Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie
2015-01-01
In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ–secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions. PMID:25849374
Familial ectodermal dysplasia: a peers' agony.
Hegde, Karthik; Kashyap, Roopashri Rajesh; Nair, Gopakumar; Nair, Preeti P
2013-07-23
Ectodermal dysplasias include a various group of inherited disorders which share primary defect in the development of two or more tissues of embryonic ectodermal origin. Though there are many subtypes, ectodermal dysplasias are mainly hidrotic ectodermal dysplasia and hypohidrotic ectodermal dysplasia, among which the most common variety is X linked hypohidrotic ectodermal dysplasia. We report a rare case of X linked hypohidrotic ectodermal dysplasia occurring in a family with various skin, hair and oral abnormalities.
Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs
Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.
2012-01-01
The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926
Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs.
Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A
2012-01-01
The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial-mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues.
Karagenç, Levent; Sandikci, Mustafa
2010-01-01
The objective of the current study was to determine the tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. Quail-chick chimeras were constructed by transferring dissociated cells from the area opaca of the stage X–XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in embryonic as well as extra-embryonic tissues of the recipient embryo were examined using the QCPN monoclonal antibody after 6 days of incubation in serial sections taken at 100-μm intervals. Data gathered in the present study demonstrated that, when introduced into the subgerminal cavity of a recipient embryo, cells of the area opaca are able to populate not only extra-embryonic structures such as the amnion and the yolk sac, but also various embryonic tissues derived from the ectoderm and less frequently the mesoderm. Ectodermal chimerism was confined mainly to the head region and was observed in tissues derived from the neural ectoderm and the surface ectoderm, including the optic cup, diencephalon and lens. Although the possibility of random incorporation of transplanted cells into these embryonic structures cannot be excluded, these results would suggest that area opaca, a peripheral ring of cells in the avian embryo destined to form the extra-embryonic ectoderm and endoderm of the yolk sac, might harbor cells that have the potential to give rise to various cell types in the recipient chick embryo, including those derived from the surface ectoderm and neural ectoderm. PMID:19900180
Ectodermal dysplasia (ED) syndrome.
Chee, Siew-Yin; Wanga, Chung-Hsing; Lina, Wei-De; Tsaia, Fuu-Jen
2014-01-01
Ectodermal dysplasia (ED) syndrome comprises a large, heterogeneous group of inherited disorders that are defined by primary defects in the development of 2 or more tissues derived from the embryonic ectoderm. The tissues primarily involved are the skin and its appendages (including hair follicles, eccrine glands, sebaceous glands, nails) and teeth. The clinical features include sparse hair, abnormal or missing teeth, and an inability to sweat due to lack of sweat glands. One such case report of ectodermal dysplasia is presented here.
Plouhinec, Jean-Louis; Medina-Ruiz, Sofía; Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B; Harland, Richard M; Monsoro-Burq, Anne H
2017-10-01
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research.
Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B.; Harland, Richard M.
2017-01-01
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. PMID:29049289
USDA-ARS?s Scientific Manuscript database
Ectodermal dysplasia (ED) syndromes are rare genetic disorders that affect the development of tissues derived from the embryonic ectoderm. Studies and anecdotal experience have indicated that atopic disorders (AD) and immune deficiencies (ID) may be associated with ED in children. Some ED genotypes ...
ECTODERMAL WNT/β-CATENIN SIGNALING SHAPES THE MOUSE FACE
Reid, Bethany S.; Yang, Hui; Melvin, Vida Senkus; Taketo, Makoto M.; Williams, Trevor
2010-01-01
The canonical Wnt/β-catenin pathway is an essential component of multiple developmental processes. To investigate the role of this pathway in the ectoderm during facial morphogenesis, we generated conditional β-catenin mouse mutants using a novel ectoderm-specific Cre recombinase transgenic line. Our results demonstrate that ablating or stabilizing β-catenin in the embryonic ectoderm causes dramatic changes in facial morphology. There are accompanying alterations in the expression of Fgf8 and Shh, key molecules that establish a signaling center critical for facial patterning, the frontonasal ectodermal zone (FEZ). These data indicate that Wnt/β-catenin signaling within the ectoderm is critical for facial development and further suggest that this pathway is an important mechanism for generating the diverse facial shapes of vertebrates during evolution. PMID:21087601
Morphology of isolated mouse inner cell masses developing in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, L.M.; Spindle, A.I.; Pedersen, R.A.
1978-01-01
The purpose of this study was to examine the developmental capacity of the mouse inner cell mass (ICM) in the absence of the trophoblast. ICMs were isolated from blastocysts by immunosurgery and cultured under conditions that support egg cylinder formation by intact blastocysts. After 2 or 3 days of culture, the ICMs consisted of an outer layer of endoderm and an inner layer of ectoderm that had cavitated centrally. By 4 or 5 days of culture, 25 to 60% of these ICMs had developed into paired cysts, apparently by secondary cavity formation. The inner cell layer surrounding this secondary cavitymore » resembled the extraembryonic ectoderm of cultured egg cylinders. By 6 days of culture, 60% of the ICMs had expanded into yolk sac-like structures that subsequently produced capillaries containing blood cells. The ICMs appeared to develop mesoderm in two distinct ways. A few of them developed mesoderm as a third layer of cells in the cleft separating endoderm and ectoderm, presumably by migrating from the inner, ectodermal layer, through the primitive streak, as in the intact egg cylinder. In the rest of the ICMs the embryonic ectoderm gradually differentiated into mesoderm while still in the inner layer, without primitive streak formation. We suggest, therefore, that the continuous presence of the trophoblast or of its derivatives is not required for the cytodifferentiation of mesoderm although it may be important in establishing embryonic polarity or in providinginductive signals necessary for the morphogenetic aspects of mesoderm differentiation, specifically primitive streak formation.« less
The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.
Hilbrant, Maarten; Damen, Wim G M
2015-05-01
Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hereditary hypohidrotic ectodermal dysplasia: report of a rare case.
Paramkusam, Geetha; Meduri, Venkateswarlu; Nadendla, Lakshmi Kavitha; Shetty, Namratha
2013-09-01
Hereditary Hypohidrotic Ectodermal Dysplasia (HHED), an X-linked, recessive, Mendelian character, is seen usually in males and it is inherited through female carriers. It is characterised by congenital dysplasia of one or more ectodermal structures and it is manifested by hypohidrosis, hypotrichosis and hypodontia. It results from abnormal morphogenesis of cutaneous and oral embryonic ectoderm. Here, we are presenting a rare case of HHED in a 19 year female with classic features of this condition.
Hereditary Hypohidrotic Ectodermal Dysplasia: Report of a Rare Case
Paramkusam, Geetha; Meduri, Venkateswarlu; Nadendla, Lakshmi Kavitha; Shetty, Namratha
2013-01-01
Hereditary Hypohidrotic Ectodermal Dysplasia (HHED), an X-linked, recessive, Mendelian character, is seen usually in males and it is inherited through female carriers. It is characterised by congenital dysplasia of one or more ectodermal structures and it is manifested by hypohidrosis, hypotrichosis and hypodontia. It results from abnormal morphogenesis of cutaneous and oral embryonic ectoderm. Here, we are presenting a rare case of HHED in a 19 year female with classic features of this condition. PMID:24179947
Ectodermal Wnt signaling regulates abdominal myogenesis during ventral body wall development.
Zhang, Lingling; Li, Hanjun; Yu, Jian; Cao, Jingjing; Chen, Huihui; Zhao, Haixia; Zhao, Jianzhi; Yao, Yiyun; Cheng, Huihui; Wang, Lifang; Zhou, Rujiang; Yao, Zhengju; Guo, Xizhi
2014-03-01
Defects of the ventral body wall are prevalent birth anomalies marked by deficiencies in body wall closure, hypoplasia of the abdominal musculature and multiple malformations across a gamut of organs. However, the mechanisms underlying ventral body wall defects remain elusive. Here, we investigated the role of Wnt signaling in ventral body wall development by inactivating Wls or β-catenin in murine abdominal ectoderm. The loss of Wls in the ventral epithelium, which blocks the secretion of Wnt proteins, resulted in dysgenesis of ventral musculature and genito-urinary tract during embryonic development. Molecular analyses revealed that the dermis and myogenic differentiation in the underlying mesenchymal progenitor cells was perturbed by the loss of ectodermal Wls. The activity of the Wnt-Pitx2 axis was impaired in the ventral mesenchyme of the mutant body wall, which partially accounted for the defects in ventral musculature formation. In contrast, epithelial depletion of β-catenin or Wnt5a did not resemble the body wall defects in the ectodermal Wls mutant. These findings indicate that ectodermal Wnt signaling instructs the underlying mesodermal specification and abdominal musculature formation during ventral body wall development, adding evidence to the theory that ectoderm-mesenchyme signaling is a potential unifying mechanism for the origin of ventral body wall defects. Copyright © 2013 Elsevier Inc. All rights reserved.
Gleiberman, A S; Fedtsova, N G; Rosenfeld, M G
1999-09-15
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways. Copyright 1999 Academic Press.
Brenneis, Georg; Scholtz, Gerhard
2014-01-01
Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior ganglia in the ventral nerve cord of Pseudopallene sp. and evaluate this finding in light of the often discussed reduction of a segmented ‘opisthosoma’ during pycnogonid evolution. PMID:24736377
Fujiwara, Ken; Maliza, Rita; Tofrizal, Alimuddin; Batchuluun, Khongorzul; Ramadhani, Dini; Tsukada, Takehiro; Azuma, Morio; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi
2014-07-01
Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke's pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia.
Gold, David A; Nakanishi, Nagayasu; Hensley, Nicholai M; Hartenstein, Volker; Jacobs, David K
2016-11-01
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László
2010-03-01
Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.
Ectodermal dysplasia associated with sickle cell disease.
Volpato, Luiz Evaristo Ricci; Volpato, Maria Carmen Palma Faria; de Carvalhosa, Artur Aburad; Palma, Vinicius Canavarros; Borges, Alvaro Henrique
2014-01-01
Ectodermal dysplasia and sickle cell anaemia are inherited disorders that affect, respectively, the tissues derived from the embryonic ectoderm and the production of erythrocytes by the bone marrow. The simultaneous occurrence of both disorders is extremely rare. This is a case of both ectodermal dysplasia and sickle cell anaemia reported in a 6-year-old. The patient had been diagnosed with sickle cell anaemia for only six months when he sought treatment presenting with the following: hypotrichosis, dry skin, periocular hyperpigmentation, protruding lips, hypodontia, and morphologically altered teeth. The clinical features combined with his medical history led to the diagnosis of ectodermal dysplasia. Dentists should be prepared to recognise patterns that escape normality to aid in the diagnosis of systemic changes, even in patients with other previous diagnoses.
p63 protein is essential for the embryonic development of vibrissae and teeth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufini, Alessandro; Weil, Miguel; McKeon, Frank
2006-02-17
Development of skin appendages strongly depends on epithelial-mesenchymal interactions. One of the genes involved in this process is p63, a member of the p53 family of transcription factors, essential for ectodermal development, as elucidated by the phenotype of p63 knock-out mice. Surprisingly, no information on p63 expression in tooth and hair is yet available. Here, we show p63 expression during teeth and vibrissae morphogenesis in mouse embryos and we also show a correlation with the expression patterns of the epithelial marker keratin 5 and the proliferation marker Ki67. Our results show that p63 colocalizes with both K5 and Ki67 inmore » the epithelium of developing vibrissae, while in teeth p63 is expressed, together with K5, in the undifferentiated ectoderm (enamel organ), and in ameloblasts, a subpopulation of differentiated ectodermal cells. Moreover, p63 expression in tooth seems not to be fully colocalized with nuclear Ki67 expression.« less
Toledo Fonseca, Erika; De Oliveira Silva, Fernanda Menezes; Alcântara, Dayane; Carvalho Cardoso, Rafael; Luís Franciolli, André; Sarmento, Carlos Alberto Palmeira; Fratini, Paula; José Piantino Ferreira, Antônio; Miglino, Maria Angélica
2013-12-01
Birds occupy a prominent place in the Brazilian economy not only in the poultry industry but also as an animal model in many areas of scientific research. Thus the aim of this study was to provide a description of macro and microscopic aspects of the ectoderm-derived structures in chicken embryos / fetuses poultry (Gallus gallus domesticus) from 1st to 19th day of incubation. 40 fertilized eggs, from a strain of domestic chickens, with an incubation period of 2-19 days were subjected to macroscopic description, biometrics, light, and scanning microscopy. All changes observed during the development were described. The nervous system, skin and appendages and organs related to vision and hearing began to be identified, both macro and microscopically, from the second day of incubation. The vesicles from the primitive central nervous system-forebrain, midbrain, and hindbrain-were identified on the third day of incubation. On the sixth day of incubation, there was a clear vascularization of the skin. The optic vesicle was first observed fourth day of development and on the fifth day there was the beginning of the lens formation. Although embryonic development is influenced by animal line as well as external factors such as incubation temperature, this paper provides a chronological description for chicken (Gallus gallus domesticus) during its embryonic development. Copyright © 2013 Wiley Periodicals, Inc.
Ectodermal Dysplasia Associated with Sickle Cell Disease
Volpato, Luiz Evaristo Ricci; Volpato, Maria Carmen Palma Faria; de Carvalhosa, Artur Aburad; Palma, Vinicius Canavarros; Borges, Álvaro Henrique
2014-01-01
Ectodermal dysplasia and sickle cell anaemia are inherited disorders that affect, respectively, the tissues derived from the embryonic ectoderm and the production of erythrocytes by the bone marrow. The simultaneous occurrence of both disorders is extremely rare. This is a case of both ectodermal dysplasia and sickle cell anaemia reported in a 6-year-old. The patient had been diagnosed with sickle cell anaemia for only six months when he sought treatment presenting with the following: hypotrichosis, dry skin, periocular hyperpigmentation, protruding lips, hypodontia, and morphologically altered teeth. The clinical features combined with his medical history led to the diagnosis of ectodermal dysplasia. Dentists should be prepared to recognise patterns that escape normality to aid in the diagnosis of systemic changes, even in patients with other previous diagnoses. PMID:25343049
Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation.
Inman, Kimberly E; Downs, Karen M
2006-10-01
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.
Dynamic 3D culture promotes spontaneous embryonic stem cell differentiation in vitro.
Gerlach, Jörg C; Hout, Mariah; Edsbagge, Josefina; Björquist, Petter; Lübberstedt, Marc; Miki, Toshio; Stachelscheid, Harald; Schmelzer, Eva; Schatten, Gerald; Zeilinger, Katrin
2010-02-01
Spontaneous in vitro differentiation of mouse embryonic stem cells (mESC) is promoted by a dynamic, three-dimensional (3D), tissue-density perfusion technique with continuous medium perfusion and exchange in a novel four-compartment, interwoven capillary bioreactor. We compared ectodermal, endodermal, and mesodermal immunoreactive tissue structures formed by mESC at culture day 10 with mouse fetal tissue development at gestational day E9.5. The results show that the bioreactor cultures more closely resemble mouse fetal tissue development at gestational day E9.5 than control mESC cultured in Petri dishes.
Cascallana, Jose Luis; Bravo, Ana; Donet, Eva; Leis, Hugo; Lara, Maria Fernanda; Paramio, Jesús M; Jorcano, José L; Pérez, Paloma
2005-06-01
Hypohidrotic ectodermal dysplasia is a human syndrome defined by maldevelopment of one or more ectodermal-derived tissues, including the epidermis and cutaneous appendices, teeth, and exocrine glands. The molecular bases of this pathology converge in a dysfunction of the transcription factor nuclear factor of the kappa-enhancer in B cells (NF-kappaB), which is essential to epithelial homeostasis and development. A number of mouse models bearing disruptions in NF-kappaB signaling have been reported to manifest defects in ectodermal derivatives. In ectoderm-targeted transgenic mice overexpressing the glucocorticoid receptor (GR) [keratin 5 (K5)-GR mice], the NF-kappaB activity is greatly decreased due to functional antagonism between GR and NF-kappaB. Here, we report that K5-GR mice exhibit multiple epithelial defects in hair follicle, tooth, and palate development. Additionally, these mice lack Meibomian glands and display underdeveloped sweat and preputial glands. These phenotypic features appear to be mediated specifically by ligand-activated GR because the synthetic analog dexamethasone induced similar defects in epithelial morphogenesis, including odontogenesis, in wild-type mice. We have focused on tooth development in K5-GR mice and found that an inhibitor of steroid synthesis partially reversed the abnormal phenotype. Immunostaining revealed reduced expression of the inhibitor of kappaB kinase subunits, IKKalpha and IKKgamma, and diminished p65 protein levels in K5-GR embryonic tooth, resulting in a significantly reduced kappaB-binding activity. Remarkably, altered NF-kappaB activity elicited by GR overexpression correlated with a dramatic decrease in the protein levels of DeltaNp63 in tooth epithelia without affecting Akt, BMP4, or Foxo3a. Given that many of the 170 clinically distinct ectodermal dysplasia syndromes still remain without cognate genes, deciphering the molecular mechanisms of this mouse model with epithelial NF-kappaB and p63 dysfunction may provide important clues to understanding the basis of other ectodermal dysplasia syndromes.
Engineering epithelial-stromal interactions in vitro for toxicology assessment.
Belair, David G; Abbott, Barbara D
2017-05-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Belair, David G.; Abbott, Barbara D.
2018-01-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100
Regulation of cell protrusions by small GTPases during fusion of the neural folds
Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J
2016-01-01
Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.
Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad
2011-06-10
Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhan, Jun; Yang, Mei; Zhang, Jing; Guo, YongQing; Liu, Wei; Zhang, HongQuan
2015-05-01
Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues.
Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells
Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl
2008-01-01
We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875
Shalom-Feuerstein, Ruby; Serror, Laura; Aberdam, Edith; Müller, Franz-Josef; van Bokhoven, Hans; Wiman, Klas G; Zhou, Huiqing; Aberdam, Daniel; Petit, Isabelle
2013-02-05
Ectodermal dysplasia is a group of congenital syndromes affecting a variety of ectodermal derivatives. Among them, ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome is caused by single point mutations in the p63 gene, which controls epidermal development and homeostasis. Phenotypic defects of the EEC syndrome include skin defects and limbal stem-cell deficiency. In this study, we designed a unique cellular model that recapitulated major embryonic defects related to EEC. Fibroblasts from healthy donors and EEC patients carrying two different point mutations in the DNA binding domain of p63 were reprogrammed into induced pluripotent stem cell (iPSC) lines. EEC-iPSC from both patients showed early ectodermal commitment into K18(+) cells but failed to further differentiate into K14(+) cells (epidermis/limbus) or K3/K12(+) cells (corneal epithelium). APR-246 (PRIMA-1(MET)), a small compound that restores functionality of mutant p53 in human tumor cells, could revert corneal epithelial lineage commitment and reinstate a normal p63-related signaling pathway. This study illustrates the relevance of iPSC for p63 related disorders and paves the way for future therapy of EEC.
Avian skin development and the evolutionary origin of feathers.
Sawyer, Roger H; Knapp, Loren W
2003-08-15
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers. Copyright 2003 Wiley-Liss, Inc.
Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa
2014-01-01
Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. PMID:24569166
WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate.
Leung, Alan W; Murdoch, Barbara; Salem, Ahmed F; Prasad, Maneeshi S; Gomez, Gustavo A; García-Castro, Martín I
2016-02-01
Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues. Here, we set out to generate a model in which to decipher signaling and tissue interactions involved in human NC induction. Our novel human embryonic stem cell (ESC)-based model yields high proportions of multipotent NC cells (expressing SOX10, PAX7 and TFAP2A) in 5 days. We demonstrate a crucial role for WNT/β-catenin signaling in launching NC development, while blocking placodal and surface ectoderm fates. We provide evidence of the delicate temporal effects of BMP and FGF signaling, and find that NC development is separable from neural and/or mesodermal contributions. We further substantiate the notion of a neural-independent origin of NC through PAX6 expression and knockdown studies. Finally, we identify a novel pre-neural border state characterized by early WNT/β-catenin signaling targets that displays distinct responses to BMP and FGF signaling from the traditional neural border genes. In summary, our work provides a fast and efficient protocol for human NC differentiation under signaling constraints similar to those identified in vivo in model organisms, and strengthens a framework for neural crest ontogeny that is separable from neural and mesodermal fates. © 2016. Published by The Company of Biologists Ltd.
Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W
2015-01-01
Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.
Development and evolution of the vertebrate primary mouth
Soukup, Vladimír; Horácek, Ivan; Cerny, Robert
2013-01-01
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary–developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates. PMID:22804777
PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
Bradham, C A; Miranda, E L; McClay, D R
2004-04-01
Skeletogenesis in the sea urchin embryo is a simple model of biomineralization, pattern formation, and cell-cell communication during embryonic development. The calcium carbonate skeletal spicules are secreted by primary mesenchyme cells (PMCs), but the skeletal pattern is dictated by the embryonic ectoderm. Although the process of skeletogenesis is well characterized, there is little molecular understanding of the basis of patterning within this system. In this study, we examined the contribution of phosphatidylinositide 3-kinase (PI3K)-mediated signaling to the skeletogenic process in sea urchin embryos by using the well-established PI3K inhibitors LY294002 and wortmannin. Our results show that PI3K inhibitors specifically and reversibly block skeletogenesis, and that this blockade occurs within the PMCs rather than in the ectoderm, because the inhibitors block spiculogenesis in cultured micromeres. Our results are consistent with a model in which PI3K signaling is required, not for pattern sensing or interpretation but rather for the biomineralization process itself in the sea urchin embryo. Copyright 2004 Wiley-Liss, Inc.
Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.
Ratheesh, Aparna; Biebl, Julia; Vesela, Jana; Smutny, Michael; Papusheva, Ekaterina; Krens, S F Gabriel; Kaufmann, Walter; Gyoergy, Attila; Casano, Alessandra Maria; Siekhaus, Daria E
2018-05-07
Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, S X; Liang, J L; Sui, W G; Lin, H; Xue, W; Chen, J J; Zhang, Y; Gong, W W; Dai, Y; Ou, M L
2015-08-28
Ectodermal dysplasia (ED) represents a collection of rare disorders that result from a failure of development of the tissues derived from the embryonic ectoderm. ED is often associated with hair, teeth, and skin abnormalities, which are serious conditions affecting the quality of life of the patient. To date, a large number of genes have been found to be associated with this syndrome. Here, we report a patient with hypohidrotic ED (HED) without family history. We identified that this patient's disorder arises from an X-linked HED with a mutation in the EDA gene (G299D) found by whole-exome sequencing. In addition, in this paper we summarize the disease-causing mutations based on current literature. Overall, recent clinical and genetic research involving patients with HED have uncovered a large number of pathogenic mutations in EDA, which might contribute to a full understanding of the function of EDA and the underlying mechanisms of HED caused by EDA mutations.
Gonzalez, Francisco; Loidi, Lourdes; Abalo-Lojo, Jose M
2017-01-01
Ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome is a disorder resulting from anomalous embryonic development of ectodermal tissues. There is evidence that AEC syndrome is caused by mutations in the TP63 gene, which encodes the p63 protein. This is an important regulatory protein involved in epidermal proliferation and differentiation. Genome sequencing was performed in DNA from peripheral blood leukocytes of a newborn with AEC syndrome and her parents. Variants were searched in all coding exons and intron-exon boundaries of the TP63 gene. A heterozygous missense variant (NM_003722.4:c.1063G>C (p.Asp355His) was found in the newborn patient. No variants were found in either of the parents. We identified a previously unreported variant in TP63 gene which seems to be involved in the somatic malformations found in the AEC syndrome. The absence of this variant in both parents suggests that the variant appeared de novo.
The role of Foxi family transcription factors in otic placode and neural crest cell development
Edlund, Renée K.; Birol, Onur; Groves, Andrew K.
2015-01-01
The mammalian outer, middle and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this review, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm. PMID:25662269
Apical and basal epitheliomuscular F-actin dynamics during Hydra bud evagination
Aufschnaiter, Roland; Wedlich-Söldner, Roland; Zhang, Xiaoming
2017-01-01
ABSTRACT Bending of 2D cell sheets is a fundamental morphogenetic mechanism during animal development and reproduction. A critical player driving cell shape during tissue bending is the actin cytoskeleton. Much of our current knowledge about actin dynamics in whole organisms stems from studies of embryonic development in bilaterian model organisms. Here, we have analyzed actin-based processes during asexual bud evagination in the simple metazoan Hydra. We created transgenic Hydra strains stably expressing the actin marker Lifeact-GFP in either ectodermal or endodermal epitheliomuscular cells. We then combined live imaging with conventional phalloidin staining to directly follow actin reorganization. Bending of the Hydra epithelial double layer is initiated by a group of epitheliomuscular cells in the endodermal layer. These cells shorten their apical-basal axis and arrange their basal muscle processes in a circular configuration. We propose that this rearrangement generates the initial forces to bend the endoderm towards the ectoderm. Convergent tissue movement in both epithelial layers towards the centre of evagination then leads to elongation and extension of the bud along its new body axis. Tissue movement into the bud is associated with lateral intercalation of epithelial cells, remodelling of apical septate junctions, and rearrangement of basal muscle processes. The work presented here extends the analysis of morphogenetic mechanisms beyond embryonic tissues of model bilaterians. PMID:28630355
Tissue-specific Requirements of β-Catenin in External Genitalia Development
Lin, Congxing; Yin, Yan; Long, Fanxin; Ma, Liang
2008-01-01
SUMMARY External genitalia are body appendages specialized for internal fertilization. Its development can be divided into two phases, an early androgen-independent phase and a late androgen-dependant sexual differentiation phase. In the early phase, the embryonic anlage of external genitalia, the genital tubercle (GT), are morphologically identical in both sexes. Although congenital external genitalia malformations represent the second most common birth defect in humans, the genetic pathways governing early external genitalia development and urethra formation are poorly understood. Proper development of the GT requires coordinated outgrowth of the mesodermally-derived mesenchyme and extension of the endodermal urethra within an ectodermal epithelial capsule. Here we demonstrate that β-Catenin plays indispensable and distinct roles in each of the aforementioned three tissue layers in early androgen-independent GT development. WNT-β-Catenin signaling is required in the endodermal urethra to activate and maintain Fgf8 expression and direct GT outgrowth, as well as to maintain homeostasis of the urethra. Moreover, β-Catenin is required in the mesenchyme to promote cell proliferation. In contrast, β-Catenin is required in the ectoderm to maintain tissue integrity possibly through cell-cell adhesion during GT outgrowth. The fact that both endodermal and ectodermal β-Catenin knockout animals develop severe hypospadias in both sexes raises the possibility that deregulation of any of these functions can contribute to the etiology of congenital external genital defects in humans. PMID:18635608
Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B
1995-07-01
Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.
Lough, Kendall J.; Patel, Jeet H.; Descovich, Carlos Patiño; Curtis, T. Anthony
2016-01-01
Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation. PMID:27317810
Embryonic wound healing by apical contraction and ingression in Xenopus laevis.
Davidson, Lance A; Ezin, Akouavi M; Keller, Ray
2002-11-01
We have characterized excisional wounds in the animal cap of early embryos of the frog Xenopus laevis and found that these wounds close accompanied by three distinct processes: (1) the assembly of an actin purse-string in the epithelial cells at the wound margin, (2) contraction and ingression of exposed deep cells, and (3) protrusive activity of epithelial cells at the margin. Microsurgical manipulation allowing fine control over the area and depth of the wound combined with videomicroscopy and confocal analysis enabled us to describe the kinematics and challenge the mechanics of the closing wound. Full closure typically occurs only when the deep, mesenchymal cell-layer of the ectoderm is left intact; in contrast, when deep cells are removed along with the superficial, epithelial cell-layer of the ectoderm, wounds do not close. Actin localizes to the superficial epithelial cell-layer at the wound margin immediately after wounding and forms a contiguous "purse-string" in those cells within 15 min. However, manipulation and closure kinematics of shaped wounds and microsurgical cuts made through the purse-string rule out a major force-generating role for the purse-string. Further analysis of the cell behaviors within the wound show that deep, mesenchymal cells contract their apical surfaces and ingress from the exposed surface. High resolution time-lapse sequences of cells at the leading edge of the wound show that these cells undergo protrusive activity only during the final phases of wound closure as the ectoderm reseals. We propose that assembly of the actin purse-string works to organize and maintain the epithelial sheet at the wound margin, that contraction and ingression of deep cells pulls the wound margins together, and that protrusive activity of epithelial cells at the wound margin reseals the ectoderm and re-establishes tissue integrity during wound healing in the Xenopus embryonic ectoderm. Copyright 2002 Wiley-Liss, Inc.
Embryonic development of pleuropodia of the cicada, Magicicada cassini
Strauß, Johannes; Lakes-Harlan, Reinhard
2006-01-01
In many insects the first abdominal segment possesses embryonic appendages called pleuropodia. Here we show the embryogenesis of pleuropodial cells of the periodical cicada, Magicicada cassini (Fisher 1851) (Insecta, Homoptera, Cicadidae). An antibody, anti-horseradish perioxidase (HRP), that is usually neuron-specific strongly marked the pleuropodial anlagen and revealed their ectodermal origin shortly after limb bud formation. Thereafter the cells sank into the epidermis and their apical parts enlarged. A globular part protruded from the body wall. Filamentous structures were marked at the stem region and into the apical dilation. In later embryonic stages the pleuropodia degenerated. Despite the binding of anti-HRP the cells had no morphological neuronal characters and cannot be regarded as neurons. The binding indicates that glycosylated cell surface molecules contribute to the adhesion between the presumably glandular pleuropodial cells. In comparison, anti-HRP does not mark the pleuropodia of Orthoptera. PMID:19537987
ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis
Shalom-Feuerstein, R; Lena, A M; Zhou, H; De La Forest Divonne, S; Van Bokhoven, H; Candi, E; Melino, G; Aberdam, D
2011-01-01
p63, a member of p53 family, has a significant role in the development and maintenance of stratified epithelia. However, a persistent dispute remained over the last decade concerning the interpretation of the severe failure of p63-null embryos to develop stratified epithelia. In this study, by investigating both p63-deficient strains, we demonstrated that p63-deficient epithelia failed to develop beyond ectodermal stage as they remained a monolayer of non-proliferating cells expressing K8/K18. Importantly, in the absence of p63, corneal-epithelial commitment (which occurs at embryonic day 12.5 of mouse embryogenesis) was hampered 3 weeks before corneal stem cell renewal (that begins at P14). Taken together, these data illustrate the significant role of p63 in epithelial embryogenesis, before and independently of other functions of p63 in adult stem cells regulation. Transcriptome analysis of laser captured-embryonic tissues confirmed the latter hypothesis, demonstrating that a battery of epidermal genes that were activated in wild-type epidermis remained silent in p63-null tissues. Furthermore, we defined a subset of novel bona fide p63-induced genes orchestrating first epidermal stratification and a subset of p63-repressed mesodermal-specific genes. These data highlight the earliest recognized action of ΔNp63 in the induction epidermal morphogenesis at E11.5. In the absence of p63, a mesodermal program is activated while epidermal morphogenesis does not initiate. PMID:21127502
Shaping sound in space: the regulation of inner ear patterning.
Groves, Andrew K; Fekete, Donna M
2012-01-01
The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.
Shaping sound in space: the regulation of inner ear patterning
Groves, Andrew K.; Fekete, Donna M.
2012-01-01
The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development – ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells – are orchestrated by gradients of signaling molecules. PMID:22186725
Trends in the human embryonic stem cell patent field.
Karlsson, Ulrika; Hyllner, Johan; Runeberg, Kristina
2007-01-01
The successful derivation of human embryonic stem (hES) cell lines in late 1990s marks the birth of a new era in biomedical research. In the USA, this landmark invention is protected by granted composition-of-matter patents. In addition to these patents, several others have been granted on further development of hES cell research, such as on differentiated cell types and in vitro and in vivo use aspects. In Europe, there is presently no consensus pertaining to the patentability of hES cells, and all patent applications pending at the European patent office are therefore awaiting a principal decision by the Enlarged Board of Appeal. The authors argue that it will be of importance to the stem cell industry that patents are granted on inventions downstream in the value chain, e.g on specialised cell types derived from hES cells and different drug discovery applications. Patents and patent applications on such inventions for the three germ layers ectoderm/neuro, endoderm/hepato and mesoderm/cardio have been examined. The number of patents increased in the period 2001 to 2006 for all three lineages with ectoderm/neuro as the most patent intensive field. There where 9-13 times more US patent applications filed related to the three lineages compared to in Europe.
Vincent, Christine; Bontoux, Martine; Le Douarin, Nicole M; Pieau, Claude; Monsoro-Burq, Anne-Hélène
2003-09-01
The turtle shell forms by extensive ossification of dermis ventrally and dorsally. The carapacial ridge (CR) controls early dorsal shell formation and is thought to play a similar role in shell growth as the apical ectodermal ridge during limb development. However, the molecular mechanisms underlying carapace development are still unknown. Msx genes are involved in the development of limb mesenchyme and of various skeletal structures. In particular, precocious Msx expression is recorded in skeletal precursors that develop close to the ectoderm, such as vertebral spinous processes or skull. Here, we have studied the embryonic expression of Msx genes in the European pond turtle, Emys orbicularis. The overall Msx expression in head, limb, and trunk is similar to what is observed in other vertebrates. We have focused on the CR area and pre-skeletal shell condensations. The CR expresses Msx genes transiently, in a pattern similar to that of fgf10. In the future carapace domain, the dermis located dorsal to the spinal cord expresses Msx genes, as in other vertebrates, but we did not see expansion of this expression in the dermis located more laterally, on top of the dermomyotomes. In the ventral plastron, although the dermal osseous condensations form in the embryonic Msx-positive somatopleura, we did not observe enhanced Msx expression around these elements. These observations may indicate that common mechanisms participate in limb bud and CR early development, but that pre-differentiation steps differ between shell and other skeletal structures and involve other gene activities than that of Msx genes.
Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.
Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa
2015-05-01
Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.
Dobias, S L; Ma, L; Wu, H; Bell, J R; Maxson, R
1997-01-01
Msx- class homeobox genes, characterized by a distinct and highly conserved homeodomain, have been identified in a wide variety of metazoans from vertebrates to coelenterates. Although there is evidence that they participate in inductive tissue interactions that underlie vertebrate organogenesis, including those that pattern the neural crest, there is little information about their function in simple deuterostomes. Both to learn more about the ancient function of Msx genes, and to shed light on the evolution of developmental mechanisms within the lineage that gave rise to vertebrates, we have isolated and characterized Msx genes from ascidians and echinoderms. Here we describe the sequence and expression of a sea urchin (Strongylocentrotus purpouratus) Msx gene whose homeodomain is very similar to that of vertebrate Msx2. This gene, designated SpMsx, is first expressed in blastula stage embryos, apparently in a non-localized manner. Subsequently, during the early phases of gastrulation, SpMsx transcripts are expressed intensely in the invaginating archenteron and secondary mesenchyme, and at reduced levels in the ectoderm. In the latter part of gastrulation, SpMsx transcripts are concentrated in the oral ectoderm and gut, and continue to be expressed at those sites through the remainder of embryonic development. That vertebrate Msx genes are regulated by inductive tissue interactions and growth factors suggested to us that the restriction of SpMsx gene expression to the oral ectoderm and derivatives of the vegetal plate might similarly be regulated by the series of signaling events that pattern these embryonic territories. As a first test of this hypothesis, we examined the influence of exogastrulation and cell-dissociation on SpMsx gene expression. In experimentally-induced exogastrulae, SpMsx transcripts were distributed normally in the oral ectoderm, evaginated gut, and secondary mesenchyme. However, when embryos were dissociated into their component cells, SpMsx transcripts failed to accumulate. These data show that the localization of SpMsx transcripts in gastrulae does not depend on interactions between germ layers, yet the activation and maintenance of SpMsx expression does require cell-cell or cell-matrix interactions.
2013-01-01
Background The so-called ventral organs are amongst the most enigmatic structures in Onychophora (velvet worms). They were described as segmental, ectodermal thickenings in the onychophoran embryo, but the same term has also been applied to mid-ventral, cuticular structures in adults, although the relationship between the embryonic and adult ventral organs is controversial. In the embryo, these structures have been regarded as anlagen of segmental ganglia, but recent studies suggest that they are not associated with neural development. Hence, their function remains obscure. Moreover, their relationship to the anteriorly located preventral organs, described from several onychophoran species, is also unclear. To clarify these issues, we studied the anatomy and development of the ventral and preventral organs in several species of Onychophora. Results Our anatomical data, based on histology, and light, confocal and scanning electron microscopy in five species of Peripatidae and three species of Peripatopsidae, revealed that the ventral and preventral organs are present in all species studied. These structures are covered externally with cuticle that forms an internal, longitudinal, apodeme-like ridge. Moreover, phalloidin-rhodamine labelling for f-actin revealed that the anterior and posterior limb depressor muscles in each trunk and the slime papilla segment attach to the preventral and ventral organs, respectively. During embryonic development, the ventral and preventral organs arise as large segmental, paired ectodermal thickenings that decrease in size and are subdivided into the smaller, anterior anlagen of the preventral organs and the larger, posterior anlagen of the ventral organs, both of which persist as paired, medially-fused structures in adults. Our expression data of the genes Delta and Notch from embryos of Euperipatoides rowelli revealed that these genes are expressed in two, paired domains in each body segment, corresponding in number, position and size with the anlagen of the ventral and preventral organs. Conclusions Our findings suggest that the ventral and preventral organs are a common feature of onychophorans that serve as attachment sites for segmental limb depressor muscles. The origin of these structures can be traced back in the embryo as latero-ventral segmental, ectodermal thickenings, previously suggested to be associated with the development of the nervous system. PMID:24308783
Childhood Craniopharyngioma Treatment (PDQ®)—Health Professional Version
Craniopharyngiomas are believed to be congenital in origin, arising from ectodermal remnants, Rathke cleft, or other embryonal epithelium. The 10-year survival rate exceeds 90%. Get detailed information about the presentation, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood craniopharyngioma in this summary for clinicians.
NASA Astrophysics Data System (ADS)
Sommer, C.
1990-09-01
The morphology and histology of the planula larva of Eudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.
Msx homeobox gene family and craniofacial development.
Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping
2003-12-01
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.
Hair organ regeneration via the bioengineered hair follicular unit transplantation
Asakawa, Kyosuke; Toyoshima, Koh-ei; Ishibashi, Naoko; Tobe, Hirofumi; Iwadate, Ayako; Kanayama, Tatsuya; Hasegawa, Tomoko; Nakao, Kazuhisa; Toki, Hiroshi; Noguchi, Shotaro; Ogawa, Miho; Sato, Akio; Tsuji, Takashi
2012-01-01
Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia. PMID:22645640
The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo.
Batut, Julie; Vandel, Laurence; Leclerc, Catherine; Daguzan, Christiane; Moreau, Marc; Néant, Isabelle
2005-10-18
We have previously shown that an increase in intracellular Ca2+ is both necessary and sufficient to commit ectoderm to a neural fate in Xenopus embryos. However, the relationship between this Ca2+ increase and the expression of early neural genes has yet to be defined. Using a subtractive cDNA library between untreated and caffeine-treated animal caps, i.e., control ectoderm and ectoderm induced toward a neural fate by a release of Ca2+, we have isolated the arginine N-methyltransferase, xPRMT1b, a Ca2+-induced target gene, which plays a pivotal role in this process. First, we show in embryo and in animal cap that xPRMT1b expression is Ca2+-regulated. Second, overexpression of xPRMT1b induces the expression of early neural genes such as Zic3. Finally, in the whole embryo, antisense approach with morpholino oligonucleotide against xPRMT1b impairs neural development and in animal caps blocks the expression of neural markers induced by a release of internal Ca2+. Our results implicate an instructive role of an enzyme, an arginine methyltransferase protein, in the embryonic choice of determination between epidermal and neural fate. The results presented provide insights by which a Ca2+ increase induces neural fate.
Evolution of Axis Specification Mechanisms in Jawed Vertebrates: Insights from a Chondrichthyan
Coolen, Marion; Sauka-Spengler, Tatjana; Nicolle, Delphine; Le-Mentec, Chantal; Lallemand, Yvan; Silva, Corinne Da; Plouhinec, Jean-Louis; Robert, Benoît; Wincker, Patrick; Shi, De-Li; Mazan, Sylvie
2007-01-01
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans. PMID:17440610
Eymann, R; Kiefer, M
2018-05-17
Headache is the most common symptom of colloid cysts, Rathke cysts, and craniopharyngioma due to their location in the midline, being extra-axial and typically presenting in the parasellar region. Although these tumors are generally considered benign, each has its typical characteristics defined by its location and histology. These individual characteristics define whether surgery is necessary at all and if so, the preferred surgical approach and resection's totality. The histopathological findings primarily indicate that embryonic malformations-at the first glance, ectodermal in nature-cause these tumors. Due to the fact that these disturbances occur at the boundary between ectodermal stomodeum and endodermal cephalogaster, however, does leave some doubts.
Generation of organized germ layers from a single mouse embryonic stem cell.
Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning
2014-05-30
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.
WNT10A missense mutation associated with a complete Odonto-Onycho-Dermal Dysplasia syndrome
Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas
2009-01-01
Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved α-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features. PMID:19471313
WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.
Nawaz, Sadia; Klar, Joakim; Wajid, Muhammad; Aslam, Muhammad; Tariq, Muhammad; Schuster, Jens; Baig, Shahid Mahmood; Dahl, Niklas
2009-12-01
Wnt signalling is one of a few pathways that are crucial for controlling genetic programs during embryonic development as well as in adult tissues. WNT10A is expressed in the skin and epidermis and it has shown to be critical for the development of ectodermal appendages. A nonsense mutation in WNT10A was recently identified in odonto-onycho-dermal dysplasia (OODD; MIM 257980), a rare syndrome characterised by severe hypodontia, nail dystrophy, smooth tongue, dry skin, keratoderma and hyperhydrosis of palms and soles. We identified a large consanguineous Pakistani pedigree comprising six individuals affected by a complete OODD syndrome. Autozygosity mapping using SNP array analysis showed that the affected individuals are homozygous for the WNT10A gene region. Subsequent mutation screening showed a homozygous c.392C>T transition in exon 3 of WNT10A, which predicts a p.A131V substitution in a conserved alpha-helix domain. We report here on the first inherited missense mutation in WNT10A with associated ectodermal features.
Takata, Nozomu; Sakakura, Eriko; Kasukawa, Takeya; Sakuma, Tetsushi; Yamamoto, Takashi; Sasai, Yoshiki
2016-06-01
The epiblast (foremost embryonic ectoderm) generates all three germ layers and therefore has crucial roles in the formation of all mammalian body cells. However, regulation of epiblast gene expression is poorly understood because of the difficulty of manipulating epiblast tissues in vivo. In the present study, using the self-organizing properties of mouse embryonic stem cell (ESC), we generated and characterized epiblast-like tissue in three-dimensional culture. We identified significant genome-wide gene expression changes in this epiblast-like tissue by transcriptomic analysis. In addition, we identified the particular significance of the Erk/Mapk and integrin-linked kinase pathways, and genes related to ectoderm/epithelial formation, using the bioinformatics resources IPA and DAVID. Here, we focused on Fgf5, which ranked in the top 10 among the discovered genes. To develop a functional analysis of Fgf5, we created an efficient method combining CRISPR/Cas9-mediated genome engineering and RNA interference (RNAi). Notably, we show one-step generation of various Fgf5 reporter lines including heterozygous and homozygous knockins (the GET method). For time- and dose-dependent depletion of fgf5 over the course of development, we generated an ESC line harboring Tol2 transposon-mediated integration of an inducible short hairpin RNA interference system (pdiRNAi). Our findings raised the possibility that Fgf/Erk signaling and apicobasal epithelial integrity are important factors in epiblast development. In addition, our methods provide a framework for a broad array of applications in the areas of mammalian genetics and molecular biology to understand development and to improve future therapeutics.
High-Throughput Screening Assay for Embryoid Body Differentiation of Human Embryonic Stem Cells
Outten, Joel T.; Gadue, Paul; French, Deborah L.; Diamond, Scott L.
2012-01-01
Serum-free human pluripotent stem cell media offer the potential to develop reproducible clinically applicable differentiation strategies and protocols. The vast array of possible growth factor and cytokine combinations for media formulations makes differentiation protocol optimization both labor and cost-intensive. This unit describes a 96-well plate, 4-color flow cytometry-based screening assay to optimize pluripotent stem cell differentiation protocols. We provide conditions both to differentiate human embryonic stem cells (hESCs) to the three primary germ layers, ectoderm, endoderm, and mesoderm, and to utilize flow cytometry to distinguish between them. This assay exhibits low inter-well variability and can be utilized to efficiently screen a variety of media formulations, reducing cost, incubator space, and labor. Protocols can be adapted to a variety of differentiation stages and lineages. PMID:22415836
Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars
2011-01-01
Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.
Conte, Daniele; Garaffo, Giulia; Lo Iacono, Nadia; Mantero, Stefano; Piccolo, Stefano; Cordenonsi, Michelangelo; Perez-Morga, David; Orecchia, Valeria; Poli, Valeria; Merlo, Giorgio R.
2016-01-01
The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology. PMID:26685160
Regulation of early Xenopus development by ErbB signaling
Nie, Shuyi; Chang, Chenbei
2008-01-01
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939
Inoue, Kimiko; Ogura, Atsuo
2013-01-01
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866
Seifert, Ashley W.; Bouldin, Cortney M.; Choi, Kyung-Suk; Harfe, Brian D.; Cohn, Martin J.
2009-01-01
Malformations of the external genitalia are among the most common congenital anomalies in humans. The urogenital and anorectal sinuses develop from the embryonic cloaca, and the penis and clitoris develop from the genital tubercle. Within the genital tubercle, the endodermally derived urethral epithelium functions as an organizer and expresses sonic hedgehog (Shh). Shh knockout mice lack external genitalia and have a persistent cloaca. This identified an early requirement for Shh, but precluded analysis of its later role in the genital tubercle. We conducted temporally controlled deletions of Shh and report that Shh is required continuously through the onset of sexual differentiation. Shh function is divisible into two temporal phases; an anogenital phase, during which Shh regulates outgrowth and patterning of the genital tubercle and septation of the cloaca, and a later external genital phase, during which Shh regulates urethral tube closure. Disruption of Shh function during the anogenital phase causes coordinated anorectal and genitourinary malformations, whereas inactivation during the external genital phase causes hypospadias. Shh directs cloacal septation by promoting cell proliferation in adjacent urorectal septum mesenchyme. Additionally, conditional inactivation of smoothened in the genital ectoderm and cloacal/urethral endoderm shows that the ectoderm is a direct target of Shh and is required for urethral tube closure, highlighting a novel role for genital ectoderm in urethragenesis. Identification of the stages during which disruption of Shh results in either isolated or coordinated malformations of anorectal and external genital organs provides a new tool for investigating the etiology of anogenital malformations in humans. PMID:19906862
Analysis of the hypoxia-sensing pathway in Drosophila melanogaster
Arquier, Nathalie; Vigne, Paul; Duplan, Eric; Hsu, Tien; Therond, Pascal P.; Frelin, Christian; D'Angelo, Gisela
2005-01-01
The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1α (hypoxia-inducible factor-1 α subunit) PHD (prolyl hydroxylase) activity, which prevents the VHL (von Hippel-Lindau)-dependent targeting of HIF-1α to the ubiquitin/proteasome pathway. HIF-1α thus accumulates and promotes gene transcription. In the present study, first we provide direct biochemical evidence for the presence of a conserved hypoxic signalling pathway in Drosophila melanogaster. An assay for 2-oxoglutarate-dependent dioxygenases was developed using Drosophila embryonic and larval homogenates as a source of enzyme. Drosophila PHD has a low substrate specificity and hydroxylates key proline residues in the ODD (oxygen-dependent degradation) domains of human HIF-1α and Similar, the Drosophila homologue of HIF-1α. The enzyme promotes human and Drosophila [35S]VHL binding to GST (glutathione S-transferase)–ODD-domain fusion protein. Hydroxylation is enhanced by proteasomal inhibitors and was ascertained using an anti-hydroxyproline antibody. Secondly, by using transgenic flies expressing a fusion protein that combined an ODD domain and the green fluorescent protein (ODD–GFP), we analysed the hypoxic cascade in different embryonic and larval tissues. Hypoxic accumulation of the reporter protein was observed in the whole tracheal tree, but not in the ectoderm. Hypoxic stabilization of ODD–GFP in the ectoderm was restored by inducing VHL expression in these cells. These results show that Drosophila tissues exhibit different sensitivities to hypoxia. PMID:16176182
Carpenter, April C.; Smith, April N.; Wagner, Heidi; Cohen-Tayar, Yamit; Rao, Sujata; Wallace, Valerie; Ashery-Padan, Ruth; Lang, Richard A.
2015-01-01
The Wnt/β-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wlsfl/fl) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/β-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/β-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/β-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wlsfl/fl mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change. PMID:25715397
Clinical potentials of human pluripotent stem cells in lung diseases
2014-01-01
Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future. PMID:24995122
Requirement for the Murine Zinc Finger Protein ZFR in Perigastrulation Growth and Survival
Meagher, Madeleine J.; Braun, Robert E.
2001-01-01
The transition from preimplantation to postimplantation development leads to the initiation of complex cellular differentiation and morphogenetic movements, a dramatic decrease in cell cycle length, and a commensurate increase in the size of the embryo. Accompanying these changes is the need for the transfer of nutrients from the mother to the embryo and the elaboration of sophisticated genetic networks that monitor genomic integrity and the homeostatic control of cellular growth, differentiation, and programmed cell death. To determine the function of the murine zinc finger protein ZFR in these events, we generated mice carrying a null mutation in the gene encoding it. Homozygous mutant embryos form normal-appearing blastocysts that implant and initiate the process of gastrulation. Mutant embryos form mesoderm but they are delayed in their development and fail to form normal anterior embryonic structures. Loss of ZFR function leads to both an increase in programmed cell death and a decrease in mitotic index, especially in the region of the distal tip of the embryonic ectoderm. Mutant embryos also have an apparent reduction in apical vacuoles in the columnar visceral endoderm cells in the extraembryonic region. Together, these cellular phenotypes lead to a dramatic development delay and embryonic death by 8 to 9 days of gestation, which are independent of p53 function. PMID:11283266
Takata, Hiromi; Kominami, Tetsuya
2011-06-01
We have found a novel embryonic cell population in the keyhole sand dollar Astriclypeus manni, which we refer to as lucent fluorescent cells (LFCs). Live LFCs are transparent, but emit autofluorescence after formaldehyde fixation. LFCs become noticeable in the vegetal plate of early gastrulae immediately after the appearance of pigment cells. As development progresses, LFCs increase in number and migrate from the vegetal plate toward the animal pole in a manner similar to pigment cells. Notably, LFCs also migrate into the oral ectoderm, while pigment cells do not. In addition, we determined that there were nearly 300 LFCs per embryo, which greatly exceeds the number of pigment cells. Treatment with the Notch signaling inhibitor N-[(3,5-Difluorophenyl)acetyl]-l-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester (DAPT) resulted in a marked decrease in pigment cell number, but only a modest decrease in LFCs. In DAPT-treated embryos, LFCs had a distribution pattern similar to pigment cells and were excluded from the oral ectoderm. Unlike other sea urchins, Nodal signaling was not involved in the specification of pigment cells and LFCs in these embryos. Pulse treatment and measurement of cell diameters revealed that LFCs underwent 13-15 cycles of cell division and were specified during the 11th cleavage, one cell cycle later than observed for pigment cells. At the pluteus stage, a cluster of LFCs was observed in the animal plate in addition to two rows of LFCs running along the ciliary band. In addition, dozens of LFCs aligned at the uppermost level of the stomodaeum. Therefore, though the two cell populations share some features, LFCs are considerably different from pigment cells. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.
Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S
2012-12-01
In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.
Embryonic integument and "molts" in Manduca sexta (Insecta, Lepidoptera).
Ziese, Stefanie; Dorn, August
2003-02-01
In Manduca sexta the germ band is formed 12 h post-oviposition (p.o.) (=10% development completed) and is located above the yolk at the egg surface. The cells show a polar organization. They are engaged in the uptake and degradation of yolk globules, pinched off from the yolk cells. This process can be observed in the integumental cells during the first growth phase of the embryo that lasts until "katatrepsis," an embryonic movement that takes place at 40% development completed. At 37% development completed, the ectoderm deposits a thin membrane at its apical surface, the first embryonic membrane, which detaches immediately before katatrepsis. The second period of embryonic growth--from katatrepsis to 84 h p.o. (70% development completed)--starts with the deposition of a second embryonic membrane that is somewhat thicker than the first one and shows a trilaminar, cuticulin-like structure. Whereas the apical cell surface is largely smooth during the deposition of the first embryonic membrane, it forms microvilli during deposition of the second one. At the same time, uptake of formed yolk material ceases and the epidermal cells now contain clusters of mitochondria below the apical surface. Rough endoplasmic reticulum (RER) increases in the perinuclear region. The second embryonic membrane detaches about 63 h p.o. At 69 h p.o., a new generation of microvilli forms and islands of a typical cuticulin layer indicate the onset of the deposition of the larval cuticle. The third growth phase is characterized by a steady increase in the embryo length, the deposition of the larval procuticle, and by cuticular tanning at about 100 h p.o. Beginning at that stage, electron-lucent vesicles aggregate below the epidermal surface and are apparently released below the larval cuticle. Manduca sexta is the first holometabolous insect in which the deposition of embryonic membranes and cuticles has been examined by electron microscopy. In correspondence with hemimetabolous insects, the embryo of M. sexta secretes three covers at approximately the same developmental stage. A marked difference: the second embryonic cover, which in Hemimetabola clearly exhibits a cuticular organization, has instead a membranous, cuticulin-like structure. We see the difference as the result of an evolutionary reductional process promoted by the redundancy of embryonic covers in the egg shell. Embryonic "molts" also occur in noninsect arthropods; their phylogenetical aspects are discussed. Copyright 2002 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: yingliu@doheny.org; Sun Yet-sen University, Zhongshan Ophthalmic Center, State Key Ophthalmic Laboratory, Guangzhou 510060; Kawai, Kirio
Research highlights: {yields} Inactivation of Smad4 caused disruption in the development of the anterior segment. {yields} Inactivation of Smad4 failed to disrupt early lens development. {yields} Smad4 controlled lens cell cycle and cell death processes. {yields} Smad4 may regulate actin stress fiber assembly and eyelid epithelial movement. -- Abstract: Purpose: Signaling by members of the TGF{beta} superfamily of molecules is essential for embryonic development and homeostasis. Smad4, a key intracellular mediator in TGF{beta} signaling, forms transcriptional activator complexes with Activin-, BMP-, and TGF{beta}-restricted Smad proteins. However, the functional role of Smad4 in controlling different visual system compartments has not beenmore » fully investigated. Methods: Using the Pax6 promoter-driven Cre transgenic, smad4 was conditionally inactivated in the lens, cornea and ectoderm of the eyelids. Standard histological and molecular analytical approaches were employed to reveal morphological and cellular changes. Results: Inactivation of Smad4 in the lens led to microphthalmia and cataract formation in addition to the persistent adhesion of the retina to the lens and the iris to the cornea. Inactivation of Smad4 from the ectoderm of the eyelid and cornea caused disruption to eyelid fusion and proper development of the corneal epithelium and corneal stroma. Conclusions: Smad4 is required for the development and maintenance of the lens in addition to the proper development of the cornea, eyelids, and retina.« less
Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica
2014-02-10
In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, May Yin; Racine, Victor; Jagadpramana, Peter; Sun, Li; Yu, Weimiao; Du, Tiehua; Spencer-Dene, Bradley; Rubin, Nicole; Le, Lendy; Ndiaye, Delphine; Bellusci, Saverio; Kratochwil, Klaus; Veltmaat, Jacqueline M.
2011-01-01
Mammary gland development starts in utero with one or several pairs of mammary rudiments (MRs) budding from the surface ectodermal component of the mammalian embryonic skin. Mice develop five pairs, numbered MR1 to MR5 from pectoral to inguinal position. We have previously shown that Gli3Xt-J/Xt-J mutant embryos, which lack the transcription factor Gli3, do not form MR3 and MR5. We show here that two days after the MRs emerge, Gli3Xt-J/Xt-J MR1 is 20% smaller, and Gli3Xt-J/Xt-J MR2 and MR4 are 50% smaller than their wild type (wt) counterparts. Moreover, while wt MRs sink into the underlying dermis, Gli3Xt-J/Xt-J MR4 and MR2 protrude outwardly, to different extents. To understand why each of these five pairs of functionally identical organs has its own, distinct response to the absence of Gli3, we determined which cellular mechanisms regulate growth of the individual MRs, and whether and how Gli3 regulates these mechanisms. We found a 5.5 to 10.7-fold lower cell proliferation rate in wt MRs compared to their adjacent surface ectoderm, indicating that MRs do not emerge or grow via locally enhanced cell proliferation. Cell-tracing experiments showed that surface ectodermal cells are recruited toward the positions where MRs emerge, and contribute to MR growth during at least two days. During the second day of MR development, peripheral cells within the MRs undergo hypertrophy, which also contributes to MR growth. Limited apoptotic cell death counterbalances MR growth. The relative contribution of each of these processes varies among the five MRs. Furthermore, each of these processes is impaired in the absence of Gli3, but to different extents in each MR. This differential involvement of Gli3 explains the variation in phenotype among Gli3Xt-J/Xt-J MRs, and may help to understand the variation in numbers and positions of mammary glands among mammals. PMID:22046263
Rohani, Nazanin; Parmeggiani, Andrea; Winklbauer, Rudolf; Fagotto, François
2014-09-01
Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm-mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin-Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm-mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes.
The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.
Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina
2004-12-03
The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.
Darras, Sébastien; Gerhart, John; Terasaki, Mark; Kirschner, Marc; Lowe, Christopher J.
2011-01-01
The canonical Wnt/β-catenin pathway is a key regulator of body plan organization and axis formation in metazoans, being involved in germ layer specification, posterior growth and patterning of the anteroposterior axis. Results from animals spanning a wide phylogenetic range suggest that a unifying function of β-catenin in metazoans is to define the posterior/vegetal part of the embryo. Although the specification of vegetal territories (endoderm) by β-catenin has been demonstrated in distantly related animals (cnidarians, a protostome, echinoderms and ascidians), the definition of the posterior part of the embryo is well supported only for vertebrates and planarians. To gain insights into β-catenin functions during deuterostome evolution, we have studied the early development of the direct developing hemichordate Saccoglossus kowalevskii. We show that the zygote is polarized after fertilization along the animal-vegetal axis by cytoplasmic rearrangements resembling the ascidian vegetal contraction. This early asymmetry is translated into nuclear accumulation of β-catenin at the vegetal pole, which is necessary and sufficient to specify endomesoderm. We show that endomesoderm specification is crucial for anteroposterior axis establishment in the ectoderm. The endomesoderm secretes as yet unidentified signals that posteriorize the ectoderm, which would otherwise adopt an anterior fate. Our results point to a conserved function at the base of deuterostomes for β-catenin in germ layer specification and to a causal link in the definition of the posterior part of the embryonic ectoderm by way of activating posteriorizing endomesodermal factors. Consequently, the definition of the vegetal and the posterior regions of the embryo by β-catenin should be distinguished and carefully re-examined. PMID:21303849
Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava
NASA Technical Reports Server (NTRS)
Henry, J. Q.; Tagawa, K.; Martindale, M. Q.
2001-01-01
Molecular and morphological comparisons indicate that the Echinodermata and Hemichordata represent closely related sister-phyla within the Deuterostomia. Much less is known about the development of the hemichordates compared to other deuterostomes. For the first time, cell lineage analyses have been carried out for an indirect-developing representative of the enteropneust hemichordates, Ptychodera flava. Single blastomeres were iontophoretically labeled with Dil at the 2- through 16-cell stages, and their fates followed through development to the tornaria larval stage. The early cleavage pattern of P. flava is similar to that of the direct-developing hemichordate, Saccoglossus kowalevskii, as well as that displayed by indirect-developing echinoids. The 16-celled embryo contains eight animal "mesomeres," four slightly larger "macromeres," and four somewhat smaller vegetal "micromeres." The first cleavage plane was not found to bear one specific relationship relative to the larval dorsoventral axis. Although individual blastomeres generate discrete clones of cells, the appearance and exact locations of these clones are variable with respect to the embryonic dorsoventral and bilateral axes. The eight animal mesomeres generate anterior (animal) ectoderm of the larva, which includes the apical organ; however, contributions to the apical organ were found to be variable as only a subset of the animal blastomeres end up contributing to its formation and this varies from embryo to embryo. The macromeres generate posterior larval ectoderm, and the vegetal micromeres form all the internal, endomesodermal tissues. These blastomere contributions are similar to those found during development of the only other hemichordate studied, the direct-developing enteropneust, S. kowalevskii. Finally, isolated blastomeres prepared at either the two- or the four-cell stage are capable of forming normal-appearing, miniature tornaria larvae. These findings indicate that the fates of these cells and embryonic dorsoventral axial properties are not committed at these early stages of development. Comparisons with the developmental programs of other deuterostome phyla allow one to speculate on the conservation of some key developmental events/mechanisms and propose basal character states shared by the ancestor of echinoderms and hemichordates.
Sanz, Carmen; Blázquez, Enrique
2011-09-01
In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.
NASA Technical Reports Server (NTRS)
Nolo, R.; Abbott, L. A.; Bellen, H. J.
2000-01-01
The senseless (sens) gene is required for proper development of most cell types of the embryonic and adult peripheral nervous system (PNS) of Drosophila. Sens is a nuclear protein with four Zn fingers that is expressed and required in the sensory organ precursors (SOP) for proper proneural gene expression. Ectopic expression of Sens in many ectodermal cells causes induction of PNS external sensory organ formation and is able to recreate an ectopic proneural field. Hence, sens is both necessary and sufficient for PNS development. Our data indicate that proneural genes activate sens expression. Sens is then in turn required to further activate and maintain proneural gene expression. This feedback mechanism is essential for selective enhancement and maintenance of proneural gene expression in the SOPs.
Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.
Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf
2017-08-22
The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen
2014-01-01
Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228
Skieresz-Szewczyk, Kinga; Jackowiak, Hanna; Ratajczak, Marlena
2018-02-01
The lingual nail as the cornified layer of the orthokeratinized epithelium in birds is responsible for the collection of solid food by pecking. The aim of the present study is to determine the manner of orthokeratinized epithelium development and assess the degree of readiness of the epithelium to fulfill its mechanical function at hatching. Three developmental phases are distinguished, i.e. embryonic, transformation and pre-hatching stage. In the embryonic stage lasting until day 13 of incubation the epithelium is composed of several layers of undifferentiated cells. During the transformation stage, from day 14 to 20 of incubation, the epithelium becomes differentiated to form three layers. A characteristic feature is the formation of osmophilic granules in the superficial layer, referred to as periderm granules. Until the pre-hatching stage the fibrous cytoskeleton of epithelial cells and an impermeable epithelial barrier are gradually developed. In the pre-hatching stage, a cornified lingual nail is formed, while the periderm is exfoliated. At hatching the orthokeratinized epithelium and lingual nail are fully developed and ready to perform feeding activities. The presence of periderm, similarly as in the epidermis, indicates the ectodermal derivation of the oral cavity epithelium. Moreover, occurrence of osmophilic granules may be considered as evidence for the phylogenetic affinity of birds and reptiles. Copyright © 2018 Elsevier GmbH. All rights reserved.
RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development
Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel
2006-01-01
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866
RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.
Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel
2006-07-01
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.
Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas
2015-01-01
In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.
Issa, Yasmin A; Kamal, Lara; Rayyan, Amal Abu; Dweik, Dima; Pierce, Sarah; Lee, Ming K; King, Mary-Claire; Walsh, Tom; Kanaan, Moien
2016-10-01
Tooth development is controlled by the same processes that regulate formation of other ectodermal structures. Mutations in the genes underlying these processes may cause ectodermal dysplasia, including severe absence of primary or permanent teeth. Four consanguineous Palestinian families presented with oligodontia and hair and skin features of ectodermal dysplasia. Appearance of ectodermal dysplasia was consistent with autosomal recessive inheritance. Exome sequencing followed by genotyping of 56 informative relatives in the 4 families suggests that the phenotype is due to homozygosity for KREMEN1 p.F209S (c.626 T>C) on chromosome 22 at g.29,521,399 (hg19). The variant occurs in the highly conserved extracellular WSC domain of KREMEN1, which is known to be a high affinity receptor of Dickkopf-1, a component of the Dickkopf-Kremen-LRP6 complex, and a potent regulator of Wnt signaling. The Wnt signaling pathway is critical to development of ectodermal structures. Mutations in WNT10A, LRP6, EDA, and other genes in this pathway lead to tooth agenesis with or without other ectodermal anomalies. Our results implicate KREMEN1 for the first time in a human disorder and provide additional details on the role of the Wnt signaling in ectodermal and dental development.
Molecular biology and genetics of embryonic eyelid development.
Rubinstein, Tal J; Weber, Adam C; Traboulsi, Elias I
2016-09-01
The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways.
Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan
2011-08-01
The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.
Ectodysplasin A in Biological Fluids and Diagnosis of Ectodermal Dysplasia.
Podzus, J; Kowalczyk-Quintas, C; Schuepbach-Mallepell, S; Willen, L; Staehlin, G; Vigolo, M; Tardivel, A; Headon, D; Kirby, N; Mikkola, M L; Schneider, H; Schneider, P
2017-02-01
The tumor necrosis factor (TNF) family ligand ectodysplasin A (EDA) is produced as 2 full-length splice variants, EDA1 and EDA2, that bind to EDA receptor (EDAR) and X-linked EDA receptor (XEDAR/EDA2R), respectively. Inactivating mutations in Eda or Edar cause hypohidrotic ectodermal dysplasia (HED), a condition characterized by malformations of the teeth, hair and glands, with milder deficiencies affecting only the teeth. EDA acts early during the development of ectodermal appendages-as early as the embryonic placode stage-and plays a role in adult appendage function. In this study, the authors measured EDA in serum, saliva and dried blood spots. The authors detected 3- to 4-fold higher levels of circulating EDA in cord blood than in adult sera. A receptor binding-competent form of EDA1 was the main form of EDA but a minor fraction of EDA2 was also found in fetal bovine serum. Sera of EDA-deficient patients contained either background EDA levels or low levels of EDA that could not bind to recombinant EDAR. The serum of a patient with a V262F missense mutation in Eda, which caused a milder form of X-linked HED (XLHED), contained low levels of EDA capable of binding to EDAR. In 2 mildly affected carriers, intermediate levels of EDA were detected, whereas a severely affected carrier had no active EDA in the serum. Small amounts of EDA were also detectable in normal adult saliva. Finally, EDA could be measured in spots of wild-type adult or cord blood dried onto filter paper at levels significantly higher than that measured in EDA-deficient blood. Measurement of EDA levels combined with receptor-binding assays might be of relevance to aid in the diagnosis of total or partial EDA deficiencies.
XEDAR activates the non-canonical NF-κB pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhelst, Kelly, E-mail: Kelly.Verhelst@irc.VIB-UGent.be; Department of Biomedical Molecular Biology, Ghent University, Ghent; Gardam, Sandra, E-mail: s.gardam@garvan.org.au
2015-09-18
Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR hasmore » been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20. - Highlights: • XEDAR activates the non-canonical NF-κB pathway. • XEDAR-induced processing of p100 depends on XEDAR interaction with TRAF3 and TRAF6. • XEDAR-induced processing of p100 depends on NIK and IKKα activity. • Overexpression of XEDAR leads to NIK accumulation. • XEDAR-induced processing of p100 is negatively regulated by TRAF3 cIAP1 and A20.« less
Expression of the beta-catenin gene in the skin of embryonic geese during feather bud development.
Wu, W; Xu, R F; Xiao, L; Xu, H; Gao, G
2008-01-01
beta-Catenin signaling has been reported to initiate feather bud development. In the present study, beta-catenin gene was isolated and identified from a cDNA library constructed using embryonic goose skin. Expression patterns of beta-catenin gene in the dorsal skin of goose embryos were investigated using the methods of semi-quantitative reverse transcription PCR, Northern blot analysis, and in situ hybridization. The sequence of beta-catenin was found highly conserved at the amino acid level, sharing 100, 99, and 99% identity with chicken, Chinese soft-shell turtle, and human sequences, respectively. Relatively high levels (62.51 +/- 7.11% to 101.74 +/- 7.29%) of beta-catenin mRNA were detected in the dorsal skin samples. The levels of beta-catenin expression were most prominent at the early stage from embryo day (E)10 to E20 and then significantly declined with the embryonic development. In situ hybridization demonstrated that at E10, beta-catenin expression was mainly observed at the surface periderm cells and the localized region of the epidermal layer. Because feather bud forms with an anterior-posterior orientation, strong staining was observed in the periderm layer and in the ectoderm and epidermis with a diffuse distribution within the internal area of the buds. The stronger staining was seen in the barb ridges than in the center pulp of the feather follicles at E18 and E20. In this study, expression of Shh as a marker gene for the bud development was examined paralleling with expression patterns of beta-catenin. It was found that the expression pattern of beta-catenin was almost similar spatially and temporally to that of Shh mRNA at the later stages of bud development. The differential beta-catenin mRNA expression in the goose dorsal skin may be essential for promoting the normal development of embryonic feather bud.
Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development.
Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong
2016-01-01
Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development.
Requirement of Smad4 from Ocular Surface Ectoderm for Retinal Development
Li, Jing; Wang, Shusheng; Anderson, Chastain; Zhao, Fangkun; Qin, Yu; Wu, Di; Wu, Xinwei; Liu, Jia; He, Xuefei; Zhao, Jiangyue; Zhang, Jinsong
2016-01-01
Microphthalmia is characterized by abnormally small eyes and usually retinal dysplasia, accounting for up to 11% of the blindness in children. Right now there is no effective treatment for the disease, and the underlying mechanisms, especially how retinal dysplasia develops from microphthalmia and whether it depends on the signals from lens ectoderm are still unclear. Mutations in genes of the TGF-β superfamily have been noted in patients with microphthalmia. Using conditional knockout mice, here we address the question that whether ocular surface ectoderm-derived Smad4 modulates retinal development. We found that loss of Smad4 specifically on surface lens ectoderm leads to microphthalmia and dysplasia of retina. Retinal dysplasia in the knockout mice is caused by the delayed or failed differentiation and apoptosis of retinal cells. Microarray analyses revealed that members of Hedgehog and Wnt signaling pathways are affected in the knockout retinas, suggesting that ocular surface ectoderm-derived Smad4 can regulate Hedgehog and Wnt signaling in the retina. Our studies suggest that defective of ocular surface ectoderm may affect retinal development. PMID:27494603
Müllerian agenesis with hypohidrotic ectodermal dysplasia syndrome.
Whaley, Katie; Winter, Jordan; Eyster, Kathleen M; Hansen, Keith A
2012-04-01
To describe the association of müllerian agenesis with hypohidrotic ectodermal dysplasia. Case report. University medical center. A 17-year-old woman with hypohidrotic ectodermal dysplasia referred for evaluation of primary amenorrhea. History, physical examination, and ultrasound. Physical findings of these two syndromes. Physical examination and ultrasound demonstrated müllerian agenesis with findings of hypohidrotic ectodermal dysplasia. This is the first description of the association of müllerian agenesis with ectodermal dysplasia. This rare case might provide further insight into the development of the uterus and the ectoderm as well as its derivatives. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
[Advance in research on regulatory mechanism and functions of neutral sphingomyelinse 2].
Zhang, Lan; Guo, Jun
2013-10-01
Neutral sphingomyelinase 2 (nSMase2), which located mainly on the plasma membrane, hydrolyzes sphingomyelin into ceramide and plays an important role in the physiological and pathological regulation of cell apoptosis, cell growth arrest, and inflammation. nSMase2 is also involved in the development of Alzheimer's disease and the bone growth.Under neutral pH and the presence of Ca(2+), Mg(2+), and Mn(+), the activity of nSMase2 is induced by oxidative stress through phosphorylation. Furthermore, the induced interaction of anionic phospholipids and the signaling molecules like receptor for activated C-kinase 1/embryonic ectodermal development with nSMase2 are also crucial mechanisms of protein activation. In the review, recent research advances in the structure and function of nSMase2 and its underlying mechanisms are summarized.
Neural crest cells: from developmental biology to clinical interventions.
Noisa, Parinya; Raivio, Taneli
2014-09-01
Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.
Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells
Helm, Alexander; Arrizabalaga, Onetsine; Pignalosa, Diana; Schroeder, Insa S.; Durante, Marco
2016-01-01
Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes through embryoid body (EB) formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time, the number of beating EBs derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable of developing along the cardiac lineage although with considerable delay. Reduced EB size, failure to downregulate pluripotency markers, and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays. PMID:26506910
2013-01-01
Background Histone methyltransferase enhancer of zeste homologue 2 (EZH2) forms an obligate repressive complex with suppressor of zeste 12 and embryonic ectoderm development, which is thought, along with EZH1, to be primarily responsible for mediating Polycomb-dependent gene silencing. Polycomb-mediated repression influences gene expression across the entire gamut of biological processes, including development, differentiation and cellular proliferation. Deregulation of EZH2 expression is implicated in numerous complex human diseases. To date, most EZH2-mediated function has been primarily ascribed to a single protein product of the EZH2 locus. Results We report that the EZH2 locus undergoes alternative splicing to yield at least two structurally and functionally distinct EZH2 methyltransferases. The longest protein encoded by this locus is the conventional enzyme, which we refer to as EZH2α, whereas EZH2β, characterized here, represents a novel isoform. We find that EZH2β localizes to the cell nucleus, complexes with embryonic ectoderm development and suppressor of zeste 12, trimethylates histone 3 at lysine 27, and mediates silencing of target promoters. At the cell biological level, we find that increased EZH2β induces cell proliferation, demonstrating that this protein is functional in the regulation of processes previously attributed to EZH2α. Biochemically, through the use of genome-wide expression profiling, we demonstrate that EZH2β governs a pattern of gene repression that is often ontologically redundant from that of EZH2α, but also divergent for a wide variety of specific target genes. Conclusions Combined, these results demonstrate that an expanded repertoire of EZH2 writers can modulate histone code instruction during histone 3 lysine 27-mediated gene silencing. These data support the notion that the regulation of EZH2-mediated gene silencing is more complex than previously anticipated and should guide the design and interpretation of future studies aimed at understanding the biochemical and biological roles of this important family of epigenomic regulators. PMID:23448518
Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?
NASA Technical Reports Server (NTRS)
Holland, L. Z.; Holland, N. D.
2001-01-01
Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.
Veltmaat, Jacqueline M; Relaix, Frédéric; Le, Lendy T; Kratochwil, Klaus; Sala, Frédéric G; van Veelen, Wendy; Rice, Ritva; Spencer-Dene, Bradley; Mailleux, Arnaud A; Rice, David P; Thiery, Jean Paul; Bellusci, Saverio
2006-06-01
Little is known about the regulation of cell fate decisions that lead to the formation of five pairs of mammary placodes in the surface ectoderm of the mouse embryo. We have previously shown that fibroblast growth factor 10 (FGF10) is required for the formation of mammary placodes 1, 2, 3 and 5. Here, we have found that Fgf10 is expressed only in the somites underlying placodes 2 and 3, in gradients across and within these somites. To test whether somitic FGF10 is required for the formation of these two placodes, we analyzed a number of mutants with different perturbations of somitic Fgf10 gradients for the presence of WNT signals and ectodermal multilayering, markers for mammary line and placode formation. The mammary line is displaced dorsally, and formation of placode 3 is impaired in Pax3ILZ/ILZ mutants, which do not form ventral somitic buds. Mammary line formation is impaired and placode 3 is absent in Gli3Xt-J/Xt-J and hypomorphic Fgf10 mutants, in which the somitic Fgf10 gradient is shortened dorsally and less overall Fgf10 is expressed, respectively. Recombinant FGF10 rescued mammogenesis in Fgf10(-/-) and Gli3Xt-J/Xt-J flanks. We correlate increasing levels of somitic FGF10 with progressive maturation of the surface ectoderm, and show that full expression of somitic Fgf10, co-regulated by GLI3, is required for the anteroposterior pattern in which the flank ectoderm acquires a mammary epithelial identity. We propose that the intra-somitic Fgf10 gradient, together with ventral elongation of the somites, determines the correct dorsoventral position of mammary epithelium along the flank.
Apoptosis contributes to placode morphogenesis in the posterior placodal area of mice.
Washausen, Stefan; Knabe, Wolfgang
2013-05-01
In the embryonic head of vertebrates, neurogenic and non-neurogenic ectodermal placodes arise from the panplacodal primordium. Whether and how growth processes of the ectodermal layer, changes in the transcriptional precursor cell profile, or positional changes among precursor cells contribute to interplacodal boundary formation is subject to intense investigation. We demonstrate that large scale apoptosis in the multiplacodal posterior placodal area (PPA) of C57BL/6 mice assists in the segregation of otic and epibranchial placodes. Complex patterns of interplacodal apoptosis precede and parallel the structural individualization of high-grade thickened placodes, with the fundamental separation between otic and epibranchial precursor cells being seemingly prevalent. Interplacodal apoptosis between the emerging epibranchial placodes, which express Neurogenin2 prior to their complete structural individualization, comes out most strongly between the epibranchial placodes 1 and 2. Apoptosis then moves from interplacodal to intraplacodal positions in dorsal and, with a delay, ventral parts of the epibranchial placodes. Intraplacodal apoptosis appears to exert corrective actions among premigratory neuroblasts, and helps to eliminate the epibranchial placodes. The present findings confirm and extend earlier observations in Tupaia belangeri (Washausen et al. in Dev Biol 278:86-102, 2005), regarded as an intermediate between primates and other eutherian orders. Having now available maps of apoptosis in the PPA of embryonic mice, further investigations into the functions of inter- and intraplacodal apoptosis can be carried out in an experimentally and genetically more accessible mammalian model organism.
Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm
Gaur, Shailly; Mandelbaum, Max; Herold, Mona; Majumdar, Himani Datta; Neilson, Karen M.; Maynard, Thomas M.; Mood, Kathy; Daar, Ira O.; Moody, Sally A.
2016-01-01
The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activity is required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologues of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. PMID:27092474
Derivation, propagation and differentiation of human embryonic stem cells.
Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard
2004-04-01
Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.
p63 in skin development and ectodermal dysplasias
Koster, Maranke I.
2010-01-01
The transcription factor p63 is critically important for skin development and maintenance. Processes that require p63 include epidermal lineage commitment, epidermal differentiation, cell adhesion, and basement membrane formation. Not surprisingly, alterations in the p63 pathway underlie a subset of ectodermal dysplasias, developmental syndromes in which the skin and skin appendages do not develop normally. This review summarizes the current understanding of the role of p63 in normal development and ectodermal dysplasias. PMID:20445549
Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping
2015-04-01
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko
2014-10-01
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.
Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo
Abranches, Elsa; Silva, Margarida; Pradier, Laurent; Schulz, Herbert; Hummel, Oliver; Henrique, Domingos; Bekman, Evguenia
2009-01-01
Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an early stage that follows neural induction to a final stage preceding terminal differentiation. Conclusions/Significance Overall, our work confirms and extends the cellular and molecular parallels between monolayer ES cell neural differentiation and embryonic neural development, revealing in addition novel aspects of the genetic network underlying the multistep process that leads from uncommitted cells to differentiated neurons. PMID:19621087
Guazzarotti, L; Tadini, G; Mancini, G E; Giglio, S; Willoughby, C E; Callea, M; Sani, I; Nannini, P; Mameli, C; Tenconi, A A; Mauri, S; Bottero, A; Caimi, A; Morelli, M; Zuccotti, G V
2015-04-01
Ectodermal dysplasias (EDs) are a group of genetic disorders characterized by the abnormal development of the ectodermal-derived structures. X-linked hypohidrotic ectodermal dysplasia, resulting from mutations in ED1 gene, is the most common form. The main purpose of this study was to characterize the phenotype spectrum in 45 males harboring ED1 mutations. The study showed that in addition to the involvement of the major ectodermal tissues, the majority of patients also have alterations of several minor ectodermal-derived structures. Characterizing the clinical spectrum resulting from ED1 gene mutations improves diagnosis and can direct clinical care. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng
2017-06-08
A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental epithelium by temporally controlling the function of BMP4. A novel tooth-periodontium complex structure was generated using the epithelium.
Sharma, Neha; Kubaczka, Caroline; Kaiser, Stephanie; Nettersheim, Daniel; Mughal, Sadaf S; Riesenberg, Stefanie; Hölzel, Michael; Winterhager, Elke; Schorle, Hubert
2016-03-01
Loss of TFAP2C in mouse leads to developmental defects in the extra-embryonic compartment with lethality at embryonic day (E)7.5. To investigate the requirement of TFAP2C in later placental development, deletion of TFAP2C was induced throughout extra-embryonic ectoderm at E6.5, leading to severe placental abnormalities caused by reduced trophoblast population and resulting in embryonic retardation by E8.5. Deletion of TFAP2C in TPBPA(+) progenitors at E8.5 results in growth arrest of the junctional zone. TFAP2C regulates its target genes Cdkn1a (previously p21) and Dusp6, which are involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt1 and reduced activation of phosphorylated AKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of TFAP2C led to upregulation of imprinted gene H19 and downregulation of Slc38a4 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction, with 19% lighter mutant pups. Knockdown of TFAP2C in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where TFAP2C in trophoblasts controls proliferation by repressing Cdkn1a and activating the MAPK pathway, further supporting differentiation of glycogen cells by activating the AKT pathway. © 2016. Published by The Company of Biologists Ltd.
Cai, Qing; Bonfanti, Paola; Sambathkumar, Rangarajan; Vanuytsel, Kim; Vanhove, Jolien; Gysemans, Conny; Debiec-Rychter, Maria; Raitano, Susanna; Heimberg, Harry; Ordovas, Laura; Verfaillie, Catherine M
2014-04-01
Pancreatic endocrine progenitors obtained from human embryonic stem cells (hESCs) represent a promising source to develop cell-based therapies for diabetes. Although endocrine pancreas progenitor cells have been isolated from mouse pancreata on the basis of Ngn3 expression, human endocrine progenitors have not been isolated yet. As substantial differences exist between human and murine pancreas biology, we investigated whether it is possible to isolate pancreatic endocrine progenitors from differentiating hESC cultures by lineage tracing of NGN3. We targeted the 3' end of NGN3 using zinc finger nuclease-mediated homologous recombination to allow selection of NGN3eGFP(+) cells without disrupting the coding sequence of the gene. Isolated NGN3eGFP(+) cells express PDX1, NKX6.1, and chromogranin A and differentiate in vivo toward insulin, glucagon, and somatostatin single hormone-expressing cells but not to ductal or exocrine pancreatic cells or other endodermal, mesodermal, or ectodermal lineages. This confirms that NGN3(+) cells represent pancreatic endocrine progenitors in humans. In addition, this hESC reporter line constitutes a unique tool that may aid in gaining insight into the developmental mechanisms underlying fate choices in human pancreas and in developing cell-based therapies.
Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.
El-Hodiri, H; Bhatia-Dey, N; Kenyon, K; Ault, K; Dirksen, M; Jamrich, M
2001-01-01
Fox (forkhead/winged helix) genes encode a family of transcription factors that are involved in embryonic pattern formation, regulation of tissue specific gene expression and tumorigenesis. Several of them are transcribed during Xenopus embryogenesis and are important for the patterning of ectoderm, mesoderm and endoderm. We have isolated three forkhead genes that are activated during gastrulation and play an important role in the dorso-ventral patterning of the mesoderm. XFKH1 (FoxA4b), the first vertebrate forkhead gene to be implicated in embryonic pattern formation, is expressed in the Spemann-Mangold organizer region and later in the embryonic notochord. XFKH7, the Xenopus orthologue of the murine Mfh1(Foxc2), is expressed in the presomitic mesoderm, but not in the notochord or lateral plate mesoderm. Finally, XFD-13'(FoxF1b)1 is expressed in the lateral plate mesoderm, but not in the notochord or presomitic mesoderm. Expression pattern and functional experiments indicate that these three forkhead genes are involved in the dorso-ventral patterning of the mesoderm.
Vonk, R; van der Schot, A C; van Baal, G C M; van Oel, C J; Nolen, W A; Kahn, R S
2014-12-01
Palmar and finger dermatoglyphics are formed between the 10th and the 17th weeks of gestation and their morphology can be influenced by genetic or environmental factors, interfering with normal intrauterine development. As both the skin and the brain develop from the same embryonal ectoderm, dermatoglyphic alterations may be informative for early abnormal neurodevelopmental processes in the brain. We investigated whether dermatoglyphic alterations are related to structural brain abnormalities in bipolar disorder and to what extent they are of a genetic and of an environmental origin. Dermatoglyphics and volumetric data from structural MRI were obtained in 53 twin pairs concordant or discordant for bipolar disorder and 51 healthy matched control twin pairs. Structural equation modeling was used. Bipolar disorder was significantly positively associated with palmar a-b ridge count (ABRC), indicating higher ABRC in bipolar patients (rph=.17 (CI .04-.30)). Common genes appear to be involved because the genetic correlation with ABRC was significant (rph-A=.21 (CI .05-.36). Irrespective of disease, ABRC showed a genetically mediated association with brain volume, indicated by a significant genetic correlation rph-A of respectively -.36 (CI -.52 to -.22) for total brain, -.34 (CI -.51 to -.16) total cortical volume, -.27 (CI -.43 to -.08) cortical gray matter and -.23 (CI -.41 to -.04) cortical white matter. In conclusion, a genetically determined abnormal development of the foetal ectoderm between the 10th and 15th week of gestation appears related to smaller brain volumes in (subjects at risk for) bipolar disorder. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
RESISTANCE TO X-IRRADIATION BY EMBRYONIC CELLS OF THE LIMB-BUDS OF TADPOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, B.M.; Ewell, L.M.
1959-01-01
Both total-body irradiation and shielding of the trunk were used to study the effects of x irradiation from 1000 to 30000 r upon the limb-buds of Bufo boreas and Hyla regilla tadpoles. The object was to test the view that the younger the cells the more sensitive they are to irradiation. The answer is negative. If there is any special susceptibility of these undifferentiated cells it should appear at levels far below the 30000 r maximum employed. A sharp distinction is made between the very susceptible mitotic cells and the resistant non-dividing embryonic cells that have been accumulated in suchmore » numbers that they may rapidly differentiate into the characteristic limb tissues under the stimulus of the thyroid hormone. Many irradiated ectoderm cells were changed to form bizarre excrescences but were not destroyed. Unicellular cuthneous gland cells continued to arise even after the heaviest irradiation. Irradiated tadpoles with hind limb-buds from 0.6 mm down to 0.2 mm length were unable to develop normal limbs. This capacity was propontional to the number of non-dividing embryonic cells stored at the time of irradiation. Irradiation of 5000, equal degree but the rapidity was greatest in the cases of higher dosage. Not only did these levels of irradiation fail to destroy the non-dividing embryonic cells but they did not effect their pre-deterrmined specificity nor modify their capacity for subsequent differentiation and growth. Exposure to a thyroxin solution caused the hind limb-buds without visible differentiation of cells to grow from a length of 0.8 or 0.9 mm or 1.0 mm at the time of irradiation to a length of as much as 5.0 mm in the course of 7 days. Development of thigh, shank, ankle, and toes was complete. Microscopic studies showed characteristic tissues such as cartilage, connective tissue, and muscle, developed to a comparable degree in control and irradiated specimens. (auth)« less
Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R
2006-11-01
The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.
The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis.
Perry, Kimberly J; Johnson, Verity R; Malloch, Erica L; Fukui, Lisa; Wever, Jason; Thomas, Alvin G; Hamilton, Paul W; Henry, Jonathan J
2010-11-01
G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina, and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84's importance in lens, cornea, and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino-injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. © 2010 Wiley-Liss, Inc.
The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis
Perry, Kimberly J.; Johnson, Verity R.; Malloch, Erica L.; Fukui, Lisa; Wever, Jason; Thomas, Alvin G.; Hamilton, Paul W.; Henry, Jonathan J.
2010-01-01
G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84’s importance in lens, cornea and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea. PMID:20925114
Barsi, Julius C; Davidson, Eric H
2016-01-01
Specification of the ciliated band (CB) of echinoid embryos executes three spatial functions essential for postgastrular organization. These are establishment of a band about 5 cells wide which delimits and bounds other embryonic territories; definition of a neurogenic domain within this band; and generation within it of arrays of ciliary cells that bear the special long cilia from which the structure derives its name. In Strongylocentrotus purpuratus the spatial coordinates of the future ciliated band are initially and exactly determined by the disposition of a ring of cells that transcriptionally activate the onecut homeodomain regulatory gene, beginning in blastula stage, long before the appearance of the CB per se. Thus the cis-regulatory apparatus that governs onecut expression in the blastula directly reveals the genomic sequence code by which these aspects of the spatial organization of the embryo are initially determined. We screened the entire onecut locus and its flanking region for transcriptionally active cis-regulatory elements, and by means of BAC recombineered deletions identified three separated and required cis-regulatory modules that execute different functions. The operating logic of the crucial spatial control module accounting for the spectacularly precise and beautiful early onecut expression domain depends on spatial repression. Previously predicted oral ectoderm and aboral ectoderm repressors were identified by cis-regulatory mutation as the products of goosecoid and irxa genes respectively, while the pan-ectodermal activator SoxB1 supplies a transcriptional driver function. Copyright © 2015. Published by Elsevier Inc.
Deletion of OTX2 in neural ectoderm delays anterior pituitary development
Mortensen, Amanda H.; Schade, Vanessa; Lamonerie, Thomas; Camper, Sally A.
2015-01-01
OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland. PMID:25315894
An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest.
Cox, Samuel G; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J Gage
2012-09-01
The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC-derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton.
An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest
Cox, Samuel G.; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J. Gage
2012-01-01
The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton. PMID:23028350
Ciarlo, Christie; Kaufman, Charles K; Kinikoglu, Beste; Michael, Jonathan; Yang, Song; D′Amato, Christopher; Blokzijl-Franke, Sasja; den Hertog, Jeroen; Schlaeger, Thorsten M; Zhou, Yi; Liao, Eric
2017-01-01
The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation. PMID:28832322
Fritzsch, Bernd; Beisel, Kirk W.; Hansen, Laura
2014-01-01
Summary The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future. PMID:17120192
Muzaffar, Musharifa; Selokar, Naresh L.; Singh, Karn P.; Zandi, Mohammad; Singh, Manoj K.; Shah, Riaz A.; Chauhan, Manmohan S.; Singla, Suresh K.; Palta, Prabhat
2012-01-01
Abstract This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production. PMID:22582863
Muzaffar, Musharifa; Selokar, Naresh L; Singh, Karn P; Zandi, Mohammad; Singh, Manoj K; Shah, Riaz A; Chauhan, Manmohan S; Singla, Suresh K; Palta, Prabhat; Manik, Radheysham
2012-06-01
This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production.
Identification and embryonic expression of a new AP-2 transcription factor, AP-2 epsilon.
Wang, Hao-Ven; Vaupel, Kristina; Buettner, Reinhard; Bosserhoff, Anja-Katrin; Moser, Markus
2004-09-01
AP-2 proteins comprise a family of highly related transcription factors, which are expressed during mouse embryogenesis in a variety of ectodermal, neuroectodermal, and mesenchymal tissues. AP-2 transcription factors were shown to be involved in morphogenesis of craniofacial, urogenital, neural crest-derived, and placental tissues. By means of a partial cDNA fragment identified during an expressed sequence tag search for AP-2 genes, we identified a fifth, previously unknown AP-2-related gene, AP-2 epsilon. AP-2 epsilon encodes an open reading frame of 434 amino acids, which reveals the typical modular structure of AP-2 transcription factors with highly conserved C-terminal DNA binding and dimerization domains. Although the N-terminally localized activation domain is less homologous, position and identity of amino acids essential for transcriptional transactivation are conserved. Reverse transcriptase-polymerase chain reaction analyses of murine embryos revealed AP-2 epsilon expression from gestational stage embryonic day 7.5 throughout all later embryonic stages until birth. Whole-mount in situ hybridization using a specific AP-2 epsilon cDNA fragment demonstrated that during embryogenesis, expression of AP-2 epsilon is mainly restricted to neural tissue, especially the midbrain, hindbrain, and olfactory bulb. This expression pattern was confirmed by immunohistochemistry with an AP-2 epsilon-specific antiserum. By using this antiserum, we could further localize AP-2 epsilon expression in a hypothalamic nucleus and the neuroepithelium of the vomeronasal organ, suggesting an important function of AP-2 epsilon for the development of the olfactory system.
Ectodermal Dysplasia: A Genetic Review
Prashanth, S
2012-01-01
Abstract Ectodermal dysplasia is a rare hereditary disorder with a characteristic physiognomy. It is a genetic disorder affecting the development or function of the teeth, hair, nails and sweat glands. Depending on the particular syndrome ectodermal dysplasia can also affect the skin, the lens or retina of the eye, parts of the inner ear, the development of fingers and toes, the nerves and other parts of the body. Each syndrome usually involves a different combination of symptoms, which can range from mild to severe. The history and lessons learned from hypohidrotic ectodermal dysplasia (HED) may serve as an example for unraveling of the cause and pathogenesis of other ectodermal dysplasia syndromes by demonstrating that phenotypically identical syndromes can be caused by mutations in different genes (EDA, EDAR, EDARADD), that mutations in the same gene can lead to different phenotypes and that mutations in the genes further downstream in the same signaling pathway (NEMO) may modify the phenotype quite profoundly. The aim of this paper is to describe and discuss the etiology, genetic review, clinical manifestations and treatment options of this hereditary disorder. How to cite this article: Deshmukh S, Prashanth S. Ectodermal Dysplasia: A Genetic Review. Int J Clin Pediatr Dent 2012; 5(3):197-202. PMID:25206167
Ectodermal dysplasia: a genetic review.
Deshmukh, Seema; Prashanth, S
2012-09-01
Ectodermal dysplasia is a rare hereditary disorder with a characteristic physiognomy. It is a genetic disorder affecting the development or function of the teeth, hair, nails and sweat glands. Depending on the particular syndrome ectodermal dysplasia can also affect the skin, the lens or retina of the eye, parts of the inner ear, the development of fingers and toes, the nerves and other parts of the body. Each syndrome usually involves a different combination of symptoms, which can range from mild to severe. The history and lessons learned from hypohidrotic ectodermal dysplasia (HED) may serve as an example for unraveling of the cause and pathogenesis of other ectodermal dysplasia syndromes by demonstrating that phenotypically identical syndromes can be caused by mutations in different genes (EDA, EDAR, EDARADD), that mutations in the same gene can lead to different phenotypes and that mutations in the genes further downstream in the same signaling pathway (NEMO) may modify the phenotype quite profoundly. The aim of this paper is to describe and discuss the etiology, genetic review, clinical manifestations and treatment options of this hereditary disorder. How to cite this article: Deshmukh S, Prashanth S. Ectodermal Dysplasia: A Genetic Review. Int J Clin Pediatr Dent 2012; 5(3):197-202.
Ectodermal Wnt6 is an early negative regulator of limb chondrogenesis in the chicken embryo
2010-01-01
Background Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. Results In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. Conclusion Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm. PMID:20334703
Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo
Cajal, Marieke; Lawson, Kirstie A.; Hill, Bill; Moreau, Anne; Rao, Jianguo; Ross, Allyson; Collignon, Jérôme; Camus, Anne
2012-01-01
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head. PMID:22186731
Li, Jing; Qin, Yu; Zhao, Fang-Kun; Wu, Di; He, Xue-Fei; Liu, Jia; Zhao, Jiang-Yue; Zhang, Jin-Song
2016-01-01
To explore the molecular mechanisms in lens development and the pathogenesis of Peters anomaly in Smad4 defective mice. Le-Cre transgenic mouse line was employed to inactivate Smad4 in the surface ectoderm selectively. Pathological techniques were used to reveal the morphological changes of the anterior segment in Smad4 defective eye. Immunohistochemical staining was employed to observe the expression of E-cadherin, N-cadherin and α-SMA in anterior segment of Smad4 defective mice and control mice at embryonic (E) day 16.5. Real-time quantitative polymerase chain reaction (qPCR) was performed to detect the expression of Snail, Zeb1, Zeb2 and Twist2 in lens of Smad4 defective mice and control mice at E16.5. Statistical evaluations were performed using the unpaired Student's t-test (two-tailed) by SPSS 11.0 software. Conditional deletion of Smad4 on eye surface ectoderm resulted in corneal dysplasia, iridocorneal angle closure, corneolenticular adhesions and cataract resembling Peters anomaly. Loss of Smad4 function inhibited E-cadherin expression in the lens epithelium cells and corneal epithelium cells in Smad4 defective eye. Expression of N-cadherin was up-regulated in corneal epithelium and corneal stroma. Both E-cadherin and N-cadherin were down-regulated at the future trabecular meshwork region in mutant eye. The qPCR results showed that the expression of Twist2 was increased significantly in the mutant lens (P<0.01). Smad4 is essential to eye development and likely a candidate pathogenic gene to Peters anomaly by regulating epithelial-mesenchymal transition. Twist2 can be regulated by Smad4 and plays an essential role in lens development.
Individualized Plastic Reconstruction Strategy for Patients With Ectodermal Dysplasia Syndrome.
Hou, Yikang; Jin, Yunbo; Lin, Xiaoxi; Chai, Gang; Zhang, Yan; Qi, Zuoliang
2017-06-01
Ectodermal dysplasia syndrome is a hereditary disease of ectodermal origin. Appearances of nail dystrophy, alopecia or hypotrichosis, saddle nose deformity, and palmoplantar hyperkeratosis are usually associated with a lack of sweat glands as well as partial or complete absence of teeth. These manifestations are usually corrected only with oral rehabilitation by mounting dentures. In this study, plastic rehabilitation was developed to correct the special features of patients with ectodermal dysplasia. Four men and 1 woman with ectodermal dysplasia syndrome were treated. Four patients showed dysostosis of the midface, and rhinoplasty with costal bone was performed, whereas cosmetic operation aiming to repair soft tissue defects was adopted for the last patient. After plastic corrections, all 5 patients were satisfied with the results and had no social embarrassment.
Sarma, D; Das, R; Akhtar, M S; Ciji, A; Sharma, N K; Singh, A K
2016-10-01
Ultrastructural and histological changes in the embryonic and larval surface during ontogenesis of the endangered golden mahseer Tor putitora is studied here for the first time. Embryonic development was completed 91-92 h after fertilization at an ambient temperature of 23° ± 1° C (mean ± s.d.). The gastrula stage was characterized by presence of the Kupffer's vesicle, notochord, ectoderm and endoderm cells. Primordial germ cells were clearly identifiable from c. 55 h post-fertilization at the organogenesis stage. Mean total length of newly hatched larvae was 7·0 ± 0·5 mm. Scanning electron microscopy of newly hatched larvae demonstrated vitelline arteries, microridged epithelial cells and mucous gland openings over much of the body surface. Eye, oral cavity, pharyngeal arches, heart, intestinal loop, prosencephalon, cephalic vesicle and nasal epithelium were clearly distinguished in 3 day old hatched individuals. In 6 day old individuals, caudal-fin rays and internal organs were evident. The dorsal fin became prominent at this stage and larvae began swimming at the surface. The reserved yolk material was totally absorbed 8-11 days after hatching and larvae began feeding exogenously. Tor putitora exhibited a longer early developmental period than other cyprinids reared at similar temperatures. © 2016 The Fisheries Society of the British Isles.
Molecular stages of rapid and uniform neuralization of human embryonic stem cells.
Bajpai, R; Coppola, G; Kaul, M; Talantova, M; Cimadamore, F; Nilbratt, M; Geschwind, D H; Lipton, S A; Terskikh, A V
2009-06-01
Insights into early human development are fundamental for our understanding of human biology. Efficient differentiation of human embryonic stem cells (hESCs) into neural precursor cells is critical for future cell-based therapies. Here, using defined conditions, we characterized a new method for rapid and uniform differentiation of hESCs into committed neural precursor cells (designated C-NPCs). Dynamic gene expression analysis identified several distinct stages of ESC neuralization and revealed functional modules of coregulated genes and pathways. The first wave of gene expression changes, likely corresponding to the transition through primitive ectoderm, started at day 3, preceding the formation of columnar neuroepithelial rosettes. The second wave started at day 5, coinciding with the formation of rosettes. The majority of C-NPCs were positive for both anterior and posterior markers of developing neuroepithelium. In culture, C-NPCs became electrophysiologically functional neurons; on transplantation into neonatal mouse brains, C-NPCs integrated into the cortex and olfactory bulb, acquiring appropriate neuronal morphologies and markers. Compared to rosette-NPCs,(1) C-NPCs exhibited limited in vitro expansion capacity and did not express potent oncogenes such as PLAG1 or RSPO3. Concordantly, we never detected tumors or excessive neural proliferation after transplantation of C-NPCs into mouse brains. In conclusion, our study provides a framework for future analysis of molecular signaling during ESC neuralization.
Inoue, Makiko; Shiina, Tomoya; Aizawa, Sayaka; Sakata, Ichiro; Takagi, Hiroyasu; Sakai, Takafumi
2012-06-01
Although δ-crystallin (δ-crys), also known as lens protein, is transiently expressed in Rathke's pouch (RP) of the chick embryo, detailed temporal and spatial expression patterns have been obscure. In this study, to understand the relationship between the δ-crys mRNA-expressing region and RP formation, we examined the embryonic expression pattern of δ-crys mRNA in the primordium of the adenohypophysis. δ-crys mRNA expression was initially found at stage 15 anterior to the foregut and posterior to the invaginated oral ectoderm. After RP formation, the δ-crys mRNA was expressed in the post-ventral region of RP and the anterior region of RP. δ-crys mRNA expression was then restricted to the cephalic lobe of the pituitary gland. From stage 20, the δ-crys and alpha-glycoprotein subunit (αGSU) mRNA-expressing regions were almost completely overlapping. The αGSU mRNA-expressing region is thought to be the primordium of the pars tuberalis, and these regions were overlapped with the Lhx3 mRNA-expressing region. The intensity of δ-crys mRNA expression gradually decreased with development and completely disappeared by stage 34. These results suggest that the embryonic chick pituitary gland consists of two different regions labeled with δ-crys and Lhx3.
Munoz, William A.; Kloc, Malgorzata; Hofmann, Ilse; Sater, Amy; Vleminckx, Kris; McCrea, Pierre D.
2012-01-01
The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types. PMID:22496792
Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J; Schneider, Pascal
2014-02-14
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.
Kowalczyk-Quintas, Christine; Willen, Laure; Dang, Anh Thu; Sarrasin, Heidi; Tardivel, Aubry; Hermes, Katharina; Schneider, Holm; Gaide, Olivier; Donzé, Olivier; Kirby, Neil; Headon, Denis J.; Schneider, Pascal
2014-01-01
Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated. PMID:24391090
Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad
2011-02-01
Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.
Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells.
Huggins, Ian J; Brafman, David; Willert, Karl
2016-01-01
Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.
Keratin 17 null mice exhibit age- and strain-dependent alopecia.
McGowan, Kevin M; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A
2002-06-01
Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins.
Ectodermal Dysplasia with Anodontia: A Report of Two Cases
Bani, Mehmet; Tezkirecioglu, Ali Melih; Akal, Nese; Tuzuner, Tamer
2010-01-01
Ectodermal dysplasia is a hereditary disorder that occurs as a consequence of disturbances in the ectoderm of the developing embryo. The triad of nail dystrophy, alopecia or hypotrichosis and palmoplantar hyperkeratosis is usually accompanied by a lack of sweat glands and a partial or complete absence of primary and/or permanent dentition. Two case reports illustrating the prosthetic rehabilitation of 2 young boys with anhidrotic ectodermal dysplasia associated with severe anodontia are presented. Since the oral rehabilitation of these cases is often difficult; particularly in pediatric patients, treatment should be administered by a multidisciplinary team involving pediatric dentistry, orthodontics, prosthodontics and oral-maxillofacial surgery. PMID:20396456
Halliday, Gail C; Junckerstorff, Reimar C; Bentel, Jacqueline M; Miles, Andrew; Jones, David T W; Hovestadt, Volker; Capper, David; Endersby, Raelene; Cole, Catherine H; van Hagen, Tom; Gottardo, Nicholas G
2018-01-01
Central nervous system primitive neuro-ectodermal tumors (CNS-PNETs), have recently been re-classified in the most recent 2016 WHO Classification into a standby catch all category, "CNS Embryonal Tumor, not otherwise specified" (CNS embryonal tumor, NOS) based on epigenetic, biologic and histopathologic criteria. CNS embryonal tumors (NOS) are a rare, histologically and molecularly heterogeneous group of tumors that predominantly affect children, and occasionally adults. Diagnosis of this entity continues to be challenging and the ramifications of misdiagnosis of this aggressive class of brain tumors are significant. We report the case of a 45-year-old woman who was diagnosed with a central nervous system embryonal tumor (NOS) based on immunohistochemical analysis of the patient's tumor at diagnosis. However, later genome-wide methylation profiling of the diagnostic tumor undertaken to guide treatment, revealed characteristics most consistent with IDH-mutant astrocytoma. DNA sequencing and immunohistochemistry confirmed the presence of IDH1 and ATRX mutations resulting in a revised diagnosis of high-grade small cell astrocytoma, and the implementation of a less aggressive treatment regime tailored more appropriately to the patient's tumor type. This case highlights the inadequacy of histology alone for the diagnosis of brain tumours and the utility of methylation profiling and integrated genomic analysis for the diagnostic verification of adults with suspected CNS embryonal tumor (NOS), and is consistent with the increasing realization in the field that a combined diagnostic approach based on clinical, histopathological and molecular data is required to more accurately distinguish brain tumor subtypes and inform more effective therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Establishing the pre-placodal region and breaking it into placodes with distinct identities
Saint-Jeannet, Jean-Pierre; Moody, Sally A.
2014-01-01
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provides the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities. PMID:24576539
Embryology meets molecular biology: Deciphering the apical ectodermal ridge.
Verheyden, Jamie M; Sun, Xin
2017-09-15
More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field. Copyright © 2017 Elsevier Inc. All rights reserved.
Wilson, Keen A; Andrews, Mary E; Rudolf Turner, F; Raff, Rudolf A
2005-01-01
The transcription factors Gsc and Msx are expressed in the oral ectoderm of the indirect-developing sea urchin Heliocidaris tuberculata. Their patterns of expression are highly modified in the direct developer Heliocidaris erythrogramma, which lacks an oral ectoderm. We here test the hypothesis that they are large effect genes responsible for the loss of the oral ectoderm module in the direct-developing larva of H. erythrogramma as well as for the restoration of an overt oral ectoderm in H.e. xH.t. hybrids. We undertook misexpression/overexpression and knockdown assays in the two species and in hybrids by mRNA injection. The results indicate that dramatic changes of function of these transcription factors has occurred. One of these genes, Gsc, has the ability when misexpressed to partially restore oral ectoderm in H. erythrogramma. On the other hand, Msx has lost any oral function and instead has a role in mesoderm proliferation and patterning. In addition, we found that the H. tuberculataGsc is up regulated in H.e. xH.t. hybrids, showing a preferential use of the indirect developing parental gene in the development of the hybrid. We suggest that Gsc qualifies as a gene of large evolutionary effect and is partially responsible for the evolution of direct development of H. erythrogramma. We discuss these results in light of modularity and genetic networks in development, as well as in their implications for the rapid evolution of large morphological changes in development.
Specification of functional cranial placode derivatives from human pluripotent stem cells.
Dincer, Zehra; Piao, Jinghua; Niu, Lei; Ganat, Yosif; Kriks, Sonja; Zimmer, Bastian; Shi, Song-Hai; Tabar, Viviane; Studer, Lorenz
2013-12-12
Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Turner, David A.; Hayward, Penelope C.; Baillie-Johnson, Peter; Rué, Pau; Broome, Rebecca; Faunes, Fernando; Martinez Arias, Alfonso
2014-01-01
The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/β-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation. PMID:25371361
Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld
2012-03-01
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.
Molecular basis of hypohidrotic ectodermal dysplasia: an update.
Trzeciak, Wieslaw H; Koczorowski, Ryszard
2016-02-01
Recent advances in understanding the molecular events underlying hypohidrotic ectodermal dysplasia (HED) caused by mutations of the genes encoding proteins of the tumor necrosis factor α (TNFα)-related signaling pathway have been presented. These proteins are involved in signal transduction from ectoderm to mesenchyme during development of the fetus and are indispensable for the differentiation of ectoderm-derived structures such as eccrine sweat glands, teeth, hair, skin, and/or nails. Novel data were reviewed and discussed on the structure and functions of the components of TNFα-related signaling pathway, the consequences of mutations of the genes encoding these proteins, and the prospect for further investigations, which might elucidate the origin of HED.
Ladda, R; Gangadhar, SA; Kasat, VO; Bhandari, AJ
2013-01-01
Ectodermal dysplasias are rare hereditary disorders characterized by abnormal development of certain tissues and structures of ectodermal origin. The condition is important for dentists as it affects teeth resulting in hypodontia or anodontia and dentist plays an important role in rehabilitation of the patient. Affected young children with anodontia not only have difficulties in eating and speaking but can also feel that they look different from their contemporaries. Well-fitting and functioning prosthesis could be a great help during their schooling years as it will improve appearance and thus boost their self confidence. We report a case of hypohidrotic ectodermal dysplasia in an 8-year-old boy who exhibited anodontia and was successfully rehabilitated with conventional complete dentures in both maxillary and mandibular arches. The aim of the treatment was to improve psychological development apart from promoting better functioning of the stomatognathic system. PMID:23919206
Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.
Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko
2011-06-01
Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.
ERIC Educational Resources Information Center
Caplan, Arnold I.
1981-01-01
Emphasizes ectodermal-mesodermal interaction but focuses on the genesis of specialized structures like feathers (ectodermal) and muscles, cartilage, and bone. The sum of these interactions and other factors which govern normal development may be important in regulating the regeneration of particular structures in postembryonic individuals.…
Regional differences in the expression of laminin isoforms during mouse neural tube development
Copp, Andrew J.; Carvalho, Rita; Wallace, Adam; Sorokin, Lydia; Sasaki, Takako; Greene, Nicholas D.E.; Ybot-Gonzalez, Patricia
2013-01-01
Many significant human birth defects originate around the time of neural tube closure or early during post-closure nervous system development. For example, failure of the neural tube to close generates anencephaly and spina bifida, faulty cell cycle progression is implicated in primary microcephaly, while defective migration of neuroblasts can lead to neuronal migration disorders such as lissencephaly. At the stage of neural tube closure, basement membranes are becoming organised around the neuroepithelium, and beneath the adjacent non-neural surface ectoderm. While there is circumstantial evidence to implicate basement membrane dynamics in neural tube and surface ectodermal development, we have an incomplete understanding of the molecular composition of basement membranes at this stage. In the present study, we examined the developing basement membranes of the mouse embryo at mid-gestation (embryonic day 9.5), with particular reference to laminin composition. We performed in situ hybridization to detect the mRNAs of all eleven individual laminin chains, and immunohistochemistry to identify which laminin chains are present in the basement membranes. From this information, we inferred the likely laminin variants and their tissues of origin: that is, whether a given basement membrane laminin is contributed by epithelium, mesenchyme, or both. Our findings reveal major differences in basement composition along the body axis, with the rostral neural tube (at mandibular arch and heart levels) exhibiting many distinct laminin variants, while the lumbar level where the neural tube is just closing shows a much simpler laminin profile. Moreover, there appears to be a marked difference in the extent to which the mesenchyme contributes laminin variants to the basement membrane, with potential contribution of several laminins rostrally, but no contribution caudally. This information paves the way towards a mechanistic analysis of basement membrane laminin function during early neural tube development in mammals. PMID:21524702
Lüer, Karin; Technau, Gerhard M
2009-08-03
The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once specified in the neuroectoderm, exhibit a higher degree of autonomy regarding generation of their lineages compared to mesectodermal midline progenitors.
Generation of chondrocytes from embryonic stem cells.
Khillan, Jaspal Singh
2006-01-01
Pluripotent embryonic stem (ES) cells have complete potential for all the primary germ layers, such as ectoderm, mesoderm, and endoderm. However, the cellular and molecular mechanisms that control their lineage-restricted differentiation are not understood. Although embryoid bodies, which are formed because of the spontaneous differentiation of ES cells, have been used to study the differentiation into different cell types, including neurons, chondrocytes, insulin-producing cells, bone-forming cells, hematopoietic cells, and so on, this system has limitations for investigating the upstream events that lead to commitment of cells that occur during the inaccessible period of development. Recent developments in human ES cells have offered a challenge to develop strategies for understanding the basic mechanisms that play a key role in differentiation of stem cell into specific cell types for their applications in regenerative medicine and cell-based therapies. A micromass culture system was developed to induce the differentiation of ES cells into chondrocytes, the cartilage-producing cells, as a model to investigate the upstream events of stem cell differentiation. ES cells were co-cultured with limb bud progenitor cells. A high percentage of differentiated cells exhibit typical morphological characteristics of chondrocytes and express cartilage matrix genes such as collagen type II and proteoglycans, suggesting that signals from the progenitor cells are sufficient to induce ES cells into the chondrogenic lineage. Degeneration of cartilage in the joints is associated with osteoarthritis, which affects the quality of life of human patients. Therefore, the quantitative production of chondrocytes can be a powerful resource to alleviate the suffering of those patients.
Establishment of segment polarity in the ectoderm of the leech Helobdella
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Shankland, M.
2001-01-01
The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.
Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.
Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris
2010-04-01
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.
Hypohidrotic ectodermal dysplasia: a clinical case with a longitudinal approach.
Fraiz, Fabian Calixto; Gugisch, Renato Cordeiro; Cavalcante-Leão, Bianca Lopes; Macedo, Liliane Moreira
2014-11-01
This paper describes a clinical case of a male with hypohidrotic ectodermal dysplasia submitted to rehabilitation and occlusal dental interventions with follow-up from 3 to 14 years of age. Due to the severe effects on function and esthetics, the clinical manifestations of ectodermal dysplasia exert a negative impact on quality of life. However, oral rehabilitation in childhood poses a challenge due to growth and development. A male with hypohidrotic ectodermal dysplasia began dental intervention at the age of 3 years. The clinical and radiographic exams revealed the absence of several primary and permanent teeth and abnormal shape of the primary maxillary incisors. The facial characteristics were compatible with hypohidrotic ectodermal dysplasia, such as a prominent brow, everted lips, fattened bridge of the nose and small vertical facial height. The treatment proposed involved rehabilitation through successive temporary partial dentures, functional orthopedics of the jaws, esthetic reconstruction of the anterior teeth, timely occlusal intervention and preventive actions for the control of dental caries and plaque. The present case demonstrates that early care plays a fundamental role in minimizing the biopsychosocial consequences of hypohidrotic ectodermal dysplasia and preparing the patient for future oral rehabilitation. Although, the literature offers a number of papers describing dental treatment for ectodermal dysplasia, few cases include long-term follow-up and the use of a functional orthopedic appliance in combination with removable dentures in such patients.
Engineering the human pluripotent stem cell microenvironment to direct cell fate
Hazeltine, Laurie B.; Selekman, Joshua A.; Palecek, Sean P.
2013-01-01
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystems technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. PMID:23510904
Engineering the human pluripotent stem cell microenvironment to direct cell fate.
Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P
2013-11-15
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.
Hall, Sonia; Ward, Robert E.
2016-01-01
The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004
Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus
2012-03-01
Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.
Thompson, Helen; Shimeld, Sebastian M
2015-06-01
Spawned ascidian oocytes are surrounded by a membrane called the chorion (or vitelline coat) and associated with two populations of maternally-supplied cells. Outside the chorion are follicle cells, which may affect the buoyancy of eggs. Inside the chorion are test cells, which during oogenesis provision the egg and which after fertilisation contribute to the larval tunic. The structure of maternal cells may vary between species. The model ascidian Ciona intestinalis has been recently split into two species, currently named type A and type B. The ultrastructure of extraembryonic cells and structures from type A embryos has been reported. Here we describe the ultrastructure of follicle and test cells from C. intestinalis type B embryos. Test cells are about 5 µm in diameter and line the inside of the chorion of developing embryos in a dense sheet. Follicle cells are large (> 100 µm long) and spike-shaped, with many large vesicles. Terminal electron dense granules are found towards the tips of spikes, adjacent to cytoplasm containing numerous small electron dense bodies connected by filaments. These are probably vesicles containing material for the terminal granules. Removal of maternal structures and cells just after fertilisation, as commonly used in many experiments manipulating C. intestinalis development, has been reported to affect embryonic patterning. We examined the impact of this on embryonic ectoderm cells by scanning electron microscopy. Cells of embryos that developed without maternal structures still developed cilia, but had indistinct cell boundaries and a more flattened appearance than those that developed within the chorion.
Rossi, A; Miraglia, E; Fortuna, M C; Calvieri, S; Giustini, S
2017-02-01
Ectodermal dysplasia is a clinically and genetically heterogeneous group of inherited disorders characterized by abnormal development of two or more of the following ectodermal-derived structures: hair, teeth, nails and sweat glands. The hair is the most frequently affected structure. Hair shaft abnormalities are of great concern to these patients, but no effective treatments are available. We describe three girls with congenital hypotrichosis (9, 5 and 6 years old) caused by ectodermal dysplasia treated with topical cetirizine solution (2 mL. once daily) and oral vitamin D supplementation (1000 IU daily). After 6 months of treatment, the density of hair on the scalp increased in all patients. The vellus hair was replaced by terminal hair. Hair regrowth was evaluated both from the clinical and trichoscopic point of view. We propose a combination of topical cetirizine and oral vitamin D as a rational treatment of choice in congenital hypotrichosis caused by ectodermal dysplasia. © 2016 European Academy of Dermatology and Venereology.
Ectrodactyly-ectodermal dysplasia clefting syndrome (EEC syndrome).
Koul, Monika; Dwivedi, Rahul; Upadhyay, Vinod
2014-01-01
Ectrodactyly-ectodermal dysplasia- clefting syndrome (also k/a. split hand- split foot malformation
Anhidrotic ectodermal dysplasia presenting as atrophic rhinitis.
Barman, Debasis; Mandal, Satadal; Nandi, Santanu; Banerjee, Pranabashish; Rashid, M A
2011-11-01
Ectodermal dysplasia is a complex group of familial disorders with numerous clinical characteristics, with an incidence of 7 in 10000 born alive children. Ectodermal dysplasia affects structures of ectodermal origin like the skin and its appendages as well as other non-ectodermal structures. The most common sites of involvement are the defects in the skin, hair, teeth, nails and sweat glands,which are of ectodermal origin. Though the dermatologists and paediatricians often manage such cases, we report one case of ectodermal dysplasia presenting with atrophic rhinitis.
Horiguchi, Kotaro; Yako, Hideji; Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio
2016-01-01
The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.
Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio
2016-01-01
The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis. PMID:27695124
van Mens, Thijs E.; Liang, Hai-Po H.; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; May, Jennifer; Zhan, Min; Yang, Qiuhui; Foeckler, Jamie; Kalloway, Shawn; Sood, Rashmi; Karlson, Caren Sue
2017-01-01
Thrombomodulin (Thbd) exerts pleiotropic effects on blood coagulation, fibrinolysis, and complement system activity by facilitating the thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor and may have additional thrombin- and protein C (pC)-independent functions. In mice, complete Thbd deficiency causes embryonic death due to defective placental development. In this study, we used tissue-selective and temporally controlled Thbd gene ablation to examine the function of Thbd in adult mice. Selective preservation of Thbd function in the extraembryonic ectoderm and primitive endoderm via the Meox2Cre-transgene enabled normal intrauterine development of Thbd-deficient (Thbd−/−) mice to term. Half of the Thbd−/− offspring expired perinatally due to thrombohemorrhagic lesions. Surviving Thbd−/− animals only rarely developed overt thrombotic lesions, exhibited low-grade compensated consumptive coagulopathy, and yet exhibited marked, sudden-onset mortality. A corresponding pathology was seen in mice in which the Thbd gene was ablated after reaching adulthood. Supplementation of activated PC by transgenic expression of a partially Thbd-independent murine pC zymogen prevented the pathologies of Thbd−/− mice. However, Thbd−/− females expressing the PC transgene exhibited pregnancy-induced morbidity and mortality with near-complete penetrance. These findings suggest that Thbd function in nonendothelial embryonic tissues of the placenta and yolk sac affects through as-yet-unknown mechanisms the penetrance and severity of thrombosis after birth and provide novel opportunities to study the role of the natural Thbd-pC pathway in adult mice and during pregnancy. PMID:28920104
Seneviratna, Deepani; Taylor, H H
2006-04-01
This study examined whether the existence of hyperosmotic internal fluids in embryos of euryhaline crabs (Hemigrapsus sexdentatus and H. crenulatus) in dilute seawater reflects osmotic isolation due to impermeability of the egg envelope, as proposed for other decapods, or active osmoregulation. When ovigerous crabs with eggs at gastrula stage were transferred from 100% seawater (osmolality 1000 mmol kg(-1)) to 50% seawater, embryogenesis and hatching of zoea were completed normally, but were delayed. Hatching failed if the transfer to 50% seawater occurred before gastrulation, and embryogenesis was abnormal in 25% seawater. In 100% seawater, embryos at all stages were internally hyperosmotic by 150-250 mmol kg(-1). On transfer to 50% seawater, osmolality initially decreased but remained 200-350 mmol kg(-1) hyperosmotic to the medium for several weeks until hatching. High efflux rates of tritium-labelled water (t((1/2)) 16-75 min) and (22)Na (t(1/2) 109-374 min) from H. crenulatus embryos were inconsistent with the osmotic isolation hypothesis. It is concluded that post-gastrula embryos were actively hyper-osmoregulating. The diffusional water permeability of the embryos decreased during development while the sodium efflux rate increased 10-fold. Very rapidly exchanging pools of water and sodium (t(1/2) a few seconds to minutes) probably corresponded to peri-embryonic fluid and implied that the egg envelope was a negligible barrier to diffusion of water and salts. Higher Na(+)/K(+)-ATPase activities in late embryos of H. crenulatus incubated in 50% seawater than in embryos incubated in full strength seawater were consistent with an acclimation response. An area of the embryonic surface located over the yolk in the region of the embryonic dorsal organ stained with AgNO(3). Staining appeared at gastrulation, persisted throughout development and was lost at hatching. Deposits of AgCl between the outer and inner membranes, identified by X-ray microanalysis, suggest that the dorsal organ was a site of chloride extrusion. A model for osmoregulation in post-gastrula embryos is proposed: osmotic uptake of water is balanced by excretion of water and salts via the dorsal organ and salt loss is balanced by active uptake over the general embryonic ectoderm.
Malecki, Marek; Tombokan, Xenia; Anderson, Mark; Malecki, Raf; Beauchaine, Michael
2013-01-01
Introduction Cancer of the testes is currently the most frequent neoplasm and a leading cause of morbidity in men 15–35 years of age. Its incidence is increasing. Embryonal carcinoma is its most malignant form, which either may be resistant or may develop resistance to therapies, which results in relapses. Cancer stem cells are hypothesized to be drivers of these phenomena. Specific aim The specific aim of this work was identification and isolation of spectra of single, living cancer stem cells, which were acquired directly from the patients’ biopsies, followed by testing of their pluripotency. Patients. Methods Biopsies were obtained from the patients with the clinical and histological diagnoses of the primary, pure embryonal carcinomas of the testes. The magnetic and fluorescent antibodies were genetically engineered. The SSEA-4 and TRA-1–60 cell surface display was analyzed by multiphoton fluorescence spectroscopy (MPFS), flow cytometry (FCM), immunoblotting (IB), nuclear magnetic resonance spectroscopy (NMRS), energy dispersive x-ray spectroscopy (EDXS), and total reflection x-ray spectroscopy (TRXFS). The single, living cells were isolated by magnetic or fluorescent sorting followed by their clonal expansion. The OCT4A, SOX2, and NANOG genes’ transcripts were analyzed by qRTPCR and the products by IB and MPFS. Results The clones of cells, with the strong surface display of TRA-1–60 and SSEA-4, were identified and isolated directly from the biopsies acquired from the patients diagnosed with the pure embryonal carcinomas of the testes. These cells demonstrated high levels of transcription and translation of the pluripotency genes: OCT4A, SOX2, and NANOG. They formed embryoid bodies, which differentiated into ectoderm, mesoderm, and endoderm. Conclusion In the pure embryonal carcinomas of the testes, acquired directly from the patients, we identified, isolated with high viability and selectivity, and profiled the clones of the pluripotent stem cells. These results may help in explaining therapy-resistance and relapses of these neoplasms, as well as, in designing targeted, personalized therapy. PMID:23772337
Abnormal placental development and early embryonic lethality in EpCAM-null mice.
Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C
2009-12-31
EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.
The pre-vertebrate origins of neurogenic placodes.
Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael
2015-08-27
The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.
Hypohidrotic and hidrotic ectodermal dysplasia: a report of two cases.
Vasconcelos Carvalho, Marianne; Romero Souto de Sousa, José; Paiva Correa de Melo, Filipe; Fonseca Faro, Tatiane; Nunes Santos, Ana Clara; Carvalho, Silvia; Veras Sobral, Ana Paula
2013-07-14
Ectodermal dysplasias are a large group of syndromes characterized by anomalies in the structures of ectodermal origin. There are 2 major types of this disorder, based on clinical findings: hypohidrotic ectodermal dysplasia and hidrotic ectodermal dysplasia. This clinical classification is very important because clinical professionals involved with this disease need first a clear and practical method of diagnosis. The main oral manifestation of ectodermal dysplasia may be expressed as hypodontia. Thus, dental professionals may be the first to diagnose ectodermal dysplasia. The present article reports one case of each of the main types (hypohidrotic and hidrotic) of ectodermal dysplasia and the authors review the literature regarding the pathogenesis, clinical features, and therapeutic management of this condition.
Direct and indirect requirements of Shh/Gli signaling in early pituitary development.
Wang, Yiwei; Martin, James F; Bai, C Brian
2010-12-15
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation. Copyright © 2010 Elsevier Inc. All rights reserved.
Susceptibility of early life stages of Xenopus laevis to cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Perez-Coll, C.S.; Cardellini, P.
1997-02-01
The susceptibility of Xenopus laevis to cadmium during different stages of development was evaluated by exposing embryos to cadmium concentrations ranging from 0.1 to 10 mg Cd{sup 2+}/L for 24, 48, and 72 h and assessing lethality and malformations. Susceptibility increased from the two blastomeres stage (stage 2) to stage 40, in which the 24-h LC100 was 1.13 mg Cd{sup 2+}/L, and resistance increased from this stage onward. Malformations occurred at all developmental stages evaluated, the most common being reduced size, incurvated axis, underdeveloped or abnormally developed fin, microcephaly, and microphtalmy. Scanning electron microscopy revealed changes in the ectodermal surfacemore » ranging from slightly vaulted cells to a severe reduction in the number of ciliated cells as the concentration of cadmium increased. The intraspecific variation evaluated in embryos (from four sets of parents) at seven developmental stages, expressed as the coefficient of variation of the LC100, ranged from 10 to 112% and reflects the capacity of Xenopus laevis to adapt to changing environmental conditions at different embryonic stages.« less
Genomic determinants of epidermal appendage patterning and structure in domestic birds
Boer, Elena F.; Van Hollebeke, Hannah F.; Shapiro, Michael D.
2017-01-01
Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity. PMID:28347644
Heterogeneity in the development of the vertebra.
Monsoro-Burq, A H; Bontoux, M; Teillet, M A; Le Douarin, N M
1994-10-25
Vertebrae are derived from the sclerotomal moities of the somites. Sclerotomal cells migrate ventrally to surround the notochord, where they form the vertebral body, and dorsolaterally to form the neural arch, which is dorsally closed by the spinous process. Precursor cells of the spinous process as well as superficial ectoderm and roof plate express homeobox genes of the Msh family from embryonic day 2 (E2) to E6. The notochord has been shown to be responsible for the dorsoventral polarization of the somites and for the induction of sclerotomal cells into cartilage. Indeed, supernumerary notochord grafted laterally to the neural tube induces the conversion of the entire somite into cartilage. We report here that a mediodorsal graft of notochord prevents the sclerotomal cells migrating dorsally to the roof plate from differentiating into cartilage. Under these experimental conditions, expression of Msx genes is abolished. We thus demonstrate that cartilaginous, differentiation is differentially controlled in the dorsal part of the vertebra (spinous process) and in the neural arch and vertebral body.
Keratin 17 null mice exhibit age- and strain-dependent alopecia
McGowan, Kevin M.; Tong, Xuemei; Colucci-Guyon, Emma; Langa, Francina; Babinet, Charles; Coulombe, Pierre A.
2002-01-01
Onset of type I keratin 17 (K17) synthesis marks the adoption of an appendageal fate within embryonic ectoderm, and its expression persists in specific cell types within mature hair, glands, and nail. We report that K17 null mice develop severe alopecia during the first week postbirth, correlating with hair fragility, alterations in follicular histology, and apoptosis in matrix cells. These alterations are incompletely penetrant and normalize starting with the first postnatal cycle. Absence of a hair phenotype correlates with a genetic strain-dependent compensation by related keratins, including K16. These findings reveal a crucial role for K17 in the structural integrity of the first hair produced and the survival of hair-producing cells. Given that identical inherited mutations in this gene can cause either pachyonychia congenita or steatocystoma multiplex, the features of this mouse model suggest that this clinical heterogeneity arises from a cell type-specific, genetically determined compensation by related keratins. PMID:12050118
Wang, Ying; Edalji, Rohinton P; Panchal, Sanjay C; Sun, Chaohong; Djuric, Stevan W; Vasudevan, Anil
2017-10-26
It is advocated that kinetic and thermodynamic profiling of bioactive compounds should be incorporated and utilized as complementary tools for hit and lead optimizations in drug discovery. To assess their applications in the EED hit-to-lead optimization process, large amount of thermodynamic and kinetic data were collected and analyzed via isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), respectively. Slower dissociation rates (k off ) of the lead compounds were observed as the program progressed. Analysis of the kinetic data indicated that compound cellular activity correlated with both K i and k off . Our analysis revealed that ITC data should be interpreted in the context of chiral purity of the compounds. The thermodynamic signatures of the EED aminopyrrolidine compounds were found to be mainly enthalpy driven with improved enthalpic contributions as the program progressed. Our study also demonstrated that significant challenges still exist in utilizing kinetic and thermodynamic parameters for hit selection.
Hypohidrotic Ectodermal Dysplasia: Breastfeeding Complications Due to Impaired Breast Development.
Wahlbuhl-Becker, Mandy; Faschingbauer, Florian; Beckmann, Matthias W; Schneider, Holm
2017-04-01
Background X-linked hypohidrotic ectodermal dysplasia (XLHED), the most common form of ectodermal dysplasia, is caused by mutations in the gene EDA. While only affected men develop the full-blown clinical picture, females who are heterozygous for an EDA mutation often also show symptoms such as hypodontia, hypotrichosis and hypohidrosis. These women may also suffer from malformations of the mammary gland which represent not just a cosmetic problem but can limit their breastfeeding capability. This paper summarizes the findings of the first systematic study on the impact of hypohidrotic ectodermal dysplasia on breastfeeding. Patients Thirty-eight adult female members of the German-Swiss-Austrian ectodermal dysplasia patient support group participated in a structured interview; most of them also agreed to a photodocumentation of their mammary region. Thirty-one women carried mutations in EDA (Group A) and seven were affected by other forms of hypohidrotic ectodermal dysplasia (Group B). Results 39 % of the women of Group A reported that their breasts were of different size or entirely absent on one side. In Group B, 86 % of the women reported differently sized or even absent breasts; two of these women lacked both breasts entirely. Most women described their nipples as exceptionally flat. 10 % of the women of Group A had more than two nipples. The high percentage of deviations from the norm was confirmed in the photodocumentation. Both groups had few or no sebaceous glands of Montgomery in the areolar region. Around 80 % of interviewed women had children and had attempted to breastfeed their first child. 67 % of the mothers in Group A had had difficulty in breastfeeding their infants and generally attributed this difficulty to their flat nipples. All of the mothers in Group B reported difficulties in breastfeeding; 60 % had not been able to breastfeed their first child. Conclusion Mothers with hypohidrotic ectodermal dysplasia very often have difficulty in breastfeeding because of their impaired breast development. This causal relationship needs to be taken into account in lactation counseling.
The management of ectodermal dysplasia and severe hypodontia. International conference statements.
Hobkirk, J A; Nohl, F; Bergendal, B; Storhaug, K; Richter, M K
2006-09-01
An international conference on ectodermal dysplasias and hypodontia, held in London in 2004, featured a session devoted to the management of the ectodermal dysplasias and severe hypodontia. This paper presents a set of statements prepared by an international specialist panel, including representatives of patient support groups, who presented and subsequently debated a series of papers on this subject. The following topics were explored: potential roles of patient support groups; core care standards, including the roles and composition of medical and dental multidisciplinary teams for treating these conditions; the format of a baseline data set for patients with an ED; and priorities for research in ectodermal dysplasias, with particular regard to laboratory and clinical studies, and research methodology. The statements are intended to form an international framework for developing patient care pathways, and collaborative research in this field.
Schuster-Gossler, K; Bilinski, P; Sado, T; Ferguson-Smith, A; Gossler, A
1998-06-01
We have isolated a novel mouse gene (Gtl2) from the site of a gene trap integration (Gtl2lacZ) that gave rise to developmentally regulated lacZ expression, and a dominant parental-origin-dependent phenotype. Heterozygous Gtl2lacZ mice that inherited the transgene from the father showed a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype was strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. Gtl2 expression is highly similar to the beta-galactosidase staining pattern, and is down-regulated but not abolished in mice carrying the Gtl2lacZ insertion. In early postimplantation embryos, Gtl2 is expressed in the visceral yolk sac and embryonic ectoderm. During subsequent development and organogenesis, Gtl2 transcripts are abundant in the paraxial mesoderm closely correlated with myogenic differentiation, in parts of the central nervous system, and in the epithelial ducts of developing excretory organs. The Gtl2 gene gives rise to various differentially spliced transcripts, which contain multiple small open reading frames (ORF). However, none of the ATG codons of these ORFs is in the context of a strong Kozak consensus sequence for initiation of translation, suggesting that Gtl2 might function as an RNA. Nuclear Gtl2 RNA was detected in a temporally and spatially regulated manner, and partially processed Gtl2 transcripts were readily detected in Northern blot hybridizations of polyadenylated RNA, suggesting that primary Gtl2 transcripts are differently processed in various cell types during development. Gtl2 transcript levels are present in parthenogenic embryos but may be reduced, consistent with the pattern of inheritance of the Gtl2lacZ phenotype.
Ear nose throat manifestations in hypoidrotic ectodermal dysplasia.
Callea, Michele; Teggi, Roberto; Yavuz, Izzet; Tadini, Gianluca; Priolo, Manuela; Crovella, Sergio; Clarich, Gabriella; Grasso, Domenico Leonardo
2013-11-01
The ectodermal dysplasias (EDs) are a large and complex group of inherited disorders. In various combinations, they all share anomalies in ectodermal derived structures: hair, teeth, nails and sweat gland function. Clinical overlap is present among EDs. Few causative genes have been identified, to date. Altered gene expression is not limited to the ectoderm but a concomitant effect on developing mesenchymal structures, with modification of ectodermal-mesenchymal signaling, takes place. The two major categories of ED include the hidrotic and hypohidrotic form, the latter more frequent; they differentiate each other for the presence or absence of sweat glands. We report Ear Nose Throat manifestations of ED, linked to the reduction of mucous glands in the nasal fossae with reduced ciliar function, and decrease salivary glands function. Often patients report an increased rate of infections of the upper respiratory tract and of the ear. Nasal obstruction due to the presence of nasal crusting, hearing loss and throat hoarseness are the most represented symptoms. Environmental measures, including a correct air temperature and humidification, is mandatory above all in subjects affected by hypohidrotic form. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hannibal, Roberta L; Price, Alivia L; Patel, Nipam H
2012-01-15
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea. Copyright © 2011 Elsevier Inc. All rights reserved.
Medial edge epithelium transforms to mesenchyme after embryonic palatal shelves fuse.
Fitchett, J E; Hay, E D
1989-02-01
The disappearance of palatal medial edge epithelium (MEE) after fusion of secondary palatal shelves is often cited as a classical example of embryonic remodeling by programmed cell death. We reinvestigated this phenomenon in 16-day rat embryos, using light and electron microscopy. We confirm reports that the periderm of the two-layered MEE begins to slough after shelves assume horizontal positions. In vitro, peridermal cells are not able to slough and are trapped during the adhesion process. In vivo, however, surface cells shed before the shelves in the anterior palate adhere, allowing junctions to form between opposing basal epithelial cells. Midline seams so formed consist of two layers of basal cells, all of which appear healthy. Even though its cells are dividing, growth of the seam fails to keep pace with palatal growth and it thins to one layer of cells, and then breaks up into small islands. The basal lamina disappears and elongating MEE cells extend filopodia into adjacent connective tissue. Electron micrographs reveal transitional steps in loss of epithelial characteristics and gain of fibroblast-like features by transforming MEE cells. One such feature, observed with the aid of immunofluorescence, is the turn of the mesenchymal cytoskeletal protein, vimentin. No cell death or macrophages are observed after adhesion and thinning over most of the palate. These data indicate that MEE is an ectoderm that retains the ability to transform into mesenchymal cells. Epithelial-mesenchymal transformation may be expressed in other embryonic remodelings (R.L. Trelstad, A. Hayashi, K. Hayashi, and P.K. Donahue, 1982, Dev. Biol. 92, 27), resulting in heretofore unsuspected conservation of embryonic cell populations.
Resolving early mesoderm diversification through single-cell expression profiling.
Scialdone, Antonio; Tanaka, Yosuke; Jawaid, Wajid; Moignard, Victoria; Wilson, Nicola K; Macaulay, Iain C; Marioni, John C; Göttgens, Berthold
2016-07-14
In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.
Nordin, Kara; LaBonne, Carole
2014-01-01
SUMMARY The SoxD factor, Sox5, is expressed in ectodermal cells at times and places where BMP signaling is active, including the cells of the animal hemisphere at blastula stages, and the neural plate border (NPB) and neural crest (NC) at neurula stages. Sox5 is required for proper ectoderm development, and deficient embryos display patterning defects characteristic of perturbations of BMP signaling, including loss of neural crest and epidermis and expansion of the neural plate. We show that Sox5 is essential for activation of BMP target genes in embryos and explants, that it physically interacts with BMP R-Smads, and that it is essential for recruitment of Smad1/4 to BMP regulatory elements. Our findings identify Sox5 as the long sought DNA binding partner for BMP R-Smads essential to plasticity and pattern in the early ectoderm. PMID:25453832
Abnormal primary and permanent dentitions with ectodermal symptoms predict WNT10A deficiency.
Bergendal, Birgitta; Norderyd, Johanna; Zhou, Xiaolei; Klar, Joakim; Dahl, Niklas
2016-11-24
The WNT10A protein is critical for the development of ectodermal appendages. Variants in the WNT10A gene may be associated with a spectrum of ectodermal abnormalities including extensive tooth agenesis. In seven patients with severe tooth agenesis we identified anomalies in primary dentition and additional ectodermal symptoms, and assessed WNT10A mutations by genetic analysis. Investigation of primary dentition revealed peg-shaped crowns of primary mandibular incisors and three individuals had agenesis of at least two primary teeth. The permanent dentition was severely affected in all individuals with a mean of 21 missing teeth. Primary teeth were most often present in positions were succedaneous teeth were missing. Furthermore, most existing molars had taurodontism. Light, brittle or coarse hair was reported in all seven individuals, hyperhidrosis of palms and soles in six individuals and nail anomalies in two individuals. The anomalies in primary dentition preceded most of the additional ectodermal symptoms. Genetic analysis revealed that all seven individuals were homozygous or compound heterozygous for WNT10A mutations resulting in C107X, E222X and F228I. We conclude that tooth agenesis and/or peg-shaped crowns of primary mandibular incisors, severe oligodontia of permanent dentition as well as ectodermal symptoms of varying severity may be predictors of bi-allelic WNT10A mutations of importance for diagnosis, counselling and follow-up.
Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos
Hassoun, Romia; Schwartz, Peter; Rath, Detlef; Viebahn, Christoph; Männer, Jörg
2010-01-01
Relative to recent advances in understanding molecular requirements for endoderm differentiation, the dynamics of germ layer morphology and the topographical distribution of molecular factors involved in endoderm formation at the caudal pole of the embryonic disc are still poorly defined. To discover common principles of mammalian germ layer development, pig and rabbit embryos at late gastrulation and early neurulation stages were analysed as species with a human-like embryonic disc morphology, using correlative light and electron microscopy. Close intercellular contact but no direct structural evidence of endoderm formation such as mesenchymal–epithelial transition between posterior primitive streak mesoderm and the emerging posterior endoderm were found. However, a two-step process closely related to posterior germ layer differentiation emerged for the formation of the cloacal membrane: (i) a continuous mesoderm layer and numerous patches of electron-dense flocculent extracellular matrix mark the prospective region of cloacal membrane formation; and (ii) mesoderm cells and all extracellular matrix including the basement membrane are lost locally and close intercellular contact between the endoderm and ectoderm is established. The latter process involves single cells at first and then gradually spreads to form a longitudinally oriented seam-like cloacal membrane. These gradual changes were found from gastrulation to early somite stages in the pig, whereas they were found from early somite to mid-somite stages in the rabbit; in both species cloacal membrane formation is complete prior to secondary neurulation. The results highlight the structural requirements for endoderm formation during development of the hindgut and suggest new mechanisms for the pathogenesis of common urogenital and anorectal malformations. PMID:20874819
Shah, Syed Mohmad; Saini, Neha; Ashraf, Syma; Zandi, Mohammad; Manik, Radhey Sham; Singla, Suresh Kumar; Palta, Prabhat
2015-01-01
Abstract We present the derivation, characterization, and pluripotency analysis of three buffalo embryonic stem cell (buESC) lines, from in vitro–fertilized, somatic cell nuclear–transferred, and parthenogenetic blastocysts. These cell lines were developed for later differentiation into germ lineage cells and elucidation of the signaling pathways involved. The cell lines were established from inner cell masses (ICMs) that were isolated manually from the in vitro–produced blastocysts. Most of the ICMs (45–55%) resulted in formation of primary colonies that were subcultured after 8–10 days, leading subsequently to the formation of three buESC lines, one from each blastocyst type. All the cell lines expressed stem cell markers, such as Alkaline Phosphatase, OCT4, NANOG, SSEA1, SSEA4, TRA-1-60, TRA-1-81, SOX2, REX1, CD-90, STAT3, and TELOMERASE. They differentiated into all three germ layers as determined by ectodermal, mesodermal, and endodermal RNA and protein markers. All of the cell lines showed equal expression of pluripotency markers as well as equivalent differentiation potential into all the three germ layers. The static suspension culture–derived embryoid bodies (EBs) showed greater expression of all the three germ layer markers as compared to hanging drop culture–derived EBs. When analyzed for germ layer marker expression, EBs derived from 15% fetal bovine serum (FBS)-based spontaneous differentiation medium showed greater differentiation across all the three germ layers as compared to those derived from Knock-Out Serum Replacement (KoSR)-based differentiation medium. PMID:26168169
Transcriptome architecture across tissues in the pig
Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel
2008-01-01
Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811
van Bueren, Kelly Lammerts; Papangeli, Irinna; Rochais, Francesca; Pearce, Kerra; Roberts, Catherine; Calmont, Amelie; Szumska, Dorota; Kelly, Robert G.; Bhattacharya, Shoumo; Scambler, Peter J.
2010-01-01
22q11 deletion syndrome (22q11DS) is characterised by aberrant development of the pharyngeal apparatus and the heart with haploinsufficiency of the transcription factor TBX1 being considered the major underlying cause of the disease. Tbx1 mutations in mouse phenocopy the disorder. In order to identify the transcriptional dysregulation in Tbx1-expressing lineages we optimised fluorescent-activated cell sorting of β-galactosidase expressing cells (FACS-Gal) to compare the expression profile of Df1/Tbx1lacZ (effectively Tbx1 null) and Tbx1 heterozygous cells isolated from mouse embryos. Hes1, a major effector of Notch signalling, was identified as downregulated in Tbx1−/− mutants. Hes1 mutant mice exhibited a partially penetrant range of 22q11DS-like defects including pharyngeal arch artery (PAA), outflow tract, craniofacial and thymic abnormalities. Similar to Tbx1 mice, conditional mutagenesis revealed that Hes1 expression in embryonic pharyngeal ectoderm contributes to thymus and pharyngeal arch artery development. These results suggest that Hes1 acts downstream of Tbx1 in the morphogenesis of pharyngeal-derived structures. PMID:20122914
Totipotency, Pluripotency and Nuclear Reprogramming
NASA Astrophysics Data System (ADS)
Mitalipov, Shoukhrat; Wolf, Don
Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.
Holland, Linda Z
2005-07-15
In chordates, the ectoderm is divided into the neuroectoderm and the so-called non-neural ectoderm. In spite of its name, however, the non-neural ectoderm contains numerous sensory cells. Therefore, the term "non-neural" ectoderm should be replaced by "general ectoderm." At least in amphioxus and tunicates and possibly in vertebrates as well, both the neuroectoderm and the general ectoderm are patterned anterior/posteriorly by mechanisms involving retinoic acid and Hox genes. In amphioxus and tunicates the ectodermal sensory cells, which have a wide range of ciliary and microvillar configurations, are mostly primary neurons sending axons to the CNS, although a minority lack axons. In contrast, vertebrate mechanosensory cells, called hair cells, are all secondary neurons that lack axons and have a characteristic eccentric cilium adjacent to a group of microvilli of graded lengths. It has been highly controversial whether the ectodermal sensory cells in the oral siphons of adult tunicates are homologous to vertebrate hair cells. In some species of tunicates, these cells appear to be secondary neurons, and microvillar and ciliary configurations of some of these cells approach those of vertebrate hair cells. However, none of the tunicate cells has all the characteristics of a hair cell, and there is a high degree of variation among ectodermal sensory cells within and between different species. Thus, similarities between the ectodermal sensory cells of any one species of tunicate and craniate hair cells may well represent convergent evolution rather than homology. Copyright 2005 Wiley-Liss, Inc.
Nikhil, M; Chugh, Anshul; Narwal, Anjali
2012-01-01
ABSTRACT A 7-year-old male, described in the case report, exhibited many of the manifestations of ectodermal dysplasia as well as behavioral problems. The treatment to improve his appearance and oral function included a removable prosthesis. The results were significant improvements in speech, masticatory function, and facial esthetics, contributing to the development of normal dietary habits, and the improved and more rapid social integration of the child. How to cite this article: Bala S, Nikhil M, Chugh A, Narwal A. Prosthetic Rehabilitation of a Child Suffering from Hypohidrotic Ectodermal Dysplasia with Complete Anodontia. Int J Clin Pediatr Dent 2012;5(2):148-150. PMID:25206157
Shamseldin, Hanan E; Khalifa, Ola; Binamer, Yousef M; Almutawa, Abdulmonem; Arold, Stefan T; Zaidan, Hamad; Alkuraya, Fowzan S
2017-01-01
Ectodermal dysplasia is a highly heterogeneous group of disorders that variably affect the derivatives of the ectoderm, primarily skin, hair, nails and teeth. TP63, itself mutated in ectodermal dysplasia, links many other ectodermal dysplasia disease genes through a regulatory network that maintains the balance between proliferation and differentiation of the epidermis and other ectodermal derivatives. The ectodermal knockout phenotype of five mouse genes that regulate and/or are regulated by TP63 (Irf6, Ikkα, Ripk4, Stratifin, and Kdf1) is strikingly similar and involves abnormal balance towards proliferation at the expense of differentiation, but only the first three have corresponding ectodermal phenotypes in humans. We describe a multigenerational Saudi family with an autosomal dominant form of hypohidrotic ectodermal dysplasia in which positional mapping and exome sequencing identified a novel variant in KDF1 that fully segregates with the phenotype. The recapitulation of the phenotype we observe in this family by the Kdf1-/- mouse suggests a causal role played by the KDF1 variant.
Perinatal Autopsy Findings in a Case of De Novo Hypohidrotic Ectodermal Dysplasia.
Chikkannaiah, Panduranga; Nagaraju, Smitha; Kangle, Rajit; Gosavi, Mansi
2015-01-01
Ectodermal dysplasia are group of inherited disorders involving the developmental defects of ectodermal structures like hair, teeth, nails, sweat glands, and others. X-linked recessive inheritance is most common. Here we describe perinatal autopsy findings in a case of de novo ectodermal dysplasia in a female fetus. To the best of our knowledge, this is the first fetal autopsy description in a case of ectodermal dysplasia.
Natural and Artificial Intelligence, Language, Consciousness, Emotion, and Anticipation
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
2010-11-01
The classical paradigm of the neural brain as the seat of human natural intelligence is too restrictive. This paper defends the idea that the neural ectoderm is the actual brain, based on the development of the human embryo. Indeed, the neural ectoderm includes the neural crest, given by pigment cells in the skin and ganglia of the autonomic nervous system, and the neural tube, given by the brain, the spinal cord, and motor neurons. So the brain is completely integrated in the ectoderm, and cannot work alone. The paper presents fundamental properties of the brain as follows. Firstly, Paul D. MacLean proposed the triune human brain, which consists to three brains in one, following the species evolution, given by the reptilian complex, the limbic system, and the neo-cortex. Secondly, the consciousness and conscious awareness are analysed. Thirdly, the anticipatory unconscious free will and conscious free veto are described in agreement with the experiments of Benjamin Libet. Fourthly, the main section explains the development of the human embryo and shows that the neural ectoderm is the whole neural brain. Fifthly, a conjecture is proposed that the neural brain is completely programmed with scripts written in biological low-level and high-level languages, in a manner similar to the programmed cells by the genetic code. Finally, it is concluded that the proposition of the neural ectoderm as the whole neural brain is a breakthrough in the understanding of the natural intelligence, and also in the future design of robots with artificial intelligence.
Retinal tear presenting in a patient with ectrodactyly ectodermal dysplasia.
Grogg, Jane Ann; Port, Nicholas; Graham, Trevor
2014-04-01
This article aims to report a case of known ectrodactyly ectodermal dysplasia in a young male patient who subsequently was found to have a retinal tear and localized retinal detachment. This is a case report of a 22-year-old white male patient with a history of ectrodactyly ectodermal dysplasia. Our patient initially presented with an acute exacerbation of bilateral, red, irritated eyes. No recent changes in vision were reported. The patient's ocular surface disease was consistent with ectrodermal dysplasia syndrome. However, a dilated fundus examination revealed an asymptomatic retinal tear with a surrounding localized retinal detachment. In this case, the patient presented with longstanding ocular surface disease known to be associated with this patient's inherited ectoderm disorder. In addition, this patient revealed a retinal tear, raising the possibility that patients with inherited congenital ectodermal dysplasia could be at risk for damaged structures originating from the neural ectoderm. In this heterogeneous disease, we are contributing to the existing literature a case of ectodermal dysplasia syndrome with obvious ectodermal complications that also had retinal findings leading us to speculate question if neural ectoderm could also be involved in this inherited disease.
Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada
2015-01-01
Abstract The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly related also to different environments, as mancae develop in marsupial fluid. Bacteria, evenly distributed within the homogenous electron dense material in the hindgut lumen, were observed only in one specimen of early marsupial manca. The morphological features of gut cuticle renewal are evident in the late marsupial mancae, and are similar to those observed in the exoskeleton. PMID:26261443
Amiel, Aldine R; Henry, Jonathan Q; Seaver, Elaine C
2013-07-01
Many lophotrochozoans (i.e., molluscs, annelids, nemerteans, and polyclad flatworms) display a well-conserved early developmental program called spiral cleavage that contrasts with the high diversity of adult body forms present in this group. Due to this stereotypical development, each cell can be uniquely identified and its lineage history known following intracellular injection of lineage tracers. Cell deletion experiments performed mainly in molluscs have demonstrated that one or two cells associated with the endomesodermal lineage represent an embryonic organizer of subsequent development and are causally involved in cell fate and body patterning. Utilizing the published fate map of the spiral-cleaving annelid Capitella teleta, we used infrared laser cell deletions to dissect the role of individual cells on the patterning of the larval body. Thirteen uniquely identifiable individual blastomeres and two double cell combination deletions were studied to assess larval phenotypes by scoring multiple morphological structures and cell type-specific molecular markers differentially expressed along the antero-posterior and dorso-ventral axes. Surprisingly, our results show that in C. teleta, the cellular identity of the "organizing cell" and the timing of the organizing activity are different from that of other spiralians. retain-->In C. teleta, the ectodermal primary somatoblast, 2d, is the key cell responsible for organizing activity during early embryonic development, and is necessary for bilateral symmetry and dorso-ventral axis organization of the head as well as neural, foregut and mesoderm tissue formation. Furthermore, we show that the ERK/MAPK signaling pathway does not appear to be involved in organizing activity in retain-->C. teleta. This contrasts with data from molluscs and the molecular mechanism suggested for another polychaete, Hydroides elegans, highlighting likely molecular level variation among spiralian embryos. These results reinforce the idea that an embryonic organizing activity is present across spiralians. Our data also emphasize the developmental variation within lophotrochozoans, and may ultimately provide insight into the role of developmental processes in the evolution of diverse body forms in metazoans. Copyright © 2013 Elsevier Inc. All rights reserved.
Tiedemann Svendsen, Mathias; Henningsen, Emil; Hertz, Jens Michael; Vestergaard Grejsen, Dorthe; Bygum, Anette
2014-09-01
Ectodermal dysplasias form a complex, nosologic group of diseases with defects in at least 2 ectodermal structures. A retrospective study of patients with ectodermal dysplasia seen at our department over a period of 19 years (1994-2013) was performed. The study population consisted of 67 patients covering 17 different diagnoses. Forty-five families were identified of which 26 were sporadic cases with no affected family members. In 27 tested families a disease-causing mutation was identified in 23 families. Eleven mutations were novel mutations. To our knowledge, we present the first large ectodermal dysplasia cohort focusing on clinical manifestations in combination with mutational analysis. We recommend a nationwide study to estimate the prevalence of the ectodermal dysplasia and to ensure relevant molecular genetic testing which may form the basis of a national ectodermal dysplasia database.
Sheeba, Caroline J; Andrade, Raquel P; Duprez, Delphine; Palmeirim, Isabel
2010-01-01
Specific interactions between fibroblast growth factors (Fgf1-22) and their tyrosine kinase receptors (FgfR1-4) activate different signalling pathways that are responsible for the biological processes in which Fgf signalling is implicated during embryonic development. In the chick, several Fgf ligands (Fgf2, 4, 8, 9, 10, 12, 13 and 18) and the four FgfRs (FgfR 1, 2, 3 and 4) have been reported to be expressed in the developing limb. The precise spatial and temporal expression of these transcripts is important to guide the limb bud to develop into a wing/leg. In this paper, we present a detailed and systematic analysis of the expression patterns of FgfR1, 2, 3 and 4 throughout chick wing development, by in situ hybridisation on whole mounts and sections. Moreover, we characterize for the first time the different isoforms of FGFR1-3 by analysing their differential expression in limb ectoderm and mesodermal tissues, using RT-PCR and in situ hybridisation on sections. Finally, isoform-specific sequences for FgfR1IIIb, FgfR1IIIc, FgfR3IIIb and FgfR3IIIc were determined and deposited in GenBank with the following accession numbers: GU053725, GU065444, GU053726, GU065445, respectively.
NASA Technical Reports Server (NTRS)
Doniach, T.; Phillips, C. R.; Gerhart, J. C.
1992-01-01
It has long been thought that anteroposterior (A-P) pattern in the vertebrate central nervous system is induced in the embryo's dorsal ectoderm exclusively by signals passing vertically from underlying, patterned dorsal mesoderm. Explants from early gastrulae of the frog Xenopus laevis were prepared in which vertical contact between dorsal ectoderm and mesoderm was prevented but planar contact was maintained. In these, four position-specific neural markers (engrailed-2, Krox-20, XlHbox 1, and XlHbox 6) were expressed in the ectoderm in the same A-P order as in the embryo. Thus, planar signals alone, following a path available in the normal embryo, can induce A-P neural pattern.
O'Brien, Robert N; Shen, Zhouxin; Tachikawa, Kiyoshi; Lee, Pei Angel; Briggs, Steven P
2010-10-01
Embryonic stem cells and embryonal carcinoma cells share two key characteristics: pluripotency (the ability to differentiate into endoderm, ectoderm, and mesoderm) and self-renewal (the ability to grow without change in an untransformed, euploid state). Much has been done to identify and characterize transcription factors that are necessary or sufficient to maintain these characteristics. Oct-4 and Nanog are necessary to maintain pluripotency; they are down-regulated at the mRNA level by differentiation. There may be additional regulatory genes whose mRNA levels are unchanged but whose proteins are destabilized during differentiation. We generated proteome-wide, quantitative profiles of ES and embryonal carcinoma cells during differentiation, replicating a microarray-based study by Aiba et al. (Aiba, K., Sharov, A. A., Carter, M. G., Foroni, C., Vescovi, A. L., and Ko, M. S. (2006) Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24, 889-895) who triggered differentiation by treatment with 1 μM all-trans-retinoic acid. We identified several proteins whose levels decreased during differentiation in both cell types but whose mRNA levels were unchanged. We confirmed several of these cases by RT-PCR and Western blot. Racgap1 (also known as mgcRacgap) was particularly interesting because it is required for viability of preimplantation embryos and hematopoietic stem cells, and it is also required for differentiation. To confirm our observation that RACGAP-1 declines during retinoic acid-mediated differentiation, we used multiple reaction monitoring, a targeted mass spectrometry-based quantitation method, and determined that RACGAP-1 levels decline by half during retinoic acid-mediated differentiation. We knocked down Racgap-1 mRNA levels using a panel of five shRNAs. This resulted in a loss of self-renewal that correlated with the level of knockdown. We conclude that RACGAP-1 is post-transcriptionally regulated during blastocyst development to enable differentiation by inhibiting ES cell self-renewal.
Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J
1994-01-01
Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120
The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.
Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T
2011-03-01
The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Differential expression of two scribble isoforms during Drosophila embryogenesis.
Li, M; Marhold, J; Gatos, A; Török, I; Mechler, B M
2001-10-01
The tumour suppressor gene scribble (scrib) is required for epithelial polarity and growth control in Drosophila. Here, we report the identification and embryonic expression pattern of two Scrib protein isoforms resulting from alternative splicing during scrib transcription. Both proteins are first ubiquitously expressed during early embryogenesis. Then, during morphogenesis each Scrib protein displays a specific pattern of expression in the central and peripheral nervous systems, CNS and PNS, respectively. During germ band extension, the expression of the longer form Scrib1 occurs predominantly in the neuroblasts derived from the neuro-ectoderm and becomes later restricted to CNS neurones as well as to the pole cells in the gonads. By contrast, the shorter form Scrib2 is strongly expressed in the PNS and a subset of CNS neurones.
Use of mini dental implants in ectodermal dysplasia children: follow-up of three cases.
Sfeir, E; Nassif, N; Moukarzel, C
2014-07-01
Ectodermal dysplasia is a hereditary genodermatosis characterised by a congenital defect of ectodermal structures, causing tooth malformations and anomalies. Implantology has become accepted in these subjects. However cases are often complicated by a reduction in the size of the alveolar process, making the insertion of conventional implants difficult without bone grafting. The reduced diameter of mini-implants and their ease of insertion provide an interesting solution in supporting removable or fixed prosthesis. The purpose of this paper is to report the follow-up of three cases of children (11-12 year- old) with ectodermal dysplasia in which mini-implants were used to support the prostheses. In the first case, two mini-implants were inserted into the anterior part of the mandible for stabilising a removable denture (2 years follow-up). In the other two cases, mini- implants were inserted in the maxilla and mandible to replace missing front teeth with fixed prostheses. Patients were called for follow- up every 6 months: in the sencod case follow-up lasted 4 years in the mandible and 2 years in the maxilla; in the third case, 2 years in the maxilla and 1 year in the mandible. The use of mini-implants in children with ectodermal dysplasia can enhance aesthetics, and functional and psychosocial development.
Ophthalmic manifestations in patients with ectodermal dysplasia syndromes.
Keklikci, Ugur; Yavuz, Izzet; Tunik, Selcuk; Ulku, Zelal Baskan; Akdeniz, Sedat
2014-01-01
Ectodermal dysplasia (ED) is a disorder that results from abnormal formation of at least two of the four major ectodermal derivatives in the developing embryo. The ectoderm of the embryo forms the skin, teeth, hair and nails, sweat glands and part of the eyes. The aim of this article is to reveal ophthalmologic symptoms and signs as multidisciplinary, reliable criteria for ectodermal dysplasia. In this retrospective study, 24 patients with ED were analyzed from the recorded data. Ophthalmological examination of the patients, who had previously received the diagnosis of ED in the dental department, was done. During the examination, ocular symptoms related to tear film, corneal changes, lacrimal duct, periorbital hyperpigmentation, alteration lashes and eyebrows were evaluated. The age ranged between 3-45, and the mean and standard deviation (Mean ± SD) was 15.8 ± 7.4 years. The number of males was 13 (54.2%) and females, 11 (45.8%). Eighteen patients (75.0%) suffered from ocular complaints related to the ocular surface. In 11 of the patients with ED, there were dry eye symptoms. While the mean age of cases with eye involvement was 17.5, it was 23.1 in cases with dry eye symptoms. In the study, it was observed that, in patients with ED, ocular complaints, particularly dry eye symptoms, may increase as age advances.
Quantitative Analysis of the Area of the Apical Ectodermal Ridge in Chick Appendages Using Image-J.
Syed, Hamd Binte Shahab; Khan, Muhammad Yunus
2018-06-01
To determine the effect of sodium phenytoin on the apical ectodermal ridges (AER) of chick wing buds by using the software program Image-J. An experimental study. Department of Anatomy, Regional Center, College of Physicians and Surgeons Pakistan (CPSP), Islamabad, from January 2014 to January 2015. Sixty fertilised chicken eggs of 'Egyptian fayoumi' breed were selected and separated into experimental (B) and control (A) groups, each having 30 eggs. A single dose of 3.5 mg sodium phenytoin was injected into each egg of the experimental group. The controls were injected with the same volume of normal saline. Developing embryos were extracted 96 hours (day 4) after incubation and histological sections were cut at 5 μm thickness. These sections were stained with Feulgen Nuclear and Light Green. The area of apical ectodermal ridges of chick wing buds was calculated by employing Image-J and subjected to statistical analysis. The difference between the mean values of the area of apical ectodermal ridges of experimental and control groups, as calculated by Image-J, was found to be statistically insignificant. Change in the area of the apical ectodermal ridges in experimental chicks, following phenytoin exposure, was insignificant as proven on the basis of quantification by Image-J.
Costet, C; Betis, F; Bérard, E; Tsimaratos, M; Sigaudy, S; Antignac, C; Gastaud, P
2000-02-01
Sensenbrenner syndrome or cranio-ectodermal dysplasia is an extremely rare autosomal recessive condition (12 cases reported in literature). Our observation shows the possibility of both ocular and renal involvement associated with cranio-ectodermal abnormalities. and method:We report the case of a girl who presented a typical cranio-ectodermal syndrome with dolicocephaly, short thorax, short limbs, short fingers and teeth abnormalities. At five years, she was found to have pigmentosum retinitis with amblyopy and moderate hyperopia. A chronic renal failure with uncontrollable hypertension underwent a cadaveric-donor transplantation at the age of six years. Two years later, the pigmentosum retinitis was stable. The kidney histology revealed a tubulo-interstitial nephronophtisis. The molecular analysis of the NPH 1 locus, which was associated with nephronophtisis, was negative. Our observation and two recent publications have in common ocular and renal abnormalities associated with cranio-ectodermal dysplasia. The underlying genetic defect would involve not only morphogenesis but also development and maturation of organs as eye and kidney. Sensenbrenner syndrome would thus be similar to certain disorders affecting the eye, kidney, skeleton and ectodermal structures such as the EEM, Senior-Loken, Mainzer-Saldino, and Jeune syndromes. The retinal dystrophy falls within the spectrum of clinical and genetic forms of pigmentosum retinitis. Our observation would confirm possible links between Sensenbrenner syndrome and oculorenal syndromes.
Wahlbuhl-Becker, Mandy; Faschingbauer, Florian; Beckmann, Matthias W.; Schneider, Holm
2017-01-01
Background X-linked hypohidrotic ectodermal dysplasia (XLHED), the most common form of ectodermal dysplasia, is caused by mutations in the gene EDA. While only affected men develop the full-blown clinical picture, females who are heterozygous for an EDA mutation often also show symptoms such as hypodontia, hypotrichosis and hypohidrosis. These women may also suffer from malformations of the mammary gland which represent not just a cosmetic problem but can limit their breastfeeding capability. This paper summarizes the findings of the first systematic study on the impact of hypohidrotic ectodermal dysplasia on breastfeeding. Patients Thirty-eight adult female members of the German-Swiss-Austrian ectodermal dysplasia patient support group participated in a structured interview; most of them also agreed to a photodocumentation of their mammary region. Thirty-one women carried mutations in EDA (Group A) and seven were affected by other forms of hypohidrotic ectodermal dysplasia (Group B). Results 39 % of the women of Group A reported that their breasts were of different size or entirely absent on one side. In Group B, 86 % of the women reported differently sized or even absent breasts; two of these women lacked both breasts entirely. Most women described their nipples as exceptionally flat. 10 % of the women of Group A had more than two nipples. The high percentage of deviations from the norm was confirmed in the photodocumentation. Both groups had few or no sebaceous glands of Montgomery in the areolar region. Around 80 % of interviewed women had children and had attempted to breastfeed their first child. 67 % of the mothers in Group A had had difficulty in breastfeeding their infants and generally attributed this difficulty to their flat nipples. All of the mothers in Group B reported difficulties in breastfeeding; 60 % had not been able to breastfeed their first child. Conclusion Mothers with hypohidrotic ectodermal dysplasia very often have difficulty in breastfeeding because of their impaired breast development. This causal relationship needs to be taken into account in lactation counseling. PMID:28553001
Venugopala Reddy, G; Reiter, C; Shanbhag, S; Fischbach, K F; Rodrigues, V
1999-10-01
We describe a role for Irregular chiasmC-roughest (IrreC-rst), an immunoglobulin (Ig) superfamily member, in patterning sense organs on the Drosophila antenna. IrreC-rst protein is initially expressed homogeneously on apical profiles of ectodermal cells in regions of the antennal disc. During specification of founder cells (FCs), the intracellular protein distribution changes and becomes concentrated in regions where specific intercellular contacts presumably occur. Loss of function mutations as well as misexpression of irreC-rst results in an altered arrangement of FCs within the disc compared to wildtype. Sense organ development occurs normally, although spacing is affected. Unlike its role in interommatidial spacing, irreC-rst does not affect apoptosis during antennal development. We propose that IrreC-rst affects the spatial relationship between sensory and ectodermal cells during FC delamination.
Localized expression of a dpp/BMP2/4 ortholog in a coral embryo
Hayward, David C.; Samuel, Gabrielle; Pontynen, Patricia C.; Catmull, Julian; Saint, Robert; Miller, David J.; Ball, Eldon E.
2002-01-01
As the closest outgroup to the Bilateria, the Phylum Cnidaria is likely to be critical to understanding the origins and evolution of body axes. Proteins of the decapentaplegic (DPP)/bone morphogenetic protein (BMP) 2/4 subfamily are central to the specification of the dorsoventral (D/V) axis in bilateral animals, albeit with an axis inversion between arthropods and chordates. We show that a dpp/BMP2/4 ortholog (bmp2/4-Am) is present in the reef-building scleractinian coral, Acropora millepora (Class Anthozoa) and that it is capable of causing phenotypic effects in Drosophila that mimic those of the endogenous dpp gene. We also show that, during coral embryonic development, bmp2/4-Am expression is localized in an ectodermal region adjacent to the blastopore. Thus, a representative of the DPP/BMP2/4 subfamily of ligands was present in the common ancestor of diploblastic and triploblastic animals where it was probably expressed in a localized fashion during development. A localized source of DPP/BMP2/4 may have already been used in axis formation in this ancestor, or it may have provided a means by which an axis could evolve in triploblastic animals. PMID:12048233
The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L.
Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed inmore » vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.« less
The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex.
He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L; Jakob, Clarissa G; Zhu, Haizhong; Comess, Kenneth M; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M; Cheng, Dong; Klinge, Kelly L; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C; Petros, Andrew M; Sweis, Ramzi F; Torrent, Maricel; Bigelow, Lance J; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J; Lindley, David J; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G; Arrowsmith, Cheryl H; Chiang, Gary G; Sun, Chaohong; Pappano, William N
2017-04-01
Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.
The origin and evolution of the ectodermal placodes
Graham, Anthony; Shimeld, Sebastian M
2013-01-01
Many of the features that distinguish the vertebrates from other chordates are found in the head. Prominent amongst these differences are the paired sense organs and associated cranial ganglia. Significantly, these structures are derived developmentally from the ectodermal placodes. It has therefore been proposed that the emergence of the ectodermal placodes was concomitant with and central to the evolution of the vertebrates. More recent studies, however, indicate forerunners of the ectodermal placodes can be readily identified outside the vertebrates, particularly in urochordates. Thus the evolutionary history of the ectodermal placodes is deeper and more complex than was previously appreciated with the full repertoire of vertebrate ectodermal placodes, and their derivatives, being assembled over a protracted period rather than arising collectively with the vertebrates. PMID:22512454
Knaudt, Björn; Volz, Thomas; Krug, Markus; Burgdorf, Walter; Röcken, Martin; Berneburg, Mark
2012-01-01
The skin, hair and nail changes in four distinct ectodermal dysplasia syndromes are compared and reviewed. These syndromes comprise Christ-Siemens-Touraine syndrome; ectrodactyly, ectodermal dysplasia and cleft lip/palate syndrome; ankyloblepharon-ectodermal defects-cleft lip/palate syndrome and Rapp-Hodgkin syndrome. A comprehensive overview of the dermatological signs and symptoms in these syndromes was generated from the database of the Ectodermal Dysplasia Network Germany, the clinical findings in the patients seen in our department and an extensive review of the literature. The findings included abnormalities of skin, sweating, hair and nails. These clinical findings are discussed in relation to the underlying molecular defects known to play a role in these four ectodermal dysplasia syndromes.
Yoshida, Kazue; Hayashi, Ryota; Fujita, Hideki; Kubota, Masaya; Kondo, Mai; Shimomura, Yutaka; Niizeki, Hironori
2015-07-01
Cleft lip/palate-ectodermal dysplasia syndrome is a rare, autosomal recessive disorder caused by homozygous loss-of-function mutations of the poliovirus receptor-like 1 (PVRL1) gene encoding nectin-1. Nectin-1 is a cell-cell adhesion molecule that is important for the initial step in the formation of adherens junctions and tight junctions; it is expressed in keratinocytes, neurons, and the developing face and palate. Clinical manifestations comprise a unique facial appearance with cleft lip/palate, ectodermal dysplasia, cutaneous syndactyly of the fingers and/or toes, and in some cases, mental retardation. We present the first report, to our knowledge, of an Asian individual with cleft lip/palate-ectodermal dysplasia syndrome with a novel PVRL1 mutation. A 7-year-old Japanese boy, the first child of a consanguineous marriage, showed hypohidrotic ectodermal dysplasia with sparse, brittle, fine, dry hair and hypodontia, the unique facial appearance with cleft lip/palate, cutaneous syndactyly of the fingers and mild mental retardation. Scanning electron microscopic examination of the hair demonstrated pili torti and pili trianguli et canaliculi. Mutation analysis of exon 2 of PVRL1 revealed a novel homozygous nonsense mutation, c.400C>T (p.Arg134*). His parents were heterozygous for the mutant alleles. All four PVRL1 mutations identified in cleft lip/palate-ectodermal dysplasia syndrome to date, including this study, resulted in truncated proteins that lack the transmembrane domain and intracellular domain of nectin-1, which is necessary to initiate the cell-cell adhesion process. © 2015 Japanese Dermatological Association.
Co-ordinated ocular development from human iPS cells and recovery of corneal function.
Hayashi, Ryuhei; Ishikawa, Yuki; Sasamoto, Yuzuru; Katori, Ryosuke; Nomura, Naoki; Ichikawa, Tatsuya; Araki, Saori; Soma, Takeshi; Kawasaki, Satoshi; Sekiguchi, Kiyotoshi; Quantock, Andrew J; Tsujikawa, Motokazu; Nishida, Kohji
2016-03-17
The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness.
Genomic determinants of epidermal appendage patterning and structure in domestic birds.
Boer, Elena F; Van Hollebeke, Hannah F; Shapiro, Michael D
2017-09-15
Variation in regional identity, patterning, and structure of epidermal appendages contributes to skin diversity among many vertebrate groups, and is perhaps most striking in birds. In pioneering work on epidermal appendage patterning, John Saunders and his contemporaries took advantage of epidermal appendage diversity within and among domestic chicken breeds to establish the importance of mesoderm-ectoderm signaling in determining skin patterning. Diversity in chickens and other domestic birds, including pigeons, is driving a new wave of research to dissect the molecular genetic basis of epidermal appendage patterning. Domestic birds are not only outstanding models for embryonic manipulations, as Saunders recognized, but they are also ideal genetic models for discovering the specific genes that control normal development and the mutations that contribute to skin diversity. Here, we review recent genetic and genomic approaches to uncover the basis of epidermal macropatterning, micropatterning, and structural variation. We also present new results that confirm expression changes in two limb identity genes in feather-footed pigeons, a case of variation in appendage structure and identity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Torkamandi, Shahram; Gholami, Milad; Mohammadi-Asl, Javad; Rezaie, Somaye; Zaimy, Mohammad Ali; Omrani, Mir Davood
2016-01-01
Hypohidrotic ectodermal dysplasia (HED) is a rare congenital disorder arising from deficient development of ectoderm-derived structures including skin, nails, glands and teeth. The phenotype of HED is associated with mutation in EDA, EDAR, EDARADD and NEMO genes, all of them disruptingNF-κB signaling cascade necessary for initiation, formation and differentiation in the embryo and adult. Here we describe a novel acceptor splice site mutation c.730-2 A>G(IVS 8-2 A>G) in EDAR gene in homozygous form in all affected members of a family,and in heterozygous form in carriers. Bioinformatics analysis showed that this mutation can create a new broken splicing site and lead to aberrant splicing.
Goodnough, L Henry; Dinuoscio, Gregg J; Ferguson, James W; Williams, Trevor; Lang, Richard A; Atit, Radhika P
2014-02-01
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.
Dermatopathia pigmentosa reticularis: A rare reticulate pigmentary disorder
Shanker, Vinay; Gupta, Mudita
2013-01-01
Dermatopathia pigmentosa reticularis is a rare ectodermal dysplasia with a triad of generalized reticulate hyperpigmentation, noncicatricial alopecia, and onychodystrophy. We report a case of a 21 year old woman who had generalized reticulate pigmentation, diffuse noncicatricial alopecia and onychodystrophy of finger and toe nails. Along with this triad she had palmoplantar keratoderma and poorly developed dermatoglyphics. There was no evidence of involvement of other ectodermally derived organ. PMID:23440032
Analysis of Msx1; Msx2 double mutants reveals multiple roles for Msx genes in limb development.
Lallemand, Yvan; Nicola, Marie-Anne; Ramos, Casto; Bach, Antoine; Cloment, Cécile Saint; Robert, Benoît
2005-07-01
The homeobox-containing genes Msx1 and Msx2 are highly expressed in the limb field from the earliest stages of limb formation and, subsequently, in both the apical ectodermal ridge and underlying mesenchyme. However, mice homozygous for a null mutation in either Msx1 or Msx2 do not display abnormalities in limb development. By contrast, Msx1; Msx2 double mutants exhibit a severe limb phenotype. Our analysis indicates that these genes play a role in crucial processes during limb morphogenesis along all three axes. Double mutant limbs are shorter and lack anterior skeletal elements (radius/tibia, thumb/hallux). Gene expression analysis confirms that there is no formation of regions with anterior identity. This correlates with the absence of dorsoventral boundary specification in the anterior ectoderm, which precludes apical ectodermal ridge formation anteriorly. As a result, anterior mesenchyme is not maintained, leading to oligodactyly. Paradoxically, polydactyly is also frequent and appears to be associated with extended Fgf activity in the apical ectodermal ridge, which is maintained up to 14.5 dpc. This results in a major outgrowth of the mesenchyme anteriorly, which nevertheless maintains a posterior identity, and leads to formation of extra digits. These defects are interpreted in the context of an impairment of Bmp signalling.
Prosthodontic management of a patient with ectodermal dysplasia.
Nandini, Yamini
2013-12-01
Ectodermal dysplasia is a rare congenital disease that affects the ectodermal structures. It is characterized by hypotrichosis, hypohidrosis and hypodontia. A 14-year-old boy with ectodermal dysplasia presenting with oligodontia and marked resorption of the maxillary and mandibular alveolar ridges is reported. Prosthetic rehabilitation in the form of a maxillary and mandibular partial denture was made with metal crowns on existing lower teeth to achieve appropriate vertical dimension. Significant improvement in speech, masticatory function and facial esthetics was achieved. Removable prosthodontics can provide an acceptable solution to esthetic, functional and psychological rehabilitation in patients with ectodermal dysplasia.
Pae, Ahran; Kim, Kyu; Kim, Hyeong-Seob; Kwon, Kung-Rock
2011-03-01
Ectodermal dysplasia is a hereditary disorder of ectodermal origin. A 12-year-old boy was referred for management of the oral manifestations of his ectodermal dysplasia. An overdenture retained by natural teeth for the maxilla and a double-crown-retained denture for the mandible were made. Double-crown-retained dentures may be modified into complete dentures if the abutment teeth are lost. The patient was instructed to maintain oral hygiene and return periodically for follow-up visits. This report describes a potential routine approach to restoring the appearance, function, and psyche of a growing boy with ectodermal dysplasia.
Ectodermal Dysplasia: A Case Report
2011-01-01
Ectodermal dysplasia is a hereditary disease characterized by dysplasia of tissues of ectodermal origin. The incidence of ectodermal dysplasia is rare (1 in 100,000 birth). This case report discusses the features, classification and prosthetic treatment plan (upper partial denture and lower complete denture for upper partial and lower complete edentulous arches respectively). This treatment plan would be able to provide psychological and functional boost to the sufferer. PMID:27678241
Craniofacial morphometric analysis of individuals with X-linked hypohidrotic ectodermal dysplasia.
Goodwin, Alice F; Larson, Jacinda R; Jones, Kyle B; Liberton, Denise K; Landan, Maya; Wang, Zhifeng; Boekelheide, Anne; Langham, Margaret; Mushegyan, Vagan; Oberoi, Snehlata; Brao, Rosalie; Wen, Timothy; Johnson, Ramsey; Huttner, Kenneth; Grange, Dorothy K; Spritz, Richard A; Hallgrímsson, Benedikt; Jheon, Andrew H; Klein, Ophir D
2014-09-01
Hypohidrotic ectodermal dysplasia (HED) is the most prevalent type of ectodermal dysplasia (ED). ED is an umbrella term for a group of syndromes characterized by missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. The X-linked recessive (XL), autosomal recessive (AR), and autosomal dominant (AD) types of HED are caused by mutations in the genes encoding ectodysplasin (EDA1), EDA receptor (EDAR), or EDAR-associated death domain (EDARADD). Patients with HED have a distinctive facial appearance, yet a quantitative analysis of the HED craniofacial phenotype using advanced three-dimensional (3D) technologies has not been reported. In this study, we characterized craniofacial morphology in subjects with X-linked hypohidrotic ectodermal dysplasia (XLHED) by use of 3D imaging and geometric morphometrics (GM), a technique that uses defined landmarks to quantify size and shape in complex craniofacial morphologies. We found that the XLHED craniofacial phenotype differed significantly from controls. Patients had a smaller and shorter face with a proportionally longer chin and midface, prominent midfacial hypoplasia, a more protrusive chin and mandible, a narrower and more pointed nose, shorter philtrum, a narrower mouth, and a fuller and more rounded lower lip. Our findings refine the phenotype of XLHED and may be useful both for clinical diagnosis of XLHED and to extend understanding of the role of EDA in craniofacial development.
Ectoderm exerts the driving force for gastrulation in the sand dollar Scaphechinus mirabilis.
Takata, H; Kominami, T
2001-06-01
How the ectodermal layer relates to the invagination processes was examined in the sand dollar Scaphechinus mirabilis. When the turgor pressure of blastocoele was increased, invagination was completely blocked. In contrast, an increase in turgor pressure did not affect elongation of the gut rudiment in the regular echinoid Hemicentrotus pulcherrimus. Rhodamine-phalloidin staining showed that the distribution of actin filaments was different between two species of embryos. In S. mirabilis gastrulating embryos, abundant actin filaments were seen at the basal cortex of ectoderm in addition to archenteron cells, while the intense signal was restricted to the archenteron in H. pulcherrimus. To investigate whether actin filaments contained in the ectodermal layer exert the force of invagination, a small part of the ectodermal layer was aspirated with a micropipette. If S. mirabilis embryos were aspirated from the onset of gastrulation, invagination did not occur at all, irrespective of the suction site. Even after the archenteron had invaginated to one-half of its full length, further elongation of the archenteron was severely blocked by suction of the lateral ectoderm. In contrast, suction of the ectodermal layer did not affect the elongation processes in H. pulcherrimus. These results strongly suggest that the ectodermal layer, especially in the vegetal half, exerts the driving force of invagination in S. mirabilis.
Dlx proteins position the neural plate border and determine adjacent cell fates.
Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk
2003-01-01
The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.
Hypohidrotic ectodermal dysplasia: a felicitous approach to esthetic and prosthetic management.
Singh, Tapan; Singh, Ronauk; Singh, Gurendra Pal; Singh, Jitender Pal
2013-05-01
Ectodermal dysplasia is a hereditary disease characterized by congenital dysplasia of one or more ectodermal structure and other accessory appendages. The oral manifestations are anodontia and poor bony foundation which impairs both esthetic as well as the masticatory function. The prosthodontic management of patients with such dysplastic condition necessitates a multidisciplinary approach. This case report describes the prosthodontic oral rehabilitation of a 16 years old female pediatric patient with ectodermal dysplasia. How to cite this article: Singh T, Singh R, Singh GP, Singh JP. Hypohidrotic Ectodermal Dysplasia: A Felicitous Approach to Esthetic and Prosthetic Management. Int J Clin Pediatr Dent 2013;6(2):140-145.
AKT signaling displays multifaceted functions in neural crest development.
Sittewelle, Méghane; Monsoro-Burq, Anne H
2018-05-31
AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.
EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation
Saha, Biswarup; Home, Pratik; Ray, Soma; Larson, Melissa; Paul, Arindam; Rajendran, Ganeshkumar; Behr, Barry
2013-01-01
The first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood. Here, we show that proper development of the TE and ICM lineages is coordinated via combinatorial regulation of embryonic ectoderm development (EED) and lysine-specific demethylase 6B (KDM6B). During blastocyst formation, the relative levels of EED and KDM6B expression determine altered polycomb repressor 2 (PRC2) complex recruitment and incorporation of the repressive histone H3 lysine 27 trimethylation (H3K27Me3) mark at the chromatin domains of TE-specific master regulators CDX2 and GATA3, leading to their activation in the TE lineage and repression in the ICM lineage. Furthermore, ectopic gain of EED along with depletion of KDM6B in preimplantation mouse embryos abrogates CDX2 and GATA3 expression in the nascent TE lineage. The loss of CDX2 and GATA3 in the nascent TE lineage results in improper TE development, leading to failure in embryo implantation to the uterus. Our study delineates a novel epigenetic mechanism that orchestrates proper development of the first mammalian cell lineages. PMID:23671187
Krupke, Oliver A; Zysk, Ivona; Mellott, Dan O; Burke, Robert D
2016-01-01
The mechanisms that underlie directional cell migration are incompletely understood. Eph receptors usually guide migrations of cells by exclusion from regions expressing Ephrin. In sea urchin embryos, pigmented immunocytes are specified in vegetal epithelium, transition to mesenchyme, migrate, and re-enter ectoderm, distributing in dorsal ectoderm and ciliary band, but not ventral ectoderm. Immunocytes express Sp-Eph and Sp-Efn is expressed throughout dorsal and ciliary band ectoderm. Interfering with expression or function of Sp-Eph results in rounded immunocytes entering ectoderm but not adopting a dendritic form. Expressing Sp-Efn throughout embryos permits immunocyte insertion in ventral ectoderm. In mosaic embryos, immunocytes insert preferentially in ectoderm expressing Sp-Efn. We conclude that Sp-Eph signaling is necessary and sufficient for epithelial insertion. As well, we propose that immunocytes disperse when Sp-Eph enhances adhesion, causing haptotactic movement to regions of higher ligand abundance. This is a distinctive example of Eph/Ephrin signaling acting positively to pattern migrating cells. DOI: http://dx.doi.org/10.7554/eLife.16000.001 PMID:27474796
Torkamandi, Shahram; Gholami, Milad; Mohammadi-asl, Javad; Rezaie, Somaye; Zaimy, Mohammad Ali; Omrani, Mir Davood
2016-01-01
Hypohidrotic ectodermal dysplasia (HED) is a rare congenital disorder arising from deficient development of ectoderm-derived structures including skin, nails, glands and teeth. The phenotype of HED is associated with mutation in EDA, EDAR, EDARADD and NEMO genes, all of them disruptingNF-κB signaling cascade necessary for initiation, formation and differentiation in the embryo and adult. Here we describe a novel acceptor splice site mutation c.730-2 A>G(IVS 8-2 A>G) in EDAR gene in homozygous form in all affected members of a family,and in heterozygous form in carriers. Bioinformatics analysis showed that this mutation can create a new broken splicing site and lead to aberrant splicing. PMID:28357203
Duplication of the transverse colon in an adult: case report and review.
Banchini, Filippo; Delfanti, Rocco; Begnini, Evelina; Tripodi, Maria Candida; Capelli, Patrizio
2013-01-28
Tubular duplication of the colon is very rare especially in adulthood, because it is frequently symptomatic earlier in newborn life, so only few cases are reported in literature. Several theories are proposed to explain the onset and the evolution of gut malformations as the aberrant lumen recanalization or the diverticular theory, the alteration of the lateral closure of the embryonal disk or finally the dorsal protrusion of the yolk-sac for herniation or adhesion to the ectoderm for an abnormality of the longitudinal line, but none clarifies the exact genesis of duplication. We present a case of "Y-shaped" tubular duplication of the transverse colon in a 21-year-old adult, with a history of chronic pain and constipation, referred to our department for abdominal pain with retrosternal irradiation, treated with the resection of the aberrant bowel.
Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm
2016-01-01
Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.
[Clinical and molecular study in a child with X-linked hypohidrotic ectodermal dysplasia].
Callea, Michele; Yavuz, Izzet; Clarich, Gabriella; Cammarata-Scalisi, Francisco
2015-12-01
Ectodermal dysplasia encompasses more than 200 clinically distinct entities, which affect at least two structures derived from the ectoderm, including the skin, hair, nails, teeth, sweat glands, and sebaceous glands. X-linked hypohidrotic ectodermal dysplasia is the most common type and is caused by mutation of the EDA gene that encodes Ectodysplasin-A. It occurs in less than 1 in 100 000 individuals and is clinically characterized by hypodontia, hypohidrosis, hypotrichosis, and eye dis orders. We present a child evaluated in a multidisciplinary manner with clinical and molecular diagnosis of X-linked hypohidrotic ectodermal dysplasia with type missense mutation c.1133C> T; p.T378M in EDA gene.
Ectodermal dysplasia: otolaryngologic evaluation of 23 cases.
Yildirim, Muzeyyen; Yorgancilar, Ediz; Gun, Ramazan; Topcu, Ismail
2012-02-01
The aim of this prospective study was to improve the quality of life of and reduce morbidity for patients with ectodermal dysplasia by assessing their actual and potential ENT pathologies, and offering methods of prevention and treatment. The study was conducted between 2006 and 2008 and included 23 patients diagnosed with ectodermal dysplasia. The major symptoms of ectodermal dysplasia were evaluated. Patient histories were obtained in all cases, and a complete head and neck examination was carried out. Of the 23 patients (11 males and 12 females, aged 5 to 45 years) diagnosed with ectodermal dysplasia, 22 had hypohidrotic ectodermal dysplasia and 1 had ectrodactyly-ectodermal dysplasia-clefting syndrome. In all patients diagnosed with hypohidrotic ectodermal dysplasia, the salivary glands were examined by ultrasonography and, when necessary, by scintigraphy. Hearing defects in patients with otologic problems were determined by audiometric examination: 39.1% of the patients had hearing loss, 43.5% had otitis media, and 39.1% had impacted cerumen. The most common rhinologic findings were saddle nose deformity in 56.5%, nasal obstruction and nasal dryness (52.2% each), and chronic rhinitis/rhinosinusitis (34.8%). The most common oral and oropharyngeal findings were difficulty chewing in 82.6% and dry mouth in 78.3%. All 23 patients had required dental work. Because this disorder affects several aspects of the body, its treatment requires a multidisciplinary approach, with the otolaryngologist being a vital part of the management team.
Dlx proteins position the neural plate border and determine adjacent cell fates
Woda, Juliana M.; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk
2014-01-01
Summary The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates. PMID:12466200
Three-dimensional epithelial tissues generated from human embryonic stem cells.
Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A
2009-11-01
The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.
Genotype-phenotype correlation in boys with X-linked hypohidrotic ectodermal dysplasia.
Burger, Kristin; Schneider, Anne-Theres; Wohlfart, Sigrun; Kiesewetter, Franklin; Huttner, Kenneth; Johnson, Ramsey; Schneider, Holm
2014-10-01
X-linked hypohidrotic ectodermal dysplasia (XLHED), the most frequent form of ectodermal dysplasia, is a genetic disorder of ectoderm development characterized by malformation of multiple ectodermal structures such as skin, hair, sweat and sebaceous glands, and teeth. The disease is caused by a broad spectrum of mutations in the gene EDA. Although XLHED symptoms show inter-familial and intra-familial variability, genotype-phenotype correlation has been demonstrated with respect to sweat gland function. In this study, we investigated to which extent the EDA genotype correlates with the severity of XLHED-related skin and hair signs. Nineteen male children with XLHED (age range 3-14 years) and seven controls (aged 6-14 years) were examined by confocal microscopy of the skin, quantification of pilocarpine-induced sweating, semi-quantitative evaluation of full facial photographs with respect to XLHED-related skin issues, and phototrichogram analysis. All eight boys with known hypomorphic EDA mutations were able to produce at least some sweat and showed less severe cutaneous signs of XLHED than the anhidrotic XLHED patients (e.g., perioral and periorbital eczema or hyperpigmentation, regional hyperkeratosis, characteristic wrinkles under the eyes). As expected, individuals with XLHED had significantly less and thinner hair than healthy controls. However, there were also significant differences in hair number, diameter, and other hair characteristics between the group with hypomorphic EDA mutations and the anhidrotic patients. In summary, this study indicated a remarkable genotype-phenotype correlation of skin and hair findings in prepubescent males with XLHED. © 2014 Wiley Periodicals, Inc.
Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander
2017-03-01
Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.
Wu, Mary Y.; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S.
2011-01-01
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification. PMID:21358802
Infantile bilateral glaucoma in a child with ectodermal dysplasia.
Callea, Michele; Vinciguerra, Agatino; Willoughby, Colin E; Deroma, Laura; Clarich, Gabriella
2013-01-01
Ectodermal dysplasia is a rare disease which affects at least two ectodermal-derived structures such as hair, nails, skin, sweat glands and teeth. Approximately 200 different conditions have been classified as an ectodermal dysplasia and X-linked hypohidrotic ectodermal dysplasia (XHED) represents the commonest form. Clinically, XHED is characterized by hypotrichosis, hypohidrosis and hypodontia. A variety of ocular manifestations have been reported in XHED, the most common being dryness of eyes due to tear deficiency and instability of the film secondary to the absence of meibomian gland function. Here we report a child with the distinctive clinical features of XHED confirmed with molecular diagnosis who presented with infantile bilateral glaucoma, in addition to the classical ocular involvement in XHED.
Monahan, Pamela; Himes, Ashley D.; Parfieniuk, Agata; Raetzman, Lori T.
2011-01-01
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components. PMID:22154697
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taru Sharma, G., E-mail: gts553@gmail.com; Dubey, Pawan K.; Verma, Om Prakash
Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBsmore » from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to be useful as promising candidate for ES cells based therapeutic applications.« less
The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.
Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H
2009-07-31
Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.
The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics
Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.
2008-01-01
Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions. PMID:19101574
Eccrine sweat gland development and sweat secretion
Cui, Chang-Yi; Schlessinger, David
2017-01-01
Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca2+-dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers – for example InsP3 and Ca2+ – and downstream ion channels/transporters in the framework of a Na+-K+-Cl− cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid–base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. PMID:26014472
The lateral mesodermal divide: an epigenetic model of the origin of paired fins.
Nuño de la Rosa, Laura; Müller, Gerd B; Metscher, Brian D
2014-01-01
By examining development at the level of tissues and processes, rather than focusing on gene expression, we have formulated a general hypothesis to explain the dorso-ventral and anterior-posterior placement of paired appendage initiation sites in vertebrates. According to our model, the number and position of paired appendages are due to a commonality of embryonic tissue environments determined by the global interactions involving the two separated layers (somatic and visceral) of lateral plate mesoderm along the dorso-ventral and anterior-posterior axes of the embryo. We identify this distribution of developmental conditions, as modulated by the separation/contact of the two LPM layers and their interactions with somitic mesoderm, ectoderm, and endoderm as a dynamic developmental entity which we have termed the lateral mesodermal divide (LMD). Where the divide results in a certain tissue environment, fin bud initiation can occur. According to our hypothesis, the influence of the developing gut suppresses limb initiation along the midgut region and the ventral body wall owing to an "endodermal predominance." From an evolutionary perspective, the lack of gut regionalization in agnathans reflects the ancestral absence of these conditions, and the elaboration of the gut together with the concomitant changes to the LMD in the gnathostomes could have led to the origin of paired fins. © 2013 Wiley Periodicals, Inc.
An historical perspective on the pioneering experiments of John Saunders.
Tickle, Cheryll
2017-09-15
John Saunders was a highly skilled embryologist who pioneered the study of limb development. His studies on chick embryos provided the fundamental framework for understanding how vertebrate limbs develop. This framework inspired generations of scientists and formed the bridge from experimental embryology to molecular mechanisms. Saunders investigated how feathers become organized into tracts in the skin of the chick wing and also identified regions of programmed cell death. He discovered that a region of thickened ectoderm that rims the chick wing bud - the apical ectodermal ridge - is required for outgrowth and the laying down of structures along the proximo-distal axis (long axis) of the wing, identified the zone of polarizing activity (ZPA; polarizing region) that controls development across the anteroposterior axis ("thumb to little finger "axis) and contributed to uncovering the importance of the ectoderm in development of structures along the dorso-ventral axis ( "back of hand to palm" axis). This review looks in depth at some of his original papers and traces how he made the crucial findings about how limbs develop, considering these findings both in the context of contemporary knowledge at the time and also in terms of their immediate impact on the field. Copyright © 2017 Elsevier Inc. All rights reserved.
Ectrodactyly-ectodermal dysplasia-cleft lip and palate syndrome.
Dhar, Reema Sharma; Bora, Amitava
2014-01-01
Ectrodactyly-ectodermal dysplasia-cleft (EEC) syndrome is an autosomal dominant disorder characterized by the triad of ectrodactyly-ectodermal dysplasia, and facial clefting along with some associated features. Presence of all the three major features in a single individual is extremely rare. We report a case of 4 year 11 months old child with EEC syndrome having ectodermal dysplasia-cleft lip and cleft palate and ectrodactyly with some associated features. Clinical features, diagnosis and role of a dentist in the multidisciplinary treatment approach have been elaborated in this case report.
Duplication of the transverse colon in an adult: Case report and review
Banchini, Filippo; Delfanti, Rocco; Begnini, Evelina; Tripodi, Maria Candida; Capelli, Patrizio
2013-01-01
Tubular duplication of the colon is very rare especially in adulthood, because it is frequently symptomatic earlier in newborn life, so only few cases are reported in literature. Several theories are proposed to explain the onset and the evolution of gut malformations as the aberrant lumen recanalization or the diverticular theory, the alteration of the lateral closure of the embryonal disk or finally the dorsal protrusion of the yolk-sac for herniation or adhesion to the ectoderm for an abnormality of the longitudinal line, but none clarifies the exact genesis of duplication. We present a case of “Y-shaped” tubular duplication of the transverse colon in a 21-year-old adult, with a history of chronic pain and constipation, referred to our department for abdominal pain with retrosternal irradiation, treated with the resection of the aberrant bowel. PMID:23382641
Cerdan, Chantal; Hong, Seok Ho; Bhatia, Mickie
2007-10-01
The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.
Paré, Bastien; Gros-Louis, François
2017-07-26
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons of the brain and spinal cord, leading to progressive paralysis and death. Interestingly, many skin changes have been reported in ALS patients, but never as yet fully explained. These observations could be due to the common embryonic origin of the skin and neural tissue known as the ectodermal germ layer. Following the first observation in ALS patients' skin by Dr Charcot in the 19th century, in the absence of bedsores unlike other bedridden patients, other morphological and molecular changes have been observed. Thus, the skin could be of interest in the study of ALS and other neurodegenerative diseases. This review summarizes skin changes reported in the literature over the years and discusses about a novel in vitro ALS tissue-engineered skin model, derived from patients, for the study of ALS.
Jin, Yong-Ri; Turcotte, Taryn J.; Crocker, Alison L.; Han, Xiang Hua; Yoon, Jeong Kyo
2011-01-01
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm-mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal-mesenchymal interaction and a novel genetic factor for cleft palate. PMID:21237142
Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki
2015-07-10
Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella
2017-02-01
Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.
Transcriptional regulation of cranial sensory placode development
Moody, Sally A.; LaMantia, Anthony-Samuel
2015-01-01
Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264
Dudas, Marek; Kim, Jieun; Li, Wai-Yee; Nagy, Andre; Larsson, Jonas; Karlsson, Stefan; Chai, Yang; Kaartinen, Vesa
2006-01-01
Transforming growth factor beta (TGF-β) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-β action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-β type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-β type II receptor (TGFβRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-β, and (2) ALK5 acts also in conjunction with type II receptors other than TGFβRII. PMID:16806156
Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnash, Kimberly D.; The, Juliana; Norris-Drouin, Jacqueline L.
The function of EED within polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein–protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to the embryonic ectoderm development (EED) aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED’s recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chemistry and structure-based design, we optimized a low-affinity methylated jumonji, AT-rich interactive domain 2 (Jarid2) peptide tomore » a smaller, more potent peptidomimetic ligand (K d = 1.14 ± 0.14 μM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chemistry to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED’s reader function can lead to allosteric inhibition of PRC2 catalytic activity.« less
Functions of Huntingtin in Germ Layer Specification and Organogenesis
Nguyen, Giang D.; Molero, Aldrin E.; Gokhan, Solen; Mehler, Mark F.
2013-01-01
Huntington’s disease (HD) is a neurodegenerative disease caused by abnormal polyglutamine expansion in the huntingtin protein (Htt). Although both Htt and the HD pathogenic mutation (mHtt) are implicated in early developmental events, their individual involvement has not been adequately explored. In order to better define the developmental functions and pathological consequences of the normal and mutant proteins, respectively, we employed embryonic stem cell (ESC) expansion, differentiation and induction experiments using huntingtin knock-out (KO) and mutant huntingtin knock-in (Q111) mouse ESC lines. In KO ESCs, we observed impairments in the spontaneous specification and survival of ectodermal and mesodermal lineages during embryoid body formation and under inductive conditions using retinoic acid and Wnt3A, respectively. Ablation of BAX improves cell survival, but failed to correct defects in germ layer specification. In addition, we observed ensuing impairments in the specification and maturation of neural, hepatic, pancreatic and cardiomyocyte lineages. These developmental deficits occurred in concert with alterations in Notch, Hes1 and STAT3 signaling pathways. Moreover, in Q111 ESCs, we observed differential developmental stage-specific alterations in lineage specification and maturation. We also observed changes in Notch/STAT3 expression and activation. Our observations underscore essential roles of Htt in the specification of ectoderm, endoderm and mesoderm, in the specification of neural and non-neural organ-specific lineages, as well as cell survival during early embryogenesis. Remarkably, these developmental events are differentially deregulated by mHtt, raising the possibility that HD-associated early developmental impairments may contribute not only to region-specific neurodegeneration, but also to non-neural co-morbidities. PMID:23967334
Dental pulp of the third molar: a new source of pluripotent-like stem cells.
Atari, Maher; Gil-Recio, Carlos; Fabregat, Marc; García-Fernández, Dani; Barajas, Miguel; Carrasco, Miguel A; Jung, Han-Sung; Alfaro, F Hernández; Casals, Nuria; Prosper, Felipe; Ferrés-Padró, Eduard; Giner, Luis
2012-07-15
Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.
Motoya, Tomoyuki; Ogawa, Noriko; Nitta, Tetsuya; Rafiq, Ashiq Mahmood; Jahan, Esrat; Furuya, Motohide; Matsumoto, Akihiro; Udagawa, Jun; Otani, Hiroki
2016-05-01
Interkinetic nuclear migration (INM) is a phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium, which is characterized by the presence of apical primary cilia, in synchrony with the cell cycle in a manner of apical mitosis. INM is suggested to regulate not only stem/progenitor cell proliferation/differentiation but also organ size and shape. INM has been reported in epithelia of both ectoderm and endoderm origin. We examined whether INM exists in the mesoderm-derived ureteric epithelium. At embryonic day (E) 11.5, E12.5 and E13.5, C57BL/6J mouse dams were injected with 5-bromo-2'-deoxyuridine (BrdU) and embryos were killed 1, 2, 4, 6, 8, 10 and 12 h later. We immunostained transverse sections of the ureter for BrdU, and measured the position of BrdU (+) nuclei in the ureteric epithelia along the apico-basal axis at each time point. We analyzed the distribution patterns of BrdU (+) nuclei in histograms using the multidimensional scaling. Changes in the nucleus distribution patterns suggested nucleus movement characteristic of INM in the ureteric epithelia, and the mode of INM varied throughout the ureter development. While apical primary cilia are related with INM by providing a centrosome for the apical mitosis, congenital anomalies of the kidney and urinary tract (CAKUT) include syndromes linked to primary ciliary dysfunction affecting epithelial tubular organs such as kidney, ureter, and brain. The present study showed that INM exists in the ureteric epithelium and suggests that INM may be related with the CAKUT etiology via primary ciliary protein function. © 2015 Japanese Teratology Society.
The development of the eyelids. Part I. External features.
Pearson, A A
1980-01-01
The sequence of developmental events leading to the formation of the eyelids is described in staged human embryos. By the end of the fourth week the optic vesicle lies close to the surface ectoderm. The surface ectoderm overlying the optic vesicle, in response to this contact, has thickened to form the lense placode (Stage 13). A few days later (about 32 days, Stage 14) the lens placode is indented by the lens pit. A day or two later (about 33 days, Stage 15) the lens pit is closed: however, the lens vesicle and optic cup lie close to the surface ectoderm and appear to press against the surface. Prior to the development of the eyelids, one small sulcus or groove forms above the eye (eyelid groove) and another below it (stage 16, 37 days). As these grooves deepen, in Stages 17--19, eyelid folds develop, first below, and then above, the eye. In Stages 19--22 the eyelid folds develop into the eyelids and cover more of the eye as the palpebral fissure takes shape. The upper and the lower eyelids meet at the outer canthus in Stage 19. The inner canthus is established a few days later in Stage 20. Closure of the eyelids is complete in Stage 23.
Expression of ADP-ribosylation factor (ARF)-like protein 6 during mouse embryonic development.
Takada, Tatsuyuki; Iida, Keiko; Sasaki, Hiroshi; Taira, Masanori; Kimura, Hiroshi
2005-01-01
ADP-ribosylation factor (ARF)-like protein 6 (ARL6) is a member of the ARF-like protein (ARL) subfamily of small GTPases (Moss, 1995; Chavrier, 1999). ARLs are highly conserved through evolution and most of them possess the consensus sequence required for GTP binding and hydrolysis (Pasquallato, 2002). Among ARLs, ARL6 which was initially isolated from a J2E erythroleukemic cell line is divergent in its consensus sequences and its expression has been shown to be limited to the brain and kidney in adult mouse (Ingley, 1999). Recently, it was reported that mutations of the ARL6 gene cause type 3 Bardet-Biedl syndrome in humans and that ARL6 is involved in ciliary transport in C. elegans (Chiang, 2004; Fan, 2004). Here, we investigated the expression pattern of ARL6 during early mouse development by whole-mount in situ hybridization and found that interestingly, ARL6 mRNA was localized around the node at 7.0-7.5 days post coitum (dpc) embryos, while weak expression was also found in the ectoderm. At the later stage (8.5 dpc) ARL6 was expressed in the neural plate and probably in the somites. Based on these results, a possible role of ARL6 in early development is discussed in relation to the findings in human and C. elegans (Chiang, 2004; Fan, 2004).
Applications of Microscale Technologies for Regenerative Dentistry
Hacking, S.A.; Khademhosseini, A.
2009-01-01
While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration. Abbreviations: AS, adult stem cell; BMP, bone morphogenic protein; ECM, extracellular matrix; ES, embryonic stem cell; HA, hydroxyapatite; FGF-2, fibroblast growth factor; iPS, inducible pleuripotent stem cell; IGF-1, insulin-like growth factor; PDGF, platelet-derived growth factor; PDMS, poly(dimethylsiloxane); PGA, polyglycolate; PGS, polyglycerol sebacate; PLGA, poly-L-lactate-co-glycolate; PLL, poly-L-lactate; RGD, Arg-Gly-Asp attachment site; TCP, tricalcium phosphate; TGF-β, transforming growth factor beta; and VEGF, vascular endothelial growth factor. PMID:19493883
Multidisciplinary management of hypohydrotic ectodermal dysplasia – a case report
Joseph, Suja; Cherackal, George J; Jacob, Jose; Varghese, Alex K
2015-01-01
Key Clinical Message Hypohydrotic ectodermal dysplasia is a hereditary disorder, which affects ectodermal derivatives. It manifests several abnormalities of the teeth, and is commonly inherited through female carriers. This case report presents a patient with compromised esthetics and function. A multidisciplinary approach was planned involving an oral pathologist, endodontist, orthodontist and a prosthodontist. PMID:25984305
Carlberg, Valerie M; Lofgren, Sabra M; Mann, Julianne A; Austin, Jared P; Nolt, Dawn; Shereck, Evan B; Davila-Saldana, Blachy; Zonana, Jonathan; Krol, Alfons L
2014-01-01
Osteopetrosis, lymphedema, hypohidrotic ectodermal dysplasia, and immunodeficiency (OL-HED-ID) is a rare X-linked disorder with only three reported prior cases in the English-language literature. We describe a case of OL-HED-ID in a male infant who initially presented with congenital lymphedema, leukocytosis, and thrombocytopenia of unknown etiology at 7 days of age. He subsequently developed gram-negative sepsis and multiple opportunistic infections including high-level cytomegalovirus viremia and Pneumocystis jiroveci pneumonia. The infant was noted to have mildly xerotic skin, fine sparse hair, and periorbital wrinkling, all features suggestive of ectodermal dysplasia. Skeletal imaging showed findings consistent with osteopetrosis, and immunologic investigation revealed hypogammaglobulinemia and mixed T- and B-cell dysfunction. Genetic testing revealed a novel mutation in the nuclear factor kappa beta (NF-KB) essential modulator (NEMO) gene, confirming the diagnosis of OL-HED-ID. Mutations in the NEMO gene have been reported in association with hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID), OL-HED-ID, and incontinentia pigmenti. In this case, we report a novel mutation in the NEMO gene associated with OL-HED-ID. This article highlights the dermatologic manifestations of a rare disorder, OL-HED-ID, and underscores the importance of early recognition and prompt intervention to prevent life-threatening infections. © 2013 Wiley Periodicals, Inc.
Prenatal Correction of X-Linked Hypohidrotic Ectodermal Dysplasia.
Schneider, Holm; Faschingbauer, Florian; Schuepbach-Mallepell, Sonia; Körber, Iris; Wohlfart, Sigrun; Dick, Angela; Wahlbuhl, Mandy; Kowalczyk-Quintas, Christine; Vigolo, Michele; Kirby, Neil; Tannert, Corinna; Rompel, Oliver; Rascher, Wolfgang; Beckmann, Matthias W; Schneider, Pascal
2018-04-26
Genetic deficiency of ectodysplasin A (EDA) causes X-linked hypohidrotic ectodermal dysplasia (XLHED), in which the development of sweat glands is irreversibly impaired, an condition that can lead to life-threatening hyperthermia. We observed normal development of mouse fetuses with Eda mutations after they had been exposed in utero to a recombinant protein that includes the receptor-binding domain of EDA. We administered this protein intraamniotically to two affected human twins at gestational weeks 26 and 31 and to a single affected human fetus at gestational week 26; the infants, born in week 33 (twins) and week 39 (singleton), were able to sweat normally, and XLHED-related illness had not developed by 14 to 22 months of age. (Funded by Edimer Pharmaceuticals and others.).
Death due to complications of anhidrotic ectodermal dysplasia.
Ogden, Emily; Schandl, Cynthia; Tormos, Lee Marie
2014-11-01
Ectodermal dysplasia comprises a group of disorders affecting ectodermal tissues. Severity depends on the genetic aberration; hyperpyrexia secondary to absence of sweat glands is a common complication. Treatment is supportive. This case report describes a 1-month, 27-day-old male infant with a diagnosis of X-linked recessive anhidrotic ectodermal dysplasia. On the day of his death, his mother swaddled him in a blanket and placed him on the couch at 5:30 am. When she picked him up at 8:00 am, he was unresponsive. At the emergency department, his rectal temperature was 40°C. Postmortem blood culture was positive for group B streptococcus, a possible etiology for fever. It is vital to teach parents that close monitoring of children with ectodermal dysplasia is necessary, as an increase in body temperature can become life threatening. © 2014 American Academy of Forensic Sciences.
Mini-implants: alternative for oral rehabilitation of a child with ectodermal dysplasia.
Mello, Bianca Zeponi Fernandes; Silva, Thiago Cruvinel; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira; Valarelli, Fabrício Pinelli; Oliveira, Thais Marchini
2015-01-01
Ectodermal dysplasia is a rare congenital disease that affects several structures of ectodermal origin. The most commonly related oral characteristics are hypodontia, malformed teeth and underdeveloped alveolar ridges. New alternative treatments are needed due to the failure of the conventional prosthesis retention. This case report outlines the oral rehabilitation treatment of a 9-year-old girl with ectodermal dysplasia. The treatment was performed with conventional prosthesis upon mini-implants. The mini-implants provided prosthetic retention. The patient reported a good adaptation of the dental prosthesis and satisfaction with the treatment. The increased self-esteem improved the socialization skills of the girl. In this case report, use of prosthesis with mini-implants was satisfactory for prosthetic retention. However, clinical studies with long-term follow-up are needed to test the mini-implants as an alternative for oral rehabilitation of children with ectodermal dysplasia.
Ectodermal Dysplasia: A Clinical Overview for the Dental Practitioner.
Halai, Tina; Stevens, Claire
2015-10-01
The term ectodermal dysplasia (ED) is used to describe a group of rare congenital disorders characterized by abnormalities of two or more ectodermal structures such as the skin, hair, nails, teeth and sweat glands. This paper will give an overview of the aetiology of ED and describe the manifestations and dental management of this condition. In particular, the important role of the dental practitioner in the identification and management of patients with ED will be highlighted. CPD/Clinical Relevance: Dental practitioners should be aware of the oral features of ectodermal dysplasia and be able to make timely referrals and provide appropriate continuing care for these patients.
Acro-Dermato-Ungual-Lacrimal-Tooth Syndrome: An Uncommon Member of the Ectodermal Dysplasias.
Whittington, Adam; Stein, Sarah; Kenner-Bell, Brandi
2016-09-01
Acro-dermato-ungual-lacrimal-tooth (ADULT) syndrome is a rare form of autosomal dominant ectodermal dysplasia due to mutations in the TP63 gene, a locus that has also been implicated in other syndromic forms of ectodermal dysplasia. It shares many phenotypic characteristics with other TP63 gene mutation syndromes, often making an accurate diagnosis difficult. Long-term management and follow-up of the various sequelae of ectodermal dysplasia require an accurate diagnosis. We report a familial case of ADULT syndrome in a daughter, mother, and son and provide a brief review of the clinical characteristics of this syndrome. © 2016 Wiley Periodicals, Inc.
Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel
2017-09-01
The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jiao, Fei; Wang, Juan; Dong, Zhao-Lun; Wu, Min-Juan; Zhao, Ting-Bao; Li, Dan-Dan; Wang, Xin
2012-08-01
Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them "human limb bud-derived mesenchymal stem cells" (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro.
Jiao, Fei; Wang, Juan; Dong, Zhao-lun; Wu, Min-juan; Zhao, Ting-bao; Li, Dan-dan
2012-01-01
Abstract Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them “human limb bud–derived mesenchymal stem cells” (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro. PMID:22775353
Yan, Yun; Zhao, Wukui; Huang, Yikai; Tong, Huan; Xia, Yin; Jiang, Qing; Qin, Jinzhong
2017-01-01
The Polycomb repressive complex 1 (PRC1) is essential for fate decisions of embryonic stem (ES) cells. Emerging evidence suggests that six major variants of PRC1 complex, defined by the mutually exclusive presence of Pcgf subunit, regulate distinct biological processes, yet very little is known about the mechanism by which each version of PRC1 instructs and maintains cell fate. Here, we disrupted the Pcgf1, also known as Nspc1 and one of six Pcgf paralogs, in mouse ES cells by the CRISPR/Cas9 technology. We showed that although these mutant cells were viable and retained normal self-renewal, they displayed severe defects in differentiation in vitro. To gain a better understanding of the role of Pcgf1 in transcriptional control of differentiation, we analysed mRNA profiles from Pcgf1 deficient cells using RNA-seq. Interestingly, we found that Pcgf1 positively regulated expression of essential transcription factors involved in ectoderm and mesoderm differentiation, revealing an unexpected function of Pcgf1 in gene activation during ES cell lineage specification. Chromatin immunoprecipitation experiments demonstrated that Pcgf1 deletion caused a decrease in Ring1B and its associated H2AK119ub1 mark binding to target genes. Altogether, our results suggested an unexpected function of Pcgf1 in gene activation during ES cell maintenance. PMID:28393894
Unusual manifestations of ectodermal dysplasia-syndactyly syndrome type I in two Yemeni siblings.
Mohammad, Alshami
2015-01-15
Ectodermal dysplasias (EDs) are a group of genodermatoses characterized by malformations of tissues derived from the ectoderm, including the skin, its appendages (hair, nails, sweat glands), teeth, and the breasts. Ectodermal dysplasia syndactyly syndrome (EDSS) is a rare, newly described type of ED involving syndactyly. We report 2 Yemeni siblings with typical EDSS manifestations, including bilateral, partial cutaneous syndactyly of the fingers and toes; sparse, coarse, brittle scalp hair, eyebrows, and eyelashes; and conical, widely spaced teeth with enamel notches. In addition, the siblings presented with other features hitherto not described for this syndrome, such as adermatoglyphia, onychogryphosis, hypoplastic widely spaced nipples, hypoplastic thumbs, and red scalp hair.
A Symphony of Regulations Centered on p63 to Control Development of Ectoderm-Derived Structures
Guerrini, Luisa; Costanzo, Antonio; Merlo, Giorgio R.
2011-01-01
The p53-related transcription factor p63 is critically important for basic cellular functions during development of the ectoderm and derived structure and tissues, including skin, limb, palate, and hair. On the one side, p63 is required to sustain the proliferation of keratinocyte progenitors, while on the other side it is required for cell stratification, commitment to differentiate, cell adhesion, and epithelial-mesenchymal signaling. Molecules that are components or regulators of the p63 pathway(s) are rapidly being identified, and it comes with no surprise that alterations in the p63 pathway lead to congenital conditions in which the skin and other ectoderm-derived structures are affected. In this paper, we summarize the current knowledge of the molecular and cellular regulations centered on p63, derived from the comprehension of p63-linked human diseases and the corresponding animal models, as well as from cellular models and high-throughput molecular approaches. We point out common themes and features, that allow to speculate on the possible role of p63 downstream events and their potential exploitation in future attempts to correct the congenital defect in preclinical studies. PMID:21716671
Eccrine sweat gland development and sweat secretion.
Cui, Chang-Yi; Schlessinger, David
2015-09-01
Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca(2+) -dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers - for example InsP3 and Ca(2+) - and downstream ion channels/transporters in the framework of a Na(+) -K(+) -Cl(-) cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid-base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Tooth, hair and claw: comparing epithelial stem cell niches of ectodermal appendages
Naveau, Adrien; Seidel, Kerstin; Klein, Ophir D.
2014-01-01
The vertebrate ectoderm gives rise to organs that produce mineralized or keratinized substances, including teeth, hair, and claws. Most of these ectodermal derivatives grow continuously throughout the animal’s life and have active pools of adult stem cells that generate all the necessary cell types. These organs provide powerful systems for understanding the mechanisms that enable stem cells to regenerate or renew ectodermally derived tissues, and remarkable progress in our understanding of these systems has been made in recent years using mouse models. We briefly compare what is known about stem cells and their niches in incisors, hair follicles, and claws, and we examine expression of Gli1 as a potential example of a shared stem cell marker. We summarize some of the features, structures, and functions of the stem cell niches in these ectodermal derivatives; definition of the basic elements of the stem cell niches in these organs will provide guiding principles for identification and characterization of the niche in similar systems. PMID:24530577
FOXI2: a possible gene contributing to ectodermal dysplasia.
Kurban, Mazen; Zeineddine, Savo Bou; Hamie, Lamiaa; Safi, Remi; Abbas, Ossama; Kibbi, Abdul Ghani; Bitar, Fadi; Nemer, Georges
2017-12-01
Cardio-facio-cutaneous syndrome (CFC), Noonan syndrome (NS), and Costello syndrome are a group of diseases that belong to the RASopathies. The syndromes share clinical features making diagnosis a challenge. To investigate the phenotype and genotype of a 10-year-old Iraqi girl with overlapping features of CFC, NS, and Costello syndromes, with additional features of ectodermal dysplasia. DNA was examined by exome sequencing and protein expression by immunohistochemistry. Exome sequencing identified a mutation in the SOS1 gene and a de novo deletion in the FOXI2 gene which was neither present in the international databases, nor in 400 chromosomes from the same population. Based on immunohistochemical staining, FOXI2 was identified in the basal cell layer of the skin and overlapped with the expression of P63, a major player in ectodermal dysplasia. We therefore suggest screening for FOXI2 mutation in the setting of ectodermal features that are not associated with genes known to contribute to ectodermal dysplasia.
Molineaux, Anna C; Maier, Jennifer A; Schecker, Teresa; Sears, Karen E
2015-03-01
Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb. © 2015 Wiley Periodicals, Inc.
Okamura, Erika; Suda, Naoto; Baba, Yoshiyuki; Fukuoka, Hiroki; Ogawa, Takuya; Ohkuma, Mizue; Ahiko, Nozomi; Yasue, Akihiro; Tengan, Toshimoto; Shiga, Momotoshi; Tsuji, Michiko; Moriyama, Keiji
2013-03-01
Objective : Ectrodactyly-ectodermal dysplasia-clefting syndrome is a congenital anomaly characterized by ectodermal dysplasia, ectrodactyly, cleft lip and palate, and lacrimal duct anomalies. Because this syndrome is frequently accompanied by a congenital lack of teeth, narrow palate, and malocclusion, comprehensive orthodontic intervention is required. Design : To highlight the specific dental and maxillofacial characteristics of ectrodactyly-ectodermal dysplasia-clefting syndrome, six Japanese individuals diagnosed with the syndrome are described here. Patients : The subjects consisted of two boys and four girls (age range, 6.0 to 13.9 years) diagnosed with ectrodactyly-ectodermal dysplasia-clefting syndrome by medical and dental specialists. Their conditions included ectodermal dysplasia (hypodontia, microdontia, enamel hypoplasia, and abnormalities in hair and nails), cleft lip and/or palate, and ectrodactyly. Cephalograms, panoramic x-rays, and dental casts were taken; systemic complications were recorded at the first visit to our dental hospital. Results : All individuals had severe oligodontia with 9 to 18 missing teeth. The missing teeth were mainly maxillary and mandibular incisors and second bicuspids, arranged in a symmetrical manner. Cephalometric analysis showed retruded and short maxilla due to cleft lip and/or palate. It is interesting that all individuals showed a characteristically shaped mandibular symphysis with a retruded point B. It is likely that this unusual symphyseal morphology is due to the lack of mandibular incisors. Conclusions : This study demonstrates the presence of severe oligodontia in the incisal and premolar regions and describes a characteristic maxillary and mandibular structure in Japanese individuals with ectrodactyly-ectodermal dysplasia-clefting syndrome.
Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.
Galve-Roperh, Ismael; Chiurchiù, Valerio; Díaz-Alonso, Javier; Bari, Monica; Guzmán, Manuel; Maccarrone, Mauro
2013-10-01
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adams, Dany Spencer; Uzel, Sebastien G. M.; Akagi, Jin; Wlodkowic, Donald; Andreeva, Viktoria; Yelick, Pamela Crotty; Devitt‐Lee, Adrian; Pare, Jean‐Francois; Levin, Michael
2016-01-01
Key points Xenopus laevis craniofacial development is a good system for the study of Andersen–Tawil Syndrome (ATS)‐associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular‐genetic and biophysical techniques are available for the study of ion‐dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages.Forced expression of WT or variant Kcnj2 changes the normal pattern of V mem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes.Expression of other potassium channels and two different light‐activated channels, all of which have an effect on V mem, causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl− channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion‐ or channel‐specific signalling.Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting V mem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in V mem induced late in neurulation do not affect craniofacial development.We interpret these data as strong evidence, consistent with our hypothesis, that ATS‐associated CFAs are caused by the effect of variant Kcnj2 on the V mem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux‐modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. Abstract Variants in potassium channel KCNJ2 cause Andersen–Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS‐associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells’ resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non‐neural cells in embryos, we show that developmentally patterned K+ flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients. PMID:26864374
Pluripotency of adult stem cells derived from human and rat pancreas
NASA Astrophysics Data System (ADS)
Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.
Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.
Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder.
Berko, Esther R; Suzuki, Masako; Beren, Faygel; Lemetre, Christophe; Alaimo, Christine M; Calder, R Brent; Ballaban-Gil, Karen; Gounder, Batya; Kampf, Kaylee; Kirschen, Jill; Maqbool, Shahina B; Momin, Zeineen; Reynolds, David M; Russo, Natalie; Shulman, Lisa; Stasiek, Edyta; Tozour, Jessica; Valicenti-McDermott, Maria; Wang, Shenglong; Abrahams, Brett S; Hargitai, Joseph; Inbar, Dov; Zhang, Zhengdong; Buxbaum, Joseph D; Molholm, Sophie; Foxe, John J; Marion, Robert W; Auton, Adam; Greally, John M
2014-01-01
DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.
Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
Li, Xiaotao; Bhattacharya, Chitralekha; Dayal, Sandeep; Maity, Sankar; Klein, William H
2002-05-01
Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.
Krøigård, Anne Bruun; Clemmensen, Ole; Gjørup, Hans; Hertz, Jens Michael; Bygum, Anette
2016-03-10
Odonto-onycho-dermal dysplasia (OODD) is a rare form of ectodermal dysplasia characterized by severe oligodontia, onychodysplasia, palmoplantar hyperkeratosis, dry skin, hypotrichosis, and hyperhidrosis of the palms and soles. The ectodermal dysplasias resulting from biallelic mutations in the WNT10A gene result in highly variable phenotypes, ranging from isolated tooth agenesis to OODD and Schöpf-Schulz-Passarge syndrome (SSPS). We identified a female patient, with consanguineous parents, who was clinically diagnosed with OODD. Genetic testing showed that she was homozygous for a previously reported pathogenic mutation in the WNT10A gene, c.321C > A, p.Cys107*. The skin and nail abnormalities were for many years interpreted as psoriasis and treated accordingly. A thorough clinical examination revealed hypotrichosis and hyperhidrosis of the soles and dental examination revealed agenesis of permanent teeth except the two maxillary central incisors. Skin biopsies from the hyperkeratotic palms and soles showed the characteristic changes of eccrine syringofibroadenomatosis, which has been described in patients with ectodermal dysplasias. Together with a family history of tooth anomalies, this lead to the clinical suspicion of a hereditary ectodermal dysplasia. This case illustrates the challenges of diagnosing ectodermal dysplasia like OODD and highlights the relevance of interdisciplinary cooperation in the diagnosis of rare conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, D.
1977-06-01
We have maintained and studied certain aspects of the genetics and embryology of approximately 40 chromosome 17 mutations in the mouse, including eight newly derived t-haplotypes. Two dominant T mutations (T/sup Hp/ and T/sup Or1/) have been characterized as having a homozygous lethal phenotype different from T; they die earlier in development, at 6 to 7 days with defects of the embryonic ectoderm. The same mutations, which are both probably chromosome deletions produce mild runting in heterozygous condition, and more severe runting in compound with all t-haplotypes that have been studied. Attempts to map the position of a recessive viablemore » allele t/sup 38/ have given results that suggest that t/sup 38/ is not a point mutation, but may extend over a distance of 3 centimorgans. Data from the same set of experiments indicate that particular combinations of mutations in females may result in gametic selection, i.e., the preferential selection by the egg of one of the two classes of sperm from heterozygous males. New experiments designed to analyze the relationship between t-haplotypes and H-2 type in wild mice are in progress.« less
Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh
2015-01-01
Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.
Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish.
McCarroll, Matthew N; Nechiporuk, Alex V
2013-01-01
Essential cellular components of the paired sensory organs of the vertebrate head are derived from transient thickenings of embryonic ectoderm known as cranial placodes. The epibranchial (EB) placodes give rise to sensory neurons of the EB ganglia that are responsible for relaying visceral sensations form the periphery to the central nervous system. Development of EB placodes and subsequent formation of EB ganglia is a multistep process regulated by various extrinsic factors, including fibroblast growth factors (Fgfs). We discovered that two Fgf ligands, Fgf3 and Fgf10a, cooperate to promote EB placode development. Whereas EB placodes are induced in the absence of Fgf3 and Fgf10a, they fail to express placode specific markers Pax2a and Sox3. Expression analysis and mosaic rescue experiments demonstrate that Fgf3 signal is derived from the endoderm, whereas Fgf10a is emitted from the lateral line system and the otic placode. Further analyses revealed that Fgf3 and Fgf10a activities are not required for cell proliferation or survival, but are required for placodal cells to undergo neurogenesis. Based on these data, we conclude that a combined loss of these Fgf factors results in a failure of the EB placode precursors to initiate a transcriptional program needed for maturation and subsequent neurogenesis. These findings highlight the importance and complexity of reiterated Fgf signaling during cranial placode formation and subsequent sensory organ development.
Fgf3 and Fgf10a Work in Concert to Promote Maturation of the Epibranchial Placodes in Zebrafish
McCarroll, Matthew N.; Nechiporuk, Alex V.
2013-01-01
Essential cellular components of the paired sensory organs of the vertebrate head are derived from transient thickenings of embryonic ectoderm known as cranial placodes. The epibranchial (EB) placodes give rise to sensory neurons of the EB ganglia that are responsible for relaying visceral sensations form the periphery to the central nervous system. Development of EB placodes and subsequent formation of EB ganglia is a multistep process regulated by various extrinsic factors, including fibroblast growth factors (Fgfs). We discovered that two Fgf ligands, Fgf3 and Fgf10a, cooperate to promote EB placode development. Whereas EB placodes are induced in the absence of Fgf3 and Fgf10a, they fail to express placode specific markers Pax2a and Sox3. Expression analysis and mosaic rescue experiments demonstrate that Fgf3 signal is derived from the endoderm, whereas Fgf10a is emitted from the lateral line system and the otic placode. Further analyses revealed that Fgf3 and Fgf10a activities are not required for cell proliferation or survival, but are required for placodal cells to undergo neurogenesis. Based on these data, we conclude that a combined loss of these Fgf factors results in a failure of the EB placode precursors to initiate a transcriptional program needed for maturation and subsequent neurogenesis. These findings highlight the importance and complexity of reiterated Fgf signaling during cranial placode formation and subsequent sensory organ development. PMID:24358375
Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.
Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel
2015-11-01
Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.
Dhamo, B; Kuijpers, M A R; Balk-Leurs, I; Boxum, C; Wolvius, E B; Ongkosuwito, E M
2018-02-01
To investigate phenotypic differences in dental development between isolated oligodontia and oligodontia-ectodermal dysplasia (ED). A total of 129 patients diagnosed with isolated oligodontia and 22 patients with oligodontia as part of ED were eligible. The phenotype of dental development was assessed for the frequency of missing a certain tooth, dental age, development of each tooth present, abnormal size and abnormal shape of teeth. The data were analysed building linear, ordinal and logistic regression models. Compared to patients with isolated oligodontia, patients with oligodontia-ED missed more frequently central incisors and second molars in both jaws, and lateral incisors in the mandible (P < .05). Oligodontia-ED was associated with delayed development of the permanent dentition (β = -0.10; 95% CI: -0.17, -0.03). Specifically, the maxillary teeth: right central incisor, right lateral incisor, right second premolar and left second premolar were delayed approximately from 2 to 4 developmental stages. In addition, the left mandibular second premolar was 3 developmental stages delayed. Abnormal shape of teeth was 7 times more evident in patients with oligodontia-ED compared to patients with isolated oligodontia (OR = 6.54; 95% CI: 2.34, 18.28). The abnormal size of teeth was not a distinctive characteristic for oligodontia-ED. Oligodontia-ED distinguishes from isolated oligodontia by more disturbances in dental development. The abnormal shape of incisors and canines in a patient with oligodontia can raise suspicions for accompanying ectodermal abnormalities. © 2017 The Authors. Orthodontics & Craniofacial Research Published by John Wiley & Sons Ltd.
Goyal, Manisha; Pradhan, Gaurav; Gupta, Sunita; Kapoor, Seema
2015-01-01
The ectodermal dysplasias are a heterogenous group of diseases, which have one or more anomalies of the hair, teeth, nails, and sweat glands. Hypohidrotic ectodermal dysplasia (HED) is the most common type and is usually transmitted as an X-linked recessive trait. It is characterized by classical triad of hypotrichosis, anhidrosis/hypohidrosis, and hypodontia/anodontia. Here, we describe an Indian boy affected with HED and rare features including ankylosis of temporomandibular joint and cleft palate. PMID:25684924
The development of the eyelids. Part I. External features.
Pearson, A A
1980-01-01
The sequence of developmental events leading to the formation of the eyelids is described in staged human embryos. By the end of the fourth week the optic vesicle lies close to the surface ectoderm. The surface ectoderm overlying the optic vesicle, in response to this contact, has thickened to form the lense placode (Stage 13). A few days later (about 32 days, Stage 14) the lens placode is indented by the lens pit. A day or two later (about 33 days, Stage 15) the lens pit is closed: however, the lens vesicle and optic cup lie close to the surface ectoderm and appear to press against the surface. Prior to the development of the eyelids, one small sulcus or groove forms above the eye (eyelid groove) and another below it (stage 16, 37 days). As these grooves deepen, in Stages 17--19, eyelid folds develop, first below, and then above, the eye. In Stages 19--22 the eyelid folds develop into the eyelids and cover more of the eye as the palpebral fissure takes shape. The upper and the lower eyelids meet at the outer canthus in Stage 19. The inner canthus is established a few days later in Stage 20. Closure of the eyelids is complete in Stage 23. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:7364662
Ocular surface involvements in ectrodactyly-ectodermal dysplasia-cleft syndrome.
Kennedy, David P; Chandler, John W; McCulley, James P
2015-06-01
To present the ocular manifestation of 2 cases of ectrodactyly-ectodermal dysplasia-cleft syndrome, a multiple congenital anomaly syndrome caused by a single point mutation of the p63 gene that controls epidermal development and homeostasis and to present treatment options. Patient 1 presented with mild signs and symptoms of dry eye and limbal stem cell deficiency with retention of 20/30 vision. Patient 2 presented with severe signs and symptoms of limbal stem cell deficiency with diffuse corneal scarring and counting fingers vision. This second patient's course was complicated by allergic conjunctivitis and advanced steroid-induced glaucoma. The cause of visual loss in ectrodactyly-ectodermal dysplasia-cleft syndrome appears to be multifactorial and likely includes inflammation of the ocular surface, tear film abnormalities, eyelid abnormalities, and limbal stem cell deficiency. Treatment modalities including lubrication, contact lenses, and limbal stem cell transplantation are reviewed. The ophthalmic conditions seen in ectrodactyly-ectodermal dysplasia-cleft syndrome frequently lead to vision loss. Early correct diagnosis and appropriate therapy are paramount because p63 gene mutations have a critical role in maintaining the integrity of the ocular surface in the setting of limbal stem cell deficiency, especially if there are other ocular surface insults such as lid disease, meibomian gland dysfunction and toxicity from topical medications. Patients should be monitored at regular, frequent intervals; and particular attention should be taken to avoid adverse secondary effects of these conditions and medications. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fredieu, J. R.; Cui, Y.; Maier, D.; Danilchik, M. V.; Christian, J. L.
1997-01-01
When Xenopus gastrulae are made to misexpress Xwnt-8, or are exposed to lithium ions, they develop with a loss of anterior structures. In the current study, we have characterized the neural defects produced by either Xwnt-8 or lithium and have examined potential cellular mechanisms underlying this anterior truncation. We find that the primary defect in embryos exposed to lithium at successively earlier stages during gastrulation is a progressive rostral to caudal deletion of the forebrain, while hindbrain and spinal regions of the CNS remain intact. Misexpression of Xwnt-8 during gastrulation produces an identical loss of forebrain. Our results demonstrate that lithium and Wnts can act upon either prospective neural ectodermal cells, or upon dorsal mesodermal cells, to cause a loss of anterior pattern. Specifically, ectodermal cells isolated from lithium- or Wnt-exposed embryos are unable to form anterior neural tissue in response to inductive signals from normal dorsal mesoderm. In addition, although dorsal mesodermal cells from lithium- or Wnt-exposed embryos are specified properly, and produce normal levels of the anterior neural inducing molecules noggin and chordin, they show a greatly reduced capacity to induce anterior neural tissue in conjugated ectoderm. Taken together, our results are consistent with a model in which Wnt- or lithium-mediated signals can induce either mesodermal or ectodermal cells to produce a dominant posteriorizing morphogen which respecifies anterior neural tissue as posterior.
Branching out: origins of the sea urchin larval skeleton in development and evolution
McIntyre, Daniel C.; Lyons, Deirdre C.; Martik, Megan; McClay, David R.
2014-01-01
It is a challenge to understand how the information encoded in DNA is used to build a three dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, FGF, VEGF, and Wnt5. Each is necessary for explicit tasks in skeleton production. PMID:24549853
Kudoh, Tetsuhiro; Concha, Miguel L.; Houart, Corinne; Dawid, Igor B.; Wilson, Stephen W.
2009-01-01
Summary Studies in fish and amphibia have shown that graded Bmp signalling activity regulates dorsal-to-ventral (DV) patterning of the gastrula embryo. In the ectoderm, it is thought that high levels of Bmp activity promote epidermal development ventrally, whereas secreted Bmp antagonists emanating from the organiser induce neural tissue dorsally. However, in zebrafish embryos, the domain of cells destined to contribute to the spinal cord extends all the way to the ventral side of the gastrula, a long way from the organiser. We show that in vegetal (trunk and tail) regions of the zebrafish gastrula, neural specification is initiated at all DV positions of the ectoderm in a manner that is unaffected by levels of Bmp activity and independent of organiser-derived signals. Instead, we find that Fgf activity is required to induce vegetal prospective neural markers and can do so without suppressing Bmp activity. We further show that Bmp signalling does occur within the vegetal prospective neural domain and that Bmp activity promotes the adoption of caudal fate by this tissue. PMID:15262889
Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat
2013-01-01
This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.
Garlena, Rebecca A.; Lennox, Ashley L.; Baker, Lewis R.; Parsons, Trish E.; Weinberg, Seth M.; Stronach, Beth E.
2015-01-01
A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects. PMID:26293306
Resolving Early Mesoderm Diversification through Single Cell Expression Profiling
Wilson, Nicola K.; Macaulay, Iain C.; Marioni, John C.; Göttgens, Berthold
2016-01-01
Summary In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the E6.5 mouse embryo, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition (EMT) and ingress through the primitive streak (PS). Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac (YS), umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast1 but the plasticity of cells within the embryo and the function of key cell type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1+ mesoderm of gastrulating mouse embryos using single cell RNA-sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knock-out mice, we study the function of Tal1, a key hematopoietic transcription factor (TF), and demonstrate, contrary to previous studies performed using retrospective assays2,3, that Tal1 knock out does not immediately bias precursor cells towards a cardiac fate. PMID:27383781
Ahiskalioglu, Elif Oral; Ahiskalioglu, Ali; Firinci, Binali; Dostbil, Aysenur; Aksoy, Mehmet
2015-01-01
Ectodermal dysplasias are rare conditions with a triad of hypotrichosis, anodontia and anhidrosis. In literature review there have been only a few reports of anesthetic management of patients with ectodermal dysplasias. Hyperthermia is a very serious risk which may occur due to the defect of sweat glands. The present case involves a 10-year-old child with ectodermal dysplasia who presented with an acute abdomen and was considered for an emergency surgery. Our aim was to demonstrate the successful management of this case using a combination of general and epidural anesthesia. It is important for anesthesiologist to have information about this syndrome in case of emergency operations, since it can prevent serious complications and even save lives. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Doğan, Mehmet-Sinan; Callea, Michele; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayşe; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki
2015-01-01
Background This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clincal examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. Material and Methods In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. Results The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Conclusions Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved. Key words: Ectodermal dysplasia, three-dimensional dental tomography. PMID:25662550
Molluscan engrailed expression, serial organization, and shell evolution
NASA Technical Reports Server (NTRS)
Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; DeSalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R.
2000-01-01
Whether the serial features found in some molluscs are ancestral or derived is considered controversial. Here, in situ hybridization and antibody studies show iterated engrailed-gene expression in transverse rows of ectodermal cells bounding plate field development and spicule formation in the chiton, Lepidochitona cavema, as well as in cells surrounding the valves and in the early development of the shell hinge in the clam, Transennella tantilla. Ectodermal expression of engrailed is associated with skeletogenesis across a range of bilaterian phyla, suggesting a single evolutionary origin of invertebrate skeletons. The shared ancestry of bilaterian-invertebrate skeletons may help explain the sudden appearance of shelly fossils in the Cambrian. Our interpretation departs from the consideration of canonical metameres or segments as units of evolutionary analysis. In this interpretation, the shared ancestry of engrailed-gene function in the terminal/posterior addition of serially repeated elements during development explains the iterative expression of engrailed genes in a range of metazoan body plans.
Learning about Vertebrate Limb Development
ERIC Educational Resources Information Center
Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna
2014-01-01
We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…
Tan, Kun; Zhang, Zhenni; Miao, Kai; Yu, Yong; Sui, Linlin; Tian, Jianhui; An, Lei
2016-07-01
How does in vitro fertilization (IVF) alter promoter DNA methylation patterns and its subsequent effects on gene expression profiles during placentation in mice? IVF-induced alterations in promoter DNA methylation might have functional consequences in a number of biological processes and functions during IVF placentation, including actin cytoskeleton organization, hematopoiesis, vasculogenesis, energy metabolism and nutrient transport. During post-implantation embryonic development, both embryonic and extraembryonic tissues undergo de novo DNA methylation, thereby establishing a global DNA methylation pattern, and influencing gene expression profiles. Embryonic and placental tissues of IVF conceptuses can have aberrant morphology and functions, resulting in adverse pregnancy outcomes such as pregnancy loss, low birthweight, and long-term health effects. To date, the IVF-induced global profiling of DNA methylation alterations, and their functional consequences on aberrant gene expression profiles in IVF placentas have not been systematically studied. Institute for Cancer Research mice (6 week-old females and 8-9 week-old males) were used to generate in vivo fertilization (IVO) and IVF blastocysts. After either IVO and development (IVO group as control) or in vitro fertilization and culture (IVF group), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Extraembryonic (ectoplacental cone and extraembryonic ectoderm) and placental tissues from both groups were sampled at embryonic day (E) 7.5 (IVO, n = 822; IVF, n = 795) and E10.5 (IVO, n = 324; IVF, n = 278), respectively. The collected extraembryonic (E7.5) and placental tissues (E10.5) were then used for high-throughput RNA sequencing (RNA-seq) and methylated DNA immunoprecipitation sequencing (MeDIP-seq). The main dysfunctions indicated by bioinformatic analyses were further validated using molecular detection, and morphometric and phenotypic analyses. Dynamic functional profiling of high-throughput data, together with molecular detection, and morphometric and phenotypic analyses, showed that differentially expressed genes dysregulated by DNA methylation were functionally involved in: (i) actin cytoskeleton disorganization in IVF extraembryonic tissues, which may impair allantois or chorion formation, and chorioallantoic fusion; (ii) disturbed hematopoiesis and vasculogenesis, which may lead to abnormal placenta labyrinth formation and thereby impairing nutrition transport in IVF placentas; (iii) dysregulated energy and amino acid metabolism, which may cause placental dysfunctions, leading to delayed embryonic development or even lethality; (iv) disrupted genetic information processing, which can further influence gene transcriptional and translational processes. Findings in mouse placental tissues may not be fully representative of human placentas. Further studies are necessary to confirm these findings and determine their clinical significance. Our study is the first to provide the genome-wide analysis of gene expression dysregulation caused by DNA methylation during IVF placentation. Systematic understanding of the molecular mechanisms implicated in IVF placentation can be useful for the improvement of existing assisted conception systems to prevent these IVF-associated safety concerns. This work was supported by grants from the National Natural Science Foundation of China (No. 31472092), and the National High-Tech R&D Program (Nos. 2011|AA100303, 2013AA102506). There was no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Robinson, Geoffrey C.; And Others
1973-01-01
Conductive hearing loss associated with the ectrodactyly, ectodermal dysplasia, and cleft lip palate syndrome was reported in one sporadic case and in a pedigree with four cases in three generations. (GW)
Argenziano, G; Monsurrò, M R; Pazienza, R; Delfino, M
1998-02-01
We describe a woman with a probable autosomal recessive ectodermal dysplasia with corkscrew hairs and mental retardation in a family with tuberous sclerosis. Other findings included syndactyly, typical facies, dental abnormalities, dermatoglyphic hypoplasia, epidermal ridge sweat pore count slightly below normal, and keratosis pilaris. Clinical studies and genetic analysis excluded the diagnosis of tuberous sclerosis in our patient. We conclude that she has ectodermal dysplasia associated with mental retardation. This association has been described previously; it suggests the possible interrelationship of a community of ectodermal dysplasia syndromes with a distinctive structural hair abnormality (pili torti et canaliculi), variable midfacial malformations, limb defects, and other features such as mental retardation. The similarity of our patient to that described by Whiting et al. and Abramovits-Ackerman et al. suggests the autonomy of this syndrome.
Fan, C M; Tessier-Lavigne, M
1994-12-30
An early step in the development of vertebrae, ribs, muscle, and dermis is the differentiation of the somitic mesoderm into dermomyotome dorsally and sclerotome ventrally. To analyze this process, we have developed an in vitro assay for somitic mesoderm differentiation. We show that sclerotomal markers can be induced by a diffusible factor secreted by notochord and floor plate and that heterologous cells expressing Sonic hedgehog (shh/vhh-1) mimic this effect. In contrast, expression of dermomyotomal markers can be caused by a contact-dependent signal from surface ectoderm and a diffusible signal from dorsal neural tube. Our results extend previous studies by suggesting that dorsoventral patterning of somites involves the coordinate action of multiple dorsalizing and ventralizing signals and that a diffusible form of Shh/Vhh-1 mediates sclerotome induction.
Xenopus tropicalis transgenic lines and their use in the study of embryonic induction.
Hirsch, Nicolas; Zimmerman, Lyle B; Gray, Jessica; Chae, Jeiwook; Curran, Kristen L; Fisher, Marilyn; Ogino, Hajime; Grainger, Robert M
2002-12-01
For over a century, amphibian embryos have been a source of significant insight into developmental mechanisms, including fundamental discoveries about the process of induction. The recently developed transgenesis for Xenopus offers new approaches to these poorly understood processes, particularly when undertaken in the quickly maturing species Xenopus tropicalis, which greatly facilitates establishment of permanent transgenic lines. Several X. tropicalis transgenic lines have now been generated, and experiments demonstrating the value of these lines to study induction in embryonic tissue recombinants and explants are presented here. A revised protocol for transgenesis in X. tropicalis resulting in a significant increase in the percentage of transgenic animals that reach adulthood is presented, as well as improvements in tadpole and froglet husbandry, which have facilitated the raising of large numbers of adults. Working transgenic populations have been rapidly expanded, and some transgenes have been bred to homozygosity. Established lines include those bearing the promoter regions of Pax-6, Otx-2, Rx, and EF1alpha coupled to fluorescent reporter genes. Multireporter lines combining, in a single animal, up to three gene promoters coupled to different fluorescent reporters have also been established. The value of X. tropicalis transgenic lines for the study of induction is demonstrated by showing activation of Pax-6 by noggin treatment of Pax-6/GFP transgenic animal caps, illustrating how reporter lines allow a rapid, in vivo assay for an inductive response. An experiment showing lens induction in gamma-crystallin/GFP transgenic lens ectoderm when it is recombined with mouse optic vesicle demonstrates conservation of inducing signals from amphibians and mammals. It also shows how the warmer culture temperatures tolerated by X. tropicalis embryos can be used in assays of factors produced by mammalian cells and tissues. The many applications of transgenic reporter lines and other lines designed to target gene expression in particular tissues promise to bring significant new insights to the classic issues first defined in amphibian systems. Copyright 2002 Wiley-Liss, Inc.
A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene
2011-01-01
Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926
[Ectodermal Capdepont syndrome and oral prosthetic rehabilitation. About a clinical case].
Kumpanya, P; Matshumba, M; Sekele, I B; Mayunga, M; Lutula, P S; Ntumba, M K
2015-03-01
The authors describe the ectodermal Capdepont syndrome as an anomaly characterized by anhidrosis, hypotrichosis and anodontia diagnosed in a 22 year-old adult. In front of this anodontia, oral prosthetic rehabilitation remains the only solution.
Shigetani, Yasuyo; Howard, Sara; Guidato, Sonia; Furushima, Kenryo; Abe, Takaya; Itasaki, Nobue
2008-07-15
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
Cellular basis of gastrulation in the sand dollar Scaphechinus mirabilis.
Kominami, T; Takata, H
2000-12-01
The processes of gastrulation in the sand dollar Scaphechinus mirabilis are quite different from those in regular echinoids. In this study, we explored the cellular basis of gastrulation in this species with several methods. Cell-tracing experiments revealed that the prospective endodermal cells were convoluted throughout the invagination processes. Histological observation showed that the ectodermal layer remained thickened, and the vegetal cells retained an elongated shape until the last step of invagination. Further, most of the vegetal ectodermal cells were skewed or distorted. Wedge-shaped cells were common in the vegetal ectoderm, especially at the subequatorial region. In these embryos, unlike the embryos of regular echinoids, secondary mesenchyme cells did not seem to exert the force to pull up the archenteron toward the inner surface of the apical plate. In fact, the archenteron cells were not stretched along the axis of elongation and were in close contact with each other. Here we found that gastrulation was completely blocked when the embryos were attached to a glass dish coated with poly-L-lysine, in which the movement of the ectodermal layer was inhibited. These results suggest that a force generated by the thickened ectoderm, rather than rearrangement of the archenteron cells, may play a key role in the archenteron elongation in S. mirabilis embryos.
Ectodermal dysplasias: a new clinical-genetic classification
Priolo, M.; Lagana, C.
2001-01-01
The ectodermal dysplasias (EDs) are a large and complex nosological group of diseases, first described by Thurnam in 1848. In the last 10 years more than 170 different pathological clinical conditions have been recognised and defined as EDs, all sharing in common anomalies of the hair, teeth, nails, and sweat glands. Many are associated with anomalies in other organs and systems and, in some conditions, with mental retardation. The anomalies affecting the epidermis and epidermal appendages are extremely variable and clinical overlap is present among the majority of EDs. Most EDs are defined by particular clinical signs (for example, eyelid adhesion in AEC syndrome, ectrodactyly in EEC). To date, few causative genes have been identified for these diseases. We recently reviewed genes known to be responsible for EDs in light of their molecular and biological function and proposed a new approach to EDs, integrating both molecular-genetic data and corresponding clinical findings. Based on our previous report, we now propose a clinical-genetic classification of EDs, expand it to other entities in which no causative genes have been identified based on the phenotype, and speculate on possible candidate genes suggested by associated "non-ectodermal" features. Keywords: ectodermal dysplasia; clinical-functional correlation; epithelial-mesenchymal interaction; ectodermal structural proteins PMID:11546825
Systematization of ambiguous genitalia.
Makiyan, Zograb
2016-10-01
Sex assignment in newborns depends on the anatomy of the external genitalia, despite this stage being the final in embryogenesis. According to the current view, the genital tubercle is the embryonic precursor of penis and clitoris. It originates from mesenchymal tissue, but mesenchymal cells are arranged across the embryonal body and do not have specific androgen receptors. The nature of the signal that initiates early derivation of the indifferent genital tubercle is unknown at present. The aims of this article are to improve surgical management of intersex disorders and investigate the development of the genital tubercle. Clinical examination of 114 females with various forms of DSD revealed ambiguous (bisexual) external genitalia in 73 patients, and 51 of them underwent feminizing surgery. Intersexuality (ambiguity) in 46,XY patients results from disruptors in the pathways of sex steroid hormones or receptors; in 46,XX females arises from excessive levels of androgens. Systematization of intersex disorders distinguishes the karyotype, gonadal morphology, and genital anatomy to provide a differential diagnosis and guide appropriate surgical management. Modified feminizing clitoroplasty with preservation of the dorsal and ventral neurovascular bundles to retain erogenous sensitivity was performed in females with severe virilization (Prader degree III-V). The outgrowth of the genital tubercle and the fusion of the urethral fold proceed in an ordered fashion; but in some cases of ambiguity, there was discordance due to different pathways. Speculation about the derivation of the genital tubercle have discussed with a literature review. The genital tubercle derives from the following 3 layers: the ectodermal glans of the tubercle, the mesodermal corpora cavernosa and the endodermal urogenital groove. According to the new hypothesis, during the indifferent stages, the 5 sacral somites have to recede from their segmentation and disintegrate: the sclerotomes form the pelvic bones, the fused myotomes follow with their genuine neurotomes and the angiotomes join to the corpora cavernosa of the genital tubercle. Sexual differentiation of external genitalia is final in gender embryogenesis, but surprisingly derivation of the indifferent genital tubercle from 5 somites occurs before gonadal and internal organs development.
Systematization of ambiguous genitalia
Makiyan, Zograb
2016-01-01
ABSTRACT Sex assignment in newborns depends on the anatomy of the external genitalia, despite this stage being the final in embryogenesis. According to the current view, the genital tubercle is the embryonic precursor of penis and clitoris. It originates from mesenchymal tissue, but mesenchymal cells are arranged across the embryonal body and do not have specific androgen receptors. The nature of the signal that initiates early derivation of the indifferent genital tubercle is unknown at present. The aims of this article are to improve surgical management of intersex disorders and investigate the development of the genital tubercle. Clinical examination of 114 females with various forms of DSD revealed ambiguous (bisexual) external genitalia in 73 patients, and 51 of them underwent feminizing surgery. Intersexuality (ambiguity) in 46,XY patients results from disruptors in the pathways of sex steroid hormones or receptors; in 46,XX females arises from excessive levels of androgens. Systematization of intersex disorders distinguishes the karyotype, gonadal morphology, and genital anatomy to provide a differential diagnosis and guide appropriate surgical management. Modified feminizing clitoroplasty with preservation of the dorsal and ventral neurovascular bundles to retain erogenous sensitivity was performed in females with severe virilization (Prader degree III-V). The outgrowth of the genital tubercle and the fusion of the urethral fold proceed in an ordered fashion; but in some cases of ambiguity, there was discordance due to different pathways. Speculation about the derivation of the genital tubercle have discussed with a literature review. The genital tubercle derives from the following 3 layers: the ectodermal glans of the tubercle, the mesodermal corpora cavernosa and the endodermal urogenital groove. According to the new hypothesis, during the indifferent stages, the 5 sacral somites have to recede from their segmentation and disintegrate: the sclerotomes form the pelvic bones, the fused myotomes follow with their genuine neurotomes and the angiotomes join to the corpora cavernosa of the genital tubercle. Sexual differentiation of external genitalia is final in gender embryogenesis, but surprisingly derivation of the indifferent genital tubercle from 5 somites occurs before gonadal and internal organs development. PMID:27391116
The origin of mesoderm in phoronids
NASA Technical Reports Server (NTRS)
Freeman, Gary; Martindale, Mark Q.
2002-01-01
Descriptive studies of phoronid development have concluded that the mesoderm of these animals originates from the endoderm during gastrulation. This interpretation has been tested by labeling one blastomere of 4- through 16-cell embryos and examining the position and germ layers occupied by the labeled clones of cells in the larva. No 2 injections gave rise to identical clones of cells, suggesting that the cleavage program does not generate cells of unique identity and that cell fates are established at later developmental time points. In many cases, a relatively large sector composed of ectodermal cells was labeled. When these labeled cells were adjacent to the mouth or anus of the larva, muscle and mesenchyme cells originated from the labeled clones. Under these circumstances, nerve cells also originated from these labeled sectors. These labeling studies also showed that endodermal cells can give rise to mesodermal and neural cells. These results suggest that nerve and muscle cells are induced to form at ectodermal-endodermal boundaries from both germ layers. These marking experiments also confirmed the observation that nerve cells originate both from the apical organ and the trunk region and show for the first time that the intestine originates by ingression of posterior ectoderm.
Branching out: origins of the sea urchin larval skeleton in development and evolution.
McIntyre, Daniel C; Lyons, Deirdre C; Martik, Megan; McClay, David R
2014-03-01
It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production. Copyright © 2014 Wiley Periodicals, Inc.
Effects of electromagnetic pulse on polydactyly of mouse fetuses.
Yang, Ming-Juan; Liu, Jun-Ye; Wang, Ya-Feng; Lang, Hai-Yang; Miao, Xia; Zhang, Li-Yan; Zeng, Li-Hua; Guo, Guo-Zhen
2013-07-01
There is an increasing public concern regarding potential health impacts from electromagnetic radiation exposure. Embryonic development is sensitive to the external environment, and limb development is vital for life quality. To determine the effects of electromagnetic pulse (EMP) on polydactyly of mouse fetuses, pregnant mice were sham-exposed or exposed to EMP (400 kV/m with 400 pulses) from Days 7 to 10 of pregnancy (Day 0 = day of detection of vaginal plug). As a positive control, mice were treated with 5-bromodeoxyuridine on Days 9 and 10. On Days 11 or 18, the fetuses were isolated. Compared with the sham-exposed group, the group exposed to EMP had increased rates of polydactyly fetuses (5.1% vs. 0.6%, P < 0.05) and abnormal gene expression (22.2% vs. 2.8%, P < 0.05). Ectopic expression of Fgf4 was detected in the apical ectodermal ridge, whereas overexpression and ectopic expression of Shh were detected in the zone of polarizing activity of limbs in the EMP-exposed group and in the positive control group. However, expression of Gli3 decreased in mesenchyme cells in those two groups. The percentages of programmed cell death of limbs in EMP-exposed and positive control group were decreased (3.57% and 2.94%, respectively, P < 0.05, compared with 7.76% in sham-exposed group). In conclusion, polydactyly induced by EMP was accompanied by abnormal expression of the above-mentioned genes and decreased percentage of programmed cell death during limb development. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M.
2012-01-01
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from “local epithelium”, in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. PMID:22659543
Physiological responses to heat of resting man with impaired sweating capacity
NASA Technical Reports Server (NTRS)
Totel, G. L.
1974-01-01
The effects of total-body heat exposure were studied in three groups of subjects with varied degrees of impaired sweating capacity. The responses of two ectodermal dysplasic men, six quadriplegic men, and a man with widespread burned scar tissue were compared with the responses of three able-bodied men resting in the heat. It was found that the able-bodied and burned subjects competed successfully with a controlled environment of 38 C and 20% relative humidity for up to 150 min, whereas the quadriplegic and ectodermal dysplasic men developed hyperthermia, hyperventilation, and distress after only 120 and 75 min of heat exposure, respectively. The intolerance to heat is thus ascribed directly to the inability to produce and evaporate sweat.
Bekri, Abdelhamid; Billaud, Marc; Thélu, Jacques
2014-01-01
Several human diseases are associated with the NUAK1 and NUAK2 genes. These genes encode kinases, members of the AMPK-related kinases (ARK) gene family. Both NUAK1 and NUAK2 are known targets of the serine threonine kinase LKB1, a tumor suppressor involved in regulating cell polarity. While much is known about their functions in disease, their expression pattern in normal development has not been extensively studied. Here, we present the expression patterns for NUAK1 and NUAK2 in the chick during early-stage embryogenesis, until day 3 (Hamburger and Hamilton stage HH20). Several embryonic structures, in particular the nascent head, showed distinct expression levels. NUAK1 expression was first detected at stage HH6 in the rostral neural folds. It was then expressed (HH7-11) throughout the encephalalon, predominantly in the telencephalon and mesencephalon. NUAK1 expression was also detected in the splanchnic endoderm area at HH8-10, and in the vitellin vein derived from this area, but not in the heart. NUAK2 expression was first detected at stage HH6 in the neural folds. It was then found throughout the encephalon at stage HH20. Particular attention was paid in this study to the dorsal ectoderm at stages HH7 and HH8, where a local deficit or accumulation of NUAK2 mRNA were found to correlate with the direction of curvature of the neural plate. This is the first description of NUAK1 and NUAK2 expression patterns in the chick during early development; it reveals non-identical expression profiles for both genes in neural development.
Murgan, Sabrina; Castro Colabianchi, Aitana Manuela; Monti, Renato José; Boyadjián López, Laura Elena; Aguirre, Cecilia E; Stivala, Ernesto González; Carrasco, Andrés E; López, Silvia L
2014-01-01
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...
van Straten, Cornelia; Butow, Kurt-W
2013-01-01
An analysis was made of three different syndromes associated with p63 gene mutations, known as ectrodactyly-ectodermal dysplasia-clefting syndrome (EEC), ankyloblepharon-ectodermal dysplasia clefting syndrome (AEC or Hay-Wells) and Rapp-Hodgkin syndrome (RHS). The postoperative complications associated with their cleft reconstructions were also evaluated. Extensive demographic information, in particular of the clinical appearances, associated malformations, and the types and complications of the reconstructive surgical procedures, were recorded of these syndromic cases occurring in a database of 3621 facial cleft deformity patients. The data was analyzed using the Microsoft Excel program. A total of 10 (0.28%) cases of p63 associated syndromes were recorded: EEC (6), RHS (3), and AEC (1). The following clinical cleft appearances were noted - EEC = 6: CLA 1 -right side unilateral (female); CLAP 4 - right side (1) + left side (1) unilateral (male + female); bilateral (2) (males); hPsP 1 (female) (divided in 3 Black, 2 White, 1 Indian); RHS = 3: CLAP 2 (White males); hPsP 1 (White female); AEC = 1: CLAP bilateral (White male). Other features of the syndromes were: skin, hand, foot, tooth, hair and nail involvement, and light sensitivity. Postoperative complications included: (i) stenosis of nasal opening, especially after reconstruction of the bilateral cleft lip and the columella lengthening (2 cases), (ii) premaxilla-prolabium fusion (2 cases), (iii) repeated occurrence of oro-nasal fistula in the hard palate (4 cases), and (iv) dysgnathial development of midfacial structures (3 cases). Three different p63 associated syndromes (EEC, AEC, and RHS) were diagnosed (0.27% of the total facial cleft deformities database). The majority of the cases presented with a bilateral CLAP in males only. A number of females and males had unilateral CLA. The hPsP-cleft was recorded in females only. The associated ectodermal component most probably had a profoundly negative influence on postoperatively wound healing, which was observed in particular at the nasal openings, the premaxilla sulcus and in the hard palate mucosa. The reconstruction of p63 associated syndromes is a greater challenge than the usual cleft reconstruction to the surgeon.
Eisenkraft, Arik; Pode-Shakked, Ben; Goldstein, Nurit; Shpirer, Zvi; van Bokhoven, Hans; Anikster, Yair
2015-01-01
Mutations in the TP63 gene have been associated with a variety of ectodermal dysplasia syndromes, among which the clinically overlapping Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) and the Rapp-Hodgkin syndromes. We report a multiplex nonconsanguineous family of Ashkenazi-Jewish descent, in which the index patient presented with a persistent scalp skin lesion, dystrophic nails and light thin hair. Further evaluation revealed over 10 affected individuals in the kindred, over four generations, exhibiting varying degrees of ectodermal involvement. Analysis of the TP63 gene from four of the patients and from two healthy individuals of the same family was performed. Gene sequencing of the patients revealed a nonsense mutation leading to a premature termination codon (PTC) (p.Gln16X). The same mutation was found in all tested affected individuals in the family, but gave rise to marked phenotypic variability with minor clinical manifestations in some individuals, underscoring the clinical heterogeneity associated with the recently described PTC-causing mutations.
Early implant placement for a patient with ectodermal dysplasia: Thirteen years of clinical care.
Knobloch, Lisa A; Larsen, Peter E; Saponaro, Paola C; L'Homme-Langlois, Emilie
2017-11-29
Patients with ectodermal dysplasia have abnormalities of 2 or more structures that originate from the ectoderm. The oral manifestations often include the congenital absence of teeth and malformed teeth. This clinical report describes the interdisciplinary care from childhood through the definitive dental rehabilitation completed at skeletal maturation to replace the missing teeth in a patient with ectodermal dysplasia. Treatment began at 9 years of age with an implant-assisted mandibular overdenture to improve function and replace the missing mandibular teeth. Orthodontic treatment for the consolidation of space, composite resin restorations, and interim removable dental prostheses were provided to improve esthetics and replace the missing maxillary teeth. Skeletal growth was monitored, and orthognathic surgery was performed at the cessation of growth. The definitive rehabilitation consisted of a mandibular fixed dental prosthesis supported by dental implants and a maxillary removable dental prosthesis to restore the patient to esthetics and function. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Conventional Complete Denture in Patients with Ectodermal Dysplasia
Vilanova, Larissa Soares Reis; Sánchez-Ayala, Alfonso; Ribeiro, Giselle Rodrigues; Campos, Camila Heitor; Farias-Neto, Arcelino
2015-01-01
Ectodermal dysplasia is described as heritable conditions that involve anomalies of structures derived from the ectoderm, including hypodontia. In the cases of edentulous young patients, who did not finish their craniofacial growth, treatment with conventional complete denture is a suitable alternative. The aim of this study was to report a case of mandibular edentulism treated with conventional complete denture in a thirteen-year-old patient diagnosed with hidrotic ectodermal dysplasia. Typical features, such as frontal bossing, depressed nasal bridge, protuberant lips, scarce hair, and brittle nails, were visualized during the extraoral examination. The intraoral inspection and radiographic analysis revealed oligodontia, dental malformation, and prolonged retention of deciduous teeth at maxilla and total edentulism at mandible. A conventional complete denture was planned and constructed following the same steps of technique as recommended in adults. Although this option is not a definitive treatment, the patient and his parents were satisfied with his improvement in chewing and speech, as well as with the aesthetic benefits. PMID:26425372
Wotton, Karl R; Shimeld, Sebastian M
2011-12-01
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.
DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.
Quintanilha, Luís Eduardo Lavigne Paranhos; Carneiro-Campos, Luís Eduardo; Antunes, Lívia Azeredo Alves; Antunes, Leonardo Santos; Fernandes, Claudio Pinheiro; Abreu, Fernanda Volpe
2017-01-01
Hypohidrotic ectodermal dysplasia (HED) is a rare ectodermal disease with a systemic expression. Oral abnormalities are common and may include hypodontia and shape irregularities in the primary and permanent dentitions. Rehabilitation of the dental arches in pediatric patients with HED is a challenge because HED is a multifactorial disease that demands a complicated treatment approach and most dentists have limited experience or training in the necessary treatment. In addition, pediatric patients often lack the patience or ability to cooperate with complex prosthetic treatment. This case report describes a simplified technique used to fabricate complete dentures for a 4-year-old HED patient in 4 sessions.
de Alencar, Nashalie Andrade; Reis, Kátia Rodrigues; Antonio, Andréa Gonçalves; Maia, Lucianne Cople
2015-01-01
Ectodermal dysplasia (ED) is a rare congenital hereditary disorder among a group of syndromes characterized by abnormalities of ectodermic structures. The purpose of this report is to compare the oral health-related quality of life (OHRQoL) before and after complete oral rehabilitation of a five-year-old boy with ED. Delivery of upper and lower dentures resulted in immediate improvement of the child's OHRQoL. Although ED affects patients physically and emotionally, the early oral rehabilitation of young patients is crucial to improve their social interaction and restore their speech and masticatory function.
Chen, Justin; Jacox, Laura A; Saldanha, Francesca; Sive, Hazel
2017-09-01
A mouth is present in all animals, and comprises an opening from the outside into the oral cavity and the beginnings of the digestive tract to allow eating. This review focuses on the earliest steps in mouth formation. In the first half, we conclude that the mouth arose once during evolution. In all animals, the mouth forms from ectoderm and endoderm. A direct association of oral ectoderm and digestive endoderm is present even in triploblastic animals, and in chordates, this region is known as the extreme anterior domain (EAD). Further support for a single origin of the mouth is a conserved set of genes that form a 'mouth gene program' including foxA and otx2. In the second half of this review, we discuss steps involved in vertebrate mouth formation, using the frog Xenopus as a model. The vertebrate mouth derives from oral ectoderm from the anterior neural ridge, pharyngeal endoderm and cranial neural crest (NC). Vertebrates form a mouth by breaking through the body covering in a precise sequence including specification of EAD ectoderm and endoderm as well as NC, formation of a 'pre-mouth array,' basement membrane dissolution, stomodeum formation, and buccopharyngeal membrane perforation. In Xenopus, the EAD is also a craniofacial organizer that guides NC, while reciprocally, the NC signals to the EAD to elicit its morphogenesis into a pre-mouth array. Human mouth anomalies are prevalent and are affected by genetic and environmental factors, with understanding guided in part by use of animal models. WIREs Dev Biol 2017, 6:e275. doi: 10.1002/wdev.275 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
Prevalence of atopic disorders and immunodeficiency in patients with ectodermal dysplasia syndromes
Mark, Barry J.; Becker, Bradley A.; Halloran, Donna R.; Bree, Alanna F.; Sindwani, Raj; Fete, Mary D.; Motil, Kathleen J.; Srun, Sopheak W.; Fete, Timothy J.
2013-01-01
Background Ectodermal dysplasia (ED) syndromes are a diverse group of disorders that affect multiple ectodermally derived tissues. Small studies and case reports suggest an increase in atopy and primary immunodeficiencies (PIDs) among patients with ED syndromes. Objective To determine the prevalence of clinical symptoms suggestive of atopy or immunodeficiency among a large cohort of children with ED syndromes. Methods A 9-page questionnaire was mailed to families who were members of the National Foundation for Ectodermal Dysplasias. The surveys were completed by parents of children younger than 18 years with a diagnosis of an ED syndrome or carrier state. Portions of the questionnaire were adapted from previously validated questionnaires developed by the International Study of Asthma and Allergies in Childhood (ISAAC). Results We received 347 completed questionnaires (41%). When compared with the 13- to 14-year-old children surveyed by ISAAC, we found both all-aged and age-matched children with ED syndromes, respectively, had significantly higher rates of asthma (32.2% and 37.2% vs 16.4%), rhinitis symptoms (76.1% and 78.3% vs 38.9%), and eczema (58.9% and 48.9% vs 8.2%). The prevalence of physician-diagnosed food allergies (20.7%) and PIDs (6.1%) in these ED patients also exceeded known rates in the general pediatric population. Conclusion This large-scale, retrospective study demonstrates a greater reported prevalence of symptoms suggestive of atopic disorders and PIDs among children with ED syndromes than the general pediatric population. A combination of genetic and environmental factors in ED syndromes may contribute to breaches of skin and mucosal barriers, permitting enhanced transmission and sensitization to irritants, allergens, and pathogens. PMID:22626597
Ectodermal dysplasia with blindness in sibs on the island of Rodrigues.
Wallis, C E; Beighton, P
1992-01-01
A brother and sister from the island of Rodrigues had mental retardation, blindness owing to severe ocular malformations, short stature, dysmorphic facial features, hypotrichosis, and dental abnormalities. It is likely that they have a hitherto unrecognised autosomal recessive ectodermal dysplasia syndrome. Images PMID:1583659
Doğan, Mehmet-Sinan; Callea, Michele; Yavuz, Ìzzet; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayse; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki
2015-05-01
This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clinical examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved.
Jones, Kyle B.; Goodwin, Alice F.; Landan, Maya; Seidel, Kerstin; Tran, Dong-Kha; Hogue, Jacob; Chavez, Miquella; Fete, Mary; Yu, Wenli; Hussein, Tarek; Johnson, Ramsey; Huttner, Kenneth; Jheon, Andrew H.; Klein, Ophir D.
2015-01-01
Hypohidrotic ectodermal dysplasia (HED) is the most common type of ectodermal dysplasia (ED), which encompasses a large group of syndromes that share several phenotypic features such as missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. X-linked hypohidrotic ectodermal dysplasia (XL-HED) is associated with mutations in ectodysplasin (EDA1). Hypohidrosis due to hypoplastic sweat glands and thin, sparse hair are phenotypic features that significantly affect the daily lives of XL-HED individuals and therefore require systematic analysis. We sought to determine the quality of life of individuals with XL-HED and to quantify sweat duct and hair phenotypes using confocal imaging, pilocarpine iontophoresis, and phototrichogram analysis. Using these highly sensitive and non-invasive techniques, we demonstrated that 11/12 XL-HED individuals presented with a complete absence of sweat ducts and that none produced sweat. We determined that the thin hair phenotype observed in XL-HED was due to multiple factors, such as fewer terminal hairs with decreased thickness and slower growth rate, as well as fewer follicular units and fewer hairs per unit. The precise characterization of XL-HED phenotypes using sensitive and non-invasive techniques presented in our study will improve upon larger genotype-phenotype studies and in the assessment of future therapies in XL-HED. PMID:23687000
Antosova, Barbora; Smolikova, Jana; Klimova, Lucie; Lachova, Jitka; Bendova, Michaela; Kozmikova, Iryna; Machon, Ondrej; Kozmik, Zbynek
2016-01-01
Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction. PMID:27918583
Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development.
Manthey, Abby L; Lachke, Salil A; FitzGerald, Paul G; Mason, Robert W; Scheiblin, David A; McDonald, John H; Duncan, Melinda K
2014-02-01
SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development
Manthey, Abby L.; Lachke, Salil A.; FitzGerald, Paul G.; Mason, Robert W.; Scheiblin, David A.; McDonald, John H.; Duncan, Melinda K.
2014-01-01
SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson Syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. PMID:24161570
Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers
St Johnston, Daniel
2016-01-01
Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404
FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii
Green, Stephen A.; Norris, Rachael P.; Terasaki, Mark; Lowe, Christopher J.
2013-01-01
FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation. PMID:23344709
Zhang, Qin; Bai, Bao-Ling; Liu, Xiao-Zhen; Miao, Chun-Yue; Li, Hui-Li
2014-08-01
To explore the association of polymorphisms in folate metabolism genes, methionine synthase reductase (MTRR) gene and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, with complex congenital abnormalities and to further investigate its association with complex congenital abnormalities derived from three germ layers. A total of 250 cases of birth defects (with complex congenital abnormalities including congenital heart disease, neural tube defects, and craniofacial anomalies) in Shanxi Province, China were included in the study. MTRR single nucleotide polymorphism (SNP) (rs1801394) and MTHFR SNP (rs1801133) were genotyped by the SNaPshot method, and the genotyping results were compared with those of controls (n=420). SNPs rs1801394 and rs1801133 were associated with multiple birth defects. For the recessive model, individuals with GG genotype at rs1801394 and CC genotype at rs1801133 had a relatively low risk of developing birth defects, so the two genotypes were protective factors against birth defects. The homozygous recessive genotype at rs1801133, which served as a protective factor, was associated with ectoderm- or endoderm-derived complex congenital abnormalities, while the homozygous recessive genotype at rs1801394, which served as a protective factor, was associated with ectoderm-, mesoderm- or endoderm-derived complex congenital abnormalities. Among the Chinese population in Shanxi Province, the SNPs in folate metabolism genes (MTRR and MTHFR) are associated with complex congenital abnormalities and related to ectoderm, mesoderm or endoderm development.
Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid.
Yokouchi, Y; Ohsugi, K; Sasaki, H; Kuroiwa, A
1991-10-01
A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.
Kubilus, James K.; Zapater i Morales, Carolina; Linsenmayer, Thomas F.
2017-01-01
Purpose During development, the corneal epithelium (CE) and the conjunctiva are derived from the surface ectoderm. Here we have examined how, during development, the cells of these two issues become isolated from each other. Methods Epithelia from the anterior eyes of chicken embryos were labeled with the fluorescent, lipophilic dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). DiI was placed on the epithelial surface of the developing anterior eye and its diffusion was monitored by fluorescence microscopy. Concomitant morphologic changes in the surface cells of these epithelial were examined by scanning electron microscopy. Immunofluorescence was used to analyze the expression of cytokeratin K3, ZO-1, N-cadherin and Connexin-43 and the function of gap junctions was analyzed using a cut-loading with the fluorescent dye rhodamine-dextran. Results Prior to embryonic day 8 (E8), DiI placed on the surface of the CE spreads throughout all the epithelial cells of the anterior eye. When older eyes were similarly labeled, dye diffusion was restricted to the CE. Similarly, diffusion of DiI placed on the conjunctival surface after E8 was restricted to the conjunctiva. Scanning electron microscopy showed that developmentally (1) physical separations progressively form between the cells of the CE and those of the conjunctiva, and (2) by E8 these separations form a ring that completely encompasses the cornea. The functional restriction of gap junctions between these tissues did not occur until E14. Conclusions During ocular development, a barrier to the diffusion of DiI forms between the contiguous CE and conjunctiva prior to the differential expression of gap junctions within these tissues. PMID:28319640
Rajagopal, Ramya; Dattilo, Lisa K.; Kaartinen, Vesa; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Bottinger, Erwin P.; Beebe, David C.
2009-01-01
Purpose Bone morphogenetic protein (BMP) signaling is essential for the induction and subsequent development of the lens. The purpose of this study was to analyze the function(s) of the type 1 BMP receptor, Acvr1, in lens development. Methods Acvr1 was deleted from the surface ectoderm of mouse embryos on embryonic day 9 using the Cre-loxP method. Cell proliferation, cell cycle exit, and apoptosis were measured in tissue sections by immunohistochemistry, immunofluorescence, and TUNEL staining. Results Lenses formed in the absence of Acvr1. However, Acvr1CKO (conditional knockout) lenses were small. Acvr1 signaling promoted proliferation at early stages of lens formation but inhibited proliferation at later stages. Inhibition of cell proliferation by Acvr1 was necessary for the proper regionalization of the lens epithelium and promoted the withdrawal of lens fiber cells from the cell cycle. In spite of the failure of all Acvr1CKO fiber cells to withdraw from the cell cycle, they expressed proteins characteristic of differentiated fiber cells. Although the stimulation of proliferation was Smad independent, the ability of Acvr1 to promote cell cycle exit later in development depended on classical R-Smad-Smad4 signaling. Loss of Acvr1 led to an increase in apoptosis of lens epithelial and fiber cells. Increased cell death, together with the initial decrease in proliferation, appeared to account for the smaller sizes of the Acvr1CKO lenses. Conclusions This study revealed a novel switch in the functions of Acvr1 in regulating lens cell proliferation. Previously unknown functions mediated by this receptor included regionalization of the lens epithelium and cell cycle exit during fiber cell differentiation. PMID:18566469
Anuradha; Krishna, Amitabh
2014-12-01
The aim of this study was to evaluate the role of adiponectin in the delayed embryonic development of Cynopterus sphinx. Adiponectin receptor (ADIPOR1) abundance was first observed to be lower during the delayed versus non-delayed periods of utero-embryonic unit development. The effects of adiponectin treatment on embryonic development were then evaluated during the period of delayed development. Exogenous treatment increased the in vivo rate of embryonic development, as indicated by an increase in weight, ADIPOR1 levels in the utero-embryonic unit, and histological changes in embryonic development. Treatment with adiponectin during embryonic diapause showed a significant increase in circulating progesterone and estradiol concentrations, and in production of their receptors in the utero-embryonic unit. The adiponectin-induced increase in estradiol synthesis was correlated with increased cell survival (BCL2 protein levels) and cell proliferation (PCNA protein levels) in the utero-embryonic unit, suggesting an indirect effect of adiponectin via estradiol synthesis by the ovary. An in vitro study further confirmed the in vivo findings that adiponectin treatment increases PCNA levels together with increased uptake of glucose by increasing the abundance of glucose transporter 8 (GLUT8) in the utero-embryonic unit. The in vitro study also revealed that adiponectin, together with estradiol but not alone, significantly increased ADIPOR1 protein levels. Thus, adiponectin works in concert with estradiol to increase glucose transport to the utero-embryonic unit and promote cell proliferation, which together accelerate embryonic development. © 2014 Wiley Periodicals, Inc.
Uncoupling neurogenic gene networks in the Drosophila embryo.
Rogers, William A; Goyal, Yogesh; Yamaya, Kei; Shvartsman, Stanislav Y; Levine, Michael S
2017-04-01
The EGF signaling pathway specifies neuronal identities in the Drosophila embryo by regulating developmental patterning genes such as intermediate neuroblasts defective ( ind ). EGFR is activated in the ventral midline and neurogenic ectoderm by the Spitz ligand, which is processed by the Rhomboid protease. CRISPR/Cas9 was used to delete defined rhomboid enhancers mediating expression at each site of Spitz processing. Surprisingly, the neurogenic ectoderm, not the ventral midline, was found to be the dominant source of EGF patterning activity. We suggest that Drosophila is undergoing an evolutionary transition in central nervous system (CNS)-organizing activity from the ventral midline to the neurogenic ectoderm. © 2017 Rogers et al.; Published by Cold Spring Harbor Laboratory Press.
Ghosh, Debangshu; Saha, Somnath; Basu, Sumit Kumar
2015-10-01
Ectrodactyly-ectodermal dysplasia and clefting syndrome or "Lobster claw" deformity is a rare congenital anomaly that affects tissues of ectodermal and mesodermal origin. Nasolacrimal duct (NLD) obstruction with or without atresia of lacrimal passage is a common finding of such a syndrome. The authors report here even a rarer presentation of the syndrome which manifested as bilateral NLD obstruction and lacrimal fistula along with cleft lip and palate, syndactyly affecting all four limbs, mild mental retardation, otitis media, and sinusitis. Lacrimal duct obstruction and fistula were managed successfully with endoscopic dacryocystorhinostomy (DCR) which is a good alternative to lacrimal probing or open DCR in such a case.
Pombo Castro, María; Luaces Rey, Ramón; Arenaz Búa, Jorge; Santana-Mora, Urbano; López-Cedrún Cembranos, José Luís
2013-10-01
Oral manifestations in ectodermal dysplasia include oligodontia, alveolar ridges hypoplasia, and others. Due to the special conditions in terms of unhealthy teeth and lack of bone, implant-supported rehabilitation seems to offer the most satisfactory outcome. A 27-year-old male diagnosed with ectodermal dysplasia was referred to our department for oral rehabilitation. Oral manifestations included oligodontia, maxillary and mandibular atrophy, mandibular alveolar ridge with knife-edge morphology, and conical teeth. Treatment planning consisted of a Le Fort I osteotomy with interpositional grafts, bilateral sinus lift, and placement of maxillary and mandibular inlay and onlay corticocancellous grafts, using autologous iliac crest bone. In the second surgery, all remaining teeth were removed and 11 endosteal implants were placed. Six months after implant placement, a bimaxillary fixed implant-supported prosthesis was delivered, maintaining a satisfactory esthetic and functional result after a 2-year follow-up. The use of combined preprosthetic techniques allows the placement of endosteal implants and a fixed implant-supported prosthesis in patients with oligodontia and ectodermal dysplasia, providing an esthetic and functional oral rehabilitation.
Dentomaxillofacial characteristics of ectodermal dysplasia.
Nakayama, Yumiko; Baba, Yoshiyuki; Tsuji, Michiko; Fukuoka, Hiroki; Ogawa, Takuya; Ohkuma, Mizue; Moriyama, Keiji
2015-02-01
The aim of this retrospective hospital-based study was to elucidate the dentomaxillofacial characteristics of ectodermal dysplasia. Six Japanese individuals (one male and five female; age range, 12.7-27.2 years) underwent comprehensive examinations, including history recording, cephalometric analysis, panoramic radiography, and analysis of dental models. All the subjects had two or more major manifestations for clinical diagnosis of ectodermal dysplasia (e.g., defects of hair, teeth, nails, and sweat glands). They presented hypodontia (mean number of missing teeth, 9.5; range, 5-14), especially in the premolar region, and enamel dysplasia. Five subjects had bilateral molar occlusion, whereas one subject had unilateral molar occlusion. The common skeletal features were small facial height, maxillary hypoplasia, counterclockwise rotation of the mandible, and mandibular protrusion. Interestingly, the maxillary first molars were located in higher positions and the upper anterior facial height was smaller than the Japanese norm. The results suggest that vertical and anteroposterior maxillary growth retardation, rather than lack of occlusal support due to hypodontia, leads to reduced anterior facial height in individuals with ectodermal dysplasia. © 2014 Japanese Teratology Society.
Waluk, Dominik P; Zur, Gila; Kaufmann, Ronnie; Welle, Monika M; Jagannathan, Vidhya; Drögemüller, Cord; Müller, Eliane J; Leeb, Tosso; Galichet, Arnaud
2016-09-08
X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns. Copyright © 2016 Waluk et al.
Regional differences in BMP-dependence of dorsoventral patterning in the leech Helobdella.
Kuo, Dian-Han; Shankland, Marty; Weisblat, David A
2012-08-01
In the leech Helobdella, the ectoderm exhibits a high degree of morphological homonomy between body segments, but pattern elements in lateral ectoderm arise via distinct cell lineages in the segments of the rostral and midbody regions. In each of the four rostral segments, a complete set of ventrolateral (O fate) and dorsolateral (P fate) ectodermal pattern elements arises from a single founder cell, op. In the 28 midbody and caudal segments, however, there are two initially indeterminate o/p founder cells; the more dorsal of these is induced to adopt the P fate by BMP5-8 emanating from the dorsalmost ectoderm, while the more ventral cell assumes the O fate. Previous work has suggested that the dorsoventral patterning of O and P fates differs in the rostral region, but the role of BMP signaling in those segments has not been investigated. We show here that suppression of dorsal BMP5-8 signaling (which effects a P-to-O fate change in the midbody) has no effect on the patterning of O and P fates in the rostral region. Furthermore, ectopic expression of BMP5-8 in the ventral ectoderm (which induces an O-to-P fate change in the midbody) has no effect in the rostral region. Finally, expression of a dominant-negative BMP receptor (which induces a P-to-O fate change in the midbody) fails to affect O/P patterning in the rostral region. Thus, the rostral segments appear to use some mechanism other than BMP signaling to pattern O and P cell fates along the dorsoventral axis. From a mechanistic standpoint, the OP lineage of the rostral segments and the O-P equivalence group of the midbody and caudal segments constitute distinct developmental modules that rely to differing degrees on positional cues from surrounding ectoderm in order to specify homonomous cell fates. Copyright © 2012 Elsevier Inc. All rights reserved.
2013-01-01
Background The vertebrate head is a highly derived trait with a heavy concentration of sophisticated sensory organs that allow complex behaviour in this lineage. The head sensory structures arise during vertebrate development from cranial placodes and the neural crest. It is generally thought that derivatives of these ectodermal embryonic tissues played a central role in the evolutionary transition at the onset of vertebrates. Despite the obvious importance of head sensory organs for vertebrate biology, their evolutionary history is still uncertain. Results To give a fresh perspective on the adaptive history of the vertebrate head sensory organs, we applied genomic phylostratigraphy to large-scale in situ expression data of the developing zebrafish Danio rerio. Contrary to traditional predictions, we found that dominant adaptive signals in the analyzed sensory structures largely precede the evolutionary advent of vertebrates. The leading adaptive signals at the bilaterian-chordate transition suggested that the visual system was the first sensory structure to evolve. The olfactory, vestibuloauditory, and lateral line sensory organs displayed a strong link with the urochordate-vertebrate ancestor. The only structures that qualified as genuine vertebrate innovations were the neural crest derivatives, trigeminal ganglion and adenohypophysis. We also found evidence that the cranial placodes evolved before the neural crest despite their proposed embryological relatedness. Conclusions Taken together, our findings reveal pre-vertebrate roots and a stepwise adaptive history of the vertebrate sensory systems. This study also underscores that large genomic and expression datasets are rich sources of macroevolutionary information that can be recovered by phylostratigraphic mining. PMID:23587066
Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.
2016-01-01
Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787
Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G
2016-01-01
Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.
Identification and characterization of VEGF and FGF from Hydra.
Krishnapati, Lakshmi-Surekha; Ghaskadbi, Surendra
2013-01-01
Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) play important roles in the formation of the blood vascular system and in axon guidance, nervous system development and function. Here, we report isolation and characterization of VEGF and FGF homologues from Hydra vulgaris Ind-Pune, a Cnidarian which exhibits an organized nervous system and primitive epithelio-muscular cells. VEGF expression was prominent in the endoderm of the peduncle region and tentacles, as evident from in situ hybridization of whole polyps and its transverse sections. High levels of FGF were detected in the ectoderm of the budding region. The expression of VEGF in endodermal and FGF in interstitial cells was confirmed using sf-1 hydra, a temperature-sensitive mutant strain of Hydra magnipapillata. Tissue-specific expression of VEGF and FGF was confirmed by semi quantitative RT-PCR for ectodermal and endodermal tissues in H. vulgaris Ind-Pune. Treatment with SU5416, a specific inhibitor of the VEGF receptor, did not affect the whole polyp, but did delay both budding and head regeneration, suggesting a possible role of VEGF in nerve cell development, tube formation and/or in branching. FGF expression in the ectoderm of budding region, where the majority of interstitial stem cells reside suggests its role in interstitial stem cell maintenance. Further, activation of canonical Wnt signalling with the glycogen synthase kinase-3β (GSK-3β) inhibitor alsterpaullone caused down-regulation of VEGF and FGF, suggesting an antagonistic relationship between the Wnt and VEGF/FGF pathways. Our results indicate that VEGF and FGF evolved early in evolution, before the development of the blood vascular system, and open up the possibility of elucidating the evolutionarily ancient functions of VEGF and FGF.
USDA-ARS?s Scientific Manuscript database
Ankyloblepharon-ectodermal defect-cleft lip and/or palate (AEC), is a rare genetic disorder due to mutations in the TP63 gene. In the present study, we characterized the pattern of growth and body composition, and the nutritional and gastrointestinal aspects of children and adults (n = 18) affected ...
An unusual case of ectodermal dysplasia: combating senile features at an early age
Gupta, Mudit; Sundaresh, Kumbar Jayadevappa; Batra, Manu; Rathva, Vandana J
2014-01-01
Ectodermal dysplasia (ED) refers to a group of inherited diseases that have developmental defects in at least two major structures derived from the ectoderm, that is, hair, teeth, nails and sweat glands. Although more than 192 distinct disorders have been described, the most common is X-linked recessive hypohidrotic ED (Christ-Siemens-Touraine syndrome). Since such patients usually presents with missing teeth, dentists are usually the first person to diagnose such cases. Diagnosis of such cases is important because absence of sweat glands can lead to hyperthermia which can be life-threatening if proper care is not taken. Through this manuscript, we report a case of anhidrotic ED affecting deciduous and permanent dentition, which is rare. PMID:24493109
Ocular and non-ocular manifestations of hypohidrotic ectodermal dysplasia
Tyagi, Pallavi; Tyagi, Vipin; Hashim, Adnan A
2011-01-01
Hypohidrotic ectodermal dysplasia (HED) is a group of rare multisystemic genetic syndromes that affects ectodermal structures such as skin, hair, nails, teeth and sweat glands. The authors present a case of a child with ocular and dermatological signs of HED along with severe involvement of other multiple organ systems. The family history could be traced to four generations and there was an observed trend of increase in severity of signs and symptoms occurring at younger age. The purpose of this case report is to create awareness in ophthalmic community of its diagnosis and clinical manifestations. This case highlights the role of multidisciplinary approach for management of systemic disease, genetic evaluation of affected individuals and carriers and genetic counselling. PMID:22700604
Nikaido, Masataka; Doi, Kazunao; Shimizu, Takashi; Hibi, Masahiko; Kikuchi, Yutaka; Yamasu, Kyo
2007-02-01
In vertebrates, cranial sensory ganglia are mainly derived from ectodermal placodes, which are focal thickenings at characteristic positions in the embryonic head. Here, we provide the first description of the early development of the epibranchial placode in zebrafish embryos using sox3 as a molecular marker. By the one-somite stage, we saw a pair of single sox3-expressing domains appear lateral to the future hindbrain. The sox3 domain, which is referred to here as the early lateral placode, is segregated during the early phase of segmentation to form a pax2a-positive medial area and a pax2a-negative lateral area. The medial area subsequently developed to form the otic placode, while the lateral area was further segregated along the anteroposterior axis, giving rise to four sox3-positive subdomains by 26 hr postfertilization. Given their spatial relationship with the expression of the markers for the epibranchial ganglion, as well as their positions and temporal changes, we propose that these four domains correspond to the facial, glossopharyngeal, vagal, and posterior lateral line placodes in an anterior-to-posterior order. The expression of sox3 in the early lateral placode was absent in mutants lacking functional fgf8, while implantation of fibroblast growth factor (FGF) beads restored the sox3 expression. Using SU5402, which inhibits the FGF signal, we were able to demonstrate that formation of both the early lateral domains and later epibranchial placodes depends on the FGF signal operating at the beginning of somitogenesis. Together, these data provide evidence for the essential role of FGF signals in the development of the epibranchial placodes.
Reissmann, E; Jörnvall, H; Blokzijl, A; Andersson, O; Chang, C; Minchiotti, G; Persico, M G; Ibáñez, C F; Brivanlou, A H
2001-08-01
Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.
NASA Technical Reports Server (NTRS)
Takacs, Carter M.; Moy, Vanessa N.; Peterson, Kevin J.
2002-01-01
Recent phylogenetic investigations have confirmed that hemichordates and echinoderms are sister taxa. However, hemichordates share several cardinal characterstics with chordates and are thus an important taxon for testing hypotheses of homology between key chordate characters and their putative hemichordate antecedents. The chordate dorsal nervous system (DNS) and endostyle are intriguing characters because both hemichordate larval and adult structures have been hypothesized as homologues. This study attempts to test these purported homologies through examination of the expression pattem of a Ptychodera flava NK2 gene, PfNK2.1, because this gene is expressed both in the DNS and endostyle/thyroid in a wide range of chordate taxa. We found that PfNK2.1 is expressed in both neuronal and pharyngeal structures, but its expression pattem is broken up into distinct embryonic and juvenile phases. During embryogenesis, PfNK2.1 is expressed in the apical ectoderm, with transcripts later detected in presumable neuronal structures, including the apical organ and ciliated feeding band. In the developing juvenile we detected PfNK2.1 signal throughout the pharynx, including the stomochord, and later in the hindgut. We conclude that the similar utilization of NK2.1 in apical organ development and chordate DNS is probably due to a more general role for NK2.1 in neurogenesis and that hemichordates do not possess a homologue of the chordate DNS. In addition, we conclude that P. flava most likely does not possess a true endostyle; rather during the evolution of the endostyle NK2.1 was recruited from its more general role in pharynx development.
Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.
2001-01-01
Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994
NASA Astrophysics Data System (ADS)
Dubrulle, Julien; Pourquié, Olivier
The electroporation technique has revolutionized vertebrate embryology. It has greatly contributed to our understanding of how genes and proteins can interact and regulate various aspects of vertebrate development in the last decade. This technique provides an efficient way to transfect embryonic cells in vivo with exogenous DNA by cre ating transient holes in the plasma membrane with short, squared electric pulses of low voltage (Itasaki et al., 1999; Momose et al., 1999; Muramatsu et al., 1997; Nakamura et al., 2004; Ogura, 2002). It has been particularly well-developed in the chick model since the large size of the embryo and its easy accessibility enables to target specific tissues with great precision. With the electroporation, it is possible to precisely choose which type of cells to transfect by performing a local injection of DNA close to the cells of interest, followed by the application of a small current through the targeted area. To date, all three germ layers — endoderm, mesoderm and ectoderm — as well as an increasing number of differentiated structures have been efficiently transfected (Dubrulle et al., 2001; Grapin-Botton et al., 2001; Itasaki et al., 1999; Luo and Redies, 2005; Scaal et al., 2004) and the continuous improvement in electrode design makes it even possible to aim at sub-populations of cells within a given tissue. In addition to this spatial precision, the technique also allows great temporal precision; any stage of development, ranging from pre-gastrulation stage to adulthood can be reached as long as the cells or structures are accessible for local DNA injection and electrode placement (Bigey et al., 2002; Iimura and Pourquie, 2006).
Hughes, Michael W.; Wu, Ping; Jiang, Ting-Xin; Lin, Sung-Jan; Dong, Chen-Yuan; Li, Ang; Hsieh, Fon-Jou; Widelitz, Randall B.; Choung, Cheng Ming
2013-01-01
Summary The mythological story of the Golden Fleece symbolizes the magical regenerative power of skin appendages. Similar to the adventurous pursuit of the Golden Fleece by the multi-talented Argonauts, today we also need an integrated multi-disciplined approach to understand the cellular and molecular processes during development, regeneration and evolution of skin appendages. To this end, we have explored several aspects of skin appendage biology that contribute to the Turing activator / inhibitor model in feather pattern formation, the topo-biological arrangement of stem cells in organ shape determination, the macro-environmental regulation of stem cells in regenerative hair waves, and potential novel molecular pathways in the morphological evolution of feathers. Here we show our current integrative biology efforts to unravel the complex cellular behavior in patterning stem cells and the control of regional specificity in skin appendages. We use feather / scale tissue recombination to demonstrate the timing control of competence and inducibility. Feathers from different body regions are used to study skin regional specificity. Bioinformatic analyses of transcriptome microarrays show the potential involvement of candidate molecular pathways. We further show Hox genes exhibit some region specific expression patterns. To visualize real time events, we applied time-lapse movies, confocal microscopy and multiphoton microscopy to analyze the morphogenesis of cultured embryonic chicken skin explants. These modern imaging technologies reveal unexpectedly complex cellular flow and organization of extracellular matrix molecules in three dimensions. While these approaches are in preliminary stages, this perspective highlights the challenges we face and new integrative tools we will use. Future work will follow these leads to develop a systems biology view and understanding in the morphogenetic principles that govern the development and regeneration of ectodermal organs. PMID:21437328
Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M
2012-08-15
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.
2010-01-01
Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor. PMID:21054859
Expression of Wise in chick embryos.
Shigetani, Y; Itasaki, N
2007-08-01
We have performed in situ hybridization to study the expression of Wise in early chick embryos. Wise expression is first detectable in the ectoderm at posterior levels of late neurula. As development proceeds, Wise expression is seen in specific patterns in the ectoderm of the trunk region, pharyngeal arches, limb buds, and feather buds. In addition to these areas, particular cartilages such as the ones in the maxillary process and limbs start to express Wise at the late pharyngula stage, and the expression in these cartilages becomes stronger than that in epidermal components at later stages. Importantly, Wise is expressed in regions where other signaling molecules such as Wnt, Bmp, and Shh are known to function in morphogenesis and differentiation. Direct comparisons of the expression of Wise and these genes are also demonstrated. (c) 2007 Wiley-Liss, Inc.
Fgfr1 regulates patterning of the pharyngeal region
Trokovic, Nina; Trokovic, Ras; Mai, Petra; Partanen, Juha
2003-01-01
Development of the pharyngeal region depends on the interaction and integration of different cell populations, including surface ectoderm, foregut endoderm, paraxial mesoderm, and neural crest. Mice homozygous for a hypomorphic allele of Fgfr1 have craniofacial defects, some of which appeared to result from a failure in the early development of the second branchial arch. A stream of neural crest cells was found to originate from the rhombomere 4 region and migrate toward the second branchial arch in the mutants. Neural crest cells mostly failed to enter the second arch, however, but accumulated in a region proximal to it. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional Fgfr1 allele specifically in neural crest cells indicated that Fgfr1 regulates the entry of neural crest cells into the second branchial arch non-cell-autonomously. Gene expression in the pharyngeal ectoderm overlying the developing second branchial arch was affected in the hypomorphic Fgfr1 mutants at a stage prior to neural crest entry. Our results indicate that Fgfr1 patterns the pharyngeal region to create a permissive environment for neural crest cell migration. PMID:12514106
Segrelles, Carmen; Moral, Marta; Lorz, Corina; Santos, Mirentxu; Lu, Jerry; Cascallana, José Luis; Lara, M. Fernanda; Carbajal, Steve; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Beltran, Linda; Segovia, José C.; Bravo, Ana
2008-01-01
Aberrant activation of the Akt pathway has been implicated in several human pathologies including cancer. However, current knowledge on the involvement of Akt signaling in development is limited. Previous data have suggested that Akt-mediated signaling may be an essential mediator of epidermal homeostasis through cell autonomous and noncell autonomous mechanisms. Here we report the developmental consequences of deregulated Akt activity in the basal layer of stratified epithelia, mediated by the expression of a constitutively active Akt1 (myrAkt) in transgenic mice. Contrary to mice overexpressing wild-type Akt1 (Aktwt), these myrAkt mice display, in a dose-dependent manner, altered development of ectodermally derived organs such as hair, teeth, nails, and epidermal glands. To identify the possible molecular mechanisms underlying these alterations, gene profiling approaches were used. We demonstrate that constitutive Akt activity disturbs the bone morphogenetic protein-dependent signaling pathway. In addition, these mice also display alterations in adult epidermal stem cells. Collectively, we show that epithelial tissue development and homeostasis is dependent on proper regulation of Akt expression and activity. PMID:17959825
Bhat, Neha; Riley, Bruce B.
2011-01-01
Vertebrate sensory organs develop in part from cranial placodes, a series of ectodermal thickenings that coalesce from a common domain of preplacodal ectoderm. Mechanisms coordinating morphogenesis and differentiation of discrete placodes are still poorly understood. We have investigated whether placodal assembly in zebrafish requires Integrin- α5 (itga5), an extracellular matrix receptor initially expressed throughout the preplacodal ectoderm. Morpholino knockdown of itga5 had no detectable effect on anterior placodes (pituitary, nasal and lens), but posterior placodes developed abnormally, resulting in disorganization of trigeminal and epibranchial ganglia and reduction of the otic vesicle. Cell motion analysis in GFP-transgenic embryos showed that cell migration in itga5 morphants was highly erratic and unfocused, impairing convergence and blocking successive recruitment of new cells into these placodes. Further studies revealed genetic interactions between itga5 and Fgf signaling. First, itga5 morphants showed changes in gene expression mimicking modest reduction in Fgf signaling. Second, itga5 morphants showed elevated apoptosis in the otic/epibranchial domain, which was rescued by misexpression of Fgf8. Third, knockdown of the Fgf effector erm had no effect by itself but strongly enhanced defects in itga5 morphants. Finally, proper regulation of itga5 requires dlx3b/4b and pax8, which are themselves regulated by Fgf. These findings support a model in which itga5 coordinates cell migration into posterior placodes and augments Fgf signaling required for patterning of these tissues and cell survival in otic/epibranchial placodes. PMID:22164214
[The characters and specific features of new human embryonic stem cells lines].
Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G
2009-01-01
Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.
Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.
Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki
2013-08-01
Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.
Management of Severely Atrophic Maxilla in Ectrodactyly Ectodermal Dysplasia-cleft Syndrome.
Rachmiel, Adi; Turgeman, Shahar; Emodi, Omri; Aizenbud, Dror; Shilo, Dekel
2018-02-01
Ectrodactyly ectodermal dysplasia-cleft syndrome is a rare genetic syndrome with an incidence of 1/90,000 live births, characterized by cleft lip and palate, severely hypoplastic maxilla, and hypodontia. Patients diagnosed with ectrodactyly ectodermal dysplasia-cleft syndrome suffer from a severely hypoplastic maxilla that is highly difficult to treat using traditional orthognathic methods. In this study, we propose using distraction osteogenesis to achieve a major advancement while maintaining good stability and minimal relapse. To our knowledge, this is the first description of patients with this syndrome treated using distraction osteogenesis. Five patients diagnosed with ectrodactyly ectodermal dysplasia-cleft syndrome were included in the study. All patients had been operated on according to the well-established protocol of cleft lip and palate reconstruction before maxillary distraction osteogenesis. Hard and soft-tissue changes were evaluated by cone beam computed tomography and lateral cephalograms before distraction osteogenesis (T1), at the postdistraction point (T2) and after 1 year of follow-up (T3). Examination revealed marked maxillary advancement in all our patients with a significant mean difference in hard tissue parameters (condylion to A point = 18 mm; nasion-sella line to A point = 15.2 degrees) and a notable improvement in facial convexity (20.9 degrees). One year follow-up measurements demonstrated mild relapse rates of 6% in the horizontal plane. We conclude that despite the challenging anatomic and physiological features of ectrodactyly ectodermal dysplasia-cleft patients, by enhancing current surgical techniques, there is promising potential for improved patient outcomes, achieving normognathic facial appearance with implant supported rehabilitation.
Management of Severely Atrophic Maxilla in Ectrodactyly Ectodermal Dysplasia-cleft Syndrome
Rachmiel, Adi; Emodi, Omri; Aizenbud, Dror; Shilo, Dekel
2018-01-01
Background: Ectrodactyly ectodermal dysplasia-cleft syndrome is a rare genetic syndrome with an incidence of 1/90,000 live births, characterized by cleft lip and palate, severely hypoplastic maxilla, and hypodontia. Patients diagnosed with ectrodactyly ectodermal dysplasia-cleft syndrome suffer from a severely hypoplastic maxilla that is highly difficult to treat using traditional orthognathic methods. In this study, we propose using distraction osteogenesis to achieve a major advancement while maintaining good stability and minimal relapse. To our knowledge, this is the first description of patients with this syndrome treated using distraction osteogenesis. Methods: Five patients diagnosed with ectrodactyly ectodermal dysplasia-cleft syndrome were included in the study. All patients had been operated on according to the well-established protocol of cleft lip and palate reconstruction before maxillary distraction osteogenesis. Hard and soft-tissue changes were evaluated by cone beam computed tomography and lateral cephalograms before distraction osteogenesis (T1), at the postdistraction point (T2) and after 1 year of follow-up (T3). Results: Examination revealed marked maxillary advancement in all our patients with a significant mean difference in hard tissue parameters (condylion to A point = 18 mm; nasion-sella line to A point = 15.2 degrees) and a notable improvement in facial convexity (20.9 degrees). One year follow-up measurements demonstrated mild relapse rates of 6% in the horizontal plane. Conclusions: We conclude that despite the challenging anatomic and physiological features of ectrodactyly ectodermal dysplasia-cleft patients, by enhancing current surgical techniques, there is promising potential for improved patient outcomes, achieving normognathic facial appearance with implant supported rehabilitation. PMID:29616174
Gene expression dynamics during embryonic development in rainbow trout
USDA-ARS?s Scientific Manuscript database
The supply of maternal RNAs in fertilized egg and activation of embryonic genome during maternal-zygotic transition (MZT) are important for normal embryonic development. In order to identify genes and gene products that are essential in the regulation of embryonic development in rainbow trout, RNA-S...
bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo.
Yaguchi, Shunsuke; Yaguchi, Junko; Inaba, Kazuo
2014-10-31
bicaudal-C (bicC) mRNA encodes a protein containing RNA-binding domains that is reported to be maternally present with deflection in the oocytes/eggs of some species. The translated protein plays a critical role in the regulation of cell fate specification along the body axis during early embryogenesis in flies and frogs. However, it is unclear how it functions in eggs in which bicC mRNA is uniformly distributed, for instance, sea urchin eggs. Here, we show the function of BicC in the formation of neurogenic ectoderm of the sea urchin embryo. Loss-of-function experiments reveal that BicC is required for serotonergic neurogenesis and for expression of ankAT-1 gene, which is essential for the formation of apical tuft cilia in the neurogenic ectoderm of the sea urchin embryo. In contrast, the expression of FoxQ2, the neurogenic ectoderm specification transcription factor, is invariant in BicC morphants. Because FoxQ2 is an upstream factor of serotonergic neurogenesis and ankAT-1 expression, these data indicate that BicC functions in regulating the events that are coordinated by FoxQ2 during sea urchin embryogenesis.
Noninvasive Prenatal Diagnosis of Hypohidrotic Ectodermal Dysplasia by Tooth Germ Sonography.
Wünsche, S; Jüngert, J; Faschingbauer, F; Mommsen, H; Goecke, T; Schwanitz, K; Stepan, H; Schneider, H
2015-08-01
Hypohidrotic ectodermal dysplasia, a potentially life-threatening heritable disorder, may be recognized already in utero by characteristic features such as oligodontia and mandibular hypoplasia. As therapeutic options and prognosis depend on the time point of diagnosis, early recognition was attempted during routine prenatal ultrasound examinations. Fetuses of nine pregnant women (one triplet and eight singleton pregnancies) with family histories of hypohidrotic ectodermal dysplasia were investigated by sonography between the 20th and 24th week of gestation. In 4 male and 2 female fetuses reduced amounts of tooth germs were detected, whereas 5 fetal subjects showed the normal amount. Three-dimensional ultrasound evaluation revealed mandibular hypoplasia in 5 of the 6 fetuses with oligodontia. Molecular genetic analysis and/or clinical findings after birth confirmed the prenatal sonographic diagnosis in each subject. In subjects with a family history of hypohidrotic ectodermal dysplasia, the diagnosis of this rare condition can be established noninvasively by sonography in the second trimester of pregnancy. Early recognition of the disorder may help to prevent dangerous hyperthermic episodes in infancy and may allow timely therapeutic interventions. © Georg Thieme Verlag KG Stuttgart · New York.
Martin, Thomas E.; Arriero, Elena; Majewska, Ania
2011-01-01
Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.
Using implants for prosthodontic rehabilitation of a 4-year-old with ectodermal dysplasia.
Toomarian, Lida; Ardakani, Mohammad Reza Talebi; Ramezani, Jamileh; Adli, Amin Rezaei; Tabari, Zahra Alizadeh
2014-01-01
Ectodermal dysplasia (ED) is an inherited disorder that affects ectodermally derived organs, such as teeth. Pathogenesis is thought to involve an altered epithelium-mesenchymal interaction. ED patients have oligodontia (or sometimes anodontia) in addition to other abnormalities involving the skin, sweat glands, or hair. Many different subtypes have been introduced in the literature. This article describes the case of a 4-year-old patient who, after being diagnosed with ED, was put on a treatment plan that involved mandibular implants, reshaping of the maxillary primary central incisors, and prosthetic dental rehabilitation. Due to the child's rapid growth, both dentures were changed 9 months post-treatment. Two years post-treatment, the maxillary denture was changed again and the child was placed under close supervision.
Hyder, Zerin; Beale, Victoria; O'Connor, Ruth; Clayton-Smith, Jill
2017-04-01
The ectodermal dysplasia and cleft lip/palate (EEC) syndrome describes the association of ectrodactyly, ectodermal dysplasia and orofacial clefting. As with many autosomal dominant disorders, there is variability in expression and not all of these three core features are present in every individual with the condition. Moreover, there may be additional associated features, which are under-recognized. One of these is the presence of genitourinary anomalies, some of which cause significant morbidity. This report details a further two patients with EEC syndrome and genitourinary involvement, including flaccid megacystis with detrusor muscle failure, bilateral hydronephrosis and megaureter, requiring significant renal and urological involvement during their childhood. We go on to review the literature on the diagnosis and management of genitourinary malformations in EEC syndrome.
Henningsen, Emil; Svendsen, Mathias Tiedemann; Lildballe, Dorte Launholt; Jensen, Peter Kjestrup Axel
2014-08-01
We report on a 2-year-old girl presenting with a severe form of hypohidrotic ectodermal dysplasia (HED). The patient presented with hypotrichosis, anodontia, hypohidrosis, frontal bossing, prominent lips and ears, dry, pale skin, and dermatitis. The patient had chronic rhinitis with malodorous nasal discharge. The girl was the second born child of first-cousin immigrants from Northern Iraq. A novel homozygous mutation (c.84delC) in the EDAR gene was identified. This mutation most likely causes a frameshift in the protein product (p.S29fs*74). This results in abolition of all ectodysplasin-mediated NF-kB signalling. This complete loss-of-function mutation likely accounts for the severe clinical abnormalities in ectodermal structures in the described patient. © 2014 Wiley Periodicals, Inc.
A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma.
Anestopoulos, Ioannis; Sfakianos, Aristeidis P; Franco, Rodrigo; Chlichlia, Katerina; Panayiotidis, Mihalis I; Kroll, David J; Pappa, Aglaia
2016-12-31
Silibinin, extracted from milk thistle ( Silybum marianum L.), has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin's pleiotropic effects may reflect its interference with epigenetic mechanisms in human prostate cancer cells. More specifically, we have demonstrated that silibinin reduces gene expression levels of the Polycomb Repressive Complex 2 (PRC2) members Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste Homolog 12 (SUZ12), and Embryonic Ectoderm Development (EED) in DU145 and PC3 human prostate cancer cells, as evidenced by Real Time Polymerase Chain Reaction (RT-PCR). Furthermore immunoblot and immunofluorescence analysis revealed that silibinin-mediated reduction of EZH2 levels was accompanied by an increase in trimethylation of histone H3 on lysine (Κ)-27 residue (H3K27me3) levels and that such response was, in part, dependent on decreased expression levels of phosphorylated Akt (ser473) (pAkt) and phosphorylated EZH2 (ser21) (pEZH2). Additionally silibinin exerted other epigenetic effects involving an increase in total DNA methyltransferase (DNMT) activity while it decreased histone deacetylases 1-2 (HDACs1-2) expression levels. We conclude that silibinin induces epigenetic alterations in human prostate cancer cells, suggesting that subsequent disruptions of central processes in chromatin conformation may account for some of its diverse anticancer effects.
Vrtovec, Katja Triller; Vrtovec, Bojan
2007-12-01
This article argues that totipotent character of human totipotent cells--defined as the capacity of a cell "to differentiate into all somatic lineages (ectoderm, mesoderm, endoderm), the germ line and extra-embryonic tissues such as the placenta"--is not a sufficient reason to exclude their patentability on the basis of Article 5(1) of the Directive 98/44/EC on the Legal Protection of Biotechnological Inventions (Biopatent Directive), which maintains that "the human body, at the various stages of its formation and development, [...] cannot constitute patentable inventions." Since human totipotent cells have both the potential to generate an entire new organism or to generate only different tissues or organs of an organism, they simultaneously fit the definition of the unpatentable human body at the earliest stage of its formation as well as of an element of the human body, which "may constitute a patentable invention" pursuant to Article 5(2) of the Biopatent Directive, whether that element is isolated from the human body or otherwise produced by means of a technical process. Therefore, this article suggests that, when evaluating patentability of human totipotent cells, they should be further evaluated according to their location and their method of derivation (i.e., whether human totipotent cells are located in the human body, whether they are isolated from the human body, or whether they are produced otherwise by means of a technical process). Disclosure of potential conflicts of interest is found at the end of this article.
Darbinyan, Armine; Major, Eugene O; Morgello, Susan; Holland, Steven; Ryschkewitsch, Caroline; Monaco, Maria Chiara; Naidich, Thomas P; Bederson, Joshua; Malaczynska, Joanna; Ye, Fei; Gordon, Ronald; Cunningham-Rundles, Charlotte; Fowkes, Mary; Tsankova, Nadejda M
2016-07-13
Human BK polyomavirus (BKV) is reactivated under conditions of immunosuppression leading most commonly to nephropathy or cystitis; its tropism for the brain is rare and poorly understood. We present a unique case of BKV-associated encephalopathy in a man with hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID) due to IKK-gamma (NEMO) mutation, who developed progressive neurological symptoms. Brain biopsy demonstrated polyomavirus infection of gray and white matter, with predominant involvement of cortex and distinct neuronal tropism, in addition to limited demyelination and oligodendroglial inclusions. Immunohistochemistry demonstrated polyoma T-antigen in neurons and glia, but expression of VP1 capsid protein only in glia. PCR analysis on both brain biopsy tissue and cerebrospinal fluid detected high levels of BKV DNA. Sequencing studies further identified novel BKV variant and disclosed unique rearrangements in the noncoding control region of the viral DNA (BKVN NCCR). Neuropathological analysis also demonstrated an unusual form of obliterative fibrosing vasculopathy in the subcortical white matter with abnormal lysosomal accumulations, possibly related to the patient's underlying ectodermal dysplasia. Our report provides the first neuropathological description of HED-ID due to NEMO mutation, and expands the diversity of neurological presentations of BKV infection in brain, underscoring the importance of its consideration in immunodeficient patients with unexplained encephalopathy. We also document novel BKVN NCCR rearrangements that may be associated with the unique neuronal tropism in this patient.
Removable partial dentures vs overdentures in children with ectodermal dysplasia: two case reports.
Maroulakos, G; Artopoulou, I I; Angelopoulou, M V; Emmanouil, D
2016-06-01
Ectodermal dysplasia (ED) represents a disorder group characterised by abnormal development of the ectodermal derivatives. Removable partial dentures (RPD), complete dentures (CD) or overdentures (OD) are most often the treatment of choice for young affected patients. Prosthetic intervention is of utmost importance in the management of ED patients, as it resolves problems associated with functional, aesthetic, and psychological issues, and improves a patient's quality of life. However, few studies present the principles and guidelines that can assist in the decision-making process of the most appropriate removable prosthesis. The purpose of this study was to suggest a simple treatment decision-making algorithm for selecting an effective and individualised rehabilitative treatment plan, considering different parameters. The cases and treatment of two young ED patients are described and each one was treated with either RPDs or ODs. Periodic recalls were employed to manage problems, and monitor the changes associated with occlusion and fit of the prostheses in relation to each patient's growth. Both patients were followed up for more than 2 years and reported significant improvement in their appearance, masticatory function, and social behaviour as a result of the prosthetic rehabilitation. The main factors guiding the decision process towards the choice of an RPD or an OD are the presence of posterior natural teeth, facial aesthetics, lip support, number and size of existing natural teeth, and the occlusal vertical dimension.
Parker, H M; Kiess, A S; Robertson, M L; Wells, J B; McDaniel, C D
2012-06-01
Unfertilized chicken, turkey, and quail eggs are capable of developing embryos by parthenogenesis. However, it is unknown if the physiological mechanisms regulating parthenogenesis in virgin hens may actually work against fertilization, embryonic development, and hatchability of eggs from these same hens following mating. Additionally, because most parthenogenic development closely resembles early embryonic mortality in fertilized eggs during the first 2 to 3 d of incubation, it is possible that many unhatched eggs classified as containing early embryonic mortality may actually be unfertilized eggs that contain parthenogens. Therefore, the objective of this study was to examine the relationship of parthenogenesis before mating with embryonic development and hatchability characteristics after mating. Based upon their ability to produce unfertilized eggs that contain parthenogens, 372 virgin Chinese Painted quail hens were divided into 7 groups, according to their incidence of parthenogenesis: 0, 10, 20, 30, 40, 50, and greater than 50% parthenogenesis. Males were then placed with these hens so that fertility, embryonic mortality, and hatchability could be evaluated for each hen. Hatchability of eggs set, hatchability of fertile eggs, and late embryonic mortality declined dramatically as the incidence of parthenogenesis increased. On the other hand, early embryonic mortality increased as parthenogenesis increased. Fertility was not different across the 7 parthenogenesis hen groups, perhaps because unfertilized eggs that exhibited parthenogenesis resembled and were therefore classified as early embryonic mortality. In conclusion, virgin quail hens that exhibit parthenogenesis appear to have impaired embryonic development and hatchability following mating. Additional sperm-egg interaction and embryonic research is needed to determine if a large portion of the early embryonic mortality experienced by mated hens that exhibit parthenogenesis as virgin hens is in fact embryonic development in unfertilized eggs.
A computational model for BMP movement in sea urchin embryos.
van Heijster, Peter; Hardway, Heather; Kaper, Tasso J; Bradham, Cynthia A
2014-12-21
Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction-diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arnab, Banerjee; Amitabh, Krishna
2011-02-10
The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; p<0.05) and 8 (r=0.98; p<0.05). The in vivo study showed expression of IR and GLUT 4 proteins in adipose tissue during November suggesting increased transport of glucose to adipose tissue for adipogenesis. This study showed increased expression of HSL and OCTN2 and increased availability of l-carnitine to utero-embryonic unit suggesting increased transport of fatty acid to utero-embryonic unit during the period of delayed embryonic development. Hence it appears that due to increased transport of glucose for adipogenesis prior to winter, glucose utilization by utero-embryonic unit declines and this may be responsible for delayed embryonic development in C. sphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Li, Cuiping; Lai, Weiyi; Wang, Hailin
2018-06-01
Embryonic stem (ES) cells have the potential to differentiate into any of the three germ layers (endoderm, mesoderm, or ectoderm), and can generate many lineages for regenerative medicine. ES cell culture in vitro has long been the subject of widespread concerns. Classically, mouse ES cells are maintained in serum and leukemia inhibitory factor (LIF)-containing medium. However, under serum/LIF conditions, cells show heterogeneity in morphology and the expression profile of pluripotency-related genes, and are mostly in a metastable state. Moreover, cultured ES cells exhibit global hypermethylation, but naïve ES cells of the inner cell mass (ICM) and primordial germ cells (PGCs) are in a state of global hypomethylation. The hypomethylated state of ICM and PGCs is closely associated with their pluripotency. To improve mouse ES cell culture methods, we have recently developed a new method based on the selectively combined utilization of two small-molecule compounds to maintain the DNA hypomethylated and pluripotent state. Here, we present that the co-treatment of vitamin C (Vc) and PD0325901 can erase about 90% of 5-methylcytosine (5mC) at 5 days in mouse ES cells. The generated 5mC content is comparable to that in PGCs. The mechanistic investigation shows that PD0325901 up-regulates Prdm14 expression to suppress Dnmt3b (de novo DNA methyltransferase) and Dnmt3l (the cofactor of Dnmt3b), by reducing de novo 5mC synthesis. Vc facilitates the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) catalyzed mainly by Tet1 and Tet2, indicating the involvement of both passive and active DNA demethylations. Moreover, under Vc/PD0325901 conditions, mouse ES cells show homogeneous morphology and pluripotent state. Collectively, we propose a novel and chemical-synergy culture method for achieving DNA hypomethylation and maintenance of pluripotency in mouse ES cells. The small-molecule chemical-dependent method overcomes the major shortcomings of serum culture, and holds promise to generate homogeneous ES cells for further clinical applications and researches.
Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel
2013-01-01
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal. PMID:23936178
Fathi, Ali; Hatami, Maryam; Vakilian, Haghighat; Han, Chia-Li; Chen, Yu-Ju; Baharvand, Hossein; Salekdeh, Ghasem Hosseini
2014-04-14
Neural differentiation of human embryonic stem cells (hESCs) is a unique opportunity for in vitro analyses of neurogenesis in humans. Extrinsic cues through neural plate formation are well described in the hESCs although intracellular mechanisms underlying neural development are largely unknown. Proteome analysis of hESC differentiation to neural cells will help to further define molecular mechanisms involved in neurogenesis in humans. Using a two-dimensional differential gel electrophoresis (2D-DIGE) system, we analyzed the proteome of hESC differentiation to neurons at three stages, early neural differentiation, neural ectoderm and mature neurons. Out of 137 differentially accumulated protein spots, 118 spots were identified using MALDI-TOF/TOF and LC MS/MS. We observed that proteins involved in redox hemostasis, vitamin and energy metabolism and ubiquitin dependent proteolysis were more abundant in differentiated cells, whereas the abundance of proteins associated with RNA processing and protein folding was higher in hESCs. Higher abundance of proteins involved in maintaining cellular redox state suggests the importance of redox hemostasis in neural differentiation. Furthermore, our results support the concept of a coupling mechanism between neuronal activity and glucose utilization. The protein network analysis showed that the majority of the interacting proteins were associated with the cell cycle and cellular proliferation. These results enhanced our understanding of the molecular dynamics that underlie neural commitment and differentiation. In highlighting the role of redox and unique metabolic properties of neuronal cells, the present findings add insight to our understanding of hESC differentiation to neurons. The abundance of fourteen proteins involved in maintaining cellular redox state, including 10 members of peroxiredoxin (Prdx) family, mainly increased during differentiation, thus highlighting a link of neural differentiation to redox. Our results revealed markedly higher expression of genes encoding enzymes involved in the glycolysis and amino acid synthesis during differentiation. Protein network analysis predicted a number of critical mediators in hESC differentiation. These proteins included TP53, CTNNB1, SMARCA4, TNF, TERT, E2F1, MYC, RB1, and AR. Copyright © 2014 Elsevier B.V. All rights reserved.
Inducible Transgenic Models of BRCA1 Function
1998-10-01
development, and for signs of hyperplasia, dysplasia and neoplasia. Specific Aim 3. Inducibly abolish Brcal expression in the mammary epithelium of...abnormalities in mammary epithelial proliferation, differentiation and development, and for signs of hyperplasia, dysplasia and neoplasia. 6...Lyu MS, Kozak CA and Leder P. Expression of Brcal is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice
Ectodermal dysplasias: A clinical classification and a causal review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinheiro, M.; Freire-Maia, N.
1994-11-01
The authors present a causal review of 154 ectodermal dysplasias (EDs) as classified into 11 clinical subgroups. The number of EDs in each subgroup varies from one to 43. The numbers of conditions due to autosomal dominant, autosomal recessive, and X-linked genes are, respectively, 41, 52, and 8. In 53 conditions cause is unknown; 35 of them present some causal (genetic) suggestion.
The autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome.
LeBoeuf, Nicole; Garg, Amit; Worobec, Sophie
2007-01-01
The autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome is characterized by the presence of chronic mucocutaneous candidiasis, adrenal insufficiency, and hypoparathyroidism. Almost all patients have skin or nail findings early in the course of the disease. Therefore, the dermatologist is in the unique position of being able to identify patients with this syndrome early in its course and to facilitate careful monitoring of potentially lethal complications.
Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm.
Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L
2015-07-01
The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.
Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.
Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A
2009-12-01
The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.
Schlosser, Gerhard; Patthey, Cedric; Shimeld, Sebastian M
2014-05-01
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors. Copyright © 2014 Elsevier Inc. All rights reserved.
Lena, Anna Maria; Duca, Sara; Novelli, Flavia; Melino, Sonia; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Candi, Eleonora
2015-11-13
p63, a member of the p53 family, is a crucial transcription factor for epithelial development and skin homeostasis. Heterozygous mutations in TP63 gene have been associated with human ectodermal dysplasia disorders. Most of these TP63 mutations are missense mutations causing amino acidic substitutions at p63 DNA binding or SAM domains that reduce or abolish the transcriptional activity of mutants p63. A significant number of mutants, however, resides in part of the p63 protein that apparently do not affect DNA binding and/or transcriptional activity, such as the N-terminal domain. Here, we characterize five p63 mutations at the 5' end of TP63 gene aiming to understand the pathogenesis of the diseases and to uncover the role of ΔNp63α N-terminus residues in determining its transactivation potential. Copyright © 2015 Elsevier Inc. All rights reserved.
An RNA tool kit to study the status of mouse ES cells: sex determination and stemness.
Jay, F; Ciaudo, C
2013-09-01
Mouse embryonic stem cells (mESCs) are pluripotent stem cells derived from the inner cell mass of the blastocyst. They can be maintained under controlled culture conditions in a pluripotent state, or be induced to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. Several studies have characterised the coding and non-coding (nc) RNA repertoires of mESCs, uncovering highly dynamic variations during the process of differentiation, but also qualitative differences pertaining to sex. For example, up-regulation of the long non-coding RNA Xist on the X chromosome induces gene silencing and X inactivation exclusively during female mESC differentiation. In contrast, specific small RNAs have been shown to be up-regulated during male mESC differentiation. Here, we illustrate how a small set of key coding and ncRNAs can be exploited as dynamic and sensitive markers of the stemness and/or the differentiation status of male or female mESC lines. We describe adapted techniques for the extended characterization and analysis of mESCs from as little material as that cultured in a single 75cm(2) flask. Copyright © 2013 Elsevier Inc. All rights reserved.
Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm
2009-02-18
Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.
Ahmad, Farooq; Nasir, Abdul; Thiele, Holger; Umair, Muhammad; Borck, Guntram; Ahmad, Wasim
2018-02-12
Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization. © 2018 John Wiley & Sons Ltd/University College London.
Nakatsuji, N; Johnson, K E
1984-06-01
Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.
Blastocyst-like structures generated solely from stem cells.
Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels
2018-05-01
The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.
Hurle, J M; Hinchliffe, J R; Ros, M A; Critchlow, M A; Genis-Galvez, J M
1989-07-01
In the later developmental stages (Hamburger and Hamilton, 25-34) the distal part of the chick leg possesses a distinctive extracellular matrix (ECM) architecture which relates to myotendinous patterning. There are two components: firstly, a system of dorsoventrally oriented fibrils which link the two ectodermal surfaces through the undifferentiated distal mesenchyme and secondly, a 'mesenchyme lamina' originates at the basement membrane distally, but proximally runs through the mesoderm, subjacent and parallel to the basement membrane. The 'mesenchyme lamina' appears to be a precursor of developing tendons and is spatially related to the distal tips of the myogenic blocks. As developing tendons form on the inner surface of the lamina at its proximal end, it becomes less distinct and disappears. Further dorsoventral fibrils run from the 'mesenchyme lamina' into the developing condensations and chondrogenic elements of the phalanges. The architecture of the ECM was revealed by silver and lectin staining (peanut and Ricinus communis agglutinins, PNA and RCA I), by immunocytochemistry (for fibronectin, tenascin, collagen type I) and by ultrastructural analysis. Both components stain with silver, PNA following neuraminidase digestion, RCA I, tenascin and collagen type I. However, the dorsoventral fibrils are positive for fibronectin and negative for PNA, while conversely the mesenchyme lamina is positive for PNA but much less so for fibronectin. Tenascin has been shown to be a specialized mesenchyme component of tendons and myotendinous junctions (Chiquet and Fambrough, 1984). Such a basement membrane forming a 'mesenchyme lamina' appears to be unique in epithelial-mesenchymal developing systems and points to an ectodermal role in tendon pattern formation within the mesenchyme. We discuss the possible role of mechanical force in converting the dorsoventral tenascin-positive fibrils into the localized pattern of tendon insertions into the proximal parts of the phalanges. Distally the dorsoventral fibrils may shape the digital plate by pulling together the two ectodermal surfaces. A similar ECM architecture is found in corresponding stages in the developing wing.
Identification and characterization of mouse otic sensory lineage genes
Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan
2015-01-01
Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475
Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle
Rendl, Michael; Lewis, Lisa
2005-01-01
De novo hair follicle formation in embryonic skin and new hair growth in adult skin are initiated when specialized mesenchymal dermal papilla (DP) cells send cues to multipotent epithelial stem cells. Subsequently, DP cells are enveloped by epithelial stem cell progeny and other cell types to form a niche orchestrating hair growth. Understanding the general biological principles that govern the mesenchymal–epithelial interactions within the DP niche, however, has been hampered so far by the lack of systematic approaches to dissect the complete molecular make-up of this complex tissue. Here, we take a novel multicolor labeling approach, using cell type–specific transgenic expression of red and green fluorescent proteins in combination with immunolabeling of specific antigens, to isolate pure populations of DP and four of its surrounding cell types: dermal fibroblasts, melanocytes, and two different populations of epithelial progenitors (matrix and outer root sheath cells). By defining their transcriptional profiles, we develop molecular signatures characteristic for the DP and its niche. Validating the functional importance of these signatures is a group of genes linked to hair disorders that have been largely unexplored. Additionally, the DP signature reveals novel signaling and transcription regulators that distinguish them from other cell types. The mesenchymal–epithelial signatures include key factors previously implicated in ectodermal-neural fate determination, as well as a myriad of regulators of bone morphogenetic protein signaling. These findings establish a foundation for future functional analyses of the roles of these genes in hair development. Overall, our strategy illustrates how knowledge of the genes uniquely expressed by each cell type residing in a complex niche can reveal important new insights into the biology of the tissue and its associated disease states. PMID:16162033
Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy
Rogers, Scott W.; Gahring, Lorise C.
2012-01-01
The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322
Hans, Stefan; Liu, Dong; Westerfield, Monte
2004-10-01
The vertebrate inner ear arises from an ectodermal thickening, the otic placode, that forms adjacent to the presumptive hindbrain. Previous studies have suggested that competent ectodermal cells respond to Fgf signals from adjacent tissues and express two highly related paired box transcription factors Pax2a and Pax8 in the developing placode. We show that compromising the functions of both Pax2a and Pax8 together blocks zebrafish ear development, leaving only a few residual otic cells. This suggests that Pax2a and Pax8 are the main effectors downstream of Fgf signals. Our results further provide evidence that pax8 expression and pax2a expression are regulated by two independent factors, Foxi1 and Dlx3b, respectively. Combined loss of both factors eliminates all indications of otic specification. We suggest that the Foxi1-Pax8 pathway provides an early 'jumpstart' of otic specification that is maintained by the Dlx3b-Pax2a pathway.
An essential role for LPA signalling in telencephalon development.
Geach, Timothy J; Faas, Laura; Devader, Christelle; Gonzalez-Cordero, Anai; Tabler, Jacqueline M; Brunsdon, Hannah; Isaacs, Harry V; Dale, Leslie
2014-02-01
Lysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling. Transcripts for lpar6 are enriched in the neural plate of Xenopus neurulae and loss of function caused forebrain defects, with reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1). Midbrain (en2) and hindbrain (egr2) markers were unaffected. Foxg1 expression requires LPAR6 within ectoderm and not mesoderm. Head defects caused by LPAR6 loss of function were enhanced by co-inhibiting FGF signalling, with defects extending into the hindbrain (en2 and egr2 expression reduced). This is more severe than expected from simple summation of individual defects, suggesting that LPAR6 and FGF have overlapping or partially redundant functions in the anterior neural plate. We observed similar defects in forebrain development in loss-of-function experiments for ENPP2, an enzyme involved in the synthesis of extracellular LPA. Our study demonstrates a role for LPA in early forebrain development.
Ectodysplasin A Pathway Contributes to Human and Murine Skin Repair.
Garcin, Clare L; Huttner, Kenneth M; Kirby, Neil; Schneider, Pascal; Hardman, Matthew J
2016-05-01
The highly conserved ectodysplasin A (EDA)/EDA receptor signaling pathway is critical during development for the formation of skin appendages. Mutations in genes encoding components of the EDA pathway disrupt normal appendage development, leading to the human disorder hypohidrotic ectodermal dysplasia. Spontaneous mutations in the murine Eda (Tabby) phenocopy human X-linked hypohidrotic ectodermal dysplasia. Little is known about the role of EDA signaling in adult skin homeostasis or repair. Because wound healing largely mimics the morphogenic events that occur during development, we propose a role for EDA signaling in adult wound repair. Here we report a pronounced delay in healing in Tabby mice, demonstrating a functional role for EDA signaling in adult skin. Moreover, pharmacological activation of the EDA pathway in both Tabby and wild-type mice significantly accelerates healing, influencing multiple processes including re-epithelialization and granulation tissue matrix deposition. Finally, we show that the healing promoting effects of EDA receptor activation are conserved in human skin repair. Thus, targeted manipulation of the EDA/EDA receptor pathway has clear therapeutic potential for the future treatment of human pathological wound healing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Herediatary anhidrotic ectodermal dysplasia. Studies in a Nigerian famil.
Familusi, J B; Jaiyesimi, F; Ojo, C O; Attah, E B
1975-08-01
Studies in a Nigerian family with hereditary anhidrous ectodermal dysplasia are reported. Microscopical examinations of finger tips for sweat pores were diagnostic in phenotypes, and it is suggested that this simple nonsurgical procedure is a preferred alternative to skin biopsies in the diagnosis of the syndrome. The clinical implications of a tropical environment for the syndrome, as well as the factors that may favour maintenance of the gene in such an environment are discussed.
Respiratory problems in patients with ectodermal dysplasia syndromes.
Fete, Timothy
2014-10-01
The ectodermal dysplasias (EDs) are a heterogeneous group of disorders characterized by a deficiency of ectoderm- and mesoderm-derived tissues and appendages, particularly hair, skin, teeth, and nails. Many of these disorders are associated with a greater risk of respiratory disease than found in the general population. There are no published papers that comprehensively describe these findings and the possible etiologies. Patients have been reported with dramatic decrease in mucous glands in the respiratory tract. Anatomic defects, including cleft palate, that predispose to respiratory infection, are associated with several of the ED syndromes. Atopy and immune deficiencies have been shown to have a higher prevalence in ED syndromes. Clinicians who care for patients affected by ED syndromes should be aware of the potential respiratory complications, and consider evaluation for structural anomalies, atopy and immunodeficiency in individuals with recurrent or chronic respiratory symptoms. © 2014 Wiley Periodicals, Inc.
Sun, Wei; Incitti, Tania; Migliaresi, Claudio; Quattrone, Alessandro; Casarosa, Simona; Motta, Antonella
2016-10-01
Different hydrogel materials have been prepared to investigate the effects of culture substrate on the behaviour of pluripotent cells. In particular, genipin-crosslinked gelatin-silk fibroin hydrogels of different compositions have been prepared, physically characterized and used as substrates for the culture of pluripotent cells. Pluripotent cells cultured on hydrogels remained viable and proliferated. Gelatin and silk fibroin promoted the proliferation of cells in the short and long term, respectively. Moreover, cells cultured on genipin-crosslinked gelatin-silk fibroin blended hydrogels were induced to an epithelial ectodermal differentiation fate, instead of the neural ectodermal fate obtained by culturing on tissue culture plates. This work confirms that specific culture substrates can be used to modulate the behaviour of pluripotent cells and that our genipin-crosslinked gelatin-silk fibroin blended hydrogels can induce pluripotent cells differentiation to an epithelial ectodermal fate. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei
2016-09-19
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.
Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S.
2008-01-01
We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 hours after infection (~HH22) and observed that Shh expression was reduced or absent. In the mesenchyme we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 hours after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway. PMID:18028903
2008 International Conference on Ectodermal Dysplasias Classification Conference Report
Salinas, Carlos F.; Jorgenson, Ronald J.; Wright, J. Timothy; DiGiovanna, John J.; Fete, Mary D.
2009-01-01
There are many ways to classify ectodermal dysplasia syndromes. Clinicians in practice use a list of syndromes from which to choose a potential diagnosis, paging through a volume, such as Freire-Maia and Pinheiro's corpus, matching their patient's findings to listed syndromes. Medical researchers may want a list of syndromes that share one (monothetic system) or several (polythetic system) traits in order to focus research on a narrowly defined group. Special interest groups may want a list from which they can choose constituencies, and insurance companies and government agencies may want a list to determine for whom to provide (or deny) health care coverage. Furthermore, various molecular biologists are now promoting classification systems based on gene mutation (e.g. TP63 associated syndromes) or common molecular pathways. The challenge will be to balance comprehensiveness within the classification with usability and accessibility so that the benefits truly serve the needs of researchers, health care providers and ultimately the individuals and families directly affected by ectodermal dysplasias. It is also recognized that a new classification approach is an ongoing process and will require periodical reviews or updates. Whatever scheme is developed, however, will have far-reaching application for other groups of disorders for which classification is complicated by the number of interested parties and advances in diagnostic acumen. Consensus among interested parties is necessary for optimizing communication among the diverse groups whether it be for equitable distribution of funds, correctness of diagnosis and treatment, or focusing research efforts. PMID:19681152
Evolution of bilaterian central nervous systems: a single origin?
2013-01-01
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage. PMID:24098981
The roles of ERAS during cell lineage specification of mouse early embryonic development.
Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei
2015-08-01
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.
Kiyomoto, Masato; Morinaga, Seiko; Ooi, Nagisa
2010-03-01
Early embryogenesis is one of the most sensitive and critical stages in animal development. Here we propose a new assessment model on the effect of pollutant to multicellular organism development. That is a comparison between the whole embryo assay and the blastomere culture assay. We examined the LiCl effect on the sea urchin early development in both of whole embryos and the culture of isolated blastomeres. The mesoderm and endoderm region were capable to differentiate into skeletogenic cells when they were isolated at 60-cell stage and cultured in vitro. The embryo developed to exogastrula by the vegetalizing effect of the same LiCl condition where ectodermal region changed their fate to endoderm, while the isolated blastomeres from the presumptive ectoderm region differentiated into skeletogenic cells in the culture with LiCl. The effect of LiCl to the sea urchin embryo and to the dissociated blastomere is a unique example where same cells response distinctly to the same agent depend on the condition around them. Present results show the importance of examining the process in cellular and tissue levels for the exact understanding on the morphological effect of chemicals and metals.
Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers
2013-01-01
Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell proliferation and cell survival. Conclusions Specific subsets of embryonic mammary genes, rather than the entire embryonic development transcriptomic program, are activated in tumorigenesis. Genes involved in embryonic mammary development are consistently upregulated in some breast cancers and warrant further investigation, potentially in drug-discovery research endeavors. PMID:23506684
Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules.
Seville, Rachel A; Nijjar, Sarbjit; Barnett, Mark W; Massé, Karine; Jones, Elizabeth A
2002-04-01
Vertebrate kidney organogenesis is characterised by the successive formation of the pronephros, the mesonephros and the metanephros. The pronephros is the first to form and is the functional embryonic kidney of lower vertebrates; although it is vestigial in higher vertebrates, it is a necessary precursor for the other kidney types. The Xenopus pronephros is a simple paired organ; each nephron consists of a single large glomus, one set of tubules and a single duct. The simple organisation of the pronephros and the amenability of Xenopus laevis embryos to manipulation make the Xenopus pronephros an attractive system in which to study organogenesis. It has been shown that pronephric tubules can be induced to form in presumptive ectodermal tissue by treatment with RA and activin. We have used this system in a subtractive hybridisation screen that resulted in the cloning of Xenopus laevis annexin IV (Xanx-4). Xanx-4 transcripts are specifically located to the developing pronephric tubules, and the protein to the luminal surface of these tubules. Temporal expression shows zygotic transcription is upregulated at the time of pronephric tubule specification and persists throughout pronephric development. The temporal and spatial expression pattern of Xanx-4 suggests it may have a role in pronephric tubule development. Overexpression of Xanx-4 yields no apparent phenotype, but Xanx-4 depletion, using morpholinos, produces a shortened, enlarged tubule phenotype. The phenotype observed can be rescued by co-injection of Xanx-4 mRNA. Although the function of annexins is not yet clear, studies have suggested a role for annexins in a number of cellular processes. Annexin IV has been shown to have an inhibitory role in the regulation of epithelial calcium-activated chloride ion conductance. The enlarged pronephric tubule phenotype observed may be attributed to incorrect modulation of exocytosis, membrane plasticity or ion channels and/or water homeostasis. In this study, we demonstrate an in vivo role for annexin IV in the development of the pronephric tubules in Xenopus laevis.
Migration of Drosophila intestinal stem cells across organ boundaries
Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker
2013-01-01
All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215
Maternal folic acid-deficient diet causes congenital malformations in the mouse eye.
Maestro-de-las-Casas, Carmen; Pérez-Miguelsanz, Juliana; López-Gordillo, Yamila; Maldonado, Estela; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción
2013-09-01
The eye is a very complex structure derived from the neural tube, surface ectoderm, and migratory mesenchyme from a neural crest origin. Because structures that evolve from the neural tube may be affected by a folate/folic acid (FA) deficiency, the aim of this work was to investigate whether a maternal folic acid-deficient diet may cause developmental alterations in the mouse eye. Female C57BL/6J mice (8 weeks old) were assigned into two different folic acid groups for periods ranging between 2 and 16 weeks. Animals were killed at gestation day 17. Hepatic folate was analyzed, and the eyes from 287 fetuses were macroscopically studied, sectioned and immunolabeled with anti-transforming growth factor (TGF)-β2 and anti-TGF-βRII. Mice exposed to a FA-deficient diet exhibited numerous eye macroscopic anomalies, such as anophthalmia and microphthalmia. Microscopically, the eye was the most affected organ (43.7% of the fetuses). The highest incidence of malformations occurred from the 8th week onward. A statistically significant linear association between the number of maternal weeks on the FA-deficient diet and embryonic microscopic eye malformations was observed. The optic cup derivatives and structures forming the eye anterior segment showed severe abnormalities. In addition, TGF-β2 and TGF-βRII expression in the eye was also altered. This study suggests that an adequate folic acid/folate status plays a key role in the formation of ocular tissues and structures, whereas a vitamin deficiency is negatively associated with a normal eye development even after a short-term exposure. Copyright © 2013 Wiley Periodicals, Inc.
Yasui, Kinya; Reimer, James D; Liu, Yunhuan; Yao, Xiaoyong; Kubo, Daisuke; Shu, Degan; Li, Yong
2013-01-01
Microfossils of the genus Punctatus include developmental stages such as blastula, gastrula, and hatchlings, and represent the most complete developmental sequence of animals available from the earliest Cambrian. Despite the extremely well-preserved specimens, the evolutionary position of Punctatus has relied only on their conical remains and they have been tentatively assigned to cnidarians. We present a new interpretation of the Punctatus body plan based on the developmental reconstruction aided by recent advances in developmental biology. Punctatus developed from a rather large egg, gastrulated in a mode of invagination from a coeloblastura, and then formed a mouth directly from the blastopore. Spiny benthic hatchlings were distinguishable from swimming or crawling ciliate larvae found in cnidarians and sponges. A mouth appeared at the perihatching embryonic stage and was renewed periodically during growth, and old mouths transformed into the body wall, thus elongating the body. Growing animals retained a small blind gut in a large body cavity without partitioning by septa and did not form tentacles, pedal discs or holdfasts externally. A growth center at the oral pole was sufficient for body patterning throughout life, and the body patterning did not show any bias from radial symmetry. Contrary to proposed cnidarian affinity, the Punctatus body plan has basic differences from that of cnidarians, especially concerning a spacious body cavity separating ectoderm from endoderm. The lack of many basic cnidarian characters in the body patterning of Punctatus leads us to consider its own taxonomic group, potentially outside of Cnidaria.
Yasui, Kinya; Reimer, James D.; Liu, Yunhuan; Yao, Xiaoyong; Kubo, Daisuke; Shu, Degan; Li, Yong
2013-01-01
Background Microfossils of the genus Punctatus include developmental stages such as blastula, gastrula, and hatchlings, and represent the most complete developmental sequence of animals available from the earliest Cambrian. Despite the extremely well-preserved specimens, the evolutionary position of Punctatus has relied only on their conical remains and they have been tentatively assigned to cnidarians. We present a new interpretation of the Punctatus body plan based on the developmental reconstruction aided by recent advances in developmental biology. Results Punctatus developed from a rather large egg, gastrulated in a mode of invagination from a coeloblastura, and then formed a mouth directly from the blastopore. Spiny benthic hatchlings were distinguishable from swimming or crawling ciliate larvae found in cnidarians and sponges. A mouth appeared at the perihatching embryonic stage and was renewed periodically during growth, and old mouths transformed into the body wall, thus elongating the body. Growing animals retained a small blind gut in a large body cavity without partitioning by septa and did not form tentacles, pedal discs or holdfasts externally. A growth center at the oral pole was sufficient for body patterning throughout life, and the body patterning did not show any bias from radial symmetry. Conclusions Contrary to proposed cnidarian affinity, the Punctatus body plan has basic differences from that of cnidarians, especially concerning a spacious body cavity separating ectoderm from endoderm. The lack of many basic cnidarian characters in the body patterning of Punctatus leads us to consider its own taxonomic group, potentially outside of Cnidaria. PMID:23840375
Ingrisch, Sigfrid
1986-11-01
The effect of temperature on embryonic development, voltinism, and hatching was studied in the laboratory in eggs of 21 Central and Southeastern European Tettigoniidae species. In most species, the embryo has to arrive at a postkatatrepsis stage prior to the onset of cold to be able to hatch in the following spring. The rate of embryonic development differs: quickly developing species need 4 weeks at 24°C (prior to cold) and almost all eggs hatch after the first cold treatment, slowly developing species would need 8-12 weeks to do the same. In Central Europe, warmth is not enough for the slowly developing species to have an univoltine life cycle, but they could have it in southern Europe. Most species make use of a dormancy sequence to pass successive winters as follows: an initial embryonic dormancy (either quiscence or diapause in embryonic stage 4) and a final diapause in embryonic stage 23/24. Additionally, 3 forms of aestivation or summer dormancy were observed facultatively: an initial diapause in embryonic stage 4 (induced and terminated at 30°C), a median dormancy shortly before or after katatrepsis (at 30°C), and a penultimate diapause in embryonic stage 20 (at 24°C).The life cycles of the European Tettigoniidae species can follow one of 3 types: 1. annual life cycle (no initial embryonic dormancy); 2. annual or biennial depending on whether laid early or late; 3. biennial or many year life cycle (up to 8 years due to a prolonged initial diapause).
Parisi, Francesca; Rousian, Melek; Steegers-Theunissen, Régine P M; Koning, Anton H J; Willemsen, Sten P; de Vries, Jeanne H M; Cetin, Irene; Steegers, Eric A P
2018-04-20
Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome. A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6 +0 and 10 +2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models. A total of 726 3D US scans were included (median: three scans per pregnancy). The 'high fish and olive oil and low meat' dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The 'high vegetables, fruit and grain' dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake. Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.
Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles
Rafferty, Anthony R.; Reina, Richard D.
2012-01-01
Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid. PMID:22438503
Landles, Christian; Chalk, Sara; Steel, Jennifer H; Rosewell, Ian; Spencer-Dene, Bradley; Lalani, El-Nasir; Parker, Malcolm G
2003-12-01
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.
GLUT3 gene expression is critical for embryonic growth, brain development and survival.
Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U
2014-04-01
Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.
GLUT3 Gene Expression is Critical for Embryonic Growth, Brain Development and Survival
Carayannopoulos, Mary O.; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U.
2015-01-01
Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. PMID:24529979
Engineering the extracellular matrix for clinical applications: endoderm, mesoderm, and ectoderm.
Williams, Miguel L; Bhatia, Sujata K
2014-03-01
Tissue engineering is rapidly progressing from a research-based discipline to clinical applications. Emerging technologies could be utilized to develop therapeutics for a wide range of diseases, but many are contingent on a cell scaffold that can produce proper tissue ultrastructure. The extracellular matrix, which a cell scaffold simulates, is not merely a foundation for tissue growth but a dynamic participant in cellular crosstalk and organ homeostasis. Cells change their growth rates, recruitment, and differentiation in response to the composition, modulus, and patterning of the substrate on which they reside. Cell scaffolds can regulate these factors through precision design, functionalization, and application. The ideal therapy would utilize highly specialized cell scaffolds to best mimic the tissue of interest. This paper discusses advantages and challenges of optimized cell scaffold design in the endoderm, mesoderm, and ectoderm for clinical applications in tracheal transplant, cardiac regeneration, and skin grafts, respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, L; Swalla, B J; Zhou, J; Dobias, S L; Bell, J R; Chen, J; Maxson, R E; Jeffery, W R
1996-03-01
The Msx homeobox genes are expressed in complex patterns during vertebrate development in conjunction with inductive tissue interactions. As a means of understanding the archetypal role of Msx genes in chordates, we have isolated and characterized an Msx gene in ascidians, protochordates with a relatively simple body plan. The Mocu Msx-a and McMsx-a genes, isolated from the ascidians Molgula oculata and Molgula citrina, respectively, have homeodomains that place them in the msh-like subclass of Msx genes. Therefore, the Molgula Msx-a genes are most closely related to the msh genes previously identified in a number of invertebrates. Southern blot analysis suggests that there are one or two copies of the Msx-a gene in the Molgula genome. Northern blot and RNase protection analysis indicate that Msx-a transcripts are restricted to the developmental stages of the life cycle. In situ hybridization showed that Msx-a mRNA first appears just before gastrulation in the mesoderm (presumptive notochord and muscle) and ectoderm (neural plate) cells. Transcript levels decline in mesoderm cells after the completion of gastrulation, but are enhanced in the folding neural plate during neurulation. Later, Msx-a mRNA is also expressed in the posterior ectoderm and in a subset of the tail muscle cells. The ectoderm and mesoderm cells that express Msx-a are undergoing morphogenetic movements during gastrulation, neurulation, and tail formation. Msx-a expression ceases after these cells stop migrating. The ascidian M. citrina, in which adult tissues and organs begin to develop precociously in the larva, was used to study Msx-a expression during adult development. Msx-a transcripts are expressed in the heart primordium and the rudiments of the ampullae, epidermal protrusions with diverse functions in the juvenile. The heart and ampullae develop in regions where mesenchyme cells interact with endodermal or epidermal epithelia. A comparison of the expression patterns of the Molgula genes with those of their vertebrate congeners suggests that the archetypal roles of the Msx genes may be in morphogenetic movements during embryogenesis and in mesenchymal-epithelial interactions during organogenesis.
Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm
Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L.
2014-01-01
The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. In addition, the mammalian ear develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Developing the OC out of a uniform sheet of ectoderm requires an unparalleled precision in topological developmental engineering of four different general cell types, sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. In addition, the OC receives a unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents, and requires neural crest-derived Schwann cells to form myelin and neural crest-derived cells to induce the stria vascularis. To achieve this transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGN) while simultaneously transforming the flat epithelium into a tube, the cochlear duct housing the OC. In addition to the cellular and conformational changes to make the cochlear duct with the OC, additional changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. This article reviews molecular developmental data generated predominantly in mice. The available data are ordered into a plausible scenario that integrates the well described expression changes of transcription factors and their actions revealed in mouse mutants for formation of SGNs and OC in the right position and orientation with the right kind of innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge may guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body to reconstitute hearing in a rapidly growing population of aging people suffering from hearing loss. PMID:25381571
Vedder, Oscar; Kürten, Nathalie; Bouwhuis, Sandra
Embryonic development time is thought to impact life histories through trade-offs against life-history traits later in life, yet the inference is based on interspecific comparative analyses only. It is largely unclear whether intraspecific variation in embryonic development time that is not caused by environmental differences occurs, which would be required to detect life-history trade-offs. Here we performed a classical common-garden experiment by incubating fresh eggs of free-living common terns (Sterna hirundo) in a controlled incubation environment at two different temperatures. Hatching success was high but was slightly lower at the lower temperature. While correcting for effects of year, incubation temperature, and laying order, we found significant variation in the incubation time embryos required until hatching and in their heart rate. Embryonic heart rate was significantly positively correlated within clutches, and a similar tendency was found for incubation time, suggesting that intrinsic differences in embryonic development rate between offspring of different parents exist. Incubation time and embryonic heart rate were strongly correlated: embryos with faster heart rates required shorter incubation time. However, after correction for heart rate, embryos still required more time for development at the lower incubation temperature. This suggests that processes other than development require a greater share of resources in a suboptimal environment and that relative resource allocation to development is, therefore, environment dependent. We conclude that there is opportunity to detect intraspecific life-history trade-offs with embryonic development time and that the resolution of trade-offs may differ between embryonic environments.
Roy, Nicole M.; Arpie, Brianna; Lugo, Joseph; Linney, Elwood; Levin, Edward D.; Cerutti, Daniel
2015-01-01
Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5 mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior. PMID:23022260
Roy, Nicole M; Arpie, Brianna; Lugo, Joseph; Linney, Elwood; Levin, Edward D; Cerutti, Daniel
2012-01-01
Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior. Copyright © 2012 Elsevier Inc. All rights reserved.
High-throughput identification of small molecules that affect human embryonic vascular development
Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino
2017-01-01
Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206
High-throughput identification of small molecules that affect human embryonic vascular development.
Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R; Honório, Inês; de Vries, Margreet R; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H A; Pereira, Carlos F; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino
2017-04-11
Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.
Lours-Calet, Corinne; Alvares, Lucia E; El-Hanfy, Amira S; Gandesha, Saniel; Walters, Esther H; Sobreira, Débora Rodrigues; Wotton, Karl R; Jorge, Erika C; Lawson, Jennifer A; Kelsey Lewis, A; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne
2014-06-15
The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Lours-Calet, Corinne; Alvares, Lucia E.; El-Hanfy, Amira S.; Gandesha, Saniel; Walters, Esther H.; Sobreira, Débora Rodrigues; Wotton, Karl R.; Jorge, Erika C.; Lawson, Jennifer A.; Kelsey Lewis, A.; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne
2014-01-01
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface. PMID:24662046
Peng, Qianqian; Li, Jinxi; Tan, Jingze; Yang, Yajun; Zhang, Manfei; Wu, Sijie; Liu, Yu; Zhang, Juan; Qin, Pengfei; Guan, Yaqun; Jiao, Yi; Zhang, Zhaoxia; Sabeti, Pardis C; Tang, Kun; Xu, Shuhua; Jin, Li; Wang, Sijia
2016-01-01
An adaptive variant of human Ectodysplasin receptor, EDARV370A, had undergone strong positive selection in East Asia. In mice and humans, EDARV370A was found to affect ectodermal-derived characteristics, including hair thickness, hair shape, active sweat gland density and teeth formation. Facial characteristics are also largely ectodermal derived. In this study, taking advantage of an admixed population of East Asian and European ancestry-the Uyghur, we aim to test whether EDARV370A is affecting facial characteristics and to investigate its pleiotropic nature and genetic model. In a sample of 1027 Uyghurs, we discover that EDARV370A is significantly associated with several facial characteristics, in particular shape of earlobe (P = 3.64 × 10 (-6) ) and type of chin (P = 9.23 × 10 (-5) ), with successful replication in other East Asian populations. Additionally, in this Uyghur population, we replicate previous association findings of incisors shoveling (P = 1.02 × 10 (-7) ), double incisors shoveling (P = 1.86 × 10 (-12) ) and hair straightness (P = 3.99 × 10 (-16) ), providing strong evidence supporting an additive model for the EDARV370A associations. Partial least square path model confirms EDARV370A systematically affect these weakly related ectodermal-derived characteristics, suggesting the pleiotropic effect of EDARV370A mainly plays roles in early embryo development. This study extends our knowledge about the pleiotropic nature of EDARV370A and provides potential clues to its adaptation fitness in human evolution.
Fete, Mary; vanBokhoven, Hans; Clements, Suzanne; McKeon, Frank; Roop, Dennis R.; Koster, Maranke I.; Missero, Caterina; Attardi, Laura D.; Lombillo, Vivian A.; Ratovitski, Edward; Julapalli, Meena; Ruths, Derek; Sybert, Virginia P.; Siegfried, Elaine C.; Bree, Alanna F.
2009-01-01
Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) Syndrome (Hay-Wells syndrome, MIM #106220) is a rare autosomal dominant ectodermal dysplasia syndrome. It is due to mutations in the p63 gene, known to be a regulatory gene with many downstream gene targets. TP63 is important in the differentiation and proliferation of the epidermis, as well as many other processes including limb and facial development. It is also known that mutations in p63 lead to skin erosions. These erosions, especially on the scalp, are defining features of AEC syndrome and cause significant morbidity and mortality in these patients. It was this fact that led to the 2003 AEC Skin Erosion Workshop. That conference laid the groundwork for the International Research Symposium for AEC Syndrome held at Texas Children's Hospital in 2006. The conference brought together the largest cohort of individuals with AEC syndrome, along with a multitude of physicians and scientists. The overarching goals were to define the clinical and pathologic findings for improved diagnostic criteria, to obtain tissue samples for further study and to define future research directions. The symposium was successful in accomplishing these aims as detailed in this conference report. Following our report, we also present eleven manuscripts within this special section that outline the collective clinical, pathologic and mutational data from eighteen individuals enrolled in the concurrent Baylor College of Medicine IRB-approved protocol: Characterization of AEC syndrome. These collaborative findings will hopefully provide a stepping stone to future translational projects of p63 and p63-related syndromes. PMID:19353643
Jadalannagari, Sushma; Aljitawi, Omar S
2015-06-01
Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.
Keratoprosthesis in Ectodermal Dysplasia.
Wozniak, Rachel A F; Gonzalez, Mithra; Aquavella, James V
2016-07-01
To describe the complex surgical management and novel medical approach for a keratoprosthesis (KPro Boston type I) in a monocular, 73-year-old patient with ectodermal dysplasia and chronic, noninfectious corneal necrosis. Best-corrected visual acuity (BCVA) was measured with Snellen letters. Surgical intervention included an amniotic membrane graft, complete replacement of the KPro, conjunctival flap graft, corneal donor tissue grafts combined with inferior rectus muscle advancement, periosteal tissue graft, tarso-conjunctival flap construction, and symblepharolysis. Infliximab was used as a medical adjunctive therapy. Initial KPro placement provided a BCVA of 20/25 and long-term stability. Subsequent chronic melting at the optic border necessitated numerous surgeries to prevent extrusion and failure. Ultimate fistulization was addressed with the formation of a surgical pocket. The addition of infliximab promoted ocular surface stability, and the patient has maintained a BCVA of 20/80. Ectodermal dysplasia can result in eyelid and corneal abnormalities, requiring a KPro for visual restoration. In the setting of chronic, sterile corneal melt, novel surgical approaches and the off-label use of infliximab allowed for visual rehabilitation.
NASA Technical Reports Server (NTRS)
Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.
2003-01-01
A full-length FoxQ-related gene (AmphiFoxQ2) was isolated from amphioxus. Expression is first detectable in the animal/anterior hemisphere at the mid blastula stage. The midpoint of this expression domain coincides with the anterior pole of the embryo and is offset dorsally by about 20 degrees from the animal pole. During the gastrula stage, expression is limited to the anterior ectoderm. By the early neurula stage, expression remains in the anterior ectoderm and also appears in the adjacent anterior mesendoderm. By the early larval stages, expression is detectable in the anteriormost ectoderm and in the rostral tip of the notochord. AmphiFoxQ2 is never expressed anywhere except at the anterior tip of amphioxus embryos and larvae. This is the first gene known that exclusively marks the anterior pole of chordate embryos. It may, therefore, play an important role in establishing and/or maintaining the anterior/posterior axis.
Li, Dehua; Liu, Yanpu; Ma, Wei; Song, Yingliang
2011-10-01
Dental implants have proven to be a reliable modality for the rehabilitation of missing teeth. However, there are limited reports on managing anodontia related to ectodermal dysplasia in the scientific literature. The severely reduced bone quantity due to the congenital absence of multiple natural teeth is the biggest challenge for the surgeon. There are a variety of bone augmentation procedures to establish adequate bone quantity, and the surgical planning should be used on an individual case basis. This is a report of a 19-year-old male patient affected by hypohidrotic ectodermal dysplasia. Oligodontia associated with severe atrophy of jaws was the chief complaint for seeking treatment. Based on clinical and radiographic examinations, 2 bone augmentation procedures were used to obtain sufficient width of alveolus for implant placement by performing an onlay bone graft in the maxilla and vertical distraction osteogenesis in the mandible. The treatment planning was discussed and informed consent was obtained.
Implant-supported Oral Rehabilitation in Child with Ectodermal Dysplasia - 4-year Follow-up.
Cezária Triches, Thaisa; Ximenes, Marcos; Oliveira de Souza, João Gustavo; Rodrigues Lopes Pereira Neto, Armando; Cardoso, Antônio Carlos; Bolan, Michele
2017-01-01
Ectodermal dysplasia (ED) is an anomaly determined by genetic factors that alter ectodermal structures such as skin, hair, nails, glands, and teeth. Children affected by this condition require extensive, comprehensive, and multidisciplinary treatment. An 8-year-old female patient visited the Dentistry Clinic of the Federal University of Santa Catarina with the chief complaint of multiple missing teeth. The mother reported that the patient had ED. Clinical and radiographic examination revealed the congenital absence of several primary and permanent teeth and tooth germs. Subsequent oral rehabilitation comprised the application of a maxillary denture and mandibular implant-supported fixed prosthesis. The child was also supplied with a wig for further enhancement of esthetics aimed at improving her emotional wellbeing. Psychological follow-up and speech therapy were also provided. After 4 years of follow-up, implant-supported oral rehabilitation has proved to be a satisfactory treatment option, allowing restoration of masticatory, phonetic, and esthetic function, as well as an improvement in the patient's self-esteem and social wellbeing.
Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie
2013-01-01
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130
Auden, Alana; Caddy, Jacinta; Wilanowski, Tomasz; Ting, Stephen B; Cunningham, John M; Jane, Stephen M
2006-10-01
The Drosophila transcription factor Grainyhead (grh) is expressed in ectoderm-derived tissues where it regulates several key developmental events including cuticle formation, tracheal elongation and dorsal closure. Our laboratory has recently identified three novel mammalian homologues of the grh gene, Grainyhead-like 1, -2 and -3 (Grhl1-3) that rewrite the phylogeny of this family. Using gene targeting in mice, we have shown that Grhl3 is essential for neural tube closure, skin barrier formation and wound healing. Despite their extensive sequence homology, Grhl1 and Grhl2 are unable to compensate for loss of Grhl3 in these developmental processes. To explore this lack of redundancy, and to gain further insights into the functions of this gene family in mammalian development we have performed an extensive in situ hybridisation analysis. We demonstrate that, although all three Grhl genes are highly expressed in the developing epidermis, they display subtle differences in the timing and level of expression. Surprisingly, we also demonstrate differential expression patterns in non-ectoderm-derived tissues, including the heart, the lung, and the metanephric kidney. These findings expand our understanding of the unique role of Grhl3 in neurulation and epidermal morphogenesis, and provide a focus for further functional analysis of the Grhl genes during mouse embryogenesis.
Kaercher, Thomas; Dietz, Jasna; Jacobi, Christina; Berz, Reinhold; Schneider, Holm
2015-09-01
X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of ectodermal dysplasia. Clinical characteristics include meibomian gland disorder and the resulting hyperevaporative dry eye. In this study, we evaluated meibography and ocular infrared thermography as novel methods to diagnose XLHED. Eight infants, 12 boys and 14 male adults with XLHED and 12 healthy control subjects were subjected to a panel of tests including the ocular surface disease index (OSDI), meibography and infrared thermography, non-invasive measurement of tear film break-up time (NIBUT) and osmolarity, Schirmer's test, lissamine green staining and fluorescein staining. Sensitivity and specificity were determined for single tests and selected test combinations. Meibography had 100% sensitivity and specificity for identifying XLHED. Infrared thermography, a completely non-invasive procedure, revealed a typical pattern for male subjects with XLHED. It was, however, less sensitive (86% for adults and 67% for children) than meibography or a combination of established routine tests. In adults, OSDI and NIBUT were the best single routine tests (sensitivity of 86% and 71%, respectively), whereas increased tear osmolarity appeared as a rather unspecific ophthalmic symptom. In children, NIBUT was the most convincing routine test (sensitivity of 91%). Meibography is the most reliable ophthalmic examination to establish a clinical diagnosis in individuals with suspected hypohidrotic ectodermal dysplasia, even before genetic test results are available. Tear film tests and ocular surface staining are less sensitive in children, but very helpful for estimating the severity of ocular surface disease in individuals with known XLHED.
Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P
2018-04-01
In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.
Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations
Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi
2016-01-01
The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418
Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.
Meenakumari, Karukayil J; Krishna, Amitabh
2005-01-01
The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.
AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes.
Young, Nathan P; Kamireddy, Anwesh; Van Nostrand, Jeanine L; Eichner, Lillian J; Shokhirev, Maxim Nikolaievich; Dayn, Yelena; Shaw, Reuben J
2016-03-01
Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation. © 2016 Young et al.; Published by Cold Spring Harbor Laboratory Press.
Luo, Jiesi; Cibelli, Jose B
2016-09-19
Dogs have been widely used as a preclinical model for human disease. With the successful generation of canine induced pluripotent stem cells (ciPSCs), the biomedical community has a unique opportunity to study therapeutic interventions using autologous stem cells that can benefit dogs and humans. Unlike mice and human pluripotent cells, which are leukemia inhibitory factor (LIF)- and basic fibroblast growth factor (bFGF)-dependent, respectively, dog iPSCs require both growth factors simultaneously. In an effort to elucidate the role of each factor in the control of ciPSC self-renewal, we performed a series of experiments aiming at understanding the signaling pathways activated by them. We found that bFGF regulates pluripotency by indirectly activating the SMAD2/3 pathway in the presence of feeder cells, exclusively targeting NANOG expression, and inhibiting spontaneous differentiation toward ectoderm and mesoderm. LIF activates the JAK-STAT3 pathway but does not function in the typical manner described in mouse naïve embryonic stem cells. These results show that a unique mechanism for maintenance of pluripotency is present in ciPSC. These findings should be taken into account when establishing stem cell differentiation protocols and may provide more insight into pluripotency regulation in species other than mice and humans.
GLUCOCORTICOID RECEPTOR EXPRESSION DURING THE DEVELOPMENT OF THE EMBRYONIC MOUSE SECONDARY PALATE
Glucocorticoids are important regulators of embryonic growth and development. hese effects are mediated through glucocorticoid receptors (GR) which bind to glucocorticoid response elements upstream of regulated genes. his study examines the expression of GR and GR mRNA in embryon...
Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh
2009-01-01
The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.
Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Bhonde, Ramesh
2013-02-01
Post-myocardial infarction cardiomyocytes are the most important target cell types for cardiac repair. Many of the applications envisaged for human embryonic stem cells (hESC)-derived cardiomyocytes demand that the differentiation procedure be robust, cost effective and high yielding. Various lines of evidence including our earlier study suggest that hESCs have distinct preferences to become heart cells. However, a direct comparison between different protocols has not yet been reported to date. Here, we performed a logical and systematic comparison of cardiomyocytes obtained from hESCs via embryoid bodies (EBs) in suspension versus adherent static cultures of feeder-free hES colonies representing three-dimensional (3-D) and two-dimensional (2-D) culture systems, respectively. An in-depth characterization of the beating cells revealed appropriate cardiac marker expression both at gene and protein levels. Despite using similar media, 3-D and 2-D cultures showed significant variation in growth and ability to form beating areas. While the expression of pre-cardiac mesoderm markers like GATA-4, HAND1, Myf5, Msx1, and BMP-IIR remained unaltered; levels of functional heart-specific markers such as MLC-2A/2V, cTnT, ANP, Phospholamban, α-MHC and KV4.3 were substantially up-regulated in 3-D compared to 2-D cultures. Concurrently we observed a sharp decline in the expression of ESC, ectoderm and endoderm markers including Oct-4, Sox-2, NFH, Sox-1, Sox-17 and AFP. Further immunocytochemistry and flow cytometry demonstrated a higher percentage of cells positive for Brachyury, desmin and cardiac troponin in 3-D cultures. Our results underscore the higher efficiency of cardiomyocytes derived via 3-D cultures. This finding enriches our basic understanding of the differentiation pattern in hESC-derived cardiomyocytes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells
Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha
2012-01-01
Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for functional osteogenic cells. PMID:22612317
Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.
Hanken, J; Klymkowsky, M W; Alley, K E; Jennings, D H
1997-01-01
The Puerto Rican direct-developing frog Eleutherodactylus coqui (Leptodactylidae) displays a novel mode of jaw muscle development for anuran amphibians. Unlike metamorphosing species, several larval-specific features never form in E. coqui; embryonic muscle primordia initially assume an abbreviated, mid-metamorphic configuration that is soon remodelled to form the adult morphology before hatching. Also lacking are both the distinct population of larval myofibres and the conspicuous, larval-to-adult myofibre turnover that are characteristic of muscle development in metamorphosing species. These modifications are part of a comprehensive alteration in embryonic cranial patterning that has accompanied life history evolution in this highly speciose lineage. Embryonic 'repatterning' in Eleutherodactylus may reflect underlying developmental mechanisms that mediate the integrated evolution of complex structures. Such mechanisms may also facilitate, in organisms with a primitively complex life cycle, the evolutionary dissociation of embryonic, larval, and adult features. PMID:9332017
Parker, H M; McDaniel, C D
2009-04-01
Parthenogenesis, embryonic development of an unfertilized egg, was studied for many years in turkeys. In fact, as many as 49% of unfertilized Beltsville Small White turkey eggs develop embryos. However, no research exists on parthenogenesis in quail. The Chinese painted quail is a close relative of the more common Japanese quail and, unlike turkeys or chickens, the small Chinese painted quail reaches sexual maturity rapidly, making it a great candidate for further research on parthenogenesis. Obviously, a better understanding of avian parthenogenesis should increase our knowledge of avian fertilization and early embryonic development. Therefore, we determined if unfertilized Chinese painted quail hens produce embryos. Second, we explored the possibility that position of the egg within the clutch influences parthenogenesis. When initial secondary sexual plumage was apparent at 4 wk of age, male chicks were separated from females to prevent fertilization. Hens were placed in individual cages near sexual maturity, at approximately 6 wk of age. Individual eggs were collected daily and labeled with hen number and date. Eggs were stored for 0 to 3 d at 20 degrees C before incubation at 37.5 degrees C. After 10 d of incubation, approximately 4,000 eggs from 300 laying hens were examined for embryonic development under a magnifying lamp. On average, 4.8% of the unfertilized eggs contained an abortive form of embryonic development consisting of undifferentiated cells and unorganized membranes. Approximately 27% of the laying hens produced at least 1 egg with parthenogenic development. However, about 10% (30) of these hens exhibited a predisposition for parthenogenesis by producing 2 or more unfertilized eggs with embryonic development. Twenty percent of the eggs from 2 hens produced embryonic development. Additionally, the first egg laid in a clutch was most likely to produce embryonic development, with a steady decline in the percentage of eggs with embryonic development as position in the clutch increased. In conclusion, the Chinese painted quail does exhibit parthenogenesis and clutch position influences the rate of naturally occurring parthenogenesis.
Herediatary anhidrotic ectodermal dysplasia. Studies in a Nigerian famil.
Familusi, J B; Jaiyesimi, F; Ojo, C O; Attah, E B
1975-01-01
Studies in a Nigerian family with hereditary anhidrous ectodermal dysplasia are reported. Microscopical examinations of finger tips for sweat pores were diagnostic in phenotypes, and it is suggested that this simple nonsurgical procedure is a preferred alternative to skin biopsies in the diagnosis of the syndrome. The clinical implications of a tropical environment for the syndrome, as well as the factors that may favour maintenance of the gene in such an environment are discussed. Images FIG. 1 FIG. 2 FIG. 4 FIG. 5 FIG. 6 PMID:1200681
Sharma, Gaurav; Nagpal, Archna
2017-01-01
Ectrodactyly-ectodermal dysplasia-cleft (EEC) syndrome-a complex, pleiotropic disorder resulting in multiple congenital anomalies-has an unpredictable clinical expression and is typically manifested as an autosomal-dominant trait. This article presents a rare case of oligosymptomatic EEC syndrome in a 19-year-old man who exhibited atypical dental findings but no cleft lip or palate. This article is intended to create awareness about this rare syndrome and highlight the role of oral healthcare specialists in improving the quality of life for patients with EEC.
Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kere, J.; Grzeschik, K.H.; Limon, J.
1993-05-01
Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.
The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing development...
Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...
Banerjee, Arnab; Meenakumari, K J; Krishna, Amitabh
2007-01-01
The present study was undertaken in the fruit bat Cynopterus sphinx, which breeds twice in quick succession at Varanasi, India. Its gestation period varies significantly in the two successive pregnancies of the year owing to delayed embryonic development during the first (winter) pregnancy. The primary aim of the present study was to determine the role of metabolic factors in delayed embryonic development in the fruit bat C. sphinx. Variation in bodyweight, fat deposition, oxygen (O(2)) consumption rate, basal metabolic rate (BMR), body temperature (Tb) and hepatic succinate dehydrogenase (SDH) activity, along with circulating levels of thyroid hormones (tri-iodothyronine and thyroxine), were examined as metabolic factors during the two successive pregnancies in C. sphinx. The increase in bodyweight observed in November was due to accumulation of white adipose tissue in the posterior abdominal region. A significant decline in O(2) consumption rate, BMR, Tb and SDH activity was found in early winter in November-December, which coincides closely with the period of fat accumulation and with the period of delayed embryonic development in C. sphinx. A significantly higher O(2) consumption rate, BMR, Tb and SDH activity was noted during the second pregnancy in, when embryonic development was relatively faster. Thyroid hormone levels were high during the period of embryonic delay compared with levels during the remaining months. The results of the present study suggest that the delayed embryonic development in C. sphinx during early winter may be due to a low O(2) consumption rate, BMR, Tb and SDH activity in November-December. The energy saved by suppressing embryonic development in this species may be advantageous for fat accumulation. Increased thyroid hormone levels during the early winter period might facilitate fat accumulation in C. sphinx.
Regulation of scapula development.
Huang, Ruijin; Christ, Bodo; Patel, Ketan
2006-12-01
The scapula is a component of the shoulder girdle. Its structure has changed greatly during evolution. For example, in humans it is a large quite flat triangular bone whereas in chicks it is a long blade like structure. In this review we describe the mechanisms that control the formation of the scapula. To assimilate our understanding regarding the development of the scapula blade we start by addressing the issue concerning the origin of the scapula. Experiments using somite extirpation, chick-quail cell marking system and genetic cell labelling techniques in a variety of species have suggested that the scapula had its origin in the somites. For example we have shown in the chick that the scapula blade originates from the somite, while the cranial part, which articulates with the upper limb, is derived from the somatopleure of the forelimb field. In the second and third part of the review we discuss the compartmental origin of this bone and the signalling molecules that control the scapula development. It is very interesting that the scapula blade originates from the dorsal compartment, dermomyotome, which has been previously been associated as a source of muscle and dermis, but not of cartilage. Thus, the development of the scapula blade can be considered a case of dermomyotomal chondrogenesis. Our results show that the dermomyotomal chondrogenesis differ from the sclerotomal chondrogenesis. Firstly, the scapula precursors are located in the hypaxial domain of the dermomyotome, from which the hypaxial muscles are derived. The fate of the scapula precursors, like the hypaxial muscle, is controlled by ectoderm-derived signals and BMPs from the lateral plate mesoderm. Ectoderm ablation and inhibition of BMP activity interfers the scapula-specific Pax1 expression and scapula blade formation. However, only somite cells in the cervicothoracic transition region appear to be committed to form scapula. This indicates that the intrinsic segment specific information determines the scapula forming competence of the somite cells. Taken together, we conclude that the scapula forming cells located within the hypaxial somitic domain require BMP signals derived from the somatopleure and as yet unidentified signals from ectoderm for activation of their coded intrinsic segment specific chondrogenic programme. In the last part we discuss the new data that provides evidence that neural crest contributes for the development of the scapula.
Lian, Jayson; Cuk, Mario; Kahlfuss, Sascha; Kozhaya, Lina; Vaeth, Martin; Rieux-Laucat, Frédéric; Picard, Capucine; Benson, Melina J; Jakovcevic, Antonia; Bilic, Karmen; Martinac, Iva; Stathopulos, Peter; Kacskovics, Imre; Vraetz, Thomas; Speckmann, Carsten; Ehl, Stephan; Issekutz, Thomas; Unutmaz, Derya; Feske, Stefan
2017-11-16
Store-operated Ca 2+ entry (SOCE) through Ca 2+ release-activated Ca 2+ channels is an essential signaling pathway in many cell types. Ca 2+ release-activated Ca 2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling pathway (IKBKG and NFKBIA). Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...
Katow, H; Sofuku, S
2001-10-01
Immunoblotting using polyclonal antibodies (pAb) raised against an FR-1 receptor (FR-1R), a 57 kDa Arg-Gly-Asp-Ser (RGDS)-binding protein, of the sand dollar Clypeaster japonicus showed that the pAb monospecifically bound to the protein. FR-1R was present in purified plasma membrane, suggesting that the protein is a membrane-bound protein. The molecular structure of FR-1R did not change throughout the early embryogenesis, whereas its expression changed significantly during this period. FR-1R was present in the cortex of unfertilized eggs and was then transferred to the hyaline layer soon after the fertilization. The hyaline layer retained FR-1R immunoreactivity during early embryogenesis. FR-1R appeared on the basal side of the ectoderm at the morula stage and was retained basolaterally, at least, to the early gastrula stage. In mesenchyme blastulae, FR-1R was also present on the surface of primary mesenchyme cells (PMC). FR-1R was localized on the basal side of the ectoderm in early gastrulae, exclusively at the place where PMC formed ventrolateral aggregates, and at the apical tuft ectoderm. In vitro, PMC bound to FR-1R and its binding was inhibited in the presence of a synthetic RGDS peptide or the pAb. The pAb introduced into the blastocoele perturbed PMC migration and gastrulation. FR-1R was weakly recognized by antihuman integrin beta5 subunit pAb.
Sidhu, Manpreet; Kale, Alka D; Kotrashetti, Vijayalakshmi S
2012-01-01
Background: Hereditary ectodermal dysplasia is a genetic recessive trait characterized by hypohydrosis, hypotrichosis, and hypodontia. The affected individual show characteristic physiognomy like protruded forehead, depressed nasal bridge, periorbital wrinkling, protruded lips, etc. There is marked decrease in sweat and salivary secretion. Due to skin involvement palm and sole ridge patterns are disrupted. Aim: In this study an attempt has been made to classify the affected members according to the degree of penetrance by pedigree analysis and also study karyotyping for cytogenetics, dermatoglyphic analysis for the various ridge patterns and variations in the number of sweat glands by sweat pore analysis in affected individuals. Materials and Methods: A total of five families who were affected with ectodermal dysplasia were considered. Pedigree analysis was drawn up to three generation by obtaining history. Dermatoglyphics and sweat pore analysis was done by obtaining palm and finger print impression using stamp pad ink. Karyotyping was done by collecting 3–5 ml peripheral blood. Karyotyping was prepared using lymphocyte culture. Chromosomes were examined at 20 spreads selected randomly under ×100 magnification. Results were analyzed by calculating mean values and percentage was obtained. Results: Karyotyping did not show any abnormalities, dermatoglyphic analysis and sweat pore counts showed marked variations when compared with normal. Moreover, pedigree analysis confirmed the status of the disease as that of the recessive trait. Conclusion: Large number of affected patients needs to be evaluated for dermatoglypic analysis. Genetic aspect of the disease needs to be looked into the molecular level in an attempt to locate the gene locus responsible for ectodermal dysplasia and its manifestation. PMID:23248471