount could be observed for the adapted E8TM media with ornithine and proline. However, our subsequent ion mobility assisted data‐independent acquisition (high‐definition MS) proteome analysis cautions for ongoing changes in the proteome when aiming at longer term suppression of arginine conversion. PMID:27392809

  2. Pluripotent stem cells isolated from umbilical cord form embryonic like bodies in a mesenchymal layer culture.

    PubMed

    Tsagias, Nikos; Kouzi-Koliakos, Kokkona; Karagiannis, Vasileios; Tsikouras, P; Koliakos, George G

    2015-03-01

    Recently the matrix of umbilical cord began to use as an alternative source of stem cells additionally to the blood of umbilical cord. Umbilical cord has been used mainly for mesenchymal stem cell banking. The immunological characteristics of mesenchymal stem cells in combination with their ability to avoid rejection make them an attractive biological material for transplantations. In this study the isolation of small in size pluripotent stem cells from umbilical cord expressing early transcription factors with characteristics that resemble to embryonic stem cells is investigated. Pluripotent stem cells were isolated from human umbilical cords, by a new strategy method based on unique characteristics such as the small size and the positivity on early transcription factors OCT and Nanog. An enriched population of CXCR4(+) OCT(+) Nanog(+) CD45(-) small stem cells from the cord was isolated. This fraction was able to create alkaline phosphatase positive like spheres forms in a mesenchymal layer with multilineage differentiation capacity. Our results were assessed by RT PCR and electophoresis for the pluripotent genes. These data suggest that umbilical cord provides an attractive source not only of mesenchymal stem cells but moreover of pluripotent stem cells. The method described herein should be applied in the field of stem cell banking in addition to the classical umbilical cord harvesting method. Isolation of a population of cells with pluripotent characteristics from umbilical cord. Adoption of a second centrifugation step for the pluripotent stem isolation. Increasing the value of the cord and explaining the pluripotency. This work will enhance the value of umbilical cord harvesting.

  3. Unique gene expression signature by human embryonic stem cells cultured under serum-free conditions correlates with their enhanced and prolonged growth in an undifferentiated stage.

    PubMed

    Skottman, Heli; Strömberg, Anne-Marie; Matilainen, Eija; Inzunza, Jose; Hovatta, Outi; Lahesmaa, Riitta

    2006-01-01

    Understanding the interaction between human embryonic stem cells (hESCs) and their microenvironment is crucial for the propagation and the differentiation of hESCs for therapeutic applications. hESCs maintain their characteristics both in serum-containing and serum-replacement (SR) media. In this study, the effects of the serum-containing and SR culture media on the gene expression profiles of hESCs were examined. Although the expression of many known embryonic stem cell markers was similar in cells cultured in either media, surprisingly, 1,417 genes were found to be differentially expressed when hESCs cultured in serum-containing medium were compared with those cultured in SR medium. Several genes upregulated in cells cultured in SR medium suggested increased metabolism and proliferation rates in this medium, providing a possible explanation for the increased growth rate of nondifferentiated cells observed in SR culture conditions compared with that in serum medium. Several genes characteristic for cells with differentiated phenotype were expressed in cells cultured in serum-containing medium. Our data clearly indicate that the manipulation of hESC culture conditions causes phenotypic changes of the cells that were reflected also at the level of gene expression. Such changes may have fundamental importance for hESCs, and gene expression changes should be monitored as a part of cell culture optimization aiming at a clinical use of hESCs for cell transplantation.

  4. Neurodegenerative, with expression ATF-2 by p38 in cortical neurons.

    PubMed

    Hosseini, M; Ostad, N; Parivar, K; Ghahremani, M H

    2010-03-01

    DNA damage, as an important initiator of neuronal cell death, has been implicated in numerous neurodegenerative conditions. We previously delineated several pathways that control embryonic cortical neuronal cell death evoked by the DNA-damaging agent, camptothecin. The topisomerase-1 inhibitor, camptothecin, has been shown to induce cortical neuronal cell death in a reproducible and synchronistic manner. Primary embryonic neuronal cell culture cortical neurons were prepared. In the study, the survival % of neurons in camptothecin P38 group, after 6 hours (85%), 24 hours (64%) and 48 hours (50%), compared to camptothecin ATF-2 and P38 group after 4 hours (97 and 95%), have been significantly lower, and the expression % of neurons in camptothecin P38 group , after 6 hours (20%), 24 hours (40%) and 48 hours (55%), compared to camptothecin ATF-2 and P38 group after 4 hours (5 and 3%) have been significant lower (p<0.05). The expression % of neurons in camptothecin P38 group, after 24 hours (40%), compared to camptothecin ATF-2 group after 24hours (30%), have been significant lower (p<0.05). This study revealed that camptothecin induces P38 expression and P38 in embryonic cortical neurons to determine the importance of the P38 pathway in neuronal death following DNA damage, and P38 is induce phosphorylation of ATF-2 in embryonic cortical neurons following DNA damage.

  5. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium.

    PubMed

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A; De Vos, Ric C H; Todorović, Slađana; Banjanac, Tijana; Verpoorte, Rob; Johnson, Jeffrey A

    2012-11-01

    Tanacetum parthenium produces biologically active sesquiterpene lactones (SL). Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate a series of genes termed the antioxidant response element (ARE). Activation of Nrf2/ARE may be useful for the treatment of neurodegenerative disease. In this study we isolated 11 SL from T. parthenium with centrifugal partition chromatography and semipreparative HPLC. Compounds were screened in vitro for their ability to activate the ARE on primary mouse cortical cultures as well as for their toxicity towards the cultures. All SL containing the α-methylene-γ-lactone moiety were able to activate the ARE and cause cellular toxicity. The structure-activity relationship among the SL isolated indicates that the guaianolides were more active and when lacking the endoperoxide functionality less toxic then the germacranolides. Georg Thieme Verlag KG Stuttgart · New York.

  6. Immunocytochemistry and fluorescence imaging efficiently identify individual neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures.

    PubMed

    Tsunematsu, Hiroto; Uyeda, Akiko; Yamamoto, Nobuhiko; Sugo, Noriyuki

    2017-08-01

    CRISPR/Cas9 system is a powerful method to investigate the role of genes by introducing a mutation selectively and efficiently to specific genome positions in cell and animal lines. However, in primary neuron cultures, this method is affected by the issue that the effectiveness of CRISPR/Cas9 is different in each neuron. Here, we report an easy, quick and reliable method to identify mutants induced by the CRISPR/Cas9 system at a single neuron level, using immunocytochemistry (ICC) and fluorescence imaging. Dissociated cortical cells were transfected with CRISPR/Cas9 plasmids targeting the transcription factor cAMP-response element binding protein (CREB). Fluorescence ICC with CREB antibody and quantitative analysis of fluorescence intensity demonstrated that CREB expression disappeared in a fraction of the transfected neurons. The downstream FOS expression was also decreased in accordance with suppressed CREB expression. Moreover, dendritic arborization was decreased in the transfected neurons which lacked CREB immunoreactivity. Detection of protein expression is efficient to identify individual postmitotic neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures. The present method composed of CRISPR/Cas9 system, ICC and fluorescence imaging is applicable to study the function of various genes at a single-neuron level.

  7. Accumulation of neurons differentiated from mouse embryonic stem cells in particular areas of culture plate surface.

    PubMed

    Kitazawa, Ayako; Naka, Yukie; Yamaguchi, Hiroko; Shimizu, Norio

    2010-08-01

    Nanoscale magnetic beads coated with nerve growth factor (NGF) allow us to accumulate neurons differentiated from mouse ES cells in a selected area of the culture plate surface using a magnet. Neurons with neurite outgrowths within a particular area expressed TrkA and incorporated beads in the soma.

  8. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages.

    PubMed

    Matsubara, Yoshiyuki; Sakai, Atsushi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2014-10-01

    The morphogenesis of snake embryos is an elusive yet fascinating research target for developmental biologists. However, few data exist on development of early snake embryo due to limited availability of pregnant snakes, and the need to harvest early stage embryos directly from pregnant snakes before oviposition without knowing the date of fertilization. We established an ex vivo culture method for early snake embryos using the Japanese striped snake, Elaphe quadrivirgata. This method, which we named "sausage-style (SS) culture", allows us to harvest snake embryos at specific stages for each experiment. Using this SS culture system, we calculated somite formation rate at early stages before oviposition. The average somite formation rate between 6/7 and 12/13 somite stages was 145.9 min, between 60/70 and 80/91 somite stages 42.4 min, and between 113-115 and 126/127 somite stages 71 min. Thus, somite formation rate that we observed during early snake embryogenesis was changed over time. We also describe a developmental staging series for E. quadrivirgata. This is the first report of a developmental series of early snake embryogenesis prior to oviposition by full-color images with high-resolution. We propose that the SS culture system is an easy method for treating early snake embryos ex vivo.

  9. Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces.

    PubMed

    Chapman, Christopher A R; Chen, Hao; Stamou, Marianna; Lein, Pamela J; Seker, Erkin

    2016-09-01

    Nanoporous gold (np-Au) is a promising multifunctional material for neural electrodes. We have previously shown that np-Au nanotopography reduces astrocyte surface coverage (linked to undesirable gliosis) while maintaining high neuronal coverage in a cortical primary neuron-glia co-culture model as long as two weeks in vitro. Here, we investigate the potential influence of secreted soluble factors from cells grown on np-Au on the cell type-specific surface coverage of cells grown on conventional tissue culture plastic and test the hypothesis that secretion of factors is responsible for inhibiting astrocyte coverage on np-Au. In order to assess whether factors secreted from cells grown on np-Au surfaces reduced surface coverage by astrocytes, we seeded fresh primary rat neuron-glia co-cultures on conventional polystyrene culture dishes, but maintained the cells in conditioned media from co-cultures grown on np-Au surfaces. After one week in vitro, a preferential reduction in astrocyte surface coverage was not observed, suggesting that soluble factors are not playing a role. In contrast, four hours after cell seeding there were a significant number of non-adhered, yet still viable, cells for the cultures on np-Au surfaces. We hypothesize that the non-adherent cells are mainly astrocytes, because: (i) there was no difference in neuronal cell coverage between np-Au and pl-Au for long culture durations and (ii) neurons are post-mitotic and not expected to increase in number upon attaching to the surface. Overall, the results suggest that the np-Au topography leads to preferential neuronal attachment shortly after cell seeding and limits astrocyte-specific np-Au surface coverage at longer culture durations.

  10. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    PubMed

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L9 (3(4)) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  11. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics.

    PubMed

    Moschidou, Dafni; Mukherjee, Sayandip; Blundell, Michael P; Jones, Gemma N; Atala, Anthony J; Thrasher, Adrian J; Fisk, Nicholas M; De Coppi, Paolo; Guillot, Pascale V

    2013-02-01

    Human mid-trimester amniotic fluid stem cells (AFSC) have promising applications in regenerative medicine, being broadly multipotent with an intermediate phenotype between embryonic (ES) and mesenchymal stem cells (MSC). Despite this propluripotent phenotype, AFSC are usually cultured in adherence in a serum-based expansion medium, and how expansion in conditions sustaining pluripotency might affect their phenotype remains unknown. We recently showed that early AFSC from first trimester amniotic fluid, which endogenously express Sox2 and Klf4, can be reprogrammed to pluripotency without viral vectors using the histone deacetylase inhibitor valproic acid (VPA). Here, we show that mid-trimester AFSC cultured under MSC conditions contained a subset of cells endogenously expressing telomerase, CD24, OCT4, C-MYC, and SSEA4, but low/null levels of SOX2, NANOG, KLF4, SSEA3, TRA-1-60, and TRA-1-81, with cells unable to form embryoid bodies (EBs) or teratomas. In contrast, AFSC cultured under human ESC conditions were smaller in size, grew faster, formed colonies, upregulated OCT4 and C-MYC, and expressed KLF4 and SOX2, but not NANOG, SSEA3, TRA-1-60, and TRA-1-81. Supplementation with VPA for 5 days further upregulated OCT4, KLF4, and SOX2, and induced expression of NANOG, SSEA3, TRA-1-60, and TRA-1-81, with cells now able to form EBs and teratomas. We conclude that human mid-trimester AFSC, which may be isolated autologously during pregnancy without ethics restriction, can acquire pluripotent characteristics without the use of ectopic factors. Our data suggest that this medium-dependant approach to pluripotent mid-trimester AFSC reflects true reprogramming and not the selection of prepluripotent cells.

  12. Hepatic Differentiation and Maturation of Human Embryonic Stem Cells Cultured in a Perfused Three-Dimensional Bioreactor

    PubMed Central

    Synnergren, Jane; Jensen, Janne; Björquist, Petter; Ingelman-Sundberg, Magnus

    2013-01-01

    Drug-induced liver injury is a serious and frequently occurring adverse drug reaction in the clinics and is hard to predict during preclinical studies. Today, primary hepatocytes are the most frequently used cell model for drug discovery and prediction of toxicity. However, their use is marred by high donor variability regarding drug metabolism and toxicity, and instable expression levels of liver-specific genes such as cytochromes P450. An in vitro model system based on human embryonic stem cells (hESC), with their unique properties of pluripotency and self-renewal, has potential to provide a stable and unlimited supply of human hepatocytes. Much effort has been made to direct hESC toward the hepatic lineage, mostly using 2-dimensional (2D) cultures. Although the results are encouraging, these cells lack important functionality. Here, we investigate if hepatic differentiation of hESC can be improved by using a 3-dimensional (3D) bioreactor system. Human ESCs were differentiated toward the hepatic lineage using the same cells in either the 3D or 2D system. A global transcriptional analysis identified important differences between the 2 differentiation regimes, and we identified 10 pathways, highly related to liver functions, which were significantly upregulated in cells differentiated in the bioreactor compared to 2D control cultures. The enhanced hepatic differentiation observed in the bioreactor system was also supported by immunocytochemistry. Taken together, our results suggest that hepatic differentiation of hESC is improved when using this 3D bioreactor technology as compared to 2D culture systems. PMID:22970843

  13. Accumulation of pyrethroid compounds in primary cultures of rat cortical neurons

    EPA Science Inventory

    Recent studies have demonstrated that lipophilic compounds (e.g. methylmercury, polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs)) rapidly accumulate in cells in culture to concentrations much higher than in the surrounding media. Primary cultures of neur...

  14. Accumulation of pyrethroid compounds in primary cultures of rat cortical neurons

    EPA Science Inventory

    Recent studies have demonstrated that lipophilic compounds (e.g. methylmercury, polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs)) rapidly accumulate in cells in culture to concentrations much higher than in the surrounding media. Primary cultures of neur...

  15. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr

    1993-01-01

    The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.

  16. Differentiation of human embryonic stem cells to cardiomyocytes on microcarrier cultures.

    PubMed

    Ting, Sherwin; Lecina, Marti; Reuveny, Shaul; Oh, Steve

    2012-05-01

    We have developed an improved cardiomyocyte differentiation protocol where we stabilized embryoid bodies (EB) in serum- and insulin-free medium (bSFS) supplemented with p38 MAP kinase inhibitor (SB203580) by addition of 10 µm laminin-coated positively charged (protamine sulfate derivatized TSKgel Tresyl-5PW) microcarriers. This protocol achieved a maximum 3-fold cell expansion, differentiation efficiency of 20%, and an overall cardiomyocyte yield of 3 × 10⁵ CM/ml in static conditions. In comparison, EB cultures achieved 1.5-fold cell expansion, differentiation efficiency of 15%, and an overall cardiomyocyte yield of 1.1 × 10⁵ CM/ml. The scalability of this platform was demonstrated in suspended spinner cultures, producing a maximum of 2.14 × 10⁵ CM/ml in 50-ml cultures. This yield is two-fold higher than the control static EB-based platform (1.1 × 10⁵ CM/ml), and seven-fold higher than yields reported in literature, 3.1-9 × 10⁴ CM/ml. The robustness of this protocol was tested with HES-3 and H1 cell lines.

  17. Embryonic body formation using the tapered soft stencil for cluster culture device.

    PubMed

    Yukawa, Hiroshi; Ikeuchi, Masashi; Noguchi, Hirofumi; Miyamoto, Yoshitaka; Ikuta, Koji; Hayashi, Shuji

    2011-05-01

    Induced pluripotent stem (iPS) cells are expected to provide a source of tissue, a renewable cell source for tissue engineering, and a method for in vitro drug screening for patient-specific or disease-specific treatment. A simple technology by which iPS cells can be differentiated effectively and in large quantities is strongly desired. In this paper, a new device (Tapered Soft Stencil for Cluster Culture: TASCL) is proposed for the easy and efficient formation of EBs which can be used in regenerative medicine. This device was compared with the two major methods currently being evaluated, namely the HD method and the Terasaki® plate (MWC substitution), in terms of the efficiency, morphology and acquired number of EB formation. Using the TASCL device, the shape of the EBs formed was almost a perfect sphere, and the formation was also faster than for the two other methods. There was little variability in the number of cells. Moreover, EBs formed using the TASCL device had the ability to differentiate into all three germ layers, and differentiation of EBs from the TASCL culture into hepatic cells was confirmed. In conclusion, it appears that the TASCL device can be utilized for EB formation to generate cells for regenerative medicine applications.

  18. Epidermal growth factor inhibits morphogenesis of the embryonic quail uropygial gland cultured in vitro.

    PubMed

    Fukui, Y

    1997-04-01

    Formation of the uropygial papilla and glandular lumena was inhibited when the uropygial rudiment of a day 8 1/3 quail embryo was cultured for 2 days in a chemically defined medium in the presence of 50 ng/mL of epidermal growth factor (EGF). The epithelium of EGF-treated explants remained at the placode stage, or underwent minor invagination into the mesenchyme and became stratified like that of a 12- or 13-day-old embryo. EGF promoted cellular proliferation in the uropygial epithelium and the epidermis adjacent to the gland and it shortened the lag phase of proliferation and markedly stimulated epithelial DNA synthesis, detected immunocytochemically by labeling explants with 5-bromodeoxyuridine (BrdU). The maximal labeling index in EGF-treated uropygial epithelium was 55% higher than in the control. Electron microscopic observation revealed that the basal lamina had become irregular in the EGF-treated explants and that epithelial cytoplasmic processes penetrated through the basal lamina toward the mesenchyme. These same phenomena are observed in vivo when the glandular buds are formed during day 12-13. Some precocious changes occurred in the uropygial epithelium when the rudiment was cultured in the presence of EGF.

  19. Stat3 phosphorylation is required for embryonic stem cells ground state maintenance in 2i culture media

    PubMed Central

    Zhang, Kaiyue; Nie, Yan; Zhao, Shuang; Zhang, Yan; He, Ningning; Wang, Yuebing; Xu, Yang; Xie, Xiaoyan; Li, Zongjin; Liu, Na

    2017-01-01

    Embryonic stem cells (ES cells) can be maintained its undifferentiated state with feeder cells or LIF, which can activate Jak/Stat3 pathway. Recently, it has been reported a new culture condition comprising serum-free medium with ERK and GSK3β inhibitors (2i) could drive ES cells into a state of pluripotency more like inner cell mass (ICM) in mouse blastocysts called ground state. However, although 2i could sustain ES cells self-renewal, LIF is routinely added. The roles of Stat3 activation are still unclear now. Here we investigated whether Jak/Stat3 might also contribute to the induction of ground state pluripotency. We introduced a lentiviral construct with 7-repeat Stat3-binding sequence to drive Renilla luciferase into ES cells, which can be used as a reporter to detect Stat3 activation by noninvasive bioluminescence imaging. Using this ES cells, we investigated the role of Stat3 activation in ground state maintenance. The results showed that Stat3 could be activated by 2i. Stattic, a chemical inhibitor of Stat3 phosphorylation, could effectively inhibit Stat3 activation in ES cells. When Stat3 activation was suppressed, ground state related genes were down regulated, and ES cells could not be maintained the ground state pluripotency even in 2i medium. All of these results indicate Stat3 activation is required in ground state maintenance. PMID:28415722

  20. Stat3 phosphorylation is required for embryonic stem cells ground state maintenance in 2i culture media.

    PubMed

    Wang, Dan; Sang, Hui; Zhang, Kaiyue; Nie, Yan; Zhao, Shuang; Zhang, Yan; He, Ningning; Wang, Yuebing; Xu, Yang; Xie, Xiaoyan; Li, Zongjin; Liu, Na

    2017-05-09

    Embryonic stem cells (ES cells) can be maintained its undifferentiated state with feeder cells or LIF, which can activate Jak/Stat3 pathway. Recently, it has been reported a new culture condition comprising serum-free medium with ERK and GSK3β inhibitors (2i) could drive ES cells into a state of pluripotency more like inner cell mass (ICM) in mouse blastocysts called ground state. However, although 2i could sustain ES cells self-renewal, LIF is routinely added. The roles of Stat3 activation are still unclear now. Here we investigated whether Jak/Stat3 might also contribute to the induction of ground state pluripotency. We introduced a lentiviral construct with 7-repeat Stat3-binding sequence to drive Renilla luciferase into ES cells, which can be used as a reporter to detect Stat3 activation by noninvasive bioluminescence imaging. Using this ES cells, we investigated the role of Stat3 activation in ground state maintenance. The results showed that Stat3 could be activated by 2i. Stattic, a chemical inhibitor of Stat3 phosphorylation, could effectively inhibit Stat3 activation in ES cells. When Stat3 activation was suppressed, ground state related genes were down regulated, and ES cells could not be maintained the ground state pluripotency even in 2i medium. All of these results indicate Stat3 activation is required in ground state maintenance.

  1. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.

  2. Assessment of ‘one-step’ versus ‘sequential’ embryo culture conditions through embryonic genome methylation and hydroxymethylation changes

    PubMed Central

    Salvaing, J.; Peynot, N.; Bedhane, M. N.; Veniel, S.; Pellier, E.; Boulesteix, C.; Beaujean, N.; Daniel, N.; Duranthon, V.

    2016-01-01

    STUDY QUESTION In comparison to in vivo development, how do different conditions of in vitro culture (‘one step’ versus ‘sequential medium’) impact DNA methylation and hydroxymethylation in preimplantation embryos? SUMMARY ANSWER Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. WHAT IS KNOWN ALREADY Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. STUDY DESIGN SIZE, DURATION The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coïtum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation

  3. Long-Term Lithium Treatment Increases cPLA₂ and iPLA₂ Activity in Cultured Cortical and Hippocampal Neurons.

    PubMed

    De-Paula, Vanessa de Jesus; Kerr, Daniel Shikanai; de Carvalho, Marília Palma Fabiano; Schaeffer, Evelin Lisete; Talib, Leda Leme; Gattaz, Wagner Farid; Forlenza, Orestes Vicente

    2015-11-04

    Experimental evidence supports the neuroprotective properties of lithium, with implications for the treatment and prevention of dementia and other neurodegenerative disorders. Lithium modulates critical intracellular pathways related to neurotrophic support, inflammatory response, autophagy and apoptosis. There is additional evidence indicating that lithium may also affect membrane homeostasis. To investigate the effect of lithium on cytosolic phospholipase A₂ (PLA₂) activity, a key player on membrane phospholipid turnover which has been found to be reduced in blood and brain tissue of patients with Alzheimer's disease (AD). Primary cultures of cortical and hippocampal neurons were treated for 7 days with different concentrations of lithium chloride (0.02 mM, 0.2 mM and 2 mM). A radio-enzymatic assay was used to determine the total activity of PLA₂ and two PLA₂ subtypes: cytosolic calcium-dependent (cPLA₂); and calcium-independent (iPLA₂). cPLA₂ activity increased by 82% (0.02 mM; p = 0.05) and 26% (0.2 mM; p = 0.04) in cortical neurons and by 61% (0.2 mM; p = 0.03) and 57% (2 mM; p = 0.04) in hippocampal neurons. iPLA₂ activity was increased by 7% (0.2 mM; p = 0.04) and 13% (2 mM; p = 0.05) in cortical neurons and by 141% (0.02 mM; p = 0.0198) in hippocampal neurons. long-term lithium treatment increases membrane phospholipid metabolism in neurons through the activation of total, c- and iPLA₂. This effect is more prominent at sub-therapeutic concentrations of lithium, and the activation of distinct cytosolic PLA₂ subtypes is tissue specific, i.e., iPLA₂ in hippocampal neurons, and cPLA₂ in cortical neurons. Because PLA₂ activities are reported to be reduced in Alzheimer's disease (AD) and bipolar disorder (BD), the present findings provide a possible mechanism by which long-term lithium treatment may be useful in the prevention of the disease.

  4. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity.

    PubMed

    Kim, So Ra; Lee, Mi Kyeong; Koo, Kyung Ah; Kim, Seung Hyun; Sung, Sang Hyun; Lee, Na Gyong; Markelonis, George J; Oh, Tae H; Yang, Jae Ho; Kim, Young Choong

    2004-05-01

    A methanolic extract of dried Schisandra fruit (Schisandra chinensis Baill.; Schisandraceae) significantly attenuated the neurotoxicity induced by L-glutamate in primary cultures of rat cortical cells. Five dibenzocyclooctadiene lignans (deoxyschisandrin, gomisin N, gomisin A, schisandrin, and wuweizisu C) were isolated from the methanolic extract; their protective effects against glutamate-induced neurotoxicity were then evaluated. Among the five lignans, deoxyschisandrin, gomisin N, and wuweizisu C significantly attenuated glutamate-induced neurotoxicity as measured by 1). an inhibition in the increase of intracellular [Ca(2+)]; 2). an improvement in the glutathione defense system, the level of glutathione, and the activity of glutathione peroxidase; and 3). an inhibition in the formation of cellular peroxide. These results suggest that dibenzocyclooctadiene lignans from Schisandra chinensis may possess therapeutic potential against oxidative neuronal damage induced by excitotoxin.

  5. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures.

    PubMed

    Hernández-Ibáñez, Naiara; García-Cruz, Leticia; Montiel, Vicente; Foster, Christopher W; Banks, Craig E; Iniesta, Jesús

    2016-03-15

    l-lactate is an essential metabolite present in embryonic cell culture. Changes of this important metabolite during the growth of human embryo reflect the quality and viability of the embryo. In this study, we report a sensitive, stable, and easily manufactured electrochemical biosensor for the detection of lactate within embryonic cell cultures media. Screen-printed disposable electrodes are used as electrochemical sensing platforms for the miniaturization of the lactate biosensor. Chitosan/multi walled carbon nanotubes composite have been employed for the enzymatic immobilization of the lactate oxidase enzyme. This novel electrochemical lactate biosensor analytical efficacy is explored towards the sensing of lactate in model (buffer) solutions and is found to exhibit a linear response towards lactate over the concentration range of 30.4 and 243.9 µM in phosphate buffer solution, with a corresponding limit of detection (based on 3-sigma) of 22.6 µM and exhibits a sensitivity of 3417 ± 131 µAM(-1) according to the reproducibility study. These novel electrochemical lactate biosensors exhibit a high reproducibility, with a relative standard deviation of less than 3.8% and an enzymatic response over 82% after 5 months stored at 4 °C. Furthermore, high performance liquid chromatography technique has been utilized to independently validate the electrochemical lactate biosensor for the determination of lactate in a commercial embryonic cell culture medium providing excellent agreement between the two analytical protocols. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.

    PubMed

    Gad, Ahmed; Hoelker, Michael; Besenfelder, Urban; Havlicek, Vitezslav; Cinar, Ulas; Rings, Franca; Held, Eva; Dufort, Isabelle; Sirard, Marc-André; Schellander, Karl; Tesfaye, Dawit

    2012-10-01

    Understanding gene expression patterns in response to altered environmental conditions at different time points of the preimplantation period would improve our knowledge on regulation of embryonic development. Here we aimed to examine the effect of alternative in vivo and in vitro culture conditions at the time of major embryonic genome activation (EGA) on the development and transcriptome profile of bovine blastocysts. Four different blastocyst groups were produced under alternative in vivo and in vitro culture conditions before or after major EGA. Completely in vitro- and in vivo-produced blastocysts were used as controls. We compared gene expression patterns between each blastocyst group and in vivo blastocyst control group using EmbryoGENE's bovine microarray. The data showed that changing culture conditions from in vivo to in vitro or vice versa, either before or after the time of major EGA, had no effect on the developmental rates; however, in vitro conditions during that time critically influenced the transcriptome of the blastocysts produced. The source of oocyte had a critical effect on developmental rates and the ability of the embryo to react to changing culture conditions. Ontological classification highlighted a marked contrast in expression patterns for lipid metabolism and oxidative stress response between blastocysts generated in vivo versus in vitro, with opposite trends. Molecular mechanisms and pathways that are influenced by altered culture conditions during EGA were defined. These results will help in the development of new strategies to modify culture conditions at this critical stage to enhance the development of competent blastocysts.

  7. Analytical characterization of spontaneous firing in networks of developing rat cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    Tateno, Takashi; Kawana, Akio; Jimbo, Yasuhiko

    2002-05-01

    We have used a multiunit electrode array in extracellular recording to investigate changes in the firing patterns in networks of developing rat cortical neurons. The spontaneous activity of continual asynchronous firing or the alternation of asynchronous spikes and synchronous bursts changed over time so that activity in the later stages consisted exclusively of synchronized bursts. The spontaneous coordinated activity in bursts produced a variability in interburst interval (IBI) sequences that is referred to as ``form.'' The stochastic and nonlinear dynamical analysis of IBI sequences revealed that these sequences reflected a largely random process and that the form for relatively immature neurons was largely oscillatory while the form for the more mature neurons was Poisson-like. The observed IBI sequences thus showed changes in form associated with both the intrinsic properties of the developing cells and the neural response to correlated synaptic inputs due to interaction between the developing neural circuits.

  8. Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons.

    PubMed

    Kim, Joo Youn; Lee, Hong Kyu; Hwang, Bang Yeon; Kim, SeungHwan; Yoo, Jae Kuk; Seong, Yeon Hee

    2012-06-01

    Ilex latifolia (Aquifoliaceae), one of the primary components of "Ku-ding-cha", has been used in Chinese folk medicine to treat headaches and various inflammatory diseases. A previous study demonstrated that the ethanol extract of I. latifolia could protect against ischemic apoptotic brain damage in rats. The present study investigated the protective activity of I. latifolia against glutamate-induced neurotoxicity using cultured rat cortical neurons in order to explain a possible mechanism related to its inhibitory effect on ischemic brain damage and identified potentially active compounds from it. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h triggered neuronal cell death. I. latifolia (10-100 μg/mL) inhibited glutamate-induced neuronal death, elevation of intracellular calcium ([Ca(2+)](i)), generation of reactive oxygen species (ROS), the increase of a pro-apoptotic protein, BAX, and the decrease of an anti-apoptotic protein, BcL-2. Hypoxia-induced neuronal cell death was also inhibited by I. latifolia. 3,4-Dicaffeoylquinic acid (diCQA), 3,5-diCQA, and 3,5-diCQA methyl ester isolated from I. latifolia also inhibited the glutamate-induced increase in [Ca(2+)](i), generation of ROS, the change of apoptosis-related proteins, and neuronal cell death; and hypoxia-induced neuronal cell death. These results suggest that I. latifolia and its active compounds prevented glutamate-induced neuronal cell damage by inhibiting increase of [Ca(2+)](i), generation of ROS, and resultantly apoptotic pathway. In addition, the neuroprotective effects of I. latifolia on ischemia-induced brain damage might be associated with the anti-excitatory and anti-oxidative actions and could be attributable to these active compounds, CQAs.

  9. Ion permeation properties of the glutamate receptor channel in cultured embryonic Drosophila myotubes.

    PubMed Central

    Chang, H; Ciani, S; Kidokoro, Y

    1994-01-01

    Ion permeation properties of the glutamate receptor channel in cultured myotubes of Drosophila embryos were studied using the inside-out configuration of the patch-clamp technique. Lowering the NaCl concentration in the bath (intracellular solution), while maintaining that of the external solution constant, caused a shift of the reversal potential in the positive direction, thus indicating a higher permeability of the channel to Na+ than to Cl- (PCl/PNa < 0.04), and suggesting that the channel is cation selective. With 145 mM Na+ on both sides of the membrane, the single-channel current-voltage relation was almost linear in the voltage range between -80 and +80 mV, the conductance showing some variability in the range between 140 and 170 pS. All monovalent alkali cations tested, as well as NH4+, permeated the channel effectively. Using the Goldman-Hodgkin-Katz equation for the reversal potential, the permeability ratios with respect to Na+ were estimated to be: 1.32 for K+, 1.18 for NH4+, 1.15 for Rb+, 1.09 for Cs+, and 0.57 for Li+. Divalent cations, i.e. Mg2+ and Ca2+, in the external solution depressed not only the inward but also the outward Na+ currents, although reversal potential measurements indicated that both ions have considerably higher permeabilities than Na+ (PMg/PNa = 2.31; PCa/PNa = 9.55). The conductance-activity relation for Na+ was described by a hyperbolic curve. The maximal conductance was about 195 pS and the half-saturating activity 45 mM. This result suggests that Na+ ions bind to sites in the channel. All data were fitted by a model based on the Eyring's reaction rate theory, in which the receptor channel is a one-ion pore with three energy barriers and two internal sites. PMID:7519261

  10. ANEPIII, a new recombinant neurotoxic polypeptide derived from scorpion peptide, inhibits delayed rectifier, but not A-type potassium currents in rat primary cultured hippocampal and cortical neurons.

    PubMed

    Li, Chun-Li; Zhang, Jing-Hai; Yang, Bao-Feng; Jiao, Jun-Dong; Wang, Ling; Wu, Chun-Fu

    2006-01-15

    A new recombinant neurotoxic polypeptide ANEPIII (BmK ANEPIII) derived from Scorpion peptide, which was demonstrated with antineuroexcitation properties in animal models, was examined for its action on K+ currents in primary cultured rat hippocampal and cortical neurons using the patch clamp technique in the whole-cell configuration. The delayed rectifier K+ current (I(k)) was inhibited by externally applied recombinant BmK ANEPIII, while the transient A-current (I(A)) remained virtually unaffected. BmK ANEPIII 3 microM, reduced the delayed rectifier current by 28.2% and 23.6% in cultured rat hippocampal and cortical neurons, respectively. The concentration of half-maximal block was 155.1 nM for hippocampal neurons and 227.2 nM for cortical neurons, respectively. These results suggest that BmK ANEPIII affect K+ currents, which may lead to a reduction in neuronal excitability.

  11. Sulindac attenuates valproic acid-induced oxidative stress levels in primary cultured cortical neurons and ameliorates repetitive/stereotypic-like movement disorders in Wistar rats prenatally exposed to valproic acid.

    PubMed

    Zhang, Yinghua; Yang, Cailing; Yuan, Guoyan; Wang, Zhongping; Cui, Weigang; Li, Ruixi

    2015-01-01

    Accumulating evidence suggests that anti-inflammatory agents and antioxidants have neuroprotective properties and may be beneficial in the treatment of neurodevelopental disorders, such as autism. In the present study, the possible neuroprotective properties of sulindac, a non-steroidal anti-inflammatory drug (NSAID), were investigated in vitro using cultured cortical neurons with valproic acid (VPA)-induced neurotoxicity, as well as in vivo through the behavioral analysis of rats prenatally exposed to VPA as a model of autism. VPA induced 4-hydroxynonenal (4-HNE) expression, reactive oxygen species (ROS) generation and decreased cell viability in primary cultured cortical neurons established from timed-pregnant (embryonic day 18) Wistar rat pups. However, co-incubation of the neurons with VPA and sulindac reduced oxidative stress and increased cell viability. The rats were administered an intraperitoneal injection with one of the following: VPA, sulindac, VPA and sulindac, or physiological saline, and their offspring were subjected to the open field test. During the test trials, repetitive/stereotypic-like movements for each rat were recorded and analyzed. The results revealed that treatment with both sulindac and VPA reduced the VPA-induced repetitive/stereotypic-like activity and the sulindac and VPA-treated animals responded better in the open field test compared to the VPA-treated animals. The results from the present study demonstrate that the antioxidant properties of sulindac may prove to be beneficial in the treatment of autism, suggesting that the upregulation of the Wnt/β-catenin signaling pathway disrupts oxidative homeostasis and facilitates susceptibility to autism.

  12. Pyrethroid insecticide accumulation in primary cultures of cortical neurons in vitro

    EPA Science Inventory

    Primary cultures of neurons have been widely utilized to study the actions of pyrethroids and other neurotoxicants, with the presumption that the media concentration accurately reflects the dose received by the cells. However, recent studies have demonstrated that lipophilic comp...

  13. Pyrethroid insecticide accumulation in primary cultures of cortical neurons in vitro

    EPA Science Inventory

    Primary cultures of neurons have been widely utilized to study the actions of pyrethroids and other neurotoxicants, with the presumption that the media concentration accurately reflects the dose received by the cells. However, recent studies have demonstrated that lipophilic comp...

  14. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha.

    PubMed

    Ji, Lei; Liu, Yu-xiao; Yang, Chao; Yue, Wen; Shi, Shuang-shuang; Bai, Ci-xian; Xi, Jia-fei; Nan, Xue; Pei, Xue-Tao

    2009-10-01

    Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.

  15. Reduced mitotic activity at the periphery of human embryonic stem cell colonies cultured in vitro with mitotically-inactivated murine embryonic fibroblast feeder cells.

    PubMed

    Heng, Boon Chin; Cao, Tong; Liu, Hua; Rufaihah, Abdul Jalil

    2005-01-01

    This study attempted to investigate whether different levels of mitotic activity exist within different physical regions of a human embryonic stem (hES) cell colony. Incorporation of 5-bromo-2-deoxyuridine (BrdU) within newly-synthesized DNA, followed by immunocytochemical staining was used as a means of detecting mitotically-active cells within hES colonies. The results showed rather surprisingly that the highest levels of mitotic activity are primarily concentrated within the central regions of hES colonies, whereas the peripheral regions exhibited reduced levels of cellular proliferation. Two hypothetical mechanisms are therefore proposed for hES colony growth and expansion. Firstly, it is envisaged that the less mitotically-active hES cells at the periphery of the colony are continually migrating outwards, thereby providing space for newly-divided daughter cells within the more mitotically-active central region of the hES colony. Secondly, it is proposed that the newly-divided hES cells within the central region of the colony somehow migrate to the outer periphery. This could possibly explain why the periphery of hES colonies are less mitotically-active, since there would obviously be an extended time-lag before newly-divided daughter cells are ready again for the next cell division. Further investigations need to be carried out to characterize the atypical mechanisms by which hES colonies grow and expand in size.

  16. Repeated Stimulation of Cultured Networks of Rat Cortical Neurons Induces Parallel Memory Traces

    ERIC Educational Resources Information Center

    le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle

    2015-01-01

    During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…

  17. Repeated Stimulation of Cultured Networks of Rat Cortical Neurons Induces Parallel Memory Traces

    ERIC Educational Resources Information Center

    le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle

    2015-01-01

    During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…

  18. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi.

    PubMed

    Takata, Nozomu; Sakakura, Eriko; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.

  19. Neurotrophic effects of GnRH on neurite outgrowth and neurofilament protein expression in cultured cerebral cortical neurons of rat embryos.

    PubMed

    Quintanar, J Luis; Salinas, Eva

    2008-06-01

    The presence of GnRH receptor in cerebral cortical neurons of rat embryos and adult rats has been described. In this work, we studied the effects of GnRH on outgrowth and length of neurites and cytoskeletal neurofilament proteins expression (NF-68 and NF-200 kDa) by immunoblot of cultured cerebral cortical neurons of rat embryos. Our results show that GnRH increases both outgrowth and length of neurites accompanied by an increase in neurofilaments expression. It is conceivable that GnRH plays a role in neuronal plasticity parallel to its gonadal function.

  20. Neuroprotective effect of schizandrin A on oxygen and glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    PubMed

    Wang, Cai-Ping; Li, Gui-Cai; Shi, Yun-Wei; Zhang, Xiao-Chuan; Li, Jian-Long; Wang, Zhi-Wei; Ding, Fei; Liang, Xin-Miao

    2014-09-01

    Brain ischemia appears to be associated with innate immunity. Recent reports showed that C3a and C5a, as potent targets, might protect against ischemia induced cell death. In traditional Chinese medicine, the fruit of Schizandra chinesis Baill (Fructus schizandrae) has been widely used as a tonic. In the present study, we sought to evaluate the neuroprotective effects of schizandrin A, a composition of S. chinesis Baill, against oxygen and glucose deprivation followed by reperfusion (OGD/R)-induced cell death in primary culture of rat cortical neurons, and to test whether C3a and C5a affected cortical neuron recovery from ischemic injury after schizandrin A treatment. The results showed that schizandrin A significantly reduced cell apoptosis and necrosis, increased cell survival, and decreased intracellular calcium concentration ([Ca(2+)]i) and lactate dehydrogenase (LDH) release in primary culture of rat cortical neurons after OGD/R. Mechanism studies suggested that the modulation of extracellular-regulated kinase (ERK), c-Jun NH2-terminal kinases (JNK), and p38, as well as caspase-3 activity played an important role on the progress of neuronal apoptosis. C5aR participated in the neuroprotective effect of schizandrin A in primary culture of rat cortical neurons after OGD/R. Our findings suggested that schizandrin A might act as a candidate therapeutic target drug used for brain ischemia and related diseases.

  1. Differential effects of ciguatoxin and maitotoxin in primary cultures of cortical neurons.

    PubMed

    Martin, Victor; Vale, Carmen; Antelo, Alvaro; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luis M

    2014-08-18

    Ciguatoxins (CTXs) and maitotoxins (MTXs) are polyether ladder shaped toxins derived from the dinoflagellate Gambierdiscus toxicus. Despite the fact that MTXs are 3 times larger than CTXs, part of the structure of MTXs resembles that of CTXs. To date, the synthetic ciguatoxin, CTX 3C has been reported to activate voltage-gated sodium channels, whereas the main effect of MTX is inducing calcium influx into the cell leading to cell death. However, there is a lack of information regarding the effects of these toxins in a common cellular model. Here, in order to have an overview of the main effects of these toxins in mice cortical neurons, we examined the effects of MTX and the synthetic ciguatoxin CTX 3C on the main voltage dependent ion channels in neurons, sodium, potassium, and calcium channels as well as on membrane potential, cytosolic calcium concentration ([Ca(2+)]c), intracellular pH (pHi), and neuronal viability. Regarding voltage-gated ion channels, neither CTX 3C nor MTX affected voltage-gated calcium or potassium channels, but while CTX 3C had a large effect on voltage-gated sodium channels (VGSC) by shifting the activation and inactivation curves to more hyperpolarized potentials and decreasing peak sodium channel amplitude, MTX, at 5 nM, had no effect on VGSC activation and inactivation but decreased peak sodium current amplitude. Other major differences between both toxins were the massive calcium influx and intracellular acidification produced by MTX but not by CTX 3C. Indeed, the novel finding that MTX produces acidosis supports a pathway recently described in which MTX produces calcium influx via the sodium-hydrogen exchanger (NHX). For the first time, we found that VGSC blockers partially blocked the MTX-induced calcium influx, intracellular acidification, and protected against the short-term MTX-induced cytotoxicity. The results presented here provide the first report that shows the comparative effects of two prototypical ciguatera toxins, CTX 3C

  2. Development of a xeno-free non-contact co-culture system for derivation and maintenance of embryonic stem cells using a novel human endometrial cell line.

    PubMed

    Desai, Nina; Ludgin, Jennifer; Goldberg, Jeffrey; Falcone, Tommaso

    2013-06-01

    Mouse embryonic fibroblast feeder layers (MEF) have conventionally been used to culture and maintain the pluripotency of embryonic stem cells (ESC). This study explores the potential of using a novel human endometrial cell line to develop a non-xeno, non-contact co-culture system for ESC propagation and derivation. Such xeno-free systems may prove essential for the establishment of clinical grade human ESC lines suitable for therapeutic application. A novel line of human endometrial cells were seeded in a 6-well dish. Filter inserts containing mouse ESCs were placed on these wells and passaged 2-3 times per week. Inner cell masses derived from mouse blastocysts were also cultured on transwells in the presence of the feeder layer. In both cases, staining for SSEA-1, SOX-2, OCT-4 and alkaline phosphatase were used to monitor the retention of stem cells. ESC colonies retained their stem cell morphology and attributes for over 120 days in culture and 44 passages to date. Inner cell mass derived ESC cultures were maintained in a pluripotent state for 45 days, through 6 passages with retention of all stem cell characteristics. The stem cell colonies expressed stem cell specific markers SSEA-1, Sox 2, Oct-4 and alkaline phosphatase. Upon removal of the human feeder layer, there was a distinct change in cell morphology within the colonies and evidence of ESC differentiation. Human feeder layers offer a simple path away from the use of MEF feeder cells or MEF conditioned medium for ESC culture. Furthermore, indirect co-culture using porous membranes to separate the two cell types can prevent contamination of stem cell preparations with feeder cells during passaging.

  3. A modified culture medium increases blastocyst formation and the efficiency of human embryonic stem cell derivation from poor-quality embryos.

    PubMed

    FAN, Yong; LUO, Yumei; CHEN, Xinjie; SUN, Xiaofang

    2010-10-01

    Human embryonic stem cells (HESCs) are defined as self-renewing cells that retain their ability to differentiate into all cell types of the body. They have enormous potential in medical applications and as a model for early human development. There is a need for derivation of new HESC lines to meet emerging requirements for their use in cell replacement therapies, disease modeling, and basic research. Here, we describe a modified culture medium containing human recombinant leukemia inhibitory factor and human basic fibroblast growth factor that significantly increases the number of human blastocysts formed and their quality, as well as the efficiency of HESC derivation from poor-quality embryos. Culturing poor-quality embryos in modified medium resulted in a two-fold increase in the blastocyst formation rate and a seven-fold increase over the derivation efficiency in conventional medium. We derived 15 HESC lines from poor-quality embryos cultured in modified culture medium and two HESC lines from quality embryos cultured in conventional culture medium. All cell lines shared typical human pluripotent stem cell features including similar morphology, normal karyotypes, expression of alkaline phosphatase, pluripotency genes, such as Oct4, and cell surface markers (SSEA-4, TRA-1-60, TRA-1-81), the ability to form teratomas in SCID mice, and the ability to differentiate into cells of three embryonic germ layers in vitro. Our data suggest that poor-quality embryos that have reached the blastocyst stage in our modified culture medium are a robust source for normal HESC line derivation.

  4. A Common Stem Cell for Murine Cortical and Medullary Thymic Epithelial Cells?

    PubMed Central

    Van Soest, Peter; Platenburg, Peter Paul; Van Ewijk, Willem

    1995-01-01

    We have addressed the question whether the epithelial stroma in the thymus is derived from a common stem cell or whether cortical and medullary epithelial cells are derived from different embryonic stem cells emerging, for example, from endoderm and ectoderm. By the use of rapidly expanding cultures of thymic epithelial cells (TEC) from 14 to 16 day-old murine fetuses and by specific antibodies against cortical and medullary epithelium, respectively, we were able to demonstrate a small subpopulation of double-labeled TEC in the cultures. These cells were not present in TEC cultures initiated from thymuses of neonatal mice. Double-labeled TEC were also found in tissue sections from fetal thymuses. These findings may indicate that TEC populations of the cortex and the medulla are derived from a common stem cell, with potential for differentiation toward both cortical and medullary TEC. PMID:9700364

  5. In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice.

    PubMed

    Amps, K J; Jones, M; Baker, D; Moore, H D

    2010-06-01

    The development of efficient and robust methods for the cryopreservation of human embryonic stem cells (hESCs) is important for the production of master and working cell banks for future clinical applications. Such methods must meet requirements of good manufacturing practice (GMP) and maintain genetic stability of the cell line. We investigated the culture of four Shef hESC lines in gas permeable 'culture cassettes' which met GMP compliance. hESCs adhered rapidly to the membrane and colonies displayed good proliferation and expansion. After 5-7 days of culture, hESCs were cryopreserved in situ using 10% dimethyl sulphoxide in foetal calf serum at approximately 1 degrees C/min. This method was compared with a control of standard flask culture and cryopreservation in vials. Post-thaw cassette culture displayed relative proliferation ratios (fold increase above flask/cryovial culture) of 114 (Shef 4), 8.2 (Shef 5), 195 (shef 6) and 17.5 (Shef 7). The proportion of cells expressing pluripotency markers after cryopreservation was consistently greater in cassette culture than for the control with the markers SSEA3 and SSEA4 exhibiting a significant increase (P> or =0.05). The efficiency of cell line culture in cassette was associated with the overall passage number of the cell line. The procedure enables cryopreservation of relatively large quantities of hESCs in situ, whilst returning high yields of viable, undifferentiated stem cells, thereby increasing capacity to scale up with greater efficacy.

  6. Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation.

    PubMed

    Lüscher, C; Streit, J; Lipp, P; Lüscher, H R

    1994-08-01

    1. The reliability of the propagation of action potentials (AP) through dorsal root ganglion (DRG) cells in embryonic slice cultures was investigated during repetitive stimulation at 1-20 Hz. Membrane potentials of DRG cells were recorded intracellularly while the axons were stimulated by an extracellular electrode. 2. In analogy to the double-pulse experiments reported previously, either one or two types of propagation failures were recorded during repetitive stimulation, depending on the cell morphology. In contrast to the double-pulse experiments, the failures appeared at longer interpulse intervals and usually only after several tens of stimuli with reliable propagation. 3. In the period with reliable propagation before the failures, a decrease in the conduction velocity and in the amplitude of the afterhyperpolarization (AHP), an increase in the total membrane conductance, and the disappearance of the action potential "shoulder" were observed. 4. The reliability of conduction during repetitive stimulation was improved by lowering the extracellular calcium concentration or by replacing the extracellular calcium by strontium. The reliability of conduction decreased by the application of cadmium, a calcium channel blocker, 4-amino pyridine, a fast potassium channel blocker, or apamin or muscarine, the blockers of calcium-dependent potassium channels. The reliability of conduction was not effected by blocking the sodium potassium pump with ouabain or by replacing extracellular sodium with lithium. 5. In the period with reliable propagation cadmium, apamin, and muscarine reduced the amplitude of the AHP. The shoulder of the action potential was more pronounced and not sensitive to repetitive stimulation when extracellular calcium was replaced by strontium. It disappeared when cadmium was applied. 6. In DRG somata changes of the intracellular Ca2+ concentration were monitored by measuring the fluorescence of the Ca2+ indicator Fluo-3 with a laser-scanning confocal

  7. Cell structure and proliferative activity of organ cultures of normal embryonic lung tissue of mice resistant (C57BL) and predisposed (A) to lung tumors

    SciTech Connect

    Kolesnichenko, T.S.; Gor'kova, T.G.

    1985-08-01

    Local factors such as proliferative activity and the numerical ratio between epithelial and mesenchymal cells, and also the character of interaction between the tissue components in ontogeny may play an important role in the realization of sensitivity of mice of a particular line to the development of lung tumors. These characteristics of lung tissue in mice of lines A and C57BL are investigated under normal conditions and during induced carcinogenesis. Results are given of a comparative study of the relative numbers of epithelial and mesenchymal cells in organ cultures of embryonic lungs. /sup 3/H-thymidine was added to the cultures on the 14th day of the experiment in a concentration of 1 microCi/m1 medium. An autoradiographic study of the cultures was performed.

  8. Serum-Based Culture Conditions Provoke Gene Expression Variability in Mouse Embryonic Stem Cells as Revealed by Single-Cell Analysis.

    PubMed

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2016-02-02

    Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single-cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC-priming pathway that initiates the exit from the naive ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum-free culture reduces cellular heterogeneity and transcriptome variation in ESCs.

  9. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  10. Enhanced neuroprotective effects of resveratrol delivered by nanoparticles on hydrogen peroxide-induced oxidative stress in rat cortical cell culture.

    PubMed

    Lu, Xiaowei; Xu, Huae; Sun, Bo; Zhu, Zhenshu; Zheng, Donghui; Li, Xiaolin

    2013-05-06

    Resveratrol (RES) has recently been reported as a potential antioxidant in treatment of ischemia/reperfusion injury through attenuating oxidative stress and apoptosis. However, application of RES is limited for its insolubility and short half-time. Latest evidence raises the possibility of developing nanoparticle-based delivery systems with improved solubility, stability and cytotoxicity of lipophilic drug. Here, we reported first a simple way to produce RES-loaded nanoparticles (RES-NPs) based on poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) polymer and further evaluated the protective effect of RES-NPs on hydrogen peroxide-induced oxidative stress and apoptosis in rat cortical cell culture. The controlled release pattern of RES-loaded nanoparticles was characterized by in vitro release experiments. Cytotoxicity tests proved cytocompatibility of these nanoparticles with neurons. Shown by coumarin-6 loaded nanoparticles, the uptake of nanoparticles by neurons was considered through endocytosis, which could lead to higher uptake efficiency at lower concentration. Thereby, the hypothesis is raised that RES-NPs could demonstrate enhanced neuroprotection compared to an equivalent dose of free RES at lower concentration, especially. It was further supported by enhanced reduction of LDH release, elimination of ROS and MDA, and attenuation of apoptosis signal (ratio of Bax/Bcl-2, activation of caspase-3). RES-NPs could be a potential treatment needing intensive research for ischemia/reperfusion related disorder including stroke.

  11. [Neuroprotective effects of the effective components group of xiaoshuantongluo against oxygen-glucose deprivation in primary cultured rat cortical neurons].

    PubMed

    Xie, Xin-Mei; Pang, Xiao-Bin; Zhao, Yan; Wang, Bao-Quan; Chen, Ruo-Yun; Du, Guan-Hua

    2014-08-01

    This study is to investigate the effect of the effective components group of Xiaoshuantongluo (XECG) on neuronal injury induced by oxygen-glucose deprivation (OGD) in primary cortical cultures isolated from SD rat cortex at day 3 and the possible mechanism. Cells were divided into control group, OGD model group and XECG group (1, 3 and 10 mg x L(-1)). The cell viability was assessed with MTT assay and the LDH release rate was measured by enzyme label kit. The cell apoptosis was analyzed using Hoechst staining. RT-PCR was applied to detect the mRNA levels of JAK2 and STAT3. Western blotting was used to detect the expressions of Bcl-2, Bax, p-JAK2 and p-STAT3 proteins. Results showed that XECG resulted in an obvious resistance to oxygen-glucose deprivation-induced cell apoptosis and decrement of cell viability, decrease the cell LDH release rate. XECG could adjust the expression of Bcl-2 and Bax proteins and increase Bcl-2/Bax ratio, up-regulate the expression of p-JAK2 and p-STAT3. In conclusion, XECG could protect against the neuronal injury cells exposed to OGD, which may be relevant to the promotion of JAK2/STAT3 signaling pathway, and impact the expression of Bax and Bcl-2.

  12. Neuroprotective effects of triterpene glycosides from glycine max against glutamate induced toxicity in primary cultured rat cortical cells.

    PubMed

    Moon, Hyung-In; Lee, Jai-Heon

    2012-01-01

    To examine the neuroprotective effects of Glycine max, we tested its protection against the glutamate-induced toxicity in primary cortical cultured neurons. In order to clarify the neuroprotective mechanism(s) of this observed effect, isolation was performed to seek and identify active fractions and components. From such fractionation, two triterpene glycosides, 3-O-[α-l-rhamnopyranosyl(1-2)-β-d-glucopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (1) and 3-O-[β-d-glucopyranosyl(1-2)-β-d-galactopyranosyl(1-2)-β-d-glucuronopyranosyl]olean-12-en-3β,22β,24-triol (2) were isolated with the methanol extracts with of air-dried Glycine max. Among these compounds, compound 2 exhibited significant neuroprotective activities against glutamate-induced toxicity, exhibiting cell viability of about 50% at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of Glycine max might be due to the inhibition of glutamate-induced toxicity by triterpene glycosides.

  13. Block of Na+,K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons.

    PubMed

    Wang, Xue Qing; Xiao, Ai Ying; Yang, Aizhen; LaRose, Lori; Wei, Ling; Yu, Shan Ping

    2003-05-01

    K(+) channel blockers such as 4-aminopyridine (4-AP) can be toxic to neurons; the cellular mechanism underlying the toxicity, however, is obscure. In cultured mouse cortical neurons, we tested the hypothesis that the toxic effect of 4-AP might result from inhibiting the Na(+),K(+)-ATPase (Na(+),K(+)-pump) and thereafter induction of a hybrid death of concomitant apoptosis and necrosis. The Na(+),K(+)-pump activity, monitored as whole-cell membrane currents, was markedly blocked by 4-AP in concentration- and voltage-dependent manners in low millimolar ranges. At similar concentrations, 4-AP induced a neuronal death sensitive to attenuation by the caspase inhibitor Z-VAD-FMK (Z-Val-Ala-Asp(OMe)-fluoromethyl ketone) or Ca(2+) chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester). Electron microscopy confirmed hybrid ultrastructural features of coexisting apoptotic and necrotic components in same cells. We suggest that 4-AP is a potent antagonist of the Na(+),K(+)-ATPase and an inducer of the hybrid death of central neurons.

  14. AMPK Mediates Glucocorticoids Stress-Induced Downregulation of the Glucocorticoid Receptor in Cultured Rat Prefrontal Cortical Astrocytes

    PubMed Central

    Lu, Wei; Zhou, Hai-Yun; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Yi; Chen, Jian-Guo; Wang, Fang

    2016-01-01

    Chronic stress induces altered energy metabolism and plays important roles in the etiology of depression, in which the glucocorticoid negative feedback is disrupted due to imbalanced glucocorticoid receptor (GR) functions. The mechanism underlying the dysregulation of GR by chronic stress remains elusive. In this study, we investigated the role of AMP-activated protein kinase (AMPK), the key enzyme regulating cellular energy metabolism, and related signaling pathways in chronic stress-induced GR dysregulation. In cultured rat cortical astrocytes, glucocorticoid treatment decreased the level, which was accompanied by the decreased expression of liver kinase B1 (LKB1) and reduced phosphorylation of AMPK. Glucocorticoid-induced effects were attenuated by glucocorticoid-inducible kinase 1 (SGK1) inhibitor GSK650394, which also inhibited glucocorticoid induced phosphorylation of Forkhead box O3a (FOXO3a). Furthermore, glucocorticoid-induced down-regulation of GR was mimicked by the inhibition of AMPK and abolished by the AMPK activators or the histone deacetylase 5 (HDAC5) inhibitors. In line with the role of AMPK in GR expression, AMPK activator metformin reversed glucocorticoid-induced reduction of AMPK phosphorylation and GR expression as well as behavioral alteration of rats. Taken together, these results suggest that chronic stress activates SGK1 and suppresses the expression of LKB1 via inhibitory phosphorylation of FOXO3a. Downregulated LKB1 contributes to reduced activation of AMPK, leading to the dephosphorylation of HDAC5 and the suppression of transcription of GR. PMID:27513844

  15. Multidisciplinary Inquiry-Based Investigation Learning Using an Ex Ovo Chicken Culture Platform: Role of Vitamin A on Embryonic Morphogenesis

    ERIC Educational Resources Information Center

    Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.

    2012-01-01

    Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…

  16. Development of a 3D co-culture model using human stem cells for studying embryonic palatal fusion.

    EPA Science Inventory

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelv...

  17. Development of a 3D co-culture model using human stem cells for studying embryonic palatal fusion.

    EPA Science Inventory

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelv...

  18. Multidisciplinary Inquiry-Based Investigation Learning Using an Ex Ovo Chicken Culture Platform: Role of Vitamin A on Embryonic Morphogenesis

    ERIC Educational Resources Information Center

    Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.

    2012-01-01

    Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…

  19. Trophic and proliferative effects of Shh on motor neurons in embryonic spinal cord culture from wildtype and G93A SOD1 mice

    PubMed Central

    2013-01-01

    Background The developmental morphogen sonic hedgehog (Shh) may continue to play a trophic role in the support of terminally-differentiated motor neurons, of potential relevance to motor neuron disease. In addition, it may support the proliferation and differentiation of endogenous stem cells along motor neuronal lineages. As such, we have examined the trophic and proliferative effects of Shh supplementation or Shh antagonism in embryonic spinal cord cell cultures derived from wildtype or G93A SOD1 mice, a mouse model of amyotrophic lateral sclerosis. Results Shh supported survival, and stimulated growth of motor neurons, neurite outgrowth, and neurosphere formation in primary culture derived from both G93A SOD1 and WT mice. Shh increased the percentage of ciliated motor neurons, especially in G93A SOD1 culture. Shh-treated cultures showed increased neuronal proliferation compared to controls and especially cyclopamine treated cultures, from G93A SOD1 and WT mice. Moreover, Shh enhanced cell survival and differentiation of motor neuron precursors in WT culture. Conclusions Shh is neurotrophic to motor neurons and has mitogenic effects in WT and mSOD1 G93A culture in vitro. PMID:24119209

  20. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    PubMed

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepatocytes, since such two-dimensional (2D) conditions do not accurately reflect the complex nature of three-dimensional (3D) hepatocyte specification in vivo. Here, we report the sequential application of 2D and 3D culture systems to differentiate hESCs to hepatocytes. Human ESCs were initially differentiated in a monolayer culture to DE cells, which were then inoculated into Algimatrix scaffolds. Treatments of hESC-DE cells with a ROCK inhibitor before and after inoculation dramatically enhanced their survival and the formation of spheroids, which are distinct from HepG2 carcinoma cells. In comparison with monolayer culture alone, sequential 2D and 3D cultures significantly improved hepatocyte differentiation and function. Our results demonstrate that hESC-DE cells can be incorporated into Algimatrix 3D culture systems to enhance hepatocyte differentiation and function.

  1. Simultaneous calcium fluorescence imaging and MR of ex vivo organotypic cortical cultures: a new test bed for functional MRI.

    PubMed

    Bai, Ruiliang; Klaus, Andreas; Bellay, Tim; Stewart, Craig; Pajevic, Sinisa; Nevo, Uri; Merkle, Hellmut; Plenz, Dietmar; Basser, Peter J

    2015-12-01

    Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them. Here we describe the development and testing of such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a stable and reproducible biological model of neuronal activity that shows spontaneous activity similar to that of in vivo brain cortex without any hemodynamic confounds. An open-access, single-sided magnetic resonance (MR) "profiler" consisting of four permanent magnets with magnetic field of 0.32 T was used in this study to perform MR acquisition. A fluorescence microscope with long working distance objective was mounted on the top of a custom-designed chamber that keeps the organotypic culture vital, and the MR system was mounted on the bottom of the chamber to achieve real-time simultaneous calcium fluorescence optical imaging and MR acquisition on the same specimen. In this study, the reliability and performance of the proposed test bed were demonstrated by a conventional CPMG MR sequence acquired simultaneously with calcium imaging, which is a well-characterized measurement of neuronal activity. This experimental design will make it possible to correlate directly the other candidate functional MR signals to the optical indicia of neuronal activity in the future.

  2. Repeated stimulation of cultured networks of rat cortical neurons induces parallel memory traces

    PubMed Central

    Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle

    2015-01-01

    During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and small-scale computational models to study the effect of memory replay on the formation of memory traces. We show that input-deprived networks develop an activity⇔connectivity balance where dominant activity patterns support current connectivity. Electrical stimulation at one electrode disturbs this balance and induces connectivity changes. Intrinsic forces in recurrent networks lead to a new equilibrium with activity patterns that include the stimulus response. The new connectivity is no longer disrupted by this stimulus, indicating that networks memorize it. A different stimulus again induces connectivity changes upon first application but not subsequently, demonstrating the formation of a second memory trace. Returning to the first stimulus does not affect connectivity, indicating parallel storage of both traces. A computer model robustly reproduced experimental results, suggesting that spike-timing-dependent plasticity and short time depression suffice to store parallel memory traces, even in networks without particular circuitry constraints. PMID:26572650

  3. Downregulation of Gabra4 expression during alcohol withdrawal is mediated by specific microRNAs in cultured mouse cortical neurons.

    PubMed

    Bekdash, Rola A; Harrison, Neil L

    2015-08-01

    Alcohol abuse and dependence are a serious public health problem. A large number of alcohol-regulated genes, (ARGs) are known to be influenced by alcohol use and withdrawal (AW), and recent evidence suggests that neuroadaptation to alcohol may be due in part to epigenetic changes in the expression of ARGs. Gabra4, which encodes the α4 subunit of GABAA receptors (GABAARs), is one of a number of ARGs that show remarkable plasticity in response to alcohol, being rapidly upregulated by acute alcohol exposure. This study addressed the effects of AW on changes in the expression of Gabra4 and related genes that encode other subunits of GABAARs, and the potential regulation of Gabra4 by microRNAs. We studied gene and microRNAs expression, using RT-PCR and microRNA microarray in cultured cortical neurons treated with alcohol, which was then removed in order to simulate AW in vitro. We also used microRNA mimics or inhibitors, and a promoter-reporter construct carrying the 3'UTR of Gabra4. Eleven hours after removal of alcohol, Gabra4 was downregulated, with a modest increase in the expression of Gabrg2, but no change in the expression of Gabra1, Gabrd, or Gabrb2. microRNA profiling in neurons undergoing AW revealed upregulation in the expression of miR-155, miR-186, miR-24, and miR-375 after 8 h of AW. Transfection with molecular mimics of miR-186, miR-24, or miR-375 also downregulated Gabra4 expression, whereas transfection with the corresponding inhibitors of these microRNAs normalized Gabra4 expression in AW neurons to the level measured in control neurons. Promoter-reporter experiments supported the idea that miR-155, miR-186, miR-24, miR-27b, or miR-375 bind to the 3'UTR of Gabra4 and thereby inhibit protein production. Our data suggest that AW decreases Gabra4 expression, and that this may be mediated in part by the induction of specific microRNAs in cortical neurons during AW.

  4. [Developing of a new feeder-free system and characterization of human embryonic stem cell sublines derived in this system under autogenic and allogenic culturing].

    PubMed

    Kol'tsova, A M; Voronkina, I V; Gordeeva, O F; Zenin, V V; Lifantseva, N V; Musorina, A S; Smagina, L V; Iakovleva, T K; Polianskaia, G G

    2012-01-01

    A new feeder-free culture system for human embryonic stem cells (hESC) was developed. It consist of extracellular matrix proteins synthesized by feeder cells--mesenchymal stem cell line SC5-MSC, which was derived from initial hESC line SC5. The major ECM proteins--fibronectin and laminin--that maintain hESC growth in feeder-free system were identified. An essential component of this system is a SC5-MSC-conditioned medium. Two hESC sublines were derived. The subline SC5-FF was cultured in autogenic and subline SC7-FF in allogenic system. Sublines SC5-FF and SC7-FF passed through more than 300 and 115 cell population doublings, retained normal diploid karyotype and an ability of in vitro differentiation into derivates of three germ layers. These sublines express markers of undifferentiated hESC: alkaline phosphatase, Oct-4, SSEA-4, TRA-1-81 and multidrug resistance transporter--ABCG2. The RT-PCR analysis revealed that undifferentiated cells SC5-FF subline, like cells of initial feeder-maintained hESC line SC5, expressed genes OCT4 and NANOG, and germ line specific genes such as DPPA3/STELLA and DAZL. An expression of OCT4, NANOG, DPPA3/STELLA ans DAZL was down-regulated during embryonic bodies differentiation, whereas expression of somatic lineages specific genes like GATA4 and AFP (extra embryonic and embryonic endoderm), PAX6 (neuroectoderm) and BRY (mesoderm) was up-regulated. The comparative analysis of some typical features (karyotype structure, the average population doubling time and the number of undifferentiated cells in populations) did not reveal essential differences between initial SC5 and SC7 lines and their sublines SC5-FF and SC7-FF. This shows that feeder-free culture systems, which are much more stable than any feeder systems, do not break main hESC features during long cultivation and can be recommended for fundamental, biomedicine and pharmacological investigations, using hESCs.

  5. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    PubMed

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Neuroprotective effects of genistein and folic acid on apoptosis of rat cultured cortical neurons induced by beta-amyloid 31-35.

    PubMed

    Yu, Huan-Ling; Li, Li; Zhang, Xiao-Hong; Xiang, Li; Zhang, Jie; Feng, Jin-Fang; Xiao, Rong

    2009-09-01

    Genistein and folic acid have been reported respectively to protect against the development of cognitive dysfunction; however, the underlying mechanism(s) for this protection remain unknown. In this report, the mechanism(s) contributing to the neuroprotective effects of genistein and folic acid were explored using rat cortical neuron cultures. We found that genistein and folic acid, both separately and collaboratively, increased cell viability and mitochondrial membrane potential in beta-amyloid (Abeta) 31-35-treated neurons. Furthermore, reduced percentage of comet cells and shortened tail length were observed in the neurons treated with genistein or folic acid. A more significant reduction in tail length of the comet neurons was observed in the co-administered neurons. RT-PCR analysis of the cultured cortical neurons showed down-regulated expression of p53, bax and caspase-3, but up-regulated expression of bcl-2 in the three neuroprotective treatment groups compared with neurons from the Abeta31-35 solo-treated group. In a nuclear dyeing experiment using Hoechst 33342, we found that both genistein and folic acid prevent neuronal apoptosis. Collectively, these findings suggest that the mechanism underlying the neuroprotection of genistein and folic acid singly or in combination observed in cultured cortical neuron studies might be related to their anti-apoptotic properties.

  7. Tyrosine kinase phosphorylation of GABA(A) receptor alpha1, beta2 and gamma2 subunits following chronic intermittent ethanol (CIE) exposure of cultured cortical neurons of mice.

    PubMed

    Ravindran, C R Marutha; Ticku, Maharaj K

    2006-09-01

    There is evidence that many of the GABA(A) receptor subunits contain consensus sequence for tyrosine kinase, and phosphorylation may play a key role in ethanol's regulation of GABA(A) receptors. Recently, we investigated the effect of chronic exposure of ethanol (CE) on tyrosine kinase phosphorylation and reported that there was an up-regulation in tyrosine kinase phosphorylation of the beta(2)- and gamma(2)- subunits and no effect on alpha(1)-subunit of the GABA(A) receptor in the cultured cortical neurons of mice. In the present study, we have further investigated the effect of chronic intermittent administration of ethanol (CIE) on tyrosine kinase phosphorylation of the GABA(A) receptor subunits (alpha(1), beta(2), and gamma(2)) in the mouse cultured cortical neurons by immunoprecipitation and Western blot techniques. We observed that there was an up-regulation in the tyrosine kinase phosphorylation of the GABA(A )receptor beta(2)- and gamma(2)-subunits following CIE exposure, and no effect on alpha(1)-subunit in the cultured cortical neurons of mice. These CIE changes, unlike CE, were not reverted back to the control level following ethanol withdrawal even after 7 days. Acute exposure of ethanol did not cause any change in the tyrosine kinase regulation of the GABA(A) receptor subunits. In conclusion, the CIE exposure, unlike chronic/acute ethanol exposure, regulates the tyrosine kinase phosphorylation of the selective population of GABA(A )receptors in a long lasting manner.

  8. Selective removal of undifferentiated embryonic stem cells from differentiation cultures through HSV1 thymidine kinase and ganciclovir treatment.

    PubMed

    Naujok, Ortwin; Kaldrack, Joanna; Taivankhuu, Terbish; Jörns, Anne; Lenzen, Sigurd

    2010-09-01

    Pluripotent cell lines such as embryonic stem cells are an attractive source for a potential cell replacement therapy. However, transplantation of differentiated cells harbors the risk of teratoma formation, presenting a serious health risk. To overcome this obstacle, a negative selection system was established that permits selective removal of undifferentiated cells during in vitro differentiation. Use of the HSV1 thymidine kinase and eGFP under the control of the Oct4 promoter allowed the destruction of undifferentiated ES cells by ganciclovir treatment; differentiated cells were unharmed. Clonal ES cells remained pluripotent and showed positive staining for a wide range of embryonic markers. Thus, treatment with ganciclovir during in vitro differentiation effectively removed the population of undifferentiated cells and provided a pure population of completely differentiated cells. This approach may pave the way for a safe application of ES cells in regenerative medicine in the future.

  9. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    PubMed

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  10. Chronic intermittent ethanol treatment selectively alters N-methyl-D-aspartate receptor subunit surface expression in cultured cortical neurons.

    PubMed

    Qiang, Mei; Denny, Ashley D; Ticku, Maharaj K

    2007-07-01

    A chronic intermittent ethanol (CIE) exposure regimen consists of repeated episodes of ethanol intoxication and withdrawal. CIE treatment has been reported to result in a significant enhancement of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in vivo, and trafficking of NMDA receptors is emerging a key regulatory mechanism that underlies the channel function. Therefore, in the present study, we examined the effects of CIE on NMDA receptor subunit surface expression. Cultured cortical neurons were exposed to 75 mM ethanol for 14 h followed by 10 h of withdrawal, repeated this cycle five times, and followed by 2 or 5 days of withdrawal. Surface-expressed NMDA receptor subunits and their endocytosis were measured by biotinylation and Western blots. CIE significantly increased NMDA receptor (NR) 1 and NR2B but not NR2A subunit surface expression after 5 days of treatment. However, CIE treatment did not reduce the NMDA receptor endocytosis. Quantification of immunocytochemistry confirmed CIE-induced increase in both the total number of NR1 and NR2B subunit clusters and their targeting to synaptic sites. It is noteworthy that this effect persisted even after ethanol withdrawal with a peak expression occurring between 0 and 2 days after withdrawal, and the expression on the plasma membrane was still at high levels after 5 days of withdrawal. In addition, this was accompanied by significant increases in postsynaptic density protein 95 clusters. Protein kinase A inhibitor completely reversed CIE-induced increase in NR1 and partially in NR2B surface level and a long-lasting effect. These changes may contribute to the development of ethanol-induced neurotoxicity and ethanol dependence.

  11. Chronic Alcohol Exposure Decreases 53BP1 Protein Levels Leading to a Defective DNA Repair in Cultured Primary Cortical Neurons.

    PubMed

    Romero, Ana M; Palanca, Ana; Ruiz-Soto, Maria; Llorca, Javier; Marín, María P; Renau-Piqueras, Jaime; Berciano, Maria T; Lafarga, Miguel

    2016-01-01

    Chronic alcohol consumption may cause neurodevelopmental and neurodegenerative disorders. Alcohol neurotoxicity is associated with the production of acetaldehyde and reactive oxygen species that induce oxidative DNA damage. However, the molecular mechanisms by which ethanol disturbs the DNA damage response (DDR), resulting in a defective DNA repair, remain unknown. Here, we have used cultured primary cortical neurons exposed to 50 or 100 mM ethanol for 7 days to analyze the ethanol-induced DDR. Ethanol exposure produced a dose-dependent generation of double strand breaks and the formation of DNA damage foci immunoreactive for the histone γH2AX, a DNA damage marker, and for the ubiquitylated H2A, which is involved in chromatin remodeling at DNA damage sites. Importantly, these DNA damage foci failed to recruit the protein 53BP1, a crucial DNA repair factor. This effect was associated with a drop in 53BP1 mRNA and protein levels and with an inhibition of global transcription. Moreover, ethanol-exposed neurons treated with ionizing radiation (2 Gy) also failed to recruit 53BP1 at DNA damage foci and exhibited a greater vulnerability to DNA lesions than irradiated control neurons. Our results support that defective DNA repair, mediated by the deficient expression and recruitment of 53BP1 to DNA damage sites, represents a novel mechanism involved in ethanol neurotoxicity. The design of therapeutic strategies that increase or stabilize 53BP1 levels might potentially promote DNA repair and partially compensate alcohol neurotoxicity.

  12. Estrogen and Tamoxifen Protect against Mn-Induced Toxicity in Rat Cortical Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Lee, Eun-Sook Y.; Yin, Zhaobao; Milatovic, Dejan; Jiang, Haiyan; Aschner, Michael

    2009-01-01

    Chronic exposure to manganese (Mn) leads to a neurological disorder, manganism, which shares multiple common features with idiopathic Parkinson disease (IPD). 17β-Estradiol (E2) and some selective estrogen receptor modulators, including tamoxifen (TX), afford neuroprotection in various experimental models of neurodegeneration. However, the neuroprotective effects and mechanisms of E2/TX in Mn-induced toxicity have yet to be documented. Herein, we studied the ability of E2/TX to protect rat cortical primary neuronal and astroglial cultures from Mn-induced toxicity. Cell viability, Western blot, and reactive oxygen species (ROS) generation were assessed. Results established that both E2 (10nM) and TX (1μM) attenuated Mn-induced toxicity. The protective effects of E2/TX were more pronounced in astrocytes versus neurons. The E2-mediated attenuation of Mn-induced ROS generation in astrocytes at 6-h treatment (where no cell death was detected) was mediated by a classical estrogen receptor (ER) pathway and the TX-mediated effect on Mn-induced ROS generation was not mediated via classical ER-dependent mechanisms and likely by its antioxidant properties. The phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway was involved in both E2- and TX-induced attenuation of Mn-induced ROS formation (6 h) in astrocytes. Treatments with Mn for a longer duration (24 h) led to significant cell death, and the protective effects of E2 and TX were (1) not mediated by a classical ER pathway and (2) associated with activation of both mitogen-activated protein kinase/extracellular signal-regulated kinase and PI3K/Akt signaling pathways. Taken together, the results suggest that both E2 and TX offer effective therapeutic means for neuroprotection against Mn-induced toxicity. PMID:19383943

  13. Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes.

    PubMed

    Lee, Eun-Sook Y; Yin, Zhaobao; Milatovic, Dejan; Jiang, Haiyan; Aschner, Michael

    2009-07-01

    Chronic exposure to manganese (Mn) leads to a neurological disorder, manganism, which shares multiple common features with idiopathic Parkinson disease (IPD). 17beta-Estradiol (E2) and some selective estrogen receptor modulators, including tamoxifen (TX), afford neuroprotection in various experimental models of neurodegeneration. However, the neuroprotective effects and mechanisms of E2/TX in Mn-induced toxicity have yet to be documented. Herein, we studied the ability of E2/TX to protect rat cortical primary neuronal and astroglial cultures from Mn-induced toxicity. Cell viability, Western blot, and reactive oxygen species (ROS) generation were assessed. Results established that both E2 (10nM) and TX (1 microM) attenuated Mn-induced toxicity. The protective effects of E2/TX were more pronounced in astrocytes versus neurons. The E2-mediated attenuation of Mn-induced ROS generation in astrocytes at 6-h treatment (where no cell death was detected) was mediated by a classical estrogen receptor (ER) pathway and the TX-mediated effect on Mn-induced ROS generation was not mediated via classical ER-dependent mechanisms and likely by its antioxidant properties. The phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway was involved in both E2- and TX-induced attenuation of Mn-induced ROS formation (6 h) in astrocytes. Treatments with Mn for a longer duration (24 h) led to significant cell death, and the protective effects of E2 and TX were (1) not mediated by a classical ER pathway and (2) associated with activation of both mitogen-activated protein kinase/extracellular signal-regulated kinase and PI3K/Akt signaling pathways. Taken together, the results suggest that both E2 and TX offer effective therapeutic means for neuroprotection against Mn-induced toxicity.

  14. Autophagy Activation Is Involved in 3,4-Methylenedioxymethamphetamine (‘Ecstasy’)—Induced Neurotoxicity in Cultured Cortical Neurons

    PubMed Central

    Li, I-Hsun; Ma, Kuo-Hsing; Weng, Shao-Ju; Huang, Shiang-Suo; Liang, Chang-Min; Huang, Yuahn-Sieh

    2014-01-01

    Autophagic (type II) cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I) and necrotic (type III) cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker) using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC)- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA) pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK) and its downstream unc-51-like kinase 1 (ULK1), suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation. PMID:25551657

  15. Evaluation of embryonic age and the effects of different proteases on the isolation and primary culture of chicken intestinal epithelial cells in vitro.

    PubMed

    Yuan, Chao; He, Qiang; Li, Jun-ming; Azzam, Mahmoud Mostafa; Lu, Jian-jun; Zou, Xiao-ting

    2015-06-01

    The present study evaluates the effects of embryonic age and proteolytic enzymes on the isolation and primary culture of chicken enterocyte and to establish an effective technique for chicken intestinal epithelial cell (IEC) cultivation. Fourteen-day-old, 16-day-old and 18-day-old embryos (average weight: 52.23 ± 0.76 g, 50.86 ± 0.99 g, 48.98 ± 1.03 g) were the source for preparation of enterocyte culture, and trypsin-ethylene diamine tetraacetic acid, collagenase, thermolysin and combination of collagenase and thermolysin were used for digestion medium. Optimal culture protocols were determined by qualitative assays of proliferation. Cells isolated by using 14-day-old embryo and collagenase obtain the best attachment and growth in culture, and the production of continuously growing IEC cultures. Thus, we conclude that the use of collagenase as a dissociating enzyme and 14-day-old embryo as a source can be advantageously applied to the isolation of chicken IEC and this method may be useful for various applications and basic studies of the intestinal tract concerning such objects as physiology, immunology and toxicology.

  16. Collection of neural inducing factors from PA6 cells using heparin solution and their immobilization on plastic culture dishes for the induction of neurons from embryonic stem cells.

    PubMed

    Yamazoe, Hironori; Murakami, Yoshinobu; Mizuseki, Kenji; Sasai, Yoshiki; Iwata, Hiroo

    2005-10-01

    Embryonic stem (ES) cells have the ability to replicate themselves and differentiate into various mature cells. Recently, dopaminergic neurons were efficiently induced from ES cells using mouse stromal cells (PA6 cells) as a feeder cell layer. This simple procedure seems to be very efficient to obtain dopamine-releasing cells for future clinical cell transplantation treatment of Parkinson's disease. In this study, we prepared stock solutions containing neural inducing factors (NIFs) by washing PA6 cells with phosphate-buffered saline containing heparin. ES cells grew successfully in culture media supplemented with 33 v/v% NIFs stock solution, and the rate of neural differentiation of ES cell progeny increased with increasing heparin concentration in the culture media. In addition, NIFs-immobilized surfaces were prepared by exposing polyethyleneimine-modified surfaces to NIFs stock solutions. The NIFs-immobilized culture dish effectively supported cell growth as the culture medium supplemented with NIFs stock did, but its induction effect to dopaminergic neurons from ES cells was much smaller than free NIFs. NIFs stock solutions have two different activities. One can stimulate cell growth and the other induces differentiation of ES cells to the neural fate when heparin existed. The former factors were effectively immobilized on the culture dish, but those that induce differentiation may not be. Further optimization is required.

  17. EFFECT OF AROCLOR 1254 ON THE TRANSCRIPTION FACTOR CREB AND CELL VIABILITY IN A PRIMARY CULTURE OF IMMATURE CORTICAL CELLS.

    EPA Science Inventory

    Considerable work indicates that elevations in Ca2+ levels and kinase activity are sensitive responses to polychlorinated biphenyls (PCBs), which are developmental neurotoxicants. In cortical cells in vitro the PCB mixture Aroclor 1254 (A1254) induces temporally and mechanistica...

  18. EFFECT OF AROCLOR 1254 ON THE TRANSCRIPTION FACTOR CREB AND CELL VIABILITY IN A PRIMARY CULTURE OF IMMATURE CORTICAL CELLS.

    EPA Science Inventory

    Considerable work indicates that elevations in Ca2+ levels and kinase activity are sensitive responses to polychlorinated biphenyls (PCBs), which are developmental neurotoxicants. In cortical cells in vitro the PCB mixture Aroclor 1254 (A1254) induces temporally and mechanistica...

  19. Effects of the analgesic acetaminophen (Paracetamol) and its para-aminophenol metabolite on viability of mouse-cultured cortical neurons.

    PubMed

    Schultz, Stephen; DeSilva, Mauris; Gu, Ting Ting; Qiang, Mei; Whang, Kyumin

    2012-02-01

    Acetaminophen has been used as an analgesic for more than a hundred years, but its mechanism of action has remained elusive. Recently, it has been shown that acetaminophen produces analgesia by the activation of the brain endocannabinoid receptor CB1 through its para-aminophenol (p-aminophenol) metabolite. The objective of this study was to determine whether p-aminophenol could be toxic for in vitro developing mouse cortical neurons as a first step in establishing a link between acetaminophen use and neuronal apoptosis. We exposed developing mouse cortical neurons to various concentrations of drugs for 24 hr in vitro. Acetaminophen itself was not toxic to developing mouse cortical neurons at therapeutic concentrations of 10-250 μg/ml. However, concentrations of p-aminophenol from 1 to 100 μg/ml produced significant (p < 0.05) loss of mouse cortical neuron viability at 24 hr compared to the controls. The naturally occurring endocannabinoid anandamide also caused similar 24-hr loss of cell viability in developing mouse cortical neurons at concentrations from 1 to 100 μg/ml, which indicates the mechanism of cell death could be through the cannabinoid receptors. The results of our experiments have shown a detrimental effect of the acetaminophen metabolite p-aminophenol on in vitro developing cortical neuron viability which could act through CB1 receptors of the endocannabinoid system. These results could be especially important in recommending an analgesic for children or individuals with traumatic brain injury who have developing cortical neurons. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  20. Cultures of human embryonic stem cells: serum replacement medium or serum-containing media and the effect of basic fibroblast growth factor.

    PubMed

    Koivisto, Heidi; Hyvärinen, Marjukka; Strömberg, Anne-Marie; Inzunza, Jose; Matilainen, Eija; Mikkola, Milla; Hovatta, Outi; Teerijoki, Heli

    2004-09-01

    Human embryonic stem (hES) cells have traditionally been cultured in medium containing fetal calf serum (FCS) and mouse fibroblasts as feeder cells. The use of animal derived materials carries a risk of transmitting animal pathogens, and they are not optimal in cultures aimed at cell transplantation in humans. This technical study aiming at facilitating IVF units to establish new hES cell lines, has systematically compared the non-differentiated growth of the hES cell line HS237, originally derived and thereafter cultured using human foreskin fibroblasts as feeder cells, by culturing it in media containing serum replacement (SR; 10, 15, 20%), FCS, and human serum. In addition, optimal concentrations of insulin-transferrin-selenium (ITS) mixture and the effect of basic fibroblast growth factor (bFGF) have also been studied. Cellular growth was monitored daily and maintenance of their non-differentiated character was studied using antibodies against TRA-1-60, TRA-1-81 and SSEA-4 and expression of Oct-4. The hES cells proliferated fastest when 20% of SR was used. In human serum-containing medium, the cells underwent extensive spontaneous differentiation within a few passages. The FCS supported the non-differentiated growth poorly. Basic fibroblast growth factor supported non-differentiated growth, the highest concentration (8 ng/ml) giving the best result, while ITS was not beneficial.

  1. Stimulation of Cultured H9 Human Embryonic Stem Cells with Thyroid Stimulating Hormone Does Not Lead to Formation of Thyroid-Like Cells

    PubMed Central

    Onyshchenko, Mykola I.; Panyutin, Igor G.; Panyutin, Irina V.; Neumann, Ronald D.

    2012-01-01

    The sodium-iodine symporter (NIS) is expressed on the cell membrane of many thyroid cancer cells, and is responsible for the radioactive iodine accumulation. However, treatment of anaplastic thyroid cancer is ineffective due to the low expression of NIS on cell membranes of these tumor cells. Human embryonic stem cells (ESCs) provide a potential vehicle to study the mechanisms of NIS expression regulation during differentiation. Human ESCs were maintained on feeder-independent culture conditions. RT-qPCR and immunocytochemistry were used to study differentiation marker expression, 125I uptake to study NIS function. We designed a two-step protocol for human ESC differentiation into thyroid-like cells, as was previously done for mouse embryonic stem cells. First, we obtained definitive endoderm from human ESCs. Second, we directed differentiation of definitive endoderm cells into thyroid-like cells using various factors, with thyroid stimulating hormone (TSH) as the main differentiating factor. Expression of pluripotency, endoderm and thyroid markers and 125I uptake were monitored throughout the differentiation steps. These approaches did not result in efficient induction of thyroid-like cells. We conclude that differentiation of human ESCs into thyroid cells cannot be induced by TSH media supplementation alone and most likely involves complicated developmental patterns that are yet to be understood. PMID:22619683

  2. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Conditional ablation of p63 indicates that it is essential for embryonic development of the central nervous system.

    PubMed

    Cancino, Gonzalo I; Fatt, Michael P; Miller, Freda D; Kaplan, David R

    2015-01-01

    p63 is a member of the p53 family that regulates the survival of neural precursors in the adult brain. However, the relative importance of p63 in the developing brain is still unclear, since embryonic p63(-/-) mice display no apparent deficits in neural development. Here, we have used a more definitive conditional knockout mouse approach to address this issue, crossing p63(fl/fl) mice to mice carrying a nestin-CreERT2 transgene that drives inducible recombination in neural precursors following tamoxifen treatment. Inducible ablation of p63 following tamoxifen treatment of mice on embryonic day 12 resulted in highly perturbed forebrain morphology including a thinner cortex and enlarged lateral ventricles 3 d later. While the normal cortical layers were still present following acute p63 ablation, cortical precursors and neurons were both reduced in number due to widespread cellular apoptosis. This apoptosis was cell-autonomous, since it also occurred when p63 was inducibly ablated in primary cultured cortical precursors. Finally, we demonstrate increased expression of the mRNA encoding another p53 family member, ΔNp73, in cortical precursors of p63(-/-) but not tamoxifen-treated p63(fl/fl);R26YFP(fl/fl);nestin-CreERT2(+/Ø) embryos. Since ΔNp73 promotes cell survival, then this compensatory increase likely explains the lack of an embryonic brain phenotype in p63(-/-) mice. Thus, p63 plays a key prosurvival role in the developing mammalian brain.

  4. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures — a new donor for cell therapy

    PubMed Central

    Li, Zhengya; Li, Qiyou; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases. PMID:27009841

  5. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].

    PubMed

    Lifantseva, N V; Kol'tsova, A M; Polianskaia, G G; Gordeeva, O F

    2013-01-01

    Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases ofpluripotency, we examined the expression of TGFbeta family factors (ActivinA, Nodal, Leftyl, TGFbeta1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFbeta1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFbeta1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3BMP/Smad1/5/8 endogenous branches of TGFbeta signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFbeta family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smadl/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primary states of pluripotency demonstrate diverse involvement of this

  6. Directed Differentiation of Dopamine-Secreting Cells from Nurr1/GPX1 Expressing Murine Embryonic Stem Cells Cultured on Matrigel-Coated PCL Scaffolds.

    PubMed

    Terraf, Panieh; Babaloo, Hamideh; Kouhsari, Shideh Montasser

    2017-03-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by a large number of motor and non-motor features and is known as the second most common neurodegenerative disorder after Alzheimer's disease. The hallmark pathology of PD is the damage and death of dopamine-producing neurons in the substantia-nigra of midbrain. Intrastriatal transplants of fetal mesencephalon derived DAergic neurons have provided proof-of-principle for the cell replacement strategy and have demonstrated reinnervation of the denervated striatum. However, ethical, technical, and practical limitations of deploying fetal DAergic neurons as the source for cell therapy in PD have ceased the spread of this procedure into clinical practice. Embryonic stem (ES) cells have emerged as a therapeutic alternative that can proliferate extensively and generate dopamine-producing neurons. To this extent and to surmount the obstacles related to embryonic neural cells, many investigations have focused on using pluripotent stem cells for the derivation of DAergic neurons. In the present study, a mouse embryonic stem (mES) R1 cell line was generated which could stably co-express Nurr1 (an essential transcription factor in DAergic neuron development) and GPX-1 (a neuroprotective enzyme against oxidative stress). The Nurr1/GPX-1-expressing ES cells (Nurr1/GPX-1-ES) were differentiated into DAergic-like cells via a three-dimensional culture environment consisting of Poly-ε-Caprolactone (PCL) nanofibrous scaffolds embedded by Matrigel (Mtg) in the presence of specific signaling molecules. DAergic neuron-specific genes were highly expressed in ES-derived DAergic neurons cultured and differentiated on PCL/Mtg scaffolds. Reverse-phase HPLC confirmed that the Nurr1/GPX-1-ES-cells differentiated on PCL/Mtg electrospun scaffolds could efficiently and exclusively secrete dopamine in response to stimulus. In conclusion, our results demonstrated that PCL/Matrigel nanofibrous scaffolds could efficiently

  7. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures

    PubMed Central

    Singh, Ratnesh K.; Mallela, Ramya K.; Cornuet, Pamela K.; Reifler, Aaron N.; Chervenak, Andrew P.; West, Michael D.; Wong, Kwoon Y.; Nasonkin, Igor O.

    2015-01-01

    Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na+ and K+ currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for

  8. 2,3,7,8-Tetrachlorodibenzo-p-dioxin specifically reduces mRNA for the mineralization-related dentin sialophosphoprotein in cultured mouse embryonic molar teeth

    SciTech Connect

    Kiukkonen, Anu . E-mail: Anu.Kiukkonen@helsinki.fi; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa; Alaluusua, Satu; Peltonen, Eija; Partanen, Anna-Maija

    2006-11-01

    Previous studies show that the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), interferes with mineralization of the dental matrices in developing mouse and rat teeth. Culture of mouse embryonic molar teeth with TCDD leads to the failure of enamel to be deposited and dentin to undergo mineralization. Lactationally exposed rats show defectively matured enamel and retardation of dentin mineralization. To see if the impaired mineralization is associated with changes in the expression of dentin sialophosphoprotein (Dspp), Bono1 and/or matrix metalloproteinase-20 (MMP-20), thought to be involved in mineralization of the dental hard tissues, we cultured mouse (NMRI) E18 mandibular molars for 3, 5 or 7 days and exposed them to 1 {mu}M TCDD after 2 days of culture. As detected by in situ hybridization of tissue sections, localization and intensity of Bono1 and MMP-20 expression showed no definite difference between the control and exposed tooth explants, suggesting that TCDD does not affect their expression. On the contrary, TCDD reduced or prevented the expression of Dspp in secretory odontoblasts and decreased it in presecretory ameloblasts. The results suggest that the retardation of dentin mineralization by TCDD in mouse molar teeth involves specific interference with Dspp expression.

  9. Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition

    PubMed Central

    Tsuji, Yukiiko; Yoshimura, Naoko; Aoki, Hitomi; Sharov, Alexei A.; Ko, Minoru S.H.; Motohashi, Tsutomu; Kunisada, Takahiro

    2008-01-01

    The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the suspension culture, and their undifferentiated state and pluripotency were experimentally verified. DNA microarray analyses showed a close relationship between the elevated expression of genes related to cell adhesions. We suggest that this suspension culture condition provides a better alternative to the conventional attached cell culture condition, especially for possible therapeutic use, by limiting the exposure of ES cells to feeder cells and animal products. PMID:18624284

  10. Distinct effects of Abelson kinase mutations on myocytes and neurons in dissociated Drosophila embryonic cultures: mimicking of high temperature.

    PubMed

    Liu, Lijuan; Wu, Chun-Fang

    2014-01-01

    Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl(1) and Abl(4) ) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development

  11. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture.

    PubMed

    Chen, Yueh-Sheng; Chen, Shang-Der; Wu, Chia-Lin; Huang, Shiang-Suo; Yang, Ding-I

    2014-03-01

    Accumulation of amyloid β-peptide (Aβ) in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neurodegeneration. Recent studies suggested sestrin2 as a crucial mediator for reactive oxygen species (ROS) scavenging and autophagy regulation that both play a pivotal role in age-dependent neurodegenerative diseases. However, the potential link between sestrin2 and Aβ neurotoxicity has never been explored. The present study was therefore undertaken to test whether sestrin2 may be induced by Aβ and its possible role in modulating Aβ neurotoxicity. We showed that sestrin2 expression was elevated in primary rat cortical neurons upon Aβ exposure; a heightened extent of sestrin2 expression was also detected in the cortices of 12-month-old APPswe/PSEN1dE9 transgenic mice. Exposure of cortical neurons to Aβ led to formation of LC3B-II, an autophagic marker; an increased LC3B-II level was also observed in the cortices of 12-month-old AD transgenic mice. More importantly, downregulation of sestrin2 by siRNA abolished LC3B-II formation caused by Aβ that was accompanied by more severe neuronal death. Inhibition of autophagy by bafilomycin A1 also enhanced Aβ neurotoxicity. Together, these results indicate that sestrin2 induced by Aβ plays a protective role against Aβ neurotoxicity through, at least in part, regulation of autophagy.

  12. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  13. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate.

    PubMed

    Pennington, Britney O; Clegg, Dennis O; Melkoumian, Zara K; Hikita, Sherry T

    2015-02-01

    Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation. This avoids exposing AMD patients to animal-derived products, which could incite an immune response. In this study, we investigated the maintenance of hESCs and their differentiation into RPE using Synthemax II-SC, which is a novel, synthetic animal-derived component-free, RGD peptide-containing copolymer compliant with good manufacturing practices designed for xeno-free stem cell culture. Cells on Synthemax II-SC were compared with cultures grown with xenogeneic and xeno-free control substrates. This report demonstrates that Synthemax II-SC supports long-term culture of H9 and H14 hESC lines and permits efficient differentiation of hESCs into functional RPE. Expression of RPE-specific markers was assessed by flow cytometry, quantitative polymerase chain reaction, and immunocytochemistry, and RPE function was determined by phagocytosis of rod outer segments and secretion of pigment epithelium-derived factor. Both hESCs and hESC-RPE maintained normal karyotypes after long-term culture on Synthemax II-SC. Furthermore, RPE generated on Synthemax II-SC are functional when seeded onto parylene-C scaffolds designed for clinical use. These experiments suggest that Synthemax II-SC is a suitable, defined substrate for hESC culture and the xeno-free derivation of RPE for cellular therapies.

  14. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures

    PubMed Central

    Hajjhussein, Hassan; Suvarna, Neesha U.; Gremillion, Carmen; Judson Chandler, L.; O’Donnell, James M.

    2007-01-01

    NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes. PMID:17407767

  15. Making cortex in a dish: in vitro corticopoiesis from embryonic stem cells.

    PubMed

    Gaspard, Nicolas; Gaillard, Afsaneh; Vanderhaeghen, Pierre

    2009-08-15

    The cerebral cortex is arguably the most complex structure in the mammalian brain. It develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved in this daunting process of cell diversification remain poorly understood. We recently described a novel pathway by which mouse embryonic stem (ES) cells, cultured in the absence of any added morphogen but in the presence of a Sonic Hedgehog inhibitor, can recapitulate the major milestones of cortical development observed in vivo. In this system cortical-like progenitors seem to follow an intrinsic pathway to generate a surprisingly diverse repertoire of neurons that display most salient features of bona fide cortical pyramidal neurons. When grafted into the cerebral cortex in vivo, these neuronal populations develop patterns of axonal projections highly similar to those of native cortical neurons. The discovery of intrinsic corticogenesis, from stem cells to cortical circuits, sheds new light on the mechanisms of neuronal specification, and may open new venues for the modelling of cortical development and diseases, and for the rational design of brain repair strategies.

  16. Synthesis and secretion of plasma proteins by embryonic chick hepatocytes: changing patterns during the first three days of culture

    PubMed Central

    1978-01-01

    A simple model system is described for studying synthesis of plasma proteins. The system is based on chick embryo hepatocytes in primary monolayer culture which synthesize a broad spectrum of plasma proteins and secrete them into the culture medium. The secreted proteins are stable and consist almost exclusively of plasma proteins. The cultured cells are nonproliferating hepatic parenchymal cells whose cell mass remains constant in culture. By a modification of Laurell's rocket immunoelectrophoresis, the secreted plasma proteins can be detected in nanogram amounts in 3 microliter of unconcentrated culture medium. Kinetics of secretion are obtained by sequential assay of proteins accumulating in the medium. In this system it is demonstrated that: (a) intracellular plasma protein levels are equivalent to less than 5% of the daily secretion; (b) synthesis and secretion are continuous; and (c) the overall half-time for plasma protein movement along the secretory pathway is less than 10 min. From these results, it follows that the rate at which the plasma proteins are secreted gives a valid estimate of their rate of synthesis. This feature of the culture and the sensitivity of the assay allow routine measurements of plasma protein synthesis without disruption of the cells and without the use of radioisotopes. It is shown, furthermore, that the overall rate of plasma protein synthesis in cultured hepatocytes is constant over a 3- day period and is similar to that of the intact liver. 3,000,000 cells, containing 1 mg cell protein, synthesize 0.2 mg of plasma proteins daily, amounting to one-fifth of hepatocellular protein synthesis. Under the conditions used, albumin synthesis steadily decreases with culture time whereas the synthesis of many other plasma proteins increases. The observed phenotypic changes and reorganization of plasma protein synthesis illustrate how the system may be exploited for studying the regulatory processes governing plasma protein synthesis. PMID

  17. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks.

    PubMed

    Gazina, Elena V; Morrisroe, Emma; Mendis, Gunarathna D C; Michalska, Anna E; Chen, Joseph; Nefzger, Christian M; Rollo, Benjamin N; Reid, Christopher A; Pera, Martin F; Petrou, Steven

    2017-08-18

    Stem cells-derived neuronal cultures hold great promise for in vitro disease modelling and drug screening. However, currently stem cells-derived neuronal cultures do not recapitulate the functional properties of primary neurons, such as network properties. Cultured primary murine neurons develop networks which are synchronised over large fractions of the culture, whereas neurons derived from mouse embryonic stem cells (ESCs) display only partly synchronised network activity and human pluripotent stem cells-derived neurons have mostly asynchronous network properties. Therefore, strategies to improve correspondence of derived neuronal cultures with primary neurons need to be developed to validate the use of stem cell-derived neuronal cultures as in vitro models. By combining serum-free derivation of ESCs from mouse blastocysts with neuronal differentiation of ESCs in morphogen-free adherent culture we generated neuronal networks with properties recapitulating those of mature primary cortical cultures. After 35days of differentiation ESC-derived neurons developed network activity very similar to that of mature primary cortical neurons. Importantly, ESC plating density was critical for network development. Compared to the previously published methods this protocol generated more synchronous neuronal networks, with high similarity to the networks formed in mature primary cortical culture. We have demonstrated that ESC-derived neuronal networks recapitulating key properties of mature primary cortical networks can be generated by optimising both stem cell derivation and differentiation. This validates the approach of using ESC-derived neuronal cultures for disease modelling and in vitro drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells.

    PubMed

    Adhikari, Manish; Arora, Rajesh

    2015-10-01

    Radiation can produce biological damage, mainly oxidative stress, via production of free radicals, including reactive oxygen species (ROS). Nanoparticles are of interest as radioprotective agents, particularly due to their high solubility and bioavailability. Silymarin is a hepatoprotective agent but has poor oral bioavailability. Silymarin was formulated as a nanoemulsion with the aim of improving its bioavailability and therapeutic efficacy. In the present study, we evaluated self-nanoemulsifying drug delivery systems (SNEDDS) formulated with surfactants and co-surfactants. Nano-silymarin was characterized by estimating % transmittance, globule size, and polydispersity index, and by transmission electron microscopy (TEM). The nano-silymarin obtained was in the range of 3-8nm diameter. With regard to DNA damage, measured by a plasmid relaxation assay, maximum protection was obtained at 10μg/mL. Cytotoxicity of nano-silymarin to human embryonic kidney (HEK) cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Protective efficacy against γ-radiation was assessed by reduction in micronucleus frequency and ROS generation, using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. Radiation-induced apoptosis was estimated by microscopic analysis and cell-cycle estimation. Nano-silymarin was radioprotective, supporting the possibility of developing new approaches to radiation protection via nanotechnology. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analysis of blastocyst culture of discarded embryos and its significance for establishing human embryonic stem cell lines.

    PubMed

    Wang, Fang; Kong, Hui-Juan; Kan, Quan-Cheng; Liang, Ju-Yan; Zhao, Fang; Bai, Ai-Hong; Li, Peng-Fen; Sun, Ying-Pu

    2012-12-01

    In recent years, applications of stem cells have already involved in all domains of life science and biomedicine. People try to establish human embryonic stem cell lines (hESCs) in order to carry out hESC-related studies. In this study, we explored what embryos are conducive to the establishment of hESCs. The discarded embryos from in vitro fertilization-embryo transfer (IVF-ET) cycles were sequentially incubated into blastocysts, and then the inner cell mass (ICM) was isolated and incubated in the mixed feeder layer. The cell lines which underwent serial passage were identified. After a total of 1,725 discarded embryos from 754 patients were incubated, 448 blastocysts were formed with 123 high-quality blastocysts. The blastulation rate was significantly higher in the discarded embryos with non-pronucleus (0PN) or 1PN than in the discarded embryos with 2PN or ≥3PN. The blastulation rate of the D3 embryos with 7-9 blastomeres was higher. Among the originally incubated 389 ICMs, 22 hESCs with normal karyotype were established, and identified to be ESCs. Therefore, in establishing hESCs with discarded embryos, D(3) 0PN or 1PN embryos with 7-9 blastomeres should be first selected, because they can improve high-quality blastulation rate which can increase the efficiency of hESC establishment.

  20. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina.

    PubMed

    Gonzalez-Cordero, Anai; West, Emma L; Pearson, Rachael A; Duran, Yanai; Carvalho, Livia S; Chu, Colin J; Naeem, Arifa; Blackford, Samuel J I; Georgiadis, Anastasios; Lakowski, Jorn; Hubank, Mike; Smith, Alexander J; Bainbridge, James W B; Sowden, Jane C; Ali, Robin R

    2013-08-01

    Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.

  1. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells.

    PubMed

    Mizumoto, Hiroshi; Hayashi, Shunsuke; Matsumoto, Kinya; Ikeda, Kaoru; Kusumi, Tomoaki; Inamori, Masakazu; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2012-01-01

    Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.

  2. Exogenous Fibroblast Growth Factor-10 Induces Cystic Lung Development with Altered Target Gene Expression in the Presence of Heparin in Cultures of Embryonic Rat Lung

    PubMed Central

    Hashimoto, Shuichi; Nakano, Hiroshi; Suguta, Yuko; Irie, Seiko; Jianhua, Luo; Katyal, Sikardar L.

    2012-01-01

    Objectives Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that FGF-10 regulates lung branching morphogenesis. In this study, we determined the effects of FGF-10 on lung branching morphogenesis and accompanying gene expression in cultures of embryonic rat lungs. Methods Embryonic day 14 rat lungs were cultured with FGF-10 (0–250 ng/ml) in the absence or presence of heparin (30 ng/ml) for 4 days. Gene expression profiles were analyzed by Affymetrix microchip array including pathway analysis. Some of these genes, functionally important in FGF-10 signaling, were further analyzed by Northern blot, real-time PCR, in situ hybridization and immunohistochemistry. Results Exogenous FGF-10 inhibited branching and induced cystic lung growth only in cultures containing heparin. In total, 252 upregulated genes and 164 downregulated genes were identified, and these included Spry1 (Sprouty-1), Spry2 (Sprouty-2), Spred-1, Bmp4 (bone morphogenetic protein-4, BMP-4), Shh(sonic hedgehog, SHH), Pthlh (parathyroid hormone-related protein, PTHrP), Dusp6 (MAP kinase phosphatase-3, MKP-3) and Clic4 (chloride intracellular channel-4, CLIC-4) among the upregulated genes and Igf1 (insulin-like growth factor-1, IGF-1), Tcf21 (POD), Gyg1 (glycogenin 1), Sparc (secreted protein acidic and rich in cysteine, SPARC), Pcolce (procollagen C-endopeptidase enhancer protein, Pro CEP) and Lox (lysyl oxidase) among the downregulated genes. Gsk3β and Wnt2, which are involved in canonical Wnt signaling, were up- and downregulated, respectively. Conclusions Unlike FGF-7, FGF-10 effects on lung branching morphogenesis are heparin-dependent. Sprouty-2, BMP-4, SHH, IGF-1, SPARC

  3. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25-35)-induced neurotoxicity through inhibition of cytosolic calcium elevation.

    PubMed

    Ban, Ju Yeon; Jeon, So-Young; Bae, KiWhan; Song, Kyung-Sik; Seong, Yeon Hee

    2006-11-10

    We previously reported that the Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. Here, we isolated catechin and epicatechin from S. chinae rhizome and also studied their neuroprotective effects on Abeta (25-35)-induced neurotoxicity in cultured rat cortical neurons. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced neuronal cell death at a concentration of 10 microM, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Catechin and epicatechin also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species (ROS) and activation of caspase-3. These results suggest that catechin and epicatechin prevent Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity. Furthermore, these effects of catechin and epicatechin may be associated with the neuroprotective effect of the S. chinae rhizome.

  4. Live-Cell, Label-Free Identification of GABAergic and Non-GABAergic Neurons in Primary Cortical Cultures Using Micropatterned Surface

    PubMed Central

    Kono, Sho; Kushida, Takatoshi; Hirano-Iwata, Ayumi; Niwano, Michio; Tanii, Takashi

    2016-01-01

    Excitatory and inhibitory neurons have distinct roles in cortical dynamics. Here we present a novel method for identifying inhibitory GABAergic neurons from non-GABAergic neurons, which are mostly excitatory glutamatergic neurons, in primary cortical cultures. This was achieved using an asymmetrically designed micropattern that directs an axonal process to the longest pathway. In the current work, we first modified the micropattern geometry to improve cell viability and then studied the axon length from 2 to 7 days in vitro (DIV). The cell types of neurons were evaluated retrospectively based on immunoreactivity against GAD67, a marker for inhibitory GABAergic neurons. We found that axons of non-GABAergic neurons grow significantly longer than those of GABAergic neurons in the early stages of development. The optimal threshold for identifying GABAergic and non-GABAergic neurons was evaluated to be 110 μm at 6 DIV. The method does not require any fluorescence labelling and can be carried out on live cells. The accuracy of identification was 98.2%. We confirmed that the high accuracy was due to the use of a micropattern, which standardized the development of cultured neurons. The method promises to be beneficial both for engineering neuronal networks in vitro and for basic cellular neuroscience research. PMID:27513933

  5. Protective effects of N-methyl-D-aspartate receptor antagonism on VX-induced neuronal cell death in cultured rat cortical neurons.

    PubMed

    Wang, Yushan; Weiss, M Tracy; Yin, Junfei; Tenn, Catherine C; Nelson, Peggy D; Mikler, John R

    2008-01-01

    Exposure of the central nervous system to organophosphorus (OP) nerve agents induces seizures and neuronal cell death. Here we report that the OP nerve agent, VX, induces apoptotic-like cell death in cultured rat cortical neurons. The VX effects on neurons were concentration-dependent, with an IC(50) of approximately 30 microM. Blockade of N-methyl-D-aspartate receptors (NMDAR) with 50 microM. D-2-amino-5-phosphonovalerate (APV) diminished 30 microM VX-induced total cell death, as assessed by alamarBlue assay and Hoechst staining. In contrast, neither antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) nor metabotropic glutamate receptors (mGluRs) had any effect on VX-induced neurotoxicity. VX-induced neuronal cell death could not be solely attributed to acetylcholinesterase (AChE) inhibition, since neither the reversible pharmacological cholinesterase inhibitor, physostigmine, nor the muscarinic receptor antagonist, atropine, affected VX-induced cell death. Importantly, APV was found to be therapeutically effective against VX-induced cell death up to 2 h post VX exposure. These results suggest that NMDARs, but not AMPARs or mGluRs, play important roles in VX-induced cell death in cultured rat cortical neurons. Based on their therapeutic effects, NMDAR antagonists may be beneficial in the treatment of VX-induced neurotoxicities.

  6. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons.

    PubMed

    Bai, Yanjing; Tohda, Chihiro; Zhu, Shu; Hattori, Masao; Komatsu, Katsuko

    2011-07-01

    Not only neuronal death but also neuritic atrophy and synaptic loss underlie the pathogenesis of Alzheimer's disease as direct causes of the memory deficit. Extracts of Siberian ginseng (the rhizome of Eleutherococcus senticosus) were shown to have protective effects on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid β (Aβ)(25-35), and eleutheroside B was one of the active constituents. In this study, a comprehensive evaluation of constituents was conducted to explore active components from Siberian ginseng which can protect against neuritic atrophy induced by Aβ(25-35) in cultured rat cortical neurons. The ethyl acetate, n-butanol and water fractions from the methanol extract of Siberian ginseng showed protective effects against Aβ-induced neuritic atrophy. Twelve compounds were isolated from the active fractions and identified. Among them, eleutheroside B, eleutheroside E and isofraxidin showed obvious protective effects against Aβ(25-35)-induced atrophies of axons and dendrites at 1 and 10 μM.

  7. Tissue engineering the monosynaptic circuit of the stretch reflex arc with co-culture of embryonic motoneurons and proprioceptive sensory neurons

    PubMed Central

    Guo, Xiufang; Ayala, Jennifer E.; Gonzalez, Mercedes; Stancescu, Maria; Lambert, Stephen; Hickman, James J.

    2013-01-01

    The sensory circuit of the stretch reflex arc is composed of intrafusal muscle fibers and their innervating proprioceptive neurons that convert mechanical information regarding muscle length and tension into action potentials that synapse onto the homonymous motoneurons in the ventral spinal cord which innervate the extrafusal fibers of the same muscle. To date, the in vitro synaptic connection between proprioceptive sensory neurons and spinal motoneurons has not been demonstrated. A functional in vitro system demonstrating this connection would enable the understanding of feedback by the integration of sensory input into the spinal reflex arc. Here we report a co-culture of rat embryonic motoneurons and proprioceptive sensory neurons from dorsal root ganglia (DRG) in a defined serum-free medium on a synthetic silane substrate (DETA). Furthermore, we have demonstrated functional synapse formation in the co-culture by immunocytochemistry and electrophysiological analysis. This work will be valuable for enabling in vitro model systems for the study of spinal motor control and related pathologies such as spinal cord injury, muscular dystrophy and spasticity by improving our understanding of the integration of the mechanosensitive feedback mechanism. PMID:22594977

  8. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method

    PubMed Central

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook

    2017-01-01

    Background Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Methods Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Results Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34+CD43+ hematopoietic progenitor cells (HPCs) and CD34+CD45+ HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro. Conclusion In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs. PMID:28401100

  9. PDGFRα(+) Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors.

    PubMed

    Lo Nigro, Antonio; de Jaime-Soguero, Anchel; Khoueiry, Rita; Cho, Dong Seong; Ferlazzo, Giorgia Maria; Perini, Ilaria; Abon Escalona, Vanesa; Aranguren, Xabier Lopez; Chuva de Sousa Lopes, Susana M; Koh, Kian Peng; Conaldi, Pier Giulio; Hu, Wei-Shou; Zwijsen, An; Lluis, Frederic; Verfaillie, Catherine M

    2017-02-14

    In early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive). In vitro, these subpopulations differ in their self-renewal and differentiation capability, transcriptional and epigenetic states. In vivo, double-positive cells contributed to epiblast and PrE, while PrE-primed cells exclusively contributed to PrE derivatives. The transcriptome of PDGFRα(+) subpopulations differs from previously described subpopulations and shows similarities with early/mid blastocyst cells. The heterogeneity did not depend on PDGFRα but on leukemia inhibitory factor and fibroblast growth factor signaling and DNA methylation. Thus, PDGFRα(+) cells represent the in vitro counterpart of in vivo PrE precursors, and their selection from cultured mESCs yields pure PrE precursors.

  10. Regulated expression of human beta-defensin-2 leads to altered phenotype and growth patterns of cultured human embryonal kidney cells.

    PubMed

    Zhuravel, E; Lytvyn, D; Soldatkina, M; Zeleniy, S; Shestakova, T; Pogrebnoy, P

    2006-12-01

    To create cell line with regulated expression of human beta-defensin-2 (hBD-2) and evaluate the influence of expressed peptide on its phenotypic and growth patterns. Using cloning techniques, on the base of human embryonic kidney cells of HEK293T line, stable T-rex HEK-hBD2-m cell subline expressing mature biologically active hBD-2 molecule upon the presence of tetracycline in culture medium was generated. The morphological patterns, growth characteristics and colony forming activity of these cells were studied using routine techniques. T-rex HEK-HBD2-m cell subline was shown to express both mRNA and hBD-2m protein upon the presence of 1 mug/ml tetracycline in culture medium as it was demonstrated by RT-PCR and immunocytochemical approach. Upon prolonged expression of hBD-2, the cells acquired special features: they lost ability to grow in monolayer in vitro and to form colonies in soft agar, characteristic to parental HEK293T cells, but possess higher growth rate and longer survival in FBS-free medium than wild type cells. Expression of hBD-2 in T-rex HEK-HBD2-m cell subline results in specific biological consequences that favor cell survival.

  11. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells.

    PubMed

    Rajala, Kristiina; Lindroos, Bettina; Hussein, Samer M; Lappalainen, Riikka S; Pekkanen-Mattila, Mari; Inzunza, Jose; Rozell, Björn; Miettinen, Susanna; Narkilahti, Susanna; Kerkelä, Erja; Aalto-Setälä, Katriina; Otonkoski, Timo; Suuronen, Riitta; Hovatta, Outi; Skottman, Heli

    2010-04-19

    The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable. Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed. Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific applications

  12. A Defined and Xeno-Free Culture Method Enabling the Establishment of Clinical-Grade Human Embryonic, Induced Pluripotent and Adipose Stem Cells

    PubMed Central

    Rajala, Kristiina; Lindroos, Bettina; Hussein, Samer M.; Lappalainen, Riikka S.; Pekkanen-Mattila, Mari; Inzunza, Jose; Rozell, Björn; Miettinen, Susanna; Narkilahti, Susanna; Kerkelä, Erja; Aalto-Setälä, Katriina; Otonkoski, Timo; Suuronen, Riitta; Hovatta, Outi; Skottman, Heli

    2010-01-01

    Background The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable. Methodology/Principal Findings Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed. Conclusion/Significance Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein

  13. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    PubMed

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  14. A model of inward and outward membrane currents in cultured embryonic amphibian spinal neurons and reconstruction of the action potential.

    PubMed

    Barish, M E

    1985-01-01

    A model of the membrane currents in embryonic amphibian neurons has been developed in order to investigate the ionic mechanisms underlying developmental changes in excitability. Differentiating amphibian neurons both in situ and in vitro show a gradual change in the ionic sensitivity of their action potential from Ca- to Na-dependent, with an intermediate period in which the action potential shows a mixed ionic sensitivity. The model developed incorporates quantitative descriptions of Na, Ca and voltage-dependent K currents recorded (using whole-cell gigaohm-seal recording techniques) from presumptive neurons isolated from neural plate stage embryos of the axolotl Amblystoma during their in vitro differentiation. The kinetic descriptions of the currents were developed using the form of those of Hodgkin and Huxley. Na and K currents were modeled as voltage-dependent conductances showing m3h and n4 kinetics, respectively. Ca current was modeled (using the constant field relation) as a voltage-dependent permeability with s2 activation kinetics. Ca currents in whole-cell recordings were non-inactivating, and no inactivation mechanism was specified in the model. When modeled current amplitudes and kinetics were scaled as appropriate for a cell at an intermediate stage of differentiation (when the action potential recorded with microelectrodes shows a mixed Na- and Ca-dependence), the action potential predicted by the model showed a similar waveform and ionic dependence. The utility of this model lies in its ability to indicate the activity of each ionic current during an action potential at any developmental stage, and to unambiguously test the effects on neuronal excitability of alterations in the magnitude and/or kinetics of any of the ionic currents present in the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle.

    PubMed

    Lim, Hyun Ju; Mosley, Matthew C; Kurosu, Yuki; Smith Callahan, Laura A

    2017-07-01

    N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation. Single cell encapsulation is common in tissue engineering matrices. This eliminates cellular access to cell-cell signaling. N-cadherin, a cell-cell signaling molecule, plays a vital role in

  16. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  17. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition.

    PubMed

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan; Chan, Woon Khiong; Shu-Chien, Alexander Chong

    2014-10-01

    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.

  18. Co-culture of mesenchymal-like stromal cells derived from human foreskin permits long term propagation and differentiation of human embryonic stem cells.

    PubMed

    Mamidi, Murali Krishna; Pal, Rajarshi; Mori, Nor Azah Binti; Arumugam, Greetha; Thrichelvam, Saratha Thevi; Noor, Puteri J; Abdullah, Hj Mohamad Farouk; Gupta, Pawan Kumar; Das, Anjan Kumar; Zakaria, Zubaidah; Bhonde, Ramesh

    2011-05-01

    Among the different parameters governing the successful derivation and expansion of human embryonic stem cells (hESC), feeder layers play the most important role. Human feeders in form of human mesenchymal stromal cells (hMSCs) and human foreskin fibroblasts (HFFs) lay the foundation for eradication of animal-derived hESC culture system. In this study we explored the potential of human foreskin derived mesenchymal like stromal cells (HF-MSCs) to support self renewal and pluripotency of hESC. The MSCs isolated from human foreskin were found to be resistant to standard concentrations and duration of mitomycin-C treatment. Growth pattern, gene profiling (Oct-4, Nanog, Sox-2, Rex-1), cytoskeletal protein expression (vimentin, nestin) and tri-lineage differentiation potential into adipocytes, chondrocytes and osteocytes confirmed their mesenchymal stromal cell status. Further, the HF-MSCs were positive for CD105, CD166, CD73, CD44, CD90, SSEA-4, and negative for CD34, CD45, HLA-DR cell-surface markers and were found to exhibit BM-MSC-like characteristics. hESC lines co-cultured with HF-MSC feeders showed expression of expected pluripotent transcription factors Oct-4, Nanog, Sox-2, GDF-3, Rex-1, STELLAR, ABCG2, Dppa5, hTERT; surface markers SSEA-4, TRA-1-81 and maintained their cytogenetic stability during long term passaging. These novel feeders also improved the formation of embryoid bodies (EBs) from hESC which produced cell types representing three germ layers. This culture system has the potential to aid the development of clinical-grade hESCs for regenerative medicine and drug screening. Further, we envisage foreskin can serve as a valuable source of alternative MSCs for specific therapeutic applications.

  19. Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling.

    PubMed

    Bento, Ana R; Quelhas, Pedro; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2016-12-29

    In an attempt to improve the efficacy of neural stem/progenitor cell (NSPC) based therapies, fibrin hydrogels are being explored to provide a favourable microenvironment for cell survival and differentiation following transplantation. In the present work, the ability of fibrin to support the survival, proliferation, and neuronal differentiation of NSPCs derived from embryonic stem (ES) cells under monolayer culture was explored. Single mouse ES-NSPCs were cultured within fibrin (fibrinogen concentration: 6 mg/ml) under neuronal differentiation conditions up to 14 days. The ES-NSPCs retained high cell viability and proliferated within small-sized spheroids. Neuronal differentiation was confirmed by an increase in the levels of βIII-tubulin and NF200 over time. At day 14, cell-matrix constructs mainly comprised NSPCs and neurons (46.5% βIII-tubulin(+) cells). Gamma-aminobutyric acid (GABA)ergic and dopaminergic/noradrenergic neurons were also observed, along with a network of synaptic proteins. The ES-NSPCs expressed matriptase and secreted MMP-2/9, with MMP-2 activity increasing along time. Fibronectin, laminin and collagen type IV deposition was also detected. Fibrin gels prepared with higher fibrinogen concentrations (8/10 mg/ml) were less permissive to neurite extension and neuronal differentiation, possibly owing to their smaller pore area and higher rigidity. Overall, it is shown that ES-NSPCs within fibrin are able to establish neuronal networks and to remodel fibrin through MMP secretion and extracellular matrix (ECM) deposition. This three-dimensional (3D) culture system was also shown to support cell viability, neuronal differentiation and ECM deposition of human ES-NSPCs. The settled 3D platform is expected to constitute a valuable tool to develop fibrin-based hydrogels for ES-NSPC delivery into the injured central nervous system. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Transfer and Detection of Freshly Isolated or Cultured Chicken (Gallus gallus) and Exotic Species’ Embryonic Gonadal Germ Stem Cells in Host Embryos

    PubMed Central

    Imus, Nastassja; Roe, Mandi; Charter, Suellen; Durrant, Barbara; Jensen, Thomas

    2015-01-01

    The management of captive avian breeding programs increasingly utilizes various artificial reproductive technologies, including in ova sexing of embryos to adjust population sex ratios. Currently, however, no attention has been given to the loss of genetic diversity following sex-selective incubation, even with respect to individuals from critically endangered species. This project evaluated the possibility of using xenotransfer of embryonic gonadal germline stem cells (GGCs) for future reintroduction of their germplasm into the gene pool. We examined and compared the host gonad colonization of freshly isolated and 3 day (3d) cultured donor GGCs from chicken and 13 species of exotic embryos. Following 3d-culture of GGCs, there was a significant increase in the percentage of stem cell marker (SSEA-1, -3, -4) positive cells. However, the percentage of positive host gonads with chicken donor-derived cells decreased from 68% (fresh) to 22% (3d), while the percentage of exotic species donor-cells positive host gonads decreased from 61% (fresh) to 49% (3d-cultured). Donor GGCs from both chicken and exotic species were localized within the caudal endoderm, including the region encompassing the gonadal ridge by 16 hours post-injection. Furthermore, donor-derived cells isolated from stage 36 host embryos were antigenic for anti SSEA-1, VASA/DDX4 and EMA-1 antibodies, presumably indicating maintenance of stem cell identity. This study demonstrates that GGCs from multiple species can migrate to the gonadal region and maintain presumed stemness following xenotransfer into a chicken host embryo, suggesting that germline stem cell migration is highly conserved in birds. PMID:24882096

  1. Derivation and Long-Term Culture of an Embryonic Stem Cell-Like Line from Zebrafish Blastomeres Under Feeder-Free Condition

    PubMed Central

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan

    2014-01-01

    Abstract Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions. PMID:24967707

  2. Trace levels of mitomycin C disrupt genomic integrity and lead to DNA damage response defect in long-term-cultured human embryonic stem cells.

    PubMed

    Zhou, Di; Lin, Ge; Zeng, Si-Cong; Xiong, Bo; Xie, Ping-Yuan; Cheng, De-Hua; Zheng, Qing; Ouyang, Qi; Zhou, Xiao-Ying; Tang, Wei-Ling; Sun, Yi; Lu, Guang-Ying; Lu, Guang-Xiu

    2015-01-01

    How to maintain the genetic integrity of cultured human embryonic stem (hES) cells is raising crucial concerns for future clinical use in regenerative medicine. Mitomycin C(MMC), a DNA damage agent, is widely used for preparation of feeder cells in many laboratories. However, to what extent MMC affects the karyotypic stability of hES cells is not clear. Here, we measured residual MMC using High Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry following each step of feeder preparation and found that 2.26 ± 0.77 and 3.50 ± 0.92 ng/ml remained in mouse feeder cells and human feeder cells, respectively. In addition, different amounts of MMC caused different chromosomal aberrations in hES cells. In particular, one abnormality, dup(1)(p32p36), was the same identical to one we previously reported in another hES cell line. Using Affymetrix SNP 6.0 arrays, the copy number variation changes of the hES cells maintained on MMC-inactivated feeders (MMC-feeder) were significantly more than those cultured on γ-inactivated feeder (IR-feeder) cells. Furthermore, DNA damage response (DDR) genes were down-regulated during long-term culture in the MMC-containing system, leading to DDR defect and shortened telomeres of hES cells, a sign of genomic instability. Therefore, MMC-feeder and MMC-induced genomic variation present an important safety problem that would limit such hES from being applied for future clinic use and drug screening.

  3. Selective beta-cell differentiation of dissociated embryonic pancreatic precursor cells cultured in synthetic polyethylene glycol hydrogels.

    PubMed

    Mason, Mariah N; Mahoney, Melissa J

    2009-06-01

    Continuing advances in islet cell transplantation have been promising; however, several limitations, including severe shortage of transplantable islets, hinder the widespread use of this therapy. Pancreatic precursor cells are one alternative to cadaveric donor islets. These cells found in the developing pancreatic buds are capable of self-renewal and also have the innate ability to become insulin-producing beta-cells. For this work, bioinert polyethylene glycol (PEG) hydrogels were chosen as the supportive three-dimensional matrix for encapsulation of dissociated pancreatic precursor cells obtained from the dorsal pancreatic bud of day-15 rat embryos. This culture system was selected in order to eliminate cell-extracellular matrix and cell-cell signal heterogeneity present when intact pancreatic buds are embedded in protein-based gels, the typical in vitro culture conditions used to study this cell population. In this study it was found that (1) dissociated precursor cells maintain a robust viability for 7 days in PEG hydrogel culture, (2) encapsulated cells selectively differentiate into insulin-expressing beta-cells, and (3) differentiated beta-cells have releasable insulin stores, but are not achieving a mature, glucose responsive phenotype. These findings suggest that encapsulating dissociated pancreatic precursor cells in an environment designed to minimize the heterogeneous signaling cues present during development or in standard culture conditions generates a population highly enriched in pancreatic beta-cells; however, future efforts must focus on achieving glucose responsiveness in this cell population. Further, these results indicate that differentiation down a beta-cell lineage may be the default pathway in pancreatic development.

  4. Lack of changes in cytosolic ionized calcium in primary cultures of rat kidney cortical cells exposed to cytotoxic concentrations of gentamicin.

    PubMed

    Swann, J D; Ulrich, R; Acosta, D

    1990-10-01

    Gentamicin nephrotoxicity in vivo has a delayed onset. Our assessment of gentamicin-induced cell death in vitro, by measuring the release of cytosolic lactate dehydrogenase (LDH), indicated a prolonged onset as well. A recent study, which showed that gentamicin caused an abrupt increase in the concentration of cytosolic free calcium ([Ca2+]i) in a trypsin-harvested kidney cell line, suggested that immediate changes in calcium homeostasis may initiate the pathogenesis of gentamicin nephrotoxicity. To study the immediate effect of gentamicin on [Ca2+]i, gentamicin was perfused for 1 hr over primary monolayer cultures of renal cortical epithelial cells, and suspensions of trypsin-harvested renal cells (from primary cultures and a cell line) were treated with gentamicin for 30 min. [Ca2+]i was determined using the fluorescent probe fura-2. Positive controls (ionomycin and mercury) reliably increased [Ca2+]i in each experimental model, but no increase in [Ca2+]i was observed with gentamicin. Because enzyme release data indicated that significant cytotoxicity did not occur until 48 hr of exposure to 2 mM gentamicin, primary cultures were exposed to gentamicin (1-2 mM) for 24-48 hr and [Ca2+]i was measured. No gentamicin-induced increase in [Ca2+]i was observed in these longer exposures, whether or not significant LDH release occurred. These results do not support a role for elevated [Ca2+]i in the cytotoxicity of gentamicin in cultured kidney cells, either immediately after exposure or following prolonged exposures.

  5. Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water.

    PubMed

    Silva, José R V; van den Hurk, Robert; Costa, Sonia H F; Andrade, Evelyn R; Nunes, Ana P A; Ferreira, Francisco V A; Lôbo, Raimundo N B; Figueiredo, José R

    2004-04-01

    The development of culture systems to support the initiation of growth of primordial follicles is important to the study of the factors that control the earliest stages of folliculogenesis. We investigated the effectiveness of five culture media, two supplements and three culture periods on the survival and growth of goat primordial follicles after culturing ovarian cortex. The media were based on minimal essential minimum (MEM) and coconut water solution (CWS) added in the proportion of 0, 25, 50, 75 or 100%. The two supplements were none versus supplemented with insulin-transferrin-selenium, pyruvate, glutamine, hypoxanthine, and BSA. Pieces of goat ovarian cortex were cultured in the media for 1, 3 or 5 days and representative samples were evaluated at day 0 as non-cultured controls. The replicates were the two ovaries of five mixed breed goats. The number of primordial, intermediate, primary and secondary follicles at each period of culture and the number of degenerated follicles were evaluated. Mitotic activity of granulosa cells was studied by immunolocalization of proliferating cell nuclear antigen (PCNA). The number of follicles in each stage and degenerated follicles were statistically analyzed by ANOVA using a factorial design and the significance of differences assessed using Tukey test. Chi-square test was used to compare the percentage of follicles with PCNA positive granulosa cells. As the culture period progressed, the number of primordial follicles fell and there was a significant increase in the number of primary follicles. The fall in the number of primordial follicles was particularly marked after 1 day culture. No effect of media on the number of primordial and primary follicles was observed after culture, but MEM as well as supplements increased the number of intermediate follicles. Follicular degeneration was kept at the same level after culture in the media tested, except for pure CWS that increased the number of degenerated follicles. In

  6. Role of zinc in protection against cadmium-induced toxicity in formation of embryonic chick bone in tissue culture.

    PubMed

    Kaji, T; Takata, M; Hoshino, T; Miyahara, T; Kozuka, H; Kurashige, Y; Koizumi, F

    1988-11-01

    To clarify a possible mechanism of zinc (Zn)-induced tolerance to cadmium (Cd) toxicity on bone formation, femurs from 9-day-old chick embryos were cultured for 6 days by the roller-tube method in the presence of Cd (2, 4 or 9 microM) and/or Zn (60 microM). Zn prevented a decrease in bone growth caused by Cd at 4 and 9 microM. An increase in calcium (Ca) content of diaphysis was inhibited by Zn in both the presence and absence of Cd. Histologically, Zn protected a Cd-induced degenerative change of mesenchymal cells in the periosteum and that of osteoblasts around the trabecula at each Cd level. At 60 microM Zn, Cd accumulated less in the bone at 2 microM but more at 9 microM. From these results, it was concluded that Zn prevented Cd-induced toxicity in the process of ossification except calcification in a culture system by two different mechanisms, i.e. a decreasing Cd accumulation at a low level of Cd and probably an induction of metallothionein (MT)-like protein at a high level of Cd.

  7. Hydrocortisone regulates arylsulfatase A (cerebroside-3-sulfate-3-sulfohydrolase) by decreasing the quantity of the enzyme in cultures of cells dissociated from embryonic mouse cerebra.

    PubMed

    Marcelo, A J; Pieringer, R A

    1990-09-01

    Previous work from our laboratory (Biochem. J. 219:689-697 (1984] had shown that hydrocortisone stimulated the net accumulation of the myelin-specific sulfolipid in cultures of cells dissociated from embryonic mouse cerebra. This accumulation caused by hydrocortisone was shown to be due to a decrease of sulfolipid degradation by arylsulfatase A (ASA) and not due to a stimulation of its synthesis by a sulfotransferase. Both ASA activity and the turnover of sulfolipid were decreased by hydrocortisone to 60-62% of untreated cells. In current work the same decrease in enzyme activity was obtained and enzyme linked immunosorbent assays demonstrate that hydrocortisone decreased the number of ASA protein molecules to 61% of untreated cells [(-)hydrocortisone: 0.31 +/- 0.06 ng ASA/microgram protein; (+)hydrocortisone: 0.18 +/- 0.04 ng ASA/microgram protein]. This decrease in the number of ASA molecules correlates well with the decrease in both the enzyme activity and the sulfolipid turnover, which suggests that the major mode of inhibition of ASA activity by hydrocortisone involves a decrease in the concentration of ASA in the cells rather than some other mechanism of inhibition.

  8. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment.

    PubMed

    Rodin, Sergey; Antonsson, Liselotte; Niaudet, Colin; Simonson, Oscar E; Salmela, Elina; Hansson, Emil M; Domogatskaya, Anna; Xiao, Zhijie; Damdimopoulou, Pauliina; Sheikhi, Mona; Inzunza, José; Nilsson, Ann-Sofie; Baker, Duncan; Kuiper, Raoul; Sun, Yi; Blennow, Elisabeth; Nordenskjöld, Magnus; Grinnemo, Karl-Henrik; Kere, Juha; Betsholtz, Christer; Hovatta, Outi; Tryggvason, Karl

    2014-01-01

    Lack of robust methods for establishment and expansion of pluripotent human embryonic stem (hES) cells still hampers development of cell therapy. Laminins (LN) are a family of highly cell-type specific basement membrane proteins important for cell adhesion, differentiation, migration and phenotype stability. Here we produce and isolate a human recombinant LN-521 isoform and develop a cell culture matrix containing LN-521 and E-cadherin, which both localize to stem cell niches in vivo. This matrix allows clonal derivation, clonal survival and long-term self-renewal of hES cells under completely chemically defined and xeno-free conditions without ROCK inhibitors. Neither LN-521 nor E-cadherin alone enable clonal survival of hES cells. The LN-521/E-cadherin matrix allows hES cell line derivation from blastocyst inner cell mass and single blastomere cells without a need to destroy the embryo. This method can facilitate the generation of hES cell lines for development of different cell types for regenerative medicine purposes.

  9. [Effect of pueraria crude extreact and puerarin on ethanol-induced expression of heat shock protein 70 in embryonic mouse hippocampal cultures].

    PubMed

    Han, Ping; Wu, De-sheng; Li, Wen-jie; Yu, Zeng-li; Wang, Qi

    2005-11-02

    To study if the Pueraria crude extreact (CP) and standard preparation of pure puerarin (SP) possess the same neuroprotective effects on the expression of heat shock protein (HSP) 70 in the embryonic mouse hippocampal cells. The hippocampus of 18-days-old mouse embryo was taken out and suspension of single cells was cultured. Ethanol was added to cause HSP70 mRNA expression. Solvent, ethanol of different concentrations (50, 200, and 300 mmol/L), SP + ethanol, and SP + ethanol were added respectively. Western blotting was used to detect the expression of the expression of HSP70 mRNA. Ethanol of different concentrations increased the expression of HSP70 mRNA and the protein in comparison with the solvent control group. SP and CP inhibited the expression of HSP70 mRNA and protein. With identical effect of anti-oxidative stress, both SP and CP inhibit the increase of expression of HSP70 mRNA and protein, thus demonstrating I vitro anti-oxidative neuroprotection.

  10. Time-Lapse Analysis of Human Embryonic Stem Cells Reveals Multiple Bottlenecks Restricting Colony Formation and Their Relief upon Culture Adaptation

    PubMed Central

    Barbaric, Ivana; Biga, Veronica; Gokhale, Paul J.; Jones, Mark; Stavish, Dylan; Glen, Adam; Coca, Daniel; Andrews, Peter W.

    2014-01-01

    Summary Using time-lapse imaging, we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating, and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore, the daughter cells showed a continued pattern of cell death after division, so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact, which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast, most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny, without the need for cell:cell contacts and independent of their motility patterns. PMID:25068128

  11. Safflower Seed Oil, Containing Oleic Acid and Palmitic Acid, Enhances the Stemness of Cultured Embryonic Neural Stem Cells through Notch1 and Induces Neuronal Differentiation.

    PubMed

    Ghareghani, Majid; Zibara, Kazem; Azari, Hassan; Hejr, Hossein; Sadri, Farzad; Jannesar, Ramin; Ghalamfarsa, Ghasem; Delaviz, Hamdallah; Nouri, Ebrahim; Ghanbari, Amir

    2017-01-01

    Embryonic neural stem cells (eNSCs) could differentiate into neurons, astrocytes and oligodendrocytes. This study was aimed to determine the effect of safflower seed oil, which contains linoleic acid (LA), oleic acid (OA), and palmitic acid (PA), on cultured eNSC proliferation and differentiation, in comparison to linoleic acid alone. Results showed that safflower seed oil, but not LA, increased significantly the viability and proliferation of eNSCs. Moreover, treatment of NSCs by safflower seed oil, but not LA, resulted in a significant increase in mRNA levels of notch1, hes1, and Ki-67, and protein levels of notch intracellular domain (NICD), in comparison to controls, indicating an enhancement of stemness. Finally, safflower seed oil, but not LA, caused an increase in the number of oligodendrocytes (MBP+), astrocytes (GFAP+) and neurons (β-III tubulin+) of which only the increase in β-III tubulin positive cells was statistically significant. In summary, OA and PA, present in safflower seed oil may prove beneficial for the enhancement of eNSCs and their neuronal differentiation.

  12. Cationic Surface Charge Combined with Either Vitronectin or Laminin Dictates the Evolution of Human Embryonic Stem Cells/Microcarrier Aggregates and Cell Growth in Agitated Cultures

    PubMed Central

    Lam, Alan Tin-Lun; Li, Jian; Chen, Allen Kuan-Liang; Reuveny, Shaul

    2014-01-01

    The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment. PMID:24641164

  13. A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells.

    PubMed

    Manton, Kerry J; Richards, Sean; Van Lonkhuyzen, Derek; Cormack, Luke; Leavesley, David; Upton, Zee

    2010-09-01

    The therapeutic use of human embryonic stem (hES) cells is severely limited by safety concerns regarding their culture in media containing animal-derived or nondefined factors and on animal-derived feeder cells. Thus, there is a pressing need to develop culture techniques that are xeno-free, fully defined, and synthetic. Our laboratory has discovered that insulin-like growth factor (IGF) and vitronectin (VN) bind to each other resulting in synergistic short-term functional effects in several cell types, including keratinocytes and breast epithelial cells. We have further refined this complex into a single chimeric VN:IGF-I protein that functionally mimics the effects obtained upon binding of IGF-I to VN. The aim of the current study was to determine whether hES cells can be serially propagated in feeder-cell-free and serum-free conditions using medium containing our novel chimeric VN:IGF-I protein. Here we demonstrate that hES cells can be serially propagated and retain their undifferentiated state in vitro for up to 35 passages in our feeder-cell-free, serum-free, chemically defined media. We have utilized real-time polymerase chain reaction (PCR), immunofluorescence, and fluorescence-activated cell sorter (FACS) analysis to show that the hES cells have maintained an undifferentiated phenotype. In vitro differentiation assays demonstrated that the hES cells retain their pluripotent potential and the karyotype of the hES cells remains unchanged. This study demonstrates that the novel, fully defined, synthetic VN:IGF-I chimera-containing medium described herein is a viable alternative to media containing serum, and that in conjunction with laminin-coated plates facilitates feeder-cell-free and serum-free growth of hES.

  14. Regulation of the distribution and function of [(125)I]epibatidine binding sites by chronic nicotine in mouse embryonic neuronal cultures.

    PubMed

    Zambrano, Cristian A; Salamander, Rakel M; Collins, Allan C; Grady, Sharon R; Marks, Michael J

    2012-08-01

    Chronic nicotine produces up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) (* denotes that an additional subunit may be part of the receptor). However, the extent of up-regulation to persistent ligand exposure varies across brain regions. The aim of this work was to study the cellular distribution and function of nAChRs after chronic nicotine treatment in primary cultures of mouse brain neurons. Initially, high-affinity [(125)I]epibatidine binding to cell membrane homogenates from primary neuronal cultures obtained from diencephalon and hippocampus of C57BL/6J mouse embryos (embryonic days 16-18) was measured. An increase in α4β2*-nAChR binding sites was observed in hippocampus, but not in diencephalon, after 24 h of treatment with 1 μM nicotine. However, a nicotine dose-dependent up-regulation of approximately 3.5- and 0.4-fold in hippocampus and diencephalon, respectively, was found after 96 h of nicotine treatment. A significant fraction of total [(125)I]epibatidine binding sites in both hippocampus (45%) and diencephalon (65%) was located on the cell surface. Chronic nicotine (96 h) up-regulated both intracellular and surface binding in both brain regions without changing the proportion of those binding sites compared with control neurons. The increase in surface binding was not accompanied by an increase in nicotine-stimulated Ca(2+) influx, suggesting persistent desensitization or inactivation of receptors at the plasma membrane occurred. Given the differences observed between hippocampus and diencephalon neurons exposed to nicotine, multiple mechanisms may play a role in the regulation of nAChR expression and function.

  15. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis.

    PubMed

    Furmanski, Orion; Gajavelli, Shyam; Lee, Jeung Woon; Collado, Maria E; Jergova, Stanislava; Sagen, Jacqueline

    2009-07-01

    Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of gamma-aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)-2 deprivation and mammalian achaete-scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and beta-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased beta-III-tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF-2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full

  16. Different effects of enhanced and reduced expression of pub gene on the formation of embryoid bodies by cultured embryonic mouse stem cell.

    PubMed

    Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A

    2005-07-01

    The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.

  17. BDNF-GFP containing secretory granules are localized in the vicinity of synaptic junctions of cultured cortical neurons.

    PubMed

    Haubensak, W; Narz, F; Heumann, R; Lessmann, V

    1998-06-01

    The protein family of mammalian neurotrophins, comprising nerve-growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 and -4/5 (NT-3, NT-4/5), supports the survival and the phenotype of neurons from the central as well as the peripheral nervous system (CNS, PNS). In addition, exogenous application of neurotrophins has recently been found to modulate synaptic transmission in the rodent CNS. However, to provide evidence for a role of neurotophins as endogenous fast acting modulators of synaptic transmission, the synaptic localization and secretion of neurotrophins needs to be shown. We have now constructed a fusion protein consisting of N-terminal BDNF (the most abundant neurotrophin in the rodent hippocampus and neocortex) and C-terminal green fluorescent protein (GFP) to elucidate the cellular localization of BDNF in cortical neurons. Transient expression of BDNF-GFP in COS-7 cells revealed that the cellular localization in the trans-Golgi network (TGN), the processing of precursor proteins and the secretion of mature BDNF-GFP is indistinguishable from the properties of untagged BDNF. Upon transient transfection of primary rat cortical neurons, BDNF-GFP was found in secretory granules of the regulated pathway of secretion, as indicated by colocalization with the secretory granule marker secretogranin II. BDNF-GFP vesicles were found in the neurites of transfected neurons with a pattern reminiscent of the localization of endogenous BDNF in untransfected cortical neurons. BDNF-GFP vesicles were found predominantly in the somatodendritic compartment of the neurons, whereas additional axonal localization was found less frequently. Immunocytochemical staining of synaptic terminals with synapsin I antibodies revealed that the density of BDNF-GFP vesicles is elevated in the vicinity of synaptic junctions, indicating that BDNF is localized appropriately to function as an acute modulator of synaptic transmission. These data suggest that BDNF-GFP will

  18. Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells.

    PubMed

    Kim, Soo-Ki; Cho, Sang-Buem; Moon, Hyung-In

    2010-12-01

    The neuroprotective effects of Paulownia tomentosa against glutamate-induced neurotoxicity were studied in primary cultured rat cortical cells. It was found that the aqueous extract of this medicinal plant significantly attenuated glutamate-induced toxicity. In order to clarify the mechanism(s) underlying this neuroprotective effect, the active fractions and components were isolated and identified. Five compounds were isolated as the methanol extracts from air-dried flowers of P. tomentosa. Isoatriplicolide tiglate exhibited significant neuroprotective activity against glutamate-induced toxicity at concentrations ranging from 1 μM to 10 μM, and exhibited cell viability of approximately 43-78%. Therefore, the neuroprotective effect of P. tomentosa might be due to the inhibition of glutamate-induced toxicity by the sesquiterpene lactone derivative it contains.

  19. ESP-102, a combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, protects against glutamate-induced toxicity in primary cultures of rat cortical cells.

    PubMed

    Ma, Choong Je; Kim, Seung Hyun; Lee, Ki Yong; Oh, Taehwan; Kim, Sun Yeou; Sung, Sang Hyun; Kim, Young Choong

    2009-11-01

    It was reported previously that ESP-102, a combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice and protected primary cultured rat cortical cells against glutamate-induced toxicity. To corroborate this effect, the action patterns of ESP-102 were elucidated using the same in vitro system. ESP-102 decreased the cellular calcium concentration increased by glutamate, and inhibited the subsequent overproduction of cellular nitric oxide and reactive oxygen species to the level of control cells. It also preserved cellular activities of antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase reduced in the glutamate-injured neuronal cells. While a loss of mitochondrial membrane potential was observed in glutamate treated cells, the mitochondrial membrane potential was maintained by ESP-102. These results support that the actual mechanism of neuroprotective activity of ESP-102 against glutamate-induced oxidative stress might be its antioxidative activity.

  20. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction-positive wild bird surveillance samples.

    PubMed

    Moresco, Kira A; Stallknecht, David E; Swayne, David E

    2012-05-01

    Virus isolation rates for influenza A virus (FLUAV) and Avian paramyxovirus serotype 1 (APMV-1) from wild bird surveillance samples are lower than molecular detection rates for the specific viral genomes. The current study was conducted to examine the possibility of increased virus isolation rates from real-time reverse transcription polymerase chain reaction (real-time RT-PCR) using alternative virus isolation substrates such as embryonating duck eggs (EDEs), embryonating turkey eggs (ETEs), Madin-Darby canine kidney (MDCK) cell cultures, and African green monkey kidney (Vero) cell cultures. Rectal swabs of birds in the orders Anseriformes and Charadriiformes were tested by real-time RT-PCR for the presence of FLUAV and APMV-1 genomes, and virus isolation (VI) was attempted on all real-time RT-PCR-positive samples. Samples with threshold cycle (Ct) ≤ 37 had VI rates for FLUAV of 62.5%, 50%, 43.8%, 31.5%, and 31.5% in embryonating chicken eggs (ECEs), ETEs, EDEs, MDCK cells, and Vero cells, respectively. A higher isolation rate was seen with ECEs compared to either cell culture method, but similar isolation rates were identified between the different embryonating avian eggs. Virus isolation rates for APMV-1 on samples with real-time RT-PCR Ct ≤ 37 were 75%, 100%, 100%, 0%, and 37.5% in ECEs, ETEs, EDEs, MDCK cells, and Vero cells, respectively. Significantly higher VI rates were seen with ECEs as compared to either cell culture method for all real-time RT-PCR-positive samples. Because of the limited availability and high cost of ETEs and EDEs, the data support the continuing usage of ECEs for primary isolation of both FLUAV and APMV-1 from real-time RT-PCR-positive wild bird surveillance samples.

  1. Short Term Culture of Vitrified Human Ovarian Cortical Tissue to Assess the Cryopreservation Outcome: Molecular and Morphological Analysis

    PubMed Central

    Ramezani, Mehdi; Salehnia, Mojdeh; Jafarabadi, Mina

    2017-01-01

    Background: The aim of the present study was to evaluate the effectiveness of human ovarian vitrification protocol followed with in vitro culture at the morphological and molecular levels. Methods: Ovarian tissues were obtained from 10 normal transsexual women and cut into small pieces and were divided into non-vitrified and vitrified groups and some of the tissues fragments in both groups were randomly cultured for two weeks. The morphological study using hematoxylin and eosin and Masson’s trichrome staining was done. The analysis of mean follicular density, 17-β estradiol (E2) and anti mullerian hormone (AMH), and real-time RT-PCR was down for the evaluation of expression of genes related to folliculogenesis. Data were compared by paired-samples and independent-samples T test. Values of p<0.05 were considered statistically significant. Results: The proportion of normal follicles did not show significant difference between vitrified and non-vitrified groups before and after culture but these rates and the mean follicle density significantly decreased in both cultured tissues (p<0.05). The expression of genes was similar in vitrified and non-vitrified groups but in cultured tissues the expression of GDF9 and FSHR genes increased and the expression of FIGLA and KIT-L genes decreased (p<0.05). An increase in E2 and AMH concentration was observed after 14 days of culture in both groups. Conclusion: In conclusion, the present study indicated that the follicular development and gene expression in vitrified ovarian tissue was not altered before and after in vitro culture, thus this method could be useful for fertility preservation; however, additional studies are needed to improve the culture condition. PMID:28377895

  2. Cadmium-Induced Apoptosis in Primary Rat Cerebral Cortical Neurons Culture Is Mediated by a Calcium Signaling Pathway

    PubMed Central

    Xu, Hui; Sun, Ya; Hu, Fei-fei; Bian, Jian-chun; Liu, Xue-zhong; Gu, Jian-hong; Liu, Zong-ping

    2013-01-01

    Cadmium (Cd) is an extremely toxic metal, capable of severely damaging several organs, including the brain. Studies have shown that Cd disrupts intracellular free calcium ([Ca2+]i) homeostasis, leading to apoptosis in a variety of cells including primary murine neurons. Calcium is a ubiquitous intracellular ion which acts as a signaling mediator in numerous cellular processes including cell proliferation, differentiation, and survival/death. However, little is known about the role of calcium signaling in Cd-induced apoptosis in neuronal cells. Thus we investigated the role of calcium signaling in Cd-induced apoptosis in primary rat cerebral cortical neurons. Consistent with known toxic properties of Cd, exposure of cerebral cortical neurons to Cd caused morphological changes indicative of apoptosis and cell death. It also induced elevation of [Ca2+]i and inhibition of Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities. This Cd-induced elevation of [Ca2+]i was suppressed by an IP3R inhibitor, 2-APB, suggesting that ER-regulated Ca2+ is involved. In addition, we observed elevation of reactive oxygen species (ROS) levels, dysfunction of cytochrome oxidase subunits (COX-I/II/III), depletion of mitochondrial membrane potential (ΔΨm), and cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) during Cd exposure. Z-VAD-fmk, a pan caspase inhibitor, partially prevented Cd-induced apoptosis and cell death. Interestingly, apoptosis, cell death and these cellular events induced by Cd were blocked by BAPTA-AM, a specific intracellular Ca2+ chelator. Furthermore, western blot analysis revealed an up-regulated expression of Bcl-2 and down-regulated expression of Bax. However, these were not blocked by BAPTA-AM. Thus Cd toxicity is in part due to its disruption of intracellular Ca2+ homeostasis, by compromising ATPases activities and ER-regulated Ca2+, and this elevation in Ca2+ triggers the activation of the Ca2+-mitochondria apoptotic signaling pathway. This

  3. Expression of exogenous LIN28 contributes to proliferation and survival of mouse primary cortical neurons in vitro.

    PubMed

    Bhuiyan, M I H; Lee, J-H; Kim, S Y; Cho, K-O

    2013-09-17

    LIN28, an RNA-binding protein, is known to be involved in the regulation of many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. In this study, we investigated the effect of constitutively expressing exogenous LIN28 on neuronal cell proliferation and viability in vitro. Plasmids containing LIN28-green fluorescent protein (GFP) or GFP were introduced into the embryonic mouse brains at E14.5 by in utero electroporation. Two days after electroporation, embryonic cortices were harvested and cultured. It was found that transfected cells stably overexpressed LIN28 in vitro. Viability curve from live cell imaging showed that the number of GFP-expressing cells decreased over time in line with naive primary cortical neurons. In contrast, the number of LIN28-GFP-overexpressing neurons initially increased and remained high at later time-points in culture than GFP-expressing cells. Double immunofluorescence showed that at an early time in culture, the number of Ki-67/GFP double-positive cells was higher in the LIN28-GFP group than that of controls. Moreover, there were significantly lower numbers of condensed nuclei/GFP- and cleaved caspase-3/GFP-positive cells in the LIN28-GFP groups compared to control GFP. Furthermore, it was confirmed that the LIN28-GFP-expressing cells at days in vitro (DIV)13 were neuronal nuclei (NeuN)-positive mature neurons. Finally, the expression of insulin-like growth factor 2 (IGF-2) was induced in LIN28-expressing primary cortical neurons, which was not detected in controls. Taken together, our results indicate that the expression of exogenous LIN28 can promote the proliferation of neural progenitor cells and exert prosurvival effect on primary cortical neurons by inhibiting caspase-dependent apoptosis, possibly via upregulation of IGF-2. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Lovastatin attenuates effects of cyclosporine A on tight junctions and apoptosis in cultured cortical collecting duct principal cells.

    PubMed

    Liu, Bing-Chen; Song, Xiang; Lu, Xiao-Yu; Fang, Charles Z; Wei, Shi-Peng; Alli, Abdel A; Eaton, Douglas C; Shen, Bao-Zhong; Li, Xue-Qi; Ma, He-Ping

    2013-08-01

    We used mouse cortical collecting duct principal cells (mpkCCDc14 cell line) as a model to determine whether statins reduce the harmful effects of cyclosporine A (CsA) on the distal nephron. The data showed that treatment of cells with CsA increased transepithelial resistance and that the effect of CsA was abolished by lovastatin. Scanning ion conductance microscopy showed that CsA significantly increased the height of cellular protrusions near tight junctions. In contrast, lovastatin eliminated the protrusions and even caused a modest depression between cells. Western blot analysis and confocal microscopy showed that lovastatin also abolished CsA-induced elevation of both zonula occludens-1 and cholesterol in tight junctions. In contrast, a high concentration of CsA induced apoptosis, which was also attenuated by lovastatin, elevated intracellular ROS via activation of NADPH oxidase, and increased the expression of p47phox. Sustained treatment of cells with lovastatin also induced significant apoptosis, which was attenuated by CsA, but did not elevate intracellular ROS. These results indicate that both CsA and lovastatin are harmful to principal cells of the distal tubule, but via ROS-dependent and ROS-independent apoptotic pathways, respectively, and that they counteract probably via mobilization of cellular cholesterol levels.

  5. Lovastatin attenuates effects of cyclosporine A on tight junctions and apoptosis in cultured cortical collecting duct principal cells

    PubMed Central

    Liu, Bing-Chen; Song, Xiang; Lu, Xiao-Yu; Fang, Charles Z.; Wei, Shi-Peng; Alli, Abdel A.; Eaton, Douglas C.; Shen, Bao-Zhong; Li, Xue-Qi

    2013-01-01

    We used mouse cortical collecting duct principal cells (mpkCCDc14 cell line) as a model to determine whether statins reduce the harmful effects of cyclosporine A (CsA) on the distal nephron. The data showed that treatment of cells with CsA increased transepithelial resistance and that the effect of CsA was abolished by lovastatin. Scanning ion conductance microscopy showed that CsA significantly increased the height of cellular protrusions near tight junctions. In contrast, lovastatin eliminated the protrusions and even caused a modest depression between cells. Western blot analysis and confocal microscopy showed that lovastatin also abolished CsA-induced elevation of both zonula occludens-1 and cholesterol in tight junctions. In contrast, a high concentration of CsA induced apoptosis, which was also attenuated by lovastatin, elevated intracellular ROS via activation of NADPH oxidase, and increased the expression of p47phox. Sustained treatment of cells with lovastatin also induced significant apoptosis, which was attenuated by CsA, but did not elevate intracellular ROS. These results indicate that both CsA and lovastatin are harmful to principal cells of the distal tubule, but via ROS-dependent and ROS-independent apoptotic pathways, respectively, and that they counteract probably via mobilization of cellular cholesterol levels. PMID:23720343

  6. Effects of frutalin on early follicle morphology, ultrastructure and gene expression in cultured goat ovarian cortical tissue.

    PubMed

    Soares, Maria A A; Costa, José J N; Vasconcelos, Gisvani L; Ribeiro, Regislane P; Souza, José C; Silva, André L C; Van den Hurk, Robert; Silva, José R V

    2017-02-15

    Frutalin is a galactose-binding lectin that has an irreversible cytotoxic effect on HeLa cervical cancer cells, by inducing apoptosis and inhibiting cell proliferation. It was previously shown that after in vitro incubation, frutalin is internalized into HeLa cells nucleus, which indicates that frutalin apoptosis-inducing activity might be linked with its nuclear localization. Considering that drugs commonly used for cancer treatment have a deleterious effect on germ cells, the aim of this study was to evaluate the effect of frutalin on the activation, survival, ultrastructure and gene expression in follicles cultured within ovarian tissue. Goat ovarian fragments were cultured for 6 days in α-MEM+ alone or supplemented with frutalin (1, 10, 50, 100 or 200 µg/ml). Non-culturad and cultured tissues were processed for histological and ultrastructural analysis and they were also stored to evaluate the expression of anti- and pro-apoptotic genes by quantitative polymerase chain reaction (qPCR). The results showed that the frutalin, at all concentrations tested, reduced follicular survival when compared with control medium. Higher concentrations of frutalin (50, 100 or 200 µg/ml) also reduced follicular survival when compared with those tissues cultured with 1 or 10 µg/ml of frutalin. The ultrastructural analysis showed that atretic cultured follicles had retracted oocytes and a large number of vacuoles spread throughout the cytoplasm. In addition, signs of damage of mitochondrial membranes and cristae were observed. Moreover, although a dose-response effect on gene expression has not been observed, when compared with tissues culture in control medium, the presence of frutalin increased in mRNA expression pro-apoptotic genes. In conclusion, frutalin reduces follicular survival at all concentrations tested, its effects being more pronounced when high concentrations of this lectin (50, 100 and 200 µg/ml) are used. Gene expression profile and ultrastrutural features of

  7. Polarized Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cell Monolayers Have Higher Resistance to Oxidative Stress-Induced Cell Death Than Nonpolarized Cultures

    PubMed Central

    Hsiung, Jamie; Zhu, Danhong

    2015-01-01

    Oxidative stress-mediated injury to the retinal pigment epithelium (RPE) is a major factor involved in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. Human embryonic stem cell (hESC)-derived RPE cells are currently being evaluated for their potential for cell therapy in AMD patients through subretinal injection of cells in suspension and subretinal placement as a polarized monolayer. To gain an understanding of how transplanted RPE cells will respond to the highly oxidatively stressed environment of an AMD patient eye, we compared the survival of polarized and nonpolarized RPE cultures following oxidative stress treatment. Polarized, nonpolarized/confluent, nonpolarized/subconfluent hESC-RPE cells were treated with H2O2. Terminal deoxynucleotidyl transferase dUTP nick end labeling stains revealed the highest amount of cell death in subconfluent hESC-RPE cells and little cell death in polarized hESC-RPE cells with H2O2 treatment. There were higher levels of proapoptotic factors (phosphorylated p38, phosphorylated c-Jun NH2-terminal kinase, Bax, and cleaved caspase 3 fragments) in treated nonpolarized RPE—particularly subconfluent cells—relative to polarized cells. On the other hand, polarized RPE cells had constitutively higher levels of cell survival and antiapoptotic signaling factors such as p-Akt and Bcl-2, as well as antioxidants superoxide dismutase 1 and catalase relative to nonpolarized cells, that possibly contributed to polarized cells’ higher tolerance to oxidative stress compared with nonpolarized RPE cells. Subconfluent cells were particularly sensitive to oxidative stress-induced apoptosis. These results suggest that implantation of polarized hESC-RPE monolayers for treating AMD patients with geographic atrophy should have better survival than injections of hESC-RPE cells in suspension. PMID:25411476

  8. Cytochrome P4501A induction in primary cultures of embryonic European starling hepatocytes exposed to TCDD, PeCDF and TCDF.

    PubMed

    Farmahin, Reza; Crump, Doug; Jones, Stephanie P; Mundy, Lukas J; Kennedy, Sean W

    2013-05-01

    Novel methods that predict the sensitivity of avian embryos to the toxic effects of dioxin-like compounds (DLCs) using either (1) knowledge of the identity of amino acids at key sites within the ligand binding domain of aryl hydrocarbon receptor 1 (AHR1) or (2) a luciferase reporter gene assay that measures AHR1 activation were recently reported. Results from both methods predict that European starling (Sturnus vulgaris) and domestic chicken (Gallus gallus domesticus) embryos have similar sensitivity to the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Chicken embryos are highly sensitive to DLC toxicity, and the prediction that starlings are equally sensitive is surprising given their widespread distribution and large population size. In an attempt to learn more about starling sensitivity to DLCs, we determined concentration-dependent effects of TCDD, PeCDF and TCDF on cytochrome P4501A4 and 1A5 (CYP1A4 and 1A5) mRNA levels in primary cultures of hepatocytes prepared from embryonic European starlings. It has been demonstrated that the sensitivity of avian hepatocytes to CYP1A4/5 induction is well correlated with LD50 values of DLCs for several avian species. The results of the present study indicate that European starling hepatocytes are indeed as sensitive as chicken hepatocytes to CYP1A4/5 induction after exposure to TCDD. However, starling hepatocytes are less sensitive than chicken hepatocytes to CYP1A4/5 induction by PeCDF and TCDF.

  9. Short-Term Culture of Ovarian Cortical Strips From Capuchin Monkeys (Sapajus apella): A Morphological, Viability, and Molecular Study of Preantral Follicular Development In Vitro

    PubMed Central

    Brito, A. B.; van den Hurk, R.; Lima, J. S.; Miranda, M. S.; Ohashi, O. M.; Domingues, S. F. S.

    2013-01-01

    The aim of this study was to evaluate whether an in vitro culture (IVC) medium containing either or not β-mercaptoethanol (BME), bone morphogenetic protein 4 (BMP4), or pregnant mare serum gonadotrophin (PMSG) could be able to promote the development of capuchin monkeys’ preantral follicles enclosed in ovarian cortical strips. Follicular viability after IVC was similar to control (89.32%). Primordial follicle recruitment to primary stage was not reached with IVC, but the rate of secondary follicle formation was increased in the medium supplemented with BME, BMP4, and PMSG (44.86%) when compared to IVC control (9.20%). In the medium supplemented with BME, BMP4, and PMSG, contrary to other media, anti-müllerian hormone-messenger RNA (mRNA) expression in ovarian tissue was upregulated (3.4-fold), while that of growth differentiation factor-9 was maintained. The BMP4-mRNA expression, however, appeared downregulated in all cultured tissues. Our findings show a favorable effect of BME, BMP4, and PMSG on the in vitro development of secondary follicles from capuchin monkeys. PMID:23314959

  10. Short-term culture of ovarian cortical strips from capuchin monkeys (Sapajus apella): a morphological, viability, and molecular study of preantral follicular development in vitro.

    PubMed

    Brito, A B; Santos, R R; van den Hurk, R; Lima, J S; Miranda, M S; Ohashi, O M; Domingues, S F S

    2013-08-01

    The aim of this study was to evaluate whether an in vitro culture (IVC) medium containing either or not β-mercaptoethanol (BME), bone morphogenetic protein 4 (BMP4), or pregnant mare serum gonadotrophin (PMSG) could be able to promote the development of capuchin monkeys' preantral follicles enclosed in ovarian cortical strips. Follicular viability after IVC was similar to control (89.32%). Primordial follicle recruitment to primary stage was not reached with IVC, but the rate of secondary follicle formation was increased in the medium supplemented with BME, BMP4, and PMSG (44.86%) when compared to IVC control (9.20%). In the medium supplemented with BME, BMP4, and PMSG, contrary to other media, anti-müllerian hormone-messenger RNA (mRNA) expression in ovarian tissue was upregulated (3.4-fold), while that of growth differentiation factor-9 was maintained. The BMP4-mRNA expression, however, appeared downregulated in all cultured tissues. Our findings show a favorable effect of BME, BMP4, and PMSG on the in vitro development of secondary follicles from capuchin monkeys.

  11. Meso-dihydroguaiaretic acid and licarin A of Machilus thunbergii protect against glutamate-induced toxicity in primary cultures of a rat cortical cells

    PubMed Central

    Ma, Choong Je; Kim, So Ra; Kim, Jinwoong; Kim, Young Choong

    2005-01-01

    We previously reported that four lignans isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae) protected primary cultures of rat cortical neurons from neurotoxicity induced by glutamate. Among the lignans, meso-dihydroguaiarectic acid (MDGA) and licarin A significantly attenuated glutamate-induced neurotoxicity when added prior to or right after the excitotoxic glutamate challenge. The neuroprotective activities of two lignans appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than that induced by kainic acid. MDGA and licarin A diminished the calcium influx that routinely accompanies with the glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of cellular nitric oxide and peroxide to the level of control cells. They also preserved cellular activities of antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and glutathione reductase reduced in the glutamate-injured neuronal cells. Thus, our results suggest that MDGA and licarin A significantly protect primary cultured neuronal cells against glutamate-induced oxidative stress, via antioxidative activities. PMID:16151440

  12. Effects of 17beta-estradiol and IGF-1 on L-type voltage-activated and stretch-activated calcium currents in cultured rat cortical neurons.

    PubMed

    Sánchez, Julio C; López-Zapata, Diego F; Pinzón, Oscar A

    2014-01-01

    Calcium transport pathways are key factors for understanding how changes in the cytoplasmic calcium concentration are associated with neuroprotection because calcium is involved in the onset of death signaling in neurons. This study characterized the effects of 17β-estradiol and IGF-1 on voltage-activated and stretch-activated calcium channels in rat cultured cortical neurons. The whole-cell patch-clamp technique, using a voltage steps protocol or by applying positive pressure into the micropipette, was used on 7-10 day cultured neurons from a Wistar rat cortex, and pharmacological characterization was performed on these neurons. Both 17β-estradiol and IGF-1 inhibited the currents mediated by L-type voltage-activated calcium channels, although the IGF-1 effects were lower than those of 17β-estradiol. The effect of both hormones together was greater than the sum of the effects of the individual agents. Unlike IGF-1, 17β-estradiol decreased the current mediated by stretch-activated channels. The inhibition of the classical receptors of these hormones did not affect the results. Both hormones regulate voltage-activated calcium channels in a synergistic way, but only 17β-estradiol has an inhibitory effect on stretch-activated calcium channels. These effects are not mediated by classical receptors and may be relevant to the neuroprotective effects of both hormones because they diminish calcium entry into the neuron and decrease the possibility for the onset of apoptotic signaling.

  13. Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons.

    PubMed

    Hogberg, Helena T; Sobanski, Tomasz; Novellino, Antonio; Whelan, Maurice; Weiss, Dieter G; Bal-Price, Anna K

    2011-01-01

    Due to lack of knowledge only a few industrial chemicals have been identified as developmental neurotoxicants. Current developmental neurotoxicity (DNT) guidelines (OECD and EPA) are based entirely on in vivo studies that are both time consuming and costly. Consequently, there is a high demand to develop alternative in vitro methods for initial screening to prioritize chemicals for further DNT testing. One of the most promising tools for neurotoxicity assessment is the measurement of neuronal electrical activity using micro-electrode arrays (MEAs) that provides a functional and neuronal specific endpoint that until now has been used mainly to detect acute neurotoxicity. Here, electrical activity measurements were evaluated to be a suitable endpoint for the detection of potential developmental neurotoxicants. Initially, primary cortical neurons grown on MEA chips were characterized for different cell markers over time, using immunocytochemistry. Our results show that primary cortical neurons could be a promising in vitro model for DNT testing since some of the most critical neurodevelopment processes such as progenitor cell commitment, proliferation and differentiation of astrocytes and maturation of neurons are present. To evaluate if electrical activity could be a suitable endpoint to detect chemicals with DNT effects, our model was exposed to domoic acid (DomA), a potential developmental neurotoxicant for up to 4 weeks. Long-term exposure to a low concentration (50nM) of DomA increased the basal spontaneous electrical activity as measured by spike and burst rates. Moreover, the effect induced by the GABA(A) receptor antagonist bicuculline was significantly lower in the DomA treated cultures than in the untreated ones. The MEA measurements indicate that chronic exposure to DomA changed the spontaneous electrical activity leading to the possible neuronal mal functioning. The obtained results suggest that the MEAs could be a useful tool to identify compounds with

  14. Intrinsic and extrinsic mechanisms control the termination of cortical interneuron migration.

    PubMed

    Inamura, Naoko; Kimura, Toshiya; Tada, Satoshi; Kurahashi, Takashi; Yanagida, Mitsutoshi; Yanagawa, Yuchio; Ikenaka, Kazuhiro; Murakami, Fujio

    2012-04-25

    During development, neurons migrate from their site of origin to their final destinations. Upon reaching this destination, the termination of their migration is crucial for building functional architectures such as laminated structures and nuclei. How this termination is regulated, however, is not clear. Here, we investigated the contribution of cell-intrinsic mechanisms and extrinsic factors. Using GAD67-GFP knock-in mice and in utero electroporation cell labeling, we visualized GABAergic neurons and analyzed their motility in vitro. We find that the motility of GABAergic neurons in cortical slices gradually decreases as development proceeds and is almost abolished by the end of the first postnatal week. Consistent with this, a reduction of embryonic interneuron motility occurred in dissociated cultures. This is in part due to cell-intrinsic mechanisms, as a reduction in motility is observed during long-term culturing on glial feeder cells. Cell-intrinsic regulation is further supported by observations that interneurons labeled in early stages migrated more actively than those labeled in late stages in the same cortical explant. We found evidence suggesting that upregulation of the potassium-chloride cotransporter KCC2 underlies this intrinsic regulation. Reduced motility is also observed when embryonic interneurons are plated on postnatal cortical feeder cells, suggesting extrinsic factors derived from the postnatal cortex too contribute to termination. These factors should include secreted molecules, as cultured postnatal cortical cells could exercise this effect without directly contacting the interneuron. These findings suggest that intrinsic mechanisms and extrinsic factors coordinate to reduce the motility of migrating neurons, thereby leading to the termination of migration.

  15. Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach

    PubMed Central

    Jaramillo, Maria; Banerjee, Ipsita

    2012-01-01

    Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed

  16. Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution

    PubMed Central

    Nomura, Tadashi; Yamashita, Wataru; Gotoh, Hitoshi; Ono, Katsuhiko

    2015-01-01

    The mammalian neocortex is a remarkable structure that is characterized by tangential surface expansion and six-layered lamination. However, how the mammalian neocortex emerged during evolution remains elusive. Because all modern reptiles have a homolog of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are valuable to explore the origin of the neocortex. However, reptilian cortical development and the underlying molecular mechanisms remain unclear, mainly due to technical difficulties with sample collection and embryonic manipulation. Here, we introduce a method of embryonic manipulations for the Madagascar ground gecko and Chinese softshell turtle. We established in ovo electroporation and an ex ovo culture system to address neural stem cell dynamics, neuronal differentiation and migration. Applications of these techniques illuminate the developmental mechanisms underlying reptilian corticogenesis, which provides significant insight into the evolutionary steps of different types of cortex and the origin of the mammalian neocortex. PMID:25759636

  17. Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution.

    PubMed

    Nomura, Tadashi; Yamashita, Wataru; Gotoh, Hitoshi; Ono, Katsuhiko

    2015-01-01

    The mammalian neocortex is a remarkable structure that is characterized by tangential surface expansion and six-layered lamination. However, how the mammalian neocortex emerged during evolution remains elusive. Because all modern reptiles have a homolog of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are valuable to explore the origin of the neocortex. However, reptilian cortical development and the underlying molecular mechanisms remain unclear, mainly due to technical difficulties with sample collection and embryonic manipulation. Here, we introduce a method of embryonic manipulations for the Madagascar ground gecko and Chinese softshell turtle. We established in ovo electroporation and an ex ovo culture system to address neural stem cell dynamics, neuronal differentiation and migration. Applications of these techniques illuminate the developmental mechanisms underlying reptilian corticogenesis, which provides significant insight into the evolutionary steps of different types of cortex and the origin of the mammalian neocortex.

  18. Impairments in brain-derived neurotrophic factor-induced glutamate release in cultured cortical neurons derived from rats with intrauterine growth retardation: possible involvement of suppression of TrkB/phospholipase C-γ activation.

    PubMed

    Numakawa, Tadahiro; Matsumoto, Tomoya; Ooshima, Yoshiko; Chiba, Shuichi; Furuta, Miyako; Izumi, Aiko; Ninomiya-Baba, Midori; Odaka, Haruki; Hashido, Kazuo; Adachi, Naoki; Kunugi, Hiroshi

    2014-04-01

    Low birth weight due to intrauterine growth retardation (IUGR) is suggested to be a risk factor for various psychiatric disorders such as schizophrenia. It has been reported that developmental cortical dysfunction and neurocognitive deficits are observed in individuals with IUGR, however, the underlying molecular mechanisms have yet to be elucidated. Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are associated with schizophrenia and play a role in cortical development. We previously demonstrated that BDNF induced glutamate release through activation of the TrkB/phospholipase C-γ (PLC-γ) pathway in developing cultured cortical neurons, and that, using a rat model for IUGR caused by maternal administration of thromboxane A2, cortical levels of TrkB were significantly reduced in IUGR rats at birth. These studies prompted us to hypothesize that TrkB reduction in IUGR cortex led to impairment of BDNF-dependent glutamatergic neurotransmission. In the present study, we found that BDNF-induced glutamate release was strongly impaired in cultured IUGR cortical neurons where TrkB reduction was maintained. Impairment of BDNF-induced glutamate release in IUGR neurons was ameliorated by transfection of human TrkB (hTrkB). Although BDNF-stimulated phosphorylation of TrkB and of PLC-γ was decreased in IUGR neurons, the hTrkB transfection recovered the deficits in their phosphorylation. These results suggest that TrkB reduction causes impairment of BDNF-stimulated glutamatergic function via suppression of TrkB/PLC-γ activation in IUGR cortical neurons. Our findings provide molecular insights into how IUGR links to downregulation of BDNF function in the cortex, which might be involved in the development of IUGR-related diseases such as schizophrenia.

  19. Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures.

    PubMed

    Dawson, V L; Brahmbhatt, H P; Mong, J A; Dawson, T M

    1994-11-01

    Nitric oxide (NO) is a potent biological messenger molecule in the central nervous system (CNS). There are several potential sources of NO production in the CNS, including neurons and endothelial cells which express NO synthase (NOS) constitutively. Astrocytes and microglia can be induced by cytokines to express a NOS isoform similar to macrophage NOS (mNOS). Primary mixed glial cultures exposed to lipopolysaccharide (LPS) or a combination of LPS and gamma-interferon (INF-gamma) produce nitrite, a breakdown product of NO formation, in a dose-dependent manner. Nitrite production is detectable at 12 hr, peaks at 48 hr and is sustained for at least 96 hr. The NOS inhibitor, nitro-L-arginine (NArg), inhibits nitrite formation, but the immunosuppressant agent, FK506, does not. In mixed glial-neuronal cultures exposed to 50 ng LPS or 5 ng LPS and 1 microgram INF-gamma, neurons begin to die at 48 hr, approx. 24-36 hr after detectable nitrite production. Neurotoxicity is attenuated by 100 microM NArg. These data indicate that expression of inducible mNOS causes delayed neurotoxicity.

  20. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.

    PubMed

    van der Meer, Andries D; Orlova, Valeria V; ten Dijke, Peter; van den Berg, Albert; Mummery, Christine L

    2013-09-21

    Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have

  1. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture

    SciTech Connect

    Gu, Angel; Tsark, Walter; Holmes, Kathryn V.; Shively, John E.

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  2. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons.

    PubMed

    Himi, T; Ikeda, M; Yasuhara, T; Nishida, M; Morita, I

    2003-12-01

    Cysteine uptake is the rate-limiting process in glutathione synthesis. Previously we have shown that the inhibitors of excitatory amino acid transporters (EAATs) significantly enhance glutamate toxicity via depletion of intracellular glutathione. In this study we show evidence that the neuronal glutamate transporter EAAT3 is directly enrolled in cysteine uptake in cultured neurons. Neuronal cysteine uptake was dependent on the extracellular sodium, and was suppressed by EAAT inhibitors. Cysteine uptake was suppressed by extracellular glutamate and aspartate, substrates of EAATs, and not by substrates of cysteine transporters. Intracellular glutathione levels were reduced by EAAT inhibitors, and not by inhibitors of cysteine transporters. Knock down of EAAT3 expression using antisense oligonucleotide significantly reduced cysteine uptake, intracellular glutathione level, and neuronal viability against oxidative stress. These facts indicate that EAAT3 functions as a cysteine transporter, and this function seems to be unique and distinct from cysteine transporters that have been reported.

  3. Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation.

    PubMed

    Bolshakov, Alexey P; Mikhailova, Maria M; Szabadkai, György; Pinelis, Vsevolod G; Brustovetsky, Nickolay; Rizzuto, Rosario; Khodorov, Boris I

    2008-06-01

    To clarify the role of the mitochondrial permeability transition pore (MPT) in the mechanism of the glutamate-induced delayed calcium deregulation (DCD) and mitochondrial depolarization (MD), we studied changes in cytosolic (pH(c)) and mitochondrial pH (pH(m)) induced by glutamate in cultured cortical neurons expressing pH-sensitive fluorescent proteins. We found that DCD and MD were associated with a prominent pH(m) decrease which presumably resulted from MPT opening. This pH(m) decrease occurred with some delay after the onset of DCD and MD. This argued against the hypothesis that MPT opening plays a dominant role in triggering of DCD. This conclusion was also supported by experiments in which Ca(2+) was replaced with antagonist of MPT opening Sr(2+). We found that in Sr(2+)-containing medium glutamate-induced delayed strontium deregulation (DSD), similar to DCD, which was accompanied by a profound MD. Analysis of the changes in pH(c) and pH(m) associated with DSD led us to conclude that MD in Sr(2+)-containing medium occurred without involvement of the pore. In contrast, in Ca(2+)-containing medium such "non-pore mechanism" was responsible only for MD initiation while in the final stages of MD development the MPT played a major role.

  4. The Serum Response Factor and a Putative Novel Transcription Factor Regulate Expression of the Immediate-Early Gene Arc/Arg3.1 in Cultured Cortical Neurons

    PubMed Central

    Pintchovski, Sean A.; Peebles, Carol L.; Kim, Hong Joo; Verdin, Eric; Finkbeiner, Steven

    2010-01-01

    The immediate-early effector gene Arc/Arg3.1 is robustly upregulated by synaptic activity associated with learning and memory. Here we show in primary cortical neuron culture that diverse stimuli induce Arc expression through new transcription. Searching for regulatory regions important for Arc transcription, we found nine DNaseI-sensitive nucleosome-depleted sites at this genomic locus. A reporter gene encompassing these sites responded to synaptic activity in an NMDA receptor–dependent manner, consistent with endogenous Arc mRNA. Responsiveness mapped to two enhancer regions ∼6.5 kb and ∼1.4 kb upstream of Arc. We dissected these regions further and found that the proximal enhancer contains a functional and conserved “Zeste-like” response element that binds a putative novel nuclear protein in neurons. Therefore, activity regulates Arc transcription partly by a novel signaling pathway. We also found that the distal enhancer has a functional and highly conserved serum response element. This element binds serum response factor, which is recruited by synaptic activity to regulate Arc. Thus, Arc is the first target of serum response factor that functions at synapses to mediate plasticity. PMID:19193899

  5. Vitamin E protected cultured cortical neurons from oxidative stress-induced cell death through the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase.

    PubMed

    Numakawa, Yumiko; Numakawa, Tadahiro; Matsumoto, Tomoya; Yagasaki, Yuki; Kumamaru, Emi; Kunugi, Hiroshi; Taguchi, Takahisa; Niki, Etsuo

    2006-05-01

    The role of vitamin E in the CNS has not been fully elucidated. In the present study, we found that pre-treatment with vitamin E analogs including alphaT (alpha-tocopherol), alphaT3 (alpha -tocotrienol), gammaT, and gammaT3 for 24 h prevented the cultured cortical neurons from cell death in oxidative stress stimulated by H2O2, while Trolox, a cell-permeable analog of alphaT, did not. The preventive effect of alphaT was dependent on de novo protein synthesis. Furthermore, we found that alphaT exposure induced the activation of both the MAP kinase (MAPK) and PI3 kinase (PI3K) pathways and that the alphaT-dependent survival effect was blocked by the inhibitors, U0126 (an MAPK pathway inhibitor) or LY294002 (a PI3K pathway inhibitor). Interestingly, the up-regulation of Bcl-2 (survival promoting molecule) was induced by alphaT application. The up-regulation of Bcl-2 did not occur in the presence of U0126 or LY294002, suggesting that alphaT-up-regulated Bcl-2 is mediated by these kinase pathways. These observations suggest that vitamin E analogs play an essential role in neuronal maintenance and survival in the CNS.

  6. Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    PubMed Central

    Badiola, N; Penas, C; Miñano-Molina, A; Barneda-Zahonero, B; Fadó, R; Sánchez-Opazo, G; Comella, J X; Sabriá, J; Zhu, C; Blomgren, K; Casas, C; Rodríguez-Alvarez, J

    2011-01-01

    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress. PMID:21525936

  7. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium.

    PubMed

    Mistretta, Charlotte M; Liu, Hong-Xiang; Gaffield, William; MacCallum, Donald K

    2003-02-01

    From time of embryonic emergence, the gustatory papilla types on the mammalian tongue have stereotypic anterior and posterior tongue locations. Furthermore, on anterior tongue, the fungiform papillae are patterned in rows. Among the many molecules that have potential roles in regulating papilla location and pattern, Sonic hedgehog (Shh) has been localized within early tongue and developing papillae. We used an embryonic, tongue organ culture system that retains temporal, spatial, and molecular characteristics of in vivo taste papilla morphogenesis and patterning to study the role of Shh in taste papilla development. Tongues from gestational day 14 rat embryos, when papillae are just beginning to emerge on dorsal tongue, were maintained in organ culture for 2 days. The steroidal alkaloids, cyclopamine and jervine, that specifically disrupt the Shh signaling pathway, or a Shh-blocking antibody were added to the standard culture medium. Controls included tongues cultured in the standard medium alone, and with addition of solanidine, an alkaloid that resembles cyclopamine structurally but that does not disrupt Shh signaling. In cultures with cyclopamine, jervine, or blocking antibody, fungiform papilla numbers doubled on the dorsal tongue with a distribution that essentially eliminated inter-papilla regions, compared with tongues in standard medium or solanidine. In addition, fungiform papillae developed on posterior oral tongue, just in front of and beside the single circumvallate papilla, regions where fungiform papillae do not typically develop. The Shh protein was in all fungiform papillae in embryonic tongues, and tongue cultures with standard medium or cyclopamine, and was conspicuously localized in the basement membrane region of the papillae. Ptc protein had a similar distribution to Shh, although the immunoproduct was more diffuse. Fungiform papillae did not develop on pharyngeal or ventral tongue in cyclopamine and jervine cultures, or in the tongue midline

  8. The trans-species core SELF: the emergence of active cultural and neuro-ecological agents through self-related processing within subcortical-cortical midline networks.

    PubMed

    Panksepp, Jaak; Northoff, Georg

    2009-03-01

    The nature of "the self" has been one of the central problems in philosophy and more recently in neuroscience. This raises various questions: (i) Can we attribute a self to animals? (ii) Do animals and humans share certain aspects of their core selves, yielding a trans-species concept of self? (iii) What are the neural processes that underlie a possible trans-species concept of self? (iv) What are the developmental aspects and do they result in various levels of self-representation? Drawing on recent literature from both human and animal research, we suggest a trans-species concept of self that is based upon what has been called a "core-self" which can be described by self-related processing (SRP) as a specific mode of interaction between organism and environment. When we refer to specific neural networks, we will here refer to the underlying system as the "core-SELF." The core-SELF provides primordial neural coordinates that represent organisms as living creatures-at the lowest level this elaborates interoceptive states along with raw emotional feelings (i.e., the intentions in action of a primordial core-SELF) while higher medial cortical levels facilitate affective-cognitive integration (yielding a fully-developed nomothetic core-self). Developmentally, SRP allows stimuli from the environment to be related and linked to organismic needs, signaled and processed within core-self structures within subcorical-cortical midline structures (SCMS) that provide the foundation for epigenetic emergence of ecologically framed, higher idiographic forms of selfhood across different individuals within a species. These functions ultimately operate as a coordinated network. We postulate that core SRP operates automatically, is deeply affective, and is developmentally and epigenetically connected to sensory-motor and higher cognitive abilities. This core-self is mediated by SCMS, embedded in visceral and instinctual representations of the body that are well integrated with basic

  9. Drugs for stroke: action of nitrone (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide on rat cortical neurons in culture subjected to oxygen-glucose-deprivation.

    PubMed

    Arce, Carmen; Diaz-Castroverde, Sabela; Canales, María J; Marco-Contelles, José; Samadi, Abdelouahid; Oset-Gasque, María J; González, María P

    2012-09-01

    The action of (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide (RP6) on rat cortical neurons in culture, under oxygen-glucose-deprivation conditions, is reported. Cortical neurons in culture were treated during 1 h with OGD. After, they were placed under normal conditions during 24 h (reperfusion) in absence and presence of RP6. Different parameters were measured under each condition (control, 1 h OGD and 1 h OGD + reperfusion in absence and presence of RP6). RP6 protects neurons against ROS generation, lipid peroxidation levels, LDH release and mitochondrial membrane potential alteration, when administered during reperfusion after the OGD damage. Consequently, these results show that nitrone RP6 protects cells against ischemia injury produced during the reoxygenation, and could be a potential drug for the ictus therapy.

  10. Pyruvate and cilostazol protect cultured rat cortical pericytes against tissue plasminogen activator (tPA)-induced cell death.

    PubMed

    Kim, Ha Na; Kim, Tae-Youn; Yoon, Young Hee; Koh, Jae-Young

    2015-12-02

    Since even a brief ischemia can cause permanent brain damage, rapid restoration of blood flow is critical to limiting damage. Although intravenous tPA during the acute stage is the treatment of choice for achieving reperfusion, this treatment is sometimes associated with brain hemorrhage. Agents that reduce tPA-related bleeding risk may help expand its therapeutic window. This study assessed whether zinc dyshomeostasis underlies the toxic effect of tPA on brain vascular pericytes; whether pyruvate, an inhibitor of zinc toxicity, protects pericytes against tPA-induced cell death; and whether cilostazol, which protects pericytes against tPA-induced cell death, affects zinc dyshomeostasis associated with tPA toxicity. Cultured pericytes from newborn rat brains were treated with 10-200 μg/ml tPA for 24 h, inducing cell death in a concentration-dependent manner. tPA-induced cell death was preceded by increases in intracellular free zinc levels, and was substantially attenuated by plasminogen activator inhibitor-1 (PAI-1) or TPEN. Pyruvate completely blocked direct zinc toxicity and tPA-induced pericyte cell death. Both cAMP and cilostazol, a PDE3 inhibitor that attenuates tPA-induced pericyte cell death in vitro and tPA-induced brain hemorrhage in vivo, reduced zinc- and tPA-induced pericyte cell death, suggesting that zinc dyshomeostasis may be targeted by cilostazol in tPA toxicity. These findings show that tPA-induced pericyte cell death may involve zinc dyshomeostasis, and that pyruvate and cilostazol attenuate tPA-induced cell death by reducing the toxic cascade triggered by zinc dyshomeostasis. Since pyruvate is an endogenous metabolite and cilostazol is an FDA-approved drug, in vivo testing of both as protectors against tPA-induced brain hemorrhage may be warranted. This article is part of a Special Issue entitled SI: Neuroprotection.

  11. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    SciTech Connect

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  12. Amyloid beta protein inhibits cellular MTT reduction not by suppression of mitochondrial succinate dehydrogenase but by acceleration of MTT formazan exocytosis in cultured rat cortical astrocytes.

    PubMed

    Abe, K; Saito, H

    1998-08-01

    Alzheimer's disease amyloid beta protein (Abeta) inhibits cellular reduction of the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Kaneko et al. have previously hypothesized that Abeta works by suppressing mitochondrial succinate dehydrogenase (SDH), but Liu and Schubert have recently demonstrated that Abeta decreases cellular MTT reduction by accelerating the exocytosis of MTT formazan in neuronal cells. To ask which is the case in astrocytes, we compared the effects of Abeta and 3-nitropropionic acid (3-NP), a specific SDH inhibitor, on MTT reduction in cultured rat cortical astrocytes. Treatment with 3-NP (10 mM) decreased cellular activity of MTT reduction, regardless of the time of incubation with MTT. On the other hand. Abeta-induced inhibition of cellular MTT reduction was dependent on the time of incubation with MTT. The cells treated with Abeta (0.1-1000 nM) exhibited normal capacity for MTT reduction at an early stage of incubation ( < 30 min), but ceased to reduce MTT at the late stage (> 1 h). Microscopic examination revealed that Abeta treatment accelerated the appearance of needle-like MTT formazan crystals at the cell surface. These observations support that Abeta accelerates the exocytosis of MTT formazan in astrocytes. In addition to inhibition of MTT reduction, Abeta is known to induce morphological changes in astrocytes. Following addition of Abeta (20 microM), polygonal astrocytes changed into process-bearing stellate cells. To explore a possible linkage between these two effects of Abeta, we tested if astrocyte stellation is induced by agents that mimic the effect of Abeta on MTT reduction. Cholesterol (5 5000 nM) and lysophosphatidic acid (0.2-20 microg/ml) were found to accelerate the exocytosis of MTT formazan in a similar manner to Abeta, but failed to induce astrocyte stellation. Therefore, Abeta-induced inhibition of MTT reduction is unlikely to be directly linked to its effect on astrocyte morphology.

  13. Explant culture of mouse embryonic whole lung, isolated epithelium, or mesenchyme under chemically defined conditions as a system to evaluate the molecular mechanism of branching morphogenesis and cellular differentiation.

    PubMed

    Del Moral, Pierre-Marie; Warburton, David

    2010-01-01

    Lung primordial specification as well as branching morphogenesis, and the formation of various pulmonary cell lineages, requires a specific interaction of the lung endoderm with its surrounding mesenchyme and mesothelium. Lung mesenchyme has been shown to be the source of inductive signals for lung branching morphogenesis. Epithelial-mesenchymal-mesothelial interactions are also critical to embryonic lung morphogenesis. Early embryonic lung or